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Abstract

We introduce a symbolic characterisation of the operational semantics of COWS, a formal language for specifying and
combining service-oriented applications, while modelling their dynamic behaviour. This alternative semantics avoids infinite
representations of COWS terms due to the value-passing nature of communication in COWS and is more amenable for
automatic manipulation by analytical tools, such as e.g. equivalence and model checkers. We illustrate our approach through
a ‘translation service’ scenario.
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1 Introduction

In recent years, the increasing success of e-business, e-learning, e-government, and other
similar emerging models, has led the World Wide Web, initially thought of as a system for
human use, to evolve towards an architecture forservice-oriented computing(SOC) sup-
porting automated use. SOC advocates the use of loosely coupled ‘services’, to be under-
stood as autonomous, platform-independent, computational entities that can be described,
published, discovered, and assembled, as the basic blocks for building interoperable and
evolvable systems and applications. While early examples of technologies that are at least
partly service-oriented date back to CORBA, DCOM, J2EE and IBM WebSphere, the most
successful instantiation of the SOC paradigm are probably the more recentweb services.
These are sets of operations that can be published, located and invoked through the Web
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via XML messages complying with given standard formats. To support the web service ap-
proach, several new languages and technologies have been designed and many international
companies have invested a lot of efforts.

Current software engineering technologies for SOC, however, remain at the descriptive
level and lack rigorous formal foundations. We are still experiencing a gap between prac-
tice (programming) and theory (formal methods and analysistechniques) in the design of
SOC applications. The challenges come from the necessity ofdealing at once with such
issues as asynchronous interactions, concurrent activities, workflow coordination, business
transactions, failures, resource usage, and security, in asetting where demands and guaran-
tees can be very different for the many different components. Many researchers have hence
put forward the idea of usingprocess calculi, a cornerstone of current foundational research
on specification and analysis of concurrent, distributed and mobile systems through math-
ematical — mainly algebraic and logical — tools. Indeed, dueto their algebraic nature,
process calculi convey in a distilled form the compositional programming style of SOC.
Thus, many process calculi have been designed (e.g. [8,7,15,12,9,14,3,5,26]), addressing
one aspect or another of SOC and aiming at assessing the adequacy of diverse sets of prim-
itives w.r.t. modelling, combining and analysing service-oriented applications.

By taking inspiration from well-known process calculi and from the standard language
for orchestration of web services WS-BPEL [21], in [16] we have designed COWS (Cal-
culus for Orchestration of Web Services), a process calculus for specifying and combining
service-oriented applications, while modelling their dynamic behaviour. We have shown
that COWS can model and handle distinctive features of (web)services, such as, e.g.,
correlation-based communication, compensation activities, service instances and interac-
tions among them, race conditions among service instances and service definitions.

A major benefit of using process calculi is that they enjoy a rich repertoire of elegant
meta-theories, proof techniques and analytical tools thatcan be likely tailored to the needs
of SOC. Concerning this, in [11] we have developed a logic and a model checker to express
and check functional properties of services specified in COWS, while in [23] we have stud-
ied observational semantic theories for COWS. However, such tools suffer from a lack of
compositionality and efficiency. Indeed, generally speaking, model and equivalencecheck-
ers, and other similar verification tools, do not work directly on syntactic specifications but
rather on abstract representations of the behaviour of processes. Thus, for value-passing
languages, such as COWS, using an inappropriate representation can lead to unfeasible
verifications. Indeed, according to the COWS’s original operational semantics, if the com-
municable values range over an infinite value set (e.g. natural numbers and strings), the
behaviour of a service that performs a receive activity is modelled by an infinite abstract
representation. Such representation is a Labelled Transition System whose initial state has
infinite outgoing edges, each labelled with an input label having a different value as argu-
ment and leading to a different state.

Hence, by taking inspiration from Hennessy and Lin [13], in this paper we define asym-
bolic operational semantics for COWS. Differently from the symbolic semantics for more
standard calculi, such as value-passing CCS orπ-calculus, ours deals at once with, besides
receive transitions, a number of complex features, such as,e.g., generation and exportation
of fresh names, pattern-matching, expressions evaluation, and priorities among conflicting
receives. The new semantics avoids infinite representations of COWS terms due to the
value-passing nature of communication in COWS and associates a finite representation to
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each finite COWS term. It is then more amenable for automatic manipulation by analytical
tools, such as e.g. equivalence and model checkers. Our major result is a theorem of ‘op-
erational correspondence’. We prove that, under appropriate conditions, any transition of
the original semantics can be generated using the symbolic one, and vice versa. In general,
however, additional transitions can be derived using the symbolic semantics since it also
accounts for services ability to interact with the environment.

The rest of the paper is organised as follows. Section2 provides some motivations for
the symbolic semantics of COWS; this is done by means of an ‘Italian-English translation
service’ scenario that is used also to informally describe in a step-by-step fashion the main
features of COWS. Section3 presents the original syntax and operational semantics of
COWS. Section4 introduces the symbolic variant of the operational semantics of COWS
and our major results, together with some clarifying examples. Section5 shows two exten-
sions of the symbolic semantics. Finally, Section6 touches upon comparisons with related
work and directions for future work.

2 A ‘translation service’ scenario

In this section, we present COWS main features and syntax in astep-by-step fashion while
modelling an Italian-English translation service. By means of this scenario, we discuss
some verification problems and present the major intuitionsunderlying the symbolic op-
erational semantics for COWS. For the time being, we use amonadicvariant of COWS,
i.e. we assume that invoke and receive activities can carry one single parameter at a time.
In fact, for the sake of presentation, the symbolic semantics is introduced for the monadic
variant in Section4, and is then extended to polyadic communication in Section5.2.

Let us consider a service that provides to its customers an Italian-English translation
service. Specifically, when the service is invoked by a customer, that communicates first her
partner name and then an Italian word, it replies to the request with either the corresponding
English word or the string “unknown word”. A high-level specification of the service can
be rendered in COWS as follows:

[x] t • req?x . [y] t •word?y . x• resp!trans(y) (1)

wheret is the translation service partner name,req, word andrespare operation names,x
andy are variables that store the customer partner name and the Italian word to be translated
respectively, andtrans( ) is a total function that maps a large subset of Italian wordsto the
corresponding English ones and returns the string “unknown word” for all words that do
not appear in the Italian words set. The service simply performs a sequence of tworeceive
activities t • req?x andt • word?y, corresponding to reception of a request and of an Italian
word sent by a customer, and replies with the translated word, by invoking the operation
respof the customer by means of theinvokeactivity x• resp!trans(y). Receives and invokes
are the basic communication activities provided by COWS. Besides input parameters and
sent values, they indicate the endpoint, i.e. a pairp • o made of a partner namep and an
operation nameo, through which the communication should occur. Differently from most
process calculi, receive activities in COWS bind neither names nor variables. The only
binding construct isdelimitation: [d] s binds the delimited elementd in the scopes (the
notions of bound and free occurrences of a delimited elementare defined accordingly). For
example, the service (1) uses the delimitation operator to declare the scope of variablesx
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andy. An inter-service communication takes place when the arguments of a receive and
of a concurrent invoke along the same endpoint do match, and causes replacement of the
variables arguments of the receive with the corresponding values arguments of the invoke
(within the scope of variables declarations). For example,variablex will be initialised by
the first receive activity with data provided by a customer.

At a lower level, the service could be described in terms of three entities composed by
using theparallel compositionoperator | that allows them to be concurrently executed
and to interact with each other. A low-level COWS specification of the translation service
can be

[reqDB1, reqDB2, respDB1, respDB2] ( Translator | DB1 | DB2) (2)

The delimitation operator is used here to declare thatreqDB1, reqDB2, respDB1and
respDB2are private operation names known to the three componentsTranslator, DB1and
DB2, and only to them (at least initially, since during a computation private names can be
exported exactly as inπ-calculus). The three subservices are defined as follows:

Translator , [x] t • req?x . [y] t •word?y .
[k] ( t • reqDB1!y | [x1] t • respDB1?x1 . ( kill (k) | {|x• resp!x1|} )
| t • reqDB2!y | [x2] t • respDB2?x2 . ( kill (k) | {|x• resp!x2|} ) )

DB1 , t • reqDB1?“a” . t • respDB1!“ to”
+ t • reqDB1?“albero” . t • respDB1!“ tree”
+ . . . + t • reqDB1?“zucca” . t • respDB1!“ pumpkin”

DB2 , [z] ( t • reqDB2?z. t • respDB2!“ unknown word”
+ t • reqDB2?“a” . t • respDB2!“ to”
+ t • reqDB2?“abate” . t • respDB2!“ abbot”
+ . . . + t • reqDB2?“zuppo” . t • respDB2!“ soaked” )

ServiceTranslator is publicly invocable and can interact with customers otherthan with
the ‘internal’ servicesDB1 andDB2. These latter two services, instead, can only be in-
voked byTranslator (indeed, all the operations used by them are restricted) andhave the
task of looking up in databases the English word corresponding to a given Italian one and
replying accordingly. In particular,DB1 performs a quick search in a small database of
commonly used words, whileDB2 performs a slower search in a bigger database (that ex-
actly corresponds to that modelled by the functiontrans( )). After the two initial receives,
for e.g. performance or fault tolerance purposes,Translatorinvokes servicesDB1andDB2
concurrently. When one of them replies,Translator immediately stops the other search.
This is done by executing thekill activity kill (k), that forces termination of all unprotected
parallel terms inside the enclosing [k] , that stops the killing effect. Then,Translator for-
wards the response to the customer and terminates. Kill activities are executed eagerly with
respect to the other parallel activities but critical code can be protected from the effect of
a forced termination by using theprotectionoperator{| |}; this is indeed the case of the re-
sponsex • resp!x1 in our example. ServicesDB1 andDB2 use thechoiceoperator + to
offer alternative behaviours: one of them can be selected by executing an invoke matching
the receive leading the behaviour. In case the word to be translated is unknown,DB1does
not reply, whileDB2 returns the string “unknown word”. Indeed, the semantics of parallel
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Fig. 1. LTS and symbolic LTS for the translation service (high-level specification)

composition avoids thatDB2 returns “unknown word” in case of known words. This is
done by assigning the receivet • reqDB2?z less priority than the other receive activities, so
that it is only executed when none of the other receives matches the word to be translated
(see Section3 for further details about the prioritised semantics of COWS).

Equivalence and model checkers, and other similar verification tools, do not work di-
rectly on syntactic specifications such as those above, but rather on more abstract represen-
tations of the behaviour of processes. Thus, using an inappropriate representation can lead
to unfeasible verifications. In the rest of the section, we discuss verification problems and
how to cope with them by exploiting a symbolic approach.

