
Contractual testing

Maria Grazia Buscemi1, Rocco De Nicola1, and Hernán Melgratti2

1 IMT Lucca Institute for Advanced Studies, Italy
{marzia.buscemi,rocco.denicola} @imtlucca.it

2 FCEyN, University of Buenos Aires, Argentina
hmelgra@dc.uba.ar

Abstract. Variants of must testing approach have been successfully applied in
Service Oriented Computing for capturing compliance between (contracts ex-
posed by) a client and a service and for characterising safe replacement, namely
the fact that compliance is preserved when a service exposing a ’smaller’ contract
is replaced by another one with a ’larger’ contract. Nevertheless, in multi-party
interactions, partners often lack full coordination capabilities. Such a scenario
calls for less discriminating notions of testing in which observers are, e.g., the
description of uncoordinated multiparty contexts or contexts that are unable to
observe the complete behaviour of the process under test. In this paper we pro-
pose an extended notion of must preorder, called contractual preorder, according
to which contracts are compared according to their ability to pass only the tests
belonging to a given set. We show the generality of our framework by proving
that preorders induced by existing notions of compliance in a distributed setting
are instances of the contractual preorder when restricting to suitable sets of ob-
servers.

1 Introduction

Communication-centered programming has recently attracted interest as a result of the
diffusion of service oriented computing and web technologies. A desired property of
communication-centered systems is stuck-freedom, namely that every possible interac-
tion between a pair of communicating partners ends successfully, in the sense that there
are no messages waiting forever to be sent or sent messages which are never received.
The theories of session types [11,7] and of contracts [3,4,1,8] are the most common
frameworks adopted to ensure stuck-freedom. The key idea behind both approaches is
to associate to a process a type (or contract) that gives an abstract description of the
external, visible behavior of the process and to check if the respective types of a pair of
processes which are expected to communicate do match. Contracts are basically CCS
processes [9] describing communications between clients and services. Contracts come
equipped with a notion of service compliance that characterises all the valid clients of
a service, i.e., the clients that terminate any possible interaction with the service. In this
sense, contracts can be used to statically ensure that the composition of two services
is safe. Another key notion of contracts is safe replacement: a contract σ can be safely
replaced by ρ if any valid client of σ is also a client of ρ. Specifically, in the theory
of contracts compliance and safe replacement have been sucessfully characterized by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12097092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

using suitable variant of the must testing approach [5], which allows comparing pro-
cesses according to the ability of the contexts to distinguishing them. Processes that are
must-equivalent are characterized by the set of tests that they are able to pass: any test
is defined as a unique process that runs in parallel with the tested service, namely all
interactions with the observed service are handled by a unique, central process, i.e. the
test. Technically, given two processes σ and ρ, σ vmust ρ, if ρ passes all tests that are
passed by σ and, consequently, σ and ρ are regarded as equivalent, σ ≈must ρ, if they
pass exactly the same tests.

When describing contexts in multiparty interactions such as those occurring in busi-
ness processes, a key issue to be taken into account is the degree of mutual coordination
that partners enjoy. In a typical situation, different parties interact with a service without
communicating with each other or where a particular party is interested just on a subset
of (inter)actions offered by another party. In this kind of contexts, the work in [10] in-
vestigates notions of controllability for workflow networks, that are a formal model of
services based on Petri nets. A service is said controllable if it has at least a partner that
can correctly interact with (this notion has been called viability in [4]). When moving to
a multiparty setting, each service interacts with several partners. Hence, in a common
scenario, the interface of a service is partitioned and each partner communicates by us-
ing just one part of the interface. The work in [10] highlights the fact that controllability
in a multiparty setting highly depends on the coordination capabilities of partners. In
particular, two different settings are presented: (i) partners are distributed and have no
runtime communication capabilities (coordinated design choices are allowed, though)
and (ii) partners are totally independent.

The main goal of this paper is to characterize alternative, less discriminating no-
tions of preorders and process equivalences that take into account contexts with limited
coordination capabilities like those studied in [10]. We address this issue in a process
algebraic context [5]. As proposed in previous works (e.g., [8]), we rely on service be-
haviours descripted as CCS processes without τ’s [6]. Processes are built up from invoke
and accept activities, which are abstractly represented as input and output actions that
take place over a set of channels or names. Basic actions can be composed sequen-
tially or as alternatives. The original language of contracts studied in [6] does not use
τ actions to represent internal computations of services. Instead, two different choice
operators are provided: the internal choice operator ⊕ is meant to describe internal
non-determinism, i.e., the service choices by itself one of the possible continuations,
while the external operator + offers a choice to the context. Moreover, the language
of contracts does not provide any operator for parallel composition. Basically, it is as-
sumed that all possible interleavings are made explicit in the description of the service
and communication is used only for modelling interaction between different services.
In this work we also deal with infinite behaviours described as recursive contracts.

We propose two notions of testing preorders that take into account the level of co-
ordination between processes in a multi-party setting: in the first one, called distributed
(must) preorder, the environment (i.e., the test) cannot state any causal dependency be-
tween the actions that take place over different parts of the interface, in the second one,
called local (must) preorder, processes cannot be distinguished by contexts that have
only a partial view of the tested processes and such that observers are unaware of the

2

design choices made by the other parties. Next, we propose an extended notion of the
classical must preorder, called contractual (must) preorder, according to which con-
tracts are compared with respect to their ability to pass only the tests belonging to a
given set. We show the generality of our notion by proving that distributed preorder and
local preorder are instances of the contractual preorder when restricting to suitable sets
of observers. Specifically, we prove that the distributed preorder can be characterized
as a contractual preorder in which valid tests are unable to state any causal dependency
between actions that take place in different partitions of the interface at execution time.
We call such kind of observers closed under name swapping, since they allow to com-
mute the order in which actions over different parts of the interface are executed. On the
other side, we show that the local preorder can be defined as a contractual preorder in
which the observers that are taken into account belong to the class of processes called
noisy observers, which allow hidden actions to be executed at any time. Finally, we
show that the local preorder is less discriminating than the distributed preorder, which
in turns is less discriminating than the ordinary must preorder.

Synopsis The remainder of this paper is organised as follows. In §2 we recall the basics
of the classical must testing approach recast for the language of contracts. In §3 and §4
we present the theory of distributed and local observers, respectively. In §5 we introduce
the contractual preorder and in §6 we give the main results, namely that distributed
preorder and local preorder are particular instances of the contractual preorder and that
the distributed preorder relation implies the local one. Lastly, §7 discuss some future
developments. Due to lack of space proofs are omitted, they can be found in [2].

2 Contracts (or CCS without τ’s)

Let N be an infinite set of names ranged over by a,b, As usual, we write co-names
in N as a,b, . . . and make a = a. We will use α, β to range over (N ∪N). The set of
contracts Σ is given by the following grammar.

α ::= a | a a ∈N
σ ::= 0 | α.σ | σ⊕σ | σ+σ | X | recX .σ

The contract 0 describes a service that does not perform any action. The contract
α.σ stands for a services that is able to execute α and then continues as σ. The contract
σ+ ρ describes a service that lets the client decide whether to continue as σ or as ρ,
while σ⊕ρ stands for a service that internally decides whether to continue as σ or ρ.
As usual, trailing 0’s are omitted. Contracts will be considered modulo associativity of
each sum operators. We usually write summations σ1 +σ2 + . . .+σn and σ1⊕σ2⊕
. . .⊕σn respectively as Σi∈{1,...,n}σi and

⊕
i∈{1,...,n}σi. By convention, Σi∈ /0σi = 0. The

behaviour recX .σ defines a possibly recursive contract whose recurrent pattern is σ. A
(free) occurrence of the variable X in σ stands for the whole recX .σ. We write n(σ) for
the set of names a such that either a or a occur in σ.

