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Abstract

We introduce a symbolic characterisation of the operatiseanantics of COWS, a formal language for specifying and
combining service-oriented applications, while modefliheir dynamic behaviour. This alternative semanticsas/oifinite
representations of COWS terms due to the value-passingenafilcommunication in COWS and is more amenable for
automatic manipulation by analytical tools, such as e.givatence and model checkers. We illustrate our approaciugfn

a ‘translation service’ scenario.
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1 Introduction

In recent years, the increasing success of e-businesarrerlg, e-government, and other
similar emerging models, has led the World Wide Web, iditigiought of as a system for
human use, to evolve towards an architecturestawice-oriented computingBOC) sup-
porting automated use. SOC advocates the use of looselyecbigervices’, to be under-
stood as autonomous, platform-independent, computatesridies that can be described,
published, discovered, and assembled, as the basic blockwifding interoperable and
evolvable systems and applications. While early examdiéschnologies that are at least
partly service-oriented date back to CORBA, DCOM, J2EE & WebSphere, the most
successful instantiation of the SOC paradigm are probdigynmore receniveb services
These are sets of operations that can be published, locateiheoked through the Web
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via XML messages complying with given standard formats. Ufgpert the web service ap-
proach, several new languages and technologies have baignetkand many international
companies have invested a lot dfaats.

Current software engineering technologies for SOC, howeemain at the descriptive
level and lack rigorous formal foundations. We are still@x@ncing a gap between prac-
tice (programming) and theory (formal methods and analggibniques) in the design of
SOC applications. The challenges come from the necessitigalfng at once with such
issues as asynchronous interactions, concurrent agsiyitiorkflow coordination, business
transactions, failures, resource usage, and securityseéttiag where demands and guaran-
tees can be very fierent for the many dierent components. Many researchers have hence
put forward the idea of usingrocess calculia cornerstone of current foundational research
on specification and analysis of concurrent, distributedi raobile systems through math-
ematical — mainly algebraic and logical — tools. Indeed, thuéheir algebraic nature,
process calculi convey in a distilled form the compositigmagramming style of SOC.
Thus, many process calculi have been designed (8,d,15,12,9,14,3,5,26]), addressing
one aspect or another of SOC and aiming at assessing thesagazfudiverse sets of prim-
itives w.r.t. modelling, combining and analysing serva&ented applications.

By taking inspiration from well-known process calculi amdrh the standard language
for orchestration of web services WS-BPERL]], in [16] we have designed COWEAal-
culus for Orchestration of Web Servigea process calculus for specifying and combining
service-oriented applications, while modelling their dgnic behaviour. We have shown
that COWS can model and handle distinctive features of (vebyices, such as, e.g.,
correlation-based communication, compensation a&sjitservice instances and interac-
tions among them, race conditions among service instamukseavice definitions.

A major benefit of using process calculi is that they enjoych repertoire of elegant
meta-theories, proof techniques and analytical toolsaaatbe likely tailored to the needs
of SOC. Concerning this, irLfl] we have developed a logic and a model checker to express
and check functional properties of services specified in @While in 23] we have stud-
ied observational semantic theories for COWS. Howevet $oals sdfer from a lack of
compositionality andféiciency. Indeed, generally speaking, model and equivaleheek-
ers, and other similar verification tools, do not work dilecin syntactic specifications but
rather on abstract representations of the behaviour olepeas. Thus, for value-passing
languages, such as COWS, using an inappropriate représantan lead to unfeasible
verifications. Indeed, according to the COWS'’s originalragienal semantics, if the com-
municable values range over an infinite value set (e.g. alatwmbers and strings), the
behaviour of a service that performs a receive activity igleled by an infinite abstract
representation. Such representation is a Labelled Tram$tystem whose initial state has
infinite outgoing edges, each labelled with an input labeiritaa diferent value as argu-
ment and leading to aflierent state.

Hence, by taking inspiration from Hennessy and L[ in this paper we definesym-
bolic operational semantics for COWS.flrently from the symbolic semantics for more
standard calculi, such as value-passing CC&calculus, ours deals at once with, besides
receive transitions, a number of complex features, such.gs,generation and exportation
of fresh names, pattern-matching, expressions evalyatimhpriorities among conflicting
receives. The new semantics avoids infinite representatddrCOWS terms due to the
value-passing nature of communication in COWS and assscafinite representation to
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each finite COWS term. It is then more amenable for automadicipulation by analytical
tools, such as e.g. equivalence and model checkers. Our negjdt is a theorem of ‘op-
erational correspondence’. We prove that, under apprepcanditions, any transition of
the original semantics can be generated using the symbwdicamd vice versa. In general,
however, additional transitions can be derived using tel®jic semantics since it also
accounts for services ability to interact with the enviramn

The rest of the paper is organised as follows. Secipnovides some motivations for
the symbolic semantics of COWS,; this is done by means of ahidh-English translation
service’ scenario that is used also to informally describe $tep-by-step fashion the main
features of COWS. SectioB presents the original syntax and operational semantics of
COWS. Sectiontt introduces the symbolic variant of the operational sensarasf COWS
and our major results, together with some clarifying exaspEectiorb shows two exten-
sions of the symbolic semantics. Finally, Secttouches upon comparisons with related
work and directions for future work.

2 A ‘translation service’ scenario

In this section, we present COWS main features and syntastepaby-step fashion while
modelling an Italian-English translation service. By mean this scenario, we discuss
some verification problems and present the major intuitiomderlying the symbolic op-
erational semantics for COWS. For the time being, we us®aadicvariant of COWS,
i.e. we assume that invoke and receive activities can cameysingle parameter at a time.
In fact, for the sake of presentation, the symbolic semaiigiéntroduced for the monadic
variant in Sectior, and is then extended to polyadic communication in Sedi@én

Let us consider a service that provides to its customersadiaritEnglish translation
service. Specifically, when the service is invoked by a custpthat communicates first her
partner name and then an Italian word, it replies to the retquith either the corresponding
English word or the stringiinknown wortdl A high-level specification of the service can
be rendered in COWS as follows:

[X] t-reg?x.[y] t-word?y. x- resdtrans(y) @

wheret is the translation service partner namesg, word andrespare operation names,
andy are variables that store the customer partner name andtia Nvord to be translated
respectively, anttans(_) is a total function that maps a large subset of Italian woodbe
corresponding English ones and returns the strimgkhown word for all words that do
not appear in the Italian words set. The service simply parfca sequence of tweceive
activitiest . reg?x andt - word?y, corresponding to reception of a request and of an Italian
word sent by a customer, and replies with the translated wayrdnvoking the operation
respof the customer by means of thevokeactivity x. resgtrans(y). Receives and invokes
are the basic communication activities provided by COWSidBss input parameters and
sent values, they indicate the endpoint, i.e. a paio made of a parther namgand an
operation name, through which the communication should occurff®iently from most
process calculi, receive activities in COWS bind neithemes nor variables. The only
binding construct iglelimitation [d] s binds the delimited elementin the scopes (the
notions of bound and free occurrences of a delimited elermrendefined accordingly). For
example, the service (1) uses the delimitation operatoetdade the scope of variables
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andy. An inter-service communication takes place when the aegimof a receive and
of a concurrent invoke along the same endpoint do match, anses replacement of the
variables arguments of the receive with the correspondatges arguments of the invoke
(within the scope of variables declarations). For examaeablex will be initialised by
the first receive activity with data provided by a customer.

At a lower level, the service could be described in terms dalentities composed by
using theparallel compositioroperator- | _ that allows them to be concurrently executed
and to interact with each other. A low-level COWS specifmatbf the translation service
can be

[reqDB1 reqDB2 respDB1respDB2( Translator | DB1 | DB2) 2

The delimitation operator is used here to declare tegDB1, reqDB2 respDBland
respDB2are private operation names known to the three compofeatslator, DB1 and
DB2, and only to them (at least initially, since during a comfiataprivate names can be
exported exactly as im-calculus). The three subservices are defined as follows:

Translator = [X]t-req?x.[y] t-word?y.
[K] (t-reqDB1y | [X1] t-respDBIxy . (kill (K) | {x-resgxi})
| te-reqDB2y | [Xo] t-respDB2Xx, . (Kill (K) | {x-resdxo}))

DBl £ t.reqgDB1?"a".t-respDB1“to”
+t.-reqgDB1?“alberd’. t- respDB1"tree’
+ ... + t-reqDB1?“zuccd. t- respDB1" pumpkiri
DB2 = [Z(t-reqgDB2?z t.-respDB2*unknown word

+ t-regDB2?"a”. t-respDB2“t0”
+ t-reqDB2?"abaté . t-respDB2" abbot’
+ ... + tereqDB2?“zuppd. t- respDB2" soaked)

