
Action Planning for Graph Transition Systems

Stefan Edelkamp1 and Shahid Jabbar2

Department of Computer Science
Baroper Str. 301

University of Dortmund,
44221 Dortmund, Germany

1stefan.edelkamp@cs.uni-dortmund.de
2shahid.jabbar@cs.uni-dortmund.de

Alberto Lluch Lafuente
Dipartimento di Informatica
Università di Pisa, Pisa, Italy

lafuente@di.unipi.it

Abstract

Graphs are suitable modeling formalisms for software
and hardware systems involving aspects such as com-
munication, object orientation, concurrency, mobility
and distribution. State spaces of such systems can be
represented by graph transition systems, which are ba-
sically transition systems whose states and transitions
represent graphs and graph morphisms. In this paper,
we propose the modeling of graph transition systems in
PDDL and the application of heuristic search planning
for their analysis. We consider different heuristics and
present experimental results.

Introduction

Graphs are a suitable modeling formalism for software
and hardware systems involving issues such as commu-
nication, object orientation, concurrency, distribution
and mobility. The graphical nature of such systems
appears explicitly in approaches like graph transforma-
tion systems (Rozenberg 1997) and implicitly in other
modeling formalisms like algebras for communicating
processes (Milner 1989). The properties of such sys-
tems mainly regard aspects such as temporal behavior
and structural properties. They can be expressed, for
instance, by logics used as a basis for a formal verifica-
tion method, like model checking (Clarke, Grumberg,
& Peled 1999), which main success is due to the ability
to find and report errors.

Finding and reporting errors in model checking and
many other analysis problems can be reduced to state
space exploration problems. In most cases the main
drawback is the state explosion problem. In practice,
the size of state spaces can be large enough (even infi-
nite) to exhaust the available space and time resources.
Heuristic search has been proposed as a solution in
many fields, including model checking (Edelkamp, Leue,
& Lafuente 2003), planning (Bonet & Geffner 2001)
and games (Korf 1985). Basically, the idea is to ap-
ply algorithms that exploit the information about the
problem being solved in order to guide the exploration
process. The benefits are twofold: the search effort is

Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

reduced, i.e., errors are found faster and by consuming
less memory, and the solution quality is improved, i.e.,
counterexamples are shorter and thus may be more use-
ful. In some cases, like wide area networks with Quality
of Service (QoS), one might not be interested in short
paths, but in cheap or optimal ones based on some no-
tion of cost. Therefore, we generalize our approach by
considering an abstract notion of costs.

Our work is mainly inspired by approaches to di-
rected model checking (Edelkamp, Leue, & Lafuente
2003), logics for graphs (like the monadic second or-
der logic (Courcelle 1997)), spatial logics used to rea-
son about the behavior and structure of processes cal-
culi (Caires & Cardelli 2003) and graphs (Cardelli,
Gardner, & Ghelli 2002), and approaches for the analy-
sis of graph transformation systems (Baldan et al. 2004;
Rensink 2003; Varrò 2003). At the theoretical front,
our approach is very much inspired by cost-algebraic
search algorithms (Sobrinho 2002; Edelkamp, Jabbar,
& Lluch-Lafuente 2005a).

The work also relates to (Edelkamp 2003a) that
compiled protocol software model checking domains in
Promela to PDDL. Two of such domains have served as
a benchmark for the 4th international planning compe-
tition in 2004 (Hoffmann et al. 2005). We extend the
work of (Edelkamp, Jabbar, & Lluch-Lafuente 2005b)
that applies heuristic search for graph transition sys-
tems in the context of the experimental model checker
HSF-SPIN (Edelkamp, Leue, & Lafuente 2003). To the
best of our knowledge this is the first work on action
planning for the analysis of graphically described sys-
tems, probably with the exception of one currently run-
ning master’s thesis (Golkov 2005).

The goal of our approach is to formalize structural
properties of systems modeled by graph transition sys-
tems. We believe that our work additionally illustrates
the benefits of applying heuristic search in state space
exploration systems. Heuristic search is intended to
reduce the analysis effort and, in addition, to deliver
shorter or optimal solutions. We consider a notion of
optimality with respect to a certain cost or weight as-
sociated to system transitions. For instance, the cost of
a transition in network systems can be a certain QoS
value associated to the transition.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12096891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The next section introduces the running example that
is used along the paper to illustrate some of the concepts
and methods. Next, we define our modeling formalism,
namely graph transition systems. We then consider the
kind of properties we are interested in verifying and
discuss their PDDL model. We study two planning
heuristics for the analysis of properties in graph transi-
tion systems and present experimental results obtained
with a heuristic search planner. Finally, we conclude
the paper and outline future research avenues. For the
sake of readability the PDDL model for the arrow dis-
tributed protocol is included in an appendix that follows
the bibliography.

The Arrow Distributed Directory
Protocol

The arrow distributed directory protocol (Demmer &
Herlihy 1998) is a solution to ensure exclusive access to
mobile objects in a distributed system. The distributed
system is given as an undirected graph G, where ver-
tices and edges respectively represent nodes and com-
munication links. Costs are associated with the links in
the usual way, and a mechanism for optimal routing is
assumed.

