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Do Eco-Innovations Harm Productivity Growth

through Crowding Out?∗

Results of an Extended CDM Model for Italy

Giovanni Marin†

Abstract

This paper discusses the results for Italy of a CDM model (Crepon
et al, 1998) further extended with the objective of evaluating drivers
and productivity effects of environmental innovations. The particular
nature of environmental innovations, especially as regards the need of
government intervention to create market opportunities, is likely to
affect the way through which they are pursued (innovation equation
within the CDM model) and their effect on productivity (productivity
equation).

Here I test two main hypothesis: (i) to what extent polluting firms
rely on own innovations to improve their environmental performance?
(ii) do the pursue of environmental innovations reduce the likelihood of
obtaining other profitable innovations (crowding out)? Results, based
on administrative data (AIDA by Bureau van Dijk and patent data
from PATSTAT) show that innovation efforts of polluting firms and
sectors is significantly biased towards environmental innovations and
that environmental innovations tend to crowd out other more profitable
(at least in the short run) innovations.

Keywords: patents, CDM model, eco-innovation, crowding out JEL:

L60, O30, Q55

1 Introduction

Technological progress, together with structural change and shifts in con-
sumption patterns, has been acknowledged to be a crucial factor in achiev-
ing environmental sustainability (Jaffe et al, 2002; Popp et al, 2009; Popp,

∗I thank all the participants to the EuroLIO 2012 Conference ‘The Geography of
Innovation’ (Saint-Etienne, France), the Workshop ‘Presente e Futuro dell’Economia
dell’Ambiente e delle Risorse Naturali in Italia’ (Università di Roma Tor Vergata), the
seminars held at IMT Advanced Studies Lucca, Banca d’Italia and Università di Ferrara
who gave me useful suggestions and insights. This paper is part of my PhD thesis. The
usual disclaimer applies.

†IMT Lucca Advanced Studies, Piazza San Ponziano, 6, 55100 Lucca (Italy). E-mail:
giovanni.marin@imtlucca.it
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2010). Technological progress might improve environmental performance
both through increased resource efficiency and lower emission intensity in
production activities and through the supply new more ‘sustainable’ prod-
ucts as substitutes to other less efficient products (e.g. energy intensive
durable goods). Firms are key actors in the creation, adoption and diffusion
of environmental innovations as well as the most important responsible for
environmental pressures.

The economic literature on eco-innovation patterns at the micro level fo-
cuses to a great extent on the identification of the drivers of eco-innovation
by firms with little attention given to the effect of eco-innovation on produc-
tivity or financial performance of firms. Moreover, most of these empirical
works are based on German firms. Rennings and Ziegler (2004) use data
from the German Community Innovation Survey (CIS) finding significant
positive effect of environmental organizational measures (EMAS and ISO
14001), market opportunities and R&D intensity on process and product
environmental innovations. Wagner (2007) uses both data on environmen-
tal patent applications and self-reported measures of eco-innovation to in-
vestigate the effect of environmental management on environmental inno-
vations. Results for German firms show positive effect of EMS adoption
on self-reported process environmental innovations and a negative effect on
firms’ general patenting activity. The paper by Horbach (2008) uses a dis-
crete choice model for German manufacturing firms finding strong positive
effects of technology push (knowledge capital), demand pull (social aware-
ness of customers) and environmental policy (either mandatory or voluntary
through environmental management tools) factors on environmental inno-
vations. Horbach et al (2011) is the first relevant study investigating the
determinants of different fields of environmental innovations. Their anal-
ysis, based on the German CIS for 2009, shows that the introduction of
innovations aimed at reducing by-products of production activities such as
the release of air, water and noise emissions are strongly related to govern-
ment regulations (current and expected). On the other hand, innovations
aimed at reducing material and energy use are driven by cost-savings and
resource and energy taxes due to the easier appropriability of the returns
from innovation through reductions in production costs. Rave et al (2011)
base their analysis on German firms and on their patenting behaviour. The
main results highlight the importance of a clear and strict environmental
regulatory framework, of possible cost savings due to environmental inno-
vations and of the possibility of creating new markets. Finally, results from
a survey conducted by Cainelli et al (2011) show that different types of en-
vironmental innovations introduced and adopted by manufacturing firms in
Emilia Romagna (Italy) is very strongly correlated to international char-
acteristics (foreign ownership and export propensity) and networking with
other firms and institutions.

While environmental innovations are expected to have, by definition,
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a beneficial effect on the environment1, their effect on productivity is less
straightforward. The conventional wisdom predicts that starting from a sit-
uation of optimizing firms, any policy aiming at limiting environmental by-
products of firms will result in a reduction in measured productivity. These
productivity losses could be reduced by introducing environmental innova-
tions. However, productivity losses cannot be fully removed and resources
devoted to generate or adopt environmental innovations should be diverted
from ‘optimal’ research project with higher expected returns (crowding out).
In this respect, Popp and Newell (2009) find significant crowding out of en-
ergy R&D expenditures on general R&D in those US industries characterized
by more than 5 percent of energy R&D. However, when they consider en-
ergy patents at the firm level, evidence is more mixed, with relevant but
insignificant crowding out effect.

An alternative view, promoted by Porter and van der Linde (1995), al-
lows for the possibility of win-win outcomes. In this case, environmental
regulations help to fill information gaps about available technologies and
technological opportunities and they help solving the additional appropri-
ability problem of environmental innovations (EI) due to the fact that EI
reduce external, generally not priced, costs (‘weak’ version of the Porter
hypothesis). Moreover, early introduction of environmental technologies is
expected to generate early mover advantages for regulated firms, with long
run positive effects on competitiveness and, eventually, on measured pro-
ductivity (‘strong’ version of the Porter hypothesis)2.

In this respect, Rexhauser and Rammer (2011) use the German CIS 2009
to investigate the effect of different types of environmental innovations on
German firms’ profits. They find that cost-reducing innovations aimed at
reducing energy and material input have a positive effect on firms’ prof-
itability while regulation-induced environmental innovations, mainly aimed
at reducing environmental pressures, have a negative but weak effect on
profitability.

The aim of this paper is to assess the drivers of environmental innova-
tions and their effect on firm-level productivity. I employ a panel of Italian
manufacturing firms for the period 2000-2007 containing information on
balance sheet and income statement, EPO patent applications and polluter
status in order to jointly identify the drivers of eco-innovations and their
contribution to firm-level productivity. The empirical framework is that of
a modified CDM model (Crepon et al, 1998) to account for eco-innovation
patterns. The rest of the paper is organized as follows. Section 2 briefly de-

1Economists and policy makers are increasingly worried about the possibility that
cost and price reductions brought by environmental innovations through improvement in
material and energy efficiency would result in an increased consumption of these new
efficient goods, with an overall negative effect on the environment (rebound effect).

2For a more detailed discussion about the difference between the ‘strong’ and ‘weak’
version of the Porter hypothesis refer to Jaffe and Palmer (1997).
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fines eco-innovation and the extent to which patent data are a useful source
of information on eco-innovation. Section 3 focuses on the description of the
empirical model and of the data. Section 4 discusses the results. Section 5
concludes.

2 Definition of environmental innovations and the

role of patent data

A definition of environmental innovation is needed in order to investigate
its impact on productivity and potential crowding out effects. There has
been a rich debate in the economic literature about the distinctive features
of environmental innovations as opposed to general innovations (Rennings,
2000). Environmental innovation (or eco-innovation) has been defined by
Kemp and Pearson (2007) within the project ‘Measuring Eco Innovation’ as

[...] the production, assimilation or exploitation of a product,
production process, service or management or business method
that is novel to the organisation (developing or adopting it) and
which results, throughout its life cycle, in a reduction of envi-
ronmental risk, pollution and other negative impacts of resources
use (including energy use) compared to relevant alternatives.

This is a broad definition, making it difficult to measure environmental
innovation in a comprehensive way. On the one hand, survey are able to
describe qualitatively the whole spectrum of eco-innovation strategies of
innovative firms. On the other hand, however, the broad definition of eco-
innovation is likely to result in ambiguous questions in the questionnaires
which are prone to misleading interpretations by surveyed people.

