
WWV 2008

Specification and analysis of SOC systems
using COWS: A finance case study 1

Federico Banti2 Alessandro Lapadula3 Rosario Pugliese4

Francesco Tiezzi5

Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze

50134 Firenze, Italy

Abstract

Service-oriented computing, an emerging paradigm for distributed computing based on the use of services,
is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse
their behaviour. Therefore many researchers have proposed to use process calculi, a cornerstone of current
foundational research on specification and analysis of concurrent and distributed systems.
We illustrate this approach by focussing on COWS, a process calculus expressly designed for specifying
and combining services, while modelling their dynamic behaviour. We present the calculus and one of the
analysis techniques it enables, that is based on the temporal logic SocL and the associated model checker
CMC. We demonstrate applicability of our tools by means of a large case study, from the financial domain,
which is first specified in COWS, and then analysed by using SocL to express many significant properties
and CMC to verify them.

Keywords: Service-oriented computing, service orchestration, process calculi, logics and model checking.

1 Introduction

In recent years, the increasing success of e-business, e-learning, e-government, and
other similar emerging models, has led the World Wide Web, initially thought of
as a system for human use, to evolve towards an architecture for service-oriented
computing (SOC) supporting automated use. SOC is a modern attempt, based
on minimizing the dependencies among interacting components, to cope with old
problems related to information exchange and software integration. This new, evo-
lutionary, paradigm advocates the use of ‘services’, namely a sort of loosely coupled,
platform-independent, reusable software components, as the basic blocks for build-
ing interoperable and collaborative applications.

1 This work has been supported by the EU project SENSORIA, IST-2 005-016004.
2 Email: fbanti@gmail.com
3 Email: lapadula@dsi.unifi.it
4 Email: pugliese@dsi.unifi.it
5 Email: tiezzi@dsi.unifi.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:fbanti@gmail.com
mailto:lapadula@dsi.unifi.it
mailto:pugliese@dsi.unifi.it
mailto:tiezzi@dsi.unifi.it

Banti, Lapadula, Pugliese and Tiezzi

SOC systems deliver application functionalities to either end-user applications
or other services. This general paradigm has many possible instantiations, Web
Services (WSs) being probably the most successful and illustrative one. WSs are
software components deployed on the World Wide Web, that can be discovered
and exploited both by human clients and other services. A key factor for the
success of WSs is the fact that their underlying architecture is the Web, that is
nowadays a widespread and extensively used platform suitable to connect different
companies and customers. Indeed, independently developed applications can be
exposed as services and can be interconnected by exploiting the Web infrastructure
with related standards, e.g. HTTP, XML, SOAP, WSDL and UDDI. This way,
proprietary interfaces and data formats are replaced with a standard Web-messaging
infrastructure based on XML technologies, thus facilitating automated integration
of newly built and legacy applications, both within and across enterprise boundaries.
Several international companies have invested a considerable amount of resources
on the web service approach, and the SOC paradigm in general, which are nowadays
supported by a plethora of new languages and technologies.

The new paradigm is calling for the development of tools and techniques to build
safe and trustworthy SOC systems, to analyse their behaviour, and to demonstrate
their conformance to given specifications. In the concurrency theory community,
many researchers believe that process calculi, a cornerstone of current research on
specification and analysis of concurrent and distributed systems, might play a cen-
tral role in laying rigorous methodological foundations for specification and vali-
dation of SOC applications. Indeed, due to their algebraic nature, process calculi
convey in a distilled form the compositional programming style of SOC. Thus, for
example, many well-known problems related to services composition (e.g., messages
not received, race conditions, deadlocks) could be investigated through an adequate
and sufficiently expressive process calculus. Furthermore, process calculi enjoy a
rich repertoire of elegant meta-theories, proof techniques and analytical tools that
can be likely tailored to the needs of SOC. In fact, it has been already argued
that observational semantics, type systems, and modal and temporal logics provide
adequate tools to address topics relevant to SOC (see e.g. [19,25]). This ‘proof
technology’ can eventually pave the way for the development of automatic property
validation tools.

In this paper we illustrate this approach by focussing on COWS (Calculus
for Orchestration of Web Services) [16], one of the many process calculi for SOC
that have then been proposed in the literature (among which we want to mention
[8,7,15,13,9,14,5,6,26]). COWS is a linguistic formalism for specifying and combin-
ing service-oriented systems, while modelling their dynamic behaviour. Although
all the above mentioned formalisms are inspired to well-known process calculi, the
design of COWS is also inspired to WS-BPEL [21], the OASIS standard language
for orchestration of web services. This peculiarity allows to naturally define trans-
lations from COWS specifications into WS-BPEL code and vice versa (see e.g.
[18]), opening the possibility to develop tools for (semi-)automatic WS-BPEL code
generation and (semi-)automatic program verification by COWS based analytical
tools. We will introduce the calculus in Section 3 by first presenting its syntax and
then informally presenting its operational semantics. In Section 4, we demonstrate

2

Banti, Lapadula, Pugliese and Tiezzi

specification style and expressiveness of COWS by means of the specification of a
significant case study, namely a financial scenario studied within the EU project
Sensoria [24] and presented in Section 2.

Since the definition of the calculus, a number of methods and tools have been
devised to analyse COWS specifications, such as the type system to check confiden-
tiality properties of [17], the stochastic extension to enable quantitative reasoning
on service behaviours of [22], the static analysis to establish properties of the flow of
information between services of [3], the bisimulation-based observational semantics
to check interchangeability of services and conformance against service specifications
of [23], and the logic and model checker to express and check functional properties
of services of [11]. We illustrate this latter tools in Section 5, where we present
the branching-time temporal logic SocL, specifically designed to capture peculiar
aspects of services, and show many significant properties of the finance case study
specified with the logic and verified by means of CMC [1], the on-the-fly model
checker for SocL.

Section 6 concludes the paper by also reviewing related work and touching upon
directions for future works. The Appendix reports the complete specification of
the scenario, together with the SocL formulation of the properties we have checked,
written in the syntax of CMC.

2 A finance case study

Hereafter we present a large case study from the financial domain which is cur-
rently investigated within the EU project Sensoria [24] on software engineering
techniques for service-oriented applications. We start by providing an informal
specification of the scenario, then a more detailed UML-based one (Section 2.1) and
finally a formal COWS specification (Section 4). We also point out (Section 2.2)
some desirable properties of the application that are later on formalized by SocL
and checked against the COWS specification with the support of CMC (Section 4).

The considered service is a credit (web) portal that provides the customer com-
panies with the possibility to ask for a loan to a bank, and then orchestrates the
necessary steps for processing the credit request, involving a preliminary evalua-
tion by an employee, and subsequent evaluation by a supervisor before a contract
proposal is sent to the customer.

Initially, the customer logins to the portal by providing his username and pass-
word, then he selects service Credit Request. In the next step, the customer uploads
the necessary data for his request. More specifically, he firstly provides the desired
credit amount, then the securities of the loan and his balance. The service checks
the balance by resorting on a validation service and, in case the balance is not
validated, it asks the user to provide it again.

When the request is completely filled by the customer, the service puts it in the
list of tasks that the bank employees must accomplish. Then, an employee with-
draws the request from the task list and fills his evaluation about it. The evaluation
has a private part (only available for the bank purposes) and a public one which is
available to the customer. The private evaluation consists of the rating of the cus-
tomer company and some additional information. The public evaluation consists of

3

Banti, Lapadula, Pugliese and Tiezzi

the decision about the request and, in case, the bank offer or the motivation for the
rejection. The decision can be to reject the request, to accept it or to ask the cus-
tomer for updating the request. According to the decision, the request processing
may proceed in three different ways.

• If the request is rejected, the customer receives a message containing the response
and its motivations, and then the process terminates.

• If an update is asked, a message is sent to the customer with the update request
and its motivations. The customer may then decide to update the securities
and/or the credit amount or refuse to update. In the latter case, the process
terminates, while in the former one the updated request is processed again as
from above.

• If the request is accepted, the service queues the contract (i.e. the request and
the evaluation) in the list of tasks that the bank supervisors must accomplish.
Then, a supervisor withdraws the contract from the task list and may update the
public evaluation with its own decision. Again, the decision may be to ask for an
update, to reject the request, or to accept it. The first two cases are processed
as above, regarding the last one, the customer receives the offer and may answer
positively or negatively. In both cases the process terminates. If the answer is
positive, the process terminates positively and the contract is sent to an external
service dealing with contracts for which customer and the bank have found an
agreement.

At any moment the customer may require to abort the process. If this happens,
the process terminates and, in case, the request is removed from task lists. As we
will see later on, this last property requires execution of compensation activities
to semantically rollback the action of queueing the request in the task list. This
prevents an employee or a supervisor from examining an already aborted request.

2.1 An UML specification

We report here the UML specification of the scenario and its workflow. We rely,
for what regards the activity diagrams, on a service-oriented profile of UML, i.e.
UML4SOA [2]. Within UML4SOA, interaction activities between services plays
a central role. The specific actions for service interaction are: send a message,
receive a message and send&receive (a synchronous communication where a message
is sent and then the service awaits for a reply). Actions have associated pins: the
link pin specifies which is the partner of the interaction, the input and output pins
specify the exchanged messages for send (only output pins), receive (only input pins),
and send&receive (both input and output pins) actions. For instance, in Fig. 1, a
send&receive action is represented. The link pin, labelled by �link�, specifies that
service Authentication is the partner of the communication, the output pin, labelled
by �snd�, specifies that a message ID is sent and the input pin, labelled by �rcv�,
specifies that a message valid is received as an answer. The most important novelty
in UML4SOA is the possibility to install compensations of executed activities that
are executed in case of failure as discussed in the following.

