
MTCoord 2006

Implementing a distributed mobile calculus
using the IMC framework

Lorenzo Bettini, Rocco De Nicola, Daniele Falassi, Michele Loreti

Dipartimento di Sistemi e Informatica, Università di Firenze.
{bettini,denicola,falassi,loreti}@dsi.unifi.it

Abstract
In the last decade, many calculi for modelling distributed mobile code have been proposed.
To assess their merits and encourage use, implementations of the calculi have often been
proposed. These implementations usually consist of a limited part dealing with mecha-
nisms that are specific of the proposed calculus and of a significantly larger part handling
recurrent mechanisms that are common to many calculi. Nevertheless, also the “classic”
parts are often re-implemented from scratch. In this paper we show how to implement a
well established representative of the family of mobile calculi, the distributed π-calculus,
by using a Java middleware (called IMC - Implementing Mobile Calculi) where recurrent
mechanisms of distributed and mobile systems are already implemented. By means of the
case study, we illustrate a methodology to accelerate the development of prototype imple-
mentations while concentrating only on the features that are specific of the calculus under
consideration and relying on the common framework for all the recurrent mechanisms like
network connections, code mobility, name handling, etc.

1 Introduction

Prompted by the impressive development of networks technologies, in the last
decade there has been a high number of proposals of calculi for modelling and
reasoning about distributed systems that also encompass mobility of code and pro-
cesses. These formalisms, in general, provide constructs and mechanisms at differ-
ent abstraction levels, for modelling the execution contexts of the network where
applications roam and run, for coordinating and monitoring the use of resources, for
expressing process communication and mobility, and for specifying and enforcing
security policies.

The ancestor of these calculi is the π-calculus [15], a very simple formalism
relying on a small number of combinators, that nevertheless can be used to model

? The work presented in this report has been partially supported by EU Project Software Engineer-
ing for Service-Oriented Overlay Computers (SENSORIA, contract IST-3-016004-IP-09).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12096254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bettini, De Nicola, Falassi, Loreti

non trivial systems. The π-calculus, however, does not have explicit primitives for
modelling distribution and has a somehow too basic communication mechanism.
There have thus been direct generalizations of π-calculus such as the Distributed
Join Calculus [8], the Seal Calculus [19], Nomadic Pict [18], Dπ-calculus [12],
lsdπ-calculus [16]. But also calculi based on other approaches such as the Ambient
calculus [7] or the Linda model [11]. Among the calculi based on Ambient we
mention Safe Ambients [14] and Boxed Ambients [6]. Among the calculus based on
Linda we have many variants of Klaim [2].

Very often to assess the quality of the proposed new calculi the different re-
search groups have also produced prototype implementations of the calculi that
could be used as kernel programming languages for mobile distributed systems.
Prompted by the growing number of experiments and from the need of easing the
implementation phase, we have implemented a generic Java framework called IMC
(Implementing Mobile Calculi) that can be used as a kind of middleware for the im-
plementation of different distributed calculi [3]. IMC aims at providing the neces-
sary tools for implementing the run-time system of new languages directly derived
from calculi for mobility. Our aim has been that of enabling the implementer of a
new language to concentrate on the parts that are really specific of his/her system,
and to rely on our framework for the recurrent standard mechanisms for distribu-
tion and mobility thus avoiding to deal with low-level details. Java has been chosen
as the production language because it provides many useful features for building
network applications with mobile code (indeed, many existing implementations of
mobile and distributed systems are written in Java).

IMC provides means for transparent code mobility, for building communica-
tion protocols by composing sub-components dynamically and for managing node
topology. All these mechanisms are rendered as abstract as possible to ease, e.g.,
switching from a specific communication protocol to another, without modifying
the other parts of an application. IMC can be straightforwardly used if no specific
advanced feature is needed. A user can however customize parts of the framework
by providing its own implementations for the interfaces used in the package. Cus-
tomizations can take advantage of design patterns such as factory method, abstract
factory, template method and strategy [10] that are used throughout the packages.

The framework was designed to achieve both transparency and adaptability.
For instance, for code mobility, the framework provides all the basic functionali-
ties for making code mobility transparent to the programmer: all issues related to
code marshalling and code dispatch are handled automatically by the classes of the
framework. Its components are designed to deal with object marshalling, code mi-
gration, and dynamic loading of code. The framework can also be adapted to deal
with many network topologies (flat, hierarchical, peer-to-peer networks, etc.) and
with message dispatching and forwarding. To the best of our knowledge there are
no others similar general frameworks available in the literature.

