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1 Introduction

Urn models are a very popular topic because of their applications in various
fields: sequential clinical trials, biology, industry and finance. A large number
of “replacement policies” has been considered and studied by many authors,
from different points of view and by means of different methods: see, for in-
stance, Eggenberger-Pólya (1923), Pólya (1931), Pemantle (1990, 1991), Gouet
(1993), Kotz et al. (2000), Dirienzo (2000), Moler et al. (2002), Paganoni-
Secchi (2004), Amerio et al. (2004), Janson (2004, 2006), May et al. (2005),
Higueras et al. (2006), Muliere et al. (2006).

In the present paper we prove a convergence result for martingales (see
Theorem 2.2) and we apply it to a two-colors randomly reinforced urn, which
is a generalization of the urn model considered in May et al. (2005). More
precisely, we deal with the following experiment. An urn contains b black and r
red balls, where b, r are strictly positive integers. At each time n ≥ 1, a ball is
drawn from the urn and then it is put again in the urn together with other Nn

balls of the same color. The numbers Nn are randomly chosen in N
∗ = N\{0}.

For each n, the way in which the number Nn is chosen may depend on n but
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it is independent of the results of the choices for the preceding numbers and
of the preceding drawings. If we denote by Yn the indicator function of the
event {black ball at time n}, then, by some results in Berti et al. (2004), the
sequence (Mn)n≥1 defined by

Mn := n−1
∑n

i=1Yi (1)

converges in L1 and almost surely to a random variable V . Moreover, the
random variable

Vn := (b +
∑n

i=1 YiNi) (b + r +
∑n

i=1 Ni)
−1

(2)

represents the proportion of black ball in the urn at time n and the sequence
(Vn)n≥0 also converges in L1 and almost surely to V . We shall prove the
following limit theorem.

Theorem 1.1. Using the previous notation, let

Qn := (
∑n+1

i=1 Ni)
−1 Nn+1 and Wn :=

√
n(Vn − V ).

Further, let us set Gn := σ(Y1, N1, . . . , Yn, Nn, Nn+1) and denote by Kn a ver-
sion of the conditional distribution of Wn given Gn.

Suppose that the following conditions are satisfied:

(i) n
∑

k≥n Q2
k

a.s.−→ H , where H is a positive real random variable.

(ii)
∑

k≥0 k2 E[Q4
k] < ∞.

Then, for almost every ω in Ω, the sequence
(
Kn(ω, ·))

n
of probability

measures converges weakly to the Gaussian distribution

N (
0, H(ω)(V (ω) − V 2(ω))

)
.

This means that, for each bounded continuous function f ,

E[f(Wn) | Gn]
a.s.−→ ∫

f(x)N (
0, H(V − V 2)

)
(dx).

More briefly, the statement of Theorem 1.1 can be so reformulated: with
respect to the conditioning system G = (Gn)n, the sequence (Wn)n converges
to the Gaussian kernel

N (0, H(V − V 2))

in the sense of the almost sure conditional convergence (see Sec. 2).

It may be worthwhile to underline two features of Theorem 1.1: first
of all, we allow that the distribution of Nn arbitrarily depends on n and,
secondly, the obtained convergence is quite strong. Indeed, it implies not
only stable convergence (Rényi, 1963), but also stable convergence in strong
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sense (Crimaldi et al. 2007). In particular, we have that the sequence (Wn)n

converges in distribution to the mixture of Gaussian distributions defined by

B �−→ ∫ N (
0, H(ω)(V (ω) − V 2(ω))

)
(B) P (dω).

Unfortunately, the distribution of the random variable V is generally un-
known. A characterization of it in the particular case treated in Corollary 4.1
is in Aletti et al. (2007).

Theorem 1.1 and Theorem 2.2, together with the techniques used in this
work, are also the basis for future papers: see Crimaldi-Leisen (2008) and Bas-
setti et al. (2008).

The paper is so structured. Section 2 contains the general asymptotic
results for martingales and sequences of conditionally identically distributed
random variables (in the sense of Berti et al. (2004)). They follow from
Theorem A.1 in appendix, which is a result of almost sure conditional conver-
gence toward a Gaussian kernel for a family of martingales. This proposition
is closely related in many aspects to known results about stable convergence
(see Crimaldi-Pratelli (2005) and Hall-Heyde (1980)) and strong stable con-
vergence (see Crimaldi et al. (2007)), but the novelty lies in the fact that the
convergence of the conditional distributions/expectations holds almost surely.
In section 3, we prove Theorem 1.1 and, finally, in section 4, we consider some
special cases.