Firstly, we illustrate the various services of the scenario, their orchestration and

4

Banti, Lapadula, Pugliese and Tiezzi

Fig. 1. An example of action in the profile UML4SOA

the kind of exchanged message. The customer initially logins to the Portal by send-
ing his ID, i.e. his username and password. The customer identity is confirmed by an
Authentication. For each successful login, Portal generates a sessionID, i.e. a datum
univocally identifying a session. The value sessionID is used by the various actors
for exchanging messages after the customer logins. Each message has, in fact, a
body argument containing the exchanged data, and the sessionID as further argu-
ment identifying the corresponding session. This guarantees that messages refer-
ring to different requests are not erroneously mixed together. Portal then sends the
requestID, i.e. the couple of sessionID and customer username, to service Information
Upload, that starts a conversation with the customer in order to fill the request. The
customer balance is validated by a Validation service. The filled request is then sent
to Request Processing. Request Processing relies on employee and supervisor Task List
services (shortened into empTaskList and supTaskList, respectively) for storing the
request that is successively retrieved by, respectively, an employee and a supervi-
sor, each of whom fills an Evaluation and forwards it to Request Processing. An
Evaluation has two parts, i.e. Public Evaluation and Private Evaluation. The former
is a tuple containing the strings Offer (the offer made to the customer), Motivation
(the motivations of the rejection or of the request for an update) and Decision,
which is equal to one of the values Accept, Reject or AskToUpdate. The latter is a
tuple containing the strings rating and AdditionalInfo. Together, a Request and its
Evaluation form a Contract. If either the employee or the supervisor asks to update
the request, the related Contract is sent to service Information Update, that asks
to the customer whether he wants to update the request and, in case, sends the
updated request back to Request Processing . Finally, when an agreement between
the bank and the customer is established, the related Contract is forwarded to a
Contract Processing service.

We now specify the behavior of the involved services, i.e. Portal, Information
Upload, Information Update and Request Processing, whose internal behavior is fun-
damental for a correct specification and implementation of the whole workflow.

The diagram of Fig. 2 relates to the interaction between the customer and
service Portal. The customer ID is sent to the portal that starts a login scope.
Portal synchronously exchanges messages with service Authentication, sending the
customer ID and receiving back the boolean valid. If valid=No, the service sends
back to the customer a message signaling the failure of the login and then raises
the exception failedLogin that terminates the process. If valid=Yes, the service
generates (by means of action �create�) a new sessionID and sends it back to the
customer. Portal receives the customer choice about the desired service (here we only
consider service Credit Request) and invokes service Information Upload (shortened
into InfoUpload) sending to it a message with the requestID. From then on, the
customer communicates with InfoUpload.

5

Banti, Lapadula, Pugliese and Tiezzi

Fig. 2. Service Portal activity diagram

6

Banti, Lapadula, Pugliese and Tiezzi

After the login, service InfoUpload (see Fig. 3) starts a conversation with the
customer whose purpose is to produce a Request. The service workflow immediately
forks in two parallel branches, one responsible for collecting the data of the Request,
while the other one awaits for a message cancel from the customer, meaning that
the customer wants to abort the process. In the last case, an exception abort is
raised and the process terminates. The branch responsible of collecting the data of
the Request first receives the desired amount from the customer. After that, the
customer may choose to send first either his balance or the securities (shortened sec),
hence the workflow forks in two parallel branches awaiting to receive the messages
with this two data. Moreover, the branch responsible of receiving the balance, sends
it to service Validation, that replies with a message containing the boolean valid. If
valid=Yes, the workflow proceeds, otherwise, it sends a message to the customer,
asking to resend the balance, and then cycles and awaits to receive a new message.
After both the branches are completed, service InfoUpload terminates by invoking
Request Processing (shortened into reqProcessing) and sending the Request to it.

Service Information Update (shortened into InfoUpdate) is similar to the previous
service (see Fig. 4) but, unlike InfoUpload, it starts already receiving a Contract
containing the existing Request and the Motivation for the request of an update. The
Motivation and the request of an update are sent to the customer and the service
awaits to receive an Answer. If Answer=No the process terminates, otherwise the
workflow forks in two parallel branches. In one branch, the service asks the customer
if he wants to update the securities: if the answer is positive, the service awaits to
receive the new securities and then reaches a join point with the other branch,
otherwise it immediately reaches the join point. The other branch does the same
activities but with the amount in place of the securities. After both the branches
have reached the join point, the service terminates by sending the updated Request
back to service reqProcessing. In parallel with the described branch, the service
starts another branch awaiting for a cancel request from the customer, exactly as
in the case of InfoUpload described above.

As above specified, both InfoUpload and InfoUpdate send a request to
reqProcessing (see Fig. 5). As for InfoUpload and InfoUpdate, the workflow ini-
tially forks in two branches, one responsible of the main interactions, while the
other awaits to receive a cancel message from the customer and, in case, triggers
an abort exception. Regarding the main branch, the received request is sent to ser-
vice empTaskList that queues it. It is possible that the customer decides to cancel
the request after this step has been performed. In this case, the request must be
deleted from the task list, in order to prevent an employee to examine an already
aborted request. Hence, the action of sending the request must be compensated
with a delete action removing it from the task list. For this purpose, the service
installs a ‘compensation handler’ consisting of an action sending the message Delete
to service empTaskList. This message asks empTaskList to delete Request. Note
that reqProcessing may not directly delete a request from a task list, since task lists
are managed by services empTaskList and supTasklist that are autonomous from
reqProcessing.

After sending the Request, reqProcessing awaits for the related Evaluation from
an employee. The workflow then follows three alternative lines, according to the

7

Banti, Lapadula, Pugliese and Tiezzi

Fig. 3. Service InfoUpload activity diagram

8

Banti, Lapadula, Pugliese and Tiezzi

Fig. 4. Service InfoUpdate activity diagram

9

Banti, Lapadula, Pugliese and Tiezzi

Fig. 5. Service reqProcessing activity diagram

10

Banti, Lapadula, Pugliese and Tiezzi

value of the argument Decision of Evaluation. If Decision=Reject, the service sends
the Public Evaluation (shortened pubEvaluation), containing the decision and its mo-
tivation, to the customer and then terminates. If Decision=AskToUpdate, the ser-
vice terminates by sending the Contract, containing the decision, its motivation
and the request to InfoUpdate illustrated above. Finally, if Decision=Accept the
second step of evaluation, similar to the described one, starts. The Contract is
sent to supTaskList and the related compensation, asking for the deletion of the
Contract from the supervisor task list, is installed. The service then awaits for
the pubEvaluation by a supervisor. If Decision=Reject or Decision=AskToUpdate the
service performs the same actions described above. If Decision=Accept, the service
sends the pubEvaluation with the Decision and the bank Offer to the customer and
awaits for his Answer. If Answer=No the process terminates, if Answer=Yes the ser-
vice sends the Contract to a Contract Processing service and the process successfully
terminates.

It still remains to examine the case when a customer asks to cancel the request
while reqProcessing is running. As for services InfoUpload and InfoUpdate, the cancel
message is received by a secondary branch of the process running in parallel with
the main branch described above; then an exception abort is raised that eventually
leads to process termination. However, before ending the process, some compen-
sation activities may be required. The action �Compensate All� is executed; the
meaning of this action is to execute all the installed compensations. Hence, if no
compensation has yet been installed, the compensation activity is empty. If only
the request of deletion for the employee task list was installed, that compensation
is executed. If both the requests of deletion for the employee and the supervisor
task lists were installed, the latter is first executed followed by the former.

2.2 Some expected properties

There are several requirements and properties concerning to liveness, correctness,
and security that an implementation of the described scenario is expected to fulfill.
Among these, in the following we will focus on:

Availability: The credit portal is always capable to accept a credit request.

Responsiveness: Whenever the customer uploads a credit request he always gets
an answer, unless he cancels his own request.

Correlation soundness: The customer always receives an answer which is relative
to his credit request. Thus, it never occurs that the service sends him an evalu-
ation related to another credit request or that it mixes data related to different
credit requests.

Interruptibility: The customer may require the abort of the process after that he
has selected the credit request service.

We will also examine some behavioral properties more specific for the case study
like the following ones.

(i) The customer can receive an offer only after its credit request has been suc-
cessfully evaluated by a supervisor.

(ii) The customer can receive a negative response only after its credit request has

11

Banti, Lapadula, Pugliese and Tiezzi

s ::= kill(k) | u •u′!ε̄ (kill, invoke)

|
∑l

i=0 pi • oi?w̄i.si | s | s (receive-guarded choice, parallel)

| {|s|} | [e] s | ∗ s (protection, delimitation, replication)

Table 1
COWS syntax

been negatively evaluated by an employee or a supervisor, or the given balance
has deemed not to be valid.

(iii) If a credit request is accepted to be evaluated and the customer requires the
cancellation, then compensation must be activated.

(iv) If a credit request is demanded to be updated, the customer will be notified or
a cancellation will be invoked.

(v) Before processing a credit request, the customer must insert securities and
balance data.

(vi) A credit request can always succeed.

(vii) A supervisor can always be involved for evaluating a credit request.

3 COWS: a Calculus for Orchestration of Web Services

In this section, we introduce the syntax of COWS and a glimpse of its semantics,
and refer the interested reader to [16] for a formal presentation, for examples illus-
trating peculiarities and expressiveness of the language, and for comparisons with
other process-based and orchestration formalisms. To get accustomed to using the
language one can also use CMC, that, other than the model checking of SocL for-
mulae, also supports the automated derivation of all computations originating from
a COWS term.

The syntax of COWS is presented in Table 1. It is parameterized by three count-
able and pairwise disjoint sets: the set of (killer) labels (ranged over by k, k′, . . .),
the set of values (ranged over by v, v′, . . .) and the set of ‘write once’ variables
(ranged over by x, y, . . .). The set of values is left unspecified; however, we assume
that it includes the set of names, ranged over by n, m, o, p, . . . , mainly used to
represent partners and operations. The language is also parameterized by a set of
expressions, ranged over by ε, whose exact syntax is deliberately omitted. We just
assume that expressions contain, at least, values and variables, but do not include
killer labels (that, hence, are not communicable values). Partner names and op-
eration names can be combined to designate endpoints, written p • o, and can be
communicated, but dynamically received names can only be used for service invo-
cation. Indeed, endpoints of receive activities are identified statically because their
syntax only allows using names and not variables.

