

RA Computer Science and Applications

Network-aware Evaluation
Environment for Reputation

Systems

Alessandro Celestini
Rocco De Nicola
Francesco Tiezzi

IMT LUCCA CSA TECHNICAL

REPORT SERIES 05
March 2013

#05
2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12097317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMT LUCCA CSA TECHNICAL REPORT SERIES #05/2013
© IMT Institute for Advanced Studies Lucca

Piazza San Ponziano 6, 55100 Lucca

Research Area

Computer Science and Applications

Network-aware Evaluation
Environment for Reputation

Systems

Alessandro Celestini
IMT Institute for Advanced Studies Lucca

Rocco De Nicola
IMT Institute for Advanced Studies Lucca

Francesco Tiezzi
IMT Institute for Advanced Studies Lucca

Network-aware Evaluation Environment for
Reputation Systems

Alessandro Celestini1, Rocco De Nicola1, and Francesco Tiezzi1

IMT Institute for Advanced Studies Lucca, Italy
{alessandro.celestini,rocco.denicola,francesco.tiezzi}@imtlucca.it

Abstract. Parties of reputation systems rate each other and use ratings to com-
pute reputation scores that drive their interactions. When deciding which rep-
utation model to deploy in a network environment, it is important to find the
most suitable model and to determine its right initial configuration. This calls for
an engineering approach for describing, implementing and evaluating reputation
systems while taking into account specific aspects of both the reputation systems
and the networked environment where they will run. We present a software tool
(NEVER) for network-aware evaluation of reputation systems and their rapid pro-
totyping through experiments performed according to user-specified parameters.
To demonstrate effectiveness of NEVER, we analyse reputation models based on
the beta distribution and the maximum likelihood estimation.

Keywords: Reputation systems, Network-awareness, Evaluation tool

1 Introduction

In recent years, we have seen an increasing use of reputation systems in different areas
of ICT, from e-commerce to different forms of open computer networking, such as P2P,
ad-hoc, or sensor networks. This phenomenon is likely to continue, due to the success of
networked applications (like social networks or other Web 2.0 technologies) and to the
need, in such environments, of instruments to build up relationships of trust among the
interacting parties. In order to establish such trust relationships, parties in a reputation
system are free to interact and rate each other after any interaction, such ratings are then
used to derive parties’ reputation scores. The computed reputation score is a collective
measure of parties’ trustworthiness and it is used by parties in selecting the party to
interact with.

Parties in a reputation system can exchange ratings and interact by relying on a net-
work infrastructure. We consider in this work a centralised architecture (widely used for
networked trust infrastructures) graphically depicted in Figure 1. In this general infras-
tructure, a rating server collects ratings from system’s parties and makes them publicly
available, while a search server allows parties to find resource providers in the system.
Every party can play the role of a client, of a provider, or both, and may offer differ-
ent kinds of resources (services, computational and storage resources, etc.). Whenever a
party needs a resource, first it queries the search server to get the list of parties providing
it, and then retrieves from the rating server the ratings of each provider in the list. Thus,
to choose a provider, it computes the reputation scores of each of them and selects the

2

Rating serverSearch server

Party 1

. . .

Network

Ratings

Party 2 Party 3

Party n

Fig. 1: General infrastructure of a reputation system

one with the highest reputation score. Finally, after the interaction, it rates the provider
according to the quality of the provided resource. On top of the general infrastructure
just described, different kinds of reputation system can be layered, which mainly differ
for the model they use to aggregate ratings when computing reputation scores.

Several models have been proposed and once a reputation system has to be deployed
in a network environment, we might ask which reputation model is more suitable for
the given environment and how the reputation system should be configured in order
to meet the desired behaviour. This calls for an engineering approach for describing,
implementing, evaluating reputation systems while taking into account real-word im-
plementation details of such systems and of the network environment where they have
to be deployed.

In this paper, we address this issue by proposing a software tool for network-aware
evaluation of reputation systems. On the one hand, we provide a framework for rapidly
developing Java-based implementations of reputation system models and for easily con-
figuring different networked execution environments on top of which the systems will
run. On the other hand, we developed a tool that automatically performs experiments
on the reputation system implementations according to user-specified parameters; this
enables the study of their behaviour while executing on given network infrastructures.
The main novelty of our approach, with respect to other proposals in the literature with a
similar aim, is that we allow the evaluation of implemented reputation systems through
experiments on real networks, rather than performing simulation of models of repu-
tation systems that abstract from many details. In this way, given a specific network
environment, we can study the system behaviour to find the configuration that better
meets the system requirements by tuning its parameters (reputation model, response
timeouts, resource quality evaluation, ratings aging, etc.). Moreover, since we consider
reputation systems at implementation level, the analysed systems could be then directly
used in the corresponding end-user applications (we will come back on this point in
Section 6).

To demonstrate the effectiveness of our proposal, we analyse models of reputation
systems based on the beta distribution [14] and the maximum likelihood estimation [9].
To carry out experiments on network infrastructures involving many nodes, we have
also exploited a Cloud IaaS platform, namely Zimory Enterprise Cloud [12].

3

y

x

y

x

ReputationModelRating

Binary
Rating

Beta
Model

ML
Model

.

.

.

.

.

.

