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We present an approach of topology biased random walks for undirected networks. We focus on a one-
parameter family of biases, and by using a formal analogy with perturbation theory in quantum mechanics we
investigate the features of biased random walks. This analogy is extended through the use of parametric
equations of motion to study the features of random walks vs parameter values. Furthermore, we show an
analysis of the spectral gap maximum associated with the value of the second eigenvalue of the transition
matrix related to the relaxation rate to the stationary state. Applications of these studies allow ad hoc algo-
rithms for the exploration of complex networks and their communities.
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I. INTRODUCTION

The study of complex networks has notably increased in
the last years with applications to a variety of fields ranging
from computer science �1� and biology to social science
�2–4� and finance �5�. A central problem in network science
�6,7� is the study of random walks �RWs� on a graph, and in
particular of the relation between the topological properties
of the network and the properties of diffusion on it. This
subject is not only interesting from a purely theoretical per-
spective, but it has also important implications to various
scientific issues ranging from epidemics �8� to the classifica-
tion of web pages through PAGERANK algorithm �9�. Finally,
RW theory is also used in algorithms for community detec-
tion �10–14�.

In this paper we set up a framework for the study of
topologically biased random walks �TBRWs� on graphs. This
allows us to address problems of community detection and
synchronization �15� in the field of complex networks
�16,17�. In particular by using topological properties of the
network to bias the RWs we explore the network structure
more efficiently. A similar approach but with different focus
can be found in �18�. In this research we are motivated by the
idea that biased random walks can be efficiently used for
community finding. To this aim we introduce a set of math-
ematical tools which allow us an efficient investigation of the
“bias parameters” space. We apply these tools to uncover
some details in the spectra of graph transition matrix and use
the relation between spectra and communities in order to
introduce a methodology for an efficient community finding.
The paper is organized as follows: in the second section we
define the TBRWs. We then develop the mathematical for-
malism used in this paper, specifically the perturbation meth-
ods and the parametric equations of motion �PEM�, to track
the behavior of different biases. In the third section we focus
on the behavior of spectral gap in biased random walks. We
define the conditions for which such a spectral gap is maxi-
mal, and we present numerical evidence that this maximum

is global. In the fourth section we present an invariant quan-
tity for the biased random walk; such a constant quantity
depends only on topology for a broad class of biased random
walks. Finally, in the fifth section we present a general meth-
odology for the application of different TBRWs in the com-
munity finding problems. We then conclude by providing a
short discussion of the material presented and by providing
an outlook on different possible applications of TBRWs.

II. BIASED RANDOM WALKS

RWs on graphs are a subclass of Markovian chains �19�.
The traditional approach deals with the connection of the
unbiased RW properties to the spectral features of transition
operators associated with the network �20�. A generic graph

can be represented by means of the adjacency matrix Â
whose entries Aij are 1 if an edge connects vertices i and j
and zero, otherwise. Here, we consider undirected graphs, so

that Â is symmetric. The normal matrix T̂ is related to Â
through T̂= Âk̂−1, where k̂ is a diagonal matrix with �k̂�ii
=ki, i.e., the degree, or number of edges, of vertex i. In the
following we use uppercase letters for nondiagonal matrices
and lowercase letters for the diagonal ones. Note that by
definition kj =�iAij. Consequently, �iTij =1 with Tij�0 if
and only if Aij =1, i.e., if i and j are nearest-neighbor verti-
ces. The matrix �Tij� defines the transition probabilities for
an unbiased random walker to pass from j to i. In such a case
Tij has the same positive value for any of the neighbors i of
j and vanishes for all the other vertices �21�. In analogy to
the operator defining the single-step transition probabilities

in the general Markovian chains, T̂ is also called the transi-
tion matrix of the unbiased RWs.

