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ABSTRACT

Training and using overcomplete dictionaries has been the
subject of many developments in the area of signal processing
and sparse representations. The main idea is to train a dic-
tionary that is able to achieve good sparse representations of
the items contained in a given dataset. The most popular ap-
proach is the K-SVD algorithm and in this paper we study its
application to large datasets. The main interest is to speedup
the training procedure while keeping the representation errors
close to some specific values. This goal is reached by using
a clustering procedure, called here T-mindot, which reduces
the size of the dataset but keeps the most representative data
items and a measure of their importance. Experimental simu-
lations compare the running times and representation errors of
the training method with and without the clustering procedure
and they clearly show how effective T-mindot is.

Index Terms— sparse representations, clustering, K-
SVD.

1. INTRODUCTION

The field of sparse representations [1] has enjoyed increased
popularity in recent years mainly due to the theoretical devel-
opments [2] [3] and the large class of applications where it is
used [4] [5]. Now, the focus remains on two central problems
of the field: given a signal a ∈ Rn find its sparse (or sparsest)
representation in a given base D ∈ Rn×d called dictionary;
and given a whole dataset A ∈ Rn×N find a dictionary in
which the data items have a good approximate sparse repre-
sentation.

To solve the first class of problems, algorithms like the or-
thogonal matching pursuit (OMP) [6] were developed. This
is a greedy approach that builds a representation by picking,
in an iterative procedure, the item of the dictionary that sig-
nificantly reduces the representation error. Due to its simplic-
ity and with an efficient implementation [7], OMP is a very
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fast algorithm. For the second class of problems, the most
popular and effective method is the K-SVD algorithm [8] [9].
This is also an iterative procedure that uses OMP to build the
representations of the data items and then the singular value
decomposition (SVD) to update the dictionary columns such
that the overall mean squared error is reduced. Because of
this structure, the K-SVD is relatively slow when applied for
large datasets. We address this issue by substantially reduc-
ing the dataset in such a way that we keep its basic structure
and do not negatively affect the performance of the training
procedure. The K-SVD runs on the reduced dataset and the
running time and representation error are both compared with
the application of K-SVD on the full dataset.

A similar idea to the one proposed in this paper that comes
from the field of computational geometry is the use of core-
sets [10]. In the field of machine learning, in the context
of supervised learning, reduction techniques using exemplar-
based algorithms [11] have been used to reduce the memory
consumption, speedup the training procedures and reduce the
sensitivity to noise. From this class of methods we mention
here the nearest neighbor algorithm [12] and case-based rea-
soning [13].

The paper is organized as follows: Section 2 describes
the proposed clustering procedure, called T-mindot, Section 3
presents the experimental results obtained on various datasets
and Section 4 concludes the paper.

2. THE PROPOSED CLUSTERING PROCEDURE

The goal of this paper is to present a clustering procedure that
takes place before applying the K-SVD algorithm in order to
reduce the size of the training set and consequently to reduce
the running time of K-SVD.

This approach is determined by the practical need to have
the K-SVD algorithm run fast even when the training set is
very large (contains at least a few tens of thousands of items).
In this research direction we can find for example the approx-
imate K-SVD (AK-SVD) [7] algorithm, in which the whole
SVD step is replaced by few iterations of the power method.
The proposed clustering procedure is inspired by the observa-
tion that the AK-SVD algorithm produces very good results
even though the power method step runs for only one iteration
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(the whole SVD step is replaced by a few matrix multiplica-
tions).

It seems that K-SVD can provide very good results even
if it is provided with a rough approximation of the general
direction in which the training samples group.

In this case, the first idea that comes to mind is to clus-
ter the training samples by a proximity measure, taken here
to be the absolute value of the normalized dot product, such
that the general direction is kept but the number of data sam-
ples is greatly reduced. In such a context, the k-means clus-
tering procedure [14] could be used. We employ a similar
strategy but, in our case, we fix the maximum allowed dis-
tance between the training samples and any of the centroids
such that similar data items can be replaced with a single rep-
resentative centroid. When none of the current centroids can
provide such a distance to an item, we increase the number
of centroids by adding the new training sample to the set of
centroids.

Given the training samples ai ∈ Rn,∀i = 1, . . . , N with
||ai||2 = 1 and the maximum allowed distance between the
centroids and their clustered items T , the ouput of the clus-
tering procedure is the centroid set K = {bj}, j = 1, . . . ,M
with M � N and the general formulation of the optimization
problem is given by

minimize
bj

M

subject to |aT
i bj | ≥ T, ∀i, for at least one j

||bj ||2 = 1.