In this paper we shall describe a practical use of IMC by showing how it can
be used to implement a well established representative of the family of mobile cal-
culi, the distributed π-calculus (Dπ). We shall first use IMC to build the runtime

2

Bettini, De Nicola, Falassi, Loreti

support for Dπ then we will use it for implementing JDpi, the generalization of
the calculus to a simple programming language. Building the run time support will
require first analyzing the distribution model, the communication mechanisms and
the mobility aspects of the calculus to determine the part of IMC to be used, and
then writing the appropriate code to interact with IMC and to implement specific
parts. The main intent of the paper is to illustrate, by means of the case study, a
possible methodology to accelerate the development of prototype implementations
while concentrating only on the features that are specific of the calculus under con-
sideration and relying on the common framework for all the recurrent mechanisms
like network connections, code mobility, name handling, etc..

The rest of the paper is organized as follows. Section 2 provides a brief overview
of IMC, Section 3 presents Dπ while in Section 4 the actual implementation of
JDpi is presented. The final section contains an example of JDpi program and
some concluding remarks.

2 The IMC framework

We now sketch the main functionalities and interfaces of the framework. For the
sake of simplicity, we will not get into deep details. IMC consists of three main
subpackages: protocols, mobility and topology that deal with communica-
tion protocols, code mobility and network topology, respectively. We present the
IMC components in the order we suggest to use them when implementing a run-
time system for a mobile calculus. The first thing the developer should think of is
the implementation of the communication protocol; then he/she can implement the
node functionalities by using the communication protocols. Finally, he can imple-
ment the functionalities of processes that will rely on the features provided by the
implementation of nodes. Of course, this is not a mandatory schema, but we found
this path very useful when using IMC (see also Section 4).

2.1 Protocols

When implementing a distributed system, one of the system-specific issues is the
choice of the communication protocol, which may range from high-level protocols
to protocols closer to hardware resources. A generic communication framework
should permit introducing support for new protocols with little effort, without need
to re-implement a new communication library. Thus, IMC provides tools to define
customized protocol stacks, which are viewed as a flexible composition of micro-
protocols, and enables to achieve adaptable forms of communication transparency,
which are needed when implementing an infrastructure for global computing.

In IMC, a network protocol is viewed as an aggregation of protocol states:
a high-level communication protocol can indeed be described as a state automa-
ton. The programmer implements a protocol state by extending the Protocol-

State abstract class and by providing the implementation for the method enter.
The Protocol class aggregates the protocol states and, following the design patter

3

Bettini, De Nicola, Falassi, Loreti

“template method” [10], provides the method start that will execute each state at
a time, starting from the first protocol state up to the final one (each state defines the
next state to enter). Thus, the programmer must simply provide the implementation
of each state, put them in a protocol instance, and then start the protocol.

The protocol states abstract away from the specific communication layers. This
enables re-using of a protocol implementation independently from the underlying
communication means: the same protocol can then be executed on a TCP socket,
on UDP packets or even on streams attached to a file (e.g., to simulate a protocol
execution). This abstraction is implemented by specialized streams: Marshaler

(for writing) and UnMarshaler (for reading). These streams provide high-level and
encoding-independent representations of information to be sent or received. They
are basically an extension of standard DataOutput and DataInput Java streams,
with the addition of means to send and receive mobile code (explained later) and
serialize and deserialize objects.

The data in these streams can be “pre-processed” by some customized protocol
layers that remove some information from the input and add some information to
the output: typically this information is protocol-specific headers removed from
the input and added to the output. The base class ProtocolLayer deals with these
functionalities, and can be specialized by the programmer to provide his own pro-
tocol layer. These layers are then composed into a ProtocolStack object that
ensures the order of preprocessing passing through all the layers in the stack. Each
layer is independent and the composition of layers in a protocol stack takes place
at run-time. For instance, the programmer can add a layer that removes a sequence
number from an incoming packet and adds the incremented sequence number into
an outgoing packet. The framework also provides functionalities to easily imple-
ment tunnels, e.g., to implement a layer to tunnel an existing protocol into HTTP.
Figure 1 shows a protocol made up of 4 states that is using a protocol stack made
up of 3 layers, the lowest one being the actual TCP socket layer, and the middle
one being an HTTP tunneling layer.

To read something from a stack, a protocol state must obtain an UnMarshaler

instance from the stack by calling the method createUnMarshaler: this allows
the stack layers to retrieve their own headers. When the state finished to read, it
must release the Marshaler by calling releaseUnMarshaler. In the same way,
to write information into a stack, the state must obtain a Marshaler instance from
the stack by calling the method createMarshaler, so that the stack layers can add
their own headers into the output. When the state finished to write, it must notify
the stack by calling the method releaseMarshaler, in order to flush the output
buffer. Typically, these stream objects will be created by the lowest layer, e.g., in
case of a TCP socket, it will be a stream attached to the socket itself, while, in case
of UDP packets, it will be a buffered stream attached to the datagram contents.
Low layers for TCP and UDP are already provided by the framework. Here are
the typical instruction sequences for writing (left) and reading (right) by using the
mechanisms we described so far:

4

Bettini, De Nicola, Falassi, Loreti

Fig. 1. The interaction between protocol states and protocol stack.

