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We introduce an exact probabilistic description for L � 2 of the Barabási model for the dynamics of a
list of L tasks. This permits us to study the problem out of the stationary state and to solve explicitly the
extremal limit case where a critical behavior for the waiting time distribution is observed. This behavior
deviates at any finite time from that of the stationary state. We study also the characteristic relaxation time
for finite time deviations from stationarity in all cases showing that it diverges in the extremal limit,
confirming that these deviations are important at all time.
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Queuing theory is a very important branch of probability
with fundamental applications in the study of different
human dynamics [1]. Its capability in explaining and mod-
eling complex behaviors of such activities has potentially
important economic consequences. An example is the
prediction and organization of ‘‘queues’’ in hi-tech com-
munications. Queue stochastic dynamics is traditionally
modeled as a homogeneous Poisson processes [2]. As a
result, the time interval between different events is pre-
dicted to be exponentially distributed. Actually, different
experimental analyses [3,4] have shown that for various
human activities the distribution of waiting times is better
fitted by Pareto-like heavy tail distributions. In order to
reproduce such a behavior Barabási [5] has introduced a
simple model for a task list with a heavy tail distribution of
waiting times in its stationary state and in a particular
extremal limit. In this Letter we analyze the same model
out of the stationary state introducing an exact step-by-step
method of analysis through which we find the exact wait-
ing time distribution in the same extremal limit. We show
that in this limit the stationary state is reached so slowly
that the whole dynamics is described by the transient.

In the Barabási model the list consists at any time in a
constant number L of tasks to execute. Each task has a
random priority index xi (i � 1; . . . ; L) extracted by a
probability density function (PDF) ��x� independently
one of each other. The dynamical rule is the following:
with probability 0 � p � 1 the most urgent task (i.e., the
task with the highest priority) is selected, while with
complementary probability (1� p) the selection of the
task is done completely at random. The selected task is
executed and removed from the list; it is then replaced by a
fresh new task with random priority extracted again from
��x�. For p � 0 the selection of the task at each time step is
completely random. Therefore, the waiting time distribu-
tion for a given task isP��� � �1=L��1� 1=L�� and decays
exponentially fast to zero with time constant �0 ’ L. For
p � 1 instead the dynamics is deterministic selecting at
each time step the task in the list with the highest priority.
Because of this extremal nature, the statistics of the dy-
namics for p � 1 does not depend on ��x�. It has been

shown [5,6] that the dynamics for 0< p< 1 reaches a
stationary state characterized by a waiting time distribution
P��� which is proportional to ��1 with a p-dependent
upper cutoff and amplitude. For p! 1 the cutoff diverges,
but the amplitude vanishes, so that in this limit from one
side criticality (i.e., divergence of the characteristic wait-
ing time �0) is approached, but from the other P��� loses
sense due to the vanishing of its amplitude. From simula-
tions this behavior does not look to depend on L, and the
exact analytic solution for the stationary state has been
given for L � 2 in [6].

Here we propose a different approach to the problem for
L � 2 able to give a complete description of the task list
dynamics also out of the stationary state. In this way we
find the exact waiting time distribution for p � 1 which is
characterized by power law tails, but with a different
exponent from that found in [6] for the stationary state.
We also show that in this extremal limit the finite time
deviation from the trivial stationary state has diverging
relaxation time. Hence the waiting time distribution at
any time is completely determined by these deviations
and differs from the stationary one.

The method we use here is called run time statistics
(RTS) [7] and it has been introduced originally to study
the invasion percolation (IP) in dimension d � 2 [8,9] and
related models [10]. For p � 1 the present task list model
can be exactly mapped into IP in d � 1 which can be so
formulated: consider a linear chain of throats [see
Fig. 1(a)], each of which is given, independently of the
others, a random number xi extracted from the PDF ��x�
and representing its capillarity (inversely proportional to
the diameter). At t � 0 the invader fluid occupies only the
central throat. At each time step the growth interface is
composed by the two nonoccupied throats in contact with
the invaded region, and the invaded region grows by occu-
pying the interface throat with the maximal capillarity (i.e.,
minimal diameter). Consequently the interface is updated
by eliminating from it the selected throat and including the
next one in the direction of growth. This is exactly equiva-
lent to the task list problem for p � 1 and L � 2, with the
set of the already executed tasks given by the invaded
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region, and the task list given by the two throats of inter-
face. For 0< p< 1 the task list problem would correspond
to a sort of IP at finite temperature [11] which introduces a
source of noise in the problem permitting random nonex-
tremal growths. The quantity (1� p) is a measure of such
thermal noise which vanishes for p � 1 and becomes
maximal for p � 0. We note also that when the task list
size is not fixed but increases in time, the same kind of
mapping should apply relating the task list dynamics to IP
on a sort of random tree with randomly varying coordina-
tion number. This could explain the waiting time exponent
�3=2 found in [12].