The operational semantics of contracts is given in terms of the LTS defined below.

Definition 1 (Transition). The transition relation of contracts, noted α−→, is the least
relation satisfying the rules

3

α.σ
α−→ σ σ⊕ρ

τ−→ σ
σ

α−→ σ′

σ+ρ
α−→ σ′

σ
τ−→ σ′

σ+ρ
τ−→ σ′+ρ

recX .σ
τ−→ σ{recX .σ/X}

and closed under mirror cases for the external and internal choices.

The rule for the internal choice ⊕ states that a contract σ⊕ρ non-deterministically
selects one of its branches by executing an unlabelled transition. Differently, the exter-
nal choice σ+ρ selects one of its branches only after performing a visible action. Note
that the internal reductions in one branch of an external choice do not select a contin-
uation (i.e., both branches remain available). Recursive contracts recX .σ are unfolded
with unlabelled reductions.

We write⇒ for the reflexive and transitive closure of τ−→; σ
α

=⇒ ρ for σ =⇒ α−→=⇒;

σ
α0...αn
=⇒ σ′ for σ

α0=⇒ . . .
αn=⇒ σ′, and σ

φ
=⇒ with φ ∈ (N ∪N)∗ if there exists σ′ s.t.

σ
φ

=⇒σ′. We write σ ↑when σ diverges, i.e., there exists an infinite internal computation
σ = σ0

τ−→ σ1
τ−→ . . ., and σ ↓ if not σ ↑. We use init(σ) to denote the set of visible

actions that could be emitted by σ, i.e., init(σ) = {α | ∃σ′s.t.σ α
=⇒ σ′}.

The following result will be useful in the following sections.

Proposition 1. Let σ be a contract s.t. σ
φ

=⇒. Then, ∃n > 0 s.t. #{ρ |σ φ
=⇒ ρ}= n

Proof. (Hint) By straightforward induction on the length of the derivation
φ

=⇒.

Definition 2 (Ready sets). Let P f (N ∪N) be the set of finite parts of N ∪N , called
ready sets. Let also σ ⇓R be the least relation between contracts σ ∈ Σ and ready sets R
in P f (N ∪N) such that

0 ⇓ /0 α.σ ⇓{α}
σ ⇓R ρ ⇓S

σ+ρ ⇓R∪S

σ ⇓R

σ⊕ρ ⇓R

ρ ⇓R

σ⊕ρ ⇓R

σ{recX .σ/X} ⇓R

recX .σ ⇓R

For a given ready set R, co(R) stands for its complementary ready set, i.e., co(R) =
{α | α ∈ R}.

A contract (e.g., the service) interacts with another contract (e.g., the client) that ex-
ecutes in parallel. The notion of communicating client and service extends the transition
relation to pairs of contracts or configurations as follows.

σ
τ−→ σ′

σ|ρ τ−→ σ′|ρ

ρ
τ−→ ρ′

σ|ρ τ−→ σ|ρ′
σ

α−→ σ′ ρ
α−→ ρ′

σ|ρ τ−→ σ′|ρ′

As behavioural semantics, we will consider the must-testing preorder [5]. As usual,
the set O of observers, ranged over by o, is defined as the set of processes but with
the additional distinguished action X 6∈ Act used to report success. Then, the notion of
passing a test and the corresponding behavioural equivalence are as follows.

Definition 3 (must). A sequence of transitions σ0|o0
τ−→ . . .

τ−→ σk|ok
τ−→ . . . is a maxi-

mal computation if either it is infinite or the last term σn|on is such that σn|on 6
τ−→. Let

σ must o iff for each maximal interaction σ|o = σ0|o0
τ−→ . . .

τ−→ σk|ok
τ−→ . . . there exists

n≥ 0 such that on
X−→.

4

Definition 4 (must preorder). σ vmust ρ iff ∀o ∈ O : σ must o implies ρ must o. We
write σ≈must ρ when both σvmust ρ and ρvmust σ.

3 Distributed observers

Processes that are must-equivalent are characterised by the set of tests that they are able
to pass. In this setting, any test is defined as a unique process that runs in parallel with
the tested service, namely all interactions with the observed service are handled by a
unique, central process, i.e., the test. Therefore, we refer to the usual must-testing pre-
order as the centralised preorder. When shifting to a multiparty setting, the operations
offered by a service are usually partitioned and each partner communicates with the
service by using just one part of the interface. Moreover, different partners usually do
not know each other and, therefore, they do not communicate directly with each other.
As a direct consequence of this choice, the environment (i.e., the test) cannot establish
any causal dependency between the actions that take place over different parts of the
interface. Consider a scenario consisting of three processes σ,ρ1 and ρ2 in which σ and
ρ1 interact over a, σ and ρ2 interact over b and ρ1 and ρ2 are totally independent. It
turns out that it is impossible to find two uncoordinated processes ρ1 and ρ2 which are
able to distinguish the following two implementations of σ: a.b+a+b and b.a+a+b.
Therefore, from the point of view of the multiparty setting described above the two im-
plementations of σ should be considered equivalent. In this section we propose a notion
of equivalence (obtained as a symmetric preorder) that equates processes that cannot be
distinguished by contexts describing uncoordinated distributed processes.

We start by introducing the notion of uncoordinating observers.

Definition 5. Let {oi}i∈0..n be a set of observers such that n(oi)∩n(o j) = {X} for all
i 6= j. Then, we write Π

i∈0..n
X oi = o0|X . . . |Xon for the test representing the uncoordi-

nated composition of {oi}i∈0..n, which behaves as follows

o0
α−→ o′0 α 6=X

o0|Xo1
α−→ o′0|Xo1

o0
X−→ o′0 o1

X−→ o′1

o0|Xo1
X−→ o′0|Xo′1

Note that the possible executions of a set of uncoordinated observers are all the
possible interleavings of actions in N ∪N performed by the individual observers. The
only action that is handled differently isX, i.e., a set of uncoordinated observers reports
success only when every observer is able to report success (i.e., from the point of view
of each partner the test is successful). In subsequent sections we will use the notion of
ready sets extended over uncoordinated observers, which is defined as follows:

σ ⇓R ρ ⇓S

σ|Xρ ⇓((R∪S)\{X})∪(R∩S)

Remark that a ready sets of σ|Xρ is just the union of a ready set of σ and a ready set
of ρ for all actions butX. ActionX belongs to the ready set of the parallel composition
when it is present in both ready sets (this reflects thatX is synchronized).

Below we introduce the notion of distributed preorder.

5

Definition 6 (Distributed (must) preorder vdmustI). Assume I = {Ii}i∈0...n be a par-
tition of n(σ). We say σ vdmustI ρ iff, for all {oi}i∈0,...n such that n(oi) ⊆ Ii ∪ {X},
σ must Πi

Xoi implies ρ must Πi
Xoi, where Πi

X denotes the parallel composition of
observers synchronized onX.

Next result states that the distributed preorder is less discriminating than the cen-
tralized preorder.

Proposition 2. σvmust ρ implies that, for every partition I of n(σ), σvdmustI ρ.