2 An almost sure conditional convergence re-

sult for martingales

In the sequel (Ω,A, P ) will denote a probability space and we shall briefly call
a kernel a family K =

(
K(ω, ·))

ω∈Ω
of probability measures on (R,B(R)) such

that, for each bounded Borel function f on R, the function K(f) defined on
Ω by

K(f)(ω) :=
∫

f(x) K(ω, dx)

is measurable with respect to A.

In particular, given on (Ω,A, P ) a real random variable M and a positive
real random variable V , the family

(N (M(ω), V (ω))
)

ω∈Ω
, where N (M(ω), V (ω))

denotes the Gaussian distribution with mean M(ω) and variance V (ω), is a
kernel, which will be said Gaussian and denoted by N (M, V ). Moreover, if X
is a real random variable on (Ω,A, P ) and U is a sub-σ-field of A, a version
of the conditional distribution of X given U is a kernel K such that, for each
bounded Borel function f on R, the random variable K(f) is a version of the
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conditional expectation E[f(X) | U ].

Further, we shall call a conditioning system a sequence G = (Gn)n of sub-
σ-fields of A. In particular, a filtration is an increasing conditioning system.

Using the above terminology, we can give the following definition.

Definition 2.1. Given a sequence (Xn)n of real random variables on (Ω,A, P )
and a conditioning system G, let us denote by Kn a version of the conditional
distribution of Xn given Gn. If K is a kernel such that, for almost every ω in
Ω, the sequence

(
Kn(ω, ·))

n
of probability measures on R converges weakly to

the probability measure K(ω, ·), then we shall say that, with respect to the
conditioning system G, the sequence (Xn)n converges to K in the sense of the
almost sure convergence of the conditional distributions or, more briefly, in the
sense of the almost sure conditional convergence.

If a sequence (Xn)n converges to a kernel K in the sense of the almost sure
conditional convergence with respect to a conditioning system G, then the
conditional expectation E[f(Xn) | Gn] converges almost surely to the random
variable K(f), for each bounded continuous function f on R. Therefore, the
sequence (Xn)n converges to K G-stably in the strong sense (see Def. 4, sec. 4
in Crimaldi et al. (2007)). In particular, (Xn)n converges in distribution to
the distribution PK defined by PK(B) =

∫
K(ω, B) P (dω), for each Borel

set B of R.

By Theorem A.1 in appendix, we obtain a general result of almost sure
conditional convergence for martingales.

Theorem 2.2. On (Ω,A, P ), let (Vn)n∈� be a real martingale with respect
to a filtration G = (Gn)n∈� . Suppose that (Vn)n converges in L1 to a random
variable V . Moreover, setting

Un := n
∑

k≥n(Vk − Vk+1)
2, Y := supk

√
k |Vk − Vk+1|, (3)

assume that the following conditions hold:

(a) The random variable Y is integrable.

(b) The sequence (Un)n≥1 converges almost surely to a positive real random
variable U .

Then, with respect to G, the sequence (Wn)n≥1 defined by

Wn :=
√

n(Vn − V ) (4)

converges to the Gaussian kernel N (0, U) in the sense of the almost sure con-
ditional convergence.
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Proof. In order to apply Theorem A.1, let us consider, for each n ≥ 1, the
filtration (Fn,h)h∈� and the process (Mn,h)h∈� defined by

Fn,0 = Fn,1 := Gn, Mn,0 = Mn,1 := 0

and, for h ≥ 2,

Fn,h := Gn+h−1, Mn,h :=
√

n(Vn − Vn+h−1).

It is easy to verify that, with respect to (Fn,h)h≥0, the process (Mn,h)h≥0 is
a martingale which converges in L1 to the random variable Mn,∞ := Wn. In
addition, the increment Xn,j := Mn,j − Mn,j−1 is equal to zero for j = 1 and,
for j ≥ 2, it coincides with a random variable of the form

√
n(Vk − Vk+1) with

k ≥ n. Therefore, we have

∑
j≥1 X2

n,j = Un

where Un is the random variable defined in (3), and

X∗
n := supj≥1 |Xn,j| =

√
n supk≥n |Vk − Vk+1| ≤ supk≥n

√
k|Vk − Vk+1| ≤ Y.

