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Labeled transition systems are typically used to reprakeriiehavior of nondeterministic processes,
with labeled transitions defining a one-step state-teestdchability relation. This model has been
recently made more general by modifying the transitiontietein such a way that it associates with
any source state and transition label a reachability Oigfion, i.e., a function mapping each possible
target state to a value of some domain that expresses theeda@gone-step reachability of that target
state. In this extended abstract, we show how the resultiogei called ULRAS from Uniform
Labeled TRANsition System, can be naturally used to give semantics tdyarfondeterministic, a
fully probabilistic, and a fully stochastic variant of a G8le process language.

1 Introduction

Process algebras are one of the most successful formalsmmeoteling concurrent systems and proving
their properties such as correctness, liveness or safétigr their initial success in this respect, they have
also been extended to deal with properties related to pedioce and quality of service. Thus, process
algebras have been enriched with quantitative notionawed &ind probabilities and integrated theories
have been considered; for a comprehensive descriptioni©oBfiproach, the reader is referred[td [1].
Moreover, due to the growing interest in the analysis of sth@esource systems, stochastic variants of
process algebras have also been proposed. The main aimtbeimgegration of qualitative descriptions
with those relative to performance in a single mathemafigahework by building on th ecombination
of labeled transition systems (LTS) and continuous-timeKda chains (CTMC).

In [9], two of the authors of the present paper, together With.atella and M. Massink, proposed
a variant of LTS, namelyate transition systemgRTS), as a tool for providing semantics to some of
the most representative stochastic process languagebinWIES, the transition relation describes the
evolution of a system from one state to another as deterntipéige execution of specific actions, thus it
is a set of triplegstate action state. In contrast, within RTS the transition relatien associates with
a given statd® and a given transition label (actioa)a function, say??, mapping each term into a non-

negative real number. The transitien—> 2 has the following meaning: i#7(Q) = v with v # 0, then
Q is reachable fronk by executinga, the duration of such an execution being exponentiallyridisted
with ratev; if 22(Q) = 0, thenQ is not reachable frorR via a.

RTSs have been used for providing a uniform semantic framef@omodeling many of the different
stochastic process languages, facilitating reasoningtahem, and throwing light on their similarities
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as well as on their differences. In [8], we considered a tahitbut representative, number of stochastic
process calculi and provided the RTS semantics for (fullgtisastic process languages both based on
the CSP-like, multipart interaction paradigm and on the @ik& two-ways interaction paradigm. Then,
in [10], RTSs were extended by requiring that the domaigbe a generic semiring and other variants
of stochastic process algebras are studied, in particuisrshown that also languages, like IML [13],
that mix stochasticity and nondeterminism can be easilyatsot

In [4], we performed a further step in the direction of pramig a uniform characterization of the
semantics of different process calculi and introduced sengeneral framework than RTS, which could
be instantiated to model not only stochastic process agdiut also classical process algebras, usually
modelled via LTS, and other quantitative variants of pre@dgebras that would consider time, probabili-
ties, resources, etc.; we thus introduced BB (Uniform LabeledT RANsition Systems The transition
relation of ULTRAS associates with a state and a given transition label aifumotapping each state
into an element of a generic domdin An ULTRAS transition(s,a, 2) is writtens—— 2, with 2(s)
being aD-value quantifying the degree of reachabilitysbfrom svia the execution ochand%(s) = L
meaning thas' is not reachable fromvia a. By appropriately changing the domd different models
of concurrent systems can be captured. For exampejdgfthe setB consisting of the two Boolean val-
uestrue and falsewe can capture classical LTSs, whilefis the sefR |y ;; we do capture probabilistic
models, and wheD is the sefR-o we do capture stochastically timed models.

Of course, modeling state transitions and their annotai®one of the key ingredients; however, one
has also to combine single transitions to obtain computaténd find out ways for determining when two
states give rise to “equivalent” computation trees. To #is, in [4] we introduced the notions of trace
equivalence and bisimulation equivalence over BRE. An important component of the equivalences
definition is ameasure functionZy (s, a,S) that computes the degree of multi-step reachability of a set
of target state§ from a source statewhen performing computations labeled with traceFor instance,
to capture classical equivalences over nondeterminigitems, the measure yieldsif there exists a
computation fronsto S labeled witha and L otherwise. As another example, to capture probabilistic
equivalences, the measure yields a valug iy, that represents the probability of the set of computations
labeled witha to reach a state i8 froms.