The proof of the above proposition is obtained indirectly with the notions introduced
in the following sections (details are deferred to Section 6.1).

The converse of above proposition does not hold, i.e., σ vdmustI ρ does not imply
σvmust ρ. In fact, consider σ = a.b+a+b and ρ = b.a+a+b. We show by contradic-
tion that σvdmust{{a},{b}} ρ. Suppose that σ 6vdmust{{a},{b}} ρ, then there exists o= o0|Xo1

s.t. n(o1) ⊆ {a,X}, n(o2) ⊆ {b,X} and σ must o but ρ 6must o. Then, there exists a

maximal computation ρ|o = ρ0|o0
τ−→ . . .ρn|on

τ−→ . . . and oi 6
X−→ for all i. If the compu-

tation is finite, then the possible maximal computations have the following shape:

– o =⇒ on with on 6
τ−→, on 6

a−→, on 6
b−→ and o j 6

X−→ for all j ≤ n, and ρn = ρ. In this case,

there is also a maximal computation σ|o = σ0|o0
τ−→ . . .σn|on with on 6

τ−→, o j 6
X−→ for

all j ≤ n, which contradicts the fact that σ must o.

– o b
=⇒ on with o j 6

X−→ for all j ≤ n. In this case, ρn = 0 or ρn = a. For ρn = 0, it
is immediate to check that there is also a maximal computation σ|o = σ0|o0

τ−→
. . .σn|on with on 6

τ−→ that transits the same states o j and, hence, contradicts the fact
that σ must o. Case ρn = a implies on 6

a−→. Since o = o1|o2 with n(o1) ⊆ {a,X}
and n(o2) ⊆ {b,X} and o b

=⇒ on 6
a

=⇒ then o1 6 a
=⇒. Therefore, we can also build a

maximal computation of σ|o that contradicts σ must o.

– o a
=⇒ on or o ab

=⇒ on follows analogously to the previous cases.

If computation is infinite, then the only possibility is o j ↑ because ρ is finite. Then, it
is easy to show that there exists also an infinite computation that contradicts σ must o.
Therefore, σvdmustI ρ. It can be trivially checked that σ 6vmust ρ (it suffices to consider
the test o = a.b.X and note that σ must o but ρ 6must o).

We remark that the characterization of uncoordinated observers corresponds to con-
texts with distributed control, in which any partner can rely on the behaviour of the other
partners declared a priori (i.e., these contexts capture scenarios in which coordination
between parties can be decided at design time). We remark that a.b 6≈dmust{{a},{b}} b.a.
The observer o = a.X|XX witnesses the fact that a.b 6vdmust{{a},{b}} b.a while o′ =
X|Xb.X shows b.a 6vdmust{{a},{b}} a.b. In order to define a test that exhibits different
behavior, partners in the tests cannot be chosen independently, e.g., once the component
that interacts over a is fixed, the component interacting over b can be selected. Next sec-
tion introduces a notion of process equivalence that leaves out also the assumption of
design time coordination.

6

4 Local observers

In this section we explore a notion of equivalence that equates processes that cannot
be distinguished by contexts that have only a partial view of the tested processes. As
for the distributed observers, the targeted scenario is that of a service with a partitioned
interface that interacts with two or more independent partners by using dedicated ports.
In addition, observers are unaware of the design choices made by the other parties.
Consider the scenario consisting of the three process σ,ρ and ψ where σ and ρ interact
over a,b and σ and ψ interact over c. Consider the following two implementations for σ:
σ1 = a.c+b.d and σ2 = a.d +b.c. Note that σ1 6≈dmust{{a,b},{c,d}} σ2. In fact they can be
distinguished, e.g., by the distributed observer o1 = a.X|Xc.X (σ1 6vdmust{{a,b},{c,d}} σ2)
and o2 = b.X|Xc.X (σ2 6vdmust{{a,b},{c,d}} σ1). Nevertheless, as far as ρ is concerned both
implementations are equivalent since they allow ρ to select either a or b. Assuming
that ψ is designed without a priori knowledge of the particular choices that will be
made by ρ (e.g., ρ = a⊕ b), both implementations of σ are equivalent also from its
perspective. In fact, ψ should be prepared to synchronize either over c or d. That is, the
expected behaviour of σ when observing just the channels c and d can be described as
c⊕d. Basically, this behaviour corresponds to the abstraction that hides all actions over
channels that are not observed.

Definition 7 (Abstraction). Let V ⊆N be a set of observable ports. We write σ �V for
the abstraction of σ over V , which behaves as follows:

σ
α−→ σ′ α ∈V

σ �V
α−→ σ′ �V

σ
α−→ σ′ α 6∈V

σ �V
τ−→ σ′ �V

Abstraction corresponds to the usual notion of hidding in calculi like CCS [9].

Definition 8 (Local must preorder vlmustV). Let V ⊆N be a set of observable ports.
We say σvlmustV ρ iff σ �V must o implies σ �V must o.

The following two results show that the local preorder is less discriminating than the
centralized preorder and that the local preorder is less discriminating than the distributed
preorder, respectively. They are obtained as a consequence of other results presented in
subsequent sections (details are deferred to Section 6.2).

Proposition 3. σ vmust ρ implies σ vlmustV ρ for all V .

Note that the converse does not hold, i.e., σvlmustV ρ does not imply σ vmust ρ. It
is easy to check that a.b vlmust{a} b.a but a.b 6vmust b.a.

Proposition 4. ρ vdmust{V,Σ\V} σ implies ρvlmustV σ for all V .

The converse does not hold, i.e., ρ vlmustV σ does not imply ρ vdmust{V,Σ\V} σ. It is
easy to check that a.c+b.d vlmust{c,d} a.d+b.c but a.c+b.d 6vdmust{{a,b},{c,d}} a.d+b.c
(as illustrated at the begining of this section).

7

5 Contractual must

In this section we present an extended notion of must preorder, called contractual pre-
order, which is parametric with respect to a set of contracts C (notedvC

must). According
to the contractual preorder, σvC

must ρ if the service ρ passes all tests that are passed by
σ, provided the tests are in C. We show that classical must preorder implies contractual
preorder and that the two preorders coincide when C is the set of all possible tests. As
we will see in subsequent sections, this generalised preorder allows for less discrimi-
nating notions of testing in which observers are, e.g., the description of uncoordinated
multiparty contexts or contexts that are unable to observe the complete behaviour of the
process under test.

Definition 9 (contractual preorder). Let σ and ρ be two processes, and the contract
C be a set of observers, namely C ⊆ O.

σvC
must ρ iff ∀o ∈C : σ must o implies ρ must o.

Definition 10 (equivalence). σ≈C
must ρ iff σvC

must ρ and ρvC
must σ.

Example 1. As an example, consider the two processes a and a+ b, and the contract
C = {a.X⊕b.X}. It holds that a 6≈{a.X⊕b.X}

must a+b. In fact, av{a.X⊕b.X}
must a+b but a+

b 6v{a.X⊕b.X}
must a. Indeed, a+b must a.X⊕b.X since there are two possible sequences

of transitions stemming from a+b |a.X⊕b.X:

1. a+b |a.X⊕b.X τ−→ a+b |a.X τ−→X and
2. a+b |a.X⊕b.X τ−→ a+b |b.X τ−→X

and in both cases, after two steps an action X can be taken. On the other side,
a6must a.X⊕b.X, because the sequence of transitions

a+b |a.X⊕b.X τ−→ a+b |b.X 6 τ−→

is such that the observer can never exhibit X. Following the same reasoning, we can
show that a 6≈must a+b. Nevertheless, a and a+b cannot be distinguished if we restrict
to observers which do not act on b. Hence, for instance, a ≈{a.X}must a+b, since the only
admissible test is a.X. On the other side, a 6v{a.X}must a⊕ b. Indeed, a must a.X while
a⊕ b 6 must a.X, since there is a sequence a.X |a⊕ b τ−→ a.X |b 6−→. Conversely, the
fact that a⊕b 6must a.X implies that a⊕bv{a.X}must a.