Patent data could act as a more objective alternative to measure eco-
innovation (Oltra et al, 2009). Patents contain rich information about the
technological field of the underlying innovation, especially when analysing
reported IPC classes and the text contained in the patent or in the abstract.
This rich information is generally exploited through the identification of
relevant ‘environmental’ IPC classes and /or through the systematic search
of ‘environmental’ keywords.

Nevertheless, the use of patent data as measure of environmental inno-
vation output within the definition elaborated by Kemp and Pearson (2007)
(but also more generally for all innovations3) is characterized by some serious
limitations.

3Refer to Griliches (1990) for a survey on the advantages and limitations of patent data
as a measure of innovation.
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First, patents cover just part of the innovation output. Many innovations
are not patented either because they cannot be patented4 or because firms
prefer to use alternative means to protect their innovations (secrecy, lead
time, etc.). Moreover, the propensity to use patents as a mean of protect-
ing innovations varies substantially across sectors and across technologies.
In general, process innovations, which are very relevant when considering
environmental innovations, are under-represented as opposed to product in-
novations.

Second, information on the ownership and actual use of patented innova-
tions is generally lost after the patent has been granted. Patent data ignore
the whole phase of ‘adoption’ of innovations. It is thus plausible that a
share of patented innovations is not even adopted by applicant firms which
could act as specialized suppliers of (embodied or disembodied) knowledge to
other firms which are the real adopters. A recent paper by Calel and Deche-
zlepretre (2012), dealing with the assessment of the effect on climate-related
patenting of the European Emission Trading Scheme for EU firms, briefly
discusses issue of the possible separation between adoption and creation
of climate-related innovations. They argue that “economic theory predicts

that environmental regulations would produce greater incentive to develop

new technologies for directly regulated firms than for third-party technology

suppliers” because “the latter are not discharging emissions themselves and

receive no private benefit from the new technology” (Calel and Dechezlepre-
tre, 2012, p. 22).

Third, patent data consider only those innovations which are ‘new to the
market’ while they ignore those innovations which are just ‘new to the firm’
because of the ‘novelty’ requirement for patented innovations.

Finally, the distribution of the value of patents is very skewed, with a
tiny proportion of extremely valuable patents and a great majority of patents
with little or even no commercial value (Hall et al, 2007). Finally, patenting
firms represent a very small fraction of innovative firms, leading to possibly
low robustness of the results and to econometric problems when dealing with
excess zeros of patent count indicators.

Despite these limitations, many recent analysis on environmental inno-
vations were based on patent statistics. Among other, refer to Lanjouw and
Mody (1996), Popp (2002), Brunnermeier and Cohen (2003), Wagner (2007)
and Johnstone et al (2010).

4An innovation can be patented if it is novel, non-obvious and commercially viable.
Moreover, specific patent offices do not allow to patent specific technologies (e.g. living
organisms).
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3 Empirical model and data

Econometric analysis are based on an adaptation of the CDM model (Cre-
pon et al, 1998). The CDM model is an empirical structural econometric
model aimed at investigating innovation patterns of firms in a comprehen-
sive way, considering the drivers of innovation inputs (R&D), their effect on
innovation success (innovation output) and the extent to which innovation
success affects firm’s productivity.

3.1 Classical and extended CDM model

Classical CDM model

The CDM model is an empirical structural model proposed by Crepon et al
(1998) to evaluate innovation patterns of firms in a comprehensive way. The
model is composed by three steps. In the first step, firms decide whether
to undertake formal R&D projects or not and the amount of resources to
devote to R&D activities. The choice of innovation inputs is modelled with
an Heckman selection model to account for incidental truncation of the
R&D variable. In a second step, firms use innovation inputs and other
internal or external resources to obtain commercially viable innovations.
The original CDM model (Crepon et al, 1998) used two alternative measures
of innovation output: share of innovative sales (which, in their case, was a
categorial variable) and patent applications count (count variable). Other
more recent CDM models based on CIS data used alternative measures of
innovation output such as the introduction of process and / or product
innovations. Finally, successful innovations affect firm’s profitability and /
or productivity. Innovation output is included in an extended production
function as an additional input and its effect on productivity is assessed.

By using predicted values of R&D and patent counts in the second and
third step respectively, the CDM model is a sort of instrumental variable ap-
proach to correct for simultaneity and reverse causality issues in the various
steps.

R&D equation

The first decision of firms about their innovation strategy is whether to
perform any formal R&D and, eventually, its intensity. The CDM model
uses a Heckman sample selection model to estimate R&D intensity. R&D
expenditure is characterized by incidental truncation, with the decision to
perform formal R&D depending on (unobservable) expected returns on R&D
(i.e. whether expected returns exceed R&D investments). Moreover, R&D
strategies of firms might be modelled as a the two-stage decision process
in which firms decide, in a first stage, whether to perform any formal R&D
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and, in a second stage, its intensity. I estimate the Heckman selection model
simultaneously with maximum likelihood.

Explanatory variables for the first step (probability of reporting positive
R&D) are log of employees count, market share, log of capital intensity (fixed
physical assets per employee), log of total assets (book value), age (a dummy
variable for firms older than 10 years) and sector5, year and macro-regional6

dummies. I exclude (exclusion restriction) book value and firm’s age in the
second step (R&D intensity expressed as the log of R&D per employee) of
the Heckman model, assuming that firm’s age and the value of its assets
affects the probability of performing R&D (extensive margin) but not its
intensity (intensive margin).

It is important to bear in mind that possible severe measurement errors
in the R&D variable (refer to the Appendix B for further detail on the R&D
variable) are likely to cause a substantially overestimated standard errors.

Patent equation

The combination of innovation inputs (R&D) with internal and external
resources results in the introduction of innovations. Successful innovations
have been measured in CDM models in a variety of ways. Crepon et al
(1998) use patent applications count and share of innovative sales as indi-
cators of successful innovations. Other authors (e.g. Hall et al (2009) for
Italy and Griffith et al (2006) for France, Germany, Spain and the UK) used
dummy variables describing the introduction of innovations, generally dis-
tinguishing between process and product innovations. In this paper I use the
number of EPO (European Patent Office) patent applications as a measure
of innovation output.

Patent data are count data. When the dependent variable is a non-
negative integer, OLS are likely to be biased and they could give rise to
negative predicted values. In this model I use a negative binomial (NB2)
regression model7. The baseline model to deal with count dependent vari-
ables is the Poisson model which assumes equidispersion (mean equal to
the variance) of the variable of interest. This property is often violated in
actual data, which are generally characterized by overdispersion8 (Cameron
and Trivedi, 1998). I use a Negative Binomial (NB2) model which allows the

5I classify sectors according to the Pavitt’s taxonomy (Pavitt, 1984). Pavitt classi-
fies manufacturing sectors according to their patterns of innovation ending up with four
macro-sectors: (i) supplier-dominated sectors; (ii) scale intensive sectors; (iii) specialized
suppliers sectors; (iv) science based sectors.

6I identify four macro-regions: North-West, North-East, Central Italy and Southern
Italy and Islands.

7Preliminary attempts have been done with other models which deal explicitly with
excess zeros (zero inflated Poisson or NB, hurdle Poisson or NB).

8The unconditional variance of total patent count is, in all samples, much higher than
the unconditional mean. In the full sample the variance 6.5 time the mean, in the patent
sample the variance is 4.47 times the mean and in the polluter sample the variance is
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conditional variance of the dependent variable to be a quadratic function of
the conditional mean9.

The dependent variable of the patent equation is yearly EPO applica-
tions count. Explanatory variables are (predicted) log of R&D per employee,
firm size (log of employees), local patent stocks (log of regional patent stocks
per capita) and sector, macro-region and year dummies. Innovation input
and firm size (Mansfield, 1986) are expected to affect positively the number
of patent applications. As regards local patent stock, it might act either
as innovation input for firms in the form of local knowledge stock or as po-
tential alternative to internally patented innovations to be adopted through
licensing or embodied in machineries and intermediate inputs. These two
alternative interpretations affect firm-level patenting activity in opposite
directions. Sector dummies (Pavitt’s taxonomy) control for sector-specific
propensity to apply for a patent. As pointed out by Pavitt (1984), the
propensity to use patents as a mean to appropriate the returns to R&D is
high for science-based and specialized suppliers sectors while scale intensive
and supplier dominated sectors have lower propensity to patent their inno-
vations10. Finally, year and regional dummies control for changes in the
propensity to patent through time (due either to changes in firm’s strate-
gies or to variations in patent systems) and for geographical differences in
human capital, links with local actors in the local innovation systems and
innovation capabilities.