In this note, we put ULRAS at work and use them to provide a uniform semantical deamijor
a few (qualitative and quantitative) variants of a very demgrocess algebra. For the sake of simplicity,
we limit our attention to a purely nondeterministic, a fufisobabilistic, and a fully stochastic calculus,
without allowing any interplay between nondeterminism goentitative aspects. In our view, the three
(very compact) resulting sets of operational rules giveence of the expressive power of our approach
and help in appreciating similarities and differences agnibre three variants of the considered process
algebra.

The rest of the paper is organized as follows. In Sdct. 2, wapréhe basic notions of UIRAS
introduced in[[4] and define three different types of behaliequivalences over them. To the definition
of trace and bisimulation equivalences already presefjmfe add the definition of testing equivalence
together with the set up of the necessary testing framevatkte have introduced inl[5]. In Selct. 3, we
show how ULTRAS can be used to provide the operational semantics of c€3RP [6] and of two of
its probabilistic [17} 2] and stochastic [14] variants. &ip, Sect[# reports on some future work.
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2 Uniform Labeled Transition Systems

The behavior of sequential, concurrent, and distributestgsses can be described by means of the
so called labeled transition system (LTS) modell [16]. Itsists of a set of states, a set of transition
labels, and a transition relation. States correspond tapleeational modes that processes can pass
through. Labels describe the activities that processegpetorm internally or use to interact with the
environment. The transition relation defines process éeoolas determined by the execution of specific
activities and is formalized asstate-to-stateeachability relation.

In this section, we recall from_[4] a generalization of theS.hodel that aims at providing a uniform
framework that can be employed for defining and comparindérevior of different types of process.
In the new model, named UIRAS from Uniform Labeled RAnsition System, the transition relation
associates with any source state and transition label gidmnmapping each possible target state to an
element of a domaiD. In other words, the state-to-state reachability relatygmcal of the LTS model
is replaced by atate-to-state-distributiomeachability relation. This is a consequence of the fadt tha
the concept of next state is generalized via a function #aisents a one-step reachability distribution,
which expresses the degree of reachability from the custaté of every possible next state.

As shown in[[4], by appropriately changing the domBinve can capture different process models,
in particular quantitative ones like Markov chains|[18]rEgample:

e If D is the support seb = {_L, T} of the Boolean algebra with the standard conjunctiopgnd
disjunction {/) operators, then we capture classical LTS models.

e If D=Rgy), then we capture fully probabilistic models in the form ofiaw-labeled discrete-time
Markov chains (ADTMC).

o If D=0, then we capture fully stochastic models in the form of actabeled continuous-time
Markov chains (ACTMC).

2.1 Definition of the Uniform Process Model

The definition of our uniform model is parameterized withpexst to a complete partial ordéb,C)
whose elements express the degreerd-stepreachability of a state. In the following, we denote by
the C-least element ob and by[S — D] the set of functions from a s&to D, which is ranged over
by 2.

Definition 2.1 Let(D,C) be a complete partial order. A uniform labeled transitiostesn on(D,C), or
D-ULTRAS for short, is a triplez = (S A,—) where:

e Sis an at most countable set of states.
e Ais a countable set of transition-labeling actions.

e — C SxAx[S— D]is atransition relation.
We say that th®-ULTRAS % is functional iff — is a function fromSx Ato [S— D]. ]

Every transition(s,a, 2) is written s—2 2, with 2(s) being aD-value quantifying the degree of
reachability ofs' from s via the execution of and Z(s') = L meaning that' is not reachable frors
viaa. When considering a functional UIRRS, we will often writeZs 5(S') to denote the sanm®@-value.
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2.2 Behavioral Equivalences for the ULTRAS Model

LTS-based models come equipped with equivalences throlngthiit is possible to compare processes
on the basis of their behavior and reduce the state space mitags before analyzing its properties.
These behavioral equivalences result in a linear-timatiag-time spectrum_[11, 15] 3| 1] including
several variants of three major approaches: bisimulati@j, firace [6], and testing [7]. We now recall
how bisimulation, trace, and testing equivalences can lferunly defined over the ULRAS model.
Their definition is parameterized with respect to a measumetion that expresses the degrearfiti-
stepreachability of a set of states. Similar to the one-stephaaitity encoded within an ULRAS, in
which we consider individual actions, multi-step reacligbielies on sequences of actions commonly
called traces, which are the observable effects of the ctatipns performed by an ULRAS.

