
A Logic for Graphs with QoS

Gianluigi Ferrari1 and Alberto Lluch-Lafuente2

Dipartimento di Informatica
Università di Pisa

Abstract

We introduce a simple graph logic that supports specification of Quality of Service (QoS) properties
of applications. The idea is that we are not only interested in representing whether two sites are
connected, but we want to express the QoS level of the connection. The evaluation of a formula
in the graph logic is a value of a suitable algebraic structure, a c-semiring, representing the QoS
level of the formula and not just a boolean value expressing whether or not the formula holds. We
present some examples and briefly discuss the expressiveness and complexity of our logic.

Keywords: Graph Logics, QoS, Semirings, Distributed Systems.

1 Introduction

Graphs and graphs transformation systems [19] are a suitable formalism for
systems involving issues such as concurrency, distribution and mobility. The
graphical nature of such systems also appears in other modeling formalism in-
cluding algebras for communicating processes [24], where the implicitly com-
munication structure can be seen as a graph.

The properties of such systems mainly regard aspects such as behavior in
time and structural properties, that can be expressed by logics which are used
as a basis for a formal verification method, like model checking [12], which
have been shown to be surprisingly effective in practice [11].

� This work has been supported by the European Research Training Network SEGRAVIS
and the European FET project PROFUNDIS.
1 Email: giangi@di.unipi.it
2 Email: lafuente@di.unipi.it

Electronic Notes in Theoretical Computer Science 142 (2006) 143–160

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.10.030

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IMT Institutional Repository

https://core.ac.uk/display/12096139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:giangi@di.unipi.it
mailto:lafuente@di.unipi.it
http://www.elsevier.com/locate/entcs

When reasoning about wide area network applications another issue be-
comes crucial, namely Quality of Service (QoS). QoS refers to non-functional
aspects, like network bandwidth, time response or security degree. A clear
example of this are Service Overlay Networks [18] (SON). The notion of SON
has gained major attention during recent years as a flexible mechanism to
manage the complexity in the creation and deployment of network services
with certain Quality of Services assurances. A SON abstracts from the Inter-
net complexity, such as packet routing across different autonomous systems,
and considers network services as connected by virtual or application-level
links: the overlay network. The application level links correspond to end-to-
end Internet connections and are associated with QoS parameters. Moreover,
service functionalities are described together with their Service Level Agree-
ment (SLA) contracts. The SON abstraction has the main benefit of modeling
a logical end-to-end service infrastructure with certain QoS guarantees.

The development of applications over SON requires evolutionary soft-
ware design methodologies. Standard approaches describe SON architectures
through labeled directed graphs where labels of edges represent QoS assur-
ances and labels of nodes are SLA constraints. Much research work adopts
graph theoretic models to describe the delivery of services over a SON. See
[22] for instance. However, according to our knowledge, little has been done
to develop effective verification techniques to support formal verification of
applications over SON.

A challenging problem is to provide formal machineries that supports ver-
ification of both behavioral and QoS properties of SON in an integrated way.
This paper provides a first step towards this goal. Here, we elaborate a logical
framework that allows to express and reason about QoS properties of graphs.

Related Work.

Our approach builds on previous work on an extension of temporal log-
ics to non-boolean domains [23], and research on a spatial logic for graphs
(GL) [8,15].

Graph logics allow to express properties of graphs. They have been ex-
haustively investigated by Courcelle (see [14] for instance), whose work is
mainly based on the monadic second order logic on graphs (MS) and its frag-
ments. Spatial logics are used to reason about the structure of models, such
as heaps [26], trees [9], processes calculi [7,6] and graphs [8,15]. The common
concept in such approaches is that if a notion of model composition exists (like
parallel composition in process calculi) one can reason about decompositions
in the corresponding logic. The usual way is via a composition operator |,
where φ|ψ is satisfied by models that can be decomposed in two sub-models,

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160144

one satisfying φ and another one satisfying ψ. In graphs, composition is
closely related with the second-order quantification over set of edges used in
MS. Indeed, the expressive power of the fixpoint-free fragment of GL have
been shown to be included in MS [15]. The full logic, on the other hand, is
able to express properties unlikely to be represented in MS [15]. It is an open
question whether GL subsumes MS.