Verification problems.When the considered specification language is a value-passing pro-
cess algebra and the value-space is infinite, using standardLabelled Transition Systems
(LTSs) for the semantics can lead to infinite representations. For example, the operational
behaviour of service (1) can be represented by the infinite LTS in the left-hand side of
Figure1, where nodes denote states and edges denote transitions between states implic-
itly oriented from top to bottom. Notably, for the sake of presentation, the LTSs shown in
the figures rely on an operational semantics inearly style, where substitutions are applied
when receive actions are inferred. However, the problem of infinite representations remains
also in case oflate semantics, due to the fact that the continuation of a receiveaction with
argument a variablex has to be considered under all possible substitutions forx.

The symbolic approach.To tackle the problems above, in [13] Hennessy and Lin have
introduced the so-calledsymbolic LTSsand used them to define finite semantical represen-
tations of terms of the value-passing CCS. For example, the symbolic LTSs corresponding
to the COWS service (1) is shown in the right-hand side of Figure 1. The symbolic actions
t • req?x andt •word?y denote reception of unknown valuesx andy along endpointst • req
andt •word, respectively; the condition-guarded symbolic action (z = trans(y) , x • resp!z)
denotes sending of an unknown valuez such thatz = trans(y). Of course, for the same
reasons, also the LTS representing the behaviour of service(2) is infinite, while the cor-
responding symbolic LTS is finite. Indeed, if for the sake of presentation we assume that
databaseDB1 contains only the association for word “a” and databaseDB2 contains only
the associations for “a” and “abate”, the symbolic LTS representing (2) is that shown in
Figure2.

Applying the symbolic approach toCOWS. The main contribution of this work is the
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Fig. 2. Symbolic LTS for the (simplified) translation service (low-level specification)

development of a symbolic operational semantics for COWS. To achieve this goal, the main
issue is to give receive activities a proper semantics, because variables in their arguments
are placeholders for something to be received. For example,let us consider the service

p • o?x.s. If p • o?x.s
p•o?x
−−−−−−→ s then the behaviour of the continuation services must be

considered under all substitutions of the form{x 7→ v} (i.e. the semantics ofscan intuitively
be thought of as a functionλx. s from values to services). In case of the standard semantics
for π-calculus [20], for example, this problem is not tackled at the operational semantics
level, but it is postponed to the observational semantics level. In fact, in the definition of late

bisimulation forπ-calculus, wheneverP is bisimilar toQ, if P
a(x)
−−−−→ P′ then there isQ′

such thatQ
a(x)
−−−−→ Q′ andP′{u/x} is bisimilar toQ′{u/x} for everyu. Thus, continuations

P′ andQ′ are considered under all substitutions forx. Instead, here we aim at defining an
operational semantics for COWS that properly handles inputtransitions, and allow finite
state LTSs to be associated to finite COWS terms.

The basic idea is to allow receive activities to evolve by performing a communication
with the ‘external world’ (i.e. a COWS context), this way they do not need to synchronise
with invoke activities within the considered term. To avoidinfinite branching (as in the
case of early operational semantics), we replace variableswith unknown valuesrather than
with specific values. We denote byx the unknown value for the variablex. This way, the
term [x] ( p• o?x. q• o′!x ) can evolve as follows:

[x] ( p• o?x. q• o′!x )
p •o?[x]
−−−−−−−−→ q• o′!x

q•o′!x
−−−−−−→ 0

Also receive activities having a value as argument (e.g.p • o?v) and invoke activities (e.g.
p • o!v) can evolve by communicating with the external world. Of course, these kinds of
communication do not produce substitutions.

When an external communication takes place, the behaviour of the continuation service
depends on theadmittable valuesfor the unknown value. To take care of the real values that
the unknown values can assume, we define asymbolic semanticsfor COWS, where the label
on each transition has two components: thecondition that must hold for the transition to
be enabled and, as usual, theactionof the transition. Moreover, to store the conditions that
must hold to reach a state and the names exported along the path, we define the semantics
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over configurations of the formΦ,∆ ⊢ s, calledconstrained services, where the condition
Φ and the set of names∆ are used to determine the actions thats can perform. Thus,

the symbolic transitions are of the formΦ,∆ ⊢ s1 ≻
Φ′, α
−−−−→ Φ′,∆′ ⊢ s2, meaning “if the

conditionΦ′ (such thatΦ is a subterm ofΦ′) holds thens1 can perform the actionα leading
to s2 by extending the set of exported private names∆ to the set∆′”.

The symbolic LTS associated to a COWS term conveys in a distilled form all the se-
mantics information on the behaviour of terms. More specifically, besides receive tran-
sitions, symbolic representations take into account generation and exportation of fresh
names, pattern-matching, expressions evaluation, and priorities among conflicting receives.
Dealing at once with all the above features at operational semantics level makes the devel-
opment of a symbolic semantics for COWS more complex than formore standard calculi,
such as value-passing CCS orπ-calculus.

3 COWS and its standard operational semantics

COWS (Calculus for Orchestration of Web Services, [16]) is a recently designed pro-
cess calculus for specifying, combining and analyzing service-oriented applications, while
modelling their dynamic behaviour. COWS combines in an original way a number of in-
gredients borrowed from well-known process calculi, e.g. asynchronous communication,
polyadic synchronization, pattern matching, protection,delimited receiving and killing ac-
tivities, while resulting different from any of them. In this section, we present the standard
syntax and operational semantics of COWS. We refer the interested reader to [16] for many
examples illustrating COWS peculiarities and expressiveness, and for comparisons with
other process-based and orchestration formalisms.

The syntax of COWS is presented in Table1. It is parameterized by three countable and
pairwise disjoint sets: the set of(killer) labels (ranged over byk, k′, . . .), the set ofvalues
(ranged over byv, v′, . . . ) and the set of ‘write once’variables(ranged over byx, y, . . . ).
The set of values is left unspecified; however, we assume thatit includes the set ofnames,
ranged over byn, m, o, p, . . . , mainly used to represent partners and operations. Thelan-
guage is also parameterized by a set ofexpressions, ranged over bye, whose exact syntax is
deliberately omitted. We just assume that expressions contain, at least, values and variables,
but do not include killer labels (that, hence, arenon-communicablevalues). Partner names
and operation names can be combined to designatecommunication endpoints, written p• o,
and can be communicated, but dynamically received names canonly be used for service
invocation (as in the Lπ [19]). Indeed, communication endpoints of receive activitiesare
identified statically because their syntax only allows using names and not variables.

We usew to range over values and variables,u to range over names and variables, and
d to range over killer labels, names and variables. Notation ¯· stands for tuples of objects,
e.g. x̄ is a compact notation for denoting the tuple of variables〈x1, . . . , xn〉 (with n ≥ 0).
We assume that variables in the same tuple are pairwise distinct. All notations shall extend
to tuples component-wise. We adopt the following conventions about the operators prece-
dence: monadic operators bind more tightly than parallel composition, and prefixing more
tightly than choice. In the sequel, we shall usen to range over communication endpoints
that do not contain variables (e.g.p • o), andu to range over communication endpoints
that may contain variables (e.g.u • u′). We will omit trailing occurrences of0, writing e.g.
p• o?w̄ instead ofp•o?w̄.0, and write [d1, . . . , dn] s in place of [d1] . . . [dn] s. We will write
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s ::= (services) g ::= (receive-guarded choice)

kill (k) (kill) 0 (nil)

| u• u′!ē (invoke) | p• o?w̄.s (request processing)

| g (receive-guarded choice) | g+ g (choice)

| s | s (parallel composition)

| {|s|} (protection)

| [d] s (delimitation)

| ∗ s (replication)

Table 1
COWS syntax

I , s to assign a nameI to the terms.
The only binding construct is delimitation: [d] s binds d in the scopes. In fact, to

enable concurrent threads within each service instance to share (part of) the state, receive
activities in COWS bind neither names nor variables, which is different from most process
calculi. Instead, the range of application of the substitutions generated by a communication
is regulated by the delimitation operator, that additionally permits to generate fresh names
(as the restriction operator of theπ-calculus) and to delimit the field of action of kill activ-
ities. Thus, the occurrence of a name/variable/label isfree if it is not under the scope of a
delimitation for it. We denote by fk(t) the set of killer labels that occur free int, and by
fd(t) that of free names/variables/killer labels int. Two terms arealpha-equivalentif one
can be obtained from the other by consistently renaming bound names/variables/labels. As
usual, we identify terms up to alpha-equivalence.

The operational semantics of COWS is defined only forclosedservices, i.e. services
without free variables/labels (similarly to many real programming language compilers, we
consider terms with free variables/labels as programming errors), but of course the rules
also involve non-closed services (see e.g. the premises of rules(delsub) and(delkill )).

Formally, the semantics is given in terms of a structural congruence and of a labelled
transition relation. Thestructural congruence≡ identifies syntactically different services
that intuitively represent the same service. It is defined asthe least congruence relation
induced by a given set of equational laws. We explicitly showin Table2 the laws for repli-
cation, protection and delimitation, while omit the (standard) laws for the other operators
stating that parallel composition is commutative, associative and has0 as identity element,
and that guarded choice enjoys the same properties and, additionally, is idempotent. All
the presented laws are straightforward. In particular, commutativity of consecutive delimi-
tations implies that the order among thedi in [〈d1, . . . , dn〉] s is irrelevant, thus in the sequel
we may use the simpler notation [d1, . . . , dn] s. Notably, the last law can be used to extend
the scope of names (like a similar law in theπ-calculus), thus enabling communication of
restricted names, except when the argumentd of the delimitation is a free killer label ofs2

(this avoids involvings1 in the effect of a kill activity insides2).
To define the labelled transition relation, we need a few auxiliary functions. First, we

exploit a function [[]] for evaluatingclosedexpressions (i.e. expressions without variables):
it takes a closed expression and returns a value. However, [[]] cannot be explicitly defined
because the exact syntax of expressions is deliberately notspecified.

Then, through the rules in Table3, we define the partial functionM( , ) that permits
performingpattern-matchingon semi-structured data thus determining if a receive and an
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∗ 0 ≡ 0 ∗ s ≡ s | ∗ s {|0|} ≡ 0
{| {|s|} |} ≡ {|s|} {|[d] s|} ≡ [d] {|s|} [d] 0 ≡ 0

[d1] [d2] s ≡ [d2] [d1] s s1 | [d] s2 ≡ [d] (s1 | s2) if d < fd(s1)∪fk(s2)

Table 2
COWS structural congruence (excerpt of laws)

M(x, v) = {x 7→ v} M(v, v) = ∅ M(〈〉, 〈〉) = ∅
M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1 ⊎ σ2

Table 3
Matching rules

invoke over the same endpoint can synchronize. The rules state that two tuples match if they
have the same number of fields and corresponding fields have matching values/variables.
Variables match any value, and two values match only if they are identical. When tuples
w̄ and v̄ do match,M(w̄, v̄) returns a substitution for the variables in ¯w; otherwise, it is
undefined.Substitutions(ranged over byσ) are functions mapping variables to values and
are written as collections of pairs of the formx 7→ v. Application of substitutionσ to s,
written s · σ, has the effect of replacing every free occurrence ofx in s with v, for each
x 7→ v ∈ σ, by possibly using alpha conversion for avoidingv to be captured by name
delimitations withins. We use|σ | to denote the number of pairs inσ andσ1⊎σ2 to denote
the union ofσ1 andσ2 when they have disjoint domains.

