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Abstract

We present a new version of the Central Limit Theorem for multivariate martingales.
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1. Introduction

In the literature there are several versions of the central limit theorem for
multivariate martingales. The first version was given by Hutton and Nelson [8,9].
However, their assumption that the quadratic variation matrix converges when it is
normalized by a scalar turned out to be rather restrictive for applications. Thus,
some years later, Sørensen [15] published a central limit theorem in which the
quadratic variation matrix converges when it is normalized by a diagonal matrix.
The proof given by Sørensen is based on a result by Feigin [5, Theorem 2]. A result
similar to that of Sørensen appears in Heyde [7]. The proof given by Heyde follows
the one of Hutton and Nelson and it is based on an adaption of Theorem 3.2 in [6].
However, these theorems also turned out to be too restrictive for applications and so
Küchler and Sørensen [12] gave a central limit theorem for multivariate martingales
where the quadratic variation matrix is assumed to converge when it is normalized
see front matter r 2004 Elsevier B.V. All rights reserved.
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by a suitable full matrix. Once again, for the proof of this result, Theorem 2 of [5], is
used. Finally, Theorem A.7.7 in [11] slightly extends the previous result.

If, for a given random variable U with values in the space of positive semi-definite
d � d-matrices, we denote by Nð0;UÞ the corresponding Gaussian kernel, i.e. the
family of Gaussian distributions ðNð0;UðoÞÞÞo2O; then the theorem by Küchler and
Sørensen [11] can be so stated:

Theorem 1.1. On a probability space ðO;A;PÞ; endowed with a filtration F ¼ ðFtÞtX0

which satisfies the usual conditions, let M ¼ ðMtÞtX0 be a (right-continuous with limits

from the left) d-dimensional martingale such that Mi
t 2 L2 for each t and i. Let us

denote by Q the process ½M;M�: Further let ðatÞtX0 be a family of invertible d � d-
matrices. Let us suppose that the following conditions hold (as t ! þ1):
(a)

P

i;jja
i;j
t j�!0:P i;j
(b)
 ijat jE½sup0pspt jDsM
jj��!0 for each j.
(c)
 atQta
0
t�!U in probability (where U is a random variable with values in the space of

positive semi-definite d � d-matrices and a0
t denotes the transpose of at).
(d)
 atE½MtM
0
t�a

0
t�!S; where S is a positive definite d � d-matrix.
Then the random vector atMt converges A-stably to the Gaussian kernel Nð0;UÞ:

The concept of stable convergence was introduced by Rényi [14] and further
developed by many authors: for instance, Aldous and Eagleson [1], Jacod and
Memin [10].

In this paper, we present a version (see Theorem 2.2) of the central limit theorem
for multivariate martingales which is more general than the one mentioned above.
Indeed we eliminate some superfluous hypotheses. In particular, we suppress the
assumption, which appears in all central limit theorems published so far, on the
convergence of atE½MtM

0
t�a

0
t (see condition (d) in Theorem 1.1). Our proof is based

on the multidimensional version of a convergence result for triangular arrays proved
by Letta and Pratelli [13].

We refer the interested reader to Crimaldi and Pratelli [3,4] for a stronger
formulation of Theorem 2.2 in which, under the same assumptions of Theorem 2.2,
we obtain the convergence of suitable conditional expectations.

Finally, it may be worthy of note to recall that the central limit theorem for
multivariate martingales is a very useful tool in applications. It is used, for instance,
in order to obtain asymptotic results in likelihood theory for stochastic processes
(e.g. [2,7,11]).
2. Main theorem

Let us start with the following notation:

Notation 2.1. If a is a real matrix, we denote by jaj the sum of the absolute
values of its entries. With this notation, if a is equal to the row-column product
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of two matrices b; c; we have jajpjbj jcj: Moreover, we denote by a0 the trans-
pose of a. A d-dimensional real vector x is identified with a column matrix:
so the symbol jxj denotes the sum of the absolute values of its entries. Hence,
we have

jxx0j ¼ jxj2: (1)

We can now state our main theorem.