Temporal logics support reasoning about the behavior of systems in time.
For instance, one can ask whether a certain event never happens or whether
an event happens infinitely often. Temporal logics are usually interpreted over
transition systems in a boolean way, i.e. the evaluation of a formula is either
true or false. However, some existing approaches interpret temporal logics over
more general domains like boolean algebras [10] or probabilities [16]. There is
also a vast number of works regarding the analysis and verification of systems
where the focus is on probabilities and time. We cite among others the work
on CSL [1], a logic that combines these two aspects.

Contrary to such works we do not concentrate on specific issues like time or
probabilities but rather consider an abstract representation of QoS by means
of a suitable algebraic structure. More precisely, our own contribution to
this field of quantitative temporal logics is described in [23], were we propose
temporal logics like the µ-calculus to be defined over constraint-semirings, a
formalism for QoS.

Constraint semirings (c-semirings) are algebraic structures consisting of a
domain and two operations called additive and multiplicative satisfying some
properties. The basic idea is that the former is used to select among val-
ues and the latter to combine values. Different kind of semirings have been
proposed to model costs, for instance closed semirings in the algebraic path
problem [27] or (max,+) algebras for different applications [21]. C-semirings
are a specific kind of semirings which are sufficient to capture most of the
significant QoS attributes used in practice. They were originally proposed
as a suitable structure to describe and program soft constraints problems [4]
including the analysis of security protocols [3]. The basic idea of the approach
is that the additive operation of the semiring is used to project constraints
while the multiplicative operation is used to combine constraints.

Contribution.

In this paper we introduce and analyze the properties of a simple graph
logic defined over c-semirings. In particular, we extend the spatial logic of [15].
The choice of this logic is mainly motivated for the recent interest in spatial
logics. Most of the ideas we present, however, could be applied to other graph
logics as well. We introduce functions that associate c-semiring values to ver-

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160 145

tices and edges of a graph. Logical constants and connectives are substituted
by c-semiring constants and functions. As a result the evaluation of a formula
in the extended logic is a value of the c-semiring, representing the QoS assur-
ance of the formula and not just a boolean value expressing whether or not
the formula holds. Instead of expressing the existence of a certain path in the
graph, for example, we can express the QoS of the optimal path in the graph.

The main technical contribution of this paper is the definition of the logic.
We show how to express properties through a running example: the arrow
distributed directory protocol [17] which ensures exclusive access to a mobile
service in a distributed system. Complexity and expressivity properties of our
logic are discussed in an informal way.

Structure.

Section 2 introduces our motivations with an example. Technical back-
ground describing graphs, c-semirings and their properties is contained in
Section 3. Section 4 presents syntax and semantics of our logic together with
an example. A next section outlines potential applications of our approach.
Finally we conclude the paper sketching future research avenues.

2 The Arrow Distributed Directory Protocol

The arrow distributed directory protocol [17] is a solution to ensure exclusive
access to mobile objects in a distributed system. The distributed system is
given as an undirected graph G, where vertices and edges respectively repre-
sent nodes and (reliable) communication links. Costs are associated with links
in the usual way, and a mechanism for optimal routing is assumed.

The protocol works with a minimal spanning tree T of G. Each node has
an arrow which, roughly speaking, indicates the direction in which the object
lies. If a node owns the object the arrow points to itself, we say that both the
arrow and the node are terminal. The directed graph induced by the arrows is
called L. Roughly speaking, the protocol works by propagating requests and
updating arrows such that at any moment the arrows either lead to a terminal
owning the object or waiting for it.

More precisely, the protocol works as follows: Initially L is set such that
every path leads to the node owning the object. When a node u wants to
acquire the object, it sends a request message find(u) to a(u), the target of
the arrow starting at u, and sets a(u) to u, i.e. it becomes a terminal node.
When a node u whose arrow does not point to itself receives a find(w) message
from a node v, it forwards the message to node a(u) and sets a(u) to v. On
the other hand, if a(u) = u (the object is not necessarily at u but will be

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160146

received if not) the arrows are updated as in the previous case but this time
the request not forwarded but enqueued. If a node owns the object and its
queue of requests is not empty, it sends the object to the (unique) node u of its
queue sending a move(u) message to v. This message goes optimally through
G. A formal definition of the protocol can be found in [17].

Hence, the protocol works over a SON, which offers different services: send-
ing of requests through links of the minimal spanning tree and delivering of
the object. Each of the services has an associated QoS. For example, each
propagation link might have a delay, while the delivering of the object may
have a price.

v0

v2 v3

v4

v5v1 oh

a

a

a

a

a

a

v0

v2 v3

v5v1 oh

a

a

a

a

aa

v4

a

Fig. 1. Two states of the directory: initial (left) and after v3 processes a request from v4 (right).