We also define a function, namedhalt( ), that takes a services as an argument and
returns the service obtained by only retaining the protected activities insides. halt( ) is
defined inductively on the syntax of services. The most significant case ishalt({|s|}) =
{|s|}. In the other cases,halt( ) returns0, except for parallel composition, delimitation and
replication operators, for which it acts as an homomorphism.

halt(kill (k)) = halt(u!ē) = halt(g) = 0 halt({|s|}) = {|s|}

halt(s1 | s2) = halt(s1) | halt(s2) halt([d] s) = [d] halt(s) halt(∗ s) = ∗ halt(s)

Finally, in Table4, we inductively define two predicates: noKill(s, d) holds true if either
d is not a killer label ord = k andscannot immediately perform a free kill activitykill (k);
noConf(s, n, v̄, ℓ), with ℓ natural number, holds true ifs does not produce communication
conflicts, i.e. s cannot immediately perform a receive activity over the endpoint n which
matches ¯v and generates a substitution with fewer pairs thanℓ.

The labelled transition relation
α
−−−→ is the least relation over services induced by the

rules in Table5, where labelα is generated by the following grammar:

α ::= n ⊳ v̄ | n ⊲ w̄ | nσ ℓ v̄ | k | †

In the sequel, we use nvk(α) to denote the set of names, variables and killer labels occurring
in α, except forα = nσ ℓ v̄ for which we let nvk(nσ ℓ v̄) = nvk(σ), where nvk({x 7→ v}) =
{x} ∪ fd(v) and nvk(σ1 ⊎ σ2) = nvk(σ1) ∪ nvk(σ2).
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noKill( s, d) = true if fk(d) = ∅ noKill( s | s′, k) = noKill( s, k) ∧ noKill( s′, k)

noKill(kill (k), k) = false noKill([d] s, k) = noKill( s, k) if d , k

noKill(kill (k′), k) = true if k , k′ noKill([ k] s, k) = true

noKill(u!ē, k) = noKill(g, k) = true noKill({|s|}, k) = noKill(∗ s, k) = noKill( s, k)

noConf(kill (k), n, v̄, ℓ) = noConf(u!ē, n, v̄, ℓ) = noConf(0, n, v̄, ℓ) = true

noConf(n′?w̄.s,n, v̄, ℓ) =
{

false if n′ = n ∧ |M(w̄, v̄) |< ℓ
true otherwise

noConf(g+ g′, n, v̄, ℓ) = noConf(g, n, v̄, ℓ) ∧ noConf(g′, n, v̄, ℓ)

noConf(s | s′, n, v̄, ℓ) = noConf(s, n, v̄, ℓ) ∧ noConf(s′, n, v̄, ℓ)

noConf([d] s, n, v̄, ℓ) =
{

noConf(s, n, v̄, ℓ) if d < n
true otherwise

noConf({|s|}, n, v̄, ℓ) = noConf(∗ s, n, v̄, ℓ) = noConf(s, n, v̄, ℓ)

Table 4
There are not activekill (k) / There are not conflicting receives alongn matchingv̄

kill (k)
k
−−→ 0 (kill) n?w̄.s

n⊲ w̄
−−−−−→ s (rec)

[[ ē]] = v̄
(inv)

n!ē
n⊳ v̄
−−−−−→ 0

g
α
−−−→ s

(choice)
g+ g′

α
−−−→ s

s
nσ⊎{x7→v} ℓ v̄
−−−−−−−−−−−−→ s′

(delsub)
[x] s

nσℓ v̄
−−−−−−→ s′ ·{x 7→ v}

s
k
−−→ s′

(delkill )
[k] s

†
−−→ [k] s′

s
k
−−→ s′ k , d

(passk)
[d] s

k
−−→ [d] s′

s
†
−−→ s′

(pass†)
[d] s

†
−−→ [d] s′

s
α
−−−→ s′ d< nvk(α) α , k, † noKill( s, d)

(passα)
[d] s

α
−−−→ [d] s′

s≡ s1 s1
α
−−−→ s2 s2 ≡ s′

(cong)
s
α
−−−→ s′

s1
n⊲ w̄
−−−−−→s′1 s2

n⊳ v̄
−−−−−→s′2 M(w̄, v̄)=σ noConf(s1 | s2, n, v̄, |σ |)

(com)
s1 | s2

nσ |σ| v̄
−−−−−−−→ s′1 | s

′
2

s1
nσℓ v̄
−−−−−−→ s′1 noConf(s2, n, v̄, ℓ)

(parcon f)
s1 | s2

nσℓ v̄
−−−−−−→ s′1 | s2

s
α
−−−→ s′

(prot)
{|s|}

α
−−−→ {|s′ |}

s1
k
−−→ s′1

(parkill )
s1 | s2

k
−−→ s′1 | halt(s2)

s1
α
−−−→ s′1 α , k, nσℓ v̄

(parpass)
s1 | s2

α
−−−→ s′1 | s2

Table 5
COWS operational semantics

The meaning of labels is as follows:n ⊳ v̄ andn ⊲ w̄ denote execution of invoke and
receive activities over the endpointn, respectively,nσ ℓ v̄ (if σ , ∅) denotes execution of
a communication overn with matching values ¯v, generated substitution havingℓ pairs, and
substitutionσ to be still applied,k denotes execution of a request for terminating a term
from within the delimitation [k] , † andn ∅ ℓ v̄ denotecomputational stepscorresponding
to taking place of forced termination and communication (without pending substitutions),
respectively. Hence, acomputationfrom a closed services0 is a sequence of connected

10
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transitions of the form

s0
α1
−−−→ s1

α2
−−−→ s2

α3
−−−→ s3 . . .

where, for eachi, αi is either† or n ∅ ℓ v̄ (for somen, ℓ andv̄); servicessi, for eachi, will
be calledreductsof s0.

We comment on salient points. Activitykill (k) forces termination of all unprotected
parallel activities (rules(kill) and(parkill )) inside an enclosing [k] , that stops the killing effect
by turning the transition labelk into† (rule (delkill )). Existence of such delimitation is ensured
by the assumption that the semantics is only defined for closed services. Sensitive code can
be protected from killing by putting it into a protection{| |}; this way, {|s|} behaves likes
(rule (prot)). Similarly, [d] s behaves likes, except when the transition labelα containsd
or when a free kill activity ford is active ins andα does not correspond to a kill activity
(rules(passk), (pass†) and(passα)): in such cases the transition should be derived by using rules
(delsub) or (delkill ). In other words, kill activities are executedeagerlywith respect to the other
activities inside the corresponding killer label delimitations.

A service invocation can proceed only if the expressions in the argument can be evalu-
ated (rule(inv)). A receive activity offers an invocable operation along a given partner name
(rule (rec)), and the execution of a receive permits to take a decision between alternative be-
haviours (rule(choice)). Communication can take place when two parallel services perform
matching receive and invoke activities (rule(com)). Communication generates a substitution
that is recorded in the transition label (for subsequent application), rather than a silent tran-
sition as in most process calculi. If more then one matching is possible, the receive that
needs fewer substitutions is selected to progress (rules(com)and(parcon f)). This mechanism,
based on pattern-matching, permits to correlate different service communications logically
forming a same interaction ‘session’ by means of their same contents and can be exploited
to model the precedence of a service instance over the corresponding service specification
when both can process the same request.

When the delimitation of a variablex argument of a receive is encountered, i.e. the
whole scope of the variable is determined, the delimitationis removed and the substitution
for x is applied to the term (rule(delsub)). Variablex disappears from the term and cannot
be reassigned a value. For this reason they are called ‘writeonce’ variables. Rule(cong) is
standard and states that structurally congruent services have the same transitions.

Execution of parallel services is interleaved (rule(parpass)), but when a kill activity or
a communication is performed. Indeed, the former must trigger termination of all paral-
lel services (according to rule(parkill )), while the latter must ensure that the receive activity
with greater priority progresses (rules(com) and(parcon f)). In practice, COWS parallel oper-
ator is equipped with a priority mechanism which allows someactions to take precedence
over others. Receive activities are assigned priority values which depend on the messages
available so that, in presence of concurrent matching receives, only a receive using a more
defined pattern (i.e. having greater priority) can proceed.This way, service definitions and
service instances are represented as processes running concurrently, but service instances
take precedence over the corresponding service definition when both can process the same
message, thus preventing creation of wrong new instances. Additionally, kill activities have
assigned greatest priority so that they pre-empt all other activities inside the enclosing killer
label’s delimitation and cause termination of those unprotected activities. This way, they
turn out to be quite useful for handling situations where abnormal termination is required,
like in case of fault and exception throw, or compensation invocation.

11
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4 A symbolic semantics for COWS

In this section, we introduce a symbolic operational semantics for COWS. For the sake of
simplicity, here we consider amonadicversion of COWS, i.e. communication activities are
of the formu!e andn?w.s (we discuss in Section5.2how to tailor the symbolic semantics
to handle polyadic communication). Many illustrative examples shed light on the technical
development.

4.1 Symbolic operational semantics

The symbolic operational semantics of COWS is defined over configurations of the form
Φ,∆ ⊢ s, calledconstrained services, whereΦ is theconditionthat must hold to reach the
current state,∆ is theset of private namespreviously exported, ands is a service whose
actions are determined byΦ and∆. The set∆ will be omitted when empty, writing e.g.
Φ ⊢ s instead ofΦ, ∅ ⊢ s. We define the semantics over an enriched set of services that
also includes those auxiliary terms resulting from replacing (free occurrences of) variables
with unknown valuesin terms produced by the syntax introduced in Section3, where now
expressions contain also unknown values. Therefore, in theextended syntax we useu•u′!e
and p • o?w.s to denote invoke and receive activities respectively,x to denote unknown
values, andt to denote an unknown value or a termt (wheret can ben, v, u, w, n or u).

