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Abstract. Here we provide a detailed analysis, along with some extensions and additonal investigations,
of a recently proposed [1] self-organized model for the evolution of complex networks. Vertices of the
network are characterized by a fitness variable evolving through an extremal dynamics process, as in the
Bak–Sneppen [2] model representing a prototype of Self-Organized Criticality. The network topology is in
turn shaped by the fitness variable itself, as in the fitness network model [3]. The system self-organizes
to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a
critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading
to an unexpected behaviour of these quantities.

PACS. 89.75.Hc Networks and genealogical trees – 05.65.+b Self-organized systems

1 Introduction

Complex networks represent a very active topic in the field
of statistical physics. The possibility to describe several
different systems as structures made of vertices (subunits)
connected by edges (their interactions) has proved suc-
cessful in a variety of disciplines, ranging from computer
science to biology [4,5]. One common feature amongst all
these different physical systems is the lack of a character-
istic scale for the degree (the number of edges per vertex),
and the presence of pairwise correlations between the de-
grees of neighboring vertices. On top of these topologi-
cal properties, also the dynamical processes acting on a
network often show unexpected features. Indeed, the dy-
namics of the outbreak of an infectious disease is totally
different when defined on complex networks rather than
on regular lattices [6,7].

Many different models have been presented in order
to reproduce such behaviour. One of the earliest ones, in-
troduced by Barabási and Albert [8], uses “growth” and
“preferential attachment” as active ingredients for the on-
set of degree scale invariance. On the other hand, there is
growing empirical evidence [9,10] that networks are often
shaped by some variable associated to each vertex, an as-
pect captured by the ‘fitness’ model [3,11,12]. In general
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the onset of scale invariance seems to be related to the fine
tuning of some parameter(s) in all these models, while it
would be desirable to present a mechanism through which
this feature can develop in a self-organised way.

Here we describe in detail, and partly extend, a re-
cently proposed model [1] where the topological proper-
ties explicitly depend on vertex-specific fitness variables,
but at the same time the latter spontaneously evolve to
self-organized values, without external fine tuning. The
steady state of the model can be analytically solved for
any choice of the connection probability. For particular
and very reasonable choices of the latter, the network de-
velops a scale-invariant degree distribution irrespective of
the initial condition.

This model integrates and overcomes two separate
frameworks that have been explored so far: dynamics on
fixed networks and network formation driven by fixed vari-
ables. These standard approaches to network modelling
assume that the topology develops much faster than other
vertex-specific properties (no dynamics of the latter is
considered), or alternatively that the vertices’ properties
undergo a dynamical process much faster than network
evolution (the topology is kept fixed while studying the
dynamics). Of course, by separating the dynamical and
topological time-scales, and allowing the “fast variables”
to evolve while the “slow variables” are fixed (quenched),
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the whole picture becomes simpler and more tractable.
However, this unavoidably implies that the slow variables
must be treated as free parameters to be arbitrarily spec-
ified and, more importantly, that the feedback effects be-
tween topology and dynamics are neglected.

The main results highlighted by the self-organised
model is that these feedback effects are not just a slight
modification of the decoupled scenario [1]. Rather, they
play a major role by driving the system to a non equilib-
rium stationary state with non-trivial properties, a feature
shared with other models of dynamics-topology coupling
on networks [13–17].

2 The model

2.1 The Bak-Sneppen model and SOC

In order to define a self-organized mechanism for the on-
set of scale-invariance, we took inspiration from the ac-
tivity in the field of Self-Organized Criticality(SOC) [18].
In particular, we considered a Bak-Sneppen like evolution
for the fitness variable [2]. In the original formulation, one
deals with a set of vertices (representing biological species)
placed on a one-dimensional lattice whose edges represent
predation relationships. This system is therefore a model
for a food chain, and it has been investigated to show
how the internal dynamics is characterised by scale-free
avalanches of evolutionary events [2]. Every species i is
characterised by a fitness value xi drawn from a uniform
probability distribution ρ(x) defined between 0 and 1. The
species with the minimum value of the fitness is selected
and removed from the (eco)system. This reflects the in-
terpretation of the fitness as a measure of success of a
particular species against other species. Removal of one
species is supposed to affect also the others. This is mod-
eled by removing the predator and the prey (the nearest
neighbours in a 1-dimensional lattice) of the species with
the minimum fitness. Three new species are then intro-
duced to replace the three ones that have been removed.
Alternatively, this event is interpreted as a mutation of
the three species towards an evolved state. The fitnesses
of the new species are always extracted from a uniform
distribution on the unit interval. The steady state ob-
tained by iterating this procedure is characterised by a
uniform distribution of fitnesses between a lower critical
threshold τ = 0.66702 ± 0.00008 [19] and 1. The size s
of an avalanche, defined as a series of causally connected
extinctions, follows a scale-free distribution P (s) ∝ s−χ