A biased RW on a graph can be defined by a more general

transition matrix T̂, where the element Tij gives again the
probability that a walker on the vertex j of the graph will
move to the vertex i in a single step, but depending on ap-
propriate weights for each pair of vertex �i , j�. A genuine
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way to write these probabilities is to assign weights Wij
which represent the rates of jumps from vertex j to vertex i
and normalize them:

Tij =
Wij

�
l

Wlj

. �1�

In this paper we consider biases which are self-
consistently related to graph topological properties. For in-
stance, Wij can be a function of the vertex properties �the
network degree, clustering, etc.�, some function of the edge
ones �multiplicity or shortest path betweenness�, or any com-
bination of the two. There are other choices of biases found
in the literature such as, for instance, maximal entropy re-
lated biases �22�. Some of the results mentioned in this paper
hold also for biases which are not connected to graph prop-
erties as will be mentioned in any such case. Our focus on
graph properties for biases is directly connected with appli-
cation of biased random walks in examination of community
structure in complex networks.

Let us start by considering a vertex property xi of the
vertex i �it can be either local as, for example, the degree, or
related to the first neighbors of i as the clustering coefficient,
or global as the vertex betweenness�. We choose the follow-
ing form for the weights:

Wij = Aije
�xi, �2�

where the parameter ��R tunes the strength of the bias. For
�=0 the unbiased case is recovered. By varying � the prob-
ability of a walker to move from vertex j to vertex i will be
enhanced or reduced with respect to the unbiased case ac-
cording to the property xi of the vertex i. For instance, when
xi=ki, i.e., the degree of the vertex i, for positive values of
the parameter � the walker will spend more time on vertices
with high degree, i.e., it will be attracted by hubs. For �
�0 it will instead try to “avoid” traffic congestion by spend-
ing its time on the vertices with small degree. The entries of
the transition matrix can now be written as

Tij�x,�� =
Aije

�xi

�
l

Alje
�xl

�
Aije

�xi

zj���
. �3�

For this choice of bias we find the following results: �i� we
have a unique representation of any given network via op-

erator T̂�x ,��, i.e., knowing the operator, we can reconstruct
the graph; �ii� for small 	�	 we can use perturbation methods
around the unbiased case; �iii� this choice of bias permits us
in general also to visit vertices with vanishing feature x,
which instead is forbidden, for instance, for a power law W

x�; and �iv� this choice of biases is very common in the
studies of energy landscapes, when biases represent energies
xi�Ei �see, for example, �23� and references therein�.

In a similar way one can consider a symmetric edge prop-
erty yij �for instance, edge multiplicity or shortest path be-
tweenness� as bias. In this case we can write the transition
probability as

Tij�Ŷ,�� =
Aije

�yij

�
l

Alje
�ylj

. �4�

The general case of some complicated multiparameter bias
strategy can be finally written as

Tij�x,Ŷ,�� =

Aij exp��
�

��xi
��� + �

�

��yij
����

�
l

Alj exp��
�

��xl
��� + �

�

��ylj
���� . �5�

While we mostly consider biased RWs based on vertex
properties, as shown below, most of the results can be ex-
tended to the other cases. The transition matrix in the former

case can also be written as T̂�x ,��= ŵÂẑ−1, where the diag-
onal matrices ŵ and ẑ are such that wii=e�xi and zii

−1

=1 /�lAlie
�xl. The Frobenius-Perron theorem implies that the

largest eigenvalue of T̂�x ,�� is always �1���=1 �19�. Fur-
thermore, the eigenvector v1 associated with �1 is strictly
positive in a connected aperiodic graph. Its normalized ver-
sion, denoted as p���, gives the asymptotic stationary distri-
bution of the biased RWs on the graph. Assuming for it the
form pi���=����−1gi���zi���, where zi=� jAije