Marshaler m =
protocolStack.createMarshaler();

m.setMigratingCodeFactory(
new JavaByteCodeMigratingCodeFactory());

m.writeStringLine("obj");
m.writeInt(obj.size());
m.writeMigratingCode(obj);
protocolStack.releaseMarshaler(m);

UnMarshaler u =
protocolStack.createUnMarshaler();

u.setMigratingCodeFactory(
new JavaByteCodeMigratingCodeFactory());

s = u.readStringLine();
i = u.readInt();
obj = u.readMigratingCode();
protocolStack.releaseUnMarshaler(u);

In particular, writeMigratingCode and readMigratingCode deal with code mo-
bility: this is transparently handled by the subpackage mobility that will take care
of serializing an object together with its byte-code, upon writing, and of dynami-
cally loading received byte-code, upon reading (we refer the reader to [1] for the
details of this subpackage). By providing a specialized MigratingCodeFactory,
the programmer can customize the code migration mechanism.

2.2 Nodes and Processes

A participant in a network is an instance of the class Node of the package topology.
A node is also a container of running processes that can be thought of as the com-
putational units. The framework provides all the means for a process to access
the resources contained in a node and to migrate to other nodes. A process is an
instance of a subclass of the class NodeProcess that implements the JavaMigra-

tingCode base class (this allows to easily migrate a process to a remote site), and
can be added to a node for execution with the method addProcess of the class
Node. Thus, a node keeps track of all the processes that are currently in execution.
A concurrent process is started by calling start on the NodeProcess thread; the
final implementation of run will initialize the process structure (not detailed here)
and then invoke execute, the abstract method in NodeProcess that must be im-
plemented by the programmer. Actually, a process can interact with the node it is
running on only through a NodeProxy, which ensures security by restricting the

5

Bettini, De Nicola, Falassi, Loreti

node interface visibility to a subset. If the class Node is extended by a derived class
with new functionalities that we want to make available to the processes, we will
also have to extend NodeProxy (Section 4.2 uses this technique).

The framework already provides some implemented protocols to deal with ses-
sions. The concept of session is logical, since it can then rely on a physical con-
nection (e.g., TCP sockets) or on a connectionless communication layer (e.g., UDP
packets). A SessionManager instance will keep track of all the sessions. This can
be used to implement several network topology structures: a flat network where
only one server manages connections and all the clients are at the same level; a
hierarchical network where a client can be in turn a server and where the struc-
ture of the network can be a tree or, in general, an acyclic graph of nodes; or, a
peer-to-peer network.

A different kind of process, called node coordinator, is allowed to execute priv-
ileged actions, such as establishing a session, accepting connections from other
nodes, closing a session, etc. Standard processes are not given these privileges, and
this allows to separate processes that deal with node configurations from standard
programs executing on nodes. For these processes a specialized class is provided
called NodeCoordinator.

A Session instance is identified by two SessionId objects, one indicating the
local end and the other one indicating the remote end. A SessionId contains in-
formation about the “location” or “address” of a node; this concept depends on the
specific communication medium: for instance, for an IP communication it will be
a string of the shape IP:port. Moreover, it contains information about the specific
low level communication protocol. For instance, "udp-myhost.com:9999" rep-
resents a UDP communication with the host "myhost.com" on port 9999. Upon
establishing a session, the SessionId is used to determine the low level commu-
nication layer. Thus, switching from a communication layer to another is only a
matter of changing the SessionId, while all the other classes in IMC are indepen-
dent from this, and do not need to be changed. A Session can be established by
using the method connect,, of class Node, specifying the SessionId of the remote
end; a session request can be accepted by using the method accept, by specify-
ing the local SessionId. These methods return a ProtocolStack object (where
the lowest layer is already set as explained above); this can then be customized by
adding specific ProtocolLayer objects. Finally it can be passed to a Protocol

instance that will run upon it. The following is a code snippet executed by a Node-
Coordinator that accepts a session request using a specific SessionId, adds an
HTTP tunnel layer, and starts a specific communication protocol (a NodeCoordi-

nator on a node that establishes the session will perform similar actions, but will
use connect):

ProtocolStack s = accept(id);
s.insertLayer(new HTTPTunnelLayer());
Protocol p = new MyProtocol(s);
p.start();

6

Bettini, De Nicola, Falassi, Loreti

Systems

M,N ::= 0 Empty

| M|N Composition

| (νe).N Restriction

| l
[[

P
]]

Agent

Threads

P,Q,R ::= stop Termination

| P|Q Composition

| (νe)P Restriction

| go u.P Movement

| u!〈v〉.P Output

| u?(X).P Input

| rec A.P Recursion

| A Process Identifier

| if u = v then P else Q Matching

Names

e, f ::= h,k, l, . . . Locations

| a,b,c . . . Resource

Variables

X ,Y ::= x Variable

| X@z Located Pattern

Values

u,v,w ::= bv Basic Value

| e Name

| x Variable

| u@w Located Value

Table 1
Dπ syntax

Finally, inter-objects communication takes place via the event based function-
alities provided by IMC. In particular, most classes of the framework are endowed
with event generation capabilities (e.g., ProtocolState, ProtocolLayer, Node,
etc.). This allows to keep the classes loosely coupled and communications among
objects in the framework highly flexible. It is then easy to intercept, e.g., new con-
nection requests or connection failures. In the implementation of JDpi, events are
used to deal with commands received by remote sites (see Section 4.1).