Reputation Models Library

Experiment Manager

ACTIVATE GET EXPERIMENT
DATA

Configuration
parameters

.properties INPUT

NEVER

y

x

OUTPUT

Evaluation
results

Network
Infrastructuring

Support

Klava net

1.0
0.875
0.8888888888888
0.9
0.9090909090909
0.9166666666666
0.9230769230769
0.9285714285714

1.0
0.875
0.8888888888888
0.9
0.9090909090909
0.9166666666666
0.9230769230769
0.9285714285714

1.0
0.875
0.8888888888888
0.9
0.9090909090909
0.9166666666666
0.9230769230769
0.9285714285714

Fig. 2: NEVER architecture and workflow

The rest of the paper is organized as follows. Section 2 describes the architecture
and functional principles of our tool. Section 3 provides a brief overview of the tool
component dealing with networking aspects. Section 4 presents the theoretical and im-
plementation aspects of the reputation models currently considered in this work. Sec-
tion 5 reports on the analysis of a few reputation systems. Finally, Section 6 concludes
the paper by also reviewing some of the related work and suggesting directions for
future work.

2 The NEVER tool

In this section, we present the architecture and the workflow of NEVER (Network-
aware EValuation Environment for Reputation systems), graphically depicted in Fig-
ure 2. The NEVER tool consists of three main components: (1) the experiment manager,
(2) the network infrastructuring (3) the reputation models library.

The experiment manager is the components playing the main role, because it is in
charge of managing the execution of each experiment. An experiment consists of a user-
specified number of runs, each run performed with the same configuration. The number
of runs and their duration, together with other experiments characteristics, are defined
by users through configuration parameters.

The network infrastructuring support provides the libraries (i.e., classes and inter-
faces) required to create and set up a Klava net (see Section 3.1) implementing the gen-
eral infrastructure graphically depicted in Figure 1. Each element of the infrastructure
is a node hosted by a (possibly remote and/or virtual) machine. The NEVER tool takes
as input the addresses of the hosting machines and automatically activates the nodes

4

forming the wanted network infrastructure. We refer to Section 3 for further details on
the network infrastructure library supporting our experiments.

The reputation models library acts as a framework allowing the user to define the
trust and reputation models under evaluation. The library is a Java package containing
a number of abstract classes and interfaces necessary to implement the models. In this
way, the NEVER tool is customizable and extendible by the user. More specifically, a
reputation model is defined by a class implementing the ReputationModel interface
and, possibly, a class extending the abstract class Rating. The former class defines
how reputation scores are computed, which rating values are used by the system and
how parties in the system evaluate the interactions. The latter class defines the kind of
rating values and how to manage them. Thus, the addition of new reputation models
to NEVER can be achieved by implementing ReputationModel and, if necessary, by
extending Rating. We refer to Section 4 for further details on the reputation models
library and on the models already available in NEVER.

We describe now the NEVER workflow, by lingering on the main features of the
experiment manager component. The tool takes as input a set of configuration parame-
ters, written in a .properties file as pairs of the form key = value. Such parameters are
used by the experiment manager to instantiate and carry out an experiment. First, the
manager creates the network on top of which will be run the experiment. A node is cre-
ated for each of the two servers and for each party in the system. Once the network is
set up, the reputation system (configured according to user’s parameters) is deployed on
the network and the experiment starts, i.e. network components are enabled and system
parties interact and rate each other. During the activity of the network, data about inter-
actions are stored in appropriate files for a later analysis. Experiment runs are repeated
in order to reach the desired precision; thus, the manager starts and stops runs till the
last run is accomplished. Afterwards, data are analysed and provided as output, both in
form of textual files and charts1. We refer to Section 5 for a discussion about different
experiments carried out with our tool.

We conclude this section by commenting on the relevant configuration parameters.
Through such parameters it is possible to specify the number of parties in the system
and the addresses of the machines where parties have to run. For each party, a new
Klava node is automatically created and deployed in the associated hosting machine.
The tool also supports a ‘local only’ modality, where all Klava nodes are deployed in
the same machine running the tool. Such modality can be useful to compare reputation
systems in presence or absence of networking aspects affecting the evaluation.

A specific configuration parameter is used to set the main reputation model, which
is used during the experiment to drive the interactions among parties. In fact, when a
party is looking for a provider of a specific resource, it computes the providers’ repu-
tations and selects for the interaction the most trusted one, i.e. the party (or one of the
parties) with the highest reputation value. Besides the main model, it is possible to give
a list of trust and reputation models to be compared during the experiment: each party’s
reputation is computed according to all models specified in such list. Values of party’s
reputation are returned for each run and, at the end of the experiment, as a mean value

1 The tool automatically generates charts by exploiting the Java library JFreeChart (freely avail-
able at http://www.jfree.org/jfreechart/).

5

over all runs. Moreover, the user can require to randomly select the providers, by thus
ignoring the choice of the providers based on the main reputation model. Such modality
is indeed often used in our experiments, because it gives the opportunity of evaluating
models performances by comparing party reputations on the basis of approximately the
same amount of ratings for each party.

A group of configuration parameters regulates the parties’ behaviour. The user spec-
ifies a set of possible party behaviours and the percentage of parties with each given
behaviour. By means of such information, the experiment manager assigns a behaviour
to each party. Moreover, it is possible to set the initial reputation of parties by specify-
ing the values and the number of their initial ratings. Such ratings determine the initial
parties reputation computed by the system. In the default case, parties’ behaviour are
assumed to be fixed, but a changeable behaviour can be configured. In such a case, the
user sets when the variation has to happen and the magnitude of the variation. Currently,
the variation implemented is negative, i.e. party’s behaviour gets worse after the varia-
tion. Several studies (see, e.g., [14, 19, 22]) use similar approaches for the evaluation of
reputation models.

Finally, the configuration parameters allow the user to set two threshold values: the
maximum delay and the maximum waiting time. The first parameter sets the maximum
delay after which a resource is considered unsatisfactory, i.e. once the party receives the
resource it checks if the arrival time exceeds the maximum delay and, in such a case, a
negative rating is given to the provider no matter the quality of the resource. The second
parameter sets the maximum time that a party will wait for a resource; expired this time
a new provider is selected by the party and no rating value is given. In this way, a party
will not wait indefinitely for a resource.