ServiceTranslatoris publicly invocable and can interact with customers othan with

the ‘internal’ servicedB1 andDB2 These latter two services, instead, can only be in-
voked byTranslator (indeed, all the operations used by them are restrictedhawed the
task of looking up in databases the English word correspgntli a given Italian one and
replying accordingly. In particulapB1 performs a quick search in a small database of
commonly used words, whilBB2 performs a slower search in a bigger database (that ex-
actly corresponds to that modelled by the functiems(_)). After the two initial receives,
for e.g. performance or fault tolerance purpoSeanslatorinvokes service®BlandDB2
concurrently. When one of them replieganslatorimmediately stops the other search.
This is done by executing tHell activity kill (k), that forces termination of all unprotected
parallel terms inside the enclosink] [ that stops the killing fiect. Then,Translatorfor-
wards the response to the customer and terminates. Kilitiesi are executed eagerly with
respect to the other parallel activities but critical code be protected from thdfect of

a forced termination by using therotectionoperator{_}}; this is indeed the case of the re-
sponsex. res@d x; in our example. ServiceddB1 andDB2 use thechoiceoperator_ + _ to
offer alternative behaviours: one of them can be selected lputrg an invoke matching
the receive leading the behaviour. In case the word to bslatad is unknownpDB1 does
not reply, whileDB2 returns the stringtinknown wordl Indeed, the semantics of parallel
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Fig. 1. LTS and symbolic LTS for the translation service [higvel specification)

composition avoids thaDB2 returns ‘Unknown wortl in case of known words. This is
done by assigning the receivereqDB2?z less priority than the other receive activities, so
that it is only executed when none of the other receives reattfre word to be translated
(see SectioR for further details about the prioritised semantics of COQWS

Equivalence and model checkers, and other similar veridicabols, do not work di-
rectly on syntactic specifications such as those aboveabugron more abstract represen-
tations of the behaviour of processes. Thus, using an iogpipte representation can lead
to unfeasible verifications. In the rest of the section, veeass verification problems and
how to cope with them by exploiting a symbolic approach.

Verification problems.When the considered specification language is a valuefgapso-
cess algebra and the value-space is infinite, using stargdrelled Transition Systems
(LTSs) for the semantics can lead to infinite representatiéior example, the operational
behaviour of service (1) can be represented by the infinit8 itTthe left-hand side of
Figure 1, where nodes denote states and edges denote transitiovsehestates implic-
itly oriented from top to bottom. Notably, for the sake of ggatation, the LTSs shown in
the figures rely on an operational semanticganmly style, where substitutions are applied
when receive actions are inferred. However, the problemfofite representations remains
also in case ofate semantics, due to the fact that the continuation of a reatien with
argument a variablg has to be considered under all possible substitutions.for

The symbolic approach.To tackle the problems above, it Hennessy and Lin have
introduced the so-callesymbolic LTS&nd used them to define finite semantical represen-
tations of terms of the value-passing CCS. For example yimbslic LTSs corresponding
to the COWS service (1) is shown in the right-hand side of feidu The symbolic actions
t-req?x andt. word?y denote reception of unknown valuggndy along endpoints- req
andt-word, respectively; the condition-guarded symbolic act@n:(trans(y), X-resfdz)
denotes sending of an unknown valmeuch thatz = trans(y). Of course, for the same
reasons, also the LTS representing the behaviour of sef®)cs infinite, while the cor-
responding symbolic LTS is finite. Indeed, if for the sake mdgentation we assume that
databas®B1 contains only the association for word™and databas®B2 contains only
the associations ford” and “abaté€, the symbolic LTS representing (2) is that shown in
Figure2.

Applying the symbolic approach t€OWS. The main contribution of this work is the
5
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y#"'a" A y#'abate” | T
y="abate”,T ~ -

x-respl"abbot”

x-resp!"unknown word"

x-Tesp!'to” x-Tesp!'to” xresplto” xrespl'to”

Fig. 2. Symbolic LTS for the (simplified) translation servilow-level specification)

development of a symbolic operational semantics for COVé&ichieve this goal, the main
issue is to give receive activities a proper semantics, Usecgariables in their arguments
are placeholders for something to be received. For exangilels consider the service

p-o?x.s. If p-o?x.s ﬂ s then the behaviour of the continuation servicmust be
considered under all substitutions of the famn— v} (i.e. the semantics afcan intuitively
be thought of as a functiotx. sfrom values to services). In case of the standard semantics
for n-calculus RQ], for example, this problem is not tackled at the operatiGemantics

level, but it is postponed to the observational semantied.lén fact, in the definition of late
bisimulation forz-calculus, wheneveP is bisimilar toQ, if P & P’ then there i)

such thatQ & Q andP’{u/x} is bisimilar toQ’{u/x} for everyu. Thus, continuations
P” andQ’ are considered under all substitutions %orinstead, here we aim at defining an
operational semantics for COWS that properly handles itpausitions, and allow finite
state LTSs to be associated to finite COWS terms.

The basic idea is to allow receive activities to evolve byfganing a communication
with the ‘external world’ (i.e. a COWS context), this way yh#o not need to synchronise
with invoke activities within the considered term. To avaidinite branching (as in the
case of early operational semantics), we replace variatitesunknown valuesather than
with specific values. We denote Iythe unknown value for the variable This way, the
term [X] ( p-0?x. g+ 0’'!x) can evolve as follows:

[X] (p-0?x.g-0'!X) _Iﬂ_} q.o’!)_(q—'—> 0

o'l

Also receive activities having a value as argument (@.go?v) and invoke activities (e.g.
p- 0'v) can evolve by communicating with the external world. Of is&) these kinds of
communication do not produce substitutions.

When an external communication takes place, the behavidbe @ontinuation service
depends on thadmittable value$or the unknown value. To take care of the real values that
the unknown values can assume, we defiggmabolic semantider COWS, where the label
on each transition has two components: ¢beaditionthat must hold for the transition to
be enabled and, as usual, teionof the transition. Moreover, to store the conditions that
must hold to reach a state and the names exported along thenmatiefine the semantics
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over configurations of the forr, A + s, calledconstrained servicesvhere the condition
® and the set of names are used to determine the actions tlatan perform. Thus,

the symbolic transitions are of the forf A + s >ﬂ> o', A + s, meaning “if the
condition®’ (such thatb is a subterm ofd’) holds thens; can perform the action leading
to s, by extending the set of exported private nameés the setA””.

The symbolic LTS associated to a COWS term conveys in alditibrm all the se-
mantics information on the behaviour of terms. More spedlific besides receive tran-
sitions, symbolic representations take into account geioer and exportation of fresh
names, pattern-matching, expressions evaluation, aodtj@s among conflicting receives.
Dealing at once with all the above features at operationabsgics level makes the devel-
opment of a symbolic semantics for COWS more complex thamfmre standard calculi,
such as value-passing CCSmcalculus.

3 COWS and its standard operational semantics

COWS (Calculus for Orchestration of Web Servicesq]) is a recently designed pro-
cess calculus for specifying, combining and analyzingiserariented applications, while
modelling their dynamic behaviour. COWS combines in aninalgway a number of in-
gredients borrowed from well-known process calculi, e synahronous communication,
polyadic synchronization, pattern matching, protectibelimited receiving and killing ac-
tivities, while resulting diferent from any of them. In this section, we present the standa
syntax and operational semantics of COWS. We refer theastied reader tdp] for many
examples illustrating COWS peculiarities and expressigsnand for comparisons with
other process-based and orchestration formalisms.

The syntax of COWS is presented in Talbldt is parameterized by three countable and
pairwise disjoint sets: the set (iller) labels (ranged over bk, k’,...), the set ofvalues
(ranged over by, V, ...) and the set of ‘write once/ariables(ranged over by, y, ...).
The set of values is left unspecified; however, we assumattimeiudes the set afiames
ranged over by, m, o, p, ..., mainly used to represent partners and operationslafie
guage is also parameterized by a satxgiressionsranged over by, whose exact syntax is
deliberately omitted. We just assume that expressionsograt least, values and variables,
but do not include killer labels (that, hence, amn-communicablealues). Partner names
and operation names can be combined to desigratanunication endpointsvritten p- o,
and can be communicated, but dynamically received namesrdsirbe used for service
invocation (as in the £ [19]). Indeed, communication endpoints of receive activites
identified statically because their syntax only allows gsiames and not variables.

We usew to range over values and variablegp range over names and variables, and
d to range over Kkiller labels, names and variables. Notatigtands for tuples of objects,
e.g. Xis a compact notation for denoting the tuple of variakes. . ., X,) (with n > 0).
We assume that variables in the same tuple are pairwisadtiséill notations shall extend
to tuples component-wise. We adopt the following converstiabout the operators prece-
dence: monadic operators bind more tightly than paralleimasition, and prefixing more
tightly than choice. In the sequel, we shall ust range over communication endpoints
that do not contain variables (e.gn - 0), andu to range over communication endpoints
that may contain variables (e.g: u’). We will omit trailing occurrences dj, writing e.g.

p- 0w instead ofp-0?2w.0, and write fly, ..., dy] sin place of pli] ...[dn] s. We will write
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S = (services) g = (receive-guarded choice)
kill (k) (kill) 0 (nil)
| u-u'le  (invoke) | pe0AW.S (request processing)
| g (receive-guarded choice) | g+g (choice)
| s|s (parallel composition)
| {sh (protection)
| [d] s (delimitation)
| *S (replication)
L 1
Table 1
COWS syntax

| £ sto assign a namkto the terms.