Productivity equation

The final step consists in estimating the effect of successful innovation output
on firm’s productivity or profitability. I use an extended Cobb-Douglas
production function in which the log of labour productivity (value added per
employee) is a function of the log capital intensity (fixed physical assets per
employee) and the log of (predicted) innovation output (expected number
of patent applications per employees). I also include the log of employees as
explanatory variable to test for constant returns to scale11. I include sector,

13.36 times the mean.
9Being ωi the conditional variance of the count variable, and µi its conditional mean,

the NB2 model assumes that ωi = µi + αµ2
i . In case α is not statistically different from

zero, the NB2 model converges to a Poisson model.
10Descriptive statistics regarding the sample of firms used in this paper confirm Pavitt’s

priors about sector-specific propensity to patent: in table 3 I observe a much higher share
of firm/year pairs with positive patents in science based and specialized supplier sectors
(4.27% and 5.14% respectively) than for scale intensive (1.97%) and supplier dominated
(0.78%) sectors.

11A general Cobb-Douglas production function with two inputs (labour, L, and capital,
K) is given by the equation V A = AKαLβ. Constant returns to scale imply that α+β = 1.
Dividing both sides by L, taking the log and rearranging I obtain log(V A/L) = log(A) +
α log(K/L) + (β + α− 1) log(L). Under the assumption of constant returns to scale, the
parameter for log(L) should be zero (β + α = 1). The same concept applies with more
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year and regional dummies to account for sector, time and region specific
productivity shocks. I estimate the productivity equation with OLS.

Extended CDM model

My extension to the classical CDM model consists into the separation of
the innovation output (patent applications count) into two categories: en-
vironmental innovations and other innovations12. The approach of splitting
innovation outcome in multiple categories has been extensively used in CDM
models, especially by separating product innovations from process innova-
tions (Hall et al, 2009; Griffith et al, 2006). This extension will result in
two different patent equations and in a unique productivity equation in
which environmental and non-environmental innovations will have different
productivity effects. The separate assessment of the productivity effect of
environmental and non-environmental innovations will allow me to (indi-
rectly) test for the presence of crowding out of environmental innovations
relative to other innovations13.

An additional extension regards the special consideration, as regards en-
vironmental innovations, for polluting firms/sectors. Polluting firms and
sectors are expected to show a significant and systematic bias towards envi-
ronmental innovations relative to other firms/sectors. This fact is likely to
be reflected in the patent equation, with polluting firms and sectors which
will probably apply for a greater number of environmental patents. Table
1 reports the results of a series of Probit regressions in which the depen-
dent variable is the probability of filing for an environmental patent and
the explanatory variables the polluter status (either polluting firm or pol-
luting sector) and a series of controls14. Estimates has been performed on
the sub-sample of observations with positive patent applications count. On
average, the probability of being an eco-innovator is greater for polluting
firms (‘polluter’) and polluting sectors, thus highlighting the relative bias of
polluting firms and sectors towards eco-innovations relative to other firms
and sectors. However, especially when controlling for firm size, the bias of
polluting firms becomes statistically insignificant.

than two inputs.
12Note that, because of the complexity and variety of environmentally-beneficial tech-

nologies and of the approach of selecting environmental patents only by means of their IPC
class, the non-environmental category of patents is likely to contain a possibly remarkable
number of environmental innovations.

13Popp and Newell (2009) try to disentangle the presence of crowding out at the firm
level in a more direct way. They check whether an increase in energy patent applications
at the firm level reduces the number of other patent applications. They implicitly assume
that the return of energy patents is (on average) lower than the return of other patents.

14Year dummies and macro-region dummies (North-West, North-East, Central Italy and
South-Islands), macro-sector dummies (Pavitt’s taxonomy), firm-size (log of employees)
and patent class dummies (1 patent, 2-5 patents, 6-10 patents, 11-20 patents and 21+
patents).
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Figure 1: Kernel distribution of log of employees count
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In addition, I aim at investigating whether environmental innovations
affect polluting firms in a different way relative to other firms. On the one
hand, polluting firms might profit from environmental innovations through
their effect on the decrease of compliance costs. On the other hand, however,
environmental innovations introduced to reduce compliance costs coupled
with constraints in the amount financial resources that a firm can invest
in R&D activities could determine a shift of the innovation strategies of
firms towards innovations with lower expected returns. This test is done by
interacting the predicted intensity of environmental patents with the dummy
indicating that a firm is a polluter in the productivity equations.

3.2 Data

This paper uses a dataset containing balance sheet / income statement infor-
mation on Italian manufacturing firms (AIDA, by Bureau van Dijk) which
has been further merged with patent applications to the European Patent
Office (EPO). For sake of brevity, refer to Marin (2011) for further details on
the methodology used to match EPO applications and firms in AIDA and
for some general descriptive statistics. I further extended the AIDA dataset
by identifying the biggest polluting firms and the most emission-intensive
sectors15.

The use of administrative data as an alternative to survey data is a dis-
tinctive feature of the current paper as opposed to similar articles either in
the CDM literature or in the eco-innovation literature. On the one hand,
administrative data give more objective and standardized information on

15Refer to the Appendix A for further details.
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Table 1: Probability of filing for an environmental patent (firm/year pairs
with positive patents - Probit estimates, marginal effects are shown)

All env (1) (2) (3) (4)

Polluter 0.0825*** 0.0879*** 0.0275* 0.0173
(0.0186) (0.0189) (0.0155) (0.0149)

Polluting sector 0.0115 0.00918 0.0322* 0.0437**
(0.0139) (0.0137) (0.0170) (0.0177)

Polluter 0.0819*** 0.0878*** 0.0239 0.0124
(0.0187) (0.0191) (0.0154) (0.0146)

Polluting sector 0.00320 0.000331 0.0287* 0.0417**
(0.0134) (0.0132) (0.0169) (0.0177)

Pol waste (1) (2) (3) (4)

Polluter 0.0254** 0.0259** 0.0149 0.0121
(0.0110) (0.0110) (0.00994) (0.00945)

Polluting sector 0.0114 0.0109 0.0188* 0.0225*
(0.00867) (0.00858) (0.0112) (0.0117)

Polluter 0.0239** 0.0245** 0.0130 0.01000
(0.0108) (0.0109) (0.00964) (0.00906)

Polluting sector 0.00905 0.00839 0.0170 0.0210*
(0.00831) (0.00820) (0.0110) (0.0115)

Renewables (1) (2) (3) (4)

Polluter 0.0289** 0.0292** 0.00832 0.00331
(0.0116) (0.0116) (0.00894) (0.00802)

Polluting sector -0.00430 -0.00496 0.00608 0.0106
(0.00765) (0.00744) (0.00982) (0.0102)

Polluter 0.0300** 0.0305** 0.00775 0.00242
(0.0118) (0.0119) (0.00890) (0.00788)

Polluting sector -0.00653 -0.00727 0.00504 0.0102
(0.00723) (0.00700) (0.00969) (0.0102)

Year d. - Yes Yes Yes
Macro reg d. - Yes Yes Yes
Size (ln(L)) - - Yes Yes
Pavitt d. - - Yes Yes
Class patent d. - - - Yes

N 5694 5694 5694 5694

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

Table 2: Descriptive statistics
Variable Mean Q1 Median Q3 Min Max SD/mean

Full sample

Book value 13478 1800 3608 8392 113.7 7795221 5.36
Employees 63.8 15 26 50 10 4985 2.919
Fixed physical assets per empl. 37.41 9.144 22.49 47.64 .6339 472.5 1.228
Value added per empl. 47.21 33.23 41.32 54.21 10.2 237.2 .4831
Age 20.05 11 18 26 0 107 .6629
R&D per empl. 1.937 .08979 .3252 1.198 2.18e-06 529.7 4.193
Perform R&D (d.) .3184 0 0 1 0 1 1.463
Regional patent stock pc .539 .3602 .5676 .7812 .01131 .8801 .4869