The NEVER tool is developed in Java, by exploiting freely available third-party
libraries. Source and binary files of NEVER can be found at http://sysma.lab.
imtlucca.it/tools/never/.

3 Network infrastructuring support

The network infrastructuring support of NEVER provides an API that allows the ex-
periment manager to create different networks underlying the reputation systems to be
evaluated. To this aim, this tool component exploits the Klava library. In this section,
we briefly introduce Klava and discuss the structure of the Java package providing the
network infrastructuring support. In particular, we present the functionalities of each
component of the package and describe its implementation in Klava. We illustrate how
network components interact by showing pieces of code.

3.1 Klava

Klava [4] is a Java library providing the run-time support for Klaim actions within Java
code. Klaim [7] is a formal coordination language specifically designed for modelling
mobile and distributed applications and their interactions, which run in a network en-
vironment. Klaim provides communication primitives enabling tuple-based interaction
à la Linda [11], which decouples the communicating processes both in space and time.

6

Exchanged data are sequences of values, i.e. tuples. Communication is achieved via
distributed multisets of tuples, called tuple-spaces, where processes insert, read and
withdraw tuples. The data retrieving mechanism uses associative pattern-matching to
find the required data in the tuple-space. The Klaim communication primitives, written
as Klava methods, used for implementing the network infrastructuring package are as
follows:

– public void out(Tuple t, Locality l)
– public void in(Tuple t, Locality l)
– public void read(Tuple t, Locality l)
– public boolean read t(Tuple t, Locality l, long timeOut)
– public boolean in t(Tuple t, Locality l, long timeOut)
– public boolean in nb(Tuple t, Locality l)
– public boolean read nb(Tuple t, Locality l)

These methods take as parameters a tuple and the (either logical or physical) locality,
i.e. the address, of the destination node. If the action refers to the current execution
site (through the reserved logical locality self), it is simply redirected to the local tuple-
space, otherwise a message will be sent to the (possibly remote) destination node. In
particular, the method call out(t,l) adds the tuple resulting from the evaluation of t to the
tuple-space of the target node identified by l. Method calls in(t,l) and read(t,l) implement
retrieval actions that permit to withdraw/read data tuples from the tuple-space hosted
at locality l. They look for a tuple matching the result of the evaluation of t; if no
matching tuple is found the execution is suspended until one is available, otherwise one
of the matching tuple is non-deterministically chosen and its values are assigned to the
corresponding formal2 fields of t. Calls in t(t,l,time) and read t(t,l,time) permit specifying
upper bounds to the waiting time, i.e. a time-out, expressed in milliseconds. This is
useful to deal with high network latency or absence of matching tuples. Finally, calls
in nb(t,l) and read nb(t,l) implement non-blocking versions of the retrieval actions: if
a matching tuple is found, they act similarly to in and read, and additionally return
the value true, otherwise they return the value false and the execution does not block.
They can be used, e.g., to test whether a tuple is present in a tuple-space. We refer the
interested reader to [2] for a complete account of the methods and classes provided by
the Klava library.

The Klava library relies on the IMC framework [3], which provides recurrent mech-
anisms for network applications and, hence, can be used as a middleware for the im-
plementation of different formal languages. Specifically, Klava provides classes to be
instantiated to create a net, and the nodes that can be connected to the net to build the
desired network environment. An abstract class is then provided to create processes to
be placed on to the nodes, by means of instantiation of subclasses specialized through
inheritance and method overriding.

2 A formal field is an item of a tuple subjects to substitution in case the match is satisfied; formal
fields are distinguished from actual fields because they are created with the default constructor
(i.e., the constructor with no parameters).

7

3.2 The network infrastructuring package

The network infrastructuring package specifies three different kinds of nodes that take
part in the Klava net: a rating server node, a search server node and a user node. Each
of these nodes implements a component of the infrastructure graphically depicted in
Figure 1.

The rating server node serves as public database for collecting parties’ ratings and
executes the process RatingServerProcess. This process is in charge of collecting data
produced by each experiment run.

The search server node assists parties while seeking a resource provider. The pro-
cess SearchServerProcess (Listing 1.1) runs on this node. It waits for search requests sent
by parties (line 5). Parties send requests, i.e. tuples tagged by the search request string,
stating the type of the resource they want from the provider. Then, SearchServerProcess
looks in the local tuple space for available providers offering such resource (lines 11
and 18): for each provider matching the request, the process sends its address to the
requesting party (line 16). The set of tuples sent to the party forms a list of provider
addresses. When all providers have been checked3, the SearchServerProcess closes the
list by sending its length to the requesting party (line 22).

Listing 1.1: SearchServerProcess

1 // Wait for a new search request
2 KInteger n providers = new KInteger(0) ;
3 Locality loc requester = new PhysicalLocality();
4 KString res type = new KString() ;
5 in(new Tuple(new KString(”search request”),loc requester,res type), self);
6

7 // Scan the list of parties providing resources of type ’res type’
8 Locality loc provider = new PhysicalLocality();
9 Tuple templRead nb = new Tuple(res type, loc provider);

10 templRead nb.setHandleRetrieved(true);
11 KBoolean forallExpressionArgument = new KBoolean(read nb(templRead nb, self)) ;
12 while (forallExpressionArgument.booleanValue()) {
13 // Increase the counter of providers
14 n providers = new KInteger(n providers.intValue() + 1);
15 // Send the provider’s address
16 out(new Tuple(new KString(”list”),n providers,loc provider),loc requester);
17 templRead nb.resetOriginalTemplate();
18 forallExpressionArgument = new KBoolean(read nb(templRead nb, self));
19 }

20

21 // Send the length of the list of providers
22 out(new Tuple(new KString(”list length”), n providers), loc requester) ;

3 To read all matching tuples only once in this kind of loops, Klava provides specific
built-in mechanisms that prevent matching twice the same tuple. In particular, method
setHandleRetrieved() allows the tuple templRead nb to store all the tuples that it has matched
(line 10), while method resetOriginalTemplate() is used to reinitialize to empty values the for-
mal fields of templRead nb (line 17) in order to use this template to retrieve another tuple in
the next read nb action (line 18).