Definition 2.2 Let A be a countable set of transition-labeling actions. A tracis an element oA*,

wherea = € denotes the empty trace. [
Definition 2.3 Let% = (S A,—) be aD-ULTRAS and(M, &, ®) be a lattice. ArM-measure function
for 7 is a function.#y : Sx A* x 25— M. n

Note that different measure functions can induce diffek@mtants of a behavioral equivalence on
the sameéD-ULTRAS depending on the support set and the operatiofidof, ®). AlthoughD andM
may be the same support set, this is not necessarily the vdsks D-values are related to one-step
reachability, M-values — especially those of the form#y(s,a,S) — are computed on the basis of
D-values to quantify multi-step reachability.

2.2.1 Trace Equivalence

Trace equivalence is straightforward: two states are tegcevalent if every trace has the same measure
with respect to the entire set of states when starting framsdhwo states.

Definition 2.4 Let = (SA, —) be aD-ULTRAS and.#y be anM-measure function forz .
We say thaty, s, € Sare.Zy-trace equivalent, writtes, ~1_4, S, iff for all tracesa € A*:
%M(Sg_,a,S) = %M(sz,a,S) | |

2.2.2 Bisimulation Equivalence

While trace equivalence simply compares any two statesowittaking into account the states reached
at the end of the trace, bisimulation equivalence also posestraints on the reached states.

Definition 2.5 Let = (S A,—) be aD-ULTRAS and.#y be anM-measure function fo#/. An
equivalence relatioZ over Sis an.#yu-bisimulation iff, whenever(s;,s;) € %, then for all traces
a € A* and equivalence class€s S/ %:

A (s1,d,C) = (s, a,C)
We say thats;,s, € S are.#-bisimilar, writtens; ~g_4, S, iff there exists an#j-bisimulation %
overSsuch that(s;,s) € #. |

2.2.3 Testing Equivalence

The definition of testing equivalence requires the fornadion of the notion of test and the consideration
of configurations rather than simple states. A test spedciflésh actions of a process are permitted at
each step and can be expressed as some suitableAf That includes a success state, which is used to
determine which ones are the successful computations.
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Definition 2.6 Let (D,C) be a complete partial order. M-observation system is B-ULTRAS
0 = (O,A,—) where O contains a distinguished success state denoted Isyich that, whenever
w-25 9, then 2(0) = 1 for all o € O. We say that a computation @f is successful iff its length
is finite and its last state . [

A D-ULTRAS can be tested only throughDaobservation system by running them in parallel and
enforcing synchronization on any action. The states ofékaltingD-ULT RAS are called configurations
and are pairs each formed by a state ofl(RELTRAS under test and a state of tDeobservation system.
A configuration can evolve to a new configuration only throtlgg synchronization of two transitions
— leaving the two states constituting the configuration + #na labeled with the same action and reach
at least one state, i.e., two identically labeled trans#tiorhose target functions are not identically equal
to L.

For each such pair of synchronizing transitions, the tafigmttion of the resulting transition is ob-
tained from the two original target functions by means of s@¥valued functiond, which computes the
degree of one-step reachability of every possible targdigaration. Sincel represents unreachability,
the only constraint od is that it isL-preserving, i.e., that it yields iff at least one of its arguments is.

As a consequence of this constraint, in the case of nondietistin processe® boils down to logical
conjunction, whereas several alternative options ardadlaiin the case of probabilistic and stochastic
processes.

