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Labeled transition systems are typically used to representthe behavior of nondeterministic processes,
with labeled transitions defining a one-step state-to-state reachability relation. This model has been
recently made more general by modifying the transition relation in such a way that it associates with
any source state and transition label a reachability distribution, i.e., a function mapping each possible
target state to a value of some domain that expresses the degree of one-step reachability of that target
state. In this extended abstract, we show how the resulting model, called ULTRAS from Uniform
Labeled TRAnsition System, can be naturally used to give semantics to a fully nondeterministic, a
fully probabilistic, and a fully stochastic variant of a CSP-like process language.

1 Introduction

Process algebras are one of the most successful formalisms for modeling concurrent systems and proving
their properties such as correctness, liveness or safety. After their initial success in this respect, they have
also been extended to deal with properties related to performance and quality of service. Thus, process
algebras have been enriched with quantitative notions of time and probabilities and integrated theories
have been considered; for a comprehensive description of this approach, the reader is referred to [1].
Moreover, due to the growing interest in the analysis of shared-resource systems, stochastic variants of
process algebras have also been proposed. The main aim beingthe integration of qualitative descriptions
with those relative to performance in a single mathematicalframework by building on th ecombination
of labeled transition systems (LTS) and continuous-time Markov chains (CTMC).

In [9], two of the authors of the present paper, together withD. Latella and M. Massink, proposed
a variant of LTS, namelyrate transition systems(RTS), as a tool for providing semantics to some of
the most representative stochastic process languages. Within LTS, the transition relation describes the
evolution of a system from one state to another as determinedby the execution of specific actions, thus it
is a set of triples(state, action, state). In contrast, within RTS the transition relation֌ associates with
a given stateP and a given transition label (action)a a function, sayP, mapping each term into a non-

negative real number. The transitionP
a
֌ P has the following meaning: ifP(Q) = v with v 6= 0, then

Q is reachable fromP by executinga, the duration of such an execution being exponentially distributed
with ratev; if P(Q) = 0, thenQ is not reachable fromP via a.

RTSs have been used for providing a uniform semantic framework for modeling many of the different
stochastic process languages, facilitating reasoning about them, and throwing light on their similarities
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as well as on their differences. In [8], we considered a limited, but representative, number of stochastic
process calculi and provided the RTS semantics for (fully) stochastic process languages both based on
the CSP-like, multipart interaction paradigm and on the CCS-like, two-ways interaction paradigm. Then,
in [10], RTSs were extended by requiring that the domain ofP be a generic semiring and other variants
of stochastic process algebras are studied, in particular it is shown that also languages, like IML [13],
that mix stochasticity and nondeterminism can be easily modeled.

In [4], we performed a further step in the direction of providing a uniform characterization of the
semantics of different process calculi and introduced a more general framework than RTS, which could
be instantiated to model not only stochastic process algebras but also classical process algebras, usually
modelled via LTS, and other quantitative variants of process algebras that would consider time, probabili-
ties, resources, etc.; we thus introduced ULTRAS (Uniform LabeledTRAnsition Systems). The transition
relation of ULTRAS associates with a state and a given transition label a function mapping each state
into an element of a generic domainD. An ULTRAS transition(s,a,D) is writtens

a
−→D , with D(s′)

being aD-value quantifying the degree of reachability ofs′ from s via the execution ofa andD(s′) =⊥
meaning thats′ is not reachable fromsvia a. By appropriately changing the domainD, different models
of concurrent systems can be captured. For example, ifD is the setB consisting of the two Boolean val-
uestrue and f alsewe can capture classical LTSs, while ifD is the setR[0,1] we do capture probabilistic
models, and whenD is the setR≥0 we do capture stochastically timed models.

Of course, modeling state transitions and their annotations is one of the key ingredients; however, one
has also to combine single transitions to obtain computations and find out ways for determining when two
states give rise to “equivalent” computation trees. To thisaim, in [4] we introduced the notions of trace
equivalence and bisimulation equivalence over ULTRAS. An important component of the equivalences
definition is ameasure functionMM(s,α ,S′) that computes the degree of multi-step reachability of a set
of target statesS′ from a source stateswhen performing computations labeled with traceα . For instance,
to capture classical equivalences over nondeterministic systems, the measure yields⊤ if there exists a
computation froms to S′ labeled withα and⊥ otherwise. As another example, to capture probabilistic
equivalences, the measure yields a value inR[0,1] that represents the probability of the set of computations
labeled withα to reach a state inS′ from s.