8

The user node implements a generic party; nodes of this kind interact to ask and
provide resources and, after any interaction, rate each other. Two processes run on the
user node4: the ProviderProcess (Listing 1.2) and the ClientProcess (Listing 1.3). The for-
mer process implements the functionalities of a provider: when a new resource request
coming from a client is received (line 4), the resource is selected (line 7) and sent to the
client (line 10). The resource selection consists of determining its quality according to
the provider’s behaviour; in fact, the actual provision of the resource is not relevant for
our studies.

Listing 1.2: ProviderProcess

1 // Wait for a resource request
2 Locality requesterLoc = new PhysicalLocality();
3 KString res type = new KString();
4 in(new Tuple(new KString(”resource request”), requesterLoc, res type), self);
5

6 // Get resource quality according to provider’s behaviour
7 KDouble res quality = model.getResourceQuality(new behaviour,rand);
8

9 // Send the resource
10 out(new Tuple(new KString(”resource”), res type, res quality), requesterLoc);

The ClientProcess seeks providers for the resource it is looking for, and selects the
most trusted one for the next interaction. It first sets the variable most trusted user to
NO ONE (lines 2-3) denoting that no provider has been selected. Then, it determines
the resource type it wants to request (lines 6-7). The ClientProcess asks the search server
to find a provider for a given resource type (line 10) and selects, among the providers
returned by the search server, the most trusted one, i.e. a provider with highest repu-
tation score (line 16). Then, it checks if the reputation of such provider is higher than
the minimum reputation value defined in the configuration file (line 20). If this check
is positive, the process sends a request for the resource to the selected provider (lines
23-24), otherwise it starts again the procedure from the beginning. The waiting time of
a requested resource is bounded by a time-out, request time out, specified in the config-
uration file (lines 30-31). When the resource is received the process computes a rating
value for the provider (line 35) and sends it to the rating server (lines 41-44).

Listing 1.3: ClientProcess

1 // Initialize the ”most trusted user” tuple
2 out(new Tuple(new KString(”most trusted user”), getPhysical(self),
3 new KDouble(NO ONE), new KInteger(0)), self);
4

5 // Resource type is randomly selected
6 int res num = (int) ((rand.Fran2() ∗ (number of resource types−1))+1);
7 KString res type = new KString(”type ”+res num);
8

9 // Send the request to the search server and determine the most trusted user

4 Depending on the processes running in its node, a party can play the role of a client, of a
provider, or both. We consider here the latter case, which is the most general.

9

10 searchProvider(res type);
11

12 // Get the data of the most trusted user
13 Locality trusted loc = new PhysicalLocality();
14 KDouble reputation most trusted = new KDouble();
15 KInteger number of ratings = new KInteger();
16 in(new Tuple(new KString(”most trusted user”), trusted loc,
17 reputation most trusted, number of ratings), self);
18

19 // Check if provider’s reputation is higher than the minimal reputation
20 if (min reputation <= reputation most trusted.doubleValue()) {
21

22 // Send a resource request to the provider
23 out(new Tuple(new KString(”resource request”), getPhysical(self),
24 res type), trusted loc);
25

26 // Wait the resource
27 long time of request=System.currentTimeMillis();
28 KDouble quality = new KDouble();
29 Rating provider rating = model.createNonInitializedRate();
30 if (in t(new Tuple(new KString(”resource”), res type, quality),
31 self, request time out)) {
32 long time of service = System.currentTimeMillis();
33 long response time = time of service−time of request;
34 // Check the quality of the obtained resource and rate the provider
35 try { provider rating = model.rateProvider(quality,response time); }
36 catch (MalformedRateValueException e) {
37 e.printStackTrace();
38 System.exit(1);
39 }

40 long ratingTime = System.currentTimeMillis();
41 out(new Tuple(getPhysical(self), trusted loc,
42 provider rating.getValue(),
43 new KString(Long.toString(ratingTime))),
44 UserNode.rating serverLogLoc);
45 }

46 }

4 Trust and reputation system models

In this section, we provide some details about trust and reputation models already im-
plemented in NEVER; this would also serve as a guide for using the framework to
implement new models to be evaluated. Specifically, first we briefly introduce a theo-
retical formalization of trust and reputation systems needed for the presentation of the
models, then we discuss their implementation.

10

4.1 Models

Parties in a trust and reputation system are free to interact and rate each other. After
each interaction, a rater assigns a score to a ratee. We denote by R = {r1, ..., rm} a
finite, non-empty set of rating values. We focus on probabilistic trust and reputation
models [10, 9] where party’s behaviour is modelled by a probability distribution on R.
Let P be a set of party identities, the behaviour of each party p ∈ P is characterised
by a distribution parameter θp ∈ Θ, with Θ denoting the set of possible parameters of
a given distribution p(· | θp). Let r ∈ R be a rating value, this probability distribution
returns the value p(r | θp) denoting the probability of observing a rating value r after an
interaction with a party whose behaviour is (determined by) θp.