(1)

Since this is not a convex optimization problem, we de-
velop a heuristic that finds a feasible solution that is able to
reach, in the general case, a conveniently small M in a rea-
sonable amount of time. Thus, the heuristic has to balance a
compromise between the running speed of the algorithm and
the quality of the solution found.

The proposed clustering procedure, called T-mindot, is
presented in Table 1.

The input matrix A contains the normalized training vec-
tors columnwise concatenated.

The initialization sets: the centroid set K containing the
first training vector a1, the frequency vector f = 1 that keeps
track of how many training vectors each centroid clusters,
the parameter S that decides the dimension of the working
blocks, Smax the upper bound of the dimension of the blocks
imposed mainly because of memory limitations and two pa-
rameters Dfast and Dslow that control the speed of the proce-
dure with respect to the dimensions of the data blocks.

The goal of T-mindot is to reduce the dimension of the
dataset by replacing data items that are close with only one
representative item whose weight is proportional to the num-
ber of items it clusters. Since computing all the dot products
between all the data items is too time consuming, this is done
by computing dot products between the current set of cen-
troids and a subset of size S of the yet unclustered data items.

Table 1: General overview of the T-mindot clustering proce-
dure

Input: A ∈ Rn×N - training matrix
T ∈ R, 0� T < 1 - the maximum allowed
error (minimum dot product)

Parameters: K - set of centroids
f - number of items clustered by each
centroid
S - current working dimensions
Smax - maximum working dimensions
Dfast - control of fast dynamic
Dslow - control of slow dynamic

Procedure:

1. while (training set is not empty)

(a) S = min{S, Smax}
(b) extract set W of size S with the first available

training vectors from the training matrix A

(c) compute the distances between the extracted
vectors and the centroids in K

(d) for each training vector ai ∈ W that has a
centroid cj such that |aT

i cj | ≥ T

i. add ai to the set of vectors clustered by
cj and eliminate them from W

ii. fj = fj + 1

(e) if more than 5% of vectors are not clustered
after the previous step then S = dS×Dslowe,
else S = dS ×Dfaste

(f) while (W 6= ∅)
i. find ai ∈ W that groups around it the

most training samples from W
ii. remove ai and its grouping from W and

add it as new centroid

2. for each centroid cj ∈ K

(a) compute new cj to be the average of the vec-
tors ai clustered by cj

(b) normalize new centroid

Output : C ∈ Rn×M - matrix with centroids
columnwise concatenated
f ∈ RM - number of vectors clustered by
each centroid



In order to speedup the running time of the algorithm
some operations are done in bulk. For example, the compu-
tation of the dot products in step (c) is done efficiently with
a matrix-matrix multiplication whose dimensions depend on
the parameter S.

If a large percentage (over 95%) of the training vectors
find a centroid in step (d) then we are encouraged to increase
the current working size S since all computations are done in
bulk and are thus more efficient. If not, then the dot products
computed are useless and the training vectors are dealt with
in step (f). The issue is that step (f) is much slower than steps
(c) and (d) because it has to take care of the remaining train-
ing vectors one by one. Varying the value of S we balance
the two steps and we try to make sure that: useful computa-
tions are done in bulk in step (d) and we reduce the number of
items that end up in step (f). For a given T , the quality of the
solution is measured by the difference P = N −M ≥ 0. We
are looking to find solutions that have a neglijable magnitude
for M , such that P is very close to N .

The values of Dfast = 1.1, Dslow = 0.9, the current work-
ing block size S = max{b0.01 × Nc, 500}, the maximum
working block size Smax = max{b0.02×Nc, 2000} and the
5% limit that decides whether the algorithm employs a fast
or slow dynamic were chosen after a set of experimental runs
on large datasets were conducted. These parameters seem to
best balance between the running speed and the performance
of clustering. The training samples are processed in the or-
der they appear in the dataset, no randomization takes place
in this implementation.

The second step of T-mindot centers every centroid in its
training samples group in order to reduce the average error, al-
lowing for the possibility that the dot products may be lower
than T (which happens in only a small fraction of cases). Ex-
periments show that this centering step helps improve the rep-
resentation errors.

The output of T-mindot, the matrix C and the vector f , is
used in all experimental runs of K-SVD. The initial training
dataset is replaced by a new training matrix consisting of the
weighted centroids. This new training matrix should be con-
siderably smaller than the initial one and provide a significant
speedup while the weights ensure that the dictionary behaves
well also against the original training dataset by providing a
small representation error.