Theorem 2.2. On a probability space ðO;A;PÞ; endowed with a filtration F ¼ ðFtÞtX0

which satisfies the usual conditions, let M ¼ ðMtÞtX0 be a (right-continuous with limits

from the left) d-dimensional martingale. Let us denote by Q the process ½M;M� (with

values in the space of positive semi-definite d � d-matrices). Further let ðatÞtX0 be a

family of d � d-matrices. Let us suppose that the following conditions hold (as

t ! þ1):
(a)
 jatj�!0:

(b)
 E½sup0psptjatDsMj��!0:

(c)
 atQta

0
t�!U in probability (where U is a random variable with values in the space of

positive semi-definite d � d-matrices).
Then the random vector atMt converges A-stably to the Gaussian kernel Nð0;UÞ:

From Theorem 2.2 we immediately get the following corollaries:

Corollary 2.3. With the same assumptions and notation as in Theorem 2.2, let us set

A ¼ fdet U40g; At ¼ fdetðatQta
0
tÞ40g and Bt ¼ fdet Qt40g: Let us suppose

PðAÞ40 and denote by PA the probability measure Pð�jAÞ: Then, under PA; we have

the following A-stable convergences:
(a)
 U�1=2atMt�!Nð0; IdÞ:

(b)
 IAt

ðatQta
0
tÞ
�1=2atMt�!Nð0; IdÞ:
(c)
 IBt
M 0

tQ
�1
t Mt�!w2ðdÞ:
Corollary 2.4. (Weak law of large numbers for martingales; cf. Corollary 2.2 in [12]).
With the same assumptions and notation as in the previous corollary, the random

vector IBt
Q�1

t Mt converges in probability, under PA; to zero.
3. Preliminaries

In order to prove Theorem 2.2, we shall need the following ‘‘multidimensional
version’’ of the result obtained in [13]. (It can be easily deduced using the
Cramér–Wold device.)

Proposition 3.1. On a probability space ðO;A;PÞ let ðX n; jÞnX1; 1pjpkn
be a triangular

array of d-dimensional real random vectors, such that, for each n, the finite sequence

ðX n; jÞ1pjpkn
is a martingale difference array with respect to a given filtration ðGn; jÞjX0:
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Let us set

X �
n ¼ sup

1pjpkn

jX n; jj; Un ¼
Xkn

j¼1

X n; jX
0
n; j :

Moreover, let us denote by Hj the algebra lim infn Gn; j and by U the s-field generated

by the algebra
S

j Hj : Let us suppose that X �
n converges in L1 to zero and that Un

converges in probability to a U-measurable random variable U (with values in the space

of positive semi-definite d � d-matrices).
Then

Pkn

j¼1 X n; j converges U-stably to the Gaussian kernel Nð0;UÞ:

Further, the following lemmas will be useful.

Lemma 3.2. Under the same assumptions as in Theorem 2.2, let us suppose M0 ¼ 0
and denote by M� the real process defined by M�

u ¼ sup0pspu jMsj: Further, for each

positive number t, let us denote by Tt the first entrance time of the real process

jatj
1=2M� _ jatj jQj into �1;1½: Finally, let us set

St ¼ Tt ^ t: (2)

Then the following statements hold:
(a)
 St is a stopping time which is bounded by the constant t.

(b)
 St�! þ 1:

(c)
 jat MSt

j converges in L1 to zero.

(d)
 jat QSt

a0
tj converges in probability to zero.
Proof. Since the two processes M�; jQj are adapted and right-continuous, Tt is a
stopping time. So, because of (2), we get statement (a).

By assumption (a) in Theorem 2.2 and the fact that the two processes M�; jQj

have locally bounded trajectories, we obtain statement (b).
In order to prove statement (c), it suffices to observe that we have

MSt
¼ MSt� þ DSt

M; jatj
1=2 jMSt�jp1

and so

jatMSt
jpjatMSt�j þ jatDSt

Mj

pjatj jMSt�j þ sup
0pspt

jatDsMj

pjatj
1=2 þ sup

0pspt

jatDsMj:

Similarly, in order to prove statement (d), it suffices to observe that we have

QSt
¼ QSt�

þ DSt
Q; jatj jQSt�

jp1;
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and so

jatQSt
a0

tjpjatQSt�
a0

tj þ jatðDSt
QÞa0

tj

pjatj jQSt�
j jatj þ sup

0pspt

jatðDsQÞa0
tj

pjatj þ sup
0pspt

jatðDsMÞðDsMÞ
0a0

tj

¼ jatj þ sup
0pspt

jatDsMj2

(where the last equality follows from (1)). &

Lemma 3.3. Let us adopt the same hypotheses and notation as in Lemma 3.2. Then, for

each fixed positive number t and each strictly positive number �; there exist an

increasing sequence ðTjÞjX0 of stopping times, with T0 ¼ St; StpTjpt; and a strictly

positive integer k, such that the array ðX jÞ1pjpk defined by

X j ¼ atðMTj
� MTj�1

Þ for 1pjpk (3)

(which is a martingale difference array with respect to the filtration ðFTj
ÞjX0) has the

following properties:

P atðMt � MSt
Þ �
Xk

j¼1

X j

�����
�����4�

( )
o�; (4)

P atðQt � QSt
Þa0

t �
Xk

j¼1

X jX
0
j

�����
�����4�

( )
o�; (5)

sup
1pjpk

jX jjp�þ sup
0pspt

jatDsMj: (6)

