
DeciBell: A novel approach to the O.R.M.

software for JavaTM

Chomenides Ch., Sopasakis P., Sarimveis H.

May 2010

Minimalist Architecture

DeciBell is an open source and free tool developed to tackle in a uniform
and structured way the problem of Java and SQL cooperation (available at
http://github.com/hampos/DeciBell). In DeciBell, Java classes are related
to relational database entities automatically and in a transparent way as far as
the background operations are concerned. So, on one hand, non-expert users
can work on Java code exclusively while expert ones are able to focus on more
algorithmic aspects of the problem they try to solve rather than be wasted
with trivial database management issues. In contrast to the existing O.R.M.
programs, DeciBell does not require any configuration files or composite query
structures, but only a proper annotation of certain fields of the classes. This
annotation is carried out by means of the Java Annotations which is a modern
trend in Java programming. Among its supported facilities, DeciBell supports
primary keys (single and multiple), foreign keys, constraints, one-to-one, one-
to-many, and many-to-many relations and all these using pure Java predicates
and no SQL or other Query Languages.

DeciBell is developed to be easy to use for all Java developers as it assumes
no expert knowledge. It is also meant to be efficient and secure as it makes use of
solely Prepared Statements. In many cases it would be more efficient to develop
a database management system which is application oriented and tailored to the
needs of a specific software. However, the implementation and maintenance of
such a system would be time consuming for the developer distracting him/her
from the scope of the application itself. So DeciBell is more a convenient tool
for DB management rather than an optimum solution.

DeciBell’s main goal is to strike a balance between configurability, efficiency
and complexity, putting the most of its effort to suppress the last one. DeciBell
struggles to resemble more to an one-button washing machine rather to a state-
ot-the-art Boing 747 cockpit.

Everything is a Component

In DeciBell every class one needs to map to a relational entity, is called a Com-
ponent. Any class that needs to be persistent in the database using DeciBell has
to subclass (directly or indirectly) the class Component. This is an abstract class
that contains methods which enable the user to directly read from and write to

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12097265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hampos@me.com
mailto:chvng@mail.ntua.gr
mailto:hsarimv@central.ntua.gr
http://github.com/hampos/DeciBell
http://github.com/hampos/DeciBell/blob/master/src/org/kinkydesign/decibell/Component.java

the database, as well as delete and update one or more database entries. The
user does not need to interact directly or by any means with the database itself
or be aware of anything about the database structure, SQL queries and Java-
to-db-to-Java data transactions whatsoever. The class Component contains the
following four method implementations:

• public void register(DeciBell db) throws DuplicateKeyException,
ImproperRegistration: Register the object into the database. There is
no need to specify the table(s) in which the data are stored or the way
this registration is carried out.

• public void delete(DeciBell db) throws NoUniqueFieldException:
Delete the specified object or an object that is uniquely identified by the
object on which the method is applied. A primary key value or a unique
field has to be provided thus pointing to some specific target object (entry).

• public ArrayList<T> search(DeciBell db): Apply this method to some
object to search for objects in the database that resemble to the given one.
Fields that you wish to be ignored during the search should be set to null.
No additional parameters need to be specified such as the SQL query. The
search is based on one or more prepared statements.

• public void update(DeciBell db) throws NoUniqueFieldException,
DuplicateKeyException: Update an object in the database with the
given object. The object on which the method is applied uniquely idenifies
some object in the database (using the given value for its primary key(s)
or some unique field value). Then all other entries are updated with the
corresponding data in the given component.

For increased security and performance, SELECT, INSERT, UPDATE and DELETE
queries are prepared on startup. The prepared statements are supplied with
parameters using the Java reflection API (java.lang.reflect) and the Java
library Reflections (see http://code.google.com/p/reflections). However
all reflective elements (Classes and Fields) are collected on startup, so no reflec-
tive lookups take place during runtime.

DeciBell Annotations

@PrimaryKey

A Primary Key, in ER-terms, is a characteristic attribute (entry) of an entity
which is unique and not nullable. The primary key value of a table entry is an
identifier for this entry. Every component in DeciBell should possess a primary
key. One or more fields of the component (a Java class) must be annotated with
the @PrimaryKey annotation.

@Entry

A simple annotation to declare that the underlying field should be mapped to
a table column (or a set of table columns) in some table. No need to worry
about the table structure when using this annotation. Database creation takes

2

http://code.google.com/p/reflections

into account all fields annotated with the @Entry annotation to create a proper
structure that allows this information to be registered in and/or be read from
the database. No knowledge of the database structure is needed, since you un-
derstand the relations between the classes you have defined, which is the normal
Java (possibly hierarchical) structure. The following methods are contained in
this annotation, allowing the user to specify certain meta-information about the
annotated field. These are:

1. boolean unique() default false: The entry is unique among all en-
tities. Every field annotated with the @Entry annotation with the extra
characterization unique=true should have unique values over all instances
of that class, at least when database registration operations are performed.

2. boolean notNull() default false: The entry cannot accept null val-
ues.