The goal of a reputation system is to predict parties’ behaviour in future interactions,
given the rating values of past interactions. Thus, a reputation system has to provide the
reputation of each party p, i.e. an estimation θ̃p of the party’s behaviour θp. In the mod-
els we consider, the sequence of rating values rp

n = r1, . . . , rn, assigned by parties after
each interaction with party p, is assumed to be a realization of a sequence of indepen-
dent, identically distributed random variables Rp

n = R1, . . . ,Rn. Moreover, the set of
rating values R is simply the binary set {0, 1}, with values 0 and 1 denoting ‘unsatis-
factory’ or ‘satisfactory’ interactions, respectively. Random variables Ri are assumed
to be distributed according to a Bernoulli distribution with success probability θp. It is
thus assumed that when interacting with a party p, whose behaviour is θp, the proba-
bility that the next interaction is ‘satisfactory’ is p(1 | θp) = θp, and ‘unsatisfactory’ is
p(0 | θp) = 1−θp. Below, we show how such framework is instantiated to capture two of
the most used reputation models, namely the Beta model and the Maximum Likelihood
(ML) model.

The Beta model takes as input both the number of past satisfactory interactions and
the number of past unsatisfactory interactions. These numbers are determined by taking
into account both party’s own experience and the reports from other parties without
considering the origin of the rating values. The Beta model estimates the probability
that a next interaction with the party will be satisfactory by using only these two values.
The name of this model is due to the fact that it uses the beta distribution to estimate
the posterior probabilities of binary events. Party’s reputation score θ̃p is given by the
expected value of the beta distribution Beta(α + 1, β + 1) with α ≥ 0 and β ≥ 0:

θ̃p = E[Beta(α + 1, β + 1)] =
α + 1

α + 1 + β + 1
(1)

Parameter α represents the number of satisfactory past interactions with party p and β
represents the unsatisfactory interactions with p.

The ML model takes as input the number of satisfactory and unsatisfactory past
interactions, as in the case of the Beta model. Also in this model there is no difference
between own and other experience. The ML model uses a different approach for the
estimation of the probability that a next interaction with the party will be satisfactory.
Indeed, it tries to find the parameter that maximises the likelihood:

L(θ | Rp
n) = Pr(Rp

n | θ) =

n∏
i=1

Pr(Ri = ri | θ)

11

In case of binary events, given α ≥ 0 and β ≥ 0 representing the number of satisfactory
and unsatisfactory past interactions respectively, the party’s reputation score θ̃p is as
follows:

θ̃p =
α

α + β
(2)

Other components can be added to these two models to take into account other
aspects of parties’ behaviour. In particular, for the Beta model it is possible to specify a
parameter called forgetting factor [14], which is a value in the interval [0, 1] . The aim
of this parameter is to give a different weight to each rating based on its age. We can
order all the available ratings for a party p from the newest to the oldest, denoting with
rp

n = r0, . . . , rn the ordered sequence of rating values and with λ the forgetting factor.
The weight associated to rating ri is defined as λi, i.e. older ratings will be gradually
forgotten. Thus, value λ = 1 is equivalent to absence of the forgetting factor, while
value λ = 0 results in taking into account only the last rating (with the convention that
00 = 1). The other possible values for λ approximate such extreme behaviours. In this
work, we have used the forgetting factor also to parameterize the ML model.

Moreover, we have found it useful to analyze the reputation models by using just
a part of the knowledge acquired by past interactions. Thus, when the reputation of a
party is computed, we consider only a subset of the available rating values. We denote
with the term window the number of the used ratings. Among all available ratings, only
the latest ones are selected, e.g. a window set to 20 means that only the last 20 ratings
are used for the computation of party’s reputation. The window parameter can be set
for both ML and Beta model, obtaining a different model for each value of the window.
To the best of our knowledge seems that such parameter is not present in any proposal
of reputation models, or at least not explicitly mentioned or discussed. In Section 5,
we show how and how much different window size are effective for the estimation of
parties’ reputation.

4.2 Implementation

As we have shortly discussed in Section 2, it is possible to implement trust and rep-
utation models in NEVER through the reputation models library. The first step is to
create a class implementing the ReputationModel interface, whose main methods are the
following:

– public void setWindow(int size);
– public void setForgettingFactor(double value);
– public KDouble evaluateReputation(Vector<Rating> ratings, Vector<Locality> raters);
– public KDouble getResourceQuality(int behaviour, Ran2 rand);

The methods setWindow and setForgettingFactor are used to set the corresponding pa-
rameters (see Section 4.1). The method evaluateReputation is the basis of any reputation
model. It takes as input a list of rating values (Vector<Rating> ratings) and the corre-
sponding list of raters (Vector<Locality> raters), and returns as output the reputation score
of the ratee. Ratings in the vector are sorted from the newest to the oldest; such orga-
nization is useful for models that discriminate ratings depending on their age. Finally,

12

method getResourceQuality is used to determine the quality of the resource to be provided
to the client. This value corresponds to the outcome of the interaction, and depends on
the model implemented and on the set of rating values in use.

Now, we show how the models outlined in Section 4.1 are implemented in NEVER,
by focussing on the code of evaluateReputation method that specifies how rating values
are used to compute party’s reputation in the models. We start from the implementation
of the ML model (Listing 1.4).

Listing 1.4: evaluateReputation (MLModel.java)

1 double num of ratings = ratings.size();
2 double num positive ratings = 0;
3 if (num of ratings == 0){
4 return new KDouble();
5 }

6 if ((WINDOW != 0) && (num of ratings > WINDOW)){
7 num of ratings = WINDOW;
8 }

9 for (int i = 0; i < num of ratings; i++) {
10 KInteger rating value = (KInteger) ratings.get(i).getValue();
11 if (rating value.intValue() == POSITIVE RATE VALUE){
12 num positive ratings++;
13 }

14 }

15 double ml reputation = num positive ratings/num of ratings ;
16 return new KDouble(ml reputation);

This method first checks the number of available ratings (line 3): if there are no ratings
the computation does not take place and the default reputation value is used by the sys-
tem, i.e. an empty KDouble() object is returned and the system uses as party’s reputation
the value set in the configuration file (parameter no rating reputation). A second check
(line 6) is done on the window’s size: if the number of rating values is bigger than the
window’s size, only the newer ratings are used. The last part of the code (lines 9-15)
computes the party’s reputation. In case of binary ratings, in the ML model this means
to simply divide the number of satisfactory interactions by the total number of interac-
tions (see equation (2)). Finally, the computed reputation value is returned as a result
by the method (line 16).