(5)

Moreover, the relation

n(Vn − Vn+1)
2 = Un − n

n + 1
Un+1

a.s.−→ 0

easily implies the convergence supk≥n

√
k|Vk − Vk+1| a.s.−→ 0 and so, by (5), it

also implies the convergence X∗
n

a.s.−→ 0. Hence, if we take kn = 1 for each n and
U equal to the completion (in A) of the σ-field

∨
n Gn, then the conditioning

system (Fn,kn)n coincides with the filtration G and the assumptions of Theorem
A.1 are satisfied. The proof is thus concluded.

In order to state the next result, we need the following notion, which was
introduced in Berti et al. (2004) as an extension of the classical notion of
exchangeability.

Definition 2.3. Given a filtration G = (Gn)n∈� on (Ω,A, P ), a sequence
(Yn)n≥1 of real random variables on (Ω,A, P ) is said to be conditionally iden-
tically distributed with respect to G or, more briefly, G-conditionally identically
distributed if it is adapted to G and such that, for each fixed n ≥ 0, all the
random variables of the form Yn+j with j ≥ 1 have the same conditional dis-
tribution given Gn.

It is obvious that exchangeable sequences are conditionally identically dis-
tributed with respect to their natural filtration but the converse is not true.
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If (Yn)n≥1 is conditionally identically distributed with respect to a filtration G
and each random variable Yn is integrable, then (see Berti et al. (2004) for
details) the sequence (Mn)n≥1 of the empirical means defined by (1) converges
in L1 and almost surely to a random variable V (which, in the particular case
of an exchangeable sequence, coincides with a version of the conditional ex-
pectation of Yn given the tail σ-field of (Yn)n). Further, the sequence (Vn)n∈�
defined by

Vn := E[Yn+1 | Gn] (6)

coincides with the martingale which is closed by V ; that is, for each n, we have
the equality

Vn = E[V | Gn]. (7)

From Theorem 2.2, we get the following corollaries.

Corollary 2.4. Let G be a filtration and (Yn)n≥1 a G-conditionally identically
distributed sequence of integrable random variables on (Ω,A, P ). Let (Vn)n∈�
be the martingale defined by (6). Using notation (3), assume that conditions
(a) and (b) of Theorem 2.2 hold.

Then, with respect to G, the sequence (Wn)n of random variables defined
by (4) converges to the Gaussian kernel N (0, U) in the sense of the almost
sure conditional convergence.

Proof. It is sufficient to apply Theorem 2.2 to the martingale (Vn)n.

Corollary 2.5. With the same notation and assumptions as in Corollary 2.4
and using notation (1), set

Xn :=
√

n(Mn − V ), Zn :=
√

n(Mn − Vn).

Suppose that the sequence (Zn)n converges almost surely to a real random
variable Z.

Then, with respect to G, the sequence (Xn)n converges to the Gaussian
kernel N (Z, U) in the sense of the almost sure conditional convergence.

Proof. By Lemma A.3 in the appendix, it will suffice to verify that, for each
fixed t in R, we have

E
[
exp(itXn) |Gn

] a.s.−→ exp(itZ − 1
2
t2U).

To this end, we observe that we can write Xn = Zn + Wn where Wn is the
random variable defined by (4). Thus, since Zn is Gn-measurable, we have

E
[
exp(itXn) |Gn

]
= exp(itZn) E

[
exp(itWn) |Gn

]
.

In order to conclude, it is enough to use the assumption of almost sure con-
vergence of Zn to Z and Corollary 2.4.
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Remark 2.6. Under the assumptions of Corollary 2.4 (respectively, Corol-
lary 2.5), since G is increasing, by Cor. 5, sec. 5 in Crimaldi et al. (2007),
the sequence (Wn) (respectively, (Xn)) also converges to the kernel N (0, U)
(respectively, N (Z, U)) G∞-stably, and so A-stably (but, in general, this stable
convergence is not in the strong sense. See Cor. 4, sec. 4 in Crimaldi et al.
(2007)).

3 Application to a generalized Pólya urn: proof

of Theorem 1.1

Let us start with the mathematical formalization of the experiment described
in section 1.