Below we formally state the desired relationship between classical must preorder
and contractual preorder. The proofs of the following results are straightforward.

Proposition 5. ρ vC
must σ implies ρ vC′

must σ for all C′ ⊆C.

Proposition 6. vmust=vO
must.

Corollary 1. ρ vmust σ implies ρ vC
must σ for all C.

8

6 Interesting Contract Languages

In this section we show how to recast the notions of distributed and local preorder into
the framework of contractual testing by defining suitable contract languages. Firstly,
we show that the distributed preorder corresponds to a contractual preorder in which
possible contexts are closed by name swapping, i.e., if a contract allows a particular
computation, then it also allows any possible permutation of actions of the original
computation that respect the relative order of the actions of the same partition of the in-
terface. Secondly, we show that the local preorder can be characterized as a contractual
preorder in which contracts are closed with respect to arbitrary occurrences of hidden
actions, i.e., a contract allows one particular computation if it allows any other compu-
tation that interleaves the original actions with an arbitrary number of hidden actions.
Moreover, we prove the results claimed in Sections 3 and 4 about the discriminating
power of the proposed preorder just by showing inclusion of contract languages.

6.1 Observers closed under name swapping

Definition 11. Let σ be a process and I= {Ii}i∈0...n a partition of N ∈N s.t. n(σ)⊆N.
Then, σ is closed over name swapping with respect to I (written σ ∈ SwapI) whenever
∀α ∈ Ii∪ Ii,β ∈ I j ∪ I j with i 6= j the following conditions hold:

1. if σ
α

=⇒ and σ
β

=⇒ then ∃R s.t. σ ⇓R and {α,β} ⊆ R
2. σ ⇓R iff σ

α
=⇒ σ′, σ′ ⇓R′ and R\(Ii∪ I j ∪{X}) = R′\(Ii∪ Ii∪{X}).

3. if σ
αβ
=⇒ σ′ then σ

βα
=⇒ σ′ and σ′ ∈ SwapI.

We call SwapI the set of all observers closed under name swapping w.r.t. I.

The first condition above stands for the fact that an observer closed under name
swapping cannot exhibit simultaneous, dependent choices into different partitions of
the interface. Basically, we want to avoid contracts like σ = a⊕b when a and b belong
to different partners. Note that σ describes a multiparty contract in which one partner
decides to execute a and the other decides not to execute b at the same time or vice versa,
i.e., the decision of one partner is conditioned by the decision taken by the other. Differ-
ently, we allow contracts like ρ= (a⊕0)⊕(a.b+b.a), which describes the independent
behaviour of two partners, one that executes a and other that non-deterministically de-
cide to execute b or terminate. The second condition states that the execution of the
action of a partner does not affect the behaviour of the remaining partners. In other
words, the internal choices of a partner have no effect on the behaviour observed over
the remaining parts of the interface. In this way we avoid contracts like σ = a+b when
a and b are in different partitions. Note that σ describes two partners, which are ready
to execute a and b, respectively. Nevertheless, after the execution of, e.g., a the action b
is not available anymore. Finally, the third condition above states that the computation
of two consecutive actions on different parts of the interface can be mimicked by the
computation that exhibits the two performed actions in a different order, namely, one
partner cannot force the order in which actions over different parts of the interface are
performed.

9

Example 2. Some examples:

– a.b ∈ Swap{{a,b}}
– a.b 6∈ Swap{{a},{b}} (Conditions 2 and 3 do not hold)
– a.b+b.a ∈ Swap{{a},{b}}
– a.b⊕b.a 6∈ Swap{{a},{b}} (Condition 1 does not hold)

The remainder of this section is devoted to formally state the correspondence of
distributed observers and contextual testing for the language of observers closed by
name swapping. The proofs of the following results are reported in [2].

Observers closed by name swapping as distributed observers We start by showing
that any σ ∈ SwapI actually describes a distributed uncoordinated observer, which is
obtained by combining the projections of σ over each part of the interface.

Definition 12. Let σ ∈ SwapI with I = {Ii}i∈0...n. For j ≤ n, we define I(σ) j, which is
the projection of σ over I j, as follows

I(σ) j =
⊕

R∈R j(σ)

Σα∈Rα.⊕ρ∈σ(α) I(ρ) j ⊕ Ω︸ ︷︷ ︸
if σ↑

where R j(σ) = {R∩ (I j ∪ I j ∪{X})|σ ⇓R}

The ready sets of a projection are the projections of the ready sets of the contract
(i.e., they are in R j(σ)). Then, for each performed action α, the projection is able to
select internally one of the original continuations of the contract σ after performing α.
The last term says that a projection diverges when the contract diverges. We first remark
that I(σ) j is a well-defined contract, because the number of ready sets in R j(σ), each
ready sets is finite and the set σ(α) is finite by Proposition 1. Additionally, note that
I(σ) j ↑ iff σ ↑ since both R j(σ) and σ(α) are finite ∀σ,α (see Proposition 1).

The following technical results will be used when proving the correspondence of
observers closed by name swapping and distributed contexts.

Proposition 7. Let σ ∈ SwapI s.t. σ
α

=⇒ σ′ with α ∈ (Ii ∪ Ii ∪{X}). Then, I(σ)i
α

=⇒
I(σ′)i.

Proof. Since σ
α

=⇒, there exists R ∈ Ri(σ) s.t. a ∈ R. Moreover, σ′ ∈ σ(α). Therefore,

I(σ)i
τ

=⇒ Σα∈Rα.⊕ρ∈σ(α) I(ρ)i
α

=⇒⊕ρ∈σ(α)I(ρ)i
τ

=⇒ I(σ′)i.

Proposition 8. Let σ ∈ SwapI s.t. σ
α

=⇒ with α ∈ (Ii∪ Ii). Then, ∀ j 6= i : there exists σ′

s.t. σ
α

=⇒ σ′ and

1. I(σ) j
φ

=⇒ iff I(σ′) j
φ

=⇒.

2. I(σ) j
φ

=⇒ ρ and ρ ⇓R iff I(σ′) j
φ

=⇒ ρ′ and ρ′ ⇓R.

10

Proof. (⇒) By induction on the lenght of |φ|= n.

– Base case n = 0: (1) is immediate. (2) From Definition 12 we note that I(σ′) j ⇓R
iff R ∈ R j(σ

′) and I(σ) j ⇓R iff R ∈ R j(σ). Then, we show R j(σ
′) = R j(σ). Case

(⊆): R ∈ R j(σ
′) iff ∃R′ : σ′ ⇓R′ and R = R′ ∩ (I j ∪ I j ∪{X}). By Definition 11(2),

∃Q′ : σ ⇓Q′ and Q′\Ii = R′\Ii. Moreover, Q = Q′ ∩ (I j ∪ I j ∪ {X}) ∈ R j(σ) by
Definition 12. Since, Q′\(I j ∪ I j ∪ {X}) = R′\(I j ∪ I j ∪ {X}) we can conclude
R = R′ ∩ (I j ∪ I j ∪{X}) = Q′ ∩ (I j ∪ I j ∪{X}) = Q ∈ R j(σ). Case (⊇) is analo-
gous.