The protocol works with a minimal spanning tree T
of G. Each node has an arrow which, roughly speak-
ing, indicates the direction in which the object lies.
If a node owns the object or is requesting it, the ar-
row points to itself; we say that the node is terminal.
The directed graph induced by the arrows is called L.
Roughly speaking, the protocol works by propagating
requests and updating arrows such that at any moment
the paths induced by arrows, called arrow paths, either
lead to a terminal owning the object or waiting for it.

More precisely, the protocol works as follows: Ini-
tially L is set such that every path leads to the node
owning the object. When a node u wants to acquire
the object, it sends a request message find(u) to a(u),
the target of the arrow starting at u, and sets a(u) to
u, i.e., it becomes a terminal node. When a node u
whose arrow does not point to itself receives a find(w)
message from a node v, it forwards the message to node
a(u) and sets a(u) to v. On the other hand, if a(u) = u
(the object is not necessarily at u but will be received if
not) the arrows are updated as in the previous case but
this time the request is not forwarded but enqueued. If
a node owns the object and its queue of requests is not
empty, it sends the object to the (unique) node u of its
queue sending a move(u) message to v. This message
goes optimally through G. A formal definition of the
protocol can be found in (Demmer & Herlihy 1998).

Figure 1 illustrates three states of a protocol instance
with six nodes v0, . . . , v5. The state on the left is the
initial one: node v0 has the object and all paths induced
by the arrows lead to it. The state on the right of the
figure is the result of two steps: node v4 sends a request
for the object through its arrow; and v3 processes it by
updating the arrows properly, i.e., the arrow points now

v1 e1

$$III
I v4

e4zzuuu
u

v2

e2zzuuu
u

v3e3
oo

v0
e0

YY
v5

e5

ddIIII

v1 e1

$$III
I v4

e6

��

v2

e2zzuuu
u

v3

e7 ::uuuu

v0
e0

YY
v5

e5

ddIIII

Figure 1: Three states of the directory.

to v4 instead of v2.
One could be interested in properties like Can node vi

be a terminal? (Property 1), Can node vi be terminal
and all arrow paths end at vi? (Property 2), Can a
node v be terminal? (Property 3), Can a node v be
terminal and all arrow paths end at v? (Property 4).

Graph Transition Systems
This section presents our modeling formalism. First, an
algebraic notion of costs is defined. It shall be used as
an abstraction of costs or weights associated to edges of
graphs or transitions of transition systems. For a deeper
treatment of the cost algebra we refer to (Edelkamp,
Jabbar, & Lluch-Lafuente 2005a).

Definition 1 A cost algebra is a 6-tuple 〈A,
⊔
,×,�,

0,1〉, such that

1. 〈A,×〉 is a monoid with 1 as identity element and 0
as its absorbing element, i.e., a× 0 = 0× a = 0;

2. �⊆ A×A is a total ordering with 0 =
d
A and 1 =⊔

A;
3. A is isotone, i.e., a � b implies both a × c � b × c

and c× a � c× b for all a, b, c ∈ A (Sobrinho 2002).

In the rest of the paper a ≺ b abbreviates a � b and
a 6= b. Moreover, a � b abbreviates b � a, and a � b
abbreviates a � b and a 6= b. The least element c in A
is defined as

⊔
A, if c ∈ S and c � a for all a ∈ A. The

greatest element c in A is defined as
d
A, if c ∈ A and

c � a for all a ∈ A.
Intuitively, A is the domain set of cost values, × is

the operation used to cumulate values and + is the op-
eration used to select the best (the least) amongst two
values. Consider for example, the following instances of
cost algebras, typically used as cost or QoS formalisms:
• 〈{true, false},∨∧,⇒, false, true〉 (Network and ser-

vice availability)
• 〈R+ ∪ {+∞},min,+,≤,+∞, 0〉 (Price, propagation

delay)
• 〈R+ ∪ {+∞},max,min,≥, 0,+∞〉 (Bandwidth).
In the rest of the paper, we consider a fixed cost algebra
〈A,

⊔
,×,�,0,1〉.

Definition 2 An (edge-weighted graph) G is a tuple
〈VG, EG, srcG, tgtG, ωG〉 where VG is a set of nodes, EG

is a set of edges, srcG, tgtG : EG → VG are a source
and target functions, and ωG : EG → A is a weighting
function.

Graphs usually have a distinguished start state which
we denote with sG

0 , or just s0 if G is clear from the
context.

Definition 3 A path in a graph G is an alternating
sequence of nodes and edges represented as u0

e0→ u1 . . .
such that for each i ≥ 0 we have ui ∈ VG, ei ∈ EG,
srcG(ei) = ui and tgtG(ei) = ui+1, or, shortly ui

ei→
ui+1.

An initial path is a path starting at sG
0 . Finite paths

are required to end at states. The length of a finite path
p is denoted by |p|. The concatenation of two paths p, q
is denoted by pq, where we require p to be finite and
end at the initial state of q. The cost of a path is the
cumulative cost of its edges. Formally,

Definition 4 Let p = u0
e0→ . . .

ek−1→ uk be a finite path
in a graph G. The path cost ωG(p) is ωG(e)×ωG(q) if
p = (u e→ v)q and 1 otherwise. If |q| = 0, ωG(q) = 1.