where χ = 1.073± 0.003 [19].
The behaviour of this model has also been stud-

ied on different fixed topologies, including regular lat-
tices [2,20,21], random graphs [22], small-world [23] and
scale-free [24] networks. The value of the critical threshold
τ is found to depend on the topology, but the stationary
fitness distribution always displays the same qualitative
step-like behaviour. These more complicated structures
are closer to realistic food webs [25], and allow the num-
ber of updated vertices (which equals one plus the degree

Fig. 1. Left: a graph at time t. The black vertex has the mini-
mum fitness, and the two grey ones are its neighbours. Right: at
the next time step t+1, three new fitness values are assigned to
the vertices (light grey), and connections are established anew
between the three vertices and the rest of the network.

of the minimum-fitness vertex) to be heterogeneously dis-
tributed. Nevertheless, as long as the network is fixed, the
model leads to the ecological paradox that, after a muta-
tion, the new species always inherits exactly all the links
of the previous species. This represents a problem, since it
is precisely the structure of ecological connections among
species which is believed to be both the origin and the
outcome of macroevolution [26]. At odds with the model,
a mutated species is expected to develop different interac-
tions with the rest of the system.

2.2 Self-organised graph formation

These problems are overcome if the network is not fixed,
and evolves as soon as vertices mutate. At the same time,
if the evolving topology is assumed to depend on the fit-
ness values, one obtains a self-organised model that also
allows to explore the interplay between dynamical and
topological properties.

The simplest way to put these ingredients together is
to couple the Bak-Sneppen model [2] with the fitness net-
work model [3]. In this way [1], we start by specifying a
fixed number N of vertices, and by assigning each ver-
tex i a fitness value xi initially drawn from a uniform
probability distribution between 0 and 1. This coincides
with the Bak-Sneppen initial state. However, we do not
fix the topology of the network, since it is determined by
the fitness values themselves as the system evolves. More
specifically, the edge between any pair of vertices i and
j is drawn from a fitness dependent probability f(xi, xj)
as in the fitness model [3]. At each timestep the species
with lowest fitness and all its neighbours undergo a mu-
tation, and their fitness values are drawn anew. As soon
as a vertex i mutates, also the connections between it and
all the other vertices j are drawn anew with the specified
probability f(xi, xj). An example of this evolution for a
simple network is shown in Figure 1.

2.3 Two rules for mutations

There are various possible choices for updating the fitness
of a mutating vertex. In reference [1] we assumed that
each neighbour j of the minimum-fitness vertex receives a
completely new fitness drawn from the uniform distribu-
tion on the unit interval. We shall refer to this choice as
rule 1:

xj(t + 1) = η (1)
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where η is uniformly distributed between 0 and 1. In this
case, irrespective of the number of other vertices j is con-
nected to, xj will be completely updated.

Besides this rule, here we consider a weaker require-
ment in which the fitness of each neighbour j is changed
only by an amount proportional to 1/kj, where kj is j’s
degree. We denote this choice as rule 2:

xj(t + 1) =
1
kj

η +
kj − 1

kj
xj(t) (2)

where again η is a random number uniformly distributed
between 0 and 1. Rule 2 corresponds to assume that the
fitness xj is completely modified only if j is connected only
to the minimum-fitness vertex (that is, kj = 1). If j has
kj − 1 additional neighbours, a share (kj − 1)/kj of xj is
unchanged, and the remaining fraction xj/kj is updated
to η/kj. This makes hubs affected less than small-degree
vertices. Clearly, it also implies that the probability of
connection to all other vertices varies by a smaller amount.