The only binding construct is delimitation: d] s bindsd in the scopes. In fact, to
enable concurrent threads within each service instancleae gpart of) the state, receive
activities in COWS bind neither names nor variables, whéctifterent from most process
calculi. Instead, the range of application of the substitiet generated by a communication
is regulated by the delimitation operator, that additignpermits to generate fresh names
(as the restriction operator of threcalculus) and to delimit the field of action of kill activ-
ities. Thus, the occurrence of a ngvaiablé¢label isfreeif it is not under the scope of a
delimitation for it. We denote by fk) the set of killer labels that occur free inand by
fd(t) that of free name¢sariablegkiller labels int. Two terms aralpha-equivalenif one
can be obtained from the other by consistently renaming hoameg/ariablegabels. As
usual, we identify terms up to alpha-equivalence.

The operational semantics of COWS is defined onlycdlosedservices, i.e. services
without free variablegabels (similarly to many real programming language coerpilwe
consider terms with free variabjégbels as programming errors), but of course the rules
also involve non-closed services (see e.g. the premisegasf(tiel,,) and(deki)).

Formally, the semantics is given in terms of a structuralgcoaence and of a labelled
transition relation. Thetructural congruences identifies syntactically dierent services
that intuitively represent the same service. It is definethadeast congruence relation
induced by a given set of equational laws. We explicitly slmowable2 the laws for repli-
cation, protection and delimitation, while omit the (stard) laws for the other operators
stating that parallel composition is commutative, assdeand ha® as identity element,
and that guarded choice enjoys the same properties andioadtly, is idempotent. All
the presented laws are straightforward. In particular, roomativity of consecutive delimi-
tations implies that the order among then [(d4, ..., dn)] sis irrelevant, thus in the sequel
we may use the simpler notatioty[. .., d,] s. Notably, the last law can be used to extend
the scope of names (like a similar law in thecalculus), thus enabling communication of
restricted names, except when the argunakoitthe delimitation is a free killer label o,
(this avoids involvings; in the dfect of a kill activity insides,).

To define the labelled transition relation, we need a fewleuyifunctions. First, we
exploit a function [] for evaluatingclosedexpressions (i.e. expressions without variables):
it takes a closed expression and returns a value. Howeyecapnot be explicitly defined
because the exact syntax of expressions is deliberatelypecified.

Then, through the rules in Tab& we define the partial functioM(_, _) that permits
performingpattern-matchingon semi-structured data thus determining if a receive and an
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x0 =0 xS = S|*S oy =0
{ish) = (s} {[dls} = [d]{s} [do =0
[di][d2] s = [d2][ch] s slldls = [di(sils) ifdefd(s)ufk(sy)
L 1
Table 2
COWS structural congruence (excerpt of laws)
1 o 1
MWy, vi) =01 M(Wa,V2) = 02
M(X,V) = (X V) M(V,v) =0 M@, () =0

M((W1, Wp), (V1,V2)) = 01 W 02

Table 3
Matching rules

invoke over the same endpoint can synchronize. The rultsstsiat two tuples match if they
have the same number of fields and corresponding fields hatahimg valuegsariables.
Variables match any value, and two values match only if theyidentical. When tuples
w andv do match,M(w, V) returns a substitution for the variablesvin otherwise, it is
undefined.Substitutiongranged over byr) are functions mapping variables to values and
are written as collections of pairs of the fomn— v. Application of substitutiornr to s,
written s - o, has the ffect of replacing every free occurrenceoin s with v, for each

X = V € o, by possibly using alpha conversion for avoidingo be captured by name
delimitations withins. We us€ o-| to denote the number of pairsdnando, W o, to denote
the union ofo; ando, when they have disjoint domains.

We also define a function, namérhlt(_), that takes a service as an argument and
returns the service obtained by only retaining the proteetgtivities insides. halt(_) is
defined inductively on the syntax of services. The most figmit case idhalt({s}) =
{s}. In the other casesalt(_) returns0, except for parallel composition, delimitation and
replication operators, for which it acts as an homomorphism

halt(kill (k) = halt(u'e) = halt(g) = 0 halt({s}) = {s}

halt(s; | s) = halt(s)) | halt(s;) ~ halt([d] 9 = [d] halt(s)  halt(+ ) = * halt(s)

Finally, in Table4, we inductively define two predicates: noKdl() holds true if either
dis not a killer label od = k ands cannot immediately perform a free kill activikgll (k);
noConf(, n, Vv, ), with ¢ natural number, holds true §does not produce communication
conflicts, i.e. s cannot immediately perform a receive activity over the emapn which
matches/ and generates a substitution with fewer pairs than

The labelled transition relation— is the least relation over services induced by the
rules in Tables, where labelr is generated by the following grammar:

a = n<av | n>w | noftv | k | T

In the sequel, we use nuk) to denote the set of names, variables and killer labelsraogu
in a, except fora = no ¢V for which we let nvkfio £ V) = nvk(o), where nvk(x > v}) =
{x} U fd(v) and nvk¢r1 W 02) = nvk(o1) U nvK(o2).
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noKill(s,d) = true if fk(d) =0 noKill(s| s',k) = noKill(s k) A noKill(s', k)
noKill(kill (k), k) = false noKill([d] s, k) = noKill(s k) if d#k
noKill(kill (K'),k) = true ifk#Kk noKill([k] s, k) = true

noKill(u'e, k) = noKill(g,k) = true noKill({s}, k) = noKill(x s, k) = noKill(s, k)

noConfill (k),n,v,¢) = noConffi'e n,v,¢) = noConfQ,n,v,{) = true

noConfraisnv.0) = { filge fonag MWDt

noConf@+ ¢’,n,V,£) = noConf@,n,Vv,¢) A noConf@,n,V, ()
noConf@| s',n,Vv,f) = noConf,n,V,¢) A noConfE,n,V, )

noConf(d] s,n,v,¢) = {{}ﬂ%"”f@ nv.0) 'gt &vise

noConf(s},n,v,¢) = noConfés,n,v,£) = noConf@,n,V,?)

Table 4
There are not activkill (k) / There are not conflicting receives alongnatchingv

k . npw [al =V g n—) S
kill (k) — 0 (kill) nW.s — s (rec) —— (V) (choice)
nle——0 g+ g' a_) S
otV g sX ¢ sX. 9 kzd s,y
— (deku)  ———— (dekn) —————— (pasy) —————— (pass)
s LY, g ix o v) Ks— [K [d] s — [d] & [d] s — [d] §
s—> ¢ denvk@ a=ki noKil(sd) S=s S ——s S=9
. (pass) - (cong)
[ds— [d] ¢ s— ¢
sl—>nwV 4 sz—>"<\7 S, MW, V)=0 noConf | s2,n,V,|o) St —>MN s, noConf@p,n,Vv, )
no ol (com) nolv (Parcont)
Ss1l$,—— 5 1S, Sils—— S |9
s ¢ SPLEY s 8 atknolv
——— (prop) . (parkin) - (parpase
{sh — (S} 81|, — s | hali(sp) si1lss— s |Is
L 1
Table 5

COWS operational semantics

The meaning of labels is as follows:< v andn > w denote execution of invoke and
receive activities over the endpoint respectivelyn o ¢ v (if o # 0) denotes execution of
a communication ovet with matching values, generated substitution havidgairs, and
substitutiono to be still appliedk denotes execution of a request for terminating a term
from within the delimitation K], ¥ andn® ¢ v denotecomputational stepsorresponding
to taking place of forced termination and communicationttfaiit pending substitutions),
respectively. Hence, eomputationfrom a closed servica is a sequence of connected
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transitions of the form

a1 a2 a3

S Sil S S3...

where, for each, a; is either{ orn( ¢ v (for somen, ¢ andv); servicess, for eachi, will
be calledreductsof .

We comment on salient points. Activikill (k) forces termination of all unprotected
parallel activities (rulegily andparq)) inside an enclosingq], that stops the killing ect
by turning the transition labdlinto 1 (rule (deiu)). Existence of such delimitation is ensured
by the assumption that the semantics is only defined for dlssevices. Sensitive code can
be protected from Kkilling by putting it into a protectidn}; this way, {s} behaves likes
(rule (prov). Similarly, [d] s behaves likes, except when the transition labelcontainsd
or when a free kill activity fod is active ins anda does not correspond to a kill activity
(rules(pass), (pass) and(pass)): in such cases the transition should be derived by usiregrul
(delsun) OF (dekr). In other words, Kill activities are executedgerlywith respect to the other
activities inside the corresponding Killer label delintinas.