In general, the basic ingredient to perform averages over
the possible realizations of the dynamics is the statistical
weight of a growth path (i.e., selection sequence). For
growth processes with quenched disorder it is very difficult
to factorize this statistical weight into the product of prob-
abilities of the composing elementary steps as these single-
step probabilities depend upon all the past history of the
process: dynamics in quenched disorder present usually
strong memory effects. To overcome this difficulty, RTS
gives a step-by-step procedure to write the exact evolution
of the probabilities of the single steps conditional to the
past history and the related conditional PDF of the random
variables attached to the growing elements (‘‘task prior-
ities’’ in this case). Given two tasks with respective prior-
ities x and y, we call ��x; y� the probability conditional to
these values to execute the task with priority x. The form of
� is determined by the selection rule of the model. Given
the definition of the Barabási model and being ��x� the

Heaviside step function, we have:

 ��x; y� � p��x� y� �
1� p

2
: (1)

If we now suppose that at the tth time step x and y are
statistically independent and have, respectively, the PDFs
conditional to the past history of the process p�x; t� and
q�y; t�, we can write the probability of selecting the task
with priority x conditional to the past history as

 ��t� �
Z 1

0

Z 1

0
dxdyp�x; t�q�y; t���x; y�: (2)

When the selection is done, the selected task is removed
from the list and replaced by a fresh new task with a
random priority extracted from ��x�. The other task re-
mains instead in the list. We indicate the first fresh task
with N (as ‘‘new’’). The PDF of its priority conditional to
the past history is simply ��x� as it is new. The second task
is consequently indicated with O (as ‘‘old’’), and we call
the PDF of its priority, conditional to the past history of the
task list, as pO�x; t�. Given our particular form (1) of
��x; y�, pO�x; t� is, for p > 0, more concentrated on the
small values of x than ��x�. At t � 0 the initial condition is
pO�x; 0� � ��x�. Since at each time step the task N is new,
the priorities x and y of N and O are statistically indepen-
dent, and their joint probability factorizes into the product
��x�pO�y; t�. Any selection path of the task list lasting �
steps can be represented as a time ordered string of � letters
N and O (e.g., NONNONO . . . ). In particular, the statis-
tical weight of the selection path NN . . .N composed by �
subsequent events N gives the probability that the waiting
time of the taskO, from the beginning of the list dynamics,
is at least �. In terms of IP in d � 1 this path represents a
growth avalanche in one single direction starting at t � 0
and lasting at least � steps. We can rewrite Eq. (2) for both
the cases in which the task N or O are selected at time t:
 

�N�t��
Z 1

0

Z 1

0
dxdy��x�pO�y;t���x;y�;

�0�t��1��N�t��
Z 1

0

Z 1

0
dxdypO�x;t���y���x;y�:

(3)

For both selection events, the conditional PDFs of the
priorities are consequently updated including this last
step in the past history conditioning probabilities. As ex-
plained above, the conditional PDF of the new task replac-
ing the selected one is ��x�. Instead, the conditional PDF
pO�x; t� 1� at time (t� 1) of the just unselected task, still
in the list, is different in the two cases above. If the task N
is selected, the task O remains O also at the next time step.
We use conditional probability to include also the memory
of the last selection step:

 pO�x; t� 1� �
1

�N�t�
pO�x; t�

Z 1

0
dy��y���y; x�: (4)

If instead O is selected at time t, it is removed, and the task
N at time t becomes the task O at (t� 1):

 

FIG. 1. (a) First four time steps of an IP dynamics in d � 1. At
the initial time step only the central throat is occupied (black). At
each time step the occupied region (black) grows by invading the
throat of the growth interface (gray) with the maximal capil-
larity. The growth interface is consequently updated by removing
the just occupied throat and including the next unoccupied one in
the direction of growth. (b) Tree representation of all the possible
selection paths (i.e., realizations) of the task list dynamics or
alternatively of IP in d � 1. At each time step either the fresh
new task (N) either the old one (O) is selected. Any possible
dynamical history of length t consists of a continuous sequence
of arrows connecting the vertex at height t � 0 with a node at
height t.
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 pO�x; t� 1� �
1

�O�t�
��x�

Z 1

0
dypO�y; t���y; x�: (5)