In this note, we put ULTRAS at work and use them to provide a uniform semantical description for
a few (qualitative and quantitative) variants of a very simple process algebra. For the sake of simplicity,
we limit our attention to a purely nondeterministic, a fullyprobabilistic, and a fully stochastic calculus,
without allowing any interplay between nondeterminism andquantitative aspects. In our view, the three
(very compact) resulting sets of operational rules give evidence of the expressive power of our approach
and help in appreciating similarities and differences among the three variants of the considered process
algebra.

The rest of the paper is organized as follows. In Sect. 2, we recap the basic notions of ULTRAS
introduced in [4] and define three different types of behavioral equivalences over them. To the definition
of trace and bisimulation equivalences already present in [4], we add the definition of testing equivalence
together with the set up of the necessary testing framework that we have introduced in [5]. In Sect. 3, we
show how ULTRAS can be used to provide the operational semantics of classical CSP [6] and of two of
its probabilistic [17, 2] and stochastic [14] variants. Finally, Sect. 4 reports on some future work.
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2 Uniform Labeled Transition Systems

The behavior of sequential, concurrent, and distributed processes can be described by means of the
so called labeled transition system (LTS) model [16]. It consists of a set of states, a set of transition
labels, and a transition relation. States correspond to theoperational modes that processes can pass
through. Labels describe the activities that processes canperform internally or use to interact with the
environment. The transition relation defines process evolution as determined by the execution of specific
activities and is formalized as astate-to-statereachability relation.

In this section, we recall from [4] a generalization of the LTS model that aims at providing a uniform
framework that can be employed for defining and comparing thebehavior of different types of process.
In the new model, named ULTRAS from Uniform Labeled TRAnsition System, the transition relation
associates with any source state and transition label a function mapping each possible target state to an
element of a domainD. In other words, the state-to-state reachability relationtypical of the LTS model
is replaced by astate-to-state-distributionreachability relation. This is a consequence of the fact that
the concept of next state is generalized via a function that represents a one-step reachability distribution,
which expresses the degree of reachability from the currentstate of every possible next state.

As shown in [4], by appropriately changing the domainD we can capture different process models,
in particular quantitative ones like Markov chains [18]. For example:

• If D is the support setB = {⊥,⊤} of the Boolean algebra with the standard conjunction (∧) and
disjunction (∨) operators, then we capture classical LTS models.

• If D =R[0,1], then we capture fully probabilistic models in the form of action-labeled discrete-time
Markov chains (ADTMC).

• If D =R≥0, then we capture fully stochastic models in the form of action-labeled continuous-time
Markov chains (ACTMC).

2.1 Definition of the Uniform Process Model

The definition of our uniform model is parameterized with respect to a complete partial order(D,⊑)
whose elements express the degree ofone-stepreachability of a state. In the following, we denote by⊥
the⊑-least element ofD and by[S→ D] the set of functions from a setS to D, which is ranged over
by D .

Definition 2.1 Let (D,⊑) be a complete partial order. A uniform labeled transition system on(D,⊑), or
D-ULTRAS for short, is a tripleU = (S,A,−→) where:

• S is an at most countable set of states.

• A is a countable set of transition-labeling actions.

• −→ ⊆ S×A× [S→ D] is a transition relation.

We say that theD-ULTRAS U is functional iff−→ is a function fromS×A to [S→ D].

Every transition(s,a,D) is written s
a

−→D , with D(s′) being aD-value quantifying the degree of
reachability ofs′ from s via the execution ofa andD(s′) = ⊥ meaning thats′ is not reachable froms
via a. When considering a functional ULTRAS, we will often writeDs,a(s′) to denote the sameD-value.
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2.2 Behavioral Equivalences for the ULTRAS Model

LTS-based models come equipped with equivalences through which it is possible to compare processes
on the basis of their behavior and reduce the state space of a process before analyzing its properties.
These behavioral equivalences result in a linear-time/branching-time spectrum [11, 15, 3, 1] including
several variants of three major approaches: bisimulation [12], trace [6], and testing [7]. We now recall
how bisimulation, trace, and testing equivalences can be uniformly defined over the ULTRAS model.
Their definition is parameterized with respect to a measure function that expresses the degree ofmulti-
stepreachability of a set of states. Similar to the one-step reachability encoded within an ULTRAS, in
which we consider individual actions, multi-step reachability relies on sequences of actions commonly
called traces, which are the observable effects of the computations performed by an ULTRAS.