�xj and
�����0 is a normalization constant, and plugging this in

the equation p= T̂p, we get

pi = �
j

Tij�x,��pj = �−1e�xi�
j

Aijgj . �6�

Hence, the equation holds if and only if gi=e�xi. Therefore,
the stable asymptotic distribution of vertex centered biased
RWs is

pi��� = ����−1e�xizi��� . �7�

For �=0 we have the usual form of the stationary distribu-
tion in an unbiased RW where zi�0�=ki and ��0�=�iki. For
general � it can be easily demonstrated that the asymptotic
solution of an edge biased RW is pi=�−1zi, while for a mul-
tiparametric RW the solution is pi=�−1�exp�����xi

�����zi.
Using Eqs. �7� and �3� we can prove that the detailed

balance condition Tijpj =Tjipi holds. At this point it is conve-
nient to introduce a different approach to the problem �10�.
We start by symmetrizing the matrix T̂�x ,�� in the following
way:

T̂s�x,�� = �p̂����−1/2T̂�x,���p̂����1/2, �8�

where p̂��� is the diagonal matrix with the stationary distri-
bution �pi���� on the diagonal. The entries of the symmetric
matrix for the vertex centered case are given by

Tij
s �x,�� = Tji

s �x,�� = Aij
e�1/2���xi+xj�

zizj

. �9�

The symmetric matrix T̂s�x ,�� shares the same eigenvalues

with the matrix T̂�x ,��; anyhow the set of eigenvectors is
different and forms a complete orthogonal basis, allowing us
to define a meaningful “distance” between vertices. Such a
distance can provide important additional information in the
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problem of community partition of complex networks. If v�

is the �th eigenvector of the asymmetric matrix T̂�x ,�� as-
sociated with the eigenvalue ����� �therefore, v1=p�, the
corresponding eigenvector 	v�� of the symmetric matrix

T̂s�x ,�� can always be written as 	v��i=v�,i /pi. In particular
for �=1 we have 	v1�i�	p�i=pi. The same transformation
�8� can be applied to the most general multiparametric RWs.
In that case the symmetric operator is

Tij
s �x,�� = Tji

s �x,�� = Aij

exp��
�

��

2
�xi

��� + xj
���� + �

�

��yij
����

zizj

.

�10�

This form also enables the usage of perturbation theory
for Hermitian linear operators. For instance, knowing the
eigenvalue ����� associated with eigenvector 	v�����, we
can write the following expansions at sufficiently small
	�: ����+	��=�����+	���

�1����+¯ and 	v���+	���
= 	v�

�0�����+	�	v�
�1�����+¯. It follows that for a vertex cen-

tered bias

��
�1���� = �v����	T̂s�1��x,��	v����� , �11�

where

T̂s�1��x,�� �
�T̂s�x,��

��
=

1

2
��x̂,T̂s�+ − �x̂̄���,T̂s�+� , �12�

with �· , ·�+ being the anticommutator operator. The operator x̂
and x̂̄��� are diagonal matrices with �x̂�ii=xi and x̂̄ii���
=�lAlixle

�xl /z�i�, which is the expected value of x that a
random walker will find moving from vertex i to its neigh-
bors. In the case of edge bias the change of symmetric matrix

with parameter � can be written as �T̂s��� /��= Ŷ� T̂s���
−1 /2�ŷ̄ , T̂s����+, where � represents the Schur-Hadamard
product, i.e., elementwise multiplication of matrix elements.
The eigenvector components in �+	� at the first order of
expansion in the basis of the eigenvectors at � are given by
�for ����

�v����	v�
�1����� =

�v����	T̂s�1����	v�����
����� − �����

. �13�

For �=� the product �v���� 	v�
�1����� vanishes and Eqs. �12�

and �13� hold only for nondegenerate cases. In general, usual
quantum-mechanical perturbation theory can be used to go to
higher-order perturbations or to take into account degeneracy
of eigenvalues.