Given a sequence (μn)n≥1 of probability measures on N
∗ = N \ {0}, using

the Ionescu Tulcea theorem, it is possible to build a probability space (Ω,A, P )
and, on it, a sequence (Yn)n≥1 of random variables with values in {0, 1} and a
sequence (Nn)n≥1 of random variables with values in N

∗ such that the following
conditions are satisfied for each n ≥ 0:

(c1) A version of the conditional distribution of Yn+1 given the σ-field

Fn := σ(Y1, N1, . . . , Yn, Nn) (where F0 := {∅, Ω})
is the kernel

(B(1, Vn(ω))
)

ω∈Ω
, where B(1, p) denotes the Bernoulli distribution

with parameter p and Vn is the random variable defined by (2) (with V0 =
b(b + r)−1).

(c2) The distribution of the random variable Nn+1 is μn+1 and Nn+1 is
independent of the random vector [Y1, N1, . . . , Yn, Nn, Yn+1].

By condition (c1), we have E[Yn+1|Fn] = Vn for each n ≥ 0. Moreover, by this
equality and condition (c2), we also have E[Yn+1|Gn] = Vn (where Gn is the
sub-σ-field defined in the statement of Theorem 1.1). Now, we observe that,
if we set

Sn := b + r +
∑n

i=1 Ni, (8)

we can write Vn+1 = S−1
n+1(VnSn + Yn+1Nn+1) and we have

E[Vn+1| Gn] = S−1
n+1(VnSn + VnNn+1) = Vn.

In other words, the sequence (Vn)n∈� is a martingale with respect to the fil-
tration G = (Gn)n∈� . This fact, since each random variable Yn takes val-
ues in {0, 1}, implies (see Berti et al. 2004) that the sequence (Yn)n≥1 is
G-conditionally identically distributed. Therefore, the sequence (Mn)n of ran-
dom variables defined by (1) converges in L1 and almost surely to a random



1146 I. Crimaldi

variable V such that (7) holds for each n.

We are now ready to prove the theorem stated in introduction.

Proof of Theorem 1.1. Assuming notation (3), it will be sufficient to prove
that the sequence (Vn)n satisfies conditions (a) and (b) of Theorem 2.2, with
U = H(V − V 2). To this end, we observe firstly that, after some calculations,
we have

Vk − Vk+1 = (Vk − Yk+1) Nk+1

(
b + r +

∑k+1
i=1 Ni

)−1
. (9)

From this equality we get |Vk − Vk+1| ≤ Qk, and so, using assumption (ii), we
find

supk k2 |Vk − Vk+1|4 ≤
∑

k≥0 k2Q4
k ∈ L1.

Furthermore, we have

Nk+1

(
b + r +

∑k+1
i=1 Ni

)−1 ∼ Qk for k → +∞,

and hence, by (9),

∑
k≥n(Vk − Vk+1)

2 ∼ ∑
k≥n(Vk − Yk+1)

2 Q2
k for n → +∞.

Therefore, in order to complete the proof, it suffices to prove, for n → +∞,
the following convergence:

n
∑

k≥n(Vk − Yk+1)
2 Q2

k
a.s.−→ H(V − V 2).

Since we have Y 2
k+1 = Yk+1, the above convergence can be rewritten as

n
∑

k≥n(V 2
k + Yk+1 − 2VkYk+1) Q2

k
a.s.−→ H(V − V 2). (10)

Now, by assumption (i) and the almost sure convergence of (Vk)k to V , we
have

n
∑

k≥n VkQ
2
k

a.s.−→ V H (11)

n
∑

k≥n V 2
k Q2

k
a.s.−→ V 2H. (12)

Thus, it will be enough to prove the following convergence:

n
∑

k≥n(Yk+1 − Vk) Q2
k

a.s.−→ 0. (13)

Indeed, from this and (11), we obtain

n
∑

k≥n Yk+1Q
2
k

a.s.−→ V H, (14)
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and so

n
∑

k≥n VkYk+1Q
2
k

a.s.−→ V 2H. (15)

Then convergence relations (12), (14) and (15) lead us to the desired relation
(10).

In order to prove (13), we consider the process (Zn)n∈� defined by

Zn :=
∑n−1

k=0 k (Yk+1 − Vk) Q2
k.

It is a martingale with respect to the filtration G = (Gn)n∈� . Moreover, by
assumption (ii), we have

E[Z2
n] =

∑n−1
k=0 k2 E

[
(Yk+1 − Vk)

2 Q4
k

] ≤ ∑
k≥0 k2 E[Q4

k] < ∞. (16)

The martingale (Zn)n is thus bounded in L2 and so it converges almost surely;
that is, the series

∑
k≥0 k (Yk+1 − Vk) Q2

k

is almost surely convergent. On the other hand, by a well-known Abel’s result,
the convergence of a series

∑
k ak, with ak ∈ R, implies the convergence of the

series
∑

k k−1ak and the relation n
∑

k≥n k−1ak → 0 for n → +∞. Applying
this result, we find (13) and the proof is so concluded.