We now examine the code implementing the Beta model (Listing 1.5). In the Beta
model, party’s reputation is computed as the expected value of beta distribution (see
equation (1)). We show only the last two lines, since the first part of the code, where it
is checked the number of available ratings and the window’s size, is common among all
considered models.

Listing 1.5: evaluateReputation (BetaModel.java)

1 double beta reputation = (num positive ratings+1)/(num of ratings+2) ;
2 return new KDouble(beta reputation);

The last kind of models we implemented makes use of the forgetting factor. The
code shown in Listing 1.6 is the final part of the method evaluateReputation imple-
mented by the class BetaModelForgetting; the implementation of the same method within

13

class MLModelForgetting is similar. Each rating value here is weighted according to its
age (lines 4 and 6). The weight of each rating is given by the value λi, where λ (i.e.
LAMBDA, in the code) is the forgetting factor and i denotes rating’s age.

Listing 1.6: evaluateReputation (BetaModelForgetting.java)

1 for (int i = 0; i < num of ratings; i++) {
2 KInteger rating value = (KInteger) ratings.get(i).getValue();
3 if (rating value.intValue() == POSITIVE RATE VALUE){
4 num positive ratings = num positive ratings + Math.pow(LAMBDA, (i));
5 } else {
6 num negative ratings = num negative ratings + Math.pow(LAMBDA, (i));
7 }

8 }

9 double beta rep = (num positive ratings+1)/(num negative ratings+num positive ratings+2) ;
10 return new KDouble(beta rep);

To implement a reputation model, it is also needed to provide the implementation
of rating values. The models currently available in NEVER use binary ratings, i.e. each
interaction can be rated either ‘unsatisfactory’ or ‘satisfactory’. In order to define an-
other kind of rating, a new class must be created as a subclass of the abstract class Rating
(Listing 1.7).

Listing 1.7: Rating.java

1public abstract class Rating implements Comparable<Rating>{
2 protected TupleItem value;
3 protected long timestamp;
4

5 public abstract void setValue (TupleItem value) throws MalformedRateValueException;
6

7 public TupleItem getValue(){
8 return this.value;
9 }

10 public void setTime(KString time){
11 this.timestamp = Long.parseLong(time.toString());
12 }

13 public long getTime(){
14 return timestamp;
15 }

16 ...
17 }

This class defines four methods. Methods setTime and getTime are used to set and
retrieve ratings’ timestamp. Such values are used for sorting the vector containing rating
values. Methods getValue and setValue respectively return and set the value of the rating.
In particular, a new rating class has to implement the method setValue that is declared
abstract; its implementation should check the format of the rating value.

14

5 NEVER at work

In this section we show which data NEVER returns as output and in which formats the
output is provided. For illustration purpose, we run an experiment with the following
parameters: four parties are active in the system, data are averaged over fifteen runs,
each run lasts twenty minutes. Two possible behaviours are defined in the system, both
modelled as Bernoulli distributions of parameter θ. One behaviour fixes the value of θ to
0.9, while the other to 0.6. Among the four parties two have a behaviour θ = 0.9 and two
a behaviour θ = 0.6. Parties’ behaviours are set to change after twenty five interactions,
specifically each party update its behaviour to θ = θ − 0.4, i.e. parties assume a worst
behaviour than the initial one.

No initial reputation is set for parties: when a party is found to have no ratings is
assumed to have a reputation score of 0.5 (parameter no rating reputations). No minimum
reputation values is set for interacting with a party (parameter min reputation), i.e. to
interact with a party no limits are fixed about its reputation score. The main reputation
model is defined to be a ML model without forgetting factor and window. Instead the
list of model to compare contains five models:

– ML model without window and forgetting factor;
– ML model with window=20 and without forgetting factor;
– ML model with window=30 and without forgetting factor;
– ML model without window and with forgetting factor=0.9;
– Beta model without window and forgetting factor.

At the end of the experiment, NEVER returns as output both a graphical representation
of data and a textual list of data. Textual output is provided in order to permit data
manipulation without re-executing experiments. Different graphical representations can
be used for data analysis.

The graph in Figure 3 is given as output by NEVER for the experiment just de-
scribed. It shows the reputation trends of the four parties calculated using the main
model. The preset behaviour of each party is denoted by an horizontal line. The ver-
tical dashed line denotes the time when parties change their behaviour. The horizontal
dashed lines denote new parties’ behaviours after the change. The trend of party’s rep-
utation is denoted by a polygonal line and each party is identified by its ip address and
port number. Dashed lines are present only if a changeable scenario is set in the config-
uration file (parameter changeable behaviour). Through this graph is possible to analyse
the evolution of parties’ reputation in relation with the number of available ratings. The
reputation values shown are computed for a fixed trust model and averaged over all
runs. When changeable behaviour is set, it is also possible to analyse the reaction of
the model when party’s behaviour change in time. From Figure 3 we see that the ML
model quite rapidly detects party’s behaviour, with no significant error in reputation
score assignation. Such model slowly adapts to party’s new behaviour, and (according
to other experiments) it is even worst when the change happens after a bigger number
of interactions. Indeed values about past interactions influence more the estimation of
the actual behaviour.