Definition 2.2 Let A be a countable set of transition-labeling actions. A traceα is an element ofA∗,
whereα = ε denotes the empty trace.

Definition 2.3 LetU = (S,A,−→) be aD-ULTRAS and(M,⊕,⊗) be a lattice. AnM-measure function
for U is a functionMM : S×A∗×2S→ M.

Note that different measure functions can induce differentvariants of a behavioral equivalence on
the sameD-ULTRAS depending on the support set and the operations of(M,⊕,⊗). AlthoughD andM
may be the same support set, this is not necessarily the case:while D-values are related to one-step
reachability, M-values – especially those of the formMM(s,α ,S′) – are computed on the basis of
D-values to quantify multi-step reachability.

2.2.1 Trace Equivalence

Trace equivalence is straightforward: two states are traceequivalent if every trace has the same measure
with respect to the entire set of states when starting from those two states.

Definition 2.4 Let U = (S,A,−→) be a D-ULTRAS andMM be anM-measure function forU .
We say thats1,s2 ∈ SareMM-trace equivalent, writtens1 ∼Tr,MM s2, iff for all tracesα ∈ A∗:

MM(s1,α ,S) = MM(s2,α ,S)

2.2.2 Bisimulation Equivalence

While trace equivalence simply compares any two states without taking into account the states reached
at the end of the trace, bisimulation equivalence also posesconstraints on the reached states.

Definition 2.5 Let U = (S,A,−→) be aD-ULTRAS andMM be anM-measure function forU . An
equivalence relationB over S is an MM-bisimulation iff, whenever(s1,s2) ∈ B, then for all traces
α ∈ A∗ and equivalence classesC ∈ S/B:

MM(s1,α ,C) = MM(s2,α ,C)
We say thats1,s2 ∈ S areMM-bisimilar, writtens1 ∼B,MM s2, iff there exists anMM-bisimulationB

overSsuch that(s1,s2) ∈ B.

2.2.3 Testing Equivalence

The definition of testing equivalence requires the formalization of the notion of test and the consideration
of configurations rather than simple states. A test specifieswhich actions of a process are permitted at
each step and can be expressed as some suitable ULTRAS that includes a success state, which is used to
determine which ones are the successful computations.
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Definition 2.6 Let (D,⊑) be a complete partial order. AD-observation system is aD-ULTRAS
O = (O,A,−→) where O contains a distinguished success state denoted byω such that, whenever
ω a
−→D , thenD(o) = ⊥ for all o ∈ O. We say that a computation ofO is successful iff its length

is finite and its last state isω .

A D-ULTRAS can be tested only through aD-observation system by running them in parallel and
enforcing synchronization on any action. The states of the resultingD-ULTRAS are called configurations
and are pairs each formed by a state of theD-ULTRAS under test and a state of theD-observation system.
A configuration can evolve to a new configuration only throughthe synchronization of two transitions
– leaving the two states constituting the configuration – that are labeled with the same action and reach
at least one state, i.e., two identically labeled transitions whose target functions are not identically equal
to ⊥.

For each such pair of synchronizing transitions, the targetfunction of the resulting transition is ob-
tained from the two original target functions by means of someD-valued functionδ , which computes the
degree of one-step reachability of every possible target configuration. Since⊥ represents unreachability,
the only constraint onδ is that it is⊥-preserving, i.e., that it yields⊥ iff at least one of its arguments is⊥.
As a consequence of this constraint, in the case of nondeterministic processesδ boils down to logical
conjunction, whereas several alternative options are available in the case of probabilistic and stochastic
processes.

Definition 2.7 Let U = (S,A,−→U ) be aD-ULTRAS, O = (O,A,−→O) be aD-observation system,
andδ be a⊥-preservingD-valued function. The interaction system ofU andO with respect toδ is the
D-ULTRAS I δ (U ,O) = (S×O,A,−→) where:

• Every element(s,o) ∈ S× O is called a configuration and is said to be successful iffo = ω .
We denote byS δ (U ,O) the set of successful configurations ofI δ (U ,O).

• The transition relation−→ ⊆ (S× O) × A × [(S× O) → D] is such that(s,o)
a

−→D iff
s

a
−→U D1 ando

a
−→O D2 with D(s′,o′) being obtained fromD1(s′) andD2(o′) by applyingδ .

We say that a computation ofI δ (U ,O) is successful iff its length is finite and its last configura-
tion is successful.