4 Some special cases

In this section we describe some special cases in which the assumptions of
Theorem 1.1 hold. First of all we may remark that, in Theorem 1.1, condition
(ii) is obviously satisfied if the sequence (Nn)n is uniformly bounded by a
random variable C with E[C4] < ∞. Indeed, we have Qk ≤ C(k + 1)−1.
Furthermore, we have the following results.

Corollary 4.1. (case i.i.d.)
Using the notation of Theorem 1.1, suppose that the random variables Nn are
identically distributed and E[N4

1 ] < +∞. Set

m := E[N1], δ := E[N2
1 ], h := δ/m2.

Then, with respect to G, the sequence (Wn)n converges to the Gaussian
kernel

N (0, h(V − V 2))

in the sense of the almost sure conditional convergence.
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Proof. It will suffice to verify that condition (i) and (ii) of Theorem 1.1 hold
with H = h. With regard to condition (ii), it is enough to observe that, by
the obvious inequality Qk ≤ Nk+1/(k + 1) and the identity in distribution of
the random variables Nk, we have

∑
k≥0 k2 E[Q4

k] ≤
∑

k≥0 k2 E[N4
k+1/(k + 1)4] ≤ E[N4

1 ]
∑

k≥0(k + 1)−2 < ∞.

In order to prove condition (i) of Theorem 1.1 (with H = h), we observe that
the series

∑
k k−1 (N2

k+1 − δ)

is almost surely convergent: indeed, the random variables Xk := k−1 (N2
k+1−δ)

are independent, centered and square-integrable, with Var[Xk] = k−2 Var[N2
1 ].

Therefore, by the above mentioned Abel’s result, we obtain the almost sure
convergence of the series

∑
k k−2 (N2

k+1 − δ)

and the relation (for n → +∞)

n
∑

k≥n k−2 (N2
k+1 − δ)

a.s.−→ 0.

Since we have n
∑

k≥n k−2 → 1 for n → +∞, the above relation can be rewrit-
ten in the form

n
∑

k≥n k−2N2
k+1

a.s.−→ δ.

Now, we observe that, by the strong law of large numbers, we have for k → +∞
∑k+1

i=1 Ni
a.s.∼ m(k + 1) ∼ mk,

and so

Q2
k

a.s.∼ m−2k−2N2
k+1.

Hence, for n → +∞, we have

n
∑

k≥n Q2
k

a.s.∼ m−2n
∑

k≥n k−2 N2
k+1

a.s.−→ m−2δ = h.

Condition (i) of Theorem 1.1 (with H = h) is thus proved and the proof is
concluded.
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Corollary 4.2. (Classical Pólya urn)
Using the notation of Corollary 4.1, suppose that the random variables Nn are
all equal to a constant c ∈ N

∗. Set Xn :=
√

n(Mn − V ), where (Mn)n is the
sequence defined by (1).

Then, with respect to G, each of the two sequences (Wn)n, (Xn)n converges
to the Gaussian kernel N (0, V −V 2) in the sense of the almost sure conditional
convergence.

Proof. The assumptions of Corollary 4.1 are obviously fullfilled with h = 1.
It follows the desired convergence for (Wn)n. Finally, after some calculations,
we get
√

n|Mn − Vn| =
√

n(b + r + nc)−1|(b + r)Mn − b| ≤ (c
√

n)−1(2b + r) −→ 0.

Thus, by Corollary 2.5, we also obtain the desired convergence for (Xn)n.

Remark 4.3. To allow real valued reinforcements seems important for appli-
cations. With regard to this, we note that Theorem 1.1 is also true in the
more general setting when b, r are strictly positive real numbers and the sup-
port of the reinforcement distributions is R+: it is enough to replace Qn with
(a+b+

∑n+1
i=1 Ni)

−1 Nn+1. For Corollary 4.1 we have to assume that Nn ≥ γ > 0
for each n.

A Appendix

Given a conditioning system G = (Gn)n, if U is a sub-σ-field of A such that, for
each real integrable random variable Y , the conditional expectation E[Y | Gn]
converges almost surely to the conditional expectation E[Y | U ], then we shall
briefly say that U is an asymptotic σ-field for G. In order that there exists
an asymptotic σ-field U for a given conditioning system G, it is obviously
sufficient that the sequence (Gn)n is increasing or decreasing. (Indeed we can
take U =

∨
n Gn in the first case and U =

⋂
n Gn in the second one.)