Figure 1 illustrates two states of protocol. Nodes v1,..,v5 and the object
o are represented by vertices. Arrows are denoted by a-labeled edges. An
h-labeled edge from the object to a node represents that the node has the
object. Other edges of the protocol, like those representing the delivering of
the object, those representing the queues of requests and those forming the
minimal spanning tree are not depicted for the sake of simplicity. The state
on the left is the initial one: node v1 has the object and all paths induced
by the arrows lead to it. The state on the right of the figure is the result of
thre steps: 1) node v4 sends a request for the object through its arrow; 2) v3

processes it by updating the arrows properly, i.e. the arrow points now to v4

instead of v2; and 3) node v4 recieves the request and updates its arrow.

The protocol has been shown to have some properties. The first one [17,
Theorem 5] is stated as follows:

Property 1 In every state of the directory, the maximal path from any node
induced by the non-terminal arrows is unique and always leads either to the
owner of the object or to a node that has requested it (a waiter).

This property involves spatial and temporal aspects. It requires a certain
kind of paths to exist in every state of the protocol, but it says nothing about

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160 147

QoS properties. Note that the algorithm works over a SON, where each service
might be offered with a certain QoS. Hence we might be interested in reasoning
about QoS, for instance, in specifying the cost such paths.

3 Preliminaries

3.1 C-Semirings.

Our logic is defined over the domain of a c-semiring. We give first the definition
and postpone the intuition behind it for next lines showing some examples.
Formally a c-semiring is a tuple 〈A,+,×, 0, 1〉 such that:

• A is a set;

• 0 and 1 are elements of A;

• + : 2A → A is defined over (possibly infinite) sets of elements of A as
follows 3 :

∑
{a} = a,

∑
∅ = 0,

∑
A = 1 and

∑
(
⋃

Ai) =
∑

{
∑

Ai}, for
Ai ⊆ A, i ≥ 0;

• × : A × A → A is a binary associative, commutative operation that dis-
tributes over +, has 1 as unit element and 0 as absorbing element.

The fact that + is defined over sets of elements, automatically assumes it
to be associative, commutative and idempotent. Moreover, one can show that
it has 0 as unit element and 1 as absorbing element [4]. In the rest of the
paper we assume that × is defined over infinite sequences too and use symbol∏

in postfix notation. Most of the c-semirings used in practice satisfy this.

To enhance readability, operation + is called additive operation, while × is
called multiplicative operation. Note that we use a boldfaced + and symbol ×
to avoid confusion with the additive and multiplicative operations over reals
(+ and ·).

Examples and application to QoS.

C-semirings are the formal structure of many QoS attributes. For example:

• The boolean c-semiring 〈{true, false},∨,∧, false, true〉 can be used to model
network and service availability.

• The optimization c-semiring 〈R+,min, +, +∞, 0〉 and the tropical c-semiring
〈N+,min, +, +∞, 0〉 apply to a wide range of cases, like prices or propaga-
tion delay.

3 When + is applied to a set with two elements we use + as binary operator in infix
notation, while in all other cases we use symbol

∑
in prefix notation.

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160148

• Bandwidth can be formalized using the max/min c-semiring which is given
by 〈R+,max,min, 0, +∞〉.

• Performances can be represented by means of the probabilistic c-semiring
〈[0, 1],max, ·, 0, 1〉 or the fuzzy one 〈[0, 1],max,min, 0, 1〉.

• Set-based semirings (〈2N ,∪,∩, ∅, N〉 , where N is a set) can be used to
represent capabilities and access rights.

• Security degrees are modeled via the c-semiring 〈[0, 1, .., n],max,min, 0, n〉,
where n is the maximal security level (unknown) and 0 is the minimal one
(public) [3].

C-Semirings and Lattices.

The additive operation of the c-semiring induces a partial order as follows:
a ≤S b iff a + b = b. For example, in the optimization c-semiring, ≤S cor-
responds to the arithmetic relation ≥. One can show that ≤S is indeed a
partial order, that +, × are monotone over ≤S , 0 and 1 are respectively the
minimum and maximum elements of ≤S, and 〈A,≤S〉 is a complete lattice [4].