– Inductive Step.

I(σ) j
β

=⇒ φ′
=⇒: Then, I(σ) j

β
=⇒ φ′

=⇒. From

I(σ) j =
⊕

R∈R j(σ)

Σγ∈Rγ.⊕κ∈σ(γ) I(κ) j ⊕ Ω
β

=⇒ ψ

we conclude that there exist R′ ∈ R j(σ), β ∈ R′ and ψ = ⊕κ∈σ(β)I(κ) j. Then, it
must hold that

ψ
τ

=⇒ I(κψ) j
φ′

=⇒ withκψ ∈ σ(β) (1)

In addition, β ∈ R′ implies ∃R s.t. σ ⇓R and β ∈ R, β
β

=⇒. As σ ∈ SwapI, σ
β

=⇒ and
σ

α
=⇒, then σ ⇓R with {α,β} ⊆ R by Definition 11(1), and σ

α
=⇒ σ′′ s.t. σ′′ ⇓ R′′

with R′′\(I j ∪ I j ∪{X}) = R\(I j ∪ I j ∪{X}) by Definition 11(2). This implies that
there exists R′′ ∈ R j(σ

′′) and β ∈ R′′. Therefore

I(σ′′) j =
⊕

R∈R j(σ′′)

Σγ∈Rγ.⊕κ∈σ′′(γ) I(ρ) j ⊕ Ω
β

=⇒ ψ
′ =⊕κ∈σ′′(β)I(κ) j (2)

Note that κ ∈ σ′′(β) implies κ ∈ σ(αβ). By Definition 11(3), κ ∈ σ(αβ) implies
κ ∈ σ(βα). Therefore, for any possible choice of κψ ∈ σ(β) in Equation 1, it holds
that κψ

α
=⇒ (otherwise σ does not satisfy Definition 11 (2)). Then, for any pos-

sible κψ

α
=⇒ κ′ψ we use inductive hypothesis to conclude that (1) I(κψ) j

φ′
=⇒ iff

I(κ′ψ) j
φ′

=⇒ and (2) I(κψ) j
φ′

=⇒ ρ and ρ ⇓R iff I(κ′ψ) j
φ′

=⇒ ρ′ and ρ′ ⇓R.
Then, the proof is concluded by noting that σ(βα) = κ′ψ ∈ σ(αβ) = σ′′(β), hence

κ′ψ ∈ σ′′(β). Finally, for ψ′ in Equation 2 can reduce as follows ψ′
τ

=⇒ I(κ′ψ) j.

(⇐) Then, I(σ′) j
β

=⇒ φ′
=⇒. From

I(σ′) j =
⊕

R∈R j(σ′)

Σγ∈Rγ.⊕κ∈σ′(γ) I(κ) j ⊕ Ω
β

=⇒ ψ
′

we conclude that there exist R′ ∈ R j(σ
′), β ∈ R′ and ψ′ = ⊕κ∈σ′(β)I(κ) j. By the

definition of R j(σ
′), β ∈ R′ implies ∃R s.t. σ′ ⇓R and β ∈ R. By Definition 11(2),

there exists R′′ s.t. σ ⇓ R′′ with R′′\(I j ∪ I j ∪{X}) = R\(I j ∪ I j ∪{X}). Therefore,

11

σ
α

=⇒ and σ
β

=⇒ and hence, σ ⇓R with {α,β} ⊆ R by Definition 11(1). Therefore,
there exists R′′ ∈ R j(σ) with β ∈ R′′. Consequently,

I(σ) j =
⊕

R∈R j(σ)

Σγ∈Rγ.⊕κ∈σ(γ) I(κ) j ⊕ Ω
β

=⇒⊕κ∈σ′(β)I(κ) j

Then, the proof is completed as in the previous case.

Given φ∈ S∗ and S⊆ S , φ �S denotes the projection of φ over S, which is inductively
defined as follows,

ε �S = ε

(αφ) �S = φ �S when a 6∈ S

(αφ) �S = α(φ �S) when a ∈ S

Proposition 9. Let σ ∈ SwapI and σ
φ

=⇒ then:

1. I(σ)i
φ�Ii∪Ii∪{X}=⇒ .

2. σ
φ

=⇒ ρ and ρ ⇓R implies I(σ)i
φ�Ii∪Ii∪{X}=⇒ ρ′ and ρ′ ⇓R∩(Ii∪Ii∪{X}) .

Proof. By induction on |φ|.

– Base case φ = ε: (1) is immediate. (2) Follows by definition of I(σ)i.

– Inductive step φ = αφ′ and σ
α

=⇒ ψ
φ′

=⇒. There are two cases:
• α ∈ Ii ∪ Ii ∪{X}: by Proposition 7, I(σ)i

α
=⇒ I(ψ)i. Then, the proof is com-

pleted by using inductive hypothesis.
• α 6∈ Ii∪ Ii∪{X}: Note that φ �Ii∪Ii∪{X}= φ′ �Ii∪Ii∪{X}. By inductive hypothesis,

(1) I(ψ)i
φ′�Ii∪Ii∪{X}=⇒ and (2) ψ

φ′
=⇒ ρ′ and ρ′ ⇓R implies

I(ψ)i
φ′�Ii∪Ii∪{X}=⇒ ψ

′ and ψ
′ ⇓R∩(Ii∪Ii∪{X}) .

The proof is completed by using Proposition 8 to conclude (1) I(σ)i
φ′�Ii∪Ii∪{X}=⇒

and (2) I(σ)i
φ′�Ii∪Ii∪{X}=⇒ ρ′ and ρ′ ⇓R∩(Ii∪Ii∪{X}).

Proposition 10. Let σ ∈ SwapI and I(σ)i
φ

=⇒ ρ. Then, σ
φ

=⇒ σ′ and ρ = I(σ′)i.

Proof. By straightforward induction on the lenght |φ|.

Proposition 11. Let σ ∈ SwapI. Then, σ
φ

=⇒ iff Πi
XI(σ)i

φ
=⇒.

Proof. (⇒) By induction on |φ|. Base case n = 0 is immediate. For the inductive step

φ = αφ′, σ
α

=⇒ σ′′
φ′

=⇒ σ′ there are two cases:

12

– α 6=X ∈ I j ∪ I j. By Proposition 7, I(σ) j
α

=⇒ I(σ′′) j. Therefore,

Π
i
XI(σ)i

α
=⇒ I(σ′′)i|XΠ

i6= j
X I(σ)i.

By inductive hypothesis, σ′′
φ′

=⇒ implies Πi
XI(σ

′′)i
φ′

=⇒. Finally, the proof is com-

pleted by using repeatedly of Proposition 10 to conclude that Πi
XI(σ

′′)i
φ′

=⇒ iff

I(σ′′)i|Πi6= j
X I(σ)i

φ′
=⇒.

– a =X. By definition of I(σ)i, I(σ)i
X−→ for all i. Then, Πi

XI(σ)i
X−→Πi

XI(σ
′′)i. The

proof is completed by inductive hypothesis.

(⇐) The proof follows by induction on the length of |φ| and is analogous to the
previous case.