2.4 Arbitrary timescales for link updates

As we now show, the stationary state of the model does
not change even if arbitrary link updating timescales are
introduced. In other words, the results are unchanged even
if we allow each pair of vertices to be updated at any addi-
tional sequence of timesteps, besides the natural updates
occurring when any of the two vertices mutates. Two dis-
tinct pairs of vertices may also be updated at different
sequences of timesteps. In general, if tij denotes the time
when the pair of vertices i, j is chosen for update, we allow
a link to be drawn anew between i and j with probabil-
ity f [xi(tij), xj(tij)]. To see that this does not change the
model results, we note that the fitness of each vertex i re-
mains unchanged until it is selected for mutation, and this
occurs only if i happens to be either the minimum-fitness
vertex or one of its neighbours. Therefore, for any pair of
vertices i, j, xi(tij) = xi(t′ij) and xj(tij) = xj(t′ij), where
t′ij < tij denotes the time of the most recent (before tij)
mutation of either i or j. Now, since at this latest update
the links between the mutating vertex and all other ver-
tices were drawn anew, it follows that t′ij coincides with
the timestep when a connection was last attempted be-
tween i and j, with probability f [xi(t′ij), xj(t′ij)]. There-
fore, between t′ij and tij , a link exists between i and j with
probability f [xi(t′ij), xj(t′ij)]. On the other hand, if at time
tij the update is performed, a link will be created with
probability f [xi(tij), xj(tij)] = f [xi(t′ij), xj(t′ij)]. There-
fore the connection probability is unchanged by the up-
dating event. Since the stationary state of the model only
depends on this probability, we find that updating events
do not affect the stationary state. Therefore our model is
very general in this respect, and allows for rearrangements
of ecological interactions on shorter timescales than those
generated by mutations. This extremely important result
also means that, if the whole topology is drawn anew at
each timestep, the results will be unchanged. This is a
very useful property that can be exploited to perform fast
numerical simulations of the model.

3 Numerical results for rules 1 and 2

In this section we present numerical results obtained by
simulating the model using particular choices of the mu-
tation rule and of the connection probability. For rule 1,
these numerical results will be confirmed by the analytical
results that we present later on.

Traditionally, one of the most studied properties of the
BS model on regular lattices is the statistics of avalanches
characterizing the SOC behaviour [2]. Nevertheless, as
shown in reference [27], in presence of long-range [22] con-
nections as those displayed by our model, the SOC state
can be wrongly assessed in terms of the avalanche statis-
tics. Indeed, the absence of spatial correlations questions
criticality even in case the avalanches are power-law dis-
tributed. We then move to the study of the topological
properties of the system by considering the fitness dis-
tribution ρ(x) and the degree distribution P (k) at the
stationary state.

3.1 Choice of the connection probability

We now first need to choose a functional form for the con-
nection probability f(x, y). The constant choice f(x, y) =
p is the trivial case corresponding to a random graph. This
choice is asymptotically equivalent to the random neigh-
bour variant [22] of the BS model, the average degree of
each vertex being d = p(N − 1) ≈ pN (we drop terms of
order 1/N from now on). This choice is therefore too sim-
ple to introduce novel effects. Indeed, the independence of
the topology on the fitness introduces no feedback between
structure and dynamics.

We therefore make the simplest non trivial choice. If
we require that the fitness-dependent network has no de-
gree correlations other that those introduced by the local
properties alone, the simplest choice for f(x, y) is [28,29]

f(x, y) =
zxy

1 + zxy
(3)

where z is a positive parameter controlling the number
of links. Apart for the structural correlations induced
by the degree sequence [28,29], higher-order properties
are completely random, as in the configuration model
[30,31]. Coming back to the ecological meaning of the
Bak-Sneppen model, the above choice is consistent with
the interpretation that the more a species is connected to
other species, the more it is fit to the whole environment:
the larger x and y, the larger f(x, y). When z � 1, the
above connection probability reduces to the bilinear choice

f(x, y) = zxy. (4)
In this case, a sparse graph is obtained where structural
correlations disappear.

3.2 Stationary fitness distribution

In Figure 2 we show the numerical results for a series of
computer simulations of the model, with sizes ranging be-
tween N = 100 to N = 2000. Both rule 1 and 2 were
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Fig. 2. Stationary fitness distribution obtained by numerical
simulations of networks with different numbers N of vertices
and using either rule 1 or rule 2.

used to update the neighbours of the minimum-fitness
vertex. Some qualitative features can be spotted imme-
diately. Firstly, all fitness values move above a positive
threshold τ , as in the traditional Bak-Sneppen model on
various topologies. However, here the fitness distribution
above the threshold is not uniform. The fitness values self-
organize to a scale-free distribution with the same expo-
nent −1 regardless of the size N of the system. This is
a remarkable difference, and highlights the effect of the
interplay between dynamics and topology. Finally, rule 1
and 2 produce a similar fitness distribution. In Section 4,
where we provide an analytical solution of the model for
rule 1, we demonstrate that the exponent is exactly −1.