3 Dπ a Language for Distributed Processes

Dπ , introduced by Hennessy and Riely [12], is a locality-based extension of the
π-calculus [15] where processes are distributed over a set of nodes (or locations)
each of which is univocally identified by a name (or location).

Like in the π calculus, processes interact via message passing over channels.
However, only local communication is permitted: Two processes can interact only
if they are located at the same node. A process can change its execution envi-
ronment performing action go . Dπ does not assume a specific network topology.
Indeed, this aspect is subspecified in the standard calculus.

Dπ syntax is defined in Table 1. There, and in the rest of this paper, a,b,c . . .
are used as channel names, and h,k, l, . . . as location names; while e, f , . . . are used
when the distinction does not play any role.

7

Bettini, De Nicola, Falassi, Loreti

(Comm) l
[[

a!〈v〉.P
]]
|l
[[

a?(X).Q
]]
7→ l

[[
P
]]
|l
[[

Q[v/X]
]]

(Go) l
[[
go k.P

]]
7→ k

[[
P
]]

(Par)
N 7→ N′

M| N 7→ M| N′

(Eq1) l
[[
if (u = u) then P else Q

]]
7→ l

[[
P
]]

(Eq2)
u 6= v

l
[[
if (u = v) then P else Q

]]
7→ l

[[
Q

]]
(Restr)

N 7→ N′

(νe)N 7→ (νe)N′
(Cong)

N ≡ M M 7→ M′ M′ ≡ N′

N 7→ N′

Table 2
Reduction Relation for Dπ

l
[[
stop

]]
≡ 0 l

[[
P|Q

]]
≡ l

[[
P
]]
|l
[[

Q
]]

l
[[
recA.P

]]
≡ l

[[
P[recA.P/A]

]]
l
[[
(νe)P

]]
≡ (νe)l

[[
P
]]

M|(νe)N ≡ (νe)(M|N) if e /∈ f n(M)

Table 3
Structural Congruence for Dπ

The main syntactic category is that of systems (N, M, . . .). Intuitively a Dπ

system consists of a set of agents, l
[[

P
]]

, running independently in parallel, where
l is the location where thread P is running. 0 is used to describe the empty system,
i.e. the system where no agent is running. Systems are composed using parallel
composition (N|M), and can share private names (νe.N).

Threads (P, Q, . . .) are essentially π-calculus processes that can additionally
create new locations or names ((νe)P) and migrate to other locations (go l.P).
The conditional (if) corresponds to the matching and mismatching operators of the
π-calculus. The definitions of free and bound names are similar to those for the
π-calculus. By convention, go l.P|Q will stand for (go l.P)|Q. Like in π-calculus,
Dπ threads interact with each other via name passing over channels. However,
differently from π-calculus, names can be located. Indeed, a@l can be used to
relate channel a to locality l.

The semantics for Dπ is defined by reduction relation 7→ defined in Table 2,
where the structural congruence induced by rules of Table 3 is used. Agent mi-
gration is performed using rule (Go) that allows an agent located at l to migrate to
location k. This transition can occur only when k is a known locality. Rule (Comm)
permits co-located processes to interact via a channel a.

The distribution model of Dπ is an extremely simple flat locality structure. If
a node wants to spawn an agent remotely, it needs only to know the location of
the remote node. This means that the knowledge of network topology structure
is completely hidden to programmers (of Dπ processes). In [9] a variant of Dπ

in which individual nodes may fail, or the links among them may be created and
broken. The original language, Dπ , is extended with a new construct that permits
processes to detect and react to these failures. In DPIF an explicit notion of link is

8

Bettini, De Nicola, Falassi, Loreti

introduced. Indeed, a network is evaluated considering a given topology that stores
information about the state of nodes and the connections between them.

4 From Dπ to JDpi

In this section we present the implementation of Dπ , JDpi. The implementation
of a calculus typically consists of a run-time system (a sort of abstract machine)
implemented in a language such as Java, and of a compiler that, given a program
written in the programming language based on the calculus, produces code (Java
in our case) that uses the run-time system above. In this paper we concentrate on
the implementation of the run-time system in Java using IMC. Even without using
the compiler, JDpi allows the programmer to write distributed and mobile Java
applications based on the Dπ paradigm.

A Dπ system is implemented as a set of distributed IMC nodes, each of which
implements a Dπ location, that communicate using a specific protocol (that permits
sending a process to a remote node, and that deals with connections among nodes).
In the rest of this section we first introduce the protocol used by remote participants
to interact. Then we show how Dπ location can be implemented using the IMC
class Node. Finally, we present an implementation for Dπ threads.