Definition 2.8 Let U = (S,A,−→U ) be aD-ULTRAS,MM be anM-measure function forU , δ be a
⊥-preservingD-valued function, andO = (O,A,−→O) be aD-observation system. The extension of
MM to I δ (U ,O) is the functionM δ ,O

M : (S×O)×A∗×2S×O → M whose definition is obtained from
that ofMM by replacing states and transitions ofU with configurations and transitions ofI δ (U ,O).

Definition 2.9 Let U = (S,A,−→U ) be aD-ULTRAS,MM be anM-measure function forU , andδ be
a⊥-preservingD-valued function. We say thats1,s2 ∈SareM δ

M-testing equivalent, writtens1 ∼T,M δ
M

s2,

iff for all D-observation systemsO = (O,A,−→O) with initial stateo∈ O and for all tracesα ∈ A∗:
M

δ ,O
M ((s1,o),α ,S δ (U ,O)) = M

δ ,O
M ((s2,o),α ,S δ (U ,O))

3 ULT RAS in Use: Three Experiments with CSP

In this section, we show that the ULTRAS formalism can be used for providing operational models of
different kinds of process algebra. In particular, we will see how operational semantics of the language
of Communicating Sequential Processes (CSP) [6] and two of its variants, which respectively extend
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the calculus with probabilistic binary operators and exponentially timed actions, can be easily described
within the ULTRAS model by appropriately instantiating the domainD.

First, we introduce the syntax of the nondeterministic language and its operational semantics in terms
of ULTRAS. For the sake of simplicity, we only consider a kernel of CSPand omit some operators, like
hiding and renaming, because their treatment would add verylittle to the message we wish to convey.
Then, we focus on the probabilistic and stochastic variantsof the kernel of CSP by exhibiting a suitable
ULTRAS-based operational semantics for each of them.

3.1 B-ULT RAS Semantics for a Kernel of CSP

In CSP, systems are described as interactions of componentsthat may engage in activities. Components
reflect the behavior of the important parts of a system, whileactivities capture the actions that the compo-
nents perform. The choice among the activities that are enabled in each system state is nondeterministic.

Let A be a countable set of activities. We denote byPCSP the set of process terms defined according
to the following grammar:

P ::= a.P | P+P | P‖L P | B

wherea∈ A, L ⊆ A, andB is a behavioral constant defined by an appropriate equation of the formA
∆
= P

for some process termP in which constants occur only guarded inP, i.e., inside the scope of an action
prefix. Componenta.P models a process that performs activitya and then behaves likeP. Component
P1+P2 models a process that may behave either asP1 or asP2. The operatorP1‖L P2 models instead
the parallel execution ofP1 andP2, which synchronize (or cooperate) on every activity inL and proceed
independently on every activity not inL. The behavior of constantB is the same as that of the process
termP on the right-hand side of its defining equation.

The semantics for the considered kernel of CSP can be described in terms of the following functional
B-ULTRAS:

(PCSP,A,−→)
whose transition relation−→ is defined in Table 1. Given a transitionP

a
−→D , intuitively we have that

D(Q) = ⊤ means thatQ is reachable fromP via ana-transition, whileD(Q) = ⊥ means that it is not
possible to reachQ from P by executinga.

Rule ACT states thata.P evolves viaa to [P 7→ ⊤], with the latter being the function associating
⊤ with P and⊥ with all the other process terms. On the contrary, /0-ACT establishes that no state is
reachable froma.P by performing any actionb 6= a. This is formalized by lettinga.P evolve viab 6= a
to [ ], the function associating⊥ with each process term. Rule SUM describes nondeterministic choice:
the states reachable fromP1+P2 via a are all those that can be reached either byP1 or by P2. Indeed,
D1∨D2 denotes the functionD such thatD(Q) = D1(Q)∨D2(Q) for all process termsQ.

Rules COOP and INT govern parallel composition. Rule COOP is used for computing the next-state
function when a synchronization betweenP1 andP2 occurs. WheneverP1

a
−→D1 andP2

a
−→D2 with

a∈ L, thenP1‖L P2 evolves viaa to D1‖L D2, where(D1‖L D2)(Q) is D1(Q1)∧D2(Q2) if Q= Q1‖L Q2

and⊥ otherwise. Rule INT deals witha /∈ L. In that case, ifP1
a

−→D1 andP2
a

−→D2, thenP1‖L P2

evolves viaa to (D1‖L P2)∨ (P1‖L D2), whereD1‖L P2 (resp.P1‖L D2) denotes the functionD such that
D(Q) is D1(P′

1) (resp.D2(P′
2)) if Q= P′

1‖L P2 (resp.Q= P1‖L P′
2) and⊥ otherwise.