A service invocation can proceed only if the expressionfiénargument can be evalu-
ated (ruleinv)). A receive activity éfers an invocable operation along a given partner name
(rule (rec)), and the execution of a receive permits to take a decisibmdamn alternative be-
haviours (rulechoice). Communication can take place when two parallel serviesgom
matching receive and invoke activities (raem). Communication generates a substitution
that is recorded in the transition label (for subsequentiegion), rather than a silent tran-
sition as in most process calculi. If more then one matchsngossible, the receive that
needs fewer substitutions is selected to progress (ftesand (parconr)). This mechanism,
based on pattern-matching, permits to correlafierint service communications logically
forming a same interaction ‘session’ by means of their saonéenits and can be exploited
to model the precedence of a service instance over the pomrdig service specification
when both can process the same request.

When the delimitation of a variable argument of a receive is encountered, i.e. the
whole scope of the variable is determined, the delimitaisai@moved and the substitution
for x is applied to the term (rulelek,)). Variable x disappears from the term and cannot
be reassigned a value. For this reason they are called ‘amite’ variables. Rul@ong)is
standard and states that structurally congruent servingsthe same transitions.

Execution of parallel services is interleaved (r@&,.s9), but when a kill activity or
a communication is performed. Indeed, the former must éridgrmination of all paral-
lel services (according to rulgar)), while the latter must ensure that the receive activity
with greater priority progresses (rul@sm)and (parconr)). In practice, COWS parallel oper-
ator is equipped with a priority mechanism which allows sa@ugons to take precedence
over others. Receive activities are assigned priorityeshrhich depend on the messages
available so that, in presence of concurrent matchingvesgonly a receive using a more
defined pattern (i.e. having greater priority) can proc@éds way, service definitions and
service instances are represented as processes runnicyremtly, but service instances
take precedence over the corresponding service definitit@nwoth can process the same
message, thus preventing creation of wrong new instanagditidnally, kill activities have
assigned greatest priority so that they pre-empt all ottiévries inside the enclosing killer
label’'s delimitation and cause termination of those urgoigd activities. This way, they
turn out to be quite useful for handling situations whereaabral termination is required,
like in case of fault and exception throw, or compensatimogation.

11
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4 A symbolic semantics for COWS

In this section, we introduce a symbolic operational seinaribr COWS. For the sake of
simplicity, here we considerrmonadicversion of COWS, i.e. communication activities are
of the formu!e andnw.s (we discuss in Sectioh.2 how to tailor the symbolic semantics
to handle polyadic communication). Many illustrative exdes shed light on the technical
development.

4.1 Symbolic operational semantics

The symbolic operational semantics of COWS is defined ovefigarations of the form
@, A + s, calledconstrained servicesvhere® is theconditionthat must hold to reach the
current stateA is the set of private namepreviously exported, andis a service whose
actions are determined iy andA. The setA will be omitted when empty, writing e.g.
O + sinstead of®, 0 + s. We define the semantics over an enriched set of services that
also includes those auxiliary terms resulting from repigdifree occurrences of) variables
with unknown valueg terms produced by the syntax introduced in SecBowhere now
expressions contain also unknown values. Therefore, imttended syntax we useu’le
and p - 0?w.s to denote invoke and receive activities respectivelyto denote unknown
values, and to denote an unknown value or a tetrfwheret can ben, v, u, w, n or u).

As in the standard semantics, the orynding construct is delimitation: let
®, A + C[[d] 5] be a constrained service (wheteis a context ), [d] bindsd in the scope
s, in the condition® and in the seiA. We denote by bn) the set of names that occur
bound in a termt, and by uvar) the set of variables that have been replaced by corre-
sponding unknown values in(i.e. if x is an unknown value in, thenx € uvarf)). For
simplicity sake, in the sequel we assume that bound vasahleonstrained services are
pairwise distinct and dlierent from variables corresponding to the unknown valudbef
constrained services, and bound names are all distinctigliedlesht from the free ones (of
course, these conditions are not restrictive and can allvayfsilfilled by possibly using
alpha-conversion). This assumption avoids that distim&nown values are denoted by
the samex in a condition® of a constrained service (see Example “Evaluation function
conditionx ¢ uv and assumption on bound variables” in Sectiod, and permits identi-
fying the name delimitation binding each private name withicondition® and a sei\ of
a constrained service (see Remark).

The symbolic operational semantics of COWS is defined onlglfmsedservices, and
is given in terms of a structural congruence and of a (biellald transition relation. The
structural congruence is the trivial extension of that defined in Sectidio the enriched
syntax of services used here. To define the labelled transiglation, we exploit the trivial
extension to the enriched syntax of functibalt(_) and predicate noKill(, ) defined in
Section3. We also extend function_[] to deal with unknown values. Now, it takes a
closed expression and returns a pdir\): the (possibly unknown) valueis the result of
the evaluation provided that the conditidnholds. Specifically, leé be an expression, &
does not contain unknown values and can be computed, #jena [true, v) wherev is the
result of the evaluation, as in the original COWS semant&imilarly, if e is an unknown
value x, then [e] = (true, X). If e contains unknown values and is not a single unknown

1A contextC is a service with a ‘hole’ {] such that, once the hole is filled with a servisethe resulting ternC[ 5] is a
COWS service.

12
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value (i.e.e # x for everyx), then [e] = ((y # bn Ay g uv A y = e A @),y) where
y is a fresh unknown value that must befeient from all private names (i. e # bn)

and from all existent unknown values (i.g.¢ uv)?, and®’ is a condition that permits
dealing with expression operators partially defied=unction [], and hence condition
@’, cannot be explicitly defined because the exact syntax aksgjons is deliberately not
specified. Then, consider as an example the following sinaplguage for expressions:

e =X | x| i | e+te | e-e | exe | ee | (¢

wherei is an integer value. For the above language functighi§ such that:
e [(5-2)=*3] = (true, 9);
* [5 - X] is undefined, because the expression %is not closed;
cB-XI=((y#bn Ay¢uv Ay=5-x).y);
* [5/0] is undefined,
* [5/x] =((y#bn Ay¢uv Ay=5/xA x+0)y), where conditiorx # 0 is due to the
fact that operatoy is not defined when its second argument is 0.

We also define a functiononfRe¢._, ), that takes a service and an endpoint as
an arguments and returns the set of (possibly unknown) sdhegt are parameters of re-
ceive activities over the endpointactive ins. This function plays the role of predicate
noConf(, _, _, ) of the standard semantics and, indeed, is exploited tbkdiseansitions in
case of communication conflicts (by setting transition étmas tofalse). The function is
inductively defined as follows:

confRe€0,n) = confRe¢kill (k),n) = confRe¢ule,n) = confRe?x.sn) =

confRe€g + g’,n) = confReg, n) U confRe¢y’, n) confRen?v.s,n) = {v}
confRe’w.s;n) =0 if n#n’ confRe€{s}, n) = confRe¢s, n)
confRe€s| s',n) = confRe¢s, n) U confRe€s’, n) confRe€(d]sn)=0 ifden
confRe[d] s,n) = confRe¢s,n)\{d} ifd¢n confReé+ s,n) = confRegs, n)

.. . . . . O, a .
The labelled transition relation over constrained sesjieeritten >~———, relies on a

. . D, . . . .
labelled transition relation——, that is the least relation over services induced by the
rules in Table5. Conditions® and actionsy are generated by the following grammar:

® = true | false | v=V | v#V | XxX#bn | x¢uv
| x¢ {Xliar | e | OAD
@ = n<ay | n<[n | n>w | n>[X] | notv | k | T

where, now, a substitutions can be either the empty substituti@ror a substitution X
v} that maps the variablketo the (possibly unknown) value
The meaning of labels is as follows:

2 Notably, herey can be any unknown value, provide that it satisfies conditios bn andy ¢ uv. Notice that condition

y ¢ uv is a syntactical condition on the variable nage_ater we shall explain the exact meaning of the above ciomdit
and show how they are evaluated in the last step of the inderefa transition.

3 Of course, if all operators used in the considered expressie total functions, then conditialf is true.
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T 1
true, k true,n

kill (k) ———— 0 (s-kill) n’?\g.s—> S (s-rec)
®,n>x S/ g D, s
@ A x#£bn A x# confRe€sn) ,n >[X] (s-reGom Do (s-choice)
[X]S S/{XH)_(} g+g'—)s
[el = (@.v) LR LIV
(s-inv) T
.0 ———————— (s-open
nle—m’)O s . naln e (s-open)
s D . nixm-vilv g s @,k ¢
®,n0lv (S'degub) i a— (S-de|<n|)
Ms—— s {xmV s> Ke
s 24,9 kzd s 2Ly
—— % (s-pasp) o (s-pass)
[ds—— [d] ¢ [d]s—— [d] s
D, . D,
s—— & dgnvk@) a#k,t noKill(sd) s—— ¢
(s-pass) —— o (s-prot)
[d]s " [d] & Ish — {5}
@1 ,n>V Dy ,n'<av
S ——— S;l S — %
(s-match)
@1 ADy An=n’ AV'=v,n00v
S gls,
®1,n>X ®y.n'<
S — §) S Bt 3N
PSP (s-com)
@1 APy An=n" AV#confRe€s;| sp.n) ,n{x—v}1lv
s1ls—— 41
®,nolv ®,k
§ —— 3, 1 —— 8,
D AVZContRes.n) . no 1v (s-paronfi) - (s-pain)
sl A s 18— 8, | hal(s,)
O.,n
Sq_ 5 D[X] §_|_ s= 51 51 (I)_(y) SQ 52 - s,
® A X7 confRezn) mo[x] (s-parontz) b (s-cong)
SHIE S s s——¢
§ %5 a#k.nolv.no[x]
(s-parpas9