Patent sample

Total patents 2.092 1 1 2 1 44 1.461
Environmental patents (all) .1507 0 0 0 0 25 4.498
Pollution and waste patents .03548 0 0 0 0 3 6.057
Renewable energy patents .04689 0 0 0 0 25 8.895

firms. Balance sheet and income statement are compulsory and they are
compiled according to transparent and standard compulsory criteria by all
firms. These information are likely to be generally more reliable than corre-
sponding self-reported information. However, standardization goes together
with simplification of available information, limiting substantially the scope
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Table 3: Sectoral distribution of observations (sub-section Nace Rev. 1.1
and Pavitt (1984) taxonomy)

Sector Full sample Patent sample Perc w/pat Polluter sample Perc pollut

DA 18245 88 0.48% 348 1.91%
DB 19812 135 0.68% 283 1.43%
DC 8115 67 0.83% 81 1.00%
DD 6212 23 0.37% 78 1.26%
DE 15434 103 0.67% 481 3.12%

DF-DG 11082 520 4.69% 1058 9.55%
DH 14173 465 3.28% 181 1.28%
DI 14461 111 0.77% 849 5.87%
DJ 52915 942 1.78% 2244 4.24%
DK 35990 1843 5.12% 216 0.60%
DL 21657 914 4.22% 187 0.86%
DM 6698 227 3.39% 127 1.90%
DN 18499 256 1.38% 280 1.51%

Scale intensive manuf. 88946 1752 1.97% 3452 3.88%
Science based manuf. 26006 1110 4.27% 1192 4.58%

Specialized suppliers manuf. 42024 2160 5.14% 218 0.52%
Supplier dominated goods 86317 672 0.78% 1551 1.80%

Total 243293 5694 2.34% 6413 2.64%

Figure 2: Kernel distribution of log of book value
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of possible empirical analysis as opposed to survey data. Besides miss-
ing qualitative information (e.g. innovation strategies, skill composition of
labour force, perceptions of market and regulatory conditions), many im-
portant monetary variables are not shown in either balance sheet or income
statement, such as investment, R&D expenditure (refer to the Appendix B
for further detail on the R&D asset variable reported in the balance sheet),
composition of sales by product for multi-product firms, export and other
relevant information. Finally, selection issues in administrative databases
are slightly different relative to survey data. In general, firms are selected
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Figure 3: Kernel distribution of log of value added per employee
0

.5
1

1.
5

D
en

si
ty

2 3 4 5 6
ln(VA/L)

Full sample Patent
Polluter

into an administrative database (e.g. AIDA) according to specific criteria16

and, in theory, the ‘response rate’ is expected to be 100 percent17.

In this paper I focus on firm/year pairs with more than ten employees
and with less than 5000 employees18. Moreover, I removed some observa-
tions because of missing values in relevant variables and outlier observa-
tions19. The classical and extended CDM models are estimated for three
distinct samples: (i) full sample; (ii) sub-sample including firm/year pairs
with positive patents (patent sample); (iii) sub-sample including polluting
firms only (polluter sample). The distribution of observations by sectors

16In this paper I use AIDA TOP which includes, in theory, all registered companies
with more than 1.5 million euros of sales and a sample (about 10 percent of population)
of registered companies with less than 1.5 million euros of sales. Individual firms are
excluded and inactive firms are dropped from the database after four consecutive years of
inactivity.

17Coverage of balance sheet and income statement information in AIDA is actually not
complete, with a quite substantial share of firms with a limited time coverage.

18Even though results with all firms are very similar to those reported here, the choice
of excluding very small and very big firms is motivated by the possibility that very small
family companies and huge groups are characterized by extremely different innovation
patterns. The thresholds are, however, somehow arbitrary. Finally, results excluding the
upper and lower tails of the size distribution of firms are more easily comparable with
those of innovation surveys which generally exclude that kind of firms.

19Outliers were identified according to the following criteria: sales per employee smaller
than 2000 euros or greater than 10000 euros, growth rate of sales greater than 150 percent
or smaller than -150 percent, growth rate of employees greater than 150 percent or smaller
than 50 percent, growth rate of fixed physical assets greater than 200 percent or smaller
than -50 percent, growth rate of labour productivity (value added per employee) greater
than 300 percent or smaller than -90 percent, first and last percentile of sales per employee,
value added per employee and fixed physical assets.
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for the three different samples is reported in table 3. Table 2 reports some
descriptive statistics for the full sample and, for patent statistics, for the
patent sample. It is worth noting that just 32 percent of firm/year pairs
have positive R&D (71 percent for the patent sample and 53 percent for the
polluter sample), which motivates the use of the Heckman selection model
to correct for sample selection bias. Another interesting information con-
cerns the distribution of patents: in most of the cases (65 percent) firms
just file for one patent per year and several firms (about one quarter) file
for just one patent during the considered period. Finally, about 15 percent
of considered patents have been classified as ‘environmental patents’.

Figures 1, 2 and 3 show, respectively, the kernel distribution (Epanech-
nikov kernel function) of log of employees count, log of book value and log
of value added per employee for the three samples. Firms with positive
patents and with big polluting plants are substantially bigger than other
firms. Moreover, polluting firms tend to be slightly bigger than firms with
patents20. Looking at the distribution of labour productivity, I observe a
clear evidence that patenting firms and polluting firms are generally more
productive than other firms. This is not surprising as regards patenting
firms, because I expect that either patents improve productivity through
technological improvement and temporary market power and (or) that more
productive firms are more likely to file for patents. However, firms with big
polluting plants seem to be even more productive, on average, than patenting
firms, with a fatter right tail. This evidence, which might seem surprising at
a first look, could depend on the peculiar sectoral distribution of polluting
firms, especially concentrated in scale-intensive sectors.

EPO patent applications were sorted by priority year. Environmental
patents were identified according to their IPC class21. I use two different
sources of environmentally-relevant IPC classes: the IPC Green Inventory22

by the World Intellectual Property Organization (WIPO) and the Indicator
of Environmental Technology23 (ENV-Tech Indicator) by the OECD. The
selection of environmentally-related IPC classes by the OECD is much nar-
rower relative to the selection by the WIPO24. In the sample of matched
patent applications used in the current paper, environmental patent ap-

20This is not surprising given that firms listed on the EPER and E-PRTR need to pass
certain thresholds related to the size of their production plants.

21The article by Lanjouw and Mody (1996) was an early effort to identify environmental
patents to investigate their international diffusion. Recent empirical analysis based on
environmental patents (among others, Rave et al (2011) and Johnstone et al (2010))
combined both IPC class selection and keywords search in patent abstracts and/or titles
to identify environmental innovations. The approach of focusing on IPC classes only is
likely to underestimate the number of environmental patents, thus giving rise to more
conservative estimates.

22http://www.wipo.int/classifications/ipc/en/est/
23http://www.oecd.org/environment/innovation/indicator/
24I excluded those IPC classes referring to nuclear energy technologies.
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plications identified according to the ENV-Tech Indicator (OECD) were
about one third of environmental patent applications identified according to
the IPC Green Inventory (WIPO). Moreover, environmentally relevant IPC
classes identified by the WIPO already cover most of the IPC classes selected
by the Env-Tech Indicator. In this paper I use three different selections of
environmental patent applications: (i) environmental patents identified as
environmentally relevant by either WIPO or OECD (aggr); (ii) environ-
mental patents in the field of renewable energy (renew); (iii) environmental
patents in the field of waste and pollution management (poll).

Patent stocks per capita at the regional level were computed by using
data on EPO patent applications count (based on applicants) reported in the
OECD Database ‘Patents by region’ (OECD, 2011). The stock is computed
by means of a perpetual inventory method (the initial year was set to 1990
and the yearly geometric depreciation rate was set to 15 percent as suggested
by Hall (2006)).