4.1 Protocol

In this section we describe the protocol used by the participants of a JDpi net-
work. First, messages exchanged by these participants are presented, hence the
Protocol used by each network component is introduced. The implementation of
this part of the framework is considerably simplified by the use of both mobility

and protocol packages of IMC.
In Dπ two nodes can interact only when a process is spawned from one to the

other. However, in JDpi, other kinds of interactions between two nodes can occur.
For instance, two nodes interact when the topology of the network changes (a new
node gets connected or an existing one disconnects). All interactions are modelled
as a command that is sent from one node to another in order to achieve a specific
task. We thus introduce the abstract class JDpiCommand that models a generic
request. This class will be specialized to implement concrete commands.

public abstract class JDpiCommand extends JavaMigratingCode {
public void setCommandId(String id) { ... }
public String getCommandId() { ... }
public abstract JDpiReply execute(JDpiNodeProxy proxy);
}

Each JDpiCommand is identified by a string, which is set automatically by the
framework using method setCommandId when a command is sent remotely. This
identifier is used for communicating the result of command execution. A concrete
command has to implement method execute. This method is invoked when the
command is received remotely in order to achieve the command task. For instance,

9

Bettini, De Nicola, Falassi, Loreti

in the case of a request for executing a thread remotely, the method execute will
add the spawned process to the current node. As explained in Section 2, the pa-
rameter proxy permits using the target node without interacting directly with it.
Since a command can contain a process to execute at a remote site, where its code
is likely not to be available, it is crucial to use code mobility features; for this
reason JDpiCommand extends the IMC base class JavaMigratingCode. Then, a
command, together with its code, can be easily transmitted over the network as
follows:

Marshaler m = protocolStack.createMarshaler();
m.setMigratingCodeFactory(new JavaByteCodeMigratingCodeFactory());
m.writeStringLine(command.getProtocolString());
m.writeMigratingCode(command);
protocolStack.releaseMarshaler(m);

The method execute returns a JDpiReply. This object is sent to the remote
participant that originated the command for communicating the result of the execu-
tion.

public class JDpiReply implements Serializable {
public boolean getResult() { ... }
public String getDetails() { ... }
}

The method getResult() returns true if the command has been executed
without errors, false otherwise (in this case the method getDetails() permits
obtaining a string representation of the occurred error).

The Protocol used by participants of a JDpi system contains three states:
JDpiProtocolState, CommandState and NotifyState. JDpiProtocolState

is the main state. An object of this class selects the next state of the protocol by
considering the value read from the underlying protocol stack. Accepted values
are "COMMAND", "NOTIFY" and "STOP". When the string "COMMAND" is received
a CommandState is activated. This is an inner class of JDpiProtocolState that
when executed registers the command read from the protocol stack as a new event
in the system. This permits notifying all the registered components, that will exe-
cute the appropriate handler to manage the command. After that, the protocol goes
back to the main state. The string "NOTIFY" precedes JDpiReply that contains
the execution result of a previous sent command. When such a string is received,
a NotifyState is activated. This state, using the identifier read from the protocol
stack, communicates the result of command execution to the sender of the com-
mand. Finally, when a string "STOP" is received, the protocol terminates.

This can be easily achieved by using the protocol state compositional features
of IMC: in this case we use the class ProtocolStateSwitch that reads a request
string from the input and selects the next state corresponding to the read string (it
also deals with errors due to unrecognized requests). The user of this class has to as-
sociate a received string with the corresponding state by using addRequestState.
Without entering into deep details, it should be straightforward to understand how
the above described JDpi protocol is implemented by the following code:

10

Bettini, De Nicola, Falassi, Loreti

public class JDpiProtocolState extends ProtocolSwitchState {
public JDpiProtocolState(WaitingForNotification waiting, EventManager em) {

addRequestState("COMMAND", new CommandState(em));
addRequestState("NOTIFY", new NotifyState(waiting));
addRequestState("STOP", Protocol.END);
setNextState(Protocol.START);

}
...

}

4.2 Nodes

A Dπ node provides an abstraction for a computational environment that hosts
execution of Dπ threads and provides basic functionalities for thread interactions
via channel communication. The IMC framework provides the topology package,
and in particular the class Node. An object of this class implements a generic
participant in the network and acts as a container of running processes. Moreover,
IMC provides all the means for a process to access the resources contained in a
node (via a proxy) and to migrate to other nodes.

A general implementation of a Dπ node is provided by JDpiAbstractNode.
This class extends Node by providing new primitives for process interactions and
for threads migration. To refer to a JDpiAbstractNode, class JDpiLocality is
introduced. Since this class extends class SessionId, a JDpiLocality object can
be used to retrieve information about the “location” or “address” of a remote node.