Table 6
COWS symbolic semantics (rules fef-2)

 Conditions true (resp.falsg) denotes the condition always (resp. never) satisfiedy’
(resp.v # V') denotes an equality (resp. inequality) between (possibknown) values,
X # bn means that the unknown valxemust be diferent from all bound names of the
considered service; ¢ uv means that the set of variables corresponding to the unknown
values of the considered constrained service may not cottiaivariablex, X ¢ {X;}ic|
means thak must not be in the sé¢k }ic|, X = e states that the unknown values equal
to the evaluation of the closed non-evaluable expressi@@onditions of this form are
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generated by the evaluation function, e.g. condifioa 5/x is generated by evaluation
of expression Bx), and as usuahk denotes the logic conjunction. In the sequel, we will
use notatiorv # {v1,...,Vp} to indicate the conditiow # vi A ... A V # Vv (Where

v # 0 indicatestrue). Moreover, we will use a functio®(_, _, _) that, given a condition
®, a services and a set of variables( }ic|, returns a condition obtained by conjuncting
@ with all inequalities between the unknown valuestoénd the bound names sfand
with all conditionsx ¢ {X}ic| for eachx ¢ uv in ®. Formally, B(_, _, ) is defined as
follows:

B(true, s, {X}ic|) = true B(false s, {X}ic|) = false

BNV =V,S {Xlie) =v=V BNV #V,S {Xlie) =V#V
B(x # bn, s {X}ic) = X £ bn A Xx#bn(s B(X & uv, S, {Xlic1) = X & {X}icl
B(X ¢ {Yjljea, S {Xiliet) = X € {Yj}jes B(x =65 {Xlic)=Xx=¢€

B(® A D, S {X}ic1) = B(D, S, {Xi}ic1) A B(P', S, {Xi}ier)

» Actions n < [n] denotes execution of a bound invoke activity over the eirdpg while
n >[x] denotes taking place of external communication over titpeimtn with receive
paramete (that will be replaced by the unknown valug The remaining labels have
the usual meaning. Notably, due to the restraint on monaatitcnounication, here the
natural numbet can only be either O or 1.

We comment on the aspects of the symbolic semantics rulésrtaialy difer from
the standard ones. Bound invocations, that transmit grivames, can be generated by
rule (s-open) Notably, bound invocation actions do not appear in rgestch)and(s-com) and
therefore cannot directly interact with receive actionsctsinteractions are instead inferred
by using structural congruence to pull name delimitatiotsiole both interacting activities.
Although the bound transitions and rukeopen)can be omitted, we include them both to
give a proper semantics to termy f!ln and to support the development of behavioural
equivalences for COWS. Communication carirtiernal or externalto the service. Internal
communication can take place when two matching receive ke activities (rulegs-
match) and (s-com) are simultaneously executed. External communicationtake place
when a value is transmitted to the environment (r@es) and (s-open) Or when a receive
activity matches an unknown value provided by the enviramnfeiles(s-rec) and (s-reom).
Differently from the standard semantics, conflicting receieemot be dealt with by using
a predicate in the premises of rules for communication atefleaving, because unknown
values can be involved. Here, the check for conflicting rexis simply a condition of the
form VvV # confRe(& n) (ru|eS(s—rerm), (s-com) (s—parconfl)) and(s—parconfg)).

The labelled transition reIatioaﬂ is the least relation over constrained services
induced by the rules reported in Tallewhere notatiom ¢ A means that sek does not
contain the names of endpoint Rule (constservistates that a constrained servibeA + s
can perform all the ‘non-invoke’ transitions performed $with an enriched condition
@"” obtained by composing and the condition on the lab@’. Condition®” takes care
of the relationship between unknown values and private sarimeleed, by private names
definition, each unknown value, that is a value coming from ¢nvironment, must be

’

: : . iy P,
different from all bound (private) names of the considered serVf the transitiors —,
15
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s—— ¢ a#n<[n,n<av O =8(@® A D, uvar@))

o (constServ)
D AFS>——> D' ArS

@, n<ln]
s n¢A D" =B(® A ', S, uvar@))

(constSerykp)
@, n<ln]

GAFS——— 5 O, AU+

@', nay

s, ¢ ngA 0" =B A D, S, uar@d))

(constSenwy)
D", nav
PAFS—S D' AFS

Table 7
@,
COWS symbolic semantics (rules fgr—a>)

s introduces a new unknown valugrules s-inv) and(s-recom), it is not suficient to add the
condition x # bn(s) (i.e. the unknown value is filerent from all bound names of the
current service), but we need also to consider bound nana¢tiuld be subsequently
generated. For example, let us consider the following itians

, Xx#bn A x#n,n>[x] ,
true+ [X]n?x.s| «[n]n’In X#bn A X#nkF S{XH X} |«[n]n’In

Now, if the obtained service performs the transition:
S-{x+ x}|*[n]n"In LN (X x} | «[n]n'In| [N]nIn" | [n"]n"In”

then, letd’ + s” be the obtained constrained service, the condfddmust contairx # n’
andx # n”. To update after any transition the condition of a consediservice with
inequalities between unknown values and private names,seehe conditionx # bn,
that simply states that has been introduced in the considered term (r@es) and (s-
reccom)), @Nd functionB(_, _, -), that adds the inequalities for each unknown value (rgtes
stServ) (constSenkp) and(constSery,)). Moreover, functiorB(_, -, -) adds conditions of the form
X ¢ {Xi}ie| to guarantee that unknown values introduced by @ii®) because expression
evaluation difer from those of the considered constrained service (i.at(@y if the con-
strained service i®, A + s, for further details see Example “Evaluation function, dibion

X ¢ uv and assumption on bound variables” in Sectc?).

Rules (constserw,) and (constseny,) deal with the localized receiving feature of COWS.
Indeed, if a COWS term communicates a private (partner orabip@) name to the envi-
ronment, then the latter (that is a COWS context) can use dheerto define a sending
endpoint, but not a receiving one. For example, considefolf@ving constrained service:

truet+ [p](g-0'p | p-0'lv)

It can perform the activityg - o!p (rule (s-open) and become the termnue, {p} + p- 0'lv

which is stuck. In fact, to further evolve it needs the erviment to be able to perform
first a receiveg. 0?x and then a receive along the endpoint’, that is disallowed by the
syntax. Therefore, to block invoke activities performedngl endpoints using previously
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exported private names, we record all exported private samtbe set\ of the constrained
service and perform the chealkz A when an invoke activity along communicating with
the environment is executed.

Remark 4.1 The assumption “bound names are all distinct arffedént from the free
ones” is used to guarantee the correlation between consliiad services. For example,
if we do not rely on this assumption, for the constrainediserx # n+ [n] s| [n] s we
are not able to understand what are the occurrenceseferred by the conditiox # n.
Moreover, the definition of bound names permits maintaitiigjcorrelation. For example,
the constrained service# n + [n] X« 0'n is not not alpha-equivalent to# n + [mM] X-o'm
but is equivalent tox # m [m] x-o!lm.

Remark 4.2 It is worth noticing that, in the definition of relationﬂn the conditions
are never evaluated. Thus, at operational semantics igeedo not distinguish unfeasible
transitions (whose condition holdalse from feasible ones. For example, transitions hav-
ing the following conditions are unfeasibleo g = Oresp), (X # X) and K=y A X #y). Of
course, to identify unfeasible transitions, we can reptheeconditiond®” in the conclu-
sion of rules(constserv) (constSen,) and (constSery,) With E(®”’), where&(-) is a function for
evaluating conditions.

Remark 4.3 Since the transition relation—-"> is defined over constrained services, i.e.
configuration of the formd, A + s, the operational semantics can be naturally interpreted
on L2TS [10]. Indeed, eacledge label(of the form ®, @) indicates the condition which
must hold for the transition to be enabled and the perforneiidrg while eachstate label

(of the form®, A) indicates the condition which must hold to reach the careid state
from the initial one and the set of previously exported gevaames.

We can now formalize the correspondence between the origgmaantics introduced
in Section3 and the symbolic semantics. We exploit here a funcé¢n) for evaluating
conditions: it takes a conditio® and returndalseif certainly ® does not hold; otherwise,
it returns®. For example&(®’ A (5 = 3)) is falsewhateverd’ may be. Since a condition
® can be of the fornx = e and the syntax of expressiorss not specified, functio&(_)
cannot be explicitly defined (as function]]). For the proof of semantics correspondence,
we use the following lemma concerning functi@{_, _, ). For the sake of simplicity, a
condition® is deemedavourableif uvar(®) = 0 and&(®) # false i.e. it does not contain
unknown values and can be positively evaluated.