The rest of the variables used in the current paper comes from the AIDA
database. In absence of data on investments, I used book-value fixed capital
assets as a proxy for capital stock while to approximate R&D effort I used
capitalized R&D available in the section ‘intangible assets’ of the balance
sheet. I retrieved total assets (book value of the firm) from the balance sheet
and value added and sales from the income statement. Employees count,
firm’s age, location and main sector of activity are provided by Bureau
van Dijk. Additional information on manipulation and definition of these
variable is reported in the Appendix A.

4 Results

In this section I discuss the results of the econometric analysis, with a spe-
cific focus on drivers and productivity effect of environmental patents. All
estimates include sector (Pavitt’s taxonomy), macro-region and year dum-
mies: results for these variables are not shown but remain available upon
request. For all estimates based on the full sample, standard errors have
been clustered by firm, while for the patent and polluter sub-samples, stan-
dard errors have been clustered by sector (Nace Rev. 1.1 2-digit), region
(NUTS-2) and year. Moreover, results including bootstrap standard errors
to account for the fact that R&D (second step) and patents (third step) are
estimated values are very similar.

4.1 Classical CDM model

Before moving to the results on eco-innovation patterns, it is worth dis-
cussing the outcome of the classic CDM model. The first step (R&D equa-
tion - table 4) shows a significant selection bias (the correlation of distur-
bances between first and second step of the Heckman, ρ, is negative and
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Table 4: First step: R&D equation
Full sample Patent Polluter

Dep: ln(R&D/L) OLS Heckman OLS Heckman OLS Heckman

ln(L) -0.0992*** -0.685*** -0.180*** -0.433*** -0.103*** -0.474***
(0.0142) (0.0239) (0.0258) (0.0340) (0.0395) (0.0460)

Market sh 0.855*** 2.516*** 0.995* 2.801*** 0.215 0.506*
(0.283) (0.343) (0.513) (0.634) (0.261) (0.299)

ln(K/L) 0.128*** 0.00818 0.139*** 0.102*** 0.328*** 0.184***
(0.0126) (0.0138) (0.0337) (0.0380) (0.0420) (0.0456)

Constant -1.319*** 3.230*** -0.386* 1.827*** -2.215*** 1.781***
(0.0797) (0.163) (0.222) (0.269) (0.270) (0.354)

Perform R&D Full sample Patent Polluter

ln(L) 0.143*** -0.0758 0.0905**
(0.0114) (0.0515) (0.0357)

Market sh -1.847*** -2.081*** -0.350**
(0.212) (0.328) (0.165)

ln(K/L) -0.0234*** -0.0461** 0.0154
(0.00585) (0.0210) (0.0241)

ln(book value) 0.426*** 0.378*** 0.234***
(0.00987) (0.0458) (0.0315)

Age> 10 0.0212* 0.0683 -0.0834**
(0.0126) (0.0486) (0.0388)

Constant -4.658*** -2.742*** -2.884***
(0.0568) (0.243) (0.157)

Chi sq 1235.0 239.2 284.1
sigma 2.407 2.193 2.492
rho -0.731 -0.808 -0.803
lambda -1.758 -1.771 -2.002
Chi sq (rho) 1112.1*** 224.1*** 201.6***
Log likelihood -162806.1 -283964.1 -8257.8 -11200.0 -7206.1 -11060.6
N 77470 243293 4052 5694 3415 6413

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

Table 5: Second step: Patent equation (All patents)
Full Patent Polluter

̂ln(R&D/L) 0.262 0.356*** 0.904**
(0.199) (0.0728) (0.412)

ln(L) 1.229*** 0.456*** 1.290***
(0.131) (0.0284) (0.179)

ln(reg pat stock pc) 0.112 0.136** 0.0644
(0.142) (0.0578) (0.401)

Constant -9.427*** -2.417*** -9.728***
(0.953) (0.356) (2.293)

Chi sq 3202.5 1311.9 419.2
alpha 10.25 0.228 10.95
Log likelihood -29051.5 -9631.0 -2213.9
N 243293 5694 6413

Standard errors in parentheses
* p< 0.1, ** p< 0.05, *** p< 0.01

significantly different from zero) in OLS estimates for all samples. The
probability of reporting positive R&D intangible assets is positively and sig-
nificantly related to firm size both in terms of employees count (insignificant
for the patent sample only) and book value (log of total assets). The posi-
tive effect of firm size on the probability of performing R&D is a standard
result in CDM models: bigger firms are more likely to be willing to incur
the initial sunk costs of R&D activities, they have easier access to credit
and they are more capable of bearing the risk related to R&D investments
whose returns are highly uncertain. Moreover, the book value of the firm
measured with total assets is a key criterion for the type of reporting system
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Table 6: Third step: productivity equation (All patents)
Dep: ln(VA/L) Full Patent Polluter

ln(K/L) 0.118*** 0.101*** 0.187***
(0.00132) (0.00685) (0.00873)

̂ln(patent/L) 0.381*** 0.431*** 0.114***
(0.0108) (0.0669) (0.0335)

ln(L) 0.00595*** 0.320*** 0.0517***
(0.00191) (0.0453) (0.00541)

Constant 6.368*** 3.925*** 3.961***
(0.0883) (0.0863) (0.267)

R sq 0.211 0.182 0.322
F 1664.3 57.44 123.4
N 243293 5694 6413

Standard errors in parentheses
* p< 0.1, ** p< 0.05, *** p< 0.01

chosen by the firm (refer to Appendix B for further details). As expected,
R&D intensity is negatively related to firm size (log of employees count),
with big firms characterized by a relatively lower R&D intensity than small
firms25. Market share is negatively related to the probability of performing
R&D while it affects its intensity positively. On the one hand, firms hold-
ing a dominant market position have little incentive to innovate and they
prefer to defend their dominant position rather than exploring new markets
or changing their production technology. This idea is in line to the ‘creative
destruction’ theory (Aghion and Howitt, 1992) according to which techno-
logical leaders have no incentive to further innovate because they would de-
stroy their own current rents. On the other hand, however, once they decide
to innovate, there is strong incentive to exploit the current large customer
base (product innovations) by introducing new products. When consider-
ing process innovations, the incentive depend on the fact that the expected
unitary cost savings is spread on a large scale of production. Capital inten-
sity is generally negatively related to the probability of performing formal
R&D (except for polluting firms) but affects R&D intensity positively (not
significantly for the full sample). The negative effect on the binary choice
about R&D might be explained by the greater incentive to increase phys-
ical assets in absence of knowledge assets, which require substantial initial
sunk costs. However, in case a firm invests in knowledge capital (R&D),
complementarity between knowledge and physical assets seems to arise. Fi-
nally, older firms have higher probability to perform R&D in the full and
patent (although insignificantly) samples while older polluting firms have
lower propensity to perform R&D relative to younger polluting firms.

The second step (table 5) has been performed by including the predicted
log of R&D intensity into a patent equation estimated with a Negative Bi-
nomial regression (NB2 version, with the variance of the disturbance ex-
pressed as a quadratic function of the conditional mean). I report estimated

25For a detailed discussion on the relationship between firm size and R&D and patents
refer to Cohen and Klepper (1996).
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coefficients which can be interpreted as semi-elasticities for logarithmic in-
dependent variables (expected relative changes in patent applications count
for a relative change in the independent variable) and, for dummy variables
(once exponentiated) as relative change in patent applications count when
the variable switches from zero to one (Cameron and Trivedi, 1998)26.

R&D intensity affects positively innovation output expressed as patent
applications count, the effect being insignificant in the full sample only. The
absence of significance for the full sample may depend on the extremely
high proportion of observations with no patent applications in the full sam-
ple (97.7 percent) relative to the polluter sample (93 percent of observa-
tions with no patent) and the patent sample (all observations with positive
patents)27. The relative sensitivity to R&D intensity is greater for the pol-
luter sample than for the patent sample. This result may relate to a greater
effect of R&D intensity on the extensive margin (probability of patenting)
relative to the extensive margin (number of patents).

Firm size plays a positive role also for innovation output conditional on
innovation input (R&D) due to the generally higher propensity to file for
patents for big than for small innovative firms. A greater sensitiveness to
firm size for the full and polluter sample than for the patent sample may also
depend on different effects of firm size on intensive and extensive margins.
Firm size affects patent propensity very strongly (intensive margin) while
the elasticity of patent counts (extensive margin) with respect to firm size,
conditional on patenting (patent sample), is lower than one, with small
patenting firms holding, on average, more patents per employee relative to
big firms. Finally, regional patent stock per capita turns out to be positively
related to firms’ innovation output28.