Class JDpiAbstractNode implements primitives for channel communication:

public <T> void out(JDpiChannelName<T> c, T v)
public <T> T in(JDpiChannelName<T> c)

Channels are referenced using class JDpiChannelName<T> that enables the
identification of a channel used to exchange values of type T. The method out

permits sending an object of type T over the channel referenced by c. Conversely,
method in permits retrieving an object of type T from the channel referenced by c.

JDpiAbstractNode also provides support for process mobility. A process can
be spawned to be evaluated remotely using the following method:

public JDpiReply go(JDpiProcess p, JDpiLocality l) throws IMCException {
if (self.sameId(l)) {

this.addNodeProcess(p);
return new JDpiReply(true);
}
JDpiCommand command = new JDpiEvalCommand(p, l);
return sendCommand(command, l);
}

This method permits spawning a JDpiProcess (see below) to be evaluated re-
motely at the node referenced by the JDpiLocality l. If l refers to the current
location (referenced by field self), the process is added to the current node. Oth-
erwise, p has to be evaluated remotely; in this case, the process is first encapsulated

11

Bettini, De Nicola, Falassi, Loreti

within a JDpiEvalCommand. This class, which extends JDpiCommand, represents a
request of executing a given process.

JDpiAbstractNode provides two methods that permits sending and executing
a JDpiCommand:

protected JDpiReply sendCommand(JDpiCommand command, JDpiLocation l)
throws ProtocolException {

ProtocolStack protocolStack = getNodeStack(l);
JDpiSender sender;
sender = new JDpiSender(getNewId(), command, protocolStack);
sender.send();
return sender.getReply();
}

public JDpiReply executeCommand(JDpiCommand c) {
return c.execute(createNodeProcessProxy());
}

The method executeCommand simply invokes method execute on the com-
mand instance c with the proxy for the current node. A command is sent remotely
using a JDpiSender. This is an object that sends a command over a given protocol
stack (sender.send()) and then waits for the result (sender.getReply()).

JDpiAbstractNode overrides method createNodeProxy() of the IMC class
Node. Indeed, a JDpiNodeProxy (which extends NodeProcessProxy) is returned
to allow processes to use the additional functionalities provided by JDpiAbstract-
Node, with respect to Node.

Since no specific network topology is considered, JDpiAbstractNode is an
abstract class that provides three abstract methods:

public ProtocolStack getNodeStack(JDpiLocality l)
public JDpiReply forwardCommand(JDpiCommand command, JDpiLocality l)
public void start()

Method getNodeStack permits retrieving the ProtocolStack (see Section 2)
to interact with the node identified by l. Please notice that the node referenced by
l might not be directly connected to the local one. In this case, the actual imple-
mentation of JDpiAbstractNode has to choose (if it exists) a remote participant
to use for communicating with l. Hence, every node could play also the role of
intermediary in a communication. To define how a node behaves when a message
(a JDpiCommand) for another node is received, abstract method forwardCommand

has to be implemented. Finally, by implementing method start the programmer
provides the initialization procedure for the node.

Now we describe how JDpiAbstractNode is used to implement two differ-
ent kinds of network topologies: a flat topology, which implements standard Dπ

topology, and a DPIF-like topology.

12

Bettini, De Nicola, Falassi, Loreti

Flat topology
Since Dπ does not consider a specific implementation for nodes topology, a

system can be implemented as a single server that accepts connections from nodes.
This approach implements a flat topology and relies on the use of two kinds of
nodes: JDpiDomain and JDpiNode. Both these classes extend JDpiAbstractNo-

de. A JDpiDomain implements the central server that accept connections from the
nodes involved in the network. All the incoming connections are handled by the
following NodeCoordinator:

addNodeCoordinator(new AcceptNodeCoordinator(
new ProtocolFactory() {

public Protocol createProtocol() throws ProtocolException {
Protocol protocol = new Protocol(new JDpiProtocolState(waiting, eventManager));
return new ProtocolComposite(new ReadLocalityState(nodes), protocol);

}
}, self));

AcceptNodeCoordinator is an IMC specialized NodeCoordinator that contin-
uously waits for incoming connections: when a new connection is established this
will be handled by a thread executing the protocol created through the specified
ProtocolFactory. In this case we create an instance of the protocol described
above and compose it (through the specialized IMC protocol, ProtocolCompo-
site) with an initial state, ReadLocalityState (not detailed here) that reads the
locality of the connected node. Even in this case we use the protocol composi-
tionality features of IMC. Basically, AcceptNodeCoordinator implements a re-
current programming pattern for implementing a multithreaded server, that can be
customized by the programmer.

A JDpiDomain class keeps track of all the nodes available in a system by re-
lying on the functionalities already provided by the IMC class Node. Thus, the
implementation of getNodeStack uses these functionalities to enable the stack to
communicate (either directly or indirectly with the destination).