Let γ(u) denote the set of all paths starting at node
u. In the sequel, we shall use ω∗

G(u, V) to denote
the cost of the optimal path starting at a node u
and reaching a node v in a set V ⊆ VG. Formally,
ω∗

G(u, V) =
⊔

p∈γ(s)|(p∩V) 6=∅ ωG(p). For ease of nota-
tion, we write ω∗

G(u, {v}) as ω∗
G(u, v).

Graph transition systems are suitable representations
for software and hardware systems and extend tradi-
tional transition systems by relating states with graphs
and transitions with partial graph morphisms. Intu-
itively, a partial graph morphism associated to a tran-
sition represents the relation between the graphs asso-
ciated to the source and the target state of a transition.
More specifically, it models the merging, insertion, ad-
dition and renaming of graph items (nodes or edges).
In case of a merge, the cost of merged edges is the least
one amongst the edges involved in the merging.

Definition 5 A graph morphism ψ : G1 → G2 is a
pair of mappings ψV : VG1 → VG2 , ψE : EG1 → EG2

such that we have ψV ◦srcG1 = srcG2 ◦ψE, ψV ◦tgtG1
=

tgtG2
◦ ψE,1 and for each e ∈ EG2 we have, ωG2(e) =⊔

{ωG1(e
′) | ψE(e′) = e}.

A graph morphism ψ : G1 → G2 is called injective if so
are ψV and ψE; identity if both ψV and ψE are identi-
ties, and isomorphism if both ψE and ψV are bijective.
A graph G′ is a subgraph of graph G, if VG′ ⊆ VG and
EG′ ⊆ EG, and the inclusions form a graph morphism.

A partial graph morphism ψ : G1 → G2 is a pair
〈G′

1, ψm〉, where G′
1 is a subgraph of G1, and ψm : G′

1 →
G2 is a graph morphism.

The composition of (partial) graph morphisms results
in (partial) graph morphisms. Now, we define a notion

1◦ is the function composition operator. In other words
f ◦ g = f(g(·))

of transition system that enriches the usual ones with
weights.

Definition 6 A transition system is a graph M =
〈SM , TM , inM , outM , ωM 〉 whose nodes and edges
are respectively called states and transitions, with
inM , outM representing the source and target of an
edge respectively.

Finally, we are ready to define graph transition sys-
tems, which are transition systems together with mor-
phisms mapping states into graphs and transitions into
partial graph morphisms.

Definition 7 A graph transition system (GTS) is a
pair 〈M, g〉, where M is a weighted transition system
and g : M → U(Gp) is a graph morphism from M to
the graph underlying Gp, the category of graphs with
partial graph morphisms. Therefore g = 〈gS , gT 〉, and
the component on states gS maps each state s ∈ SM

to a graph gS(s), while the component on transitions
gT maps each transitions t ∈ TM to a partial graph
morphism gT (t) : gS(inM (t)) ⇒ gS(outM (t)).

In the rest of the paper we shall consider a GTS
〈M, g〉 modeling the state space of our running exam-
ple, where g maps states to L, i.e., the graph induced
by the arrows, and transitions to the corresponding par-
tial graph morphisms. Consider Figure 1, each of the
three graphs depicted, say G1, G2 and G3 corresponds
to three states s1,s2,s3, meaning that g(s1) = G1,
g(s2) = G2 and g(s3) = G3. The figure illustrates a
path s1

t1→ s2
t2→ s3, where g(t1) is the identity re-

stricted to all items but edge e4. Similarly, g(t2) is
the identity restricted to all items but edge e3. Thus,
in both transitions all other items are preserved (with
their identity) except the edges mentioned.

Properties of Graph Transition Systems
The properties of a graph transition system can be ex-
pressed using different formalisms. One can use, for
instance, a temporal graph logic like the ones proposed
in (Baldan et al. 2004; Rensink 2003), which combine
temporal and graph logics. A similar alternative are
spatial logics (Caires & Cardelli 2003), which combine
temporal and structural aspects. In graph transforma-
tion systems (Corradini et al. 1997), one can use rules
to find certain graphs: the goal might be to find a match
for a certain transformation rule. For the sake of sim-
plicity and generality, however, we consider that the
problem of satisfying or falsifying a property is reduced
to the problem of finding a set of goal states character-
ized by a goal graph and the existence of an injective
morphism.

Definition 8 Given a GTS 〈M, g〉 and a graph G, the
goal function goalG : SM → {true, false} is defined such
that goalG(s) = true iff there is an injective graph mor-
phism ψ : G→ g(s).

Intuitively, goalG maps a state s to true if and only if
G can be injectively matched with a subgraph of g(s).

v1
''

v2
��

v3
zzuuu

u

v4 // v0

ddIIII
v5oo

v1 YY
v1

$$III
I v2

��

v3
ww

v4 // v0

::uuuu
v5oo

Figure 2: Three graphs illustrating various goal criteria.