We are going to prove the following general result.

Theorem A.1. On (Ω,A, P ), for each n ≥ 1, let (Fn,h)h∈� be a filtration and
(Mn,h)h∈� a real martingale with respect to (Fn,h)h∈� , with Mn,0 = 0, which
converges in L1 to a random variable Mn,∞. Set

Xn,j := Mn,j − Mn,j−1 for j ≥ 1, Un :=
∑

j≥1 X2
n,j, X∗

n := supj≥1 |Xn,j|.

Further, let (kn)n≥1 be a sequence of strictly positive integers such that knX
∗
n

a.s.→
0 and let U be a sub-σ-field which is asymptotic for the conditioning system G
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defined by Gn := Fn,kn. Assume that the sequence (X∗
n)n is dominated in L1

and that the sequence (Un)n converges almost surely to a positive real random
variable U which is measurable with respect to U .

Then, with respect to the conditioning system G, the sequence (Mn,∞)n

converges to the Gaussian kernel N (0, U) in the sense of the almost sure con-
ditional convergence.

For the proof of the above proposition, we need some lemmas. The first
one is an immediate extension of Theorem 2 in Blackwell-Dubins (1962).

Lemma A.2. Let G be a conditioning system and U a sub-σ-field of A. Then
the following conditions are equivalent:

(a) The sub-σ-field U is an asymptotic σ-field for G.

(b) For each sequence (Yn)n of integrable real random variables such that
there exists an integrable real random variable Z with Yn ≤ Z for each n and
such that the random variable lim supn Yn is integrable, we have

lim supn E[Yn | Gn] ≤ E[ lim supn Yn | U ] a.s.

(c) For each sequence (Yn)n of integrable real random variables such that
there exists an integrable real random variable Z with Yn ≥ Z for each n and
such that the random variable lim infn Yn is integrable, we have

E[ lim infn Yn | U ] ≤ lim infn E[Yn | Gn] a.s.

(d) For each sequence (Yn)n of integrable complex random variables, which
is dominated in L1 and which converges almost surely to a complex random
variable Y , the conditional expectation E[Yn | Gn] converges almost surely to
the conditional expectation E[Y | U ].

If K is a kernel, then, for each ω in Ω, we shall denote by K̂(ω, ·) the
characteristic function of the probability measure K(ω, ·); that is, for each real
number t, we shall set

K̂(ω, t) :=
∫

exp (itx) K(ω, dx).

Since the complex function (ω, t) �→ K̂(ω, t) is measurable with respect to ω
and continuous with respect to t, it is measurable on

(
Ω×R,A⊗B(R)

)
. With

this notation, we can now state the second lemma.

Lemma A.3. Let K be a kernel and (Kn)n a sequence of kernels. Then the
following conditions are equivalent:

(a) For almost every ω in Ω, the sequence of probability measures
(
Kn(ω, ·))

n
converges weakly to the probability measure K(ω, ·).

(b) For each fixed real number t, the sequence of complex random variables(
K̂n(·, t))

n
converges almost surely to K̂(·, t).
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Proof. Implication (a)⇒(b) is obvious. In order to prove implication (b)⇒(a),
we assume condition (b) and we set

A := {(ω, t) ∈ Ω × R : lim supn |K̂n(ω, t) − K̂(ω, t)| = 0}.
Then, for each fixed real number t, the section A−1(t) = {ω : (ω, t) ∈ A}
is negligible under P . Therefore the set A is negligible under the product
measure P ⊗ λ, where λ denotes the Lebesgue measure on R. It follows that,
for almost every ω in Ω, the section A(ω) = {t : (ω, t) ∈ A} is negligible under

λ. For such an ω, we have K̂n(ω, ·) → K̂(ω, ·) almost everywhere with respect
to λ. It is well-known that this fact suffices to assure the weak convergence of(
Kn(ω, ·))

n
to K(ω, ·).

Finally, the following lemma is proved in Crimaldi et al. (2007, Lemma 1,
sec. 7).

Lemma A.4. Given a finite family (Xj)j of real random variables on (Ω,A, P ),
let

S :=
∑

j Xj , U :=
∑

j X2
j , X∗ := supj |Xj|.