3. String defaultValue() default "": Default value to be used when one
attempts to register a null value.

4. boolean autoGenerated() default false: Applies only to integer or
long fields. Auto-generated fields acquire a value automatically upon
registration. Note that at most one field can be auto-generated in every
class.

@ForeignKey

In DeciBell, entities are allowed to point one another. So a User may point(have)
to a UserGroup, or a Product may point to its TechnicalSpecifications. So,
an attribute or a set of attributes in some entity references an attribute or a set
of attributes in another entity by a foreign key constraint. The purpose of the
foreign key is to ensure referential integrity of the data i.e. only values that are
supposed to appear in an attribute of some other entity are permitted. Foreign
keys are defined in the ANSI SQL Standard. Let us now give an example of how
you can use @ForeignKey in your source code. Suppose you have two classes,
namely User and UserGroup as follows:

class UserGroup {
public String groupName;
public String authorizationLevel;

}

class User {
public String userName;
public String password;
public UserGroup group;

}

Then you can use the annotation @ForeignKey to declare that the field public
UserGroup group points to the entity UserGroup. We note again here that
every entity must be endowed with a @PrimaryKey. So modifying slightly the

3

above code, yields:

class UserGroup extends Component{
@PrimaryKey public String groupName;
@Entry public String authorizationLevel;

}

class User extends Component{
@PrimaryKey public String userName;
@Entry public String password;
@ForeignKey public UserGroup group;

}

The following methods of the annotation enable the user to configure some
properties of the foreign key such as its behavior on delete and on update.
These methods are:

1. OnModification onDelete() default OnModification.NO ACTION.

2. OnModification onUpdate() default OnModification.NO ACTION.

@Constraint

In order to enhance data integrity in your database, you may add a constraint on
an attribute. If the attribute is numeric (int, long, short, double, float)
the constraint consists of a lower and a higher bound (numeric constraints),
that is xlow ≤ x ≤ xmax. On the other hand, constraints on String attributes
impose a finite range of values (nominal constraints), i.e. x ∈ {x1, x2, . . . , xn}.
This Java Annotation Type defines the necessary methods for establishing such
constraints on attributes (fields) of components. These are:

1. String low() default "": Lower bound imposed on an attribute as a
constraint.

2. String high() default "": Upper bound imposed on an attribute as a
constraint.

3. String[] domain() default {""}: Nominal constraint imposed on String
fields.

@NumericNull

This DeciBell annotation is used to provide a numeric null value for database
searching as the JVM does not allow for null values in numeric variables. The
number provided using this interface, stands for the null value of the annotated
variable.

The idea is simple: When a search command is executed on a DeciBell
Component, DeciBell checks that component’s Fields and when a Field has a
null value it gets replaced by an indefinite value (i.e. a value used to inform
the database that this specific field is to be ignored in the search, in the sense

4

to perform the search operation irrespective of the value of this field) In that
way DeciBell keeps using the same PreparedStatements and greatly increasing
performance even though some of the statements values have to be ignored.

The problem comes in when Java automatically initializes all primitive nu-
merics with a 0 value (There is no meaning of null for primitives). This makes
us unable to see if the field was initialized by the user or by the compiler. A
new annotation then became clear. NumericNull is used to define the value on
which a numeric primitive is considered null. The default value is −1. One can
set a numeric null value other than that on each DeciBell Entry. If one is to
use this annotation, they must provide a numeric value that they will not (or
at least not expect to) use ever in their database for that field; otherwise this
will lead to a considerable comfusion and wrong results.

@TableName

This annotation should concern only those users who need to directly access
the automatically created database to inspect the data in it and/or understand
how DeciBell works. So it accomplishes mainly educational purposes. Using
@TableName, users can specify some arbitrary name for the generated table
themselves, overriding the standard naming procedure of DeciBell. In general
DeciBell creates too long table names which would be a considerable burden
for someone who would need to directly access the database. This is a short
example of use:

@TableName("YSER") class User extends Component{
@PrimaryKey public String userName;
@Entry public String password;
@ForeignKey public UserGroup group;

}

This tells DeciBell that the table produced to host the attributes of the class
User should be called ”YSER”.

Database creation

Users of DeciBell find it very easy to generate and maintain a database structure.
The class org.kinkydesign.decibell.DeciBell is a user friendly database
manager. It takes just a couple of steps (at most) to configure the manager.
First, you have to specify which components will be used by DeciBell. You can
either provide a target package which contains your components, i.e.

DeciBell db = new DeciBell();
db.attachFromPackages("com.my.components");

Or you can specify your components one by one, i.e.

DeciBell db = new DeciBell();
db.attach(User.class);

5

db.attach(UserGroup.class);
etc...

However this step is optional since if you skip it, DeciBell will search in all
packages in your classpath and will attach every component therein.

Second, you have to set some database name of your choice and trigger the
database creation engine. Here is an example of use:

db.setDbName("myDataBase");
db.start();

This will start the database server (DeciBell currently works only with Derby
but we plan to add support for other database servers as well, such as MySQL)
and creates the tables needed to store your data. Some statements are prepared
and cached in a pool. If the database already exists and contains all necessary
tables, no modification of its structure will take place. Once all transactions are
over, call it a day using the following statement:

db.stop();

This will disconnect you from the database server and also send a stop signal
to Derby.