The fact that the clustered items are highly correlated in-
dicates the fact that they most likely have the same sparse
support and applying the training procedure on the centroids
weighted by the square root of the number of items they clus-
ter is equivalent (from the SVD point of view) to applying the
training procedure on a dataset consisting of the centroids re-
peated as many times as their weights indicate. The weight
of each centroid is computed by taking the square root of its
frequency since we are interested in the singular values and
vectors computed from the data items and we want to pre-
serve their relative importance.

Table 2: Dimensions of the audio training sets

training set set dimension (N )
classical 245498
electronic 100215
jazz-blues 22747
metal-punk 38524
rock-pop 86050
world 105802

This arrangement leads to an important training speedup
and a low representation error for the original dataset.

Albeit the coresets approach [16] is similar, when com-
pared to T-mindot there are differences in key points: the
items are selected to become centroids by a slower method
that is based on a probability measure that takes into account
the distance from the items to the subspace spanned by the
dictionary, the number of centroids is an input parameter of
the algorithm and all centroids have the same weight in the
reduced dataset.

3. EXPERIMENTAL RESULTS

Next, we present a set of results obtained in two circum-
stances using T-mindot before the application of the AK-SVD
algorithm.

In the first setting, the AK-SVD algorithm is applied on a
large set of vectors that contain features (linear predictive cod-
ing coefficients [15]) extracted from audio signals. As source,
the publicly available ISMIR 2004 [17] audio database was
used. The audio signals are partitioned in windows of 3000
samples (about 250 ms) with overlap 750 samples (about 60
ms) and 120 LPC coefficients are computed for each partition.
We are interested in two major performance indicators: the
speed of the training procedure and the quality of the results
which is represented by the Frobenius norm of the remain-
ing error matrix (||E||2F =

∑
i

∑
j E

2
ij). In terms of speed,

we are interested to compare the AK-SVD algorithm applied
on the training vectors with and without T-mindot executed.
Clearly, since we reduce the number of training samples, we
expect the running time of AK-SVD to go down significantly
in both of its main stages: the computation of the new atoms
using the SVD and the computation of the new representa-
tions of all the training vectors using OMP.

After the training is done, using the same initial dictio-
nary and the same number of items in each sparse representa-
tion, we compare the representation errors of both computed
dictionaries against the original set of training vectors. The
representation error is described by the Frobenius norm of
the difference between the initial training set and the recon-
structed set of vectors. Here, we expect the errors introduced
by T-mindot to be small.



Table 3: Frobenius norms of the audio representation error
matrices

AK-SVD T-mindot + AK-SVD (+cut)
training set - T = 0.95 T = 0.9

classical 251 252 (253) 252 (252)
electronic 150 150 (154) 151 (151)
jazz-blues 69 70 (75) 70 (72)
metal-punk 85 85 (92) 86 (87)
rock-pop 148 148 (154) 149 (150)
world 172 172 (177) 172 (174)

Table 4: Running times for audio simulations (in seconds)

AK-SVD T-mindot + AK-SVD (+cut)
training set - T = 0.95 T = 0.9

classical 1886 1238 (570) 745 (371)
electronic 796 474 (120) 348 (110)
jazz-blues 103 73 (35) 57 (51)
metal-punk 182 120 (55) 72 (51)
rock-pop 410 242 (103) 153 (97)
world 929 561 (231) 357 (172)

We describe two variants of the procedure, one in which all
centroids are kept and one in which the centroids that do not
cluster any other training samples around them are eliminated
(cut). Each training vector has a fixed length of n = 120
and the dimensions of the training sets are described in Ta-
ble 2. On average, T-mindot manages to reduce the size of
the training sets by 70% and with 85% if the lone centroids
are also cut. This large cut leads to a much faster running
time for AK-SVD. Also, a further positive effect that this cut
might have is the elimination of outliers from the data. When
the cut is performed better performance is achieved when T
is smaller since a lower T generally outputs fewer lone cen-
troids, so less data items are cut. Tables 3 and 4 describe the
results obtained for the running speed and the representation
quality in the computed dictionaries.

From the tables it is clear that the speedup is significant
for all the datasets while the error levels are very close. Using
lower values for the parameter T induces a higher speedup at
the expense of less accurate clustering and, in this case, higher
representation errors. Also, further removal of the lone clus-
ters reduces the running time even more while the increase to
the error is insignificant.