We use w to range over values and variables, u to range over names and variables,
and e to range over elements, namely killer labels, names and variables. Notation
·̄ stands for tuples (i.e. ordered sequences) of homogeneous elements, e.g. x̄ is a
compact notation for denoting the tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0). We

12

Banti, Lapadula, Pugliese and Tiezzi

assume that variables in the same tuple are pairwise distinct. All notations shall
extend to tuples component-wise. We adopt the following conventions about oper-
ators precedence: monadic operators bind more tightly than parallel composition,
and prefixing more tightly than choice. In the sequel, we shall use 0 to denote
empty choice and + to abbreviate binary choice. We will omit trailing occurrences
of 0, writing e.g. p • o?w̄ instead of p • o?w̄.0, and write [e1, . . . , en] s in place of
[e1] . . . [en] s. We will write I , s to assign a name I to the term s.

Invoke and receive are the basic communication activities provided by COWS.
An invoke can proceed as soon as evaluation of the expressions in its argument
returns the corresponding values. A receive offers an invocable operation along a
given partner name and its execution permits to take a decision among alternative
behaviours. Besides input parameters and sent values, both activities indicate an
endpoint, i.e. a pair composed of a partner name p and of an operation name o,
through which communication should occur. An endpoint p • o can be interpreted
as a specific implementation of operation o provided by the service identified by the
logic name p.

The naming mechanism used to identify endpoints is very flexible. For exam-
ple, it allows the same service to be identified by means of different logic names
(i.e. to play more than one partner role as in WS-BPEL). Thus, the term
pslow • o?w̄.sslow + pfast • o?w̄.sfast accepts requests for the same operation o (with
parameters w̄) through different partners with distinct access modalities: the con-
tinuation sslow implements a ‘slower service’ provided when the request is processed
through the partner pslow , while sfast implements a ‘faster service’ provided when
the request arrives through pfast . Additionally, the naming mechanism allows the
names composing an endpoint to be dealt with separately, as in a request-response
interaction, where usually the service provider knows the name of the response op-
eration, but not the partner name of the service it has to reply to. For example,
the term ping • req?〈x〉. x • res!〈“I live”〉 behaves as a sort of ‘ping’ service that will
know at run-time the partner name for the reply activity, i.e. the service which will
be bound to x. In fact, partner and operation names are dealt with as values and,
as such, can be exchanged in communication (although dynamically received names
cannot form the endpoints used to receive further invocations). This enables easily
modelling many service interaction and reconfiguration patterns.

An inter-service communication takes place when the arguments of a receive and
of a concurrent invoke along the same endpoint do match, and causes substitution
of the variables arguments of the receive with the corresponding values arguments
of the invoke (within the scope of variables declarations). The substitution for a
variable is applied only when the whole scope of the variable is determined and
to the term resulting from removing the delimitation. In fact, to enable parallel
terms to share the state (or part of it), receive activities in COWS do not bind
variables, which is different from most process calculi. The range of application of
the substitution generated by a communication is then regulated by the delimitation
operator (namely, [e] s binds e in the scope s), that is the only binder of the calculus.
Delimitation is also used to generate fresh names (as the restriction operator of the
π-calculus [20]) and to delimit the field of action of kill activities.

Execution of a kill activity kill(k) causes termination of all parallel terms in-

13

Banti, Lapadula, Pugliese and Tiezzi

side the enclosing [k] , that stops the killing effect. However, critical code can be
protected from the effect of a forced termination by using the protection operator.
Notably, the scope of names and variables can be extended (by using ‘structural
laws’ similar to those dealing with restricted names in the π-calculus), while that
of killer labels cannot (in fact, they are not communicable values). The replica-
tion operator permits to spawn in parallel as many copies of its argument term as
necessary thus, for example, enabling creation of concurrent service instances.

Execution of parallel terms is interleaved, but when a communication or a kill
activity can be performed. Indeed, COWS parallel operator is equipped with a
priority mechanism which allows some actions to take precedence over others.

For example, when a message arrives, the problem arises of rightly handling race
conditions among those service instances and the corresponding service definition
which are able to receive the message. This requires being able to determine if the
message must be delivered to an already existing instance or if it must produce a
new instance (i.e. it has to be delivered to the service definition). Receive activities
are then assigned priority values which depend on the messages available so that,
in presence of concurrent matching receives, only a receive using a more defined
pattern (i.e. having greater priority) can proceed. This way, service definitions
and service instances are represented as processes running concurrently, but service
instances take precedence over the corresponding service definition when both can
process the same message, thus preventing creation of wrong new instances.

Notably, receives would have dynamically assigned priority values since these
values depend on the matching ability of their argument pattern. Indeed, while
computation proceeds, some of the variables used in the argument pattern of a
receive can be assigned values, because of execution of concurrent threads sharing
these variables. This, on the one hand, restricts the set of messages matching the
pattern but, on the other hand, increases the priority of the receive in comparison
with other receives matching a same message. Furthermore, pre-emption is local
since receives with greater priority can only pre-empt receives that are competing
for the same message.

Moreover, COWS’s priority mechanism assigns greatest priority to kill activities
so that they pre-empt all other activities inside the enclosing killer label’s delimi-
tation. In other words, kill activities are executed eagerly, this way ensuring that,
when a fault arises in a scope, (some of) the remaining activities of the enclosing
scope are terminated before starting execution of the relative fault handler. In fact,
activities forcing immediate termination of other concurrent activities are usually
used for modelling fault handling. The same mechanism, of course, can also be used
for exception and compensation handling.

4 A COWS specification of the finance case study

In this section, we present a relevant part of the COWS specification modelling the
finance case study (the complete specification, written in CMC ‘machine readable’
syntax, is reported in the Appendix).

The COWS term representing the overall scenario is

14

Banti, Lapadula, Pugliese and Tiezzi

[key] (Customer | CreditInstitute)
| Validation | Employee1 | . . . | Employeen | Supervisor1 | . . . | Supervisorm

The services above are composed by using the parallel composition operator |
that allows the different components to be concurrently executed and to interact
with each other. The delimitation operator [] is used here to declare that key is a
shared element known to Customer and CreditInstitute, and only to them.

CreditInstitute is defined as follows

[createInst , reqProcessing , reqUpdate, contractProcessing]
([authentication,notAuthorized , authorized] (Portal | Authentication)
| InformationUpload | InformationUpdate | RequestProcessing
| ContractProcessing | EmployeeTaskList | SupervisorTaskList)

The term is the parallel composition of the (considered) subservices of the credit
institute: the behaviour of Portal , InformationUpload , InformationUpdate and
RequestProcessing is graphically represented by the UML activity diagrams depicted
in Fig. 2, 3, 4 and 5; Authentication and ContractProcessing appear as external ser-
vices in Fig. 2 and 5, respectively.

The delimitation operator ensures that operations authentication, notAuthorized
and authorized are used to communicate only by Portal and Authentication, while
operations createInst , reqProcessing , reqUpdate and contractProcessing can also be
used by the other subservices. This guarantees that external services cannot inter-
fere with the credit portal during the login and instantiation phases.

Service Portal is publicly invocable and can interact with customers other than
with the ‘internal’ services of the credit institute. Portal is defined as follows:

∗ [xuser, xpwd, xcust]
portal • login?〈xuser, xpwd, xcust〉.
(portal •authentication!〈xuser, xpwd〉
| portal •notAuthorized?〈xuser〉. xcust • failedLogin!〈key〉

+ portal •authorized?〈xuser〉.
[sessionID] (xcust • logged!〈key, sessionID〉

| portal • creditRequest?〈sessionID〉.
portal • createInst!〈sessionID〉

+ portal • bankTransferRequest?〈sessionID〉. . . .

+ . . . other services provided by the credit portal . . .))

The replication operator ∗ , that spawns in parallel as many copies of its argument
term as necessary, is exploited to model the fact that Portal can create multiple
instances to serve several customer requests simultaneously. Each interaction with
the portal starts with a receive activity of the form portal • login?〈xuser, xpwd, xcust〉
corresponding to reception of a request emitted by a customer. The receive activ-
ity initializes the variables xuser, xpwd and xcust, declared local to Portal by the
delimitation operator, with data provided by a customer. Whenever prompted by
a customer request, Portal creates an instance to serve that specific request and
is immediately ready to concurrently serve other requests. Each instance forwards

15

Banti, Lapadula, Pugliese and Tiezzi

the request to Authentication, by invoking the ‘internal’ operation authentication

through the invoke activity portal • authentication!〈xuser, xpwd〉, and waits for a
reply on one of the other two internal operations notAuthorized and authorized,
by exploiting the receive-guarded choice operator. In case of a positive answer, by
means of the delimitation operator, a fresh session identifier sessionID is generated,
and a reply is sent back to the customer by means of an invoke activity using the
partner name of the customer stored in the variable xcust. Moreover, by using the
choice operator again, Portal allows the customer to choose among several services
(however, only the credit request service is actually modelled). Whenever the cus-
tomer selects this service, InformationUpload is instantiated through invocation of
the private operation createInst . Notably, the identifier sessionID is passed both to
Customer and to the created instance of InformationUpload , to allow them to safely
communicate. In fact, in each interaction between Customer and the instances of
the credit institute subservices, the identifier is used as a correlation datum, i.e.
it appears within each message. Pattern-matching permits locating such datum in
the messages and, therefore, delivering them to the instances identified by the same
datum.

InformationUpload is defined as follows:

∗ [xid] portal • createInst?〈xid〉.
[k, fault, abort] (

[kabortFault] (
[xcustData, xsecData, xamount, xcust]
portal • getCreditRequest?〈xid, xcustData, xamount, xcust〉.

(portal • securities?〈xid, xsecData〉
| repeat

[xbalance] portal • balance?〈xid, xbalance〉.
(validation • validateBalance!〈xid, portal, xbalance〉
| portal • validateBalance?〈xid, no〉.

xcust • balanceNotValid !〈xid〉
+ portal • validateBalance?〈xid, yes〉)

until (xbalance is valid)
) ; (kill(k) | {|portal • reqProcessing!〈xid, xcustData, xsecData,

xbalance, xamount, xcust〉|})
| portal • cancel?〈xid〉. (kill(kabortFault) | {|fault •abort!〈〉|}))

| fault •abort?〈〉.0)

Each instance of InformationUpload is created to serve a customer request identified
by a specific session identifier. Once created, an instance is actually activated
by Customer by invoking operation getCreditRequest and transmitting the credit
request application data (i.e. name, address, desired credit amount, . . .). Then,
two activities are concurrently executed: (1) additional security data are received,
and (2) balance information are received and forwarded to Validation for checking
consistency and validation; if the verification was negative (i.e. the second argument
of operation validateBalance is no), then Customer is informed and (2) is repeated.
Notice that, for the sake of readability, in the COWS term we have used repeat

16

Banti, Lapadula, Pugliese and Tiezzi

loop and sequential constructs. In fact, they can be easily expressed in COWS,
as shown in the CMC specification reported in the Appendix. When (1) and (2)
terminate successfully, RequestProcessing is instantiated, by invoking the (private)
operation reqProcessing and initialising the created instance with all the request
data (i.e. customer data, amount, security data and balance information). Notably,
at any time after the login Customer can require the cancellation of the credit
request processing by invoking operation cancel using the identifier. This causes
the forced termination of all unprotected parallel activities, through the execution of
the activity kill(kabort), and the emission of an (internal) fault signal fault •abort!〈〉.
To deal with such faults, each instance has a specific fault handler, that catches a
fault and does nothing. If an instance completes successfully, then its fault handler
is removed by executing the activity kill(k).