We can also exploit further the formal analogy with quan-
tum mechanics using PEM �24,25� to study the � depen-

dence of the spectrum of T̂s. If we know such spectrum for
one value of �, we can calculate it for any other value of �
by solving a set of differential equations corresponding to
PEM in quantum mechanics. They are nothing else but the
expressions of Eqs. �11� and �13� in an arbitrary complete
orthonormal base �	
���. First the eigenvector is expanded in
such a base: 	v�����=�	
���
� 	v��������c�����	
��. We
can then write

���

��
= c�

⊺���
�T̂s,
���

��
c���� , �14�

where c� �c�
⊺� is a column �row� vector with entries c�����

and T̂s,
 is the matrix with entries T̂��
s,
�����
�	T̂s���	
��.

Let us now define the matrix N̂��� whose rows are the copies
of vector c�

⊺���. The differential equation for the eigenvectors
in the basis �	
��� is then �25�

�c����
��

= �T̂s,
��� − ����� + N̂����−1

��c�
⊺���

�T̂s,
���
��

c���� −
�T̂s,
���

��
�c���� .

�15�

A practical way to integrate Eqs. �14� and �15� can be
found in �25�. In order to calculate the parameter dependence
of eigenvectors and eigenvalues, the best way to proceed is

to perform an LU decomposition of the matrix �T̂s,
���
−�����+ N̂����−1 as the product of a lower triangular matrix

L̂ and an upper triangular matrix Û, and integrate differential
equations of higher order which can be constructed in the
same way as Eqs. �14� and �15� �25�. A suitable choice for
the basis is just the ordinary unit vectors spanned by vertices,
i.e., �	
����	e��. We found that for practical purposes, de-
pending on the studied network, it is appropriate to use PEM
until the error increases too much and then diagonalize ma-
trix again to get a better precision. PEM efficiently enables
the study of large sets of parameters for large networks due
to its competitive advantage over ordinary diagonalization.

III. SPECTRAL GAP

A key variable in the spectral theory of graphs is the spec-
tral gap �= ��1−�2�, i.e., the difference between first unitary
and the second eigenvalues. The spectral gap measures how
fast the information on the RW initial distribution is de-
stroyed and the stationary distribution is approached. The
characteristic time for that is =−1 / ln��1−����1 /� �10�.
We show in Fig. 1 the dependence of spectral gap of simu-
lated graphs with communities for different strategies �de-
gree, clustering, and multiplicity based� at a given value of
parameter �. In all investigated cases the spectral gap has its
well-defined maximum, i.e., the value of parameter � for
which the random walker converges to stationary distribution
with the largest rate.

The condition of maximal spectral gap implies that it is a
stationary point for the function �2���, i.e., that its first-order
perturbation coefficient vanishes at this point:

0 = �v2��m�	
�T̂s��m�

��
	v2��m�� = �v2��m�	�x̂ − x̂̄��m��	v2��m�� ,

�16�

where x̂ and x̂̄ are defined above. The squares of entries,
c2,i

2 ���, of the vector 	v2���� in the chosen basis 	
i��	e�
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define a particular measure on the graph. Equation �16� can
be written as �ic2,i

2 ��m��xi− x̄i��m��=0.
Thus, we conclude that the local spectral maximum is

achieved if the average difference between property xi and its
expectation x̄i, with respect to this measure, in the neighbor-
hood of vertex i vanishes. We have studied the behavior of
spectral gap for different sets of real and simulated networks
�Barabási-Albert model with different ranges of parameters,
Erdős-Rényi model, and random networks with given com-
munity structure� and three different strategies �degree based,
clustering based, and multiplicity based�. Although in gen-
eral it is not clear that the local maximum of spectral gap is
unique, we have found only one maximum in all the studied
networks. This observation is interesting because for all
cases the shapes of spectral gap vs � look typically
Gaussian-like. In both limits �→ �� the spectral gap of
heterogeneous network is indeed typically zero, as the RW
stays in the vicinity of the vertices with maximal or minimal
value of studied property xi.