Another set of simulations runs for training vectors ex-
tracted from a few 1024×1024 popular test images (lena.bmp,
peppers.bmp, airplaneU2.bmp, man.bmp, airfield2.bmp, test-
pat.bmp). The idea is again to show that applying T-mindot

Table 5: Frobenius norms of the image representation error
matrices

AK-SVD RND+AK-SVD T-mindot + AK-SVD
k k0 - - T = 0.95 T = 0.9

3
4 35.47 40.96 36.48 35.86
8 28.55 32.61 29.71 28.33
16 20.91 24.21 21.84 19.58

4
4 34.44 40.98 35.50 35.10
8 27.63 32.34 28.88 27.40
16 19.89 23.50 20.72 18.49

5
4 35.80 39.75 35.14 34.57
8 27.23 30.18 28.19 26.66
16 19.79 23.15 19.98 17.54

Table 6: Running times for image simulations (in seconds)

AK-SVD RND+AK-SVD T-mindot + AK-SVD
k k0 - - T = 0.95 T = 0.9

3
4 62.52 2.34 12.27 9.22
8 79.96 4.5 15.76 11.84

16 234.28 6.24 26.15 19.68

4
4 98.80 3.12 13.44 10.37
8 143.27 7.91 17.73 13.51

16 270.40 8.96 30.50 23.61

5
4 121.32 5.58 14.85 11.69
8 164.91 9.01 20.15 15.28

16 293.16 14.28 36.27 26.75

before the AK-SVD procedure greatly reduces the running
time while keeping the representation error low.

The training set consists of 98304 vectors of size 64 ex-
tracted from 8× 8 non-overlapping patches from the test im-
ages mentioned earlier. The results of the simulations are pre-
sented in Tables 5 and 6. The parameter k establishes the
dimension of the dictionary (for example, a k-overcomplete
dictionary is of size D ∈ Rn×kn), k0 dictates the number
of atoms that participate in the reconstruction (OMP step) of
the training vectors. All simulations start from the same ran-
dom initial dictionary. The run that considers also T-mindot
is an exception from this rule. In this case, we take the initial
dictionary to be composed from the centroids with the high-
est number of items grouped around them. All runs have the
same number of AK-SVD iterations, which in this particular
case is 20 since no significant decrease in the error happens
after this limit. Using the T-mindot clustering procedure with
parameter T ∈ {0.9, 0.95} on such data reduces the size of
the dataset by more than 90%.

The procedure called RND+AK-SVD runs by randomly
selecting the same number of training vectors as the number
of centroids selected by T-mindot with T = 0.95 and then
applying the AK-SVD algorithm. We expect this procedure
to run the fastest but we also expect it to run worst in terms
of the representation error. Such a result validates the extra
effort allocated in the T-mindot step.



From Table 5 it is clear that better results are obtained for
T-mindot with T = 0.9 than with T = 0.95. One explanation
for this result is the way in which the training procedure is
initialized. The centroids computed with T = 0.9 seem to be
more relevant than the ones computed with T = 0.95 and this
leads to a lower representation error. Simulation show that
further lowering T increases the representation error signifi-
cantly, as expected.

All simulations prove conclusively that applying T-
mindot greatly reduces the running time of the training
algorithm (in this case, AK-SVD) while keeping the rep-
resentation error close to the error obtained if the training
algorithm would have been applied without the clustering
first. On average, the speedup obtained using T-mindot be-
fore the K-SVD, as opposed to using K-SVD directly, is
approximately 7 while the magnitude of the error is kept low,
in some cases even lower than the full training algorithm can
achieve. Of course, the speedup is heavily dependent on the
dataset, but in the context of training dictionaries for sparse
representation the data items are usually highly correlated.

All comparisons are conducted against AK-SVD since the
running time of the K-SVD method is extremely high for
large datasets like the ones used in this setting, while the rep-
resentation errors are very similar. The fact that K-SVD com-
putes the best direction by the exact SVD does not seem to
have a crucial effect on the final result.

4. CONCLUSIONS

This paper presents an efficient clustering method, called T-
mindot, which is applied on a dataset before the K-SVD algo-
rithm is used to build a dictionary that describes a sparse lin-
ear model of the data. The main advantage of this procedure
is that it enables the application of K-SVD on large datasets,
where the speed of the training procedure would have been
prohibitively long, while being able to keep the error at a rel-
ative close level to the error obtained by applying the K-SVD
algorithm on the entire dataset.
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