Definition 2.7 Let % = (SA,—4 ) be aD-ULTRAS, ¢ = (O,A,—4) be aD-observation system,
and¢ be a_ -preservingD-valued function. The interaction system%f and & with respect td is the
D-ULTRAS .#%(% ,0) = (Sx O,A,—) where:

e Every element(s,0) € Sx O is called a configuration and is said to be successfub i w.
We denote by7%(% , 0) the set of successful configurations.6f (%, 0).

e The transition relation— C (Sx O) x Ax [(Sx O) — D] is such that(s,0)— Z iff
s, 21 ando—25 4 Z, with 2(s,0) being obtained fronZ:(s) and Z»(0') by applying 3.
We say that a computation of®(% , 0) is successful iff its length is finite and its last configura-
tion is successful. [

Definition 2.8 Let Z = (SA,—4 ) be aD-ULTRAS, .#\ be anM-measure function fo#/, d be a

| -preservingD-valued function, and” = (O,A,— ) be aD-observation system. The extension of
My to I0(% ,0) is the functionZS? : (Sx O) x A* x 250 — M whose definition is obtained from
that of.#y by replacing states and transitionsZsfwith configurations and transitions of® (%, ). m

Definition 2.9 Let% = (S A,—4 ) be aD-ULTRAS, .#\ be anM-measure function fo#/, andd be
a_L-preservingD-valued function. We say that,s, € Sare//lﬁ -testing equivalent, writtesy ~ 78 2
iff for all D-observation systemg = (O,A, — ) with initial stateo € O and for all tracesr € A*:
6,0 3,0
‘%M ((&,O),G,ﬁa(%,ﬁ)) = ‘%M ((&,O),G,ﬁa(%,ﬁ)) [

3 ULTRAS in Use: Three Experiments with CSP

In this section, we show that the URRS formalism can be used for providing operational models of
different kinds of process algebra. In particular, we wééshow operational semantics of the language
of Communicating Sequential Processes (CSP) [6] and twtsofariants, which respectively extend
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the calculus with probabilistic binary operators and extially timed actions, can be easily described
within the ULTRAS model by appropriately instantiating the domBin

First, we introduce the syntax of the nondeterministic leage and its operational semantics in terms
of ULTRAS. For the sake of simplicity, we only consider a kernel of @88 omit some operators, like
hiding and renaming, because their treatment would add litdeyto the message we wish to convey.
Then, we focus on the probabilistic and stochastic variahtse kernel of CSP by exhibiting a suitable
ULTRAS-based operational semantics for each of them.

3.1 B-ULT RAS Semantics for a Kernel of CSP

In CSP, systems are described as interactions of compotinatitisiay engage in activities. Components
reflect the behavior of the important parts of a system, wattevities capture the actions that the compo-
nents perform. The choice among the activities that areledat each system state is nondeterministic.

Let A be a countable set of activities. We denotePigypthe set of process terms defined according
to the following grammar:

P:=aP|P+P|P|.P|B

whereac A, L C A, andB is a behavioral constant defined by an appropriate equatithre dorm A Zp

for some process terf in which constants occur only guardedRni.e., inside the scope of an action
prefix. Componen&.P models a process that performs activdtand then behaves like. Component
P1 + P, models a process that may behave eithePiasr asP,. The operatoP; || P, models instead
the parallel execution d?, andP,, which synchronize (or cooperate) on every activity.iand proceed
independently on every activity not in The behavior of constaf is the same as that of the process
termP on the right-hand side of its defining equation.

The semantics for the considered kernel of CSP can be deddrilterms of the following functional
B-ULTRAS:
(Pcsp, A, —)
whose transition relation— is defined in Tablg]1. Given a transitiéh— 2, intuitively we have that
2(Q) = T means thaQ is reachable fronf via ana-transition, whileZ(Q) = L means that it is not
possible to reackp from P by executinga.

Rule AcT states that.P evolves viaa to [P — T|, with the latter being the function associating
T with P and L with all the other process terms. On the contrary, @f/establishes that no state is
reachable froma.P by performing any actiot £ a. This is formalized by letting.P evolve viab # a
to [], the function associatind. with each process term. Rules8 describes nondeterministic choice:
the states reachable froRy + P via a are all those that can be reached eithelPppr by P,. Indeed,
91V P, denotes the functio such thatZ(Q) = 21(Q) V Z-(Q) for all process term®.