Moreover, all the communications in a system pass through the domain. When
a command is received by a domain, it simply forwards the command to the right
location:

public JDpiReply forwardCommand(JDpiCommand command, JDpiLocality location) {
return sendCommand(command, location);

}

However, a domain cannot host threads and cannot create outgoing connections.
For these reasons, some of methods in JDpiAbstractNode have been overridden
to forbid their execution:

public void addNodeProcess(JDpiProcess nodeProcess) {
throw new JDpiIllegalOperation(
"No processes can be executed at a JDpiDomain");

}

13

Bettini, De Nicola, Falassi, Loreti

Dπ nodes that use this flat topology are implemented by means of class JDpiNode.
This class extends the JDpiAbstractNode in such a way that:
• no incoming connections are accepted;
• only one outgoing connection to a JDpiDomain can be created.

A JDpiNode cannot play the role of an intermediary in a communication. For
this reason, it provides a trivial implementation for method forwardCommand:

public JDpiReply forwardCommand(JDpiCommand command, JDpiLocality location) {
return new JDpiReply(false,"Unknown location");

}

Moreover, a JDpiNode sends all the outgoing messages to the domain. For this
reason, method getNodeStack simply returns the ProtocolStack that connects
the node to the domain.

DPIF topology
To model this kind of topology class JDpiFNode, which extends JDpiAbstract-

Node, is introduced. A JDpiFNode can get connected to and accept connections
from different nodes. Following the same interaction model proposed in DPIF, two
nodes can interact if and only if they are directly connected. A JDpiFNode behaves
exactly like a domain but for the fact that a JDpiFNode can host threads execution
and can open outgoing connections.

4.3 Threads

Dπ threads are implemented using the (abstract) class JDpiProcess, which is a
subclass of the IMC class NodeProcess that is already equipped with code mo-
bility support. Each process implementation must provide method body() that
describes behavior of the implemented process (the NodeProcess abstract method
execute is implemented in JDpiProcess in order to perform further initialization
procedures). A JDpiProcess interacts with the hosting node by using a JDpiNo-

deProxy described before. Indeed, JDpiProcess simply delegates the execution
of these operations to its proxy, e.g.:

public <T> boolean out(JDpiChannelName<T> c , T v) {
return getJDpiProxy().out(c,v);

}

A process can migrate to remote locality l by invoking method go(JDpiLoca-

lity l). If migration is completed successfully, process execution is terminated
locally. Otherwise, false is returned and the process continues its execution lo-
cally.

4.4 Examples

In this section we describe two simple mobile agents implemented in JDpi. How-
ever, due to lack of space, all the implementation details are not presented here.

14

Bettini, De Nicola, Falassi, Loreti

We refer the interested reader to [13] where IMC and JDpi, with a few simple
applications and examples, are available for downloading.

Example 4.1 The following Dπ process that, after reading a locality from channel
ex, spawns itself at the read locality:

rec X .ex?(u).go u.X

can be implemented as follows:

class MyProc extends JDpiProcess {
public void body() {

JDpiChannelName<JDpiLocality> inC = new JDpiChannelName<JDpiLocality>("ex");
JDpiLocality l = in(inC);
go(l);
}
}

Example 4.2 In this small example we show how to create and use a new fresh
channel name. We consider the Dπ process

νa.ex!a.0

Its body method can be implemented as follows:

public void body(){
JDpiChannelName<String> a = new JDpiChannelName<String>();
JDpiChannelName<JDpiChannelName<String>> outChannel =

new JDpiChannelName<JDpiChannelName<String>>("ex");
out(outChannel, a);
}

Example 4.3 The following is the code of an agent that migrates over a set of
localities, each of which plays the role of an electronic market, in search of the best
place where a given article (art) can be bought. At the end of the search, the agent
migrates to locality home and provides its result on channel result.

public void body() {
while (count < localities.size()) {

JDpiChannelName<Article> c = new JDpiChannelName<Article>(art, Article.class);
Article a = in(c);
if ((lowestPrice == 0)||(a.getPrice()<lowestPrice)) {

locality = localities.get(count);
lowestPrice = a.getPrice();
}
count++;
if (count < localities.size())

go(localities.get(count));
else

go(home);
}
}
JDpiChannelName<JDpiLocality> result =

15

Bettini, De Nicola, Falassi, Loreti

new JDpiChannelName<JDpiLocality>("result" , JDpiLocality.class);
out(result , locality);
}

5 Conclusions

The implementation of a language based on a process calculus typically consists of
a run-time system (a sort of abstract machine) implemented in a high level language
like Java, and of a compiler that, given a program written in the programming lan-
guage based on the calculus, produces code that uses the run-time system above. In
this paper we have illustrated, by means of a case study, a possible methodology to
accelerate the development of prototype implementation of such a run-time system,
by relying on the IMC framework.