RequestProcessing is defined as follows:

∗ [xid, xcustData, xsecData, xbalance, xamount, xcust]
portal • reqProcessing?〈xid, xcustData, xsecData, xbalance, xamount, xcust〉.
[k, fault, abort, undo] (

[kabortFault] (
portal • addToETL!〈xid, xsecData, xbalance, xamount〉
| portal • taskAddedToETL?〈xid〉.

({|portal •undo?〈empTaskList〉. portal • removeTaskETL!〈xid〉|}
| EmployeeEval)

| portal • cancel?〈xid〉. (kill(kabortFault) | {|fault •abort!〈〉|}))
| fault •abort?〈〉.

(portal •undo!〈empTaskList〉 | portal •undo!〈supTaskList〉))

When an instance of RequestProcessing is created, all the data relevant for comput-
ing the rating are inserted in the EmployeeTaskList , through invocation of operation
addToETL. When an acknowledgment from EmployeeTaskList is received, a com-
pensation handler for undoing the insertion activity is installed, and the instance
is blocked waiting for the employee evaluation (term EmployeeEval). The compen-
sation handler is a protected term waiting for a compensation request, i.e. a signal
empTaskList along portal • undo. When this signal is received, the compensation
handler becomes active and, to compensate the insertion activity, invokes operation
removeTaskETL provided by EmployeeTaskList . Compensation is activated by the
body of the fault handler, that sends the two compensation signals empTaskList

and supTaskList (corresponding to action �Compensate All� of Fig. 5).
The term EmployeeEval is

[xrating, xinfo, xdecision]
portal • empEvaluation?〈xid, xrating, xinfo, xdecision〉.
[cond, choice] (cond • choice!〈xdecision〉

| cond • choice?〈no〉. (kill(k) | {|xcust •negativeResp!〈xid, xinfo〉|})
+ cond • choice?〈update〉.

(kill(k) | {|portal • reqUpdate!〈xid, xcustData, xsecData, xbalance,

xamount, xcust, xinfo〉|})

17

Banti, Lapadula, Pugliese and Tiezzi

+ cond • choice?〈yes〉.
(portal •addToSTL!〈xid, xsecData, xbalance, xamount, xinfo〉
| portal • taskAddedToSTL?〈xid〉.

({|portal •undo?〈supTaskList〉. portal • removeTaskSTL!〈xid〉|}
| SupervisorEval))

It receives the employee evaluation and performs a choice on the basis of the value
stored in the variable xdecision, that can be either no (i.e. the credit request is re-
jected), or update (i.e. the customer is asked to update the desired amount and/or
the security data), or yes (i.e. the employee accepts the request). Conditional
choice is modelled in a natural way by a choice among three receives along the
private endpoint cond • choice, and by relying on pattern-matching. In case of no

and update, the instance is halted (by means of a kill activity), while in case of
acceptance the request data are inserted in the supervisor task list, the correspond-
ing compensation handler (i.e. the protected term) is installed, and the instance is
blocked waiting for the supervisor evaluation (term SupervisorEval).

Finally, SupervisorEval is

[xoffer , xmotivation, xsupDecision]
portal • supEvaluation?〈xid, xoffer , xmotivation, xsupDecision〉.
[cond, choice] (cond • choice!〈xsupDecision〉

| cond • choice?〈no〉. (kill(k) | {|xcust •negativeResp!〈xid, xmotivation〉|})
+ cond • choice?〈update〉.

(kill(k) | {|portal • reqUpdate!〈xid, xcustData, xsecData, xbalance,

xamount, xcust, xmotivation〉|})+ cond • choice?〈yes〉.
(xcust • offer !〈xid, xoffer , xmotivation〉
| portal •answer?〈xid, yes〉.

(kill(k) | {|portal • contractProcessing!〈xid, xcustData, xsecData,

xbalance, xamount, xcust, xrating, xinfo, xoffer , xmotivation〉|})
+ portal •answer?〈xid, no〉.kill(k)))

The above term behaves similarly to EmployeeEval except for the case of positive
evaluation, for which it sends an offer to the customer and, in case of acceptance,
forwards all the information to ContractProcessing .

The remaining terms composing the scenario are reported in the Appendix. In
particular, the task list services EmployeeTaskList and SupervisorTaskList could
be modelled in different ways, according to the underlying data structures and the
properties that they enjoy. For simplicity sake, in the specification reported in the
Appendix, task lists do not preserve the arrival order of requests that are then
withdrawn in a non deterministic way.

5 Analysis of the finance case study

The analysis of the case study is carried out by exploiting the logical verification
environment introduced in [11] for checking functional properties of services. This
environment provides:

18

Banti, Lapadula, Pugliese and Tiezzi

• SocL: an action- and state-based, branching time, temporal logic expressly de-
signed to formalise in a convenient way peculiar aspects of services, such as, e.g.,
acceptance of a request, provision of a response, and correlation among service
requests and responses;

• CMC: the on-the-fly model checker for SocL formulae over their interpretation
domain, namely Doubly Labelled Transition Systems (L2TSs, [10]).

This approach takes an abstract point of view: services are thought of as soft-
ware entities which may have an internal state and can interact with each other.
Actions that services can do are characterised by a type, e.g. accept a request, pro-
vide a response, etc., and belong to an interaction started when a client (possibly
another service) firstly invokes one of the operations exposed by the service. To
univocally identify an action, since multiple instances of a same interaction can be
simultaneously active because service operations can be independently invoked by
several clients, correlation data are used as a third attribute of service actions.

Correspondingly, the actions of the logic are characterised by three attributes:
type, interaction name, and correlation data. They may also contain variables,
called correlation variables, to enable capturing correlation data used to link to-
gether actions executed as part of the same interaction. For a given correlation
variable var, its binding occurrence is denoted by var; all remaining occurrences,
that are called free, are denoted by var. Formally, SocL actions have the form
t(i, c), where t is the type of the action, i is the name of the interaction which the
action is part of, and c is a tuple of correlation values and variables identifying the
interaction (i and c can be omitted whenever do not play any role). We use α as a
generic action (notation · emphasises the fact that the action may contain variable
binders), and α as a generic action without variable binders.

For example, action request(cr, 1234) could stand for a request action for starting
an (instance of the) interaction cr which will be identified through the correlation
tuple 〈1234〉. If some correlation value is unknown at design time, a (binder for
a) correlation variable id can be used instead, as in the action request(charge, id).
This way, during the formula verification process, id will capture the corresponding
value that can be then used to correlate subsequent actions performed as part of
the same interaction. Thus, for instance, the successful response action for the
specific request above could be written as response(cr, id). Similarly, actions like
cancel(cr, id) and fail(cr, id) could indicate cancellation and failure notification for
the same request.

The syntax of SocL formulae is defined as follows:

(action formulae) γ ::= α | χ χ ::= tt | α | τ | ¬χ | χ ∧ χ

(state formulae) φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

(path formulae) Ψ ::= Xγφ | φ χUγ φ′ | φ χWγ φ′

We comment on salient points. Action formulae are simply boolean compositions
of actions, where tt is the action formula always satisfied, τ denotes unobservable
actions, ¬ and ∧ are the standard logical operator for negation and conjunction,
respectively. As usual, we will use ff to abbreviate ¬tt and χ ∨ χ′ to abbreviate

19

Banti, Lapadula, Pugliese and Tiezzi

¬(¬χ ∧ ¬χ′). π denotes an atomic proposition, that is a property that can be true
over the states of services. Atomic propositions have the form p(i, c), where p is the
name, i is an interaction name, and c is a tuple of correlation values and variables
identifying i (as before, i and c can be omitted whenever do not play any role).
A and E are universal and existential (resp.) path quantifiers. X, U and W are
the next , until and weak until operators. The next operator says that in the next
state of the path, reached by an action satisfying γ, the formula φ holds. The until
operator U says that φ′ holds at some future state of the path reached by a last
action satisfying γ, while φ holds from the current state until that state is reached
and all the actions executed in the meanwhile along the path satisfy χ or τ (i.e.
are unobservable). The weak until operator W (also called unless) holds on a path
either if the corresponding strong until operator holds or if for all the states of the
path the formula φ holds and all the actions of the path satisfy χ or τ .

Other useful logic operators can be derived as usual. In particular, the ones that
we use in the sequel are:

• [γ]φ stands for ¬EXγ ¬φ; formula [γ]φ holds in a state q if, and only if, in the
next state of any path starting from q, reached by an action satisfying the action
formula γ, the formula φ holds.

• EFφ stands for φ∨E(true tt Utt φ); formula EFφ holds in a state if, and only if,
φ holds at the starting state or at a future state.

• AGφ stands for ¬EF ¬φ; formula AGφ holds in a state q if, and only if, φ holds
in q and in all the states reachable along any path starting from q.

• EFγ true (resp. AFγ true) stands for E(true tt Uγ true) (resp. A(true tt Uγ true));
formula EFγ true (resp. AFγ true) holds in a state q if, and only if, there exists
a state reachable by a last action satisfying γ along a (resp. any) path starting
from q.

We refer the interested reader to [11] for a formal account of the semantics of SocL
formulae.

5.1 Properties of the case study specified with SocL

In this section we express as SocL formulae the properties that the case study is
expected to fulfill and that we informally introduced in Section 2.2.