Quering

Complex queries can be carried out using DeciBell. Let us give an example
including three entities, namely Master, Slave and Other, having the following
structure described by their Java classes:

class Master {
@Primarykey @NumericNull("-20") long uid;
@ForeignKey Other other;

}

class Other {
@PrimaryKey String uid;
@ForeignKey Slave slave;

}

class Slave {
@PrimaryKey URI uri;
@Entry String x;
}

DeciBell provides a way to get all Master objects having an Other which has
some Slave with a value for x that contains the letter d. This is as simple as the
following piece of code. First we construct a prototype for our search operation:

Slave slave = new Slave();

6

slave.x = "%k%";

Other other = new Other();
other.slave = slave;

Master prototype = new Master();
prototype.uid = -20; prototype.other = other;

Then we can search for all Master objects which reseble the given prototype.
This is:

ArrayList<Master> componentsFound = prototype.search(db);

Component Relations

We encounter the problem of one-to-many and many-to-many component rela-
tions when a component contains some Collection<? extends Component>
of other components. In many cases, the user denote that this collections is a
Set or a List. This generates extra relational tables in the database used to
store these data. Registration and Search are performed as mentioned before.
The information contained in a Java Collection are stored in the database and
can be also retrieved. We need to note that the retrieval of a Collection, brings
back Java the Collection cast as the same datatype it was used when the data
where registered. Here is an example of use.

Suppose we have two entities, namely Master and Slave, and there is a
many-to-many relation between Masters and Slaves which is reflected in the
Java code by means of a Collection-type field. Here is the structure of the two
classes:

class Master {
@Primarykey @NumericNull("-20") long uid;
@ForeignKey Collection<Slave> collection;

}

And here is an example of registration and search operations using DeciBell:

Collection<Slave> coll 1 = new HashSet<Slave>();
coll 1.add(slave1);
coll 1.add(slave2);

Master master = new Master();
master.uid = 100;
master.collection = coll 1;
master.register(db);

Master prototype = new Master();
prototype.uid = -20;
ArrayList<Master> masters = prototype.search(db);

7

Master foundMaster = masters.get(0);

Then foundMaster.collection is a HashSet. That is, DeciBell also stores
the collection implementation used when storing the data.

Implementation Details

DataTypes Mapping

Java basic datatypes (int, long, short, double, float and String) do
not have an exact counterpart in SQL. It is intuitively implied that the Java
datatype int is mapped to the SQL datatype INTEGER but those types differ
both in number of allocated bytes and range. Specificaly, in Java integers ac-
cept values from −231 up to 231 − 1, while in SQL (and in particular in Derby)
the lowest integer is −2147483648 and the highest is 2147483647. Analogously
there are some datatype inconsistencies between short and SMALLINT and so on.
However, as every ORM has to establish some correspondnce between datatypes
in Decibell we adopt by convention the following mapping:

Table 1: Java-SQL datatypes mapping
Basic Java datatype SQL datatype

int INTEGER
short SMALLINT
long BIGINT

double DOUBLE PRECISION
float REAL
String VARCHAR(32672)

BigDecimal DECIMAL
boolean BIT

Dependencies

DeciBell makes use of the following open source, free Java libraries:

1. Reflections: Reflections is an opensource/free java metadata analysis
software distributed under the GNU Lesser GPL license. Project web page
@ http://code.google.com/p/reflections. Reflections offers some ad-
vanced metadata analysis facilities and mainly configurable reflective lookup
in packages.

2. Derby JDBC server: The Derby JDBC server is freely distributed
under the Apache license. DeciBell makes use of the transitional alpha
release of Derby 10.6.0. but will soon upgrade to the latest release 10.6.1
(see http://wiki.apache.org/db-derby/DerbyTenSixOneRelease)

3. XStream: Library for the (de)serialization of objects in Java to and
from XML. It is used in DeciBell for registering in the database non-
Component objects of unknown structure.It is an open source software

8

http://code.google.com/p/reflections
http://wiki.apache.org/db-derby/DerbyTenSixOneRelease

distributed under a BSD license. XStream is available for download at
http://xstream.codehaus.org.

Contribute!

The quintessence of an open source project is that other developers can study
the source code and contribute their ideas and proposals or even fork the project
thus adjusting it to their specific needs. This is the reason why DeciBell is open
source and needs the contribution of the open source community. One can
either contribute in terms of optimizing the source code, adding new features
or fixing existing bugs or write documentation for the existing code. Being in
its infancy, DeciBell also needs lots of tests. Contact one of the developers for
more information.

Does it make coffee?

Well, that’s a tough one! It doesn’t! But this is still it’s alpha/testing version
(0.1.1.0). All JUnit tests carried out till today are quite encouraging and we’ll
do our best so that it will make coffee (due for the beta version).

Found a Bug?

Did you find a bug? Please report it at github.com/hampos/DeciBell/issues
(issue tracker) or send us an email.

9

http://xstream.codehaus.org
issues http://github.com/hampos/DeciBell/issues