IV. RANDOM-WALK INVARIANT

A fundamental question in the theory of complex net-
works is how topology affects dynamics on networks. Our
choice of �-parametrized biases provides a useful tool to
investigate this relationship. A central issue is, for instance,
given by the search of properties of the transition matrix T,
which are independent of � and the chosen bias, but depend
only on the topology of the network. An important example
comes from the analysis of the determinant of T as a function
of the bias parameters:

� �
�=1

N

��

��
= �

�=1

N

��	
�Ts

��
	�� �

���

��. �17�

For vertex centered bias using Eq. �12� we have

� �
�=1

N

��

��
= �

�=1

N

��	�x̂ − x̂̄�	���
�=1

N

��, �18�

and using the diagonality of x̂ and x̂̄ii���=� ln zi /��,

�
�=1

N
�����z����

e�x�
= �

�=1

N
����0�z���0�

e�0x�
. �19�

In other words the quantity ��=1
N �����z���� /e�x� is a topo-

logical constant which does not depend on the choice of
parameters. For �=0 we get ��=1

N ��k�=const, and it follows
that this quantity does not depend on the choice of vertex
biases xi either. It can be shown that such a quantity coin-
cides with the determinant of adjacency matrix which must
be conserved for all processes.

V. COMMUNITY FINDING

There are many competing algorithms and methods for
community detection �11�. Despite a significant scientific ef-
fort to find such reliable algorithms, there is no agreement
yet on a single general solving algorithm for the various
cases. In this section instead of adding another precise
recipe, we want to suggest a general methodology based on
TBRWs which could be used for community detection algo-
rithms. To add trouble, the very definition of communities is
not a solid one. In most of the cases we define communities
as connected subgraphs whose density of edges is larger
within the proposed community than outside it �a concept
quantified by modularity �14��.

The scientific community is therefore thriving to find a
benchmark in order to assess the success of various methods.
One approach is to create synthetic graphs with assigned
community structure �benchmark algorithms� and test
through them the community detection recipes �26�. The
Girvan-Newman �GN� �14� and Lancichinetti-Fortunato-
Radicchi �LFR� �27� are the most common benchmark algo-
rithms. In both these models several topological properties
�not only edge density� are unevenly distributed within the
same community and between different ones. We use this
property to propose a methodology creating suitable TBRWs
for community detection. The difference between internal
and external parts of a community is related to the “physical”
meaning of the graph. In many real processes the establish-
ment of a community is facilitated by the subgraph structure.
For instance, in social networks agents have a higher prob-
ability of communication when they share a lot of friends.
We test our approach on GN benchmark since in this case we
can easily compute the expected differences between the
frequencies of biased variables within and outside the
community.
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FIG. 1. �Color online� Plot of the spectral gap �1−�2 vs � for
networks of ten communities with ten vertices each �the probability
for an edge to be in a community is pi=0.3, while outside the
community it is po=0.05�. Solid points represent the solutions com-
puted via diagonalization, while lines report the value obtained
through integration of PEM. Different bias choices have been
tested. Circles �blue� are related to degree-based strategy, squares
�red� are related to clustering-based strategies, and diamonds
�green� are related to multiplicity-based strategies. The physical
quantities to get the variable x in Eq. �2� in these strategies have
been normalized with respect to their maximum values.
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In this section we will describe how to use TBRWs for
community detection. For �=0 our method is rather similar
to the one introduced by Donetti and Muñoz �29�. The most
notable difference is that we consider the spectral properties
of transition matrix instead of the Laplacian one. We decide
if a vertex belongs to a community according to the follow-
ing ideas: �i� we expect that the vertices belonging to the
same community have similar values of eigenvector compo-
nents and �ii� we expect relevant eigenvectors to have the
largest eigenvalues �28�. Indeed, spectral gap is associated
with temporal convergence of random walker fluctuations to
the ergodic stationary state. If the network has well-defined
communities, we expect the random walker to spend some
time in the community rather than escaping immediately out
of it. Therefore, the speed of convergence to the ergodic state
should be related to the community structure. Therefore,
eigenvectors associated with largest eigenvalues �except for
the maximal eigenvalue 1� should be correlated with com-
munity structure. Going back to the above-mentioned
Donetti and Muñoz approach here we use the fact that some
vertex properties will be more common inside a community
and less frequent between different communities. We then
vary the bias parameters trying both to shrink the spectral
gap in transition matrix and to maximize the separation be-
tween relevant eigenvalues and the rest of the spectra.