72 ULTRAS for Nondeterministic, Probabilistic, and Stochastic Process Calculi

a.P
a

−→ [P 7→ ⊤]
ACT

b 6= a

a.P
b

−→ [ ]
/0-ACT

B
∆
= P P

a
−→D

B
a

−→D
CALL

P1
a

−→D1 P2
a

−→D2

P1+P2
a

−→D1∨D2
SUM

P1
a

−→D1 P2
a

−→D2 a∈ L

P1‖L P2
a

−→D1‖L D2
COOP

P1
a

−→D1 P2
a

−→D2 a /∈ L

P1‖L P2
a

−→ (D1‖L P2)∨ (P1‖L D2)
INT

Table 1: ULTRAS-based operational semantic rules for CSP

3.2 R[0,1]-ULT RAS Semantics for PCSP

We now consider a probabilistic variant of CSP that we call PCSP. While in CSP the next action to
execute is selected nondeterministically, in PCSP it is selected according to some discrete probability
distribution that can be different from state to state. Taking inspiration from [17, 2], the probabilistic
calculus PCSP is obtained from CSP by decorating the alternative and parallel composition operators
with a probability valuep∈ R[0,1].

We denote byPPCSPthe set of process terms defined according to the following grammar:

P ::= a.P | P+p P | P‖L
p P | B

ComponentP1+p P2 models a process that, after performing an action, behaves as the continuation ofP1

with probability p or the continuation ofP2 with probability 1− p. Similarly, in P1‖L
pP2 the valuep is

used to regulate the interleaving ofP1 andP2.
The semantics for PCSP can be described in terms of the following functionalR[0,1]-ULTRAS:

(PPCSP,A,−→)
whose transition relation−→ is defined in Table 2. Given a transitionP

a
−→D , intuitively we have that

D(Q) > 0 means thatQ is reachable fromP via ana-transition with probabilityD(Q), while D(Q) = 0
means that it is not possible to reachQ from P by executinga. Note that∑QD(Q) ∈ {0,1}.

The first three rules are identical to the first three rules of Table 1, with the difference that[P 7→ 1]
denotes the function associating 1 withP and 0 with all the other process terms, while[ ] denotes the
function associating 0 with each process term. Rule SUM relies on the following notation:

• D1+D2 denotes the functionD such thatD(Q) = D1(Q)+D2(Q) for all process termsQ.

• ⊕D = ∑QD(Q).

• x
y ·D denotes the functionD ′ such thatD ′(Q) = x

y ·D
′(Q) if y 6= 0 and 0 otherwise.

This rule asserts that the states reachable fromP1+p P2 via a are obtained by aggregating according top
the probability distributions associated withP1 andP2 aftera. When bothP1 andP2 can performa, i.e.,
P1

a
−→D1 andP2

a
−→D2 with D1 andD2 both different from[ ], then⊕D1 = ⊕D2 = 1 and hence the
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a.P
a

−→ [P 7→ 1]
ACT

b 6= a

a.P
b

−→ [ ]
/0-ACT

B
∆
= P P

a
−→D

B
a

−→D
CALL

P1
a

−→D1 P2
a

−→D2

P1+p P2
a

−→ p·⊕D1
p·⊕D1+(1−p)·⊕D2

·D1+
(1−p)·⊕D2

p·⊕D1+(1−p)·⊕D2
·D2

SUM

P1
a

−→D1 P2
a

−→D2 a∈ L

P1‖L
pP2

a
−→D1‖L D2

COOP

P1
a

−→D1 P2
a

−→D2 a 6∈ L

P1‖L
p P2

a
−→ p·⊕D1

p·⊕D1+(1−p)·⊕D2
· (D1‖L P2)+

(1−p)·⊕D2
p⊕D1+(1−p)·⊕D2

· (P1‖L D2)
INT

Table 2: ULTRAS-based operational semantic rules for PCSP

aggregate probability distribution reduces top ·D1 +(1− p) ·D2. In contrast, whenD1 (resp.D2) is
equal to[ ], then⊕D1 = 0 (resp.⊕D2 = 0) and hence the aggregate probability distribution reduces to
D2 (resp.D1).