In particular, we have described the implementation of JDpi, a well established
representative of the family of mobile calculi. The use of IMC has permitted ac-
celerating the development of prototype implementations while concentrating only
on the features that are specific of the Dπ . The Java implementation JDpi is com-
posed only by 28 classes and about 1000 lines of code. These classes provide 152
methods, and the average number of lines per method is 3.5 1 . All the packages
and the prototype of compiler are available for download at [13].

The framework can also be adapted to deal with many network topologies (flat,
hierarchical, peer-to-peer networks, etc.) and with message dispatching and for-
warding. Since this characteristics can be found in many different calculi, IMC has
a wide range of use: it could be a valid aid to implement entities like membranes
[5] or ambients [7,17]. Indeed IMC has been used to model a variant of Dπ ([9])
in which individual nodes may fail, or the links among them may be created and
broken. Moreover, a re-implementation of KLAVA [4] using IMC is also under
development.

In the close future we plan to use our framework to experiment with and com-
pare the relative merits of the new calculi for Service Oriented Computing that are
now being developed by many research groups.

Acknowledgments
We are grateful to all people involved in the MIKADO project, in particular, we

would like to thank M. Lacoste, L. Lopes and V. Vasconcelos that contributed to
the initial design of IMC.

References

[1] L. Bettini. A Java Package for Transparent Code Mobility. In N. Guelfi, G. Reggio,
and A. Romanovsky, editors, FIDJI 2004, Int. Workshop on scientific engineering of

1 These data were collected using the Eclipse plugin Metrics,
http://metrics.sourceforge.net.

16

Bettini, De Nicola, Falassi, Loreti

distributed Java applications, volume 3409 of LNCS, pages 112–122. Springer, 2004.

[2] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The KLAIM Project: Theory and Practice.
In C. Priami, editor, Global Computing. Programming Environments, Languages,
Security, and Analysis of Systems, IST/FET International Workshop, GC 2003, Revised
Papers, volume 2874 of LNCS, pages 88–150. Springer, 2003.

[3] L. Bettini, R. De Nicola, D. Falassi, M. Lacoste, and M. Loreti. A Flexible and
Modular Framework for Implementing Infrastructures for Global Computing. In Proc.
of 5th IFIP Int. Conf. on Distributed Applications and Interoperable Systems (DAIS),
volume 3543 of LNCS, pages 181–193. Springer, 2005.

[4] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. Klava: a Java Package
for Distributed and Mobile Applications. Software - Practice and Experience,
32(14):1365–1394, 2002.

[5] G. Boudol. A generic membrane model. In Second Global Computing Workshop,
2004.

[6] M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents: The
calculus of Boxed Ambients. ACM Trans. Program. Lang. Syst, 26(1):57–124, 2004.

[7] L. Cardelli and A.D. Gordon. Mobile Ambients. Theoretical Computer Science
(TCS), 240(1):177–213, 2000.

[8] C. Fournet, G. Gonthier, J. J. Levy, L. Maranget, and D. Remy. A Calculus of
Mobile Agents. In U. Montanari and V. Sassone, editors, Proc. of 7th Int. Conf. on
Concurrency Theory (CONCUR’96), volume 1119 of LNCS, pages 406–421. Springer,
1996.

[9] Adrian Francalanza and Matthew Hennessy. A Theory of System Behaviour in the
Presence of Node and Link Failures. In CONCUR 2005, volume 3653 of LNCS, pages
368–382. Springer, 2005.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[11] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[12] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. In U. Nestmann and B. C. Pierce, editors, Proc. of HLCL ’98: High-Level
Concurrent Languages, volume 16.3 of ENTCS. Elsevier, 1998.

[13] JDpi home page, http://music.dsi.unifi.it/jdpi.

[14] F. Levi and D. Sangiorgi. Controlling Interference in Ambients. In POPL, pages
352–364. ACM, 2000.

[15] R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II.
Information and Computation, 100(1):1–40, 41–77, 1992.

17

Bettini, De Nicola, Falassi, Loreti

[16] A. Ravara, A. Matos, V.T. Vasconcelos, and L. Lopes. Lexically scoping distribution:
what you see is what you get. In FGC: Foundations of Global Computing, volume
85(1) of ENTCS. Elsevier, 2003.

[17] Davide Sangiorgi and Andrea Valente. A Distributed Abstract Machine for Safe
Ambients. In Proc. 28th International Colloquium on Automata, Languages and
Programming (ICALP’01), volume 2076 of LNCS, pages 408–420. Springer-Verlag,
2001.

[18] A. Unyapoth and P. Sewell. Nomadic Pict: correct communication infrastructure for
mobile computation. In POPL, pages 116–127. ACM, 2001.

[19] J. Vitek and G. Castagna. Seal: A Framework for Secure Mobile Computations. In
Internet Programming Languages, number 1686 in LNCS. Springer, 1999.

18

	Introduction
	The IMC framework
	Protocols
	Nodes and Processes

	 D a Language for Distributed Processes
	From D to JDpi
	Protocol
	Nodes
	Threads
	Examples

	Conclusions
	References