Availability: AG(accepting request(login))
This formula means that the service CreditInstitute is available, i.e. it
is always capable to accept a credit request. Indeed, atomic proposition
accepting request(login) means that a state is able to accept a credit request
for interaction login.

Responsiveness and correlation soundness: Both properties are expressed by
the following SocL formula:

AG [request(cr, id)]AFresponse(cr,id)∨fail(cr,id)∨cancel(cr,id) true

This formula means that CreditInstitute is responsive, i.e. it always guaran-
tees an answer (i.e. an offer or a negative response, sent by means of actions
response(cr, id) or fail(cr, id), respectively) to each received credit request, unless

20

Banti, Lapadula, Pugliese and Tiezzi

the customer cancels his own request (by means of action cancel(cr, id)). The
answers from CreditInstitute and the request of cancellation from Customer be-
long to the same interaction cr of the credit request and are properly correlated
by variable id.

Interruptibility: AG [request(cr, id)]EFcancel(cr,id) true
The customer may require the cancellation of a credit request, only after that he
has selected the credit request service.

The specific behavioral properties of the case study are expressed in SocL as
follows.

(i) AG [request(cr, id)]¬E(true¬ response(seval,id)Uresponse(cr,id)true)
The customer can receive an offer (action response(cr, id)) only after its
credit request has been successfully evaluated by a supervisor (action
response(seval, id)).

(ii) AG [request(cr, id)]¬E(true¬ (fail(eeval,id)∨fail(seval,id)∨fail(beval,id))Ufail(cr,id)true)
The customer can receive a negative response only after its credit request has
been negatively evaluated by an employee or a supervisor (as indicated by the
failure of the interactions eeval and seval, respectively) or the given balance
has deemed not to be valid (as indicated by the failure of the interaction beval).

(iii) AG [request(eval, id)]EF [cancel(cr, id)]AFcancel(eval,id) true
If a credit request is accepted to be evaluated (i.e. it is added to some task list
as indicated by the interaction eval) and the customer requires the cancellation
(action cancel(cr, id)), then compensation must be activated, i.e. the task must
be removed from the list (action cancel(eval, id)).

(iv) AG [request(upd, id)]AFresponse(upd,id)∨cancel(cr,id) true
If a credit request is demanded to be updated (interaction upd), the customer
will be notified or a cancellation will be invoked.

(v) AG [request(cr, id)]¬E(true¬ (request(sec,id)∨request(bal,id))Urequest(rproc,id)true)
Before processing a credit request (interaction rproc), the customer must insert
securities (interaction sec) and balance data (interaction bal).

(vi) AG [request(cr, id)]AF¬cancel(cr,id)∨response(cr,id) true
A credit request can always succeed.

(vii) AG [request(cr, id)]AF¬cancel(cr,id)∨request(tostl,id) true
A supervisor can always be involved for evaluating a credit request (interaction
tostl starts when a request is added to the supervisor tasks list).

5.2 Model checking SocL formulae

Although the logical verification environment directly handles L2TSs, we have spec-
ified our case study by using COWS because it is a more convenient notation. Now,
to check if our COWS specification enjoys the properties expressed as SocL formu-
lae in Section 5.1, some steps must be performed. Firstly, the LTS representing the
semantics of the COWS specification must be transformed into a concrete L2TS
by labelling each state with the set of actions the COWS specification is able to
perform immediately from that state. Of course, the transformation preserves the

21

Banti, Lapadula, Pugliese and Tiezzi

{portal.login?<xuser,xpwd,xcust> ,
 portal.login!<usr,1234,customer>, ... }

q0

{portal.login?<xuser,xpwd,xcust> ,
 portal.authentication?<xuser ,xpwd>,
 portal.authentication!<usr, 1234>, ... }

q1

{portal.login?<xuser,xpwd,xcust> ,
 portal.login!<usr,1234,customer>}

q2 q3

{ }

{portal.login?<xuser,xpwd,xcust> ,
 portal.notAuthorized?<usr>,
 portal.notAuthorized!<usr>, ... }

{portal.login?<xuser,xpwd,xcust> ,
 portal.authorized?<usr>,
 portal.authorized!<usr>, ... }

q5
{portal.login?<xuser,xpwd,xcust> ,
 customer.failedLogin?<key>,
 customer.failedLogin!<key>, ... }

{portal.notAuthorized?<usr>,
 portal.notAuthorized!<usr>}

q7
{portal.login?<xuser,xpwd,xcust>,...}

{customer.failedLogin?<key>,
 customer.failedLogin!<key>}

q4
{portal.login?<xuser,xpwd,xcust> ,
 customer.logged?<key,xid>,
 customer.logged!<key,id>,... }

{portal.authorized?<usr>,
 portal.authorized!<usr>}

q6
{portal.login?<xuser,xpwd,xcust> ,
 portal.creditRequest?<id>,
 portal.creditRequest!<id>,...}

{portal.creditRequest?<id>,
 portal.creditRequest!<id>}

{ }

{customer.logged?<key,xid>,
 customer.logged!<key,id>}

{ ... }

Fig. 6. Excerpt of the concrete L2TS for the finance case study

structure of the original COWS LTS. Both in the original LTS and in the L2TS ob-
tained as explained before, transitions are labelled by ‘concrete’ actions, i.e. those
actions occurring in the COWS term. For example, (an excerpt of) the concrete
L2TS obtained by applying this transformation is shown in Fig. 6. Notably, arcs
have attached labels corresponding to communications, retaining all information
contained in the two synchronising invoke and receive activities.

Then, since we are interested in verifying the abstract properties of services
shown in Section 5.1, we need to abstract away from unnecessary details by trans-
forming concrete actions into ‘abstract’ ones. In general, this is done by applying
a set of application-dependent abstraction rules that transform the concrete L2TS
into a more abstract one. Such transformation only involves the concrete actions
we want to observe; the concrete actions that are not replaced by their abstract
counterparts may not be observed. For example, the abstract L2TS shown in Fig. 7
is obtained by applying to the concrete L2TS of Fig. 6 the following rules:

Action : creditRequest〈$1〉 → request(cr, $1)
Action : offer〈$1, ∗, ∗〉 → response(cr, $1)

22

Banti, Lapadula, Pugliese and Tiezzi

q0

{ }

{ request(cr,id) }

{ }

{ }

{ }

{ }

accepting_request(login)

q1
accepting_request(login)

q2
accepting_request(login)

q3
accepting_request(login)

{ }

q4
accepting_request(login)

q5
accepting_request(login)

{ }

q6
accepting_request(login)

q7
accepting_request(login)

{ }

Fig. 7. Excerpt of the abstract L2TS for the finance case study

Action : update〈$1, ∗〉 → fail(cr, $1)
Action : negativeResp〈$1, ∗〉 → fail(cr, $1)
Action : cancel〈$1〉 → cancel(cr, $1)
Action : balanceNotV alid〈$1〉 → fail(cr, $1)
Action : empEvaluation〈$1, ∗, ∗, yes〉 → response(eeval, $1)
Action : empEvaluation〈$1, ∗, ∗, no〉 → fail(eeval, $1)
Action : supEvaluation〈$1, ∗, ∗, yes〉 → response(seval, $1)
Action : supEvaluation〈$1, ∗, ∗, no〉 → fail(seval, $1)
Action : validateBalance〈$1, yes〉 → response(beval, $1)
Action : validateBalance〈$1, no〉 → fail(beval, $1)
Action : taskAddedToETL〈$1〉 → request(eval, $1)
Action : taskAddedToSTL〈$1〉 → request(eval, $1)
Action : taskAddedToSTL〈$1〉 → request(tostl, $1)
Action : removeTaskSTL〈$1〉 → cancel(eval, $1)
Action : removeTaskETL〈$1〉 → cancel(eval, $1)
Action : reqUpdate〈$1, ∗, ∗, ∗, ∗, ∗, ∗〉 → request(upd, $1)
Action : update〈$1, ∗〉 → response(upd, $1)
Action : securities〈$1, ∗〉 → request(sec, $1)
Action : balance〈$1, ∗〉 → request(bal, $1)
Action : reqProcessing〈$1, ∗, ∗, ∗, ∗〉 → request(rproc, $1)
State : login → accepting request(login)

where variable “$1” is used to define parametric abstraction rules and, similarly,

23

Banti, Lapadula, Pugliese and Tiezzi

The Formula: "AG [request(cr,$id)] AF {not cancel(cr,%id) or response(cr,%id)}true"
is: FALSE
(states generated= 255, computations fragments generated= 403)
cmc> ---
The formula: AG [request(cr,$id)] AF {not cancel(cr,%id) or response(cr,%id)} true

is FOUND_FALSE in State C1
...
C9 --> C10 { portal.creditRequest!<sessionID#1#>,

portal.creditRequest?<sessionID#1#> }
{{ {{ request(cr,sessionID#1#) }} }}

and the formula: AF {not cancel(cr,sessionID#1#) or response(cr,sessionID#1#)} true
is FOUND_FALSE in State C10

because
C10 --> C12 { portal.getCreditRequest!<sessionID#1#,data,15000,customer>,

portal.getCreditRequest?<sessionID#1#,CUST_DATA,AMOUNT,CUST> }
{{ {{ }} }}

C12 --> C14 { portal.securities!<sessionID#1#,secValues>,
portal.securities?<sessionID#1#,SEC_DATA> }
{{ {{ request(sec,sessionID#1#) }} }}

C14 --> C17 { portal.balance!<sessionID#1#,balance>,
portal.balance?<sessionID#1#,BALANCE> }
{{ {{ request(bal,sessionID#1#) }} }}

C17 --> C23 { validation.validateBalance!<sessionID#1#,portal,balance>,
validation.validateBalance?<ID,BANK,BALANCE> }
{{ {{ }} }}

C23 --> C28 { portal.validateBalance!<sessionID#1#,yes>,
portal.validateBalance?<sessionID#1#,yes> }
{{ {{ response(beval,sessionID#1#) }} }}

C31 --> C112 { portal.reqProcessing#1#!<sessionID#1#,data,secValues,balance,15000,customer>,
portal.reqProcessing#1#?<ID,CUST_DATA,SEC_DATA,BALANCE,AMOUNT,CUST> }
{{ {{ }} }}

C112 --> C244 { portal.empEvaluation!<sessionID#1#,rating,additionalInfo,no>,
portal.empEvaluation?<sessionID#1#,RATING,ADDITIONAL_INFO,DECISION> }
{{ {{ fail(eeval,sessionID#1#) }} }}

C249 --> C251 { customer.negativeResp!<sessionID#1#,additionalInfo>,
customer.negativeResp?<sessionID#1#,MOTIVATIONS> }
{{ {{ fail(cr,sessionID#1#) }} }}

Table 2
CMC: a counterexample

the wildcard “ ∗ ” is used for increasing flexibility.
We comment on some of the rules, the remaining ones are interpreted simi-

larly. The first rule prescribes that whenever an action over the endpoint portal•

creditRequest, with any sent data 〈id〉 matching 〈$1〉, occurs in the label of a transi-
tion, then it is replaced by the abstract action request(cr, id). Similarly, the second
rule prescribes that whenever an action over the endpoint cust•offer , with any sent
data 〈id, offer ,motivation〉 matching 〈$1, ∗, ∗〉, occurs in the label of a transition,
then it is replaced by the abstract action response(cr, id). This way, data offer
and motivation are discharged in the ‘abstraction process’, while session identifier
id is used to correlate responses from the contacted Portal service. To correlate
cancellations to the corresponding credit requests, the fifth rule permits replacing
actions involving operation cancel, with any sent data 〈id〉 matching 〈$1〉, by ab-
stract action cancel(cr, id). The last rule works similarly, but it applies to labels of
states rather than to labels of transitions.