Proof. Let us fix tX0 and �40: For each integer n, let us define (by induction) the
increasing sequence ðSn; jÞjX0 of stopping times, with StpSn; jpt; setting

Sn;0 ¼ St; Sn; j ¼ t ^ ðSn; j�1 þ n�1Þ ^ Un; j ;

where

Un; jðoÞ ¼ inffs 2 R : s4Sn; j�1ðoÞ; jatðMsðoÞ � MSn; j�1
ðoÞÞj4�g: (7)

Then it is a well-known fact that it is possible to find a pair ðn; kÞ of strictly positive
integers such that, setting Tj ¼ Sn; j and defining X j by (3), conditions (4), (5) are
satisfied. Moreover, condition (6) holds because of (7). &

Lemma 3.4. On a measurable space ðO;AÞ; let F ¼ ðFtÞtX0 be a right-continuous

filtration. Let us set F1 ¼
W

t Ft: Further, let ðTnÞnX1 be a sequence of finite stopping

times with Tn ! þ1 and let us denote by H the algebra lim infn FTn
:

Then the s-field generated by H coincides with the whole s-field F1:
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Proof. The sequence ðTnÞnX1 is bounded from below by the increasing sequence

ðTn ^ Tnþ1 ^ � � � ÞnX1;

which goes to þ1 and which is still a sequence of stopping times (because of the
right-continuity of the filtration F). Thus, without loss of generality, we may
suppose that the sequence ðTnÞnX1 itself is increasing. In this case, the statement of
the lemma is well known. &
4. Proof of Theorem 2.2

We are now able to prove Theorem 2.2.
Without loss of generality, we may suppose M0 ¼ 0: Let us fix an increasing

sequence ðtnÞnX1 of real positive numbers with tn " þ1: It is enough to prove that
atn

Mtn
converges F1-stably to the Gaussian kernel Nð0;UÞ: To this end, we observe

that, if we denote by Sn the stopping time Stn
defined in Lemma 3.2, this lemma

shows that Sn goes to þ1 and the following two convergences hold in probability

jatn
MSn

j�!0; (8)

jatn
QSn

a0
tn
j�!0: (9)

Therefore, it suffices to prove that atn
ðMtn

� MSn
Þ converges F1-stably to the kernel

Nð0;UÞ: To this end, let us apply Lemma 3.3 with tn instead of t and with n�1

instead of �: Thus, we obtain a double sequence ðTn; jÞnX1; jX0 of stopping times and a
sequence ðknÞnX1 of strictly positive integers such that, for each n, the sequence
ðTn; jÞjX0 is an increasing sequence of stopping times with Tn;0 ¼ Sn; SnpTn; jptn

and, setting

X n; j ¼ atn
ðMTn; j

� MTn; j�1
Þ for 1pjpkn;

the following properties hold:

P atn
ðMtn

� MSn
Þ �
Xkn

j¼1

X n; j

�����
�����4n�1

( )
on�1; (10)

P atn
ðQtn

� QSn
Þa0

tn
�
Xkn

j¼1

X n; jX
0
n; j

�����
�����4n�1

( )
on�1; (11)

sup
1pjpkn

jX n; jjpn�1 þ sup
0psptn

jatn
DsMj: (12)

Then, setting Gn; j ¼ FTn; j
; the triangular array ðX n; jÞnX1; 1pjpkn

; satisfies (with
respect to ðGn; jÞnX1;jX0) the assumptions of Proposition 3.1. More precisely: from
inequality (12) we deduce, by assumption (b) in Theorem 2.2, that the sequence

sup
1pjpkn

jX n; jj

 !
nX1
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converges in L1 to zero; from (9) and (11) we deduce, by assumption (c) in Theorem
2.2, that the sequence

Xkn

j¼1

X n; jX
0
n; j

 !
nX1

converges in probability to U. Finally, since U is measurable with respect to F1; the
condition of measurability required for U in Proposition 3.1 is obviously verified:
indeed, for each j, the sequence ðTn; jÞnX1 (which is bounded from below by ðSnÞnX1)
goes to þ1; and so, by Lemma 3.4, the s-field generated by the algebra

Hj ¼ lim inf
n

FTn; j

(and, consequently, the s-field U) coincides with F1:
Thus, applying Proposition 3.1, we get that the sequence

Xkn

j¼1

X n; j

 !
nX1

(13)

converges F1-stably to the kernel Nð0;UÞ: Then, in order to conclude, it suffices to
observe that thanks to (10), the sequence ðatn

ðMtn
� MSn

ÞÞnX1 differs from sequence
(13) up to a sequence which converges in probability to zero.
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