Proposition 12. Let σ ∈ SwapI and σ
φ

=⇒ σ′. Then, σ′ ⇓R iff (Πi
XI(σ)i)

φ
=⇒ ψ and

ψ ⇓R.

Proof. (⇒) By induction on |φ|.

– Base case φ = ε: By definition, (Πi
XI(σ)i) ⇓R with R = (

⋃
i(Ri\{X}))∪{

⋂
i Ri}

and I(σ)i ⇓Ri . Note that Ri = (R′′∩ (Ii∪ Ii∪{X})) for σ ⇓R′′ . Since I is a partition
of n(σ), we conclude that R = R′′ .

– Inductive step φ=αφ′, σ
α

=⇒ σ′′
φ′

=⇒ σ′. By Proposition 7, I(σ) j
α

=⇒ I(σ′′) j There-
fore,

Π
i
XI(σ)i

α
=⇒ I(σ′))i|Πi6= j

X I(σ)i.

Then, the proof is completed by using Proposition 10(2) and the definition of ready
sets.

(⇐) The proof follows by induction on the length of |φ| and is analogous to (⇒).

The following result states that any observer described as contract closed by name
swapping can be written also as a distributed observer.

Lemma 1. Let σ ∈ SwapI. Then, ρ must σ iff ρ mustΠi
XI(σ)i

Proof. (⇒) By contradiction. Assume ρ 6must Πi
XI(σ)i. Then, there is a maximal com-

putation C ≡ ρ|Πi
XI(σ)i = ρ0|P0

τ−→ . . .ρn|Pn
τ−→ . . . s.t. Pj 6

X−→ for all j. There are two
cases:

– Computation is finite, i.e., ρn|Pn 6
τ−→: Hence ρ

φ
=⇒ ρn and Πi

XI(σ)i = P0
φ

=⇒. By

Proposition 10, σ
φ

=⇒. Therefore, we can build the computation C′≡ ρ|σ= ρ0|σ0
τ−→

. . .ρ0|σn. First we note that C′ is maximal. Otherwise, ρn|σn
τ−→, which implies

ρn
α−→ and σn

α−→. By Proposition 10, Pn
a−→ and hence ρn|Pn

τ−→ which contradicts
the assumption that C is maximal. Since ρ must σ, it should be the case that some

σ j
X−→. Since σ

φ′
=⇒ σ j and σ j

X−→, we know, by Proposition 12, that Πi
XI(σ)i

φ′
=⇒ Pj

and Pj = Πi
XI(σ)i(φ

′)
X−→, which contradict the hypothesis that Pj 6

X−→ for all j.

13

– Computation is infinite. Then ρ
φ

=⇒ and Πi
XI(σ)i

φ
=⇒ with φ infinite. There are

two cases: (i) there exists n s.t. ρn ↑ or Pn ↑, then reasoning as in the previous
case we can exhibit a computation that contradicts ρ must σ. (ii) ρ0|P0 interacts
infinitely often. By using Proposition 10, we can show that for any finite prefix φ′

of φ, σ
φ′

=⇒ σ′ and σ′ ⇓R iff Πi
XI(σ)i)

φ
=⇒

′
ψ and ψ ⇓R. Therefore, there exists

an infinite computation of ρ|σ that transits the terms σ0,σ1, . . . that has the same

ready sets of P0,P1, Hence, σi 6
X−→ for all i. This contradicts the assumption that

ρ must σ.

(⇐) Follows analogously to (⇒).

Distributed observers as contracts closed by name swapping We now show that for
any distributed observer we can define an equivalent contract that is closed by name
swapping, which describes all the possible interleavings in the execution of the dis-
tributed context.

Definition 13. Let I = {Ii}i∈0...n be a partition of N ⊂ N and {oi}i∈0,...n a family of
observers such that n(oi)⊆ Ii∪ Ii∪{X}. Then, the merge of {oi}i∈0,...n is

I({oi}i∈0...n) =
⊕

R∈R({oi})
Σγ∈Rγ.⊕κ∈{oi}i∈0...n(γ) I(κ)

if some oi↑︷ ︸︸ ︷
⊕ Ω

where R({oi}i∈0...n) = {(∪i∈0...n(Ri\{X}))∪ (∩i∈0...nRi) | oi ⇓Ri} and

{oi}i∈0...n(γ) = {{o′i}i∈0...n|γ =X,o′i ∈ oi(X)}∪{{o0, . . .o′j . . . ,on}|γ 6=X,o′j ∈ o j(γ)}}

Basically, the ready sets of the merge corresponds to the combination of the ready
sets of all distributed observers which are represented by R({oi}i∈0...n). We remark that
X is in a ready set of the merge only when it is in all the ready sets that are being merged.
Similarly, the continuation for an action γ in some ready set is the internal choice of one
merge describing the behaviour of the system after performing γ, which are denoted by
κ ∈ {oi}i∈0...n(γ) (all observers must perform γ when γ =X, otherwise only component
performs γ). We remark also that I({oi}i∈0...n) diverges only when some oi diverges.

Proposition 13. I({oi}i∈0...n) is closed over name swapping with respect to I.

Proof. 1. Assume α ∈ Ii ∪ Ii, β ∈ I j ∪ I j and i 6= j. Note that I({oi}i∈0...n)
α

=⇒ and

I({oi}i∈0...n)
β

=⇒ imply that there exist Ri,R j with α∈ Ri, β∈ R j, oi ⇓Ri and o j ⇓R j .
Therefore, there exists R s.t. {α,β} ⊆ (Ri∪R j)\{X} ⊆ R and R ∈ R({oi}i∈0...n).

2. Let α∈ I j∪Ii and (I({oi}i∈0...n))
α

=⇒. Then, I({oi}i∈0...n)⇓R implies R∈R({oi}i∈0...n).
It is easy to check that ∀R ∈ R({oi}i∈0...n) there exists R′ ∈ R(o′j,{oi}i 6= j) with

ø j
α

=⇒ ø′j s.t. R\(I j∪ I j∪{X}) = R′\(I j∪ I j∪{X}). Therefore, (I({oi}i∈0...n))
α

=⇒
ψ and ψ ⇓R′ .

3. It is immediate to check that (I({oi}i∈0...n))
αβ
=⇒ ψ implies (I({oi}i∈0...n))

βα
=⇒ ψ.

Then, the proof is completed by showing that the set {I({oi}i∈0...n)|n(oi) ⊆ Ii} is
closed under reduction.

14

Proposition 14. I({oi}i∈0...n) ⇓R iff Πi
Xoi ⇓R.

Proof. Follows immediately by noting that I({oi}i∈0...n)⇓R iff R∈R({oi}) iff Πi
Xoi ⇓R.

Proposition 15. Πi
Xoi

α
=⇒ o iff I({oi}i∈0...n)

α
=⇒P and o=Πi

Xo′i and P= I({o′i}i∈0...n)

Proof. (⇒) There are two cases:

1. a 6=X ∈ I j ∪ I j: Then o = o′j|XΠ
i6= j
X oi with ø j

α
=⇒ o′j. Since o j

α−→ o′j, there exists
R j s.t. o j ⇓R j and a ∈ R j. Therefore, there exists R ∈ R({oi}) s.t. a ∈ R. Moreover,

I({oi}i∈0...n)
α

=⇒ I(o′j,{oi}i 6= j).
2. a =X: Then o′i = oi(X) for all i. It is easy to check that P = I({oi(X)}i∈0...n).

(⇐) Follows analogously.