Further, given two real numbers b and t, with b > 0, and a random variable V
with values in [0, b], set

L :=
∏

j(1 + itXj), D := exp(itS) − L exp(−1
2
t2V ), B := {|t|X∗ ≤ 1, U ≤ b}.

Then, on the set B, we have

|D| ≤ κ(b, t)
(|U − V | + 2b|t|X∗), with κ(b, t) := 1

2
t2 exp(7

2
bt2).

We are now in a position to prove Theorem A.1.

Proof of Theorem A.1. In view of Lemma A.3 and of the assumed almost
sure convergence of Un to U , it is sufficient to prove that, for each real number
t, we have

E
[
exp(itMn,∞) | Gn

] − exp(−1
2
t2Un)

a.s.−→ 0. (17)

For t = 0, there is nothing to prove and so we shall assume t = 0. We note
that, for each fixed n ≥ 1, the sequence (Mn,h)h≥0 converges almost surely to
Mn,∞ and the (increasing) sequence (Un,h)h≥0 defined by

Un,h :=
∑h

j=1 X2
n,j

converges everywhere to Un. Therefore, it is possible to choose, for each fixed
n, an integer ln ≥ kn in such a way that, setting

An := { |Mn,∞ − Mn,ln | ∨ |Un − Un,ln| > 1/n },
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we have P (An) < 2−n. By Borel-Cantelli lemma, we have P (lim supn An) = 0
and so

Mn,∞ − Mn,ln
a.s.−→ 0, Un − Un,ln

a.s.−→ 0.

Since the complex function x �→ exp(itx) is Lipschitz on R and the real function
x �→ exp(−1

2
t2x) is Lipschitz on R+, we also have

exp(itMn,∞) − exp(itMn,ln)
a.s.−→ 0, (18)

exp(−1
2
t2Un) − exp(−1

2
t2Un,ln)

a.s.−→ 0. (19)

Furthermore, since the conditioning system G has an asymptotic σ-field, the
relation (18) implies

E
[
exp(itMn,∞) − exp(itMn,ln) | Gn

] a.s.−→ 0.

Thus, by this last fact and (19), if we set

Yn := E
[
exp(itMn,ln) | Gn

] − exp(−1
2
t2Un,ln),

the desired relation (17) is equivalent to the following one:

Yn
a.s.−→ 0. (20)

In order to prove this last convergence, fixing a positive number a, let us
define, for each n ≥ 1, the stopping time Jn (with respect to the filtration
(Fn,h)0≤h≤ln) in the following way:

Jn(ω) := ln ∧ inf{h ∈ N : h ≤ ln, Un,h(ω) ≥ a}.

We observe that the absolute values of the two differences

exp(itMn,ln) − exp(itMn,Jn), exp(−1
2
t2Un,ln) − exp

( − 1
2
t2(Un,ln ∧ a)

)

are bounded by constants 2 and 1 respectively and, by the definition of Jn,
they vanish on the event {Un,ln < a}. Hence, if we set

Zn := E
[
exp(itMn,Jn) | Gn

] − exp
( − 1

2
t2(Un,ln ∧ a)

)
, (21)

we can write

|Yn − Zn| ≤ 2E
[
I{Un,ln≥a} | Gn] + I{Un,ln≥a}.



Almost sure conditional convergence result 1153

Moreover, since Un,ln
a.s.−→ U , we have

lim supn I{Un,ln≥a} ≤ I{U≥a} a.s.,

and, since U is asymptotic for G and U is measurable with respect to U , we
find (using Lemma A.2)

lim supn |Yn − Zn| ≤ 2E
[
I{U≥a} | U ] + I{U≥a} = 3I{U≥a}

a.s.−→ 0 for a → +∞.

Summing up, it will suffice to prove that

Zn
a.s.−→ 0 (22)

instead of (20). To this end, for each n, let us introduce the complex martingale
(Ln,h)0≤h≤ln (with respect to the filtration (Fn,h)0≤h≤ln) defined as follows:

Ln,0 := 1, Ln,h :=
∏h

j=1(1 + itXn,jI{j≤Jn}) for 1 ≤ h ≤ ln.