As in the standard semantics, the onlybinding construct is delimitation: let
Φ,∆ ⊢ C[[[ d] s]] be a constrained service (whereC is a context1 ), [d] bindsd in the scope
s, in the conditionΦ and in the set∆. We denote by bn(t) the set of names that occur
bound in a termt, and by uvar(t) the set of variables that have been replaced by corre-
sponding unknown values int (i.e. if x is an unknown value int, thenx ∈ uvar(t)). For
simplicity sake, in the sequel we assume that bound variables in constrained services are
pairwise distinct and different from variables corresponding to the unknown values ofthe
constrained services, and bound names are all distinct and different from the free ones (of
course, these conditions are not restrictive and can alwaysbe fulfilled by possibly using
alpha-conversion). This assumption avoids that distinct unknown values are denoted by
the samex in a conditionΦ of a constrained service (see Example “Evaluation function,
condition x < uv and assumption on bound variables” in Section4.2), and permits identi-
fying the name delimitation binding each private name within a conditionΦ and a set∆ of
a constrained service (see Remark4.1).

The symbolic operational semantics of COWS is defined only for closedservices, and
is given in terms of a structural congruence and of a (bi-)labelled transition relation. The
structural congruence≡ is the trivial extension of that defined in Section3 to the enriched
syntax of services used here. To define the labelled transition relation, we exploit the trivial
extension to the enriched syntax of functionhalt( ) and predicate noKill(, ) defined in
Section3. We also extend function [[]] to deal with unknown values. Now, it takes a
closed expression and returns a pair (Φ, v): the (possibly unknown) valuev is the result of
the evaluation provided that the conditionΦ holds. Specifically, letebe an expression, ife
does not contain unknown values and can be computed, then [[e]] = (true, v) wherev is the
result of the evaluation, as in the original COWS semantics.Similarly, if e is an unknown
value x, then [[e]] = (true, x). If e contains unknown values and is not a single unknown

1 A contextC is a service with a ‘hole’ [[·]] such that, once the hole is filled with a services, the resulting termC[[ s]] is a
COWS service.
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value (i.e. e , x for every x), then [[e]] = ((y , bn ∧ y < uv ∧ y = e ∧ Φ′), y) where
y is a fresh unknown value that must be different from all private names (i.e.y , bn)

and from all existent unknown values (i.e.y < uv) 2 , andΦ′ is a condition that permits
dealing with expression operators partially defined3 . Function [[ ]], and hence condition
Φ′, cannot be explicitly defined because the exact syntax of expressions is deliberately not
specified. Then, consider as an example the following simplelanguage for expressions:

e ::= x | x | i | e+ e | e− e | e∗ e | e/e | (e)

wherei is an integer value. For the above language function [[]] is such that:

• [[(5 − 2) ∗ 3]] = (true, 9);

• [[5 − x]] is undefined, because the expression 5− x is not closed;

• [[5 − x]] = ((y , bn ∧ y < uv ∧ y = 5− x), y);

• [[5/0]] is undefined;

• [[5/x]] = ((y , bn ∧ y < uv ∧ y = 5/x ∧ x , 0), y), where conditionx , 0 is due to the
fact that operator/ is not defined when its second argument is 0.

We also define a functionconfRec( , ), that takes a services and an endpointn as
an arguments and returns the set of (possibly unknown) values that are parameters of re-
ceive activities over the endpointn active in s. This function plays the role of predicate
noConf( , , , ) of the standard semantics and, indeed, is exploited to disable transitions in
case of communication conflicts (by setting transition conditions to false). The function is
inductively defined as follows:

confRec(0, n) = confRec(kill (k), n) = confRec(u!e, n) = confRec(n?x.s, n) = ∅

confRec(g+ g′, n) = confRec(g, n) ∪ confRec(g′, n) confRec(n?v.s, n) = { v }

confRec(n′?w.s, n) = ∅ if n , n′ confRec({|s|}, n) = confRec(s, n)

confRec(s | s′, n) = confRec(s, n) ∪ confRec(s′, n) confRec([d] s, n) = ∅ if d ∈ n

confRec([d] s, n) = confRec(s, n)\{d} if d < n confRec(∗ s, n) = confRec(s, n)

The labelled transition relation over constrained services, written≻
Φ , α
−−−−→, relies on a

labelled transition relation
Φ , α
−−−−−→, that is the least relation over services induced by the

rules in Table6. ConditionsΦ and actionsα are generated by the following grammar:

Φ ::= true | false | v = v′ | v , v′ | x , bn | x < uv
| x < {xi}i∈I | x = e | Φ ∧ Φ′

α ::= n ⊳ v | n ⊳ [n] | n ⊲ w | n ⊲ [x ] | nσ ℓ v | k | †

where, now, a substitutionsσ can be either the empty substitution∅ or a substitution{x 7→
v} that maps the variablex to the (possibly unknown) valuev.

The meaning of labels is as follows:

2 Notably, herey can be any unknown value, provide that it satisfies conditions y , bn andy < uv. Notice that condition
y < uv is a syntactical condition on the variable namey. Later we shall explain the exact meaning of the above conditions
and show how they are evaluated in the last step of the inference of a transition.
3 Of course, if all operators used in the considered expression are total functions, then conditionΦ′ is true.
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kill (k)
true, k
−−−−−−→ 0 (s-kill) n?w.s

true,n⊲w
−−−−−−−−−→ s (s-rec)

s
Φ ,n⊲ x
−−−−−−−−→ s′

(s-reccom)
[x] s

Φ∧ x,bn∧ x, confRec(s,n) ,n ⊲[x]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′ ·{x 7→ x}

g
Φ , α
−−−−−→ s

(s-choice)
g+ g′

Φ , α
−−−−−→ s

[[e]] = (Φ, v )
(s-inv)

n!e
Φ ,n⊳ v
−−−−−−−→ 0

s
Φ ,n⊳ n
−−−−−−−→ s′ n<n

(s-open)
[n] s

Φ , n⊳ [n]
−−−−−−−−−→ s′

s
Φ ,n {x 7→v}1v
−−−−−−−−−−−−→ s′

(s-delsub)
[x] s

Φ ,n ∅1v
−−−−−−−−→ s′ ·{x 7→ v}

s
Φ , k
−−−−−→ s′

(s-delkill )
[k] s

Φ , †
−−−−−→ [k] s′

s
Φ , k
−−−−−→ s′ k , d

(s-passk)
[d] s

Φ , k
−−−−−→ [d] s′

s
Φ , †
−−−−−→ s′

(s-pass†)
[d] s

Φ , †
−−−−−→ [d] s′

s
Φ , α
−−−−−→ s′ d< nvk(α) α , k , † noKill( s, d)

(s-passα)
[d] s

Φ , α
−−−−−→ [d] s′

s
Φ , α
−−−−−→ s′

(s-prot)
{|s|}

Φ , α
−−−−−→ {|s′ |}

s1
Φ1 ,n⊲ v′

−−−−−−−−−→ s′1 s2
Φ2 ,n

′⊳ v
−−−−−−−−−→ s′2

(s-match)

s1 | s2
Φ1 ∧Φ2 ∧ n=n

′ ∧ v′=v ,n ∅0v
−−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s

′
2

s1
Φ1 ,n⊲ x
−−−−−−−−→ s′1 s2

Φ2 ,n
′⊳ v

−−−−−−−−−→ s′2
(s-com)

s1 | s2
Φ1 ∧Φ2 ∧ n=n

′ ∧ v, confRec(s1| s2,n) ,n {x7→v}1v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s

′
2

s1
Φ ,nσ1v
−−−−−−−−−→ s′1

(s-parcon f1)
s1 | s2

Φ∧ v, confRec(s2,n) ,nσ1v
−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s2

s1
Φ , k
−−−−−→ s′1

(s-parkill )
s1 | s2

Φ , k
−−−−−→ s′1 | halt(s2)

s1
Φ ,n ⊲[x ]
−−−−−−−−−→ s′1

(s-parcon f2)
s1 | s2

Φ∧ x, confRec(s2,n) ,n ⊲[x ]
−−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s2

s≡ s1 s1
Φ , α
−−−−−→ s2 s2 ≡ s′

(s-cong)
s
Φ , α
−−−−−→ s′

s1
Φ , α
−−−−−→ s′1 α , k , nσ1v , n ⊲ [x ]

(s-parpass)
s1 | s2

Φ , α
−−−−−→ s′1 | s2

Table 6

COWS symbolic semantics (rules for
Φ , α
−−−−→)

• Conditions: true (resp.false) denotes the condition always (resp. never) satisfied,v = v′

(resp.v , v′) denotes an equality (resp. inequality) between (possiblyunknown) values,
x , bn means that the unknown valuex must be different from all bound names of the
considered service,x < uv means that the set of variables corresponding to the unknown
values of the considered constrained service may not contain the variablex, x < {xi}i∈I

means thatx must not be in the set{xi}i∈I , x = estates that the unknown valuex is equal
to the evaluation of the closed non-evaluable expressione (conditions of this form are
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generated by the evaluation function, e.g. conditiony = 5/x is generated by evaluation
of expression 5/x), and as usual∧ denotes the logic conjunction. In the sequel, we will
use notationv , {v1, . . . , vn} to indicate the conditionv , v1 ∧ . . . ∧ v , vn (where
v , ∅ indicatestrue). Moreover, we will use a functionB( , , ) that, given a condition
Φ, a services and a set of variables{xi}i∈I , returns a condition obtained by conjuncting
Φ with all inequalities between the unknown values ofΦ and the bound names ofs and
with all conditionsx < {xi}i∈I for eachx < uv in Φ. Formally,B( , , ) is defined as
follows:

B(true, s, {xi}i∈I ) = true B(false, s, {xi}i∈I ) = false

B(v = v′, s, {xi}i∈I ) = v = v′ B(v , v′, s, {xi}i∈I ) = v , v′

B(x , bn, s, {xi}i∈I ) = x , bn ∧ x , bn(s) B(x < uv, s, {xi}i∈I ) = x < {xi}i∈I

B(x < {y j} j∈J, s, {xi}i∈I ) = x < {y j} j∈J B(x = e, s, {xi}i∈I ) = x = e

B(Φ ∧ Φ′, s, {xi}i∈I ) = B(Φ, s, {xi}i∈I ) ∧ B(Φ′, s, {xi}i∈I )

• Actions: n⊳ [n] denotes execution of a bound invoke activity over the endpoint n, while
n ⊲ [x ] denotes taking place of external communication over the endpointn with receive
parameterx (that will be replaced by the unknown valuex). The remaining labels have
the usual meaning. Notably, due to the restraint on monadic communication, here the
natural numberℓ can only be either 0 or 1.