Lemma 2. Let σ ∈ SwapI. Then, ρ must Πi
Xoi iff ρ must I({oi}i∈0...n)

Proof. The proof follows by contradiction analogously to Lemma 1 (in this case we
rely on Propositions 14 and 15).

We can now show that the distributed preorder coincides with the contractual pre-
order for observers closed by name swapping.

Theorem 1. vdmustI=v
SwapI
must .

Proof.

(⊆) By contradiction. Assume σvdmustI ρ and σvSwapI
must ρ. Then, there exists o∈ SwapI

s.t. σ must o and ρ 6must o. By Lemma 1, σ mustΠi
XI(o)i and ρ 6must Πi

XI(o)i,
which contradicts σvdmustI ρ.

(⊇) Follows analogously by using Lemma 2.

Remark Note that Proposition 2 can be obtained as a corollary of the above result and
Proposition 5 after noting that SwapI ⊆ O for all I.

6.2 Noisy observers

We introduce the notion of noisy observer, namely a contract that allows one particular
computation if it allows any other computation that interleaves the original actions with
an arbitrary number of hidden actions. The set of noisy observers will be used as the
contract language that is suited to characterise the local preorder introduced in §4 in
terms of contractual testing.

Definition 14. Let o be an observer and H ⊆ N be a set of (noisy) channels. We say
that o is a noisy observer over H whenever the following two conditions hold:

1. o α
=⇒ o for all α ∈ H ∪H

2. o α
=⇒ o′ and α 6∈ H ∪H then either o′ is a noisy observer over H or ∀R : o′ ⇓ R

implies R = /0.

15

We call NoisyH the set of all noisy observers over H.

The first condition above stands for the fact that a noisy observer after performing
an action in H (namely, a hidden action) remains in the same state. The reason for
this condition is to avoid contracts that allow distinguishing processes that ”behave”
the same over visible actions while performing possibly different invisible actions. For
instance, for H = {a} we want to rule out contracts like a.a.b.X in which the number
of synchronizations over a is relevant to exhibit an action X. Conversely, we allow
contracts like recX (b.(recY .(a.Y +0)+a.X) in which an occurrence of action b can be
interleaved by an arbitrary number of a’s. The second condition requires that a noisy
observer after exhibiting a visible action becomes either a noisy observer or an inert
process. According to this condition, we discard contracts like recX (b.c.(recY .(a.Y +
0)+a.X) in which performing or not an invisible action after b is crucial.

Example 3. Some examples:

– a.b ∈ Noisy /0

– 0 6∈ Noisy{a} (Condition 1 is violated)
– recX (a.X⊕b.recX a.X) ∈ Noisy{a}

Below we formally state the correspondence of local observers and contextual test-
ing for the language of noisy observers (Corollary 3). The proofs of the following results
are reported in [2]. We start by introducing the notion of canonical noisy observers of
an arbitrary observer σ with respect to H, which basically makes σ a noisy observer
over H.

Definition 15 (canonical noisy observers). Let V ⊆ N be a set of observable ports.
The canonical noisy observer of an observer o with respect to a set H of names such
that H ∩V = /0, written nfH

V (o), is defined as follows:

nfH
V (o) =

{ recX . (
⊕

R∈Ready(σ)(Σα∈Rα.
⊕

ρ∈σ(α) nf
H
V (ρ))+Σ

β∈H∪Hβ.X) if o ↓
recX . (

⊕
R∈Ready(σ)(Σα∈Rα.

⊕
ρ∈σ(α) nf

H
V (ρ))+Σ

β∈H∪Hβ.X) ⊕ Ω if o ↑

where Ready(σ) = {R|σ ⇓R}

Proposition 16. nfH
V (o) ∈ NoisyH .

Proof. (Hint) By induction on the structure of o.

Proposition 17. If σ must o and o ∈ NoisyH with (n(σ)\V) ⊆ H and H ∩V = /0 for
some V , then σ must nfH

V (o).

Proof. (Hint) By contradiction. The proof exploits the fact that o and nfH
V (o) have the

same traces if o ∈ NoisyH .

Proposition 18. If σ must nfH
V (o) for some o ∈ NoisyH then σ must o.

Proof. (Hint) By contradiction. The proof exploits the fact that o and nfH
V (o) have the

same traces if o ∈ NoisyH .

16

Proposition 19. Let V be a set of visible ports. For σ a process such that n(σ)⊆V and

o an observer, for every configuration σ|o = σ0|o0 −→ . . ., if on
X−→ then o0

φ
=⇒ on and

n(φ)⊆V .

Proof. (Hint) By induction of the length of configurations σ|o = σ0|o0 −→

Proposition 20. If σ �V must o then σ must nfH
V (o), for all H such that (n(σ)\V)⊆H

and H ∩V = /0.

Proof. By contradiction. Suppose that there exists H such that n(σ)⊆ H and H ∩V =
/0 and σ 6must nfH

V (o), namely there exists a maximal interaction C ≡ σ|nfH
V (o) =

σ0|o′0
τ−→ . . .

τ−→ σk|o′k
τ−→ . . . such that (i) C is finite, σk|o′k is the last term and o′n 6

X−→ for

every k ≥ n≥ 0 or (ii) C is infinite and o′n 6
X−→ for every n≥ 0.

– C is finite. Hence σ
φ

=⇒ σk and nfH
V (o)

φ
=⇒ o′k. Therefore, we can build a computa-

tion C′ ≡ σ �V |o = σ′0|o0 −→ . . .−→ σh|oh with h≤ k, as σ �V can only synchronise
on actions in V . First note that C′ is maximal: otherwise, σ′h|oh −→, i.e., σ′h

α−→ and

oh
α−→ with α ∈ V (without lost of generality we can assume that any synchronisa-

tion over names α∈V is included in the trace φ) and, hence σk
φ′

=⇒ and o′k
φ′

=⇒with
φ′ �V= α which contradicts the assumption that C is maximal. Since σ �V must o,
it should be the case that some o j

X−→. However, by Proposition 19, o j
X−→ implies

o0
φ′′
=⇒ o j and n(φ′′)⊆V . Then, there exists i≤ k such that o′i

X−→, which contradicts

the (absurd) hypothesis that o′j 6
X−→ for all j ≤ k.

– C is infinite. Then σ
φ

=⇒ and nfH
V (o)

φ
=⇒ with φ infinite. Therefore, we can build a

computation C′ ≡ σ �V |o = σ′0|o0 −→ . . .−→ σh|oh with h≤ k, as σ �V can only syn-
chronise on actions in V . If C′ is finite the proof proceeds much like in the previous
case. If C′ is infinite, by the fact that σ �V must o, oi 6

X−→ for some i≥ 0. Necessarily,

o0
φ′′
=⇒ oi and n(φ′′)⊆V . Then, o′l

X−→, for some l ≥ 0, which contradicts the absurd

hypothesis o′j 6
X−→ for all j ≥ 0.

Proposition 21. If σ must nfH
V (o) for some o and (n(σ)\V)⊆H then σ �V must nfH

V (o).

Proof. By contradiction. Suppose that σ �V 6must nfH
V (o), namely there exists a maximal

interaction C≡σ �V |nfH
V (o)=σ′0|o′0

τ−→ . . .
τ−→σ′k|o′k

τ−→ . . . such that (i) C is finite, σ′k|o′k
is the last term and o′n 6

X−→ for every k ≥ n ≥ 0 or (ii) C is infinite and on 6
X−→ for every

n≥ 0.