Finally, the SocL formulae are checked over the abstract L2TS obtained by ap-
plying the previous rules. The overall verification process is supported by CMC. One
can thus verify that, as expected, all the abstract properties we presented before do
hold for the COWS specification of the finance case study, except for the last two
properties, because, e.g., a supervisor can evaluate a credit request negatively. In
case a property does not hold, CMC produces a clear and detailed explanation of
the returned results, i.e. a so called counterexample. For example, Fig. 5.2 shows
an excerpt of the output returned by CMC when checking the second-last property.

24

Banti, Lapadula, Pugliese and Tiezzi

6 Concluding remarks

We have presented an approach to the specification and analysis of SOC systems
based on the process calculus COWS and the temporal logic SocL. The design of
COWS is inspired to π-calculus, and other similar calculi, and to the web service
orchestration language WS-BPEL. In particular, activities invoke and receive allow
communication with other services in a way similar to the homonymous WS-BPEL

activities, while activity kill(k) for forcing termination supports more primitive and
flexible forms of fault and compensation handling with respect to WS-BPEL. The
case study we have considered, rather than being just a toy example, describes
a realistic service-oriented scenario from the financial domain currently under in-
vestigation within the EU project Sensoria. The system and its workflow have
been described both informally and by resorting on UML activity diagrams. When
moving on the COWS specification, the complexity of the system has demanded
full exploitation of features and expressive capabilities of COWS, like delimitation,
pattern-matching, service instances, fault handling and compensation. The COWS

specification has been used as a model for analyzing and checking behavioral prop-
erties of the service system. The expected properties have been formalized by using
SocL and then automatically checked by using the model checker CMC.

As noted in the Introduction, COWS is part of a large family of service-oriented
process calculi, like the ones developed in [8,7,15,13,9,14,5,6,26]. A peculiar feature
of COWS with respect to most of the other calculi is its proximity to WS-BPEL.
Despite of this fact, it is still an open question which are the relative (if not abso-
lute) advantages of the various formalisms and which calculi are more suitable for
specification and analysis of service-oriented systems. A promising way of compar-
ing these calculi is to analyze how expressive they are and how naturally they can
model SOC systems. The present work is a contribution in this direction.

The presented case study has also been considered in [12], where it has been
used to illustrate a new workflow-based approach to business process modelling,
and in [4], where it has been used to illustrate use of a behavioural equivalence over
Petri nets for service replaceability. The selected scenarios, however, were simpler
and therefore less challenging to model and analyse than the one presented herein.
Also, our model-checking analysis of behavioral properties of a service system is, to
the best of our knowledge, the first of its kind.

The case study we considered has been initially modelled by UML4SOA; then,
we have elaborated an handmade, ad hoc translation in COWS. We leave for fu-
ture work the definition of systematic and (semi-)automatic translations of UML
diagrams into COWS. To the best of our knowledge, only the core of UML 2.0
activity diagrams is provided with a semantics (see, e.g., [27]) and, in particular, no
semantics is yet defined for UML4SOA profile and UML compensation activities.
We aim, firstly, at conservatively extending the semantics of UML4SOA activity
diagrams, and, then, at providing a general translation technique from UML4SOA
activity diagrams into COWS which is sound with respect to the semantics.

On the opposite direction, another line of research we want to explore is to move
from COWS terms to implementations. A possibility could be to capitalize on the
affinity that COWS shares with WS-BPEL by defining a translation of COWS

25

Banti, Lapadula, Pugliese and Tiezzi

terms into WS-BPEL programs. An alternative possibility could be to develop a
(likely Java-based) running environment for supporting execution of COWS terms.

Acknowledgements. We would like to thank Lucia Acciai for discussions that
contributed to the development of the finance case study.

References

[1] CMC: an on-the-fly model checker and interpreter for COWS. Available at: http://fmt.isti.cnr.it/
cmc/.

[2] Uml4soa. Available at http://www.poplarsoftwaredesign.com/Poplar/UML4SOA.html.

[3] J. Bauer, F. Nielson, H.R. Nielson, and H. Pilegaard. Relational analysis of correlation. In SAS, volume
5079 of LNCS, pages 245–256. Springer, 2008.

[4] F. Bonchi, A. Brogi, S. Corfini, and F. Gadducci. Compositional specification of web services via
behavioural equivalence of nets: A case study. In Kees M. van Hee and Rüdiger Valk, editors, Petri
Nets, volume 5062 of Lecture Notes in Computer Science, pages 52–71. Springer, 2008.

[5] M. Boreale, Roberto Bruni, Rocco De Nicola, and Michele Loreti. Sessions and pipelines for structured
service programming. In G. Barthe and F.S. de Boer, editors, FMOODS, volume 5051 of LNCS, pages
19–38. Springer, 2008.

[6] R. Bruni, I. Lanese, H.C. Melgratti, and E. Tuosto. Multiparty sessions in soc. In Doug Lea and
Gianluigi Zavattaro, editors, COORDINATION2008, volume 5052 of Lecture Notes in Computer
Science, pages 67–82. Springer, 2008.

[7] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration
conformance for system design. In COORDINATION, volume 4038 of LNCS, pages 63–81. Springer,
2006.

[8] M.J. Butler, C.A.R. Hoare, and C. Ferreira. A trace semantics for long-running transactions. In 25
Years Communicating Sequential Processes, volume 3525 of LNCS, pages 133–150. Springer, 2005.

[9] M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming for web
services. In ESOP, volume 4421 of LNCS, pages 2–17. Springer, 2007.

[10] R. De Nicola and F. Vaandrager. Three logics for branching bisimulation. J. ACM, 42(2):458–487,
1995.

[11] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and F. Tiezzi. A model checking approach
for verifying COWS specifications. In FASE, LNCS. Springer, 2008. To appear.

[12] S. Gorton, C. Montangero, S. Reiff-Marganiec, and L. Semini. StPowla: SOA, Policies and Workflows.
In Proc. 3rd Int. Workshop on Engineering Service-Oriented Applications: Analysis, Design, and
Composition, 2007.

[13] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: a calculus for service oriented
computing. In ICSOC, volume 4294 of LNCS, pages 327–338. Springer, 2006.

[14] I. Lanese et al. Disciplining orchestration and conversation in service-oriented computing. In SEFM’07,
pages 305–314. IEEE Computer Society, 2007.

[15] C. Laneve and G. Zavattaro. Foundations of web transactions. In FoSSaCS, volume 3441 of LNCS,
pages 282–298. Springer, 2005.

[16] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. Technical report,
DSI, Univ. Firenze, 2007. Available at http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.
pdf. An extended abstract appeared in Proc. of ESOP’07, LNCS 4421, pages 33-47, Springer.

[17] A. Lapadula, R. Pugliese, and F. Tiezzi. Regulating data exchange in service oriented applications. In
FSEN, volume 4767 of LNCS, pages 223–239. Springer, 2007.

[18] A. Lapadula, R. Pugliese, and F. Tiezzi. A formal account of WS-BPEL. Technical report, DSI, Univ.
Firenze, 2008. Available at http://rap.dsi.unifi.it/cows/papers/blite_full.pdf. An extended
abstract appeared in Proc. of COORDINATION’08, LNCS 5052, pages 199-215, Springer.

[19] L.G. Meredith and S. Bjorg. Contracts and types. Commun. ACM, 46(10):41–47, 2003.

[20] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Inf. Comput., 100(1):1–
40, 41–77, 1992.

26

http://fmt.isti.cnr.it/cmc/
http://fmt.isti.cnr.it/cmc/
http://www.poplarsoftwaredesign.com/Poplar/UML4SOA.html
http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf
http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf
http://rap.dsi.unifi.it/cows/papers/blite_full.pdf

Banti, Lapadula, Pugliese and Tiezzi

[21] OASIS WSBPEL TC. Web Services Business Process Execution Language Version 2.0., April 2007.
Available at http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[22] D. Prandi and P. Quaglia. Stochastic COWS. In ICSOC, volume 4749 of LNCS, pages 245–256.
Springer, 2007.

[23] R. Pugliese, F. Tiezzi, and N. Yoshida. On observing dynamic prioritised actions in SOC. Technical
report, Dipartimento di Sistemi e Informatica, Univ. Firenze, 2008. Available at http://rap.dsi.
unifi.it/cows/bis4cows-full.pdf.

[24] Sensoria. Software engineering for service-oriented overlay computers. http://www.sensoria-ist.
eu/.

[25] F. van Breugel and M. Koshkina. Models and verification of BPEL. Technical report, Department of
Computer Science and Engineering, York University, 2006. Available at: http://www.cse.yorku.ca/
~franck/research/drafts/tutorial.pdf.

[26] H.T. Vieira, L. Caires, and J. Costa Seco. The conversation calculus: A model of service-oriented
computation. In Sophia Drossopoulou, editor, ESOP2008, volume 4960 of Lecture Notes in Computer
Science, pages 269–283. Springer, 2008.