For example, in the case of GN benchmark the network
consists of four communities each with n=32 vertices, i.e.,
N=128 vertices all together. The probability that the two
vertices which belong to the same community are connected
is pin. The probability that the two vertices which belong to
different communities are connected is pout. The fundamental
parameter �11� which characterizes the difficulty of detecting
the structure is

� =
k̄out

k̄out + k̄in

, �20�

where k̄out= pout�N−n� is the mean degree related to inter-

community connections and k̄in= pin�n−1� is the mean de-
gree related to edges inside community. As a rule of thumb
we can expect to find well-defined communities when �
�1 /2 and observe some signature of communities even
when ��3 /4 �26�. The probabilities pin and pout are related
via the control parameter � as pout= ��n−1�� / �N−n��1
−���pin.

We now examine the edge multiplicity. The latter is de-
fined as the number of common neighbors shared by neigh-
boring vertices. The expected multiplicities of an edge con-
necting vertices of intercommunity and inside communities
are, respectively,

E�Mout� = 2pinpout�n − 1� + pout
2 �N − 2n� ,

E�Min� = pin
2 �n − 2� + pout

2 �N − n� . �21�

In Fig. 2 we plot the ratio of the quantities above defined,
E�Mout� /E�Min�, vs the parameter �.

We see that even for ��0.5 the ratio remains smaller
than 1 implying that the multiplicity is more common in the
edges in the same community. Based on this analysis for this
particular example we expect that if we want to find well-
defined communities via TBRWs we have to increase bias
with respect to the multiplicity. Through numerical simula-
tions we find that the number of communities is related to
number of eigenvalues in the “community band.” Namely,
one in general observes a gap between eigenvalues
�2 , . . . ,�N/n−1 and the next eigenvalue evident in a network
with a strong community structure ���1 /2�. The explana-
tion that we give for that phenomenon can be expressed by
considering a network of n separated graphs. For such a net-
work there are n degenerate eigenvalues �1¯�n=1. If we
now start to connect these graphs with very few edges, such
a degeneracy is broken with the largest eigenvalue remaining
1 while the next �n−1� eigenvalues staying close to it. The
distance between any two of this set of �n−1� eigenvalues
will be smaller than the gap between this community band
and the rest of the eigenvalues in the spectrum. Therefore,
the number of eigenvalues different from 1 which are form-
ing this community band is always equal to the number of
communities minus 1, at least for different GN-type net-
works with different numbers of communities and different
sizes, as long as ��1 /2. For example, in the case of 1000
GN networks described with parameters N=128, n=32, pin
=0.35, and pout=0.05, i.e., �=0.125, the histograms of ei-
genvalues are depicted in Fig. 3.

For our purposes we used two-parameter biased RWs, in
which topological properties are xi�ki /max�k�, i.e., the nor-
malized degree �with respect to maximal degree in the net-
work� and yij =Mij /max�Mij�, i.e., the normalized multiplic-
ity �with respect to maximal multiplicity in the network�. We
chose GN network whose parameters are N=128, n=32,
pin=16 /62, and pout=1 /12, for which �=1 /2. With N /n=4
being the number of communities, as a criterion for good
choice of parameters, we decided to use the difference be-
tween �4 and �5, i.e., we decided to maximize the gap be-
tween community band and the rest of eigenvalues, checking
at the same time that the spectral gap shrinks. In Fig. 4, we
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FIG. 2. �Color online� The ratio of expected value of multiplic-
ity for edges that are connecting vertices in different communities
to the expected value of multiplicity for edges that are connecting
vertices in the same community with respect to parameter �.
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plot such a quantity with respect to different biases.
It is important to mention that for every single network

instance there are different optimal parameters. This can be
seen in Fig. 5, where we show the difference between unbi-
ased and biased eigenvalues for 1000 GN nets created with
same parameters. As shown in the figure the difference be-
tween fourth and fifth eigenvalues is now not necessarily the
optimal for this choice of parameters. Every realization of
the network should be independently analyzed, and its own
parameters should be carefully chosen.