The whole set of all possible selection paths can be repre-
sented as a non-Markovian binary branching process
whose realizations tree is represented in Fig. 1(b). The
initial node (top vertex) represents the initial situation
with two tasks with completely random priorities with
PDF ��x�. From each node there is a bifurcation of possible
choices: either task N or O. Therefore, each node of the
tree represents the task list at the end of the time ordered
selection path connecting directly the top vertex with the
given node and is characterized by path-dependent condi-
tional PDFpO and probabilities for the next bifurcation�N
and �O which can be evaluated through the step-by-step
RTS procedure. The exact statistical weight of each selec-
tion path on the tree is given by the product of the prob-
abilities � along the path. Therefore, the RTS provides a
full mathematical description of the task list dynamics.
Note that such dynamics in this model is a binary branch-
ing process with memory, in the sense that the probabilities
of a configuration at a given time depends for p > 0 on all
the past history of the list. This memory effect is maxi-
mized for p � 1 when the dynamics becomes determinis-
tic and extremal.

A fundamental quantity in this class of dynamics is the
average priority ‘‘histogram’’ [9,11] that is the statistical
distribution of the priorities of the task list at a given time t
averaged over all the selection paths: h�x; t� �
���x� � hpO�x; t�it�=2. Hence, the evolution of h�x; t� is
directly given by that of �1�x; t� � hpO�x; t�it. The equa-
tion for its time evolution can be found by observing that at
each binary branching starting from a node at time t of the
tree, we can say that with probability �N�t� the priority
conditional PDF pO�x; t� updates as in Eq. (4) and with
probability �O�t� as in Eq. (5), i.e.,

 �O�x; t� 1; t� � pO�x; t�
Z 1

0
dy��y���y; x� � ��x�

	
Z 1

0
dypO�y; t���y; x�;

where �O�x; t� 1; t� is the conditional PDF of the priority
of the task O at time (t� 1) conditional to the history only
up to time t. By applying this average from the first time
step it is simple to show that:

 �1�x; t� 1� � �1�x; t�
Z 1

0
dy��y���y; x� � ��x�

	
Z 1

0
dy�1�y; t���y; x�: (6)

This is exactly the basic equation used in [6] to study the
task list dynamics in the stationary state, i.e., when
�1�x; t� 1� � �1�x; t�. We show in the following that,
however, in the limit p! 1 the stationary state is reached
only very slowly and that the waiting time distribution is
determined by the finite time deviation from the stationary

state at all time. This waiting time distribution is again a
power law, but with a different exponent with respect to
that found in [6]. We now solve exactly the RTS for the
case p � 1. For our calculation we use here ��x� � 1 for
x 2 �0; 1� as in [6] because the path statistics, as afore-
mentioned, does not depend on ��x�. Hence Eqs. (3) above
take the simple form:

 �e
N�t� �

Z 1

0
dx�1� x�peO�x; t�;

�e
O�t� � 1��e

N�t� �
Z 1

0
dxxpeO�x; t�;

where the superscript ‘‘e’’ stands for ‘‘extremal.’’
Analogously Eqs. (4) and (5) for p � 1 read, respectively,

 pe0�x; t� 1� �
1

�e
N�t�
�1� x�peO�x; t�;

pe0�x; t� 1� �
1

�e
O�t�

Z 1

x
dxpeO�x; t�:

Using peO�x; 0� � ��x� in the above equations, one finds
that, for any selection path, �e

N, �e
O, and peO becomes:

 �e
N�t� �

t� 1

t� 2
; �e

O�t� �
1

t� 2
(7)

 peO�x; t� � �t� 1��1� x�t: (8)

Since peO�x; t� is independent of the considered path,
�1�x; t� for p � 1 coincides with it. Note that �e

N�t!
1� ! 1 and �1�x; t� � peO�x; t! 1� ! ��x� 0�� [where
��x� is the Dirac delta function]; i.e., in the infinite time
limit the new fresh task is always selected as the old one
has vanishing priority with probability one. The fact that
both the �e’s and the pe’s at time t are the same for each
selection path of length t is a feature of the p � 1 case.
This is not the case for 0< p< 1 where instead the condi-
tional selection probability and priority PDFs at time t
depend on which specific selection path is considered.
We now analyze the consequences of Eq. (7). It permits
to find the waiting time distribution of a given task entered
the list at time t0. From Eq. (7) we find that for p � 1 the
waiting time is � � 0 with probability P�� � 0; t0� �
�t0 � 1�=�t0 � 2�. The probability that it is still waiting
after � 
 1 steps, i.e., at time t0 � �, is