– C is finite. Hence, σ′
φ

=⇒ σ′k and nfH
V (o)

φ
=⇒ o′k. Therefore, we can build a compu-

tation C′ ≡ σ|nfH
V (o) = σ0|o′0 −→ . . .−→ σh|o′h −→ There are two cases.

• If C′ is finite with last term σh|o′h, without loss of generality we can assume

that σh 6
α−→ and o′h 6

α−→ with α ∈ H (since, we can assume any synchornisation
over names in H to be included in φ). Moreover it holds that h≥ k, as σ �V can

17

only synchronise on actions in V . Necessarily, it cannot happen that σh
φ′

=⇒ and

o′h 6
φ′

=⇒, with φ′ �V= β and β ∈ V as it would imply that σ′k|o′k can eventually
synchronise over β, thus contradicting the fact that C is maximal. By observing
the fact that the only additional actions in C′ wrt to C are in H and by definition
of NoisyH we can conclude that o′j 6

X−→ for all j ≤ h, which is a contradiction.
• If C′ is infinite, again we exploit the fact that the only additional actions in C

are in H and the definition of NoisyH to reach the contradiction that o′i 6
X−→ for

all i≥ 0.
– C is infinite and on 6

X−→ for every n ≥ 0. As shown above, we can build the config-
uration C′ ≡ σ|nfH

V (o) = σ0|o′0 −→ . . . which necessarily is infinite. By proceeding
as in the previous case we reach a contradiction.

Corollary 2. σvlmustV ρ iff σv{nf
H
V (o)}

must ρ with H = n(σ+ρ)\V .

Proof. Immediate consequence of Propositions 20 and 21.

Corollary 3. σvlmustV ρ iff σvNoisyH
must ρ with H = n(σ+ρ)\V .

Proof.
(⇒) Suppose σ must o, with o ∈ NoisyH . By Proposition 17, σ must nfH

V (o). By
Proposition 21, σ �V must nfH

V (o). By hypothesis, ρ �V must nfH
V (o). By Proposi-

tion 20, ρ must nfH
V (nfH

V (o)). Hence, by applying twice Proposition 18, ρ must o.
(⇐) Suppose σ �V must o. By Proposition 20, σ must nfH

V (o). By hypothesis,
ρ must nfH

V (o). By Proposition 21, ρ �V must nfH
V (o). By Proposition 19, ρ �V

musto.

Remark Note that Proposition 3 can be obtained as a corollary of the above result and
Proposition 5 after noting that NoisyH ⊆ O for all H.

We dedicate the last part of this section to show that noisy observers (and there-
fore, local preorder) are less discriminating than observers closed under name swapping
(and hence, distributed preorder). We start by showing that nfH

V (o) is closed over name
swapping with respect to visibles and hidden names.

Proposition 22. nfH
V (o) ∈ Swap{H,V}.

Proof. We actually show that the set {⊕inf
H
V (oi)} ⊆ Swap{H,V}. 1) Follows straightfor-

wardly because ⊕inf
H
V (oi) ⇓ R implies o ⇓ R′ and R = R′∪H. 2) There are two cases:

(a) if α ∈ H then it follows immediately since ⊕inf
H
V (oi)

α
=⇒ nfH

V (oi), (b) α ∈ V and
⊕inf

H
V (oi)

α
=⇒ o′. Note by definition of⊕inf

H
V (oi) that o′ ⇓R implies H ⊆R. 3) It is im-

mediate that ⊕inf
H
V (oi)

αβ
=⇒ o′ implies ⊕inf

H
V (oi)

βα
=⇒ o′. Then, the proof is completed

by showing that the set {⊕inf
H
V (oi)} is closed under reductions.

Remark Note that Proposition 3 can be obtained as a consequence of the results pre-
sented in the previous sections. In fact, {nfH

V (o)} ⊆ Swap{V,H} by Proposition 22. By

Corollary 2, σ vlmustV ρ iff σ v{nf
H
V (o)}

must ρ. By Proposition 5, σ v{nf
H
V (o)}

must ρ implies
σv

Swap{V,H}
must ρ, which implies σvdmust{V,H} ρ by Theorem 1.

18

7 Conclusions

In this paper we have explored different refinements of the must testing preorder tai-
lored to capture behaviour equivalences in multiparty settings. In particular, we consid-
ered two different settings in which contexts of a service are represented by processes
exhibiting distributed control. The first variant, called distributed (must) preorder, cor-
responds to multiparty contexts without runtime communication but coordinated design
choices. The second one, called local (must) preorder, requires that parties are com-
pletely independent and none of them can assume any particular behaviour about the
partners. We have shown that such notions can be recast into a parameterized version
of the must testing preorder, called contractual preorder, in which tests are taken from
a precise subset of all possible observers (this subset is the parameter of the preorder).
The parameter can be seen as the specification of a ”contract” that any context observes
while interacting with the tested service. As expected, the discriminating power of the
induced equivalences decreases as contract languages became smaller. We have shown
that the distributed preorder corresponds to a particular language of observers, called
SwapI, whose specification states that the order of execution of events over different
parts of the interface can be swapped. Similarly, we associated the local preorder with
a class of observers named NoisyH , that can always execute actions over set H without
compromising its behaviour. Interestingly, we show that NoisyH ⊆ SwapI, which im-
plies that local preorder is less discriminating than distributed preorder (in other words,
more coordinated contexts hava more discriminating power).

As future work, we plan to establish a formal connection of the notions presented
here with the theory of contracts developed in [8,3,4]. In this respect, we would like
to study whether the notions of distributed, local and, in general, contractual preorders
provide refined versions of the compliance and subcontract relations that could be used
efficiently to solve problems like, for instance, searching for services. In this sense, it
would be worth studying the definition of suitable deduction systems for the subcontract
relations induced by the new preorders. Since contractual preorder makes explicit the
assumptions about the contexts in which a particular service should be used, the study
of coercions (or filters) looks like a promising mechanism for computing the minimal
adjustments required by a service in order to fulfill a particular contract.

References

1. M. Bravetti and G. Zavattaro. Towards a unifying theory for choreography conformance
and contract compliance. In SC, volume 4829 of Lect. Notes in Comput. Sci., pages 34–50.
Springer Verlag, 2007.

2. M. G. Buscemi, R. De Nicola, and H. Melgratti. Contractual testing. Available at http:
//eprints.imtlucca.it/1261/.

3. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services. In POPL,
pages 261–272, 2008.

4. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services. ACM
Trans. Program. Lang. Syst., 31(5), 2009.

5. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theor. Comput. Sci.,
34:83–133, 1984.

19

6. R. De Nicola and M. Hennessy. CCS without tau’s. In TAPSOFT, Vol.1, volume 249 of Lect.
Notes in Comput. Sci., pages 138–152. Springer, 1987.

7. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In ESOP, volume 1381 of Lect. Notes in
Comput. Sci., pages 122–138. Springer Verlag, 1998.

8. C. Laneve and L. Padovani. The Must preorder revisited. In CONCUR, volume 4703 of Lect.
Notes in Comput. Sci., pages 212–225, 2007.

9. R. Milner. Communication and Concurrency. Prentice Hall International, 1989.
10. K. Schmidt. Controllability of open workflow nets. In EMISA, volume 75 of LNI, pages

236–249. GI, 2005.
11. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.

In PARLE, volume 817 of Lect. Notes in Comput. Sci., pages 398–413. Springer Verlag,
1994.

20