Since, for each x ∈ R, we have |1 + ix|2 = 1 + x2 ≤ exp(x2), it follows that

1 ≤ |Ln,kn| ≤ exp
[

1
2
t2(knX

∗
n)2

] a.s.−→ 1, (23)

|Ln,Jn| ≤ exp(1
2
t2a)(1 + |t|X∗

n). (24)

Moreover, we have

|Arg(Ln,kn)| ≤ ∑kn∧Jn

j=1 |Arg(1 + itXn,j)| =
∑kn∧Jn

j=1 | arctan(tXn,j)|
≤ |t|knX

∗
n

a.s.−→ 0.
(25)

Since the martingale (Ln,h)0≤h≤ln is stopped at Jn, we have Ln,Jn = Ln,ln and
so

E[Ln,Jn | Gn] = E[Ln,ln | Fn,kn] = Ln,kn

a.s.−→ 1, (26)

where the almost sure convergence to the constant 1 is a consequence of (23)
and (25). Now, fix a positive number b with b > a and set Vn := E[U ∧ b|Gn].
Then, since U is asymptotic for G and U is measurable with respect to U , we
have:

Vn
a.s.−→ E[U ∧ b | U ] = U ∧ b, (27)

and so

Vn − (Un,ln ∧ b)
a.s.−→ 0. (28)
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Further, set

Bn := { |t|X∗
n ≤ 1, X∗

n ≤ √
b − a }, Dn := exp(itMn,Jn) − Ln,Jn exp(−1

2
t2Vn).

Since the assumption knX∗
n

a.s.−→ 0 implies X∗
n

a.s.−→ 0, we have IBc
n

a.s.−→ 0.
Moreover, by the definition of Dn and relation (24), we get

|Dn| ≤ 1 + |Ln,Jn| ≤ 1 + exp(1
2
t2a)(1 + |t|X∗

n). (29)

Therefore, since (X∗
n)n is dominated in L1 and G has an asymptotic σ-field, by

Lemma A.2, we get

E[ |Dn| IBc
n
| Gn]

a.s.−→ 0. (30)

Moreover, since we have Bn ⊂ {|t|X∗
n ≤ 1, Un,Jn ≤ b}, applying Lemma A.4

to the finite family (Xn,jI{j≤Jn})1≤j≤ln, we find

|Dn| IBn ≤ κ(b, t)
( |(Un,Jn ∧ b) − Vn| + 2b|t|X∗

n

)
. (31)

The positive random variable (Un,ln ∧ b) − (Un,Jn ∧ b) vanishes on {Jn = ln}
and, at each point of {Jn = ln}, it coincides with the difference of two elements
of [a, b]. Thus, it is bounded by the constant b − a and so, from (31), we get

|Dn| IBn ≤ κ(b, t)
(
b − a + |(Un,ln ∧ b) − Vn| + 2b|t|X∗

n

)
. (32)

Then, from (28), (30) and Lemma A.2, we have a.s.

lim supn E[ |Dn| | Gn] = lim supn E[ |Dn| IBn | Gn] ≤ κ(b, t)
(
b − a). (33)

We now observe that, by equalities (26) and the measurability of Vn with
respect to Gn, we have

E[Dn | Gn] = E [exp(itMn,Jn)|Gn] − Ln,kn exp(−1
2
t2Vn),

and so the random variable Zn defined by (21) can be expressed in the following
way:

Zn = E[Dn | Gn] + Ln,kn exp(−1
2
t2Vn) − exp

( − 1
2
t2(Un,ln ∧ a)

)
.

From this equality, letting n go to +∞ and using (26), (27) and (33), we obtain

lim supn |Zn| ≤ κ(b, t)(b − a) + | exp
( − 1

2
t2(U ∧ b)

) − exp
( − 1

2
t2(U ∧ a)

)|.

Finally, it suffices to let b decrease to a in order to obtain the desired relation
(22).
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Remark A.5. In the previous proof, the assumption that (X∗
n)n is dominated

in L1 is used only to get relations (30) and (33). Actually, it can be replaced
by the assumption that (X∗

n)n is a sequence of integrable random variables
such that E[X∗

n|Gn]
a.s.−→ 0. This follows immediately from (29) and (32).

Remark A.6. Since Lemma A.3 can be extended to the multidimensional
case, it is possible, by the same small trick employed for Theorem 5 in Crimaldi
et al. (2007), to give a multidimensional version of Theorem A.1.
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[10] F. Eggenberger and G. Pólya, Über die Statistik verketter Vorgänge,
Zeitschrift Angew. Math. Mech., 3 (1923), 279-289.

[11] R. Gouet, Martingale Functional Central Limit Theorems for a General-
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Poincaré, 1 (1931), 117-161.
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