Lemma 4.4 Let® be a favourable condition, the®(B(®, s, 0)) # false for any s.

Proof. FunctionB(_, _, ) acts as an homomorphism on the first argument, except wken th
argument ix # bn andx ¢ uv. We do not need to consider the former case because, by the
hypothesis uva®) = 0, we have thatb does not contain unknown values. For the latter
case, we get thaB(x ¢ uv, s,0) = x ¢ uv since the third argument @&(_, _, ) is 0. Thus,

the thesis trivially follows by the fact that, under the cidiesed hypothese(_, _, ) acts
always as an homomorphism on the first argument. O

Our major result is a theorem of ‘operational corresponderitis quite standard and
states that for each transition of the original LTS assediab a COWS term there exists
a corresponding symbolic transition of the symbolic LTS th@es not involve unknown
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values and bound names, and vice versa. Notice that, sieceriginal semantics does
not take bound invocations into account, only constrairegices of the formd + sare
considered in the theorem.

Theorem 4.5 Letuvar@) 0anda #n < [n]. s— ¢ ifand only if, for any favourable
condition®, ® + s >—> @’ + s for some favourable conditio®’.

Proof. The proof of the “if” part proceeds by induction on the lengththe inference

3 . . .
of s — ¢. For the base case, we reason by case analysis on the axighes afginal
operational semantics.

iy In this casea = k, s = kill (k) ands' = 0 By rule (s-kitty, Kill (k) ——> 0. Then,

by rule (constsery) we get that®d + Kkill (k) >—> @’ + 0, whered’ = B(D A true, 0,0)
(since uvar®) = 0). By definition, B(® A true, 0,0) = B(D, 0,0) A B(true, 0,0). Since
@ is favourable, by Lemmad.4, we have thaE(B(®, 0, 0)) # false SinceB(true,0,0) =
true # false we can conclude th&i(®’) # false

(rec) In this caseq = n > wands = n2w.s. By rule (s-rec) n2w.s M s. Then, by

' ,n>w

rule (constsery) we get thatb - nw.s >——— @’ + g, whered’ = B(® A true, 0, 0).
As before, we can conclude thg(d’) # false

(nv) In this case,x = n < v, s = nlewhere [g] = v, ands = O By rule (s-inv),

_ t
nlg — 2, o, Then, by ruleconstsery,), we get thatd + nle >—> @ + 0,

whered’ = B(® A true, 0,0). As before, we can conclude tha{d’) + false

For the inductive step, we reason by case analysis on thapatied inference rule of the
original operational semantics.

(choice) In this cases = g + g’. By the premise of the rul@hoice) g NS By induction,
drg >ﬂ> @' + g for some favourable conditionB and®’. By the premise of the
rule (constserv) we get thap e, s where®” is such thatd’ = B(® A ®”, S, 0). By
rule (s-choice) g + ¢ QELALEN s. Finally, by rule(constsery) we can conclud® + g+ ¢ >
—Q;% D+ S.

(dely) In this cases = [X] s ands = s - {X > v}. By the premise of the rul@ieky),
n{x—v}1lv @' ,n{x—v}1lv
_—

Sy. By induction, we get thatb + s; O+ s for

some favourable condition® and ®’. By the premise of rul@constsery) we get that
O ,n{x—Vv}lv O ,nOlv .
s — > s and, by ruledeky), [X] St ———— - {X — V}. Finally, by rule

(constSery) we can conclude.

(dekin), (pass), (pass), (pass), (cong), (prot), (Parin), (Parpasy, (Parcon) These cases are similar to the
previous one; the latter case relies on the fact that noGamf(v, 1) = true implies that
confRe€sy, n) = {Vi}ic) such thaw = v; foralli € 1.

(com) In this cases = (s1 | ) ands’ = (s; | s)). First, we consider the cage= n@O0v.

By the premises of rulgom) s; e, s, and s e, s,. By induction, we get

’ ’

o’ ,n>v

O . nav
that®; + s, >——— @, + s, and®; + 5 >——— @, + s, for some favourable
conditions®y, @, ®, and®’,. By the premises of rulegonstserviand constsery,), we get
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oY ,n>v @7 ,nav .
thatsy ——— s, ands, ———— s, where conditionsd} and @} are such that

’.n00
= B(®1 A DY, 5.,0) andd, = B(D2 A DY, S5, 0). By rule (scom) s1 | S M—V>

S; | S5, whered” = O AP An=nAv=V. FlnaIIy, by rule(constsery) we can conclude

0
thatd + s | & >u> O + s | S, whered” = B(® A D', s | s,,0). The case

a = no 1vproceeds as above, by also relying on the fact that noGph&, n,v, 1) =
true implies thatconfRe€s; | S, n) = {Vi}i) withv # v; for alli e I.

Consider now the “only if” part of the theorem. By the prensis# rules(constserv)

and (constsery,), We get thats e S where® = B(® A ®”,5,0). By hypothesis
E(P') # false henceS(d)”) # falsetoo. The proof proceeds by induction on the length of

"
the inference o6 ——— <. We omit the details because the proof proceeds as that of the
“if” part, but the steps are executed in the reverse order.tlt@base case, we reason by
case analysis on the axioms of the symbolic operational sérsa We take a look at one
base case:
(s-rec) In this case,®”’ = true, « = n > w ands = n?2w.s. Trivially, by rule (rec),

ncw

nws —— 9.

For the inductive step, we reason by case analysis on thapatied inference rule of the
symbolic operational semantics. We take a look at two cases:

7

(s-choice) In this case,s = g + g'. By the premise of the rule-choice) g e, s. By
. . [02 . 02
induction, we get tha) — S'. Finally, by rule(choice) we can concludg+g — S'.

(s-com) In this cases = (s1 | ), @’ = (P1 A P An=n AV # confRe€s; | S,n)),
a =n{Xxm vilvands = (s| | s)). SinceE(®") # falsg we get thais(d,) # falsg
E(Dy) # falseandconfRe€s; | $,n) = {Viliey such thatv # v; for alli € I. This
means that noConé$( | s, n, Vv, 1) holds true. By induction and siné€®,) # falseand

&E(D,) # false we have that, i N s, ands; 29, S,. Thus, by rulgcom) we can
{x—Vv}1v

conclude thas, | s ———— S| | S,.

4.2 Examples

In this section, we show some simple examples aimed at yilagifsome peculiarities of
COWS symbolic semantics. In the sequel, for the sake of kélitgawe shall evaluate
conditions, writing e.gx # ninstead of p=p A 0=0 A true A X # n).

External communication

According to the operational semantics introduced in $a@j the service X] n?x.m!x can
perform the receive activity, but then it is blocked (be@auariablex is not instantiated by
the receive transition). Instead, according to the syrols@imantics defined in this section,

19



PuGLIESE, TIEZZ1I AND YOSHIDA

the constrained servideue + [X] n?x. m! x can evolve as follows:

(s-rec)
true,n> X
n?2Xx.mx ——— m!X
(s-reGom)
x#confRe¢(n?x. m!x),n) A x#bn ,n>[x]
[X] n?X. m!X m! X
(constServ)

x#bn,n>[X]
truer [Xn?2Xm!X >—— X # bn Fm!x

since k # confRe¢(n?x.m!x),n)) = (x # 0) = true. Then, the continuation can perform
the following transition:

[X] = (true, x)

(s-inv)
true, m< X
mx———0

(constSermy)
X#bn,m< x
X#zbnrmx>——x#bnt+0

Notice that, although the external communication gener#ite conditionx # bn (that
means that the received unknown value must Ifkeint from all delimited names), the
condition is never exploited because the term does not icodéimited names.

External communication within name delimitations

Consider the constrained servitege + [n][X] n?x. X« o'n. Differently from the previous
example, the above service contains a delimited namenr{j.eThus, this time, condition
X # bn is exploited to generate the specific conditiog n. Indeed, the service evolves as
follows:

(s-rec)
true,n> X
n?x. xeoln ——— x-.0!n

(s-recom)
x#confRe€(n?x. X oln),n) A x£bn,n>[X]
[X] n?X. x-0ln x=0ln

'd as
x#confRe€(n?x. X« oln),n) A x£bn,n>[X] (5-depasd
[n][X] n?x. X+ 0INn [n] x-0n

(constServ)
X#NA x£bn, n>[X]
true + [n][X] n?x. X-0ln X#NAX#bnt[n] x-0ln

since k # confRe¢(n?x. x+ oln),n) = true andB(x # bn, ([N][X] n?X. X+ 0!N),0) = X #
n A X # bn. Then, the continuation can evolve only provided that cooix # n holds.