3.3 Stationary degree distribution

In Figure 3 we also plot the degree distribution P (k),
whose behaviour is similar to that of ρ(x). In particu-
lar, we find that the degree distribution has a power-law
shape with the same exponent of the fitness distribution,
plus two cut-offs at small and large degrees. This is not
surprising since one can derive analytically the connection
existing between degree distribution and fitness distribu-
tion in the fitness model [32,33]. The expected degree k(x)
of a vertex depends on its fitness x. Thus here the lower
cut-off corresponds to the value k(τ) and is the effect of
the fitness threshold. The upper cut-off corresponds in-
stead to the maximum possible value k(1), that depends
on the parameter choice. This behaviour will be confirmed
by the theoretical results presented in Section 4.

3.4 Size dependence of the threshold

It is clear from Figure 2 that the different sizes affect the
value of the threshold. More precisely, the latter decreases
as system size increases. Furthermore, τ also depends on
the parameter z. To better characterise this behaviour, we
plot in Figure 4 the dependence of τ on zN . We find that

Fig. 3. Stationary degree distribution obtained by numerical
simulations of networks with different numbers N of vertices.

100 1000 104 105 106 107

0.200

0.100

0.050

0.020

0.010

0.005

0.002

Nz

Τ

Fig. 4. Dependence of the critical threshold τ on zN . The
points correspond to numerical simulations (using rule 1) for
N = 5000 and (from left to right) z = 0.01, 0.1, 1, 10, 100, 1000.
The solid curve is the theoretical prediction τ (zN) derived in
equation (17) using the analytical solution presented in Sec-
tion 4.

τ only depends on the combination zN , a result that we
later confirm analytically. Indeed, the solid curve superim-
posed to the data is obtained using the analytical results
of Section 4.

3.5 Average fitness versus threshold

An overall measure of the evolution of the fitness values
from the initial state to the stationary one can be ob-
tained in terms of the average fitness 〈x〉 of vertices at
the stationary state. In the initial state, clearly 〈x〉 = 1/2.
As the fitness values move above the emerging threshold,
〈x〉 increases, until in the stationary state it reaches an
asymptotic value. An important trend we identify is that,
for fixed N , as z increases 〈x〉 decreases. Since also τ de-
creases as z increases, it is interesting to monitor this effect
by plotting 〈x〉 as a function of the threshold τ . This is re-
ported in Figure 5 for z = 0.01, 0.1, 1, 10, 100, 1000. Once
again, the simulations agree with the theoretical predic-
tions that will be derived in the next section.
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Fig. 5. Dependence of the average fitness 〈x〉 of vertices at
the stationary state on τ . The points correspond to numerical
simulations (using rule 1) for N = 5000 and (from right to left)
z = 0.01, 0.1, 1, 10, 100, 1000. The solid curve is the theoretical
prediction derived using the analytical solution presented in
Section 4.

4 Theoretical results for rule 1

If rule 1 is adopted, it is possible to derive complete ana-
lytical results even for an arbitrary linking function [1]. We
first briefly report the general analytical solution, and then
show its particular form for specified choices of f(x, y).

4.1 General analytic solution

The method we used is to consider the master equation
for the fitness distribution ρ(x, t) in the system at the
stationary state [1]. If a stationary state exists then

dρ(x, t)
dt

= 0 for t → ∞. (5)

This equation can be written in the same limit as

dρ(x, t)
dt

= rin(x, t) − rout(x, t) = 0 (6)

where rin,out(x, t) denotes the fraction of vertices whose
fitness is x entering/leaving the system respectively at
time step t. At the steady state (t → ∞) these quanti-
ties no longer depend on t, and we denote them by rin(x)
and rout(x). It can be shown [1] that these quantities can
be computed separately in terms of the distribution q(m)
of the minimum fitness. One finds

rin(x) =
1 + 〈kmin〉

N
(7)

where 〈kmin〉 ≡ ∫ τ

0
q(m)k(m)dm is the expected degree

of the vertex with minimum fitness. This relation sim-
ply states that when the minimum is selected, then one
vertex (the minimum itself) plus its neighbours (on av-
erage 〈kmin〉) are replaced by new vertices with fitnesses
extracted from a uniform distribution.