 W��; t0� �
1

t0 � 2

Y��1

t0�1

t0 � t
0 � 1

t0 � t0 � 2
�

1

t0 � �� 1
;

which is the probability of the path ONN . . .N with one O
event at t0 and (�� 1) subsequent N events. Hence the
probability that the waiting time is exactly � 
 1 is

 P��; t0� �
W��; t0�
t0 � �� 2

�
1

�t0 � �� 1��t0 � �� 2�
; (9)

which is the statistical weight of the selection path
ONN . . .NO with one O event at t0, (�� 1) subsequent
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N events and a final O event. Note that this corresponds in
IP to the statistical weight of an avalanche starting a time t0
and lasting � steps. The probability P��; t0� decreases as
��2 for �� t0 (a behavior confirmed by numerical simu-
lations—see Fig. 2). Therefore, the waiting time distribu-
tion for a task entered at time t0 is normalizable in �, but
with diverging mean value. This behavior is different from
the power law P��� � ��1 found in [6] for the stationary
state for 0< p< 1, which, however, disappears for p! 1
as its amplitude vanishes in this limit. For the opposite
limit t0 � �� 1 one can write P��; t0� ’ t�2

0 �1� 2�=t0�,
which decreases as t�2

0 with t0. This gives the rate of
approach in the initial time t0 to the trivial stationary state
P��; t0 ! 1� � 1 or 0, respectively, if � � 0 or � 
 1.
This rate is very slow and there is no characteristic time
after which one can say that the stationary state is attained
in terms of � dependence.

In order to study the approach to the stationary state for
p! 1, let us analyze in detail Eq. (6). First of all we
rewrite this equation using the explicit form (1) of ��x; y�
for this model and ��x� � 1 for x 2 �0; 1�:

 �1�x; t� 1� � �1�x; t�
�
p�1� x� �

1� p
2

�

� p
Z 1

x
dy�1�y; t� �

1� p
2

: (10)

We now put �1�x; t� � ��s�1 �x� � ��1�x; t�, where ��s�1 �x� is
the stationary solution found in Eq. (4) of [6]:

 ��s�1 �x� �
1� p
1� p

1

�1� 2p
1�p x�

2
(11)

and ��1�x; t� is the finite time deviation from it. For p! 1

the PDF ��s�1 �x� ! ��x� 0�� and it coincides with Eq. (8)
for t! 1. Since �1�x; t� and ��s�1 �x� are both normalized to
unity, we have

R
1
0 dx��1�x; t� � 0. Therefore, as a first or-

der approximation we put
R

1
x dy��1�y; t� ’ �x��1�x; t�.

Taking also the continuous time approximation ���1�x; t�
1� � ��1�x; t�� ’ d��1�x; t�=dt, we can rewrite Eq. (10) in
terms of ��1�x; t� as

 

d��1�x; t�
dt

’ �

�
1� p

2
� 2px

�
��1�x; t�: (12)

Hence ��1�x; t� decays exponentially in time with an
x-dependent time constant inversely proportional to ��1�
p�=2� 2px�. For p < 1, at each x the perturbation decays
exponentially fast and the stationary state is attained, while
for p! 1 the time constants become proportional to 1=x
and the perturbation in the region around x � 0 relaxes
very slowly. But from Eq. (11) it is exactly in this region
that for p! 1 all the measure ��s��x� is concentrated. This
confirms our previous conclusion that for p! 1 the sta-
tionary state is very slowly attained and finite time devia-
tion from it plays a fundamental role in determining the
rate of decrease of the waiting time distribution.

In this Letter we have studied an interesting queuing
model of task list dynamics introduced by Barabási.
Through a statistical method called RTS, we are able to
give a complete probabilistic description of the dynamics
even out of stationarity. We find that for 0< p< 1 finite
time deviations from stationarity relaxes exponentially fast
and, consequently, the dynamics is well described by the
stationary state. However, for p! 1 the stationary state
becomes trivial and finite time deviations relax so slowly
that the task list dynamics has to be described as an intrinsi-
cally nonstationary dynamics. This is characterized by
power law waiting time distributions with a characteristic
exponent which is different from the one found [6] in the
stationary state for 0< p< 1.
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FIG. 2. Waiting time distribution P��; t0� in the task list dy-
namics with N � 2 and p � 1 and initial time t0 � 0, 10.
Numerical data for each t0 have been averaged over 107 realiza-
tions. As shown, it is very well fitted by Eq. (9).
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