Internal communication

Consider the constrained servittee + [p][X](p+ 0?X.n!X | p+ 0'v), wherep ¢ n. In
this case, due to the delimitatiomp][, the receive activity cannot communicate with the
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environment, but can synchronize with the internal invoke:

[Vl = (true,v)
(s-rec) (s-inv)
true, peo>Xx true, peo<v
p.0?X.n!X ———— nlx p-olv ———

(s-com)
O, peo{x—Vvilv
p-0?Xx.n!x| ps0lv ——————— nlx

(s-dekup)
[X]( peO?X.n!X| pe0lV) M n!x- {xm— v}
(s-debas9
[01[X ( p- 02x nlx | p-otv) —2 22 i nlv = niv
(s-cong)
[PI[X]( psO?X.n!X]| p-0lv) M nlv
(constServ)

®,pe001lv
truet+ [p][X]( ps0?X.n!X| ps0OlV) >———> @+ nlv

where® = (true A true A p=p A 0=0 A Vv # confRe¢p-0?x.n!x | p-olv, p-0)).
SinceconfRe€p- 0?x.n!x | p-olv, p-0) = O, condition® holdstrue.

External and internal communication
Consider the constrained servitae + [X] (n?X.m!X | n!v). In this case, both internal and
external communication can take place. Its initial trdosi are the following:

(ext com)  truer [X](n?Xx.m!X | nlv) >‘D’I‘_D[X]> @ +m!x|nlv

(ext com)  truer [x](n?xm!x | nlv) =2 @  [x] (n?x m!x)

. ®,n01
(int. com)  truer [X](n?x.m!X | nlv) > o mlv

Conflicting receive

Consider the constrained servittele + [X](n?v | n?x | nlv). Due to the presence of
the receiven?v, that has greater priority to synchronize with an invoaatitv, the receive
n?x can communicate with the environment only if the receiveldlevas notv (indeed,
confRe¢(n> | n?x | nlv),n) = {v}):

X£bn A x£v,n>[X]
true+ [X] (nV | n?X | nlv) X#bnAX#VvVEnN|nlv

Other possible transitions are as follows:

true - [x] (nV | n2x | nlv) Y, true k [X] (0 | n2x)

true,
true r [x] (0 | n?x | nlv) ——2"7, true + [x] (n?x | nlv)
true,n00v

truet [X] (nV | n?X | nlv) >——— true + [X] n?X
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On constrained services
Consider the (plain) service[y] (n?g | n?X | x-olv | q- 0?y) wheren # g- 0. It can
perform the following transition:

x#bn A x#q,n>[X]

[X.y](n?q | n?x| x-0!V| - 0%) [VI(nq | x-0lv| g-0%)

The obtained service can further perform the following $raon:

X=(,qe001Vv

[yI(n?q | X-0lV| g-0%) — n?q

Condition x = g of this transition contradicts conditiax# g of the previous one, but the
service can however evolve. Instead, by using constraierdces, we would have:

x#bn A x#q,n>[X]

truer [X,y] (n?g | n?x| x-0lv | g-0?y)
X=( A X#£bn A x#0,qe001v

x#bn A xX#qr[y](n?g]| x-0lv|Qq-0?) falser n?q

becaus = g A x # g holdsfalse and the second transition could not be performed. That's
why we use constrained services.

Evaluation function, condition x ¢ uv and assumption on bound variables
Consider the service = [y,Z](n!(5 + X) | n?.S' | m?zm’!Z), wheren # m # m’. If
G+x]=((r#bnAr¢uv Ar=5+x),r)then

(r#bn Arguv Ar=5+x),n<r

n!(5 + X)
Therefore, the constrained service: bn A X' #bn A Z # bn + scan evolve as follows:

1(¢bn/\g’qtbnAg’;tbnrsﬂq)’k[z](s’-{yn—q}|m?1m’!;')

g’

for® =8((x#bnAX #bnAZ £bnAr#bnAr¢uvAr=5+x),s",{xX,Z}) =
xXEbnAX #bn AZ £bn Ar£bn AT ¢{XX,Z} AT =5+ X). Now, we cannot
alpha-convert variable into r, because we would violate the assumption that bound vari-
ables difer from variables corresponding to unknown values (in thsec variable must
be diterent fromr because is an unknown value occurring in the constrained service).
Similarly, if [S + X] = ((z# bn A z¢ uv A Z= 5+ X),2), then the constrained service
could become

" +[Z(s - {y— 2 | m?zn'lZ)

for some®”, but the assumption would be violated again (because tiwicserontains
bothzand2). Finally, if [S+ X] = ((Z # bn A Z ¢ uv A Z =5+ X),Z), i.e. the unknown
value returned by the evaluation function is not fresh, ttiencondition on the symbolic
transition holddalse because ¢ {x, X', Z} does not hold.
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5 Extensions of the symbolic operational semantics

In this section, we present two extensions of COWS symbelasitics for dealing with
open terms and polyadic communication.

5.1 Symbolic semantics for open terms

The symbolic operational semantics presented in Sedtisdefined only for closed terms.
Indeed, for a reduction semantics it is reasonable thatfeetied services may not contain
free variables and labels. However, in order to be able tpeictsalso the behaviour of a
part of a service, we need to define the semantics also fortepes.

For example, let us consider the following open term:

n?x | nlx

The term can only perform the receive activityx (by communicating with the environ-
ment), because activity! x is stuck until variablex is not replaced by a value. However,
since the scope of the variable is not declared in the terenetivironment can substitute
the variable with an unknown value in any moment. The rasyllerm is as follows:

n?x | nix

Now, the term can perform also the activityx (by communicating with the environment)
and the internal communication (activitia8x andn!x synchronize).

Formally, the symbolic operational semantics for open seisrdefined by the rules in
Table6 and the new rules in Tab® where the transition labed represents execution of a
substitution by the environment. We denote byt)ftiie set of variables ity and we exploit
a predicate noKill(), a slightly modified variant of that defined in Secti®nwhose most
significant case is noKilkill (k)) = false (this way, the predicate holds true if there are not
free kill activities that can be immediately performed).taldy, rulesconstsery) (constSersp)
and constsery,) differ from that shown in Tabl@ for the addition of the predicate noKig)
to their premises. The presence of this predicate in the nfl€éable8 guarantees the eager
execution of unbounded kill activities. Indeed, for ingt@nthe open ternk{l (k) | n?v)
can only evolve as follows (rul@onstsen)):

true - (kill (K) | 1) —= truer 0

We explain how the remaining rules work by means of some eleanBy applying
rule (constseny), the term £?x | n!x) can communicate with the environment (by receiving
an unknown value) and evolve as follows:

x#bn,n> x
truer (n?X | n!X) >——— x# bnr nlx

Notably, variablex is replaced by an unknown value, thus now the invoke actiaty be
performed. By applying ruleonstsery,), the same term becomes closed:

x#bn, x
truer n?x | n!X) >——— x# bnr (n?X | n!X)
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L

s——¢ a=npVv,n>[x],n0lv
D" =B(D A @, S, uvar®)) noKill(s)
o (constServ)
S, ,
O AFS>—> D" A+S
@, n<[n]
s——— ¢ né¢A
"’ =B(D A @, S, uvar@®)) noKill(s)
(constSerykp)
@”, n<[n]
O,AFS>——"—5 D" AUN}FS
@', nay
e - n¢A
D" = B(® A D', S, uvar@)) noKill(s)
(constSenyy)
D", nav
O AFS>—S D" ArS
v,
s, ¢ a=k, T D" =B(® A @', 5, uvar@))

o (constSery)
N2
OAFsS>——> D" AFrS

x € fu(s) @’ = B((P A x # bn), s uvar@))
(constSery,p)

’

@', X
O,AF S>> D', Ars{x— X

D' nex

S - 8 noKill(s)
D" =B((® AP AX#bnAx # confRe¢s n)), s, uvar@))

O’ n>x

OAFS>>—5 0" A+5{X X

(constSengc)

D', n{x—-v}ilv

$ g Q" = B((® A D), s, uvar@)) noKill(s)
(constSenbm)

D" n{x-v}lv

D AFS—S O AFF{X V)

Table 8
Symbolic semantics for COWS open terms

Now, both receive and invoke activities can communicatdn wie environment and also
internal communication can take place. Finally, if we digimodify the term asr{?x |
nlv | s), by applying rulgconstsens), We obtain the following transition:

true,n{x—-v}1lv
truer (M?x | nlv | § >———— true+ s{x - v}

Also in this case the substitution faris applied to the whole term.

5.2 Symbolic semantics f&OWSwith polyadic communication

We now tailor COWS syntax and symbolic semantics to deal potizadic communication.