One can also show that

rout(x) =
{

q(x)/N x < τ
ρ(x)

∫ τ

0 q(m)f(x, m)dm x > τ
(8)

where τ is defined here as the fitness value below which, in
the large size limit, the fitness distribution ρ(x) = q(x)/N
is essentially determined by the distribution of the mini-
mum, and above which ρ(x) > q(x)/N , or in other words

lim
N→∞

Nρ(x)
q(x)

{
= 1 x ≤ τ
> 1 x > τ.

(9)

if one now requires rin(x) = rout(x) at the stationary
state, it is straightforward to obtain the analytical solution
for any form of f(x, y) [1]:

ρ(x) =

⎧
⎨

⎩

(τN)−1 x < τ
1

N
∫ τ

0
f(x, m)dm

x > τ (10)

as a remarkable result, here we find that ρ(x) is in general
not uniform for x > τ , in contrast with the Bak-Sneppen
model on fitness–independent networks.

The value of τ is determined implicitly through the
normalization condition

∫ 1

0
ρ(x)dx = 1, which implies

∫ 1

τ

dx
∫ τ

0 f(x, m)dm
= N − 1. (11)

The topology of the network at the stationary state can
be completely determined in terms of ρ(x) as in the static
fitness model [3,32,33]. For instance, the expected degree
of a vertex with fitness x is k(x) = N

∫
f(x, y)ρ(y)dy.

Therefore the above solution fully characterizes both the
dynamics and the topology at the stationary state.

As in the standard BS model, in the infinite size limit
N → ∞ the distribution q(m) of the minimum fitness is
uniform between 0 and τ , while almost all other values are
above τ [1]. In other words, q(m) = Θ(τ − m)/τ .

4.2 Fitness-independent networks: random graphs

The latter result generalizes what is obtained for the
random-neighbour variant of the BS model [22]. Indeed,
as already noticed, the random-neighbour model is a par-
ticular case of our model, obtained with the trivial choice
f(x, y) = p. The network is a random graph independent
of the fitness values, with Poisson-distributed degrees. We
now briefly discuss this case as a null reference for more
complicated choices discussed below. Our analytical result
in equation (10) becomes

ρ(x) =
{

(τN)−1 x < τ
(pτN)−1 x > τ.

(12)

We therefore recover the standard result that, at the sta-
tionary state, the fitness distribution is step-like, with on
average one vertex below the threshold and all other val-
ues uniformly distributed between τ and 1. We note from
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equation (10) that the uniform character above τ is only
possible when f(x, y) does not depend on x and y, or in
other words when there is no feedback between the dynam-
ical variables and the structural properties. This highlights
the novelty introduced by this feedback.

The value of τ is related to the topology. In particular,
depending on how p scales with N , equation (11) leads to

τ =
1

1 + pN
→

⎧
⎨

⎩

1 pN → 0
(1 + d)−1 pN = d
0 pN → ∞

(13)

these three regimes for the fitness correspond to three dif-
ferent possibilities for the topology. In particular, they are
related to the percolation phase transition driven by the
parameter p representing the density of the network. For
small values of p, the graph is split into many small sub-
graphs or clusters, whose size is exponentially distributed.
As p increases, these clusters become progressively larger,
and at the critical percolation threshold pc ≈ 1/N [4,30]
the cluster size distribution is scale-invariant. When p >
pc a large giant cluster appears, whose size is of order
O(N) and whose relative size tends to 1 as p → 1.

Now, it is clear that below the percolation threshold
(subcritical regime) the minimum-fitness vertex is in most
cases isolated, with no neighbours. Thus it is the only up-
dated vertex, and as a result all fitness values, except the
newly replaced one, tend towards 1. This explains why
τ → 1 in this case. By contrast, if pN = d with finite
d > 1 (sparse regime), then a finite number of vertices is
updated, and τ remains finite as N → ∞. This is pre-
cisely the case considered in the random-neighbour vari-
ant [22], that we recover correctly. Finally, if pN → ∞
(dense regime), then an infinite number 〈kmin〉 = pN of
fitnesses is continuously updated. Therefore ρ(x) is uni-
form between 0 and 1 as in the initial state, and τ → 0.
The possible dynamical regimes are tightly related to the
topology of the network, depending on the parameter z.
This result holds also for the more complicated case that
we consider below.