[27] V. Vitolins and A. Kalnins. Semantics of uml 2.0 activity diagram for business modeling by means of
virtual machine. In Ninth IEEE International Enterprise Distributed Object Computing Conference
(EDOC 2005), pages 181–194. IEEE Computer Society, 2005.

27

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://rap.dsi.unifi.it/cows/bis4cows-full.pdf
http://rap.dsi.unifi.it/cows/bis4cows-full.pdf
http://www.sensoria-ist.eu/
http://www.sensoria-ist.eu/
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

Banti, Lapadula, Pugliese and Tiezzi

s ::= (services)
nil (empty activity)

| kill(k) (kill)
| u.u’! <args> (invoke)
| p.o? <params> . s (receive)
| s1 + . . . + sn (receive-guarded choice)
| s1 | s2 (parallel composition)
| { s } (protection)
| [n]] s (name delimitation)
| [k] s (kill delimitation)
| [X] s (variable delimitation)
| ∗ s (replication)
| A(aparams) (call)
| let A(fparams) =s in s′ end (let construct)

e ::= X | v | e1 + e2 | e1 = e2 (expressions)

args ::= e | args, args (invoke arguments)

params ::= X | v (receive parameters)
| params, params

fparams ::= X | n | k (formal parameters)
| fparams, fparams

aparams ::= X | v | k (actual parameters)
| aparams, aparams

Table 3
CMC syntax

Appendix

We report here the ‘machine readable’ syntax of CMC and the complete specification
of the finance case study, together with the SocL formulation of the properties we
have checked, written using such syntax.

CMC syntax

The syntax accepted by CMC is presented in Table 3. Killer labels (ranged over
by k, k’, . . .) start with lower case letters, and can only be used as argument of
kill activities; variables (ranged over by X, Y, . . .) start with capital letters; service
identifiers (ranged over by A, A’, . . .) start with capital letters and each of them
has a fixed non-negative arity; names (ranged over by n, m,. . . ,p,p’,. . . ,o,o’, . . .)

28

Banti, Lapadula, Pugliese and Tiezzi

start with lower case letters; values (ranged over by v, v’, . . .) are either integer
numbers, booleans, or names; identifiers (ranged over by u, u’, . . .) are either
variables or names. The arguments of a receive-guarded choice must be receive
activities. The expression operators + and = are defined as follows: if both e1 and
e2 are evaluated as integer numbers then the evaluation of e1 + e2 returns the integer
number corresponding to their sum, otherwise it returns the name corresponding to
their concatenation; if both e1 and e2 are evaluated as values then the evaluation
of e1 = e2 returns the boolean true if these values are the same value, otherwise it
returns the boolean false.

The let construct permits to re-use the same ‘service code’, thus allowing to
define services in a modular style; let A(fparams) =s in s′ end behaves like s′,
where calls to A can occur. A service call A(aparams) occurring in the body s′ of a
construct let A(fparams) =s in s′ end behaves like the service obtained from s by
replacing the formal parameters fparams with the corresponding actual parameters
aparams.

CMC specification of the case study

The complete specification of the finance case study written in the syntax of CMC
is as follows.

let

Portal(key,authentication,notAuthorized,authorized,createInst) =
* [USER] [PWD] [CUST] portal.login?<USER,PWD,CUST>.
(portal.authentication!<USER,PWD>

| portal.notAuthorized?<USER>. CUST.failedLogin!<key>
+
portal.authorized?<USER>.
[sessionID#] (CUST.logged!<key,sessionID>
| portal.creditRequest?<sessionID>.

portal.createInst!<sessionID>
+ portal.bankTransferRequest?<sessionID>. nil

-- + ...other services provided by the credit portal...
)

)

Authentication(authentication,notAuthorized,authorized) =
* [USER] [PWD] portal.authentication?<USER,PWD>.

[nonDet#] [choice#](nonDet.choice!<>
| nonDet.choice?<>. portal.notAuthorized!<USER>
+ nonDet.choice?<>. portal.authorized!<USER>

)

Customer(key,username,password,amount,amountRevised) =
[k] (portal.login!<username,password,customer>

29

Banti, Lapadula, Pugliese and Tiezzi

| [ID] (customer.failedLogin?<key>.nil
+ customer.logged?<key,ID>.
(portal.creditRequest!<ID>
|
-- at any time the customer could require
-- the cancellation of the credit request processing

[exit#] (customer.exit!<> | customer.exit?<>.
({portal.cancel!<ID>} | kill(k)))
|
portal.getCreditRequest!<ID,customerData,amount,customer>
| portal.securities!<ID,securityValues>
| portal.balance!<ID,balance>
| customer.balanceNotValid?<ID>.
-- balance not valid (1st time)
(portal.balance!<ID,balanceRevised>
| customer.balanceNotValid?<ID>.
-- balance not valid (2nd time): terminates
kill(k)

)
|
[OFFER] [MOTIVATIONS]
(-- receives a negative response
customer.negativeResp?<ID,MOTIVATIONS>. kill(k)
+
-- receives an offer
customer.offer?<ID,OFFER,MOTIVATIONS>.

[nonDet#] [choice#](nonDet.choice!<>
| nonDet.choice?<>. (kill(k) | {portal.answer!<ID,yes>})
+ nonDet.choice?<>. (kill(k) | {portal.answer!<ID,no>})

)
+
-- updating required
customer.update?<ID,MOTIVATIONS>.

(portal.updAnswer!<ID,yes>
| portal.updAmount!<ID,yes>

| portal.newAmount!<ID,amountRevised>
| portal.updSecurities!<ID,no>
| [OFFER] [MOTIVATIONS]
(customer.negativeResp?<ID,MOTIVATIONS>. kill(k)
+
customer.offer?<ID,OFFER,MOTIVATIONS>.

[nonDet#] [choice#](nonDet.choice!<>
| nonDet.choice?<>. (kill(k)

| {portal.answer!<ID,yes>})
+ nonDet.choice?<>. (kill(k)

| {portal.answer!<ID,no>})

30

Banti, Lapadula, Pugliese and Tiezzi

)
+
customer.update?<ID,MOTIVATIONS>. kill(k)

)
)

)
)

)
)

InformationUpload(createInst,reqProcessing) =
* [ID] portal.createInst?<ID>.

[k] [fault#] [abort#]
(
[abortFault]
(
[CUST_DATA] [SEC_DATA] [FINAL_BALANCE] [AMOUNT] [CUST]
portal.getCreditRequest?<ID,CUST_DATA,AMOUNT,CUST>.

[par#] [end#]
(-- Activities 1)
portal.securities?<ID,SEC_DATA>. par.end!<>
|
-- Activities 2)
[repeat#] [loop#]
(repeat.loop!<>
| * repeat.loop?<>.

[BALANCE] portal.balance?<ID,BALANCE>.
-- invoke validation service
(validation.validateBalance!<ID,portal,BALANCE>

| portal.validateBalance?<ID,no>.
-- notify the customer that balances
-- are not valid and cycles

(CUST.balanceNotValid!<ID> | repeat.loop!<>)
+
portal.validateBalance?<ID,yes>. par.end!<BALANCE>

)
)
|
-- Activities 1) and 2) terminates successfully
par.end?<>. par.end?<FINAL_BALANCE>.
-- invokes RequestProcessing
(kill(k) | {portal.reqProcessing!<ID,CUST_DATA,

SEC_DATA,FINAL_BALANCE,AMOUNT,CUST>})
)

| portal.cancel?<ID>. (kill(abortFault) | {fault.abort!<>})

31

Banti, Lapadula, Pugliese and Tiezzi

)
|
-- fault handler
fault.abort?<>. nil

)

InformationUpdate(reqProcessing,reqUpdate) =
* [ID] [CUST_DATA] [SEC_DATA] [BALANCE] [AMOUNT] [CUST] [MOTIVATIONS]
portal.reqUpdate?<ID,CUST_DATA,SEC_DATA,BALANCE,AMOUNT,CUST,MOTIVATIONS>.

[k] [fault#] [abort#]
(
[abortFault] [NEW_AMOUNT] [NEW_SEC_DATA] [assign#] [ment#] [par#] [end#]
(-- notifies the customer of needing to update the data
customer.update!<ID,MOTIVATIONS>
| (portal.updAnswer?<ID,no>. kill(k)

+ portal.updAnswer?<ID,yes>.
((-- updates the amount

portal.updAmount?<ID,no>. (assign.ment!<AMOUNT>
| assign.ment?<NEW_AMOUNT>. par.end!<>)

+ portal.updAmount?<ID,yes>.
portal.newAmount?<ID,NEW_AMOUNT>. par.end!<>

)
|
(-- updates the securities
portal.updSecurities?<ID,no>. (assign.ment!<SEC_DATA>
| assign.ment?<NEW_SEC_DATA>. par.end!<>)

+ portal.updSecurities?<ID,yes>.
portal.newSecurities?<ID,NEW_SEC_DATA>. par.end!<>

)
|
-- Updating terminated
par.end?<>. par.end?<>.
-- invokes RequestProcessing
(kill(k) | {portal.reqProcessing!<ID,CUST_DATA,

NEW_SEC_DATA,BALANCE,NEW_AMOUNT,CUST>})
)

)
| portal.cancel?<ID>. (kill(abortFault) | {fault.abort!<>})
)
|
-- fault handler
fault.abort?<>. nil
)

32

Banti, Lapadula, Pugliese and Tiezzi

RequestProcessing(reqProcessing,reqUpdate,contractProcessing) =
* [ID] [CUST_DATA] [SEC_DATA] [BALANCE] [AMOUNT] [CUST]
portal.reqProcessing?<ID,CUST_DATA,SEC_DATA,BALANCE,AMOUNT,CUST>.

[k] [fault#] [abort#] [undo#]
(
[abortFault]
(
-- adds request to employee task list
portal.addToETL!<ID,SEC_DATA,BALANCE,AMOUNT>
| portal.taskAddedToETL?<ID>.