It is worth saying that most graph transformations ap-
proaches consider injective rules, for which a match is
precisely given by injective graph morphisms, and that
the most prominent graph logic, namely the Monadic
Second-Order (MSO) logic by (Courcelle 1997) and its
first-order fragment (FO) can be used to express in-
jective graph morphisms. The graph G will be called
goal graph. It is of practical interest identifying partic-
ular cases of goal functions as the following goal types:

1. ψ is an identity - the exact graph G is looked for. In
our running example, this corresponds to Property 2
mentioned in Section . For instance, we look for the
exact graph depicted in left of Figure 2.

2. ψ is a restricted identity - an exact subgraph of G is
looked for. This is precisely Property 1. For instance,
we look for a subgraph of the graph depicted in left
of Figure 2. The graph in center of Figure 2 satisfies
this.

3. ψ is an isomorphism - a graph isomorphic to G is
looked for. This is precisely Property 4. For instance,
we look for a graph isomorphic to the one depicted
in left of Figure 2. The graph in the right of Figure 2
satisfies this.

4. ψ is any injective graph morphism - we have the gen-
eral case. This is precisely Property 3. For instance,
we look for an injective match of the graph depicted
in center of Figure 2. The graph in the right of Fig-
ure 2 satisfies this.

Note that there is a type hierarchy, since goal type 1
is a subtype of goal types 2 and 4, which are of course
subtypes of the most general goal type 4.

The computational complexity of the goal function
varies according to the above cases. For goals of type 1
and 2, the computational efforts needed are just O(|G|)
and O(|ψ(G)|), respectively. Unfortunately, for goal
types 3 and 4, due to the search for isomorphisms, the
complexity increase to a term exponential in |G| for the
graph isomorphism case and to a term exponential in
|ψ(G)| for the subgraph isomorphism case. The general
problem of subgraph isomorphism (SI) can be reduced
polynomially to graph isomorphism. Subgraph isomor-
phism is NP-complete, as CLIQUE ≤p SI. The general
problem of graph isomorphism is not completely clas-
sified. It is expected not to be NP-complete (Wegener
2003).

Now we state the two analysis problems we consider.
The first one consists on finding a goal state.

Definition 9 Given a GTS 〈M, g〉 and a graph G (the
goal graph), the reachability problem of our approach

consists on finding a state s ∈ SM such that goal(s) is
true.

The second problem aims at finding an optimal path
to a goal state.

Definition 10 Given a GTS (M, g) and a graph G (the
goal graph), the optimality problem of our approach
consists on finding a finite initial path p ending at a
state s ∈ SM such that such that goalG(s) is true and
ω(p) = ω∗

M (sM
0 , S′), where S′ = {s ∈ SM | goalG(s) =

true}.
For the sake of brevity, in the following ω∗

M (s) abbre-
viates ω∗

M (s, S′) with S′ = {s ∈ SM | goalG(s) = true},
when goalG is clear from the context.

The two problems defined in the previous section
can be solved with traditional graph exploration and
shortest-path algorithms2. For the reachability prob-
lem, for instance, one can use, amongst others, depth-
first search, hill climbing, best-first search, Dijkstra’s
algorithm (and its simplest version breadth-first search)
or A*. For the optimality problem, only the last two
are suited.

Nevertheless, Dijkstra’s algorithm and A* are tradi-
tionally defined over a simple instance of our cost alge-
bra A, namely algebra 〈R+ ∪{+∞},min,+,≤,+∞, 0〉.
Fortunately, the results that ensure the admissibility of
Dijkstra’s algorithm or A*, i.e., the fact that both al-
gorithms correctly solve the optimality problem, have
been generalized for the cost algebra (Edelkamp, Jab-
bar, & Lluch-Lafuente 2005a).

Encoding of the Arrow Distributed
Directory Protocol

To simplify the discussion, we assume a uniform tran-
sition weight leading to pure propositional planning
problems. But with the extensions that are avail-
able in current planning description languages such as
PDDL2.1 (Fox & Long 2003), the current setting can
be extended to numerical weights. Note that, the for-
mal treatment of the problem presented earlier in this
paper is capable of dealing with non-uniform weights.

In propositional planning, for each state we have
atomic propositions that can either be true or false.
Planning operators or actions change the truth values
of atomic propositions AP . An action a in STRIPS con-
sists of three lists: precondition, add, and delete lists,
commonly denoted as pre(a), add(a), and del(a), re-
spectively (Fikes & Nilsson 1971). Each list consists of
atomic propositions and the application of a to a state
S ⊆ 2AP with pre(a) ⊆ S yields the successor state
(S \ del(a)) ∪ add(a).

To apply a planner to graph transition systems, we
first need a propositional description of graph transition
systems in PDDL. The graph is modeled with the help

2We refer here to a slight modification of the original
algorithms, consisting of terminating the algorithm when a
goal state is reached and returning the corresponding path.

of predicates defining the edges. We use (link u v)
predicate to denote an edge between two nodes u and
v. Since a node cannot exist on its own, we do not
provide any predicate to declare a node. The predicate
(find-pending u v w) is true if the node u receives a
request from its neighbour v to find the object for the
node w. Similarly, the predicate (move-pending u v
w) is true, if the node u receives an object from the
node w to be forwarded to the requesting node. The
parameter v is actually not in use and its just for the
sake of uniformity with the original model and with the
find-pending predicate.