Rules @orand INT govern parallel composition. Ruled®pris used for computing the next-state
function when a synchronization betweBnandP, occurs. WhenevelPli> 2, and Pzi> 9, with
acl,thenP; HL P, evolves viaato 2, HL D, Where(91 |||_ .@2)(Q) is .@1(Q1) VAN @z(Qz) if Q = Q]_ |||_ Q2
and L otherwise. RuleNT deals witha ¢ L. In that case, i, — 21 and P, —=+ %5, thenPy || P,
evolves viaato (71 ||LP) V (Pi||L Z2), whereZ || P (resp.Py ||L Z2) denotes the functio such that
2(Q) is 21(P)) (resp.Z-(Py)) if Q= Py ||LP. (resp.Q = Py || P) and_L otherwise.
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b#a BAp P49
- AcT —— 0-AcT ——Z caL
aP—[P—T] aP—]] B—9%
PP P29
1 1 P 2 Sum

P1+Pzi>91\/92

Pli>_@1 Pzi>.@2 aclL
PP 2 || 2o

Coop

P21 P59, adl
PLLP -2 (Z1|ILP) V (PL||L 22)

INT

Table 1: ULTRAS-based operational semantic rules for CSP

3.2 Rppq-ULTRAS Semantics for PCSP

We now consider a probabilistic variant of CSP that we calBPCWhile in CSP the next action to
execute is selected nondeterministically, in PCSP it isctetl according to some discrete probability
distribution that can be different from state to state. mgkinspiration from[[17] 2], the probabilistic
calculus PCSP is obtained from CSP by decorating the atteenand parallel composition operators
with a probability valuep € Ryq 4.

We denote byPpcspthe set of process terms defined according to the followiaghgnar:

P:=aP|P+,P|P|.,PP|B

Componen®; +, P, models a process that, after performing an action, behaggaontinuation oPy
with probability p or the continuation oP, with probability 1— p. Similarly, in Py ||_" P the valuep is
used to regulate the interleaving BfandP.

The semantics for PCSP can be described in terms of the folfpfunctionalR g ;-ULTRAS:

(PpcspA,—)

whose transition relation— is defined in Tablg]2. Given a transitiéh— 2, intuitively we have that
2(Q) > 0 means tha@ is reachable fron® via ana-transition with probabilityZ(Q), while 2(Q) =0
means that it is not possible to rea@rfrom P by executinga. Note thaty 5 7(Q) € {0,1}.

The first three rules are identical to the first three rulesaifl@[1, with the difference théP — 1]
denotes the function associating 1 wRhand 0 with all the other process terms, whiledenotes the
function associating 0 with each process term. Rule $elies on the following notation:

o 71+ 2, denotes the functio® such thatZ(Q) = 21(Q) + Z»(Q) for all process term®.
* 7 =3o7(Q).
. ;-‘, -9 denotes the functio®’ such that?’'(Q) = § -72'(Q) if y+# 0 and 0 otherwise.

This rule asserts that the states reachable fPpm,, P, via a are obtained by aggregating accordingto
the probability distributions associated wiBhandP, aftera. When bothP; andP., can performs, i.e.,
P2 21 and P~ Z, with 21 and 2, both different from(], then® 2, = %, = 1 and hence the
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b#a BAp P49
. — AcT  —— 5 — O-AcT - —Z CaLL
aP—[P—1] aP—] B—9%

P59 P29,

a, poa __(1-p)eZ
PitoPe—= saormpen 241 paor@pen 22

Sum

P-% 97 P29 acl
P PP 21|l 22

Coorpr

Pli>.@1 Pgi>.@2 a§ZL

p a p-®Z (1-p)-62:
PUL P = ez paz (2P + o pan (Pl 22)

INT

Table 2: ULTRAS-based operational semantic rules for PCSP

aggregate probability distribution reducesgoZ; + (1— p) - Z,. In contrast, wher; (resp. %) is
equal to[], then® 2, = 0 (resp.© %, = 0) and hence the aggregate probability distribution resltice
D, (resp.24).