Besides this, party reputation is computed for each party with respect to all models
specified in the model list within the configuration file. Figure 4 considers the case of

15

Fig. 3: Reputation trend of the four parties for a fixed trust model (ML model, no win-
dow, no forgetting factor)

a party with behaviour θ = 0.9. Vertical and horizontal lines have the same meaning
as in the previous figure. For each trust model is drawn a line denoting party’s rep-
utation. Through this graph is possible to analyse how different trust model evaluate
party’s reputation and how they react in case of changeable behaviour. From this kind
of comparison it is possible to determine which is the best strategy for a given scenario.
We can imagine scenario where some kind of parties’ behaviours are more probable
than others, e.g. the majority of parties behave badly or goodly. Scenario where the user
is interested in preventing specific behaviours, e.g. parties try to reach a good reputa-
tion and then they start to behave badly. From Figure 4 it is possible to see how the
five models react when party’s behaviour changes from a behaviour θ = 0.9 to a be-
haviour θ = 0.5. The models using window parameter or forgetting factor are able to
detect more rapidly new party’s behaviour. Specifically, the ML model with a window
size of 20 adapts more rapidly than the one with a window size of 30, but both models
have a wors performance than the ML model using a forgettin factor of 0.9. Moreover,
the Beta model has wors performance than the ML model and all its variations. This
happens both when the behaviour is fixed and when the party suddenly assumes a new
behaviour.

When a system with several parties is set up, it becomes hard to read the first kind
of graph reported in Figure 3. Figure 5 shows an example with twenty parties5. In order
to manage systems with several parties, NEVER returns as output four different graphs

5 Given a limited number of physical machines at our disposal, to perform experiments with this
number of parties, we have deployed Klava nodes on virtual machines running on the cloud
IaaS platform Zimory Enterprise Cloud [12].

16

Fig. 4: Reputation trend of one party respect to all trust models specified in the model
list as configuration parameters

where data is aggregated and parties are grouped depending on their behaviour. In Fig-
ure 6 is shown one of these graphs, where data about parties with a behaviour between
θ = 0.5 and θ = 0.75 is aggregated. The horizontal line denotes the true behaviour of
the group; such value is obtained through a weighted mean among parties’ behaviour
belonging to the group, i.e. the weight of each behaviour in the group is given by the
number of parties having such behaviour. Group’s reputation is computed following the
same approach. For each model in the list a line denotes group’s reputation.

Finally, in Figure 7, we show a graph where are graphically depicted two risk func-
tions, the bayes and worst risk (see [5] for a risk analysis of trust and reputation sys-
tems based on such functions). These two functions evaluate the system as a whole. The
bayes risk can be seen as the average risk in the system, where risk means the possibil-
ity of inferring party’s behaviour wrongly. The worst risk is instead the risk incurred in
the worst case, i.e. the maximum risk for a given behaviour. The Figure 7 reports bayes
and worst risk trends for a system with twenty parties. In this case, parties’ behaviour
is supposed to change after twenty-five interactions. From the graph, it is possible to
notice such change in the behaviour.

6 Concluding remarks

In this paper we presented NEVER, a network-aware tool for evaluating trust and rep-
utation systems. The design of NEVER is based on the Klaim formal specification of
trust and reputation system presented in [6]. We used the Java library Klava for imple-
menting the models specified in Klaim. NEVER allows the user to rapid prototyping
and testing reputation system models in a real network environment, thus realizing a

17

Fig. 5: Reputation trend of twenty parties for a fixed trust model (ML model, no window,
no forgetting factor)

generic testbed for evaluating trust and reputation systems, thus realizing a generic
testbed for evaluating trust and reputation systems. We discussed the architecture of
NEVER showing the logical structure and short part of its implementation. We showed
how NEVER works by means of experimental data obtained through the evaluation of
some implemented models.

Related work. Trust and reputation are often used as synonyms in the literature. Ac-
cording to [15] trust is a subjective perception of reliability of a party, mainly derived
from private knowledge (e.g. direct interactions with the party). Instead reputation is an
objective measure of party’s trustworthiness derived from referrals or ratings provided
by other parties. In our work we comply with this distinction.

Among the many works in the literature whose goal is the evaluation and compar-
ison of reputation systems, to the best of our knowledge, our contribution is the first
effective tool allowing the evaluation of such systems in a real networked execution
environment. Several works base their evaluation solely on a ‘pen-and-paper’ mathe-
matical study of the models, without taking into account how they will be implemented
and executed over distributed systems. For example, a formal framework for the com-
parison of probabilistic trust models, based on KL-divergence, is proposed in [21]. In
this work KL-divergence is used as a measure of the quality of reputation functions.
With the same purpose we exploit the notions of bayes and worst risk presented in [5].
NEVER computes the empirical value of such risk functions for the model set in the
configuration file. Results of such computation are returned as output and are used for
models evaluation.

18

Fig. 6: Reputation trend for a group of parties

Other works use simulation techniques for the evaluation of trust and reputation
systems. For example in [17], a simulator implemented in Java is proposed as testbed
(the ART testbed) enabling a competition forum for evaluating trust systems. In this
case, no networking or other real world aspects are taken into account. Other examples
of testbed are TREET [16] and the one proposed in [13]. The latter testbed is used for
the evaluation of robustness of reputation systems. Specifically, this proposal focuses on
robustness against unfair ratings, i.e. against parties that release score that intentionally
under-estimate interaction outcome. The TREET testbed is proposed as an alternative to
ART in order to overcome the limitations of ART. Indeed, the authors claim that ART is
not well-suited for general-purpose experimentation of reputation systems, it has indeed
agents evaluation as its main purpose. Instead TREET is designed specifically to support
general-purpose experimentation and evaluation.