The predicate (not-request-send u) is used to con-
trol the requests generated by the nodes so that a node
cannot request more than once. The contents of a
queue attached with a particular node u are controlled
through the (queue u v) predicate. The ownership of
the object is determined through the (owner u) pred-
icate.

Due to the parametric description facility provided by
planning formalism, it is easier to define morphisms and
partial morphisms as actions. For example, a morphism
operation that inverses an edge can easily be defined as
a very simple action as follows:

(:action morphism-inverse
:parameters(?u ?v - node)
:precondition

(link ?u ?v)
:effect

(and
(not (link ?u ?v))
(link ?v ?u)))

An example description for the Arrow Protocol is pro-
vided in Annex.

Problem description in PDDL
A GTS problem can be described with the help of pred-
icates defining the graph in the initial state. The whole
graph can be described by the use of link predicates
defining the edges between different nodes of the graph.
The owner node, i.e., the node that currently owns the
object is define by the use of owner predicate.

A PDDL problem description for an instance of star -
shaped network topology is shown in the appendix.

Goal Specification in PDDL
Fortunately, PDDL provides a very neat and elegant
mechanism to formulate our goals’ criteria. In the fol-
lowing we explain various methods to describe different
types of goals.

Property 1 goal (subgraph): Perhaps the most sim-
ple to describe are the type 1 goals as we only search
for a specific subgraph. As is evident from the PDDL
specification of the domain, the subgraph can easily be
declared by using the (link u v) predicates. If the
subgraph to be searched for actually asks for an own-
ership predicate to be true for some node w, we simply
declare the (owner w) predicate as our goal criteria.

In Appendix, we see an example problem description in
PDDL where a goal of type 1 is searched for.

Property 2 goal (exact graph): For a Property 2 goal,
we look for an exact matching of the goal graph in
our state space. Just like for the previous type, we
can describe the whole graph with (link u v) pred-
icates. Note that it is true only for the current do-
main, since a spanning tree property of the graphs is
preserved through out the search space, i.e., there can-
not be a reachable state where the graph is a superset
of the goal graph. This might not be the case in other
GTS domains. In such cases we have to describe the
non-existence of all the other edges too.

Property 3 goal (subgraph isomorphism): Given a
goal graph G, the state space is searched for a state
that contains a subgraph isomorphic to G. In such case
goals are strictly more expressive and need an existen-
tial quantification over all the nodes to be described
succinctly. Existential quantification can be incorpo-
rated in STRIPS through ADL (Pednault 1989) by the
following construct:

(:goal <existential-expression> <goal-condition>)

A goal of type 3 can then be included in our problem
specification as:

(:goal (exists (?n - node) (owner ?n))

Property 4 goal (isomorphism): Given a goal graph
G, the state space is searched for a node that contains
a graph isomorphic to G. Having the existential quan-
tifier in our hands, we can describe G using (link u
v) predicates. For our example in Figure 2, a type 4
goal will have the form:

(:goal (exists ?v0 ?v1 ?v2 ?v3 ?v4 ?v5 - node)
(and (link ?v0 ?v0) (link ?v1 ?v0)

(link ?v2 ?v0) (link ?v3 ?v1)
(link ?v4 ?v0) (link ?v5 ?v4)
(owner ?v3)))

Given actions with ADL expressivity, it is not dif-
ficult to transform an existential goal description to a
non-existential one by adding the following special op-
erator to the domain description:

(:action goal-achieving-action
:precondition <old-goal-condition>
:effects (and (goal-achieved)))

The modified goal condition then simplifies to

(:goal (goal-achieved))

With the extended expressivity of PDDL2.2
(Edelkamp & Hoffmann 2004) goal achievement is best
introduced in form of domain axioms, so-called derived
predicates. They are inferred in form of a fix-point
computation with rules that do not belong to a plan.
For this case we include

(:derived (goal-achieved) <old-goal-condition>)

to the domain description.

Planning Heuristics for Graph
Transition Systems

Heuristic search algorithms use heuristic functions to
guide the state space exploration as apposed to blind
search algorithms that do not utilize any information
about the search space. Two of the most famous heuris-
tic search algorithms are A* and IDA*. A* utilizes a
heuristic estimate for the distance from a state to the
goal, to prioritize states’ expansion. The result is a re-
duced search space; consequently, less consumption of
memory with gain in speed. A* is guaranteed to pro-
duce optimal results in case of admissible and consistent
heuristic.

Most of the modern planners (for example, FF (Hoff-
mann & Nebel 2001) or MIPS (Edelkamp 2003b)) uti-
lize various heuristics to guide the planner. Two of
such heuristics that have performed very good in plan-
ning domains are relaxed planning heuristic and plan-
ning pattern databases.

Relaxed Planning Heuristic

A relaxed planning heuristic (Hoffmann & Nebel 2001)
is computed by solving a relaxed version of a plan-
ing problem. The relaxation a+ of a STRIPS ac-
tion a = (pre(a), add(a), del(a)) is defined as a+ =
(pre(a), add(a), ∅). The relaxation of a planning prob-
lem is the one in which all actions are substituted by
their relaxed counterparts. Any solution that solves the
original plan also solves the relaxed one; and all precon-
ditions and goals can be achieved if and only if they can
be in the relaxed task. Value h+ is defined as the length
of the shortest plan that solves the relaxed problem.