We comment on the aspects of the symbolic semantics rules that mainly differ from
the standard ones. Bound invocations, that transmit private names, can be generated by
rule (s-open). Notably, bound invocation actions do not appear in rules(s-match)and(s-com), and
therefore cannot directly interact with receive actions. Such interactions are instead inferred
by using structural congruence to pull name delimitation outside both interacting activities.
Although the bound transitions and rule(s-open)can be omitted, we include them both to
give a proper semantics to terms [n] n!n and to support the development of behavioural
equivalences for COWS. Communication can beinternalor externalto the service. Internal
communication can take place when two matching receive and invoke activities (rules(s-

match) and (s-com)) are simultaneously executed. External communication cantake place
when a value is transmitted to the environment (rules(s-inv) and (s-open)) or when a receive
activity matches an unknown value provided by the environment (rules(s-rec)and(s-reccom)).
Differently from the standard semantics, conflicting receives cannot be dealt with by using
a predicate in the premises of rules for communication and interleaving, because unknown
values can be involved. Here, the check for conflicting receives is simply a condition of the
form v , confRec(s, n) (rules(s-reccom), (s-com), (s-parcon f1)) and(s-parcon f2)).

The labelled transition relation≻
Φ , α
−−−−→ is the least relation over constrained services

induced by the rules reported in Table7, where notationn < ∆ means that set∆ does not
contain the names of endpointn. Rule (constServ)states that a constrained serviceΦ,∆ ⊢ s
can perform all the ‘non-invoke’ transitions performed bys with an enriched condition
Φ′′ obtained by composingΦ and the condition on the labelΦ′. ConditionΦ′′ takes care
of the relationship between unknown values and private names. Indeed, by private names
definition, each unknown value, that is a value coming from the environment, must be

different from all bound (private) names of the considered service. If the transitions
Φ′, α
−−−−−→
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s
Φ′ , α
−−−−−→ s′ α , n ⊳ [n] , n ⊳ v Φ′′ = B(Φ ∧ Φ′, s′, uvar(Φ))

(constServ)
Φ,∆ ⊢ s≻

Φ′′ , α
−−−−−→ Φ′′,∆ ⊢ s′

s
Φ′ , n⊳ [n]
−−−−−−−−−−→ s′ n<∆ Φ′′ = B(Φ ∧ Φ′, s′, uvar(Φ))

(constServexp)

Φ,∆ ⊢ s≻
Φ′′ , n⊳ [n]
−−−−−−−−−→ Φ′′,∆ ∪ {n} ⊢ s′

s
Φ′ , n⊳ v
−−−−−−−−→ s′ n<∆ Φ′′ = B(Φ ∧ Φ′, s′, uvar(Φ))

(constServinv)

Φ,∆ ⊢ s≻
Φ′′ , n⊳ v
−−−−−−−→ Φ′′,∆ ⊢ s′

Table 7

COWS symbolic semantics (rules for≻
Φ , α
−−−−→)

s′ introduces a new unknown valuex (rules(s-inv) and(s-reccom)), it is not sufficient to add the
condition x , bn(s′) (i.e. the unknown value is different from all bound names of the
current service), but we need also to consider bound names that could be subsequently
generated. For example, let us consider the following transition:

true ⊢ [x] n?x.s | ∗ [n] n′!n ≻
x,bn∧ x,n , n⊲[x ]
−−−−−−−−−−−−−−−→ x , bn ∧ x , n ⊢ s·{x 7→ x} | ∗ [n] n′!n

Now, if the obtained service performs the transition:

s · {x 7→ x} | ∗ [n] n′!n
Φ , α
−−−−−→ s′ · {x 7→ x} | ∗ [n] n′!n | [n′] n′!n′ | [n′′] n′!n′′

then, letΦ′ ⊢ s′′ be the obtained constrained service, the conditionΦ′ must containx , n′

and x , n′′. To update after any transition the condition of a constrained service with
inequalities between unknown values and private names, we use the conditionx , bn,
that simply states thatx has been introduced in the considered term (rules(s-inv) and (s-

reccom)), and functionB( , , ), that adds the inequalities for each unknown value (rules(con-

stServ), (constServexp) and(constServinv)). Moreover, functionB( , , ) adds conditions of the form
x < {xi}i∈I to guarantee that unknown values introduced by rule(s-inv) because expression
evaluation differ from those of the considered constrained service (i.e. uvar(Φ) if the con-
strained service isΦ,∆ ⊢ s; for further details see Example “Evaluation function, condition
x < uv and assumption on bound variables” in Section4.2).

Rules (constServexp) and (constServinv) deal with the localized receiving feature of COWS.
Indeed, if a COWS term communicates a private (partner or operation) name to the envi-
ronment, then the latter (that is a COWS context) can use the name to define a sending
endpoint, but not a receiving one. For example, consider thefollowing constrained service:

true ⊢ [p] ( q• o!p | p• o′!v )

It can perform the activityq • o!p (rule (s-open)) and become the termtrue, {p} ⊢ p • o′!v
which is stuck. In fact, to further evolve it needs the environment to be able to perform
first a receiveq • o?x and then a receive along the endpointx • o′, that is disallowed by the
syntax. Therefore, to block invoke activities performed along endpoints using previously
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exported private names, we record all exported private names in the set∆ of the constrained
service and perform the checkn<∆ when an invoke activity alongn communicating with
the environment is executed.

Remark 4.1 The assumption “bound names are all distinct and different from the free
ones” is used to guarantee the correlation between conditions and services. For example,
if we do not rely on this assumption, for the constrained service x , n ⊢ [n] s | [n] s′ we
are not able to understand what are the occurrences ofn referred by the conditionx , n.
Moreover, the definition of bound names permits maintainingthis correlation. For example,
the constrained servicex , n ⊢ [n] x • o!n is not not alpha-equivalent tox , n ⊢ [m] x • o!m
but is equivalent tox , m ⊢ [m] x•o!m.

Remark 4.2 It is worth noticing that, in the definition of relation≻
Φ , α
−−−−→, the conditions

are never evaluated. Thus, at operational semantics level,we do not distinguish unfeasible
transitions (whose condition holdsfalse) from feasible ones. For example, transitions hav-
ing the following conditions are unfeasible: (oreq = oresp), (x , x) and (x = y ∧ x , y). Of
course, to identify unfeasible transitions, we can replacethe conditionΦ′′ in the conclu-
sion of rules(constServ), (constServexp) and(constServinv) with E(Φ′′), whereE( ) is a function for
evaluating conditions.

Remark 4.3 Since the transition relation≻
Φ , α
−−−−→ is defined over constrained services, i.e.

configuration of the formΦ,∆ ⊢ s, the operational semantics can be naturally interpreted
on L2TS [10]. Indeed, eachedge label(of the formΦ, α) indicates the condition which
must hold for the transition to be enabled and the performed action, while eachstate label
(of the formΦ,∆) indicates the condition which must hold to reach the considered state
from the initial one and the set of previously exported private names.

We can now formalize the correspondence between the original semantics introduced
in Section3 and the symbolic semantics. We exploit here a functionE( ) for evaluating
conditions: it takes a conditionΦ and returnsfalseif certainlyΦ does not hold; otherwise,
it returnsΦ. For example,E(Φ′ ∧ (5 = 3)) is falsewhateverΦ′ may be. Since a condition
Φ can be of the formx = e and the syntax of expressionse is not specified, functionE( )
cannot be explicitly defined (as function [[]]). For the proof of semantics correspondence,
we use the following lemma concerning functionB( , , ). For the sake of simplicity, a
conditionΦ is deemedfavourableif uvar(Φ) = ∅ andE(Φ) , false, i.e. it does not contain
unknown values and can be positively evaluated.

Lemma 4.4 LetΦ be a favourable condition, thenE(B(Φ, s, ∅)) , false for any s.

Proof. FunctionB( , , ) acts as an homomorphism on the first argument, except when the
argument isx , bn andx < uv. We do not need to consider the former case because, by the
hypothesis uvar(Φ) = ∅, we have thatΦ does not contain unknown values. For the latter
case, we get thatB(x < uv, s, ∅) = x < uv since the third argument ofB( , , ) is ∅. Thus,
the thesis trivially follows by the fact that, under the considered hypotheses,B( , , ) acts
always as an homomorphism on the first argument. �

Our major result is a theorem of ‘operational correspondence’. It is quite standard and
states that for each transition of the original LTS associated to a COWS term there exists
a corresponding symbolic transition of the symbolic LTS that does not involve unknown
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values and bound names, and vice versa. Notice that, since the original semantics does
not take bound invocations into account, only constrained services of the formΦ ⊢ s are
considered in the theorem.

Theorem 4.5 Letuvar(α) = ∅ andα , n ⊳ [n] . s
α
−−−→ s′ if and only if, for any favourable

conditionΦ, Φ ⊢ s≻
Φ′ , α
−−−−−→ Φ′ ⊢ s′ for some favourable conditionΦ′.

Proof. The proof of the “if” part proceeds by induction on the lengthof the inference

of s
α
−−−→ s′. For the base case, we reason by case analysis on the axioms ofthe original

operational semantics.

(kill) In this case,α = k, s = kill (k) and s′ = 0. By rule (s-kill), kill (k)
true, k
−−−−−−→ 0. Then,

by rule (constServ), we get thatΦ ⊢ kill (k) ≻
Φ′ , k
−−−−→ Φ′ ⊢ 0, whereΦ′ = B(Φ ∧ true, 0, ∅)

(since uvar(Φ) = ∅). By definition,B(Φ ∧ true, 0, ∅) = B(Φ, 0, ∅) ∧ B(true, 0, ∅). Since
Φ is favourable, by Lemma4.4, we have thatE(B(Φ, 0, ∅)) , false. SinceB(true, 0, ∅) =
true, false, we can conclude thatE(Φ′) , false.

(rec) In this case,α = n ⊲ w ands= n?w.s′. By rule (s-rec), n?w.s′
true, n⊲w
−−−−−−−−−→ s′. Then, by

rule (constServ), we get thatΦ ⊢ n?w.s′ ≻
Φ′ , n⊲w
−−−−−−−→ Φ′ ⊢ s′, whereΦ′ = B(Φ ∧ true, 0, ∅).

As before, we can conclude thatE(Φ′) , false.

(inv) In this case,α = n ⊳ v̄, s = n!e where [[e]] = v, and s′ = 0. By rule (s-inv),

n!ē
true, n⊳ v
−−−−−−−−−→ 0. Then, by rule(constServinv), we get thatΦ ⊢ n!e ≻

Φ′ ,n⊳ v
−−−−−−−→ Φ′ ⊢ 0,

whereΦ′ = B(Φ ∧ true, 0, ∅). As before, we can conclude thatE(Φ′) , false.

For the inductive step, we reason by case analysis on the lastapplied inference rule of the
original operational semantics.

(choice) In this case,s = g+ g′. By the premise of the rule(choice), g
α
−−−→ s′. By induction,

Φ ⊢ g ≻
Φ′ , α
−−−−−→ Φ′ ⊢ s′ for some favourable conditionsΦ andΦ′. By the premise of the

rule (constServ), we get thatg
Φ′′ , α
−−−−−−→ s′ whereΦ′′ is such thatΦ′ = B(Φ ∧ Φ′′, s′, ∅). By

rule (s-choice), g+ g′
Φ′′ , α
−−−−−−→ s′. Finally, by rule(constServ), we can concludeΦ ⊢ g+ g′ ≻

Φ′ , α
−−−−−→ Φ′ ⊢ s′.