(
-- installs the compensation handler
{portal.undo?<empTaskList>. portal.removeTaskETL!<ID>}
|
-- receives evaluation from an employee
[RATING] [ADDITIONAL_INFO] [DECISION]
portal.empEvaluation?<ID,RATING,ADDITIONAL_INFO,DECISION>.
[cond#] [choice#] (
cond.choice!<DECISION>
|
-- 1) negative evaluation
cond.choice?<no>.
(kill(k) | {CUST.negativeResp!<ID,ADDITIONAL_INFO>})

+
-- 2) ask to update
cond.choice?<update>. (kill(k)
| {portal.reqUpdate!<ID,CUST_DATA, SEC_DATA,

BALANCE,AMOUNT,CUST,ADDITIONAL_INFO>})
+
-- 3) positive evaluation
cond.choice?<yes>.
(-- adds request to supervisor task list
portal.addToSTL!<ID,SEC_DATA,BALANCE,AMOUNT,ADDITIONAL_INFO>
| portal.taskAddedToSTL?<ID>.
(-- installs the compensation handler
{portal.undo?<supTaskList>. portal.removeTaskSTL!<ID>}
|
-- receives evaluation from a supervisor
[OFFER] [MOTIVATIONS] [SUP_DECISION]

portal.supEvaluation?<ID,OFFER,
MOTIVATIONS,
SUP_DECISION>.

[cond#] [choice#] (
cond.choice!<SUP_DECISION>
|
-- 1) negative evaluation

33

Banti, Lapadula, Pugliese and Tiezzi

cond.choice?<no>.
(kill(k) | {CUST.negativeResp!<ID,MOTIVATIONS>})

+
-- 2) ask to update
cond.choice?<update>.

(kill(k) | {portal.reqUpdate!<ID,CUST_DATA,
SEC_DATA,BALANCE,AMOUNT,
CUST,MOTIVATIONS>})

+
-- 3) positive evaluation
cond.choice?<yes>.

(-- sends the unrated offer to the customer
CUST.offer!<ID,OFFER,MOTIVATIONS>
| -- receives customer’s answer

(portal.answer?<ID,yes>.
(kill(k)
| {portal.contractProcessing!<ID,

CUST_DATA, SEC_DATA, BALANCE,
AMOUNT, CUST, RATING,
ADDITIONAL_INFO, OFFER,
MOTIVATIONS>}

)
+ portal.answer?<ID,no>. kill(k)
)

)
)

)
)

)
)

|
-- receive cancellation from customer
portal.cancel?<ID>. (kill(abortFault) | {fault.abort!<>})
)
|
-- fault handler
fault.abort?<>.
-- compensateAll
(portal.undo!<empTaskList> | portal.undo!<supTaskList>)

)

ContractProcessing(contractProcessing)=
* [ID] [CUST_DATA] [SEC_DATA] [BALANCE] [AMOUNT]
[CUST] [RATING] [ADDITIONAL_INFO] [OFFER] [MOTIVATIONS]
portal.contractProcessing?<ID,CUST_DATA,SEC_DATA,BALANCE,

34

Banti, Lapadula, Pugliese and Tiezzi

AMOUNT,CUST,RATING,ADDITIONAL_INFO,OFFER,MOTIVATIONS>.
-- ... contract processing ...
nil

ValidationService =
* [ID] [BANK][BALANCE]
validation.validateBalance?<ID,BANK,BALANCE>.
[nonDet#] [choice#](nonDet.choice!<>

| nonDet.choice?<>. BANK.validateBalance!<ID,yes>
+ nonDet.choice?<>. BANK.validateBalance!<ID,no>)

EmployeeTaskList =
* [ID] [SEC_DATA] [BALANCE] [AMOUNT]
portal.addToETL?<ID,SEC_DATA,BALANCE,AMOUNT>.
(portal.taskAddedToETL!<ID>

| [EMP] (portal.askTaskETL?<EMP>.
EMP.getTaskETL!<ID,SEC_DATA,BALANCE,AMOUNT>

+
portal.removeTaskETL?<ID>. nil
)

)

Employee(employee) =
[repeat#] [loop#]
(repeat.loop!<>
| * repeat.loop?<>.

(portal.askTaskETL!<employee>
| [ID] [SEC_DATA] [BALANCE] [AMOUNT]
employee.getTaskETL?<ID,SEC_DATA,BALANCE,AMOUNT>.

-- ... evaluates the request ...
[nonDet#] [choice#](nonDet.choice!<>
| -- sends the evaluation
nonDet.choice?<>.

(portal.empEvaluation!<ID,rating,additionalInfo,yes>
| repeat.loop!<>)

+ nonDet.choice?<>.
(portal.empEvaluation!<ID,rating,additionalInfo,no>
| repeat.loop!<>)

+ nonDet.choice?<>.
(portal.empEvaluation!<ID,rating,additionalInfo,update>
| repeat.loop!<>)

)
)

35

Banti, Lapadula, Pugliese and Tiezzi

)

SupervisorTaskList =
* [ID] [SEC_DATA] [BALANCE] [AMOUNT] [ADDITIONAL_INFO]
portal.addToSTL?<ID,SEC_DATA,BALANCE,AMOUNT,ADDITIONAL_INFO>.
(portal.taskAddedToSTL!<ID>
| [SUP] (portal.askTaskSTL?<SUP>. SUP.getTaskSTL!<ID,SEC_DATA,

BALANCE,AMOUNT,
ADDITIONAL_INFO>

+
portal.removeTaskSTL?<ID>. nil

)
)

Supervisor(supervisor) =
[repeat#] [loop#]
(repeat.loop!<>
| * repeat.loop?<>.

(portal.askTaskSTL!<supervisor>
| [ID] [SEC_DATA] [BALANCE] [AMOUNT] [INFO]
supervisor.getTaskSTL?<ID,SEC_DATA,BALANCE,AMOUNT,INFO>.

-- ... evaluates the request ...
[nonDet#] [choice#](nonDet.choice!<>

| -- sends the evaluation
nonDet.choice?<>.

(portal.supEvaluation!<ID,offer,motivations,yes>
| repeat.loop!<>)

+ nonDet.choice?<>.
(portal.supEvaluation!<ID,offer,motivations,no>
| repeat.loop!<>)

+ nonDet.choice?<>.
(portal.supEvaluation!<ID,offer,motivations,update>
| repeat.loop!<>)

)
)

)

in
[key#]
(Customer(key,francesco,sensoria,15000,10000)

| [createInst#] [reqProcessing#] [reqUpdate#] [contractProcessing#]
([authentication#] [notAuthorized#] [authorized#] (

Portal(key,authentication,notAuthorized,authorized,createInst)

36

Banti, Lapadula, Pugliese and Tiezzi

| Authentication(authentication,notAuthorized,authorized))
| InformationUpload(createInst,reqProcessing)
| InformationUpdate(reqProcessing,reqUpdate)
| RequestProcessing(reqProcessing,reqUpdate,contractProcessing)
| ContractProcessing(contractProcessing)
| EmployeeTaskList()
| SupervisorTaskList()

)
)
| ValidationService()
| Employee(employee)
| Supervisor(supervisor)
end

Abstraction rules

The abstraction rules used for our analysis are the following.

Abstractions {
Action creditRequest<$1> -> request(cr,$1)
Action balanceNotValid<$1> -> fail(cr,$1)
Action negativeResp<$1,*> -> fail(cr,$1)
Action offer<$1,*,*> -> response(cr,$1)
Action update<$1,*> -> fail(cr,$1)
Action cancel<$1> -> cancel(cr,$1)
Action supEvaluation<$1,*,*,yes> -> response(seval,$1)
Action supEvaluation<$1,*,*,no> -> fail(seval,$1)
Action empEvaluation<$1,*,*,yes> -> response(eeval,$1)
Action empEvaluation<$1,*,*,no> -> fail(eeval,$1)
Action validateBalance<$1,yes> -> response(beval,$1)
Action validateBalance<$1,no> -> fail(beval,$1)
Action taskAddedToETL<$1> -> request(eval,$1)
Action taskAddedToSTL<$1> -> request(eval,$1)
Action removeTaskSTL<$1> -> cancel(eval,$1)
Action removeTaskETL<$1> -> cancel(eval,$1)
Action taskAddedToSTL<$1> -> request(tostl,$1)
Action reqUpdate<$1,*,*,*,*,*,*> -> request(upd,$1)
Action update<$1,*> -> response(upd,$1)
Action securities<$1,*> -> request(sec,$1)
Action balance!<$1,*> -> request(bal,$1)
Action reqProcessing<$1,*,*,*,*> -> request(rproc,$1)
State login -> accepting_request(login)

}

37

Banti, Lapadula, Pugliese and Tiezzi

SocL properties

We report the SocL formulae expressing the properties that the case study is ex-
pected to fulfill, written in the syntax of CMC. The difference between the syntax
used here and that introduced in Section 5 is that, given a correlation variable var,
its binding occurrence (i.e. var) is written $var, while its free occurrences %var.
Moreover, logical operators ∨ and ¬ are written or and not, respectively.

(Availability) AG accepting_request(login)

(Responsiveness and correlation soundness)
AG [request(cr,$id)]

AF {response(cr,%id) or (fail(cr,%id) or cancel(cr,%id))} true

(Interruptibility) AG [request(cr,$id)] EF {cancel(cr,%id)} true

(i) AG [request(cr,$id)]
not E[true {not response(seval,%id)} U {response(cr,%id)} true]

(ii) AG [request(cr,$id)]
not E[true {not (fail(seval,%id) or fail(eeval,%id)

or fail(beval,%id))} U {fail(cr,%id)} true]

(iii) AG [request(eval,$id)] EF [cancel(cr,%id)]
AF {cancel(eval,%id)} true

(iv) AG [request(upd,$id)]
AF {cancel(cr,%id) or response(upd,%id)} true

(v) AG [request(cr,$id)]
not E[true {not request(sec,%id)

or request(bal,%id)} U {request(rproc,%id)}true]

(vi) AG [request(cr,$id)]
AF {not cancel(cr,%id) or response(cr,%id)} true

(vii) AG [request(cr,$id)]
AF {not cancel(cr,%id) or request(tostl,%id)}true

38

	Introduction
	A finance case study
	An UML specification
	Some expected properties

	COWS: a Calculus for Orchestration of Web Services
	A COWS specification of the finance case study
	Analysis of the finance case study
	Properties of the case study specified with SocL
	Model checking SocL formulae

	Concluding remarks
	References