The third step (table 6) contains the predicted expected patent appli-
cations count as explanatory variable (more precisely, the log of expected
patent applications per employee). Predicted innovation success affects pos-
itively and significantly labour productivity, the effect being greater in the
full and patent samples (elasticity of about 0.4) relative to the polluter sam-
ple (elasticity of about 0.1). This means that the value of each patent in
terms of productivity improvement in polluting firms is about one quarter
of the value of each patent for the full sample. This great divergence may
partly depend on the bias of polluting firms towards technological domains
characterized by lower productivity potential such as environmental innova-
tions, thus confirming the concerns about the possibility to observe crowding

26More detailed results such as marginal effects are not reported but available upon
request.

27R&D is insignificant for the full sample also when considering the choice to file for
patents as a dichotomous choice (yes/no).

28The investigation of knowledge spillovers is not the core of the current analysis. A
proper investigation would require more refined measures of local knowledge stocks such
as spatially weighted regional stocks.
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Table 7: Second step: Patent equation (all environmental patents)
Full sample Patent Polluter

No env Env No env Env No env Env

̂ln(R&D/L) 0.248 0.272 0.328*** 0.812*** 0.947** 2.421***
(0.200) (0.319) (0.0726) (0.201) (0.425) (0.892)

ln(L) 1.222*** 1.215*** 0.446*** 0.612*** 1.315*** 1.933***
(0.131) (0.207) (0.0286) (0.0774) (0.180) (0.454)

ln(reg pat stock pc) 0.139 -0.0768 0.159*** -0.213 -0.00723 1.216**
(0.148) (0.215) (0.0602) (0.155) (0.407) (0.497)

Poll (air) -0.306 -0.427 -0.206
(0.520) (0.288) (0.298)

Poll (water) 0.0772 -0.365 0.102
(0.553) (0.224) (0.311)

Poll (haz waste) 0.613 0.247 -1.050
(0.443) (0.281) (0.695)

Poll (no haz waste) -0.0580 0.223 0.550*
(0.457) (0.317) (0.318)

Poll (other) 0.0788 -1.265* -1.330
(0.654) (0.761) (0.994)

Polluting sect -0.620*** 0.132 -2.250***
(0.207) (0.163) (0.461)

Constant -9.629*** -10.70*** -2.578*** -4.012*** -9.560*** -20.34***
(0.986) (1.482) (0.373) (0.935) (2.329) (3.687)

Chi sq 3152.1 701.4 1164.2 207.3 430.3 2013.8
alpha 10.43 28.38 0.245 3.898 11.01 14.40
Log likelihood -27620.1 -3807.6 -9457.4 -2252.6 -2086.0 -428.6
N 243293 243293 5694 5694 6413 6413

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

out.

The elasticity of value added per employee with respect to capital inten-
sity (fixed physical assets per employee) is positive and significant. Under
the assumption of perfect competition and constant returns to scale, the
elasticity of labour productivity with respect to capital intensity should rep-
resent the capital share of labour income29. Capital share tends to be sub-
stantially greater for polluting firms relative to other firms probably due to
the concentration of polluting firms in scale-intensive sectors. Firms in the
patent sample are characterized by strong increasing returns to scale (the
log of employee counts is significantly greater than zero and its magnitude
is quite relevant). This result, not found for the other samples, might be
caused by the temporary market power assigned to patent applicants as a
consequence of IPRs protection.

Most of the results of the classical CDM model confirm prior expec-
tations and give a reasonable description of innovation patterns of Italian
manufacturing firms.

4.2 Extended CDM model

Results for the second step (Patent equation) regarding environmental patents
are reported in table 7. The effect of the various explanatory variables on

29Firm-level estimates of production functions tend underestimate the share of capital
stock relative to national accounting measures in which capita receive about one third of
national income. This bias is generally related to attrition problems and to measurement
errors in the capital stock (Eberhardt and Helmers, 2010).
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Table 8: Third step: productivity equation (All environmental patents)
Full sample Patent Polluter

Dep: ln(VA/L) (1) (2) (1) (2) (1)

ln(K/L) 0.117*** 0.115*** 0.0975*** 0.0975*** 0.198***
(0.00133) (0.00133) (0.00724) (0.00708) (0.00836)

̂ln(no env/L) 0.420*** 0.433*** 0.328*** 0.303*** 0.0676***
(0.0131) (0.0132) (0.0807) (0.0802) (0.0253)

̂ln(env/L) -0.0308*** -0.0455*** 0.0824** 0.0733** -0.0152***
(0.00552) (0.00568) (0.0347) (0.0351) (0.00534)

polluter × -0.0183* -0.0383**

̂ln(env/L) (0.0101) (0.0183)
polluter -0.0521 -0.228

(0.0997) (0.139)
ln(L) 0.00510*** 0.000740 0.307*** 0.280*** 0.0421***

(0.00194) (0.00196) (0.0465) (0.0472) (0.00493)
Constant 6.409*** 6.377*** 4.156*** 4.111*** 3.439***

(0.0924) (0.0925) (0.128) (0.130) (0.221)

Net effect -0.0639*** 0.0340
for polluter (0.0109) (0.0396)

R sq 0.211 0.214 0.183 0.184 0.322
F 1564.6 1413.6 54.97 55.88 113.0
N 243293 243293 5694 5694 6413

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

Table 9: Third step: productivity equation (separate effect for ‘env’ and
‘no env’ - all environmental patents)

Full sample Patent Polluter

Dep: ln(VA/L) (1) (2) (1) (2) (1) (2)

ln(K/L) 0.1184*** 0.1215*** 0.1028*** 0.1028*** 0.194*** 0.211***
(0.0013) (0.0013) (0.0067) (0.0072) (0.0082) (0.0071)

̂ln(no env/L) 0.3868*** 0.4114*** 0.0688***
(0.0112) (0.0672) (0.0253)

̂ln(env/L) 0.0266*** 0.1449*** -0.0154***
(0.0049) (0.0289) (0.0053)

ln(L) 0.0052*** 0.0356*** 0.3075*** 0.1273*** 0.046*** 0.0357***
(0.0019) (0.0017) (0.0455) (0.0196) (0.0048) (0.0042)

Constant 6.4556*** 3.5538*** 3.9348*** 4.0052*** 3.610*** 2.885***
(0.0926) (0.0514) (0.0906) (0.1254) (0.2071) (0.0685)

R sq 0.2109 0.2021 0.1814 0.1792 0.3215 0.3217
F 1662.51 1589.53 56.64 55.88 123.09 120.94
N 243293 243293 5694 5694 6413 6413

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

non-environmental patents (‘no env’ column) are very similar to those es-
timated for total patent applications in the classical CDM model for all
samples.

Looking at the equation for environmental patents I observe a great het-
erogeneity across samples. Similarly to non-environmental patents, R&D
intensity has a significant positive effect for the patent and polluter samples
only, being positive but insignificant for the full sample. This asymmetry
is in line with the one found when considering all patents. Moreover, also
in the case of environmental patents, the sensitivity to R&D intensity is
greater for the polluter sample than for the patent sample. However, both
in the patent and polluter sample, the sensitivity to R&D is greater for envi-
ronmental patents than for non-environmental patents (more than double).
Patented environmental innovations seem to be more R&D-intensive than
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Table 10: Second step: Patent equation (pollution and waste patents)
Full sample Patent Polluter

No env Env No env Env No env Env

̂ln(R&D/L) 0.267 -0.279 0.352*** 0.329 1.006** 0.411
(0.201) (0.364) (0.0731) (0.294) (0.420) (1.132)

ln(L) 1.236*** 0.731*** 0.457*** 0.293*** 1.345*** 0.834*
(0.132) (0.217) (0.0285) (0.109) (0.181) (0.502)

ln(reg pat stock pc) 0.108 0.417 0.134** 0.243 -0.0213 3.113**
(0.143) (0.372) (0.0590) (0.283) (0.411) (1.314)

Poll (air) 1.521* 0.900** 1.103***
(0.844) (0.453) (0.370)