Solving relaxed plans optimally is still computation-
ally hard (Bylander 1994), but the decision problem to
determine, if a relaxed planning problem has at least
one solution, is computationally tractable. The opti-
mization task can efficiently be approximated by count-
ing the number of operators in a parallel plan that solves
the relaxed problem. Note that optimal parallel and
optimal sequential plans may have a different sets of
operators, but good parallel plans are at least informa-
tive for sequential plan solving, and can, therefore, be
used for the design of a heuristic estimator function.

The extension to the numerical relaxed planning
heuristic is a polynomial-time state evaluation function
for mixed integer domain-independent planning prob-
lems (Hoffmann 2003). It has been extended to non-
linear tasks (Edelkamp 2004).

Planning Pattern Databases

Abstraction is one of the most important issues to cope
with large and infinite state spaces, and to reduce the
exploration efforts. Abstracted systems should be sig-
nificantly smaller than the original one while preserv-
ing some properties of concrete systems. The study
of abstraction formalisms for graph transition systems
is, however, out of the scope of this paper. We refer

s3 s2oo

s1

OO

s0oo

OO

s2, s3
��

s1, s0oo
��

s1, s3
��

s2, s0oo
��

Figure 3: A transition system (leftmost) with two dif-
ferent abstractions.

to (Baldan et al. 2004) for an example of such a for-
malism. Assuming that abstractions are available, we
state the properties necessary for abstractions to pre-
serve our two problems (reachability and optimization)
and propose how to use abstraction to define informed
heuristics.

The preservation of the reachability problem means
that the existence of an initial goal path in the con-
crete system must entail the existence of a correspond-
ing initial goal path in the abstract system. Note that
this does not mean the existence of spurious initial goal
paths in the abstract system, i.e., abstract paths that
do not correspond to any concrete path. Similarly, the
preservation of the optimization problem means that
the cost of the optimal initial goal path in the concrete
system should be greater or equal to the cost of the
optimal initial goal path in the abstract system.

Abstractions have been applied in combination
with heuristic search in single-agent games (Culber-
son & Schaeffer 1998; Korf 1997), in model check-
ing (Edelkamp & Lluch-Lafuente 2004) and plan-
ning (Edelkamp 2001) approaches. The main idea is
that the abstract system is explored in order to create
a database that stores the exact distances from abstract
states to the set of abstract goal states. The exact
distance between abstract states is an admissible and
consistent estimate of the distance between the corre-
sponding concrete states. The distance database is thus
used as heuristics for analyzing the concrete system.

When different abstractions are avaliable, we can
combine the different databases in various ways to ob-
tain better heuristics. The first way is to trivially se-
lect the best value delivered by two heuristic databases,
which trivially results in a consistent and admissible
heuristic. Figure 3 depicts a concrete transition system
(left) with three abstractions (given by node mergings).
The two abstractions are mutually disjoint.

Experimental Results
We validate our approach by presenting initial experi-
mental results obtained with the heuristic search plan-
ning system FF. We have implemented the arrow dis-
tributed directory protocol in PDDL2.1, Level 1, i.e.
in the specification language STRIPS/ADL. We per-
formed our experiments on a Pentium IV 3.2 GHz. ma-
chine with Linux operating system and 2 gigabytes of
internal memory. In all our experiments we set a mem-
ory bound of 2 GB.

When running the planner on the instances, we ob-
tain the results as shown in Table 1 in comparison with

HSF-SPIN FF
star DFS BFShf

EHC + RPH
Stored nodes 6,253 30 6
Sol. length 134 58 5
chain DFS BFShf

EHC + RPH
Stored nodes 78,112 38 6
Sol. length 118 74 5
tree DFS BFShf

EHC + RPH
Stored nodes 24,875 34 6
Sol. length 126 66 5

Table 1: Comparison of results between HSF-SPIN and
FF.

the results that we have obtained in the model checking
domain through our experimental model checker HSF-
SPIN. The goal searched for is of type 2. Column DFS
shows the results while running HSF-SPIN with depth-
first search as the exploration algorithm. The gain in
HSF-SPIN by employing a heuristic guided exploration
as apposed to DFS is noticeable in column BFShf

.
The heuristic estimate used here is based on original
formula-based heuristic (Edelkamp, Leue, & Lafuente
2003) that exploits the length of the specification of
goal states to guide the search algorithm. A discussion
on this heuristic is out of the scope of this paper and we
refer the reader to (Edelkamp, Leue, & Lafuente 2003)
for a detailed treatment.

For all three topologies, namely, star, tree, and chain,
the planner resulted in much lesser expansions of nodes.
Note that, though the results through the use of planner
seem by far better than the one by model checker, we
cannot actually compare the two approaches with each
other for several reasons. A crucial difference is the
dynamic creation of nodes during exploration. PDDL
specifications currently do not support such kind of dy-
namism in models. For a limited case, we can utilize the
visibility paradigm of domain specification by providing
a pool of invisible nodes to the planner along with the
model. These nodes can be made visible whenever a
new node is required to be created. The other crucial
difference is the modeling of finite and bounded chan-
nels - one of the main component of a concurrent sys-
tem. Such channels can be defined in a model checker
but not in PDDL.