We first extend the syntax of invoke and receive activitiefoisws: u- u’le stands for an
invoke over the endpoini - U’ with parameter the tuple of expressiogsvhile p. 0?w.s
stands for a receive over the endpginrb with parameter the tuple of variablésknown)
valuesw and continuations. Tuples can be constructed using a concatenation operator
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. = v(iw)=x [X|>1
ue,n>w =
nW.s ———— s (s-rec) S7bn n [XTW (s-reGom)
nW.s — —'s
s HIR o yex [ed = (@1y;) ... [ed =(@ny,)
d (s-inv)
B one XTH (s-deburn) ®1A A D09V V)
Ms———s-{ypy nl(er,....en)
®.nay . na[mMy
s———S nevV n¢n s————¢95 nevV n¢n
®,na[n]¥ (s-open) O, na[(N:m v (s-open)
[NNs—— ¢ [Ns———¢
®1.n>W 2.0V _ _
S — s, §— 8, M(W,V)=(P,0) noConfly | s2,n,V,|o]) =
(s-com)
Dy APy An=n' AOAD ,noo|V
SHE sls
®,no v . o _
i 4 slq)—a>s’1 a#K,n>[X]W,no v
o ly (s-debure) e (S-patpasd
[s——— ¢ - {xV sl —— s s
Q. nolv

s —— 8] noConfp,n,V, ) = @’

- (S-parkonf1)
DAY .nolV

sils s s

@, ne[X]W

sy noConf@,n,W- {X X}, [X]) = @’

— (s-parcontz)
DAY ,n>[X]W

sl ——— 5%

Table 9
Operational semantics of COWS with polyadic communicatexcerpt of rules)

defined agay,...,an) : (b1,...,bm) = (a1,...,an, b1,...,by). To single out an element
of a tuple, we will write @, c,b) to denote the tuplgay, ..., an, C, by, ..., by), wherea or

b might not be present. We will usg to denote the i-th element of the tugend, when
convenient, we shall regard a tuple simply as a set writigg @< b to mean that is an
element ob. Finally, we denote by ¥ the set of variables ih

. . D, . .. L
The labelled transition relation——— over services now is induced by the modified
rules shown in Tabl® (the remaining ones are those of Tableexcept for rules-match)
which we do not need anymore), where:

« conditions can also have the fordn v @’; we will useX # bn to denote condition
X #Fbn A oA X EDNfOr X=(X;,...,X);

« action labels are generated by the following grammar:

¢ v= n<¥ | n<[f¥ | neW | n>[XW | no6v | k| i

All the above definitions shall extend to relatian)’—ax

The new rules exploit a modified version of function(_, ) and noConf(, _, _, )
defined in Table8 and4, now redefined by the rules in Takl®. The rules in the upper
part of the table state that variables match any value, aod@iesy andv’ do match only
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M(x. V) = (true, {x - v}) My, V) =(v=V,0) M), ) = (true, 0)

M(ay, by) = (@1,01) M@, bp) = (©2,072)

M((a1, ), (b1, b)) = (@1 A D, 01 ¥ 072)

noConfEn,V, £) = Awereqsn.f)( Vxijegvakw) X # ¥; A (gval(W) = 0 = false))

(W) if M(WY) = (@.0) Al < ¢

reda s n,¥,4) = { 0 otherwise

rec0,n,v, ) = reckill (K),n,v,¢) = requle,n,v,¢) =0 reqn’W.sn,V,{) = 0 ifn#n’
req[d] s,n,V,¢) =reqs,n,v,¢) ifd¢n re[d] sn,v,)=0 ifden
redg +9'.n.¥,£) = redg,n,V, £) Uredd’,n, ¥, £) req{s), n, v, ¢) = reqs n, v, ¢)
req(s| s,n,v,¢) =reqs,n,V,{) Ureqs,n,V,{) rec(x s,n,V,{) = req(s,n,V,{)

- ~ Table10 ]
Modified matching and conflicting receives rules

if condition v = V' holds. When tuples andv do match M(Ww, V) returns a pair®, o),
where® is the condition so that the matching holds, ands a substitution for the vari-
ables inw; otherwise, it is undefined. Function noCosit{, v, £) now returns a condition
that guarantees absence of conflicts for the inferred transiBasically, noConfg n, V, ¢)
exploits functionreq(s, n, v, ¢) to identify the conflicting receives « then for each argu-
mentsw of these receives it determines a condition (i.e. a logisilidction of inequalities)
that makes the conflicting matching betwéemndv false. Finally, it returns the logical
conjunction of the determined conditions. We use the anyilfunctiongval(_) that, given
a tuplew, returns a collection of pairs of the form, {), wherex is an unknown value such
thatw, = x. Notably, ifrec(s,n,V, £) = 0 then function noConf n,V, ¢) returns the con-
dition true, because there are not conflicting receives; while, if thessv € req(s,n,V, ¢)
such thagval(w) = 0, then the function returns the conditifeise because there are not
conditions that can make the conflicting matching false.

We end this section with an example aimed at clarifying hottgpa-matching and
conflict checking functions work. Consider the followingrte

nl(vi, V2, v3) [ [X Y, 40X Y, 2) | [XInXX, Y. Z) [ [X", Y InXX",y", Z")

In this case, the invoke activity!(v1, v, v3) can synchronize with each receive activity of
the term. Firstly, consider the receiv€(x,y, z). its argumentx,y, 20 matches the tuple
(v1, V2, v3) by generating the substitutidx — vi,y — Vp, Z — v3}. The other two receive
activities are in conflict, because they satisfy the matghiith the invoke and generate
substitutions with fewer pairs than 3. Thus, functiet(_, -, _, ) applied to the whole
term? returns the sei(X',y',Z),(x",y”,Z")}. Then, function noConf( _, _, _) returns the

4 This means that the last rule applied in the inferends-isom) Of course, the last rule could be ak@paronf1); in this
case, two or three conflict checks will be performed on sutesf the considered service.
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condition §' # v» vV Z # v3) A Z’ # v3. Hence, a transition of the term is

nl(vy,v2,v3) | [X. Y, nXX Y, 2) | [X]nXX, Y, Z) | [X".y']nAX",y", Z")

(Y #V2 vV Z#V3) AZ'#V3, 0.0 3(V1,V2,V3)
[XInXX,y,Z) | [X",y'InXX",y",Z")

Consider now the receiweXx”,y”,z’): in this case the matching function returns condi-
tion Z’ = vz and substitution(X” — vi,y” — Vo}. Functionrec(, , _, ) applied to the
whole term returns the sétx’,y’, Z')}, because the only conflicting receiven®x’,y’, 7).
Thus, the corresponding transition is -

nl(vi, V2, v3) | [X Y, A nXX Y, 2) [ [X]nXX,Y,Z) | [X",y']nXX",y", Z")

(Y #V2 VZ#V3) AZ"=V3,n 0 2(V1,\2,V3)

[X. Y, AnAXY, 2) | [X]nXX, V2, Z)

Moreover, the receive activities can communicate with therenment; in this case the
conflict checks are performed by rukepar.nrz). FOr example, the transition corresponding
to the execution ohx,y, 2) is

nl(vi, V2, Va) | [X Y, nXX Y, 2) | [X]nXX, Y, Z) [ [X",y’"]nXX",y", Z%)
x#Eon Ay#bn Az#bn A (Y 2y V Z#2) AZ7#Z, 0> [(XY,D] (XY,D)

nl(vi, V2, v3) | [XInXX, Y, Z) | [X",y']nXX",y",Z")
Finally, as another example consider the following term:
nl(v1, V2, V3) | [X Y, nXX Y, 2) | [X]nXX, V2, V3)

If we try to infer the transition corresponding to the comication withnx,y, 2), we
have that the condition on the transition labdiilse because functiorec(_, , -, -) returns
(X', Vo, v3) andgval((X’, v, v3)) = 0.

6 Related work and concluding remarks

Symbolic semantics and symbolic bisimulation were firgtodticed in 13] by Hennessy
and Lin on value-passing process algebras. The symbolioagip has been then applied to
n-calculus in R4] by Sangiorgi and in4] by Boreale and De Nicola. Victor has adopted a
similar approach ing5] to efficiently characterise hyperequivalence for the fusionutak:

A more recent work on a symbolic semantics for a fusion-basdcllus is §] by Buscemi
and Montanari. A revisited symbolic technique focalculus has been recently proposed
in [2] by Bonchi and Montanari.

COWS is a process calculus introduced 16][for specifying and combining service-
oriented applications, while modelling their dynamic babar. Since its definition, a
number of methods and tools have been devised to analyse Gp¥¢8ications, such as a
type system to check confidentiality properti&g][ a logic and a model checker to express
and check functional properties of servicd4][ a stochastic extension to enable quanti-
tative reasoning on service behaviou2Z][ a static analysis to establish properties of the
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flow of information between serviced][ and bisimulation-based observational semantics
to check interchangeability of services and conformanegnagservice specification3).

An overview of some of the above tools, with an applicatiothimanalysis of a case study,
can be found in18].

We believe that the alternative symbolic operational s¢imadefined in this paper can
pave the way for the development dfieient model and equivalence checkers for COWS.
In fact, the model checking approach @fl] does not support a fully compositional veri-
fication methodology. It allows to analyse systems of ses/ias a whole’, but does not
enable analysis of services in isolation (e.g. a providefce without a proper client). The
symbolic operational semantics should permit to overcdrisdimitation that is somewhat
related to the original semantics of COWS which, althougbedson an LTS, follows a re-
duction style. Furthermore, the symbolic operational sgioga can be used to improve ef-
ficiency of checking the equivalences introduced28|] This, of course, requires defining
alternative characterizations of the equivalences on tdapeosymbolic transition system.
We plan to pursue these lines of research in the near futndeingparticular to implement
the operational semantics and equivalence and model aiseakeop of it.
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