Poll (water) 0.550 0.344 0.150
(0.611) (0.411) (0.449)

Poll (haz waste) -0.649 -0.654 -1.710***
(0.718) (0.469) (0.657)

Poll (no haz waste) -0.122 0.188 0.777
(0.592) (0.540) (0.482)

Poll (other) 2.029*** 1.663* 1.830*
(0.756) (0.949) (1.087)

Polluting sect -0.290 0.367 -2.496***
(0.309) (0.270) (0.776)

Constant -9.457*** -12.47*** -2.430*** -6.309*** -9.593*** -25.98***
(0.962) (2.206) (0.361) (1.665) (2.336) (7.394)

Chi sq 3193.5 383.8 1297.4 55.89 448.3 3907.3
alpha 10.36 46.33 0.238 6.530 11.21 0.825
Log likelihood -28627.1 -1313.1 -9605.4 -839.7 -2173.2 -122.8
N 243293 243293 5694 5694 6413 6413

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

Table 11: Third step: productivity equation (pollution and waste patents)
Full sample Patent Polluter

Dep: ln(VA/L) (1) (2) (1) (2) (1)

ln(K/L) 0.115*** 0.114*** 0.101*** 0.0994*** 0.194***
(0.00136) (0.00135) (0.00689) (0.00680) (0.00823)

̂ln(no env/L) 0.598*** 0.612*** 0.358*** 0.291*** 0.0687***
(0.0266) (0.0283) (0.0672) (0.0690) (0.0243)

̂ln(env/L) -0.0797*** -0.0873*** 0.0671*** 0.0941*** 0.00434
(0.00899) (0.00977) (0.0246) (0.0266) (0.00385)

polluter × 0.0562*** -0.0428***

̂ln(env/L) (0.0114) (0.0147)
polluter 0.757*** -0.321**

(0.134) (0.138)
ln(L) -0.0155*** -0.0202*** 0.325*** 0.296*** 0.0473***

(0.00302) (0.00303) (0.0467) (0.0473) (0.00498)
Constant 7.241*** 7.286*** 4.160*** 4.234*** 3.654***

(0.132) (0.136) (0.136) (0.141) (0.215)

Net effect -0.0311*** 0.0513**
for polluter (0.0143) (0.0248)

R sq 0.213 0.214 0.183 0.186 0.322
F 1564.1 1413.2 56.70 58.26 118.1
N 243293 243293 5694 5694 6413

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

other innovations probably due to their greater complexity and pervasive-
ness (Cainelli et al, 2011). Innovation success in the field of environmental
technologies is slightly more sensitive to firm size relative to other technolo-
gies, especially so for polluting firms. Crossing the hurdle is more difficult
for environmental patents than for other patents and bigger firms tend to
be much more intensive in environmental patents than small firms. As far
as local knowledge stock is concerned, no significant effect is found for the
full and patent sample while polluting firms rely to a great extent on local
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Table 12: Second step: Patent equation (renewable energy patents)
Full sample Patent Polluter

No env Env No env Env No env Env

̂ln(R&D/L) 0.265 0.108 0.343*** 1.126*** 0.870** 3.106**
(0.200) (0.366) (0.0724) (0.287) (0.417) (1.321)

ln(L) 1.233*** 1.023*** 0.454*** 0.620*** 1.282*** 2.091***
(0.132) (0.222) (0.0284) (0.109) (0.179) (0.662)

ln(reg pat stock pc) 0.135 -0.563* 0.158*** -0.745*** 0.0393 1.539
(0.144) (0.300) (0.0584) (0.245) (0.407) (0.945)

Poll (air) 0.0137 -0.0280 0.312
(0.481) (0.344) (0.422)

Poll (water) -0.0411 -0.213 -0.222
(0.611) (0.230) (0.366)

Poll (haz waste) 0.236 -0.345 15.48
(0.497) (0.356) -

Poll (no haz waste) 0.125 0.544 0.406
(0.525) (0.387) (0.446)

Poll (other) -18.76*** -19.56*** 1.855
(0.640) (0.897) (1.192)

Polluting sect -0.716** 0.000406 -0.260
(0.357) (0.360) (1.159)

Constant -9.607*** -8.051*** -2.566*** -2.149 -9.591*** -42.82***
(0.966) (1.963) (0.359) (1.587) (2.314) (5.788)

Chi sq 3183.7 1297.7 1279.8 664.0 405.5 -
alpha 10.23 54.95 0.232 8.721 11.19 1.115
Log likelihood -28606.7 -1457.4 -9573.2 -933.4 -2184.7 -129.5
N 243293 243293 5694 5694 6413 6413

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

Table 13: Third step: productivity equation (renewable energy patents)
Full sample Patent Polluter

Dep: ln(VA/L) (1) (2) (1) (2) (1)

ln(K/L) 0.118*** 0.116*** 0.101*** 0.0985*** 0.186***
(0.00134) (0.00133) (0.00685) (0.00674) (0.00853)

̂ln(no env/L) 0.354*** 0.347*** 0.432*** 0.394*** 0.114***
(0.0112) (0.0109) (0.0692) (0.0726) (0.0338)

̂ln(env/L) -0.0119** -0.0181*** 0.00603 0.0130 0.00403***
(0.00555) (0.00472) (0.0125) (0.0140) (0.00118)

polluter × 0.0131* -0.00765

̂ln(env/L) (0.00737) (0.0138)
polluter 0.266*** -0.00812

(0.0849) (0.127)
ln(L) 0.00654*** 0.00293 0.325*** 0.302*** 0.0507***

(0.00192) (0.00193) (0.0452) (0.0467) (0.00528)
Constant 6.046*** 5.935*** 3.974*** 3.975*** 4.030***

(0.126) (0.114) (0.0956) (0.0956) (0.271)

Net effect -0.0050 0.0053
for polluter (0.0076) (0.0151)

R sq 0.211 0.213 0.182 0.184 0.323
F 1565.4 1413.8 54.38 51.92 116.4
N 243293 243293 5694 5694 6413

Standard errors in parentheses; * p< 0.1, ** p< 0.05, *** p< 0.01

knowledge for their eco-innovation success. While, on average, polluting
firms and sectors have greater propensity to patent in fields related to envi-
ronmental technologies (see table 1), there is no clear specific pattern when
considering the status of the firms in terms of type of ‘pollution’ (air, water,
hazardous and non-hazardous waste). The only significant coefficients are
found for ‘other polluting firms’ (with an average lower level of environmen-
tal patenting in the patent sample) and for ‘non-hazardous waste firms’ (with
an average higher level of environmental patenting in the polluter sample).
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Finally, it is interesting to note that while, conditional on patenting (patent
sample), firms in polluting sectors have a higher (but again insignificant)
propensity to file for environmental patents relative to firms in other sec-
tors, the propensity to file for environmental patents in the full and polluter
sample for firms in polluting sectors is much lower due to the general lower
propensity to patent for firms operating in these sectors.

Looking a the productivity equations (table 8), I observe a strong positive
effect of non-environmental patents on labour productivity, with a coefficient
which is slightly greater than that found for all patents in the classical CDM
(table 6) for the full sample while it is slightly smaller for the patent and
polluter samples. On the other hand, looking at the productivity effect of
environmental patents, I observe a significant and negative effect on labour
productivity for the full and the polluter samples while the effect turns out to
be positive and significant (but substantially smaller than the effect of non-
environmental patents) for the patent sample30. These results, especially the
negative signs, are a possible evidence that environmental innovations tends
to crowd out resources from other innovations which are more profitable, at
least in the short run. The small positive effect of environmental patents
for the patent sample could be interpreted as actual crowding out only if
the average cost, for example expressed in terms of R&D inputs, of each
additional environmental patents is substantially smaller than the average
cost of non-environmental patents. This is not likely to be the case. By
computing average marginal effects for the two patent equations I estimate
that, on average, an increase of 10 percent in R&D intensity is expected to
increase the number of non-environmental patents by 0.06 and the number of
environmental patents by 0.0123. Environmental patents turn out to be at
the same time ‘more costly’ (in terms of R&D input) and less remunerative
(in terms of better labour productivity) than non-environmental patents,
which suggests the possible presence of a crowding out effect also for the
patent sample. Finally, polluting firms within the full and patent sample are
more strongly characterized by crowding out than other firms31. Polluting
firms are expected to face more stringent environmental policies than other
firms. This asymmetry in the policy environment forces them to bias their

30By construction, predicted patent intensity in terms of environmental and non-
environmental patents are highly correlated. When including predicted environmental
patents only and non-environmental patents only (table 9), I observe that environmen-
tal patents affect productivity positively and significantly in the full and patent samples
and negatively and significantly in the polluter sample. These results are slightly differ-
ent from those found in table 6 for environmental patents where the estimated effect of
environmental patents is systematically smaller. This could be related to the fact that
environmental patents do not affect productivity negatively (full sample) or insignificantly
(patent sample) per se but only when controlling for general innovation success of the firm
with the only exception of the polluter sample, where the effect is always negative.