All these proposals are simulators or designs of testbeds that focus on marketplace
applications. Our proposal, instead, does not fix a specific environment in which par-
ties interact, but we use interactions as an abstraction of any parties relation. Moreover,
we explicitly focus on probabilistic trust and reputation systems and on how they are
evaluated. Our work aims at filling the gap between simulation and implementation of
reputation systems, where networking aspects may play an important role when choos-
ing and tuning trust and reputation systems. Indeed such aspects must be considered
when implementing these systems. Specifically, problems such as how to rate parties
when interactions are affected by network delays, or how to rate parties that are sporad-
ically connected, have to be addressed. For this reason, reputation systems in NEVER
are specified so that such problems can be taken into account by users when evaluating
the systems. Indeed, they can be tuned on the basis of the features of the underlying
network infrastructure exploited by NEVER for the execution.

19

Fig. 7: Bayes and worst risk trends for the overall system

Future work. We intend to continue our analysis programme by considering other rep-
utation models proposed in the literature. Some of the models that we plan to consider
in the near future are those surveyed in [20, 15].

Apart from considering richer reputation models, we intend to extend our investi-
gation to reputation systems over network architectures that rely on distributed rating
servers, rather than a single centralised one. Examples of such systems can be found
in literature; many authors have proposed adaptations of trust models for decentralised
architectures. A reputation model adapted to ad-hoc networks for enhancing collabora-
tions is proposed in [18]. For evaluating the relationships among devices in pervasive
computing environments, a trust management scheme is introduced in [8], while [1]
presents data structures and algorithms for assessing trust in a peer-to-peer environ-
ment. In particular, we intend to study how different underlying network architectures
affects the performances of a given reputation model.

It is our intention to extend the tool to process real data from applications. The tool
would be embedded in real applications and used to evaluate reputations systems in
such environments. Applications could use reputation models in two different modali-
ties: active or passive. In the active case, parties would compute reputation scores and
use them to drive their interactions. In this modality the behaviour of an application
would be modified by the deployed reputation system. In the passive case, the tool
would collect rating values, compute reputation scores and just store them, without us-
ing such data to drive parties’ interactions. The computed information would thus be
used only for evaluating reputation systems. The passive modality would be useful in
case of applications already deployed and in production. In this case it is important to
understand how the application’s behaviour would change before altering it. The passive
modality could be also used for monitoring applications relying on existing reputation

20

systems and contrast their reputation models with respect to the models implemented
in our tool.

References

1. K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system. In CIKM,
pages 310–317. ACM, 2001.

2. L. Bettini. KLAVA: a Java package for distributed and mobile applications. Reference man-
ual Version 2. Technical report, Università di Firenze, March 2011.

3. L. Bettini, R. De Nicola, D. Falassi, M. Lacoste, and M. Loreti. A Flexible and Modular
Framework for Implementing Infrastructures for Global Computing. In DAIS, volume 3543
of LNCS, pages 181–193. Springer, 2005.

4. L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Distributed and Mobile
Applications. Software - Practice and Experience, 32(14):1365–1394, 2002.

5. M. Boreale and A. Celestini. Asymptotic Risk Analysis for Trust and Reputation Systems.
In SOFSEM, volume 7741 of LNCS, pages 169–181. Springer, 2013.

6. A. Celestini, R. De Nicola, and F. Tiezzi. Specifying and Analysing Reputation Systems
with a Coordination Language. In SAC. ACM, 2013. To appear.

7. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents Interac-
tion and Mobility. Transactions on Software Engineering, 24(5):315–330, 1998.

8. M.K. Deno and T. Sun. Probabilistic trust management in pervasive computing. In EUC,
volume 2, pages 610–615. IEEE Computer Society, 2008.

9. Z. Despotovic and K.Aberer. A Probabilistic Approach to Predict Peers’ Performance in P2P
Networks. In CIA, volume 3191 of LNCS, pages 62–76. Springer, 2004.

10. D. Gambetta. Trust: Making and Breaking Cooperative Relations, chapter 13: Can We Trust
Trust?, pages 213–237. Basil Blackwell, 1988.

11. D. Gelernter. Generative communication in linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

12. Zimory GmbH. Zimory Enterprise Cloud, 2012. Web site: http://www.zimory.de.
13. A. A. Irissappane, S. Jiang, and Jie Zhang. Towards a comprehensive testbed to evaluate the

robustness of reputation systems against unfair rating attack. In UMAP Workshops’12, 2012.
14. A. Jøsang and R. Ismail. The beta reputation system. In Bled Conference on Electronic

Commerce, 2002.
15. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service

provision. Decision Support Systems, 43(2):618–644, 2007.
16. R. Kerr and R. Cohen. TREET: the Trust and Reputation Experimentation and Evaluation

Testbed. Electronic Commerce Research, 10:271–290, 2010.
17. K.K. Fullam et al. A specification of the Agent Reputation and Trust (ART) testbed: exper-

imentation and competition for trust in agent societies. In AAMAS, pages 512–518. ACM,
2005.

18. C.T. Nguyen, O. Camp, and S. Loiseau. A bayesian network based trust model for improving
collaboration in mobile ad hoc networks. In RIVF, pages 144 –151. IEEE, 2007.

19. J. Sabater and C. Sierra. Regret: reputation in gregarious societies. In AGENTS, pages
194–195. ACM, 2001.

20. J. Sabater and C. Sierra. Review on computational trust and reputation models. Artif. Intell.
Rev., 24:3360, 2005.

21. V. Sassone, K. Krukow, and M. Nielsen. Towards a formal framework for computational
trust. In FMCO, volume 4709 of LNCS, pages 175–184. Springer, 2006.

22. G. Zacharia and P. Maes. Trust management through reputation mechanisms. Applied Arti-
ficial Intelligence, 14(9):881–907, 2000.

2012 © IMT Institute for Advanced Studies, Lucca

Piazza San ponziano 6, 5100 Lucca, Italy. www.imtlucca.it