(delsub) In this case,s = [x] s1 and s′ = s2 · {x 7→ v}. By the premise of the rule(delsub),

s1
n {x7→v} 1v
−−−−−−−−−−→ s2. By induction, we get thatΦ ⊢ s1 ≻

Φ′ ,n {x7→v} 1v
−−−−−−−−−−−−→ Φ′ ⊢ s2 for

some favourable conditionsΦ andΦ′. By the premise of rule(constServ), we get that

s1
Φ′′ ,n {x7→v} 1v
−−−−−−−−−−−−−→ s2 and, by rule(delsub), [x] s1

Φ′′ , n ∅1v
−−−−−−−−−→ s2 · {x 7→ v}. Finally, by rule

(constServ), we can conclude.

(delkill ), (passk), (pass†), (passα), (cong), (prot), (parkill ), (parpass), (parcon f) These cases are similar to the
previous one; the latter case relies on the fact that noConf(s2, n, v, 1) = true implies that
confRec(s2, n) = {vi}i∈I such thatv , vi for all i ∈ I .

(com) In this case,s = (s1 | s2) ands′ = (s′1 | s′2). First, we consider the caseα = n ∅0v.

By the premises of rule(com), s1
n⊲ v
−−−−−→ s′1 and s2

n⊳ v
−−−−−→ s′2. By induction, we get

thatΦ1 ⊢ s1 ≻
Φ′1 , n⊲ v
−−−−−−−→ Φ′1 ⊢ s′1 andΦ2 ⊢ s2 ≻

Φ′2 , n⊳ v
−−−−−−−→ Φ′2 ⊢ s′2, for some favourable

conditionsΦ1, Φ′1, Φ2 andΦ′2. By the premises of rules(constServ)and(constServinv), we get
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that s1
Φ′′1 , n⊲ v
−−−−−−−−→ s′1 and s2

Φ′′2 , n⊳ v
−−−−−−−−→ s′2, where conditionsΦ′′1 andΦ′′2 are such that

Φ′1 = B(Φ1 ∧ Φ
′′
1 , s
′
1, ∅) andΦ′2 = B(Φ2 ∧ Φ

′′
2 , s
′
2, ∅). By rule (s-com), s1 | s2

Φ′ ,n ∅0v
−−−−−−−−−→

s′1 | s
′
2, whereΦ′ = Φ′′1 ∧Φ

′′
2 ∧ n = n∧ v = v. Finally, by rule(constServ), we can conclude

thatΦ ⊢ s1 | s2 ≻
Φ′′ , n ∅0v
−−−−−−−−→ Φ′′ ⊢ s′1 | s′2, whereΦ′′ = B(Φ ∧ Φ′, s′1 | s′2, ∅). The case

α = nσ 1v proceeds as above, by also relying on the fact that noConf(s1 | s2, n, v, 1) =
true implies thatconfRec(s1 | s2, n) = {vi}i∈I with v , vi for all i ∈ I .

Consider now the “only if” part of the theorem. By the premises of rules(constServ)

and (constServinv), we get thats
Φ′′ , α
−−−−−−→ s′ whereΦ′ = B(Φ ∧ Φ′′, s′, ∅). By hypothesis

E(Φ′) , false, henceE(Φ′′) , falsetoo. The proof proceeds by induction on the length of

the inference ofs
Φ′′ , α
−−−−−−→ s′. We omit the details because the proof proceeds as that of the

“if” part, but the steps are executed in the reverse order. For the base case, we reason by
case analysis on the axioms of the symbolic operational semantics. We take a look at one
base case:

(s-rec) In this case,Φ′′ = true, α = n ⊲ w and s = n?w.s′. Trivially, by rule (rec),

n?w.s′
n⊲w
−−−−−→ s′.

For the inductive step, we reason by case analysis on the lastapplied inference rule of the
symbolic operational semantics. We take a look at two cases:

(s-choice) In this case,s = g + g′. By the premise of the rule(s-choice), g
Φ′′ , α
−−−−−−→ s′. By

induction, we get thatg
α
−−−→ s′. Finally, by rule(choice), we can concludeg+ g′

α
−−−→ s′.

(s-com) In this case,s = (s1 | s2), Φ′′ = (Φ1 ∧ Φ2 ∧ n = n ∧ v , confRec(s1 | s2, n)),
α = n {x 7→ v} 1v and s′ = (s′1 | s′2). SinceE(Φ′′) , false, we get thatE(Φ1) , false,
E(Φ2) , false and confRec(s1 | s2, n) = {vi}i∈I such thatv , vi for all i ∈ I . This
means that noConf(s1 | s2, n, v, 1) holds true. By induction and sinceE(Φ1) , falseand

E(Φ2) , false, we have thats1
n⊲ x
−−−−−→ s′1 ands2

n⊳ v
−−−−−→ s′2. Thus, by rule(com), we can

conclude thats1 | s2
n {x7→v} 1v
−−−−−−−−−−→ s′1 | s

′
2.

�

4.2 Examples

In this section, we show some simple examples aimed at clarifying some peculiarities of
COWS symbolic semantics. In the sequel, for the sake of readability, we shall evaluate
conditions, writing e.g.x , n instead of (p = p ∧ o = o ∧ true ∧ x , n).

External communication
According to the operational semantics introduced in Section3, the service [x] n?x. m!x can
perform the receive activity, but then it is blocked (because variablex is not instantiated by
the receive transition). Instead, according to the symbolic semantics defined in this section,
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the constrained servicetrue ⊢ [x] n?x. m!x can evolve as follows:

(s-rec)

n?x. m!x
true, n⊲ x
−−−−−−−−−→ m!x

(s-reccom)

[x] n?x. m!x
x,confRec((n?x. m!x),n)∧ x,bn , n⊲[x]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m!x

(constServ)

true ⊢ [x] n?x. m!x ≻
x,bn , n⊲[x]
−−−−−−−−−−→ x , bn ⊢ m!x

since (x , confRec((n?x. m!x), n)) = (x , ∅) = true. Then, the continuation can perform
the following transition:

[[ x]] = (true, x)
(s-inv)

m!x
true, m⊳ x
−−−−−−−−−→ 0

(constServinv)

x , bn ⊢ m!x ≻
x,bn , m⊳ x
−−−−−−−−−→ x , bn ⊢ 0

Notice that, although the external communication generates the conditionx , bn (that
means that the received unknown value must be different from all delimited names), the
condition is never exploited because the term does not contain delimited names.

External communication within name delimitations
Consider the constrained servicetrue ⊢ [n] [ x] n?x. x • o!n. Differently from the previous
example, the above service contains a delimited name (i.e.n). Thus, this time, condition
x , bn is exploited to generate the specific conditionx , n. Indeed, the service evolves as
follows:

(s-rec)

n?x. x•o!n
true, n⊲ x
−−−−−−−−−→ x•o!n

(s-reccom)

[x] n?x. x• o!n
x,confRec((n?x. x • o!n),n)∧ x,bn , n⊲[x]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ x• o!n

(s-delpass)

[n] [ x] n?x. x• o!n
x,confRec((n?x. x • o!n),n)∧ x,bn , n⊲[x]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [n] x•o!n

(constServ)

true ⊢ [n] [ x] n?x. x• o!n ≻
x,n∧ x,bn , n⊲[x]
−−−−−−−−−−−−−−−→ x , n∧ x , bn ⊢ [n] x•o!n

since (x , confRec((n?x. x • o!n), n) = true andB(x , bn, ([n] [ x] n?x. x • o!n), ∅) = x ,
n ∧ x , bn. Then, the continuation can evolve only provided that condition x , n holds.

Internal communication
Consider the constrained servicetrue ⊢ [p] [ x] ( p • o?x. n!x | p • o!v ), wherep < n. In
this case, due to the delimitation [p] , the receive activity cannot communicate with the
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environment, but can synchronize with the internal invoke:

(s-rec)

p•o?x. n!x
true, p•o⊲x
−−−−−−−−−−−→ n!x

[[v]] = (true, v)
(s-inv)

p•o!v
true, p•o⊳v
−−−−−−−−−−→ 0

(s-com)

p•o?x. n!x | p•o!v
Φ , p•o {x7→v} 1v
−−−−−−−−−−−−−−→ n!x

(s-delsub)

[x] ( p• o?x. n!x | p•o!v )
Φ , p•o∅ 1v
−−−−−−−−−−→ n!x · {x 7→ v}

(s-delpass)

[p] [ x] ( p• o?x. n!x | p•o!v )
Φ , p•o∅1v
−−−−−−−−−−→ [p] n!v ≡ n!v

(s-cong)

[p] [ x] ( p• o?x. n!x | p• o!v )
Φ , p •o∅1v
−−−−−−−−−−→ n!v

(constServ)

true ⊢ [p] [ x] ( p• o?x. n!x | p•o!v ) ≻
Φ , p•o∅1v
−−−−−−−−−→ Φ ⊢ n!v

whereΦ = ( true ∧ true ∧ p = p ∧ o = o ∧ v , confRec(p • o?x. n!x | p • o!v, p • o) ).
SinceconfRec(p•o?x. n!x | p• o!v, p• o) = ∅, conditionΦ holdstrue.

External and internal communication
Consider the constrained servicetrue ⊢ [x] ( n?x. m!x | n!v ). In this case, both internal and
external communication can take place. Its initial transitions are the following:

(ext. com.) true ⊢ [x] ( n?x. m!x | n!v ) ≻
Φ ,n⊲[x]
−−−−−−−−→ Φ ⊢ m!x | n!v

(ext. com.) true ⊢ [x] ( n?x. m!x | n!v ) ≻
Φ ,n⊳ v
−−−−−−→ Φ ⊢ [x] ( n?x. m!x )

(int. com.) true ⊢ [x] ( n?x. m!x | n!v ) ≻
Φ ,n ∅ 1v
−−−−−−−→ Φ ⊢ m!v

Conflicting receive
Consider the constrained servicetrue ⊢ [x] ( n?v | n?x | n!v ). Due to the presence of
the receiven?v, that has greater priority to synchronize with an invocation n!v, the receive
n?x can communicate with the environment only if the received value is notv (indeed,
confRec((n?v | n?x | n!v), n) = {v} ):

true ⊢ [x] ( n?v | n?x | n!v ) ≻
x,bn∧ x,v , n⊲[x]
−−−−−−−−−−−−−−−→ x , bn ∧ x , v ⊢ n?v | n!v

Other possible transitions are as follows:

true ⊢ [x] ( n?v | n?x | n!v ) ≻
true,n⊳ v
−−−−−−−−→ true ⊢ [x] ( n?v | n?x )

true ⊢ [x] ( n?v | n?x | n!v ) ≻
true,n⊲ v
−−−−−−−−→ true ⊢ [x] ( n?x | n!v )

true ⊢ [x] ( n?v | n?x | n!v ) ≻
true,n ∅ 0v
−−−−−−−−−→ true ⊢ [x] n?x
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On constrained services
Consider the (plain) service [x, y] ( n?q | n?x | x • o!v | q • o?y ) wheren , q • o. It can
perform the following transition:

[x, y] ( n?q | n?x | x•o!v | q•o?y )
x,bn∧ x,q , n⊲[x]
−−−−−−−−−−−−−−−−→ [y] ( n?q | x•o!v | q•o?y )

The obtained service can further perform the following transition:

[y] ( n?q | x•o!v | q•o?y )
x=q , q•o∅1v
−−−−−−−−−−−−→ n?q

Condition x = q of this transition contradicts conditionx , q of the previous one, but the
service can however evolve. Instead, by using constrained services, we would have:

true ⊢ [x, y] ( n?q | n?x | x•o!v | q•o?y ) ≻
x,bn∧ x,q , n⊲[x]
−−−−−−−−−−−−−−−→

x , bn ∧ x , q ⊢ [y] ( n?q | x•o!v | q• o?y ) ≻
x=q∧ x,bn∧ x,q ,q •o∅1v
−−−−−−−−−−−−−−−−−−−−−→ false⊢ n?q

becausex = q∧ x , q holdsfalse, and the second transition could not be performed. That’s
why we use constrained services.