Rules COOP and INT govern parallel composition. They are similar to the two corresponding rules
of Table 1, with the differences that (i) in the synchronization case(D1‖L D2)(Q) is D1(Q1) ·D2(Q2) if
Q= Q1‖L

p Q2 and 0 otherwise, while (ii) in the interleaving case a SUM-like aggregation based onp of
the probability distributions associated withP1 andP2 aftera comes into play.

3.3 R≥0-ULT RAS Semantics for PEPA

Building on [9, 8], we finally consider a stochastically timed variant of CSP called Performance Evalu-
ation Process Algebra (PEPA) [14]. In this calculus, every action is equipped with a rateλ ∈ R>0 that
uniquely characterizes the exponentially distributed random variable quantifying the duration of the ac-
tion itself (the expected duration is 1/λ ). The choice among the actions that are enabled in each stateis
governed by the race policy: the action to execute is the one that samples the least duration. Therefore,
(i) the sojourn time in each state is exponentially distributed with rate given by the sum of the rates of
the transitions departing from that state, (ii) the execution probability of each transition is proportional
to its rate, and (iii) the alternative and parallel composition operators are implicitly probabilistic.

We denote byPPEPA the set of process terms defined according to the following grammar:

P ::= (a,λ ).P | P+P | P‖L P | B

Component(a,λ ).P models a process that can perform actiona at rateλ and then behaves likeP.
The semantics for PEPA can be described in terms of the following functionalR≥0-ULTRAS:

(PPEPA,A,−→)
whose transition relation−→ is defined in Table 3. Given a transitionP

a
−→D , intuitively we have that

D(Q) > 0 means thatQ is reachable fromP via ana-transition at rateD(Q), while D(Q) = 0 means
that it is not possible to reachQ from P by executinga.

The rules of Table 3 are similar to those of Table 2, with the differences that (i)[P 7→ λ ] denotes the
function associatingλ with P and 0 with all the other process terms, (ii) no normalizationis needed in
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(a,λ ).P a
−→ [P 7→ λ ]

ACT
a 6= b

(a,λ ).P b
−→ [ ]

/0-ACT
B

∆
= P P

a
−→D

B
a

−→D
CALL

P1
a

−→D1 P2
a

−→D2

P1+P2
a

−→D1+D2
SUM

P1
a

−→D1 P2
a

−→D2 a∈ L

P1‖L P2
a

−→ min{⊕D1,⊕D2}
⊕D1·⊕D2

· (D1‖L D2)
COOP

P1
a

−→D1 P2
a

−→D2 a /∈ L

P1‖L P2
a

−→ (D1‖L P2)+ (P1‖L D2)
INT

Table 3: ULTRAS-based operational semantic rules for PEPA

rules SUM and INT because transition rates simply sum up due to the race policy, and (iii) the multiplica-
tive factor in rule COOP is specific to the PEPA cooperation discipline based on the slowest component.

4 Conclusions and Future Work

After recalling the ULTRAS model from [4, 5], in this paper we have extended the scope ofthe work
done in [9, 8, 10] by exhibiting the ULTRAS-based operational semantic rules for CSP and two of
its probabilistic and stochastically timed variants. These three experiments seem to indicate that the
ULTRAS model naturally lends itself to be used as a compact and uniform semantic framework for
different classes of process calculi.

With respect to future work, we plan to continue our experiments by using the ULTRAS model for
describing the operational semantics of other process description languages of nondeterministic, prob-
abilistic, or stochastic nature, as well as process calculicombining nondeterminism and probability or
stochasticity. This should help to assess the relative expressiveness of their operators and establish gen-
eral properties for the various languages. Moreover, the uniform characterization of the equivalences
might help in evaluating and discerning among the many relations proposed in the literature. It would
be, indeed, interesting to determine which of the existing relations can be obtained as instances of the
general framework.

This study may also lead to the definition of a uniform processcalculus with an ULTRAS-based
operational semantics and the development of uniform axiomatizations of bisimulation, trace, and testing
equivalences. From this calculus, it should be possible to retrieve the originally proposed calculi by
varying the target domain and the behavioral operators. We shall also consider further options related to
quantitative aspects like including quantities within actions (integrated quantity approach) or attaching
them to traditional operators or providing specific operators for them (orthogonal quantity approach).

Finally, it would be interesting to see whether is is possible to build generic tools for supporting
verifications that are based on the uniform model and have only to be instantiated to deal with the specific
calculi.
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