In Figs. 6 and 7 we present instead the difference between
unbiased and biased projections on three eigenvectors with
largest nontrivial eigenvalues. Using three-dimensional view
it is easy to check that communities are better separated in
the biased case than in the nonbiased case.

VI. CONCLUSION

In this paper we presented a detailed theoretical frame-
work to analyze the evolution of TBRWs on a graph. Using
as bias some topological property of the graph itself allows
us to use the RW as a tool to explore the environment. This
method maps vertices of the graph to different points in the
N-dimensional Euclidean space naturally associated with the
given graph. In this way we can measure distances between
vertices depending on the chosen bias strategy and bias pa-
rameters. In particular we developed a perturbative approach
to the spectrum of eigenvalues and eigenvectors associated
with the transition matrix of the system. More generally we
generalized the quantum PEM approach to the present case.
This led naturally to studying the behavior of the gap be-
tween the largest and the second eigenvalues of the spectrum
characterizing the relaxation to the stationary Markovian

FIG. 3. �Color online� Histogram of second, third, fourth, and
fifth eigenvalues of nonbiased RWs for 1000 GN networks with
parameters N=128, n=32, pin=0.35, and pout=0.05. There is a
clear gap between “community” band and the rest of the
eigenvalues.
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FIG. 4. �Color online� Contour plot of the difference between
fourth and fifth eigenvalues �4−�5 as a function of parameter �k

which biases RWs according to degrees of the vertices and param-
eter �M which bias RWs according to multiplicities of the edges.
Both degrees and multiplicity values are normalized with respect to
the maximal degree and multiplicity �therefore, the largest value is
1�.
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FIG. 5. �Color online� Histograms of �2, �3, �4, and �5 for 1000
GN networks described with parameters N=128, n=32, pin

=16 /62, and pout=1 /12. With black color we indicate the eigenval-
ues of nonbiased RWs, while with red we indicate the eigenvalues
of RWs biased with parameters �k=−2.5 and �M =4.3. Note how
this choice of parameters does not maximize “community gap” for
all the different realizations of monitored GN network.
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FIG. 6. �Color online� Plot of the eigenvector components of the
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state. In numerical applications of such a theoretical frame-
work we have observed a unimodal shape of the spectral gap
vs the bias parameter, which is not an obvious feature of the
studied processes. We have finally outlined a very promising
application of topologically biased random walks to the fun-
damental problem of community finding. We described the
basic ideas and proposed some criteria for the choice of pa-
rameters by considering the particular case of GN graphs.
We are working further in direction of this application, but

the number of possible strategies �different topological prop-
erties we can use for biasing� and types of networks are just
too large to be presented in one paper. Furthermore, since in
many dynamical systems such as the World Wide Web or
biological networks feedback between function and form �to-
pology� is evident, our framework may be a useful way to
describe mathematically such an observed mechanism. In the
case of biology, for instance, the shape of the metabolic net-
works can be triggered not only by the chemical properties
of the compounds, but also by the possibility of the metabo-
lites to interact. Biased RWs can be therefore the mechanism
through which a network attains a particular form for a given
function. By introducing such an approach we can now ad-
dress the problem of community detection in the graph. This
is the reason why here we have not introduced another pre-
cise method for community detection, but rather a possible
framework to create different community finding methods
with different ad hoc strategies. Indeed in real situations we
expect different types of network to be efficiently explored
by the use of different topological properties. This explains
why we believe that TBRWs could play a role in community
detection problems, and we hope to stimulate further devel-
opments, in the network scientific community, of this prom-
ising methodology.
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