In Table 2, we depict the scaling behaviour of the
problem for different topologies. We generated random
graphs with random owners and with random goals.
The second column shows the number of nodes that
composed the graph. Column 3, Stored Nodes, shows
the number of nodes stored during the serach. The
length of the solution obtained is shown in the fourth
column. For star topology, the problem was quite sim-
ple. But a major shift in space and time requirement
was noted when we switched to the chain topology. The
longest running example in chain topology was with 70
nodes that took about 139 secs to be solved. The scal-

Nodes Stored Nodes Sol. Length

star

10 6 5
25 7 6
50 7 6
70 7 6

chain

10 6 5
25 33 28
50 100 73
70 138 101

tree

10 6 5
25 22 16
50 47 25
70 61 31

Table 2: Scaling behaviour of the model.

ing factor of memory usage turned out to be very sharp.
A 50 nodes problem required about 0.5 GB that jumped
to 1.9 GB for 70 nodes in all the topologies. Unfortu-
nately this was also the capacity of our machine - the
reason that we are unable to show the results for bigger
models.

Conclusion
We have presented an abstract approach for the analysis
of graph transitions systems, which are traditional tran-
sition systems where states and transitions respectively
represent graphs and partial graph morphisms. It is a
useful formalism to represent the state space of systems
involving graphs, like communication protocols, graph
transformations, and visually described systems.

The analysis of such systems is reduced to exploration
problems consisting on finding certain states reachable
from the initial one. We analyze two problems: finding
just one path and finding the optimal one, according
to a certain notion of optimality. As specification for-
malism, we propose the use of ADL. It is capable of ex-
pressing all four types of goals that we have suggested.
In addition, we have proposed the use of abstraction-
based heuristics which exploit abstraction techniques in
order to obtain informed heuristics.

We have illustrated our approach with a scenario in
which one is interested in analyzing structural proper-
ties of communication protocols. As a concrete example
we used the arrow distributed directory protocol (Dem-
mer & Herlihy 1998) which ensures exclusive access to a
mobile service in a distributed system. We implemented
our approach in a heuristic search planning system, and
presented experiments validating our approach. The
PDDL specification presented in this paper is one of
the first steps towards modeling arrow distributed di-
rectory protocol and still has some of the specifications
unmodeled such as a bounded queue to prioritize the
requests.

In the 2004 International Planning Competition
(IPC-4)3, a Promela domain was used for the first time

3http://ipc.icaps-conference.org/

as an AI planning problem. This opened new horizons
to bridge model checking with AI planning. This paper
is one of the first efforts to model the systems repre-
sented by Graph Transition Systems as an AI planning
problem. There is still a lot of room for expansion for
the ideas presented in this paper.

In future work we would like to investigate further
scenarios for the analysis of graph transformation sys-
tems to planning problems. One such direction is to
model other more complicated protocols than the Ar-
row Distributed Directory protocol. With more chal-
lenging problem instances, we expect that graph tran-
sition system can serve as a challenging benchmark for
upcoming planning competitions.

References
Baldan, P.; Corradini, A.; König, B.; and König, B.
2004. Verifying a behavioural logic for graph transfor-
mation systems. In CoMeta’03, ENTCS.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
165–204.
Caires, L., and Cardelli, L. 2003. A spatial logic for
concurrency (part I). Inf. Comput. 186(2):194–235.
Cardelli, L.; Gardner, P.; and Ghelli, G. 2002. A spa-
tial logic for querying graphs. In ICALP’2002, volume
2380 of Lecture Notes in Computer Science, 597–610.
Springer.
Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
Checking. The MIT Press.
Corradini, A.; Montanari, U.; Rossi, F.; Ehrig, H.;
Heckel, R.; and Löwe, M. 1997. Algebraic approaches
to graph transformation, volume 1. World Scientific.
chapter Basic concepts and double push-out approach.
Courcelle, B. 1997. Handbook of graph grammars
and computing by graph transformations, volume 1 :
Foundations. World Scientific. chapter 5: The expres-
sion of graph properties and graph transformations in
monadic second-order logic, 313–400.
Culberson, J. C., and Schaeffer, J. 1998. Pattern
databases. Computational Intelligence 14(4):318–334.
Demmer, M. J., and Herlihy, M. 1998. The arrow dis-
tributed directory protocol. In International Sympo-
sium on Distributed Computing (DISC 98), 119 –133.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The
language for the classical part of the 4th international
planning competition. Technical Report 195, Univer-
sity of Freiburg.
Edelkamp, S., and Lluch-Lafuente, A. 2004. Abstrac-
tion databases in theory and model checking practice.
In ICAPS Workshop on Connecting Planning Theory
with Practice.
Edelkamp, S.; Jabbar, S.; and Lluch-Lafuente, A.
2005a. Cost-algebraic heuristic search. In Proceed-
ings of Nineteenth National Conference on Artificial
Intelligence (AAAI’05). To appear.