Evaluation function, condition x < uv and assumption on bound variables
Consider the services , [y, z] ( n!(5 + x) | n?y.s′ | m?z. m′!z′ ), wheren , m , m′. If
[[5 + x]] = ((r , bn ∧ r < uv ∧ r = 5+ x), r) then

n!(5 + x)
(r,bn∧ r<uv∧ r=5+x) , n⊳ r
−−−−−−−−−−−−−−−−−−−−−−−→ 0

Therefore, the constrained servicex , bn ∧ x′ , bn ∧ z′ , bn ⊢ scan evolve as follows:

x , bn ∧ x′ , bn ∧ z′ , bn ⊢ s≻
Φ′ ,n ∅ 1 r
−−−−−−−−→ Φ′ ⊢ [z] (s′ · {y 7→ r} | m?z. m′!z′ )

︸                               ︷︷                               ︸

s′′

for Φ′ = B((x , bn ∧ x′ , bn ∧ z′ , bn ∧ r , bn ∧ r < uv ∧ r = 5+ x), s′′, {x, x′, z′}) =
(x , bn ∧ x′ , bn ∧ z′ , bn ∧ r , bn ∧ r < {x, x′, z′} ∧ r = 5+ x). Now, we cannot
alpha-convert variablez into r, because we would violate the assumption that bound vari-
ables differ from variables corresponding to unknown values (in this case, variablez must
be different fromr becauser is an unknown value occurring in the constrained service).
Similarly, if [[5 + x]] = ((z , bn ∧ z < uv ∧ z = 5 + x), z), then the constrained service
could become

Φ′′ ⊢ [z] (s′ · {y 7→ z} | m?z. m′!z′ )

for someΦ′′, but the assumption would be violated again (because the service contains
bothzandz). Finally, if [[5 + x]] = ((z′ , bn ∧ z′ < uv ∧ z′ = 5+ x), z′), i.e. the unknown
value returned by the evaluation function is not fresh, thenthe condition on the symbolic
transition holdsfalse, becausez′ < {x, x′, z′} does not hold.
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5 Extensions of the symbolic operational semantics

In this section, we present two extensions of COWS symbolic semantics for dealing with
open terms and polyadic communication.

5.1 Symbolic semantics for open terms

The symbolic operational semantics presented in Section4 is defined only for closed terms.
Indeed, for a reduction semantics it is reasonable that well-formed services may not contain
free variables and labels. However, in order to be able to inspect also the behaviour of a
part of a service, we need to define the semantics also for openterms.

For example, let us consider the following open term:

n?x | n!x

The term can only perform the receive activityn?x (by communicating with the environ-
ment), because activityn!x is stuck until variablex is not replaced by a value. However,
since the scope of the variable is not declared in the term, the environment can substitute
the variable with an unknown value in any moment. The resulting term is as follows:

n?x | n!x

Now, the term can perform also the activityn!x (by communicating with the environment)
and the internal communication (activitiesn?x andn!x synchronize).

Formally, the symbolic operational semantics for open terms is defined by the rules in
Table6 and the new rules in Table8, where the transition labelx represents execution of a
substitution by the environment. We denote by fv(t) the set of variables int, and we exploit
a predicate noKill(), a slightly modified variant of that defined in Section3, whose most
significant case is noKill(kill (k)) = false (this way, the predicate holds true if there are not
free kill activities that can be immediately performed). Notably, rules(constServ), (constServexp)

and(constServinv) differ from that shown in Table7 for the addition of the predicate noKill(s)
to their premises. The presence of this predicate in the rules of Table8 guarantees the eager
execution of unbounded kill activities. Indeed, for instance, the open term (kill (k) | n?v)
can only evolve as follows (rule(constServkill )):

true ⊢ (kill (k) | n?v) ≻
true, k
−−−−−→ true ⊢ 0

We explain how the remaining rules work by means of some examples. By applying
rule (constServrec), the term (n?x | n!x) can communicate with the environment (by receiving
an unknown value) and evolve as follows:

true ⊢ (n?x | n!x) ≻
x,bn , n⊲ x
−−−−−−−−−→ x , bn ⊢ n!x

Notably, variablex is replaced by an unknown value, thus now the invoke activitycan be
performed. By applying rule(constServsub), the same term becomes closed:

true ⊢ (n?x | n!x) ≻
x,bn , x
−−−−−−−→ x , bn ⊢ (n?x | n!x)
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s
Φ′ , α
−−−−−→ s′ α = n ⊲ v , n ⊲ [x ] , n ∅ ℓ v

Φ′′ = B(Φ ∧ Φ′, s′, uvar(Φ)) noKill( s)
(constServ)

Φ,∆ ⊢ s≻
Φ′′ , α
−−−−−→ Φ′′,∆ ⊢ s′

s
Φ′ , n⊳ [n]
−−−−−−−−−−→ s′ n<∆

Φ′′ = B(Φ ∧ Φ′, s′, uvar(Φ)) noKill( s)
(constServexp)

Φ,∆ ⊢ s≻
Φ′′ , n⊳ [n]
−−−−−−−−−→ Φ′′,∆ ∪ {n} ⊢ s′

s
Φ′ , n⊳ v
−−−−−−−−→ s′ n<∆

Φ′′ = B(Φ ∧ Φ′, s′, uvar(Φ)) noKill( s)
(constServinv)

Φ,∆ ⊢ s≻
Φ′′ , n⊳ v
−−−−−−−→ Φ′′,∆ ⊢ s′

s
Φ′ , α
−−−−−→ s′ α = k , † Φ′′ = B(Φ ∧ Φ′, s′, uvar(Φ))

(constServkill )
Φ,∆ ⊢ s≻

Φ′′ , α
−−−−−→ Φ′′,∆ ⊢ s′

x ∈ fv(s) Φ′ = B((Φ ∧ x , bn), s, uvar(Φ))
(constServsub)

Φ,∆ ⊢ s≻
Φ′ , x
−−−−→ Φ′,∆ ⊢ s·{x 7→ x}

s
Φ′ ,n⊲ x
−−−−−−−−→ s′ noKill( s)

Φ′′ = B((Φ ∧Φ′ ∧ x , bn ∧ x , confRec(s, n)), s′,uvar(Φ))
(constServrec)

Φ,∆ ⊢ s≻
Φ′′ ,n⊲ x
−−−−−−−−→ Φ′′,∆ ⊢ s′ ·{x 7→ x}

s
Φ′ ,n {x 7→v}1v
−−−−−−−−−−−−−→ s′ Φ′′ = B((Φ ∧Φ′), s′,uvar(Φ)) noKill( s)

(constServcom)

Φ,∆ ⊢ s≻
Φ′′ ,n {x 7→v}1v
−−−−−−−−−−−−→ Φ′′,∆ ⊢ s′ ·{x 7→ v}

Table 8
Symbolic semantics for COWS open terms

Now, both receive and invoke activities can communicate with the environment and also
internal communication can take place. Finally, if we slightly modify the term as (n?x |
n!v | s), by applying rule(constServcom), we obtain the following transition:

true ⊢ (n?x | n!v | s) ≻
true,n {x 7→v} 1v
−−−−−−−−−−−−−→ true ⊢ s·{x 7→ v}

Also in this case the substitution forx is applied to the whole term.

5.2 Symbolic semantics forCOWSwith polyadic communication

We now tailor COWS syntax and symbolic semantics to deal withpolyadic communication.
We first extend the syntax of invoke and receive activities asfollows: u • u′!ē stands for an
invoke over the endpointu • u′ with parameter the tuple of expressions ¯e, while p • o?w.s
stands for a receive over the endpointp• o with parameter the tuple of variables/(unknown)
valuesw and continuations. Tuples can be constructed using a concatenation operator
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n?w.s
true,n⊲w
−−−−−−−−−→ s (s-rec)

v( w ) = x̄ |x̄ | > 1
(s-reccom)

n?w.s
x,bn ,n⊲ [ x̄ ] w
−−−−−−−−−−−−−→ s

s
Φ ,n⊲ [ x̄ ] w
−−−−−−−−−−−→ s′ y ∈ x̄

(s-delsub1)
[y] s

Φ ,n⊲ [ x̄ ] w
−−−−−−−−−−−→ s′ · {y 7→ y}

[[e1]] = (Φ1, v1 ) . . . [[en]] = (Φn, vn )
(s-inv)

n!〈e1, . . . , en〉
Φ1 ∧ ...∧Φn ,n⊳ 〈v1,...,vn〉
−−−−−−−−−−−−−−−−−−−−−−→ 0

s
Φ ,n⊳ v
−−−−−−−→ s′ n ∈ v n<n

(s-open1)
[n] s

Φ ,n⊳ [n] v
−−−−−−−−−−→ s′

s
Φ ,n⊳ [m̄] v
−−−−−−−−−−→ s′ n ∈ v n<n

(s-open2)
[n] s

Φ ,n⊳ [〈n〉:m̄] v
−−−−−−−−−−−−−→ s′

s1
Φ1 ,n⊲w
−−−−−−−−−→ s′1 s2

Φ2 ,n
′⊳ v

−−−−−−−−−→ s′2 M( w, v ) = (Φ, σ) noConf(s1 | s2, n, v, |σ | ) = Φ
′

(s-com)