Rules @oprand INT govern parallel composition. They are similar to the twaresponding rules
of Table[1, with the differences that (i) in the synchronmatcase( 7 ||L 22)(Q) is Z1(Q1) - Z2(Qy) if
Q= Q1]|.? Q2 and 0 otherwise, while (i) in the interleaving case@Blike aggregation based gmof
the probability distributions associated wRhandP, aftera comes into play.

3.3 R>0-ULT RAS Semantics for PEPA

Building on [9,[8], we finally consider a stochastically ticheariant of CSP called Performance Evalu-
ation Process Algebra (PEPA) [14]. In this calculus, everyoa is equipped with a raté € R. g that
uniquely characterizes the exponentially distributediogn variable quantifying the duration of the ac-
tion itself (the expected duration igA). The choice among the actions that are enabled in eachistate
governed by the race policy: the action to execute is the losiesemples the least duration. Therefore,
(i) the sojourn time in each state is exponentially disteiouwith rate given by the sum of the rates of
the transitions departing from that state, (ii) the exexuprobability of each transition is proportional
to its rate, and (iii) the alternative and parallel comgosibperators are implicitly probabilistic.

We denote byPpepathe set of process terms defined according to the followiaghgnar:

P:=(aA).P|P+P|P|_P|B

Componenta, A ).P models a process that can perform actiaat rateA and then behaves likke.

The semantics for PEPA can be described in terms of the foipiunctionalR>o-ULTRAS:

(PpePaA A, —)

whose transition relation— is defined in Tablg]3. Given a transitiéh— 2, intuitively we have that
2(Q) > 0 means tha@Q is reachable fronf via ana-transition at rate7(Q), while Z(Q) = 0 means
that it is not possible to read from P by executinga.

The rules of Tabl€l3 are similar to those of Table 2, with tHfedknces that (i)P — A] denotes the
function associatind with P and 0 with all the other process terms, (ii) no normalizai®needed in
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a#b Y a
Act #  g-AcT B_PaP—>9

(a,A).P-25 [P A (a,A).P—=] B2

CALL

P59 P29,

- Sum
PP+P— 21+ %

Pli>_@1 Pzi>.@2 aclL

P[P MO AE 2L (o || 2,)

CooPr

Pli>.@1 Pgi>.@2 ae,é L

= INT
PLLP— (Z1[|LP2) + (PL||L 22)

Table 3: ULTRAS-based operational semantic rules for PEPA

rules SUm and INT because transition rates simply sum up due to the race palicy(iii) the multiplica-
tive factor in rule @oPis specific to the PEPA cooperation discipline based on theedt component.

4 Conclusions and Future Work

After recalling the ULTRAS model from[[4| 5], in this paper we have extended the scopkeofvork
done in [9,[8) 10] by exhibiting the ULAAS-based operational semantic rules for CSP and two of
its probabilistic and stochastically timed variants. Tehélsree experiments seem to indicate that the
ULTRAS model naturally lends itself to be used as a compact an@ramisemantic framework for
different classes of process calculi.

With respect to future work, we plan to continue our experitady using the ULRAS model for
describing the operational semantics of other procesgigtéen languages of hondeterministic, prob-
abilistic, or stochastic nature, as well as process catmrtibining nondeterminism and probability or
stochasticity. This should help to assess the relativeesspreness of their operators and establish gen-
eral properties for the various languages. Moreover, thfun characterization of the equivalences
might help in evaluating and discerning among the manyicglatproposed in the literature. It would
be, indeed, interesting to determine which of the existigtions can be obtained as instances of the
general framework.

This study may also lead to the definition of a uniform processulus with an ULRAS-based
operational semantics and the development of uniform axi@mations of bisimulation, trace, and testing
equivalences. From this calculus, it should be possibleetisere the originally proposed calculi by
varying the target domain and the behavioral operators. Nk also consider further options related to
guantitative aspects like including quantities withiniags$ (ntegrated quantity approagtor attaching
them to traditional operators or providing specific opasafor them ¢rthogonal quantity approagh

Finally, it would be interesting to see whether is is possital build generic tools for supporting
verifications that are based on the uniform model and hawetotle instantiated to deal with the specific
calculi.
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