Edelkamp, S.; Jabbar, S.; and Lluch-Lafuente, A.
2005b. Heuristic search for the analysis of graph tran-
sition systems. draft.
Edelkamp, S.; Leue, S.; and Lafuente, A. L. 2003. Di-
rected explicit-state model checking in the validation
of communication protocols. International Journal on
Software Tools for Technology Transfer (STTT) 5(2-
3):247–267.
Edelkamp, S. 2001. Planning with pattern databases.
In European Conference on Planning (ECP), Lecture
Notes in Computer Science. Springer. 13-24.
Edelkamp, S. 2003a. Promela planning. In Model
Checking Software (SPIN), 197–212.
Edelkamp, S. 2003b. Taming numbers and dura-
tions in the model checking integrated planning sys-
tem. Journal of Artificial Research (JAIR) 20:195–
238.
Edelkamp, S. 2004. Generalizing the relaxed planning
heuristic to non-linear tasks. In German Conference
on Artificial Intelligence (KI). 198–212.
Fikes, R., and Nilsson, N. 1971. Strips: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence 2:189–208.
Fox, M., and Long, D. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains.
Journal of Artificial Research. Special issue on the 3rd
International Planning Competition.
Golkov, E. 2005. Graphtransformation als Pla-
nungsproblem. Master’s thesis, University of Dortm-
nund. draft.
Hoffmann, J., and Nebel, B. 2001. Fast plan gener-
ation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Hoffmann, J.; Englert, R.; Liporace, F.; Thiebaux, S.;
and Trüg, S. 2005. Towards realistic benchmarks for
planning: the domains used in the classical part of
IPC-4. Submitted.
Hoffmann, J. 2003. The Metric FF planning sys-
tem: Translating “Ignoring the delete list” to numer-
ical state variables. Journal of Artificial Intelligence
Research 20:291–341.
Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27(1):97–109.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s
Cube using pattern databases. In National Conference
on Artificial Intelligence (AAAI), 700–705.
Milner, R. 1989. Communication and Concurrency.
Prentice Hall.
Pednault, E. P. D. 1989. ADL: Exploring the mid-
dleground between STRIPS and situation calculus. In
Knowledge Representation and Reasoning (KR), 324–
332. Morgan Kaufman.
Rensink, A. 2003. Towards model checking graph
grammars. In 3rd Workshop on Automated Verifica-
tion of Critical Systems, Tech. Report DSSE-TR-2003,
150–160.

Rozenberg, G., ed. 1997. Handbook of graph gram-
mars and computing by graph transformations. World
Scientific.
Sobrinho, J. 2002. Algebra and algorithms for QoS
path computation and hop-by-hop routing in the in-
ternet. IEEE/ACM Trans. Netw. 10(4):541–550.
Varrò, D. 2003. Automated formal verification of vi-
sual modeling languages by model checking. Journal
on Software and Systems Modeling.
Wegener, I. 2003. Komplexitätstheorie. Springer. (in
German).

Appendix

PDDL model of the arrow distributed directory pro-
tocol as described in The Arrow Distributed Directory
Protocol by M. J. Demmer and M. P. Herlihy.

Domain Description
(define (domain arrow-domain)
(:requirements :typing :strips)
(:types node - object)
(:predicates

(link ?n1 ?n2 - node)
(queue ?n1 ?n2 - node)
(owner ?n1 - node)
(not-request-send ?n1 - node)
(find-pending ?n1 ?n2 ?n3 - node)
(move-pending ?n1 ?n2 ?n3 - node))

(:action request-object
:parameters (?u - node)
:precondition

(and (not-request-send ?u))
:effect

(and
(not (not-request-send ?u))
(find-pending ?u ?u ?u)))

(:action accept-request
:parameters (?u ?v ?w ?z - node)
:precondition

(and
(link ?u ?z)
(not (= ?u ?z))
(find-pending ?u ?w ?v))

:effect
(and

(not (find-pending ?u ?w ?v))
(find-pending ?z ?w ?u)
(link ?u ?v)
(not (link ?u ?z))))

(:action accept-request
:parameters (?u ?v ?w - node)
:precondition

(and
(link ?u ?u)
(find-pending ?u ?w ?v))

:effect
(and

(not (find-pending ?u ?w ?v))
(link ?u ?v)

(not (link ?u ?u))
(queue ?u ?w)))

(:action satisfy-request
:parameters (?u ?x - node)
:precondition

(and
(owner ?u)
(queue ?u ?x))

:effect
(and

(move-pending ?x ?x ?u)
(not (owner ?u))
(not (queue ?u ?x))))

(:action receive-object
:parameters (?u ?w ?v - node)
:precondition

(and (move-pending ?u ?w ?v))
:effect

(and
(not (move-pending ?u ?w ?v))
(owner ?u)))

Problem Instance
(define (problem tree)
(:domain arrow-domain)
(:objects v0 v1 v2 v3 v4 v5 - node)
(:init

(link v0 v0) (link v1 v0)
(link v2 v0) (link v3 v0)
(link v4 v0) (link v5 v0)
(owner v0))

(:goal (owner v1)))