s1 | s2
Φ1 ∧Φ2 ∧ n=n

′ ∧Φ∧Φ′ ,nσ |σ | v
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s

′
2

s
Φ ,nσ⊎{x7→v} ℓ v
−−−−−−−−−−−−−−→ s′

(s-delsub2)
[x] s

Φ ,nσℓ v
−−−−−−−−−→ s′ · {x 7→ v}

s1
Φ , α
−−−−−→ s′1 α , k , n ⊲ [ x̄ ] w , nσ ℓ v

(s-parpass)
s1 | s2

Φ , α
−−−−−→ s′1 | s2

s1
Φ ,nσℓ v
−−−−−−−−−→ s′1 noConf(s2, n, v, ℓ) = Φ′

(s-parcon f1)

s1 | s2
Φ∧Φ′ ,nσℓ v
−−−−−−−−−−−−→ s′1 | s2

s1
Φ ,n⊲ [ x̄ ] w
−−−−−−−−−−−→ s′1 noConf(s2, n,w · {x̄ 7→ x}, |x̄ | ) = Φ′

(s-parcon f2)

s1 | s2
Φ∧Φ′ ,n⊲ [ x̄ ] w
−−−−−−−−−−−−−−→ s′1 | s2

Table 9
Operational semantics of COWS with polyadic communication(excerpt of rules)

defined as〈a1, . . . , an〉 : 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉. To single out an element
of a tuple, we will write (ā, c, b̄) to denote the tuple〈a1, . . . , an, c, b1, . . . , bm〉, whereā or
b̄ might not be present. We will use ¯ai to denote the i-th element of the tuple ¯a and, when
convenient, we shall regard a tuple simply as a set writing e.g. a ∈ b̄ to mean thata is an
element of̄b. Finally, we denote by v(t) the set of variables int.

The labelled transition relation
Φ , α
−−−−−→ over services now is induced by the modified

rules shown in Table9 (the remaining ones are those of Table6, except for rule(s-match)

which we do not need anymore), where:

• conditions can also have the formΦ ∨ Φ′; we will use x , bn to denote condition
x1 , bn ∧ . . . ∧ xn , bn for x = 〈x1, . . . , xn〉;

• action labels are generated by the following grammar:

α ::= n ⊳ v | n ⊳ [n̄] v | n ⊲ w | n ⊲ [ x̄] w | nσ ℓ v | k | †

All the above definitions shall extend to relation≻
Φ , α
−−−−→.

The new rules exploit a modified version of functionsM( , ) and noConf( , , , )
defined in Tables3 and4, now redefined by the rules in Table10. The rules in the upper
part of the table state that variables match any value, and two valuesv andv′ do match only
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M(x, v) = (true, {x 7→ v}) M(v, v′) = (v = v′, ∅) M(〈〉, 〈〉) = (true, ∅)

M(a1, b1) = (Φ1, σ1) M(ā2, b̄2) = (Φ2, σ2)

M((a1, ā2), (b1, b̄2)) = (Φ1 ∧ Φ2, σ1 ⊎ σ2)

noConf(s, n, v, ℓ) =
∧

w∈ rec(s,n,v,ℓ)(
∨

(x ,i)∈gval( w ) x , v i ∧ ( gval( w ) = ∅ ⇒ false) )

rec(n?w.s, n, v, ℓ) =






{w } if M( w, v ) = (Φ, σ) ∧ |σ| < ℓ

∅ otherwise

rec(0, n, v, ℓ) = rec(kill (k), n, v, ℓ) = rec(u!ē,n, v, ℓ) = ∅ rec(n′?w.s,n, v, ℓ) = ∅ if n , n′

rec([d] s, n, v, ℓ) = rec(s, n, v, ℓ) if d < n rec([d] s, n, v, ℓ) = ∅ if d ∈ n

rec(g+ g′, n, v, ℓ) = rec(g, n, v, ℓ) ∪ rec(g′,n, v, ℓ) rec({|s|}, n, v, ℓ) = rec(s, n, v, ℓ)

rec(s | s′,n, v, ℓ) = rec(s, n, v, ℓ) ∪ rec(s′, n, v, ℓ) rec(∗ s, n, v, ℓ) = rec(s, n, v, ℓ)

Table 10
Modified matching and conflicting receives rules

if condition v = v′ holds. When tuplesw andv do match,M( w, v ) returns a pair (Φ, σ),
whereΦ is the condition so that the matching holds, andσ is a substitution for the vari-
ables inw; otherwise, it is undefined. Function noConf(s, n, v, ℓ) now returns a condition
that guarantees absence of conflicts for the inferred transition. Basically, noConf(s, n, v, ℓ)
exploits functionrec(s, n, v, ℓ) to identify the conflicting receives ofs, then for each argu-
mentsw of these receives it determines a condition (i.e. a logical disjunction of inequalities)
that makes the conflicting matching betweenw andv false. Finally, it returns the logical
conjunction of the determined conditions. We use the auxiliary functiongval( ) that, given
a tuplew, returns a collection of pairs of the form (x, i), wherex is an unknown value such
thatw i = x. Notably, if rec(s, n, v, ℓ) = ∅ then function noConf(s, n, v, ℓ) returns the con-
dition true, because there are not conflicting receives; while, if thereis aw ∈ rec(s, n, v, ℓ)
such thatgval( w ) = ∅, then the function returns the conditionfalse, because there are not
conditions that can make the conflicting matching false.

We end this section with an example aimed at clarifying how pattern-matching and
conflict checking functions work. Consider the following term:

n!〈v1, v2, v3〉 | [x, y, z] n?〈x, y, z〉 | [x
′] n?〈x′, y′, z′〉 | [x′′, y′′] n?〈x′′, y′′, z′′〉

In this case, the invoke activityn!〈v1, v2, v3〉 can synchronize with each receive activity of
the term. Firstly, consider the receiven?〈x, y, z〉: its argument〈x, y, z〉 matches the tuple
〈v1, v2, v3〉 by generating the substitution{x 7→ v1, y 7→ v2, z 7→ v3}. The other two receive
activities are in conflict, because they satisfy the matching with the invoke and generate
substitutions with fewer pairs than 3. Thus, functionrec( , , , ) applied to the whole
term4 returns the set{〈x′, y′, z′〉, 〈x′′, y′′, z′′〉}. Then, function noConf(, , , ) returns the

4 This means that the last rule applied in the inference is(s-com). Of course, the last rule could be also(s-parcon f 1); in this
case, two or three conflict checks will be performed on subterms of the considered service.
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condition (y′ , v2 ∨ z′ , v3) ∧ z′′ , v3. Hence, a transition of the term is

n!〈v1, v2, v3〉 | [x, y, z] n?〈x, y, z〉 | [x′] n?〈x′, y′, z′〉 | [x′′, y′′] n?〈x′′, y′′, z′′〉
(y′,v2 ∨ z′,v3)∧ z′′,v3 , n ∅3〈v1,v2,v3〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [x′] n?〈x′, y′, z′〉 | [x′′, y′′] n?〈x′′, y′′, z′′〉

Consider now the receiven?〈x′′, y′′, z′′〉: in this case the matching function returns condi-
tion z′′ = v3 and substitution{x′′ 7→ v1, y′′ 7→ v2}. Functionrec( , , , ) applied to the
whole term returns the set{〈x′, y′, z′〉}, because the only conflicting receive isn?〈x′, y′, z′〉.
Thus, the corresponding transition is

n!〈v1, v2, v3〉 | [x, y, z] n?〈x, y, z〉 | [x′] n?〈x′, y′, z′〉 | [x′′, y′′] n?〈x′′, y′′, z′′〉
(y′,v2 ∨ z′,v3)∧ z′′=v3 , n ∅2〈v1,v2,v3〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [x, y, z] n?〈x, y, z〉 | [x′] n?〈x′, v2, z′〉

Moreover, the receive activities can communicate with the environment; in this case the
conflict checks are performed by rule(s-parcon f 2). For example, the transition corresponding
to the execution ofn?〈x, y, z〉 is

n!〈v1, v2, v3〉 | [x, y, z] n?〈x, y, z〉 | [x′] n?〈x′, y′, z′〉 | [x′′, y′′] n?〈x′′, y′′, z′′〉
x,bn∧ y,bn∧ z,bn∧ (y′,y∨ z′,z)∧ z′′,z, n⊲ [〈x,y,z〉] 〈x,y,z〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

n!〈v1, v2, v3〉 | [x′] n?〈x′, y′, z′〉 | [x′′, y′′] n?〈x′′, y′′, z′′〉

Finally, as another example consider the following term:

n!〈v1, v2, v3〉 | [x, y, z] n?〈x, y, z〉 | [x
′] n?〈x′, v2, v3〉

If we try to infer the transition corresponding to the communication with n?〈x, y, z〉, we
have that the condition on the transition label isfalse, because functionrec( , , , ) returns
〈x′, v2, v3〉 andgval(〈x′, v2, v3〉) = ∅.

6 Related work and concluding remarks

Symbolic semantics and symbolic bisimulation were first introduced in [13] by Hennessy
and Lin on value-passing process algebras. The symbolic approach has been then applied to
π-calculus in [24] by Sangiorgi and in [4] by Boreale and De Nicola. Victor has adopted a
similar approach in [25] to efficiently characterise hyperequivalence for the fusion calculus.
A more recent work on a symbolic semantics for a fusion-basedcalculus is [6] by Buscemi
and Montanari. A revisited symbolic technique forπ-calculus has been recently proposed
in [2] by Bonchi and Montanari.

COWS is a process calculus introduced in [16] for specifying and combining service-
oriented applications, while modelling their dynamic behaviour. Since its definition, a
number of methods and tools have been devised to analyse COWSspecifications, such as a
type system to check confidentiality properties [17], a logic and a model checker to express
and check functional properties of services [11], a stochastic extension to enable quanti-
tative reasoning on service behaviours [22], a static analysis to establish properties of the
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flow of information between services [1], and bisimulation-based observational semantics
to check interchangeability of services and conformance against service specifications [23].
An overview of some of the above tools, with an application tothe analysis of a case study,
can be found in [18].

We believe that the alternative symbolic operational semantics defined in this paper can
pave the way for the development of efficient model and equivalence checkers for COWS.
In fact, the model checking approach of [11] does not support a fully compositional veri-
fication methodology. It allows to analyse systems of services ‘as a whole’, but does not
enable analysis of services in isolation (e.g. a provider service without a proper client). The
symbolic operational semantics should permit to overcome this limitation that is somewhat
related to the original semantics of COWS which, although based on an LTS, follows a re-
duction style. Furthermore, the symbolic operational semantics can be used to improve ef-
ficiency of checking the equivalences introduced in [23]. This, of course, requires defining
alternative characterizations of the equivalences on top of the symbolic transition system.
We plan to pursue these lines of research in the near future, and in particular to implement
the operational semantics and equivalence and model checkers on top of it.
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