31The net effect for polluting firms in the patent sample turns out to be still positive
but insignificant.
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innovation patterns towards less productivity-enhancing innovations (eco-
innovations) to reduce compliance costs32. However, this differential effect
I find for polluting firms could be partly related to smaller average returns
to innovation output (considering all patents) for polluting firms (refer to
table 6) relative to other firms.

Estimates of the second and third steps have been done on subsets of
environmental patents, namely pollution and waste management patents
(tables 10 and 11) and patents related to renewable energy technologies
(tables 12 and 13). Pollution and waste management patents seem to be less
‘R&D intensive’ than other types of environmental patents, with predicted
R&D intensity being always insignificant, as well as less sensitive to firm
size in all samples. Differently from the full set of environmental patents,
I found a very strong bias towards pollution and waste patents for firms
with a high level of air pollution while local knowledge stock is a relevant
input for environmental innovations in polluting firms only. Looking at the
productivity equation, patents in the fields of pollution and waste have an
effect which is similar to that found for the full set of environmental patents
with two notable differences. First, the crowding out in the full sample is
now mitigated rather than exacerbated for polluting firms. Second, the effect
in the polluter sample is now insignificant. The reduction of compliance
costs due to environmental innovations may partly mitigate the crowding
out effect for polluting firms with particularly emission and waste intensive
production plants.

Finally, looking at patents in renewable energy technologies, their sensi-
tivity to R&D intensity and firm size is very similar to that one estimated for
the full set of environmental patents. The productivity effect of renewable
energy patents is negative or insignificant (positive, significant but negli-
gible for the polluter sample). This result is somehow striking, especially
when considering the recent rapid growth of the markets for this kind of
technologies and by policy measures aimed at favouring the diffusion and
adoption of these technologies. Moreover, renewable energy technologies are
generally developed by specialized suppliers rather than by polluting firms,
thus weakening the potential to give rise to crowding out effects. Part of the
explanation could be attributable to the fact that the markets for renewable
energy are still very fragmented, uncertain and underexploited.

To conclude this section, some comment is needed on the generality and
scope of the results. All results refer to static and short-term relationship,
with no consideration of long run effects of R&D on innovation output and,
more importantly, of innovation output on productivity. In the specific case

32The reasoning about compliance costs is partly weakened by the use of patents as a
measure of environmental innovations. Patent information say nothing about the actual
adoption of innovations. It is thus plausible that a substantial amount of environmental
patents is filed by specialized suppliers of ‘green’ technologies and that the underlying
innovation will be employed (i.e. adopted) by other firms to reduce compliance costs.
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of environmental technologies, it could be the case that static crowding out
is counterbalanced by long run positive effects on productivity, especially
because the market for environmental technologies is a new market with
great potentials for growth.

5 Concluding remarks

In this paper I investigate innovation patterns of Italian manufacturing firms,
with a specific focus on determinants and productivity effects of environmen-
tal innovations. The CDM model describes innovation patterns coherently
with expectations. Focusing on environmental innovations, there is evi-
dence of a systematic difference in the effect of usual drivers of innovation
output relative to other innovations and a significant bias for environmental
innovations by polluting firms and sectors. Moreover, environmental inno-
vations systematically differ from other innovations in their effect on firm’s
productivity. Environmental innovations either guarantee a return which
is substantially lower than that of non-environmental innovations or they
slightly reduce labour productivity. This result, coupled with constrained
financial resources to be devoted to R&D activities, is a possible evidence of
crowding out of environmental innovations relative to non-environmental in-
novations. It is important to stress that the evidence of crowding out refers
to short term indicators of productivity. It is reasonable to assume, how-
ever, that the positive effects of policy-induced environmental innovations
on competitiveness (and possibly measured productivity) predicted by the
‘strong’ version of the Porter Hypothesis (Porter and van der Linde, 1995)
will show up in the medium-long run because they mainly depend on early-
mover advantages of eco-innovators and on the creation of new markets for
‘green’ technologies.

Further research should be carried out to build a coherent theoretical
framework in order to identify the channels through which crowding out
occurs. Moreover, these results, based on administrative data and a very
reduced set of explanatory variables, should be confirmed by similar models
based on more comprehensive data sources such as innovation surveys (e.g.
the Community Innovation Survey or other national or regional innovation
surveys) for which is generally possible to consider both the creation and
the adoption of innovations by firms.

A Polluting firms and polluting sectors

The AIDA database has been further extended with information on polluting
plants and on pollution-intensive sectors. Italian large polluting plants are
reported by the EPER (European Pollutant Emission Register) and the E-
PRTR (European Pollutant Release and Transfer Register) registers. The
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EPER has been introduced by the IPCC (Integrated Pollution Prevention
and Control) Directive (96/61/CE). EPER includes all facilities and plants
above a certain threshold of air or water pollution. The year of reference is
2006. The E-PRTR substituted the EPER register starting from the year
2007 onwards. The E-PRTR complements information on large polluting
plants (used in this paper to identify polluting firms) with diffused emission
sources with great details. Differently from the EPER, the E-PRTR includes
waste-intensive plants.

To identify pollution intensive sectors, I used information on 18 different
types of air emissions33 reported at the 2-digit Nace level by the NAMEA
(National Accounting Matrix including Environmental Accounts) dataset for
Italy (coverage: 1990-2008). I identified as pollution intensive sectors those
sectors for which the yearly emissions intensity (emissions per monetary
output) for any type of emissions ranked at least fifth for at least five times.
I identified as polluting intensive sectors the following 2-digit Nace codes:
15 (Food products and beverages), 16 (Tobacco products), 17 (Textiles),
20 (Wood products), 21 (Pulp and paper), 23 (Coke, refined petroleum
and nuclear fuel), 26 (Other non-metallic products), 27 (Basic metals), 30
(Machinery and computers) and 37 (Recycling).

B Adjustments to AIDA

I deflated firm-level value added to 2000 prices according to a 2-digit value
added deflator (Istat). Fixed physical assets, total assets and R&D were
deflated to 2000 prices according to a 2-digit fixed asset deflator (Istat).
Market share was computed as the share of firm’s reported sales relative to
total sales for firms in AIDA in the same 3-digit Nace sector. This is a rough
measure because it does not consider either multi-product firms, whose mar-
ket share is probably overestimated, and the competition by firms not in-
cluded in AIDA (on average smaller than firms included in the database),
leading to a general overestimation. Due to the lack of yearly investment
data in AIDA, I use the balance sheet value of fixed physical assets as a
measure of capital stock. Finally, my R&D variable consists in the amount
of capitalized R&D expenditure which is reported within intangible assets.
According to the Italian law, the capitalization of R&D expenditure is vol-
untary and possible only when the utility of the investment is expected to
last for more than one year. Moreover, firms satisfying a combination of
requirement correlated to firm size, are allowed to file a reduced-form bal-
ance sheet with no separation of R&D assets within the broader category of
intangible assets. This problem of censoring, combined with the usual issue
of sample selection in reporting positive R&D, is likely to harm seriously

33Carbon dioxide, N2O, methane, NOx, SOx, ammonia, NMVOC, carbon oxide, par-
ticulate matter (<10 micron and <2.5 micron) and a series of heavy metals.
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the reliability of the R&D intensity variable. Possible measurement errors
might result in over-estimated standard errors in the R&D equation.
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