The average fitness 〈x〉 can be computed analyti-
cally as

〈x〉 ≡
∫ 1

0

xρ(x)dx (14)

using equations (12) and (13), it is straightforward to
show that

〈x〉 =
1 + τ

2
(15)

so that, as expected, 〈x〉 increases from the initial value
1/2 to a stationary value linearly dependent on τ .

4.3 Fitness–dependent networks with local properties

We now present the analytical solution obtained with
the simplest non trivial choice discussed in Section 3.1,
f(x, y) = zxy/(1+ zxy). With the above choice, it can be
shown [1] that in the N → ∞ limit equation (10) becomes
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Fig. 6. Stationary fitness distribution ρ(x) for N = 5000 and
various values of z.

equivalent to

ρ(x) =
{

(τN)−1 x < τ
(τN)−1 + 2/(zNτ2x) x > τ

(16)

remarkably, now ρ(x) is found to be the superposition of a
uniform distribution and a power-law with exponent −1.
The value of τ , obtained as the solution of equation (11),
reads

τ =

√
φ(zN)

zN
→

⎧
⎨

⎩

1 zN → 0√
φ(d)/d zN = d

0 zN → ∞
(17)

as for random graphs, these three dynamical regimes are
found to be related to an underlying topological percola-
tion transition [1].

Figure 6 shows the stationary fitness distribution ρ(x)
appearing in equation (16). The theoretical results are in
excellent agreement with the numerical simulations shown
previously in Figure 2. Also, the theoretical dependence
of τ on zN appearing in equation (17) is plotted in
Figure 4 as a solid line, and shown to fit the simulation
results perfectly.

We can now obtain the exact expression for the av-
erage fitness value 〈x〉 at the stationary state. Inserting
equation (16) into equation (14) we find

〈x〉 =
1

2τN
+

2
zNτ2

(1 − τ) =
1

2τN
+

τ − 1
log τ

(18)

where in the last passage we have used the expression
zN = − log(τ2)/τ2 obeyed by zN [1], representing the
inverse of equation (17). For fixed N , equation (18) is
plotted in Figure 5 as a function of τ . Again the accor-
dance with simulations is very good. Remarkably, we find
that, even if during the evolution τ increases from 0 to
its asymptotic value as in the case f(x, y) = p, now the
stationary average value 〈x〉 is not necessarily larger than
the initial value 1/2. Indeed, for the interesting parameter
range, 〈x〉 < 1/2. This is the effect of ρ(x) being no longer
constant for x > τ .
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Fig. 7. Plot of k(x) for N = 5000 and various values of z.

In this case, the expected degree k(x) = N
∫

f(x, y)
ρ(y)dy of a vertex with fitness x reads [1]

k(x) =
2

zτ2
ln

1 + zx

1 + zτx
+

zx − ln(1 + zx)
zτx

· (19)

This behaviour is reported in Figure 7. For small (but
larger than τ) values of x, k is proportional to x. This
implies that in this linear regime the degree distribution
P (k) follows the fitness distribution ρ(x), as we reported
numerically in Section 3.3. By contrast, for large values of
x a saturation to a maximum degree is observed. This ex-
plains the upper cut-off of the degree distribution. The
width of the linear regime decreases as z increases, as
the network becomes denser and structural correlations
stronger [28,29,31]. This behaviour can be further charac-
terized analytically [1], by using the inverse function x(k)
to obtain the degree distribution as P (k)dk = ρ[x(k)]dx
[3]. The analytical form of P (k) perfectly agrees with the
numerical results [1].

5 Conclusions

We have discussed in detail a recent model [1] where
the interplay between topology and dynamics in com-
plex networks is introduced explicitly. The model is de-
fined by coupling the Bak-Sneppen model of fitness evo-
lution and the fitness model for network formation. The
model can be solved analytically for any choice of the con-
nection probability. Remarkably, the fitness distribution
ρ(x) self-organizes spontaneously to a stationary proba-
bility density, thus removing the need to specify an ad
hoc distribution as in the static fitness model. Moreover,
the stationary state is nontrivial and differs from what
is observed when dynamics and topology are decoupled.
Besides providing a possible explanation for the sponta-
neous emergence of complex topological properties in real
networks, these results indicate that adaptive webs offer
a new framework wherein unexpected effects can be ob-
served.
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