In some instances of a c-semiring, the multiplicative operation is idempo-
tent. This implies, among other things, that + distributes over × and 〈A,≤S〉
is a distributive lattice [4]. The logical and fuzzy c-semirings are an example
of this, since logical disjunction is idempotent, i.e. p∧ p is p. To the contrary,
the multiplicative operations of the optimization and probabilistic c-semirings,
i.e. addition and multiplication of reals are not idempotent. In most cases,
like in all the examples presented, 〈A,≤S〉 is distributive.

Negation in C-Semirings.

C-Semirings have no complement or negation operator in general. Con-
sider, for instance, the classical De Morgan negation, i.e. a bijective operator
- : A → A, such that -a ∈ A and --(a) = a for all a ∈ A (involution), and
-
⊔
{A′} =

�
{-a | a ∈ A′} for all A′ ⊆ A (De Morgan) and a ≤ b ⇔ -b ≤ -a

(antimonotonicity), where
⊔

and
�

are the lowest upper bound and greatest
lower bound operators of the lattice 〈A,≤S〉. It is not possible to define a De
Morgan negation for the tropical c-semiring. Suppose the contrary and let
n denote −1. By antimonotonicity −(n + 1) < 1 but this is only possible if
n = +∞, which will imply −1 = +∞. Since −0 = ∞, − is not bijective.
Other c-semirings (fuzzy, boolean, max/min), however, can be equipped with
a negation, resulting in most cases in boolean algebras.

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160 149

Composition of C-Semirings.

C-semiring based methods have a unique advantage when problems with
multiple QoS criteria must be tackled. In fact, it turns out that Cartesian
products, exponentials and power constructions of c-semirings are c-semirings.
Thus the same concepts and algorithms can be applied again and again. The
Hoare Power Domain of a c-semiring is of special interest since it let us formal-
ize multi-criteria optimization problems. The Cartesian product of c-semirings
is not enough to solve such problems. The problem lies in the fact that in
the Cartesian product, values of the original c-semirings are combined inde-
pendently. The solution is to use the Hoare power domain of the Cartesian
product of the various optimization c-semirings as explained in [5]. Intuitively,
the Hoare Power Domain works with sets of non-dominated values.

3.2 Graphs.

Graphs in [8] are described by terms in a suitable algebra [13], but we prefer
to use a representation inspired by the relational structures used by Cour-
celle [14]. Let X and E respectively, be infinite sets of nodes and edges. Let
further C be a c-semiring and K an infinite set of names of functions E → A

associating each edge with a value of the domain of the c-semiring. In addition
let F be the universe containing all the c-semiring functions Ai → A, i ≥ 0.
Set F also contains constant names as zero-adic functions.

A graph is a tuple 〈X ∪ E, edge, C, K, I〉, where X ⊆ X , E ⊆ E , K ⊆ K
and edge : E → X × X is a function that associates an edge with its source
and target vertices. Function I : (K ∪ F) → (E → A) ∪

⋃
i≥0(A

i → A) is
an interpretation, i.e. a function respectively mapping cost and c-semiring
function names with actual cost and c-semiring functions. The sets X and E

are of course assumed to be disjoint.

In the rest of the paper we consider finite graphs only, i.e. graphs where
X and E are finite, and we will denote the set of all graphs with set node X,
c-semiring C, function set K and interpretation I with G(X, C, K, I) or just
G if X, C, K and I are clear from the context.

A decomposition of a graph G is an ordered pair of graphs that have the
same nodes, c-semiring, cost functions and interpretation but have disjoint
set of edges which together form the original set of edges. More precisely, a
decomposition of G = 〈X∪E, edge, C, K, I〉 is a (ordered) pair of graphs G1 =
〈X ∪ E1, edge1, C, K, I〉, G2 = 〈X ∪ E, edge2, C, K, I〉 such that E1 � E2 = E

and edge1 � edge2 = edge.

The set of all decompositions of a graph G will be denoted by Θ(G). It is
not hard to see that the size of Θ(G) is 2|E|.

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160150

3.3 Example.

Each state of the arrow distributed protocol is represented by a graph G =
〈X ∪E, edge, C, K, I〉, where X has an element for each node and one for the
object. The set E includes edges for arrows, object sending service, object
ownship and queues.

The c-semiring C might include different QoS aspects. The first one is
the identity of nodes which can be modeled with the set based c-semiring
C0 = 〈2X ,∪,∩, ∅, X〉. Then we need to model the kind of edges. Let N =
{a, h, s, q} be the set of all edge types, where a, h, s and q stand for arrow,
ownship, object sending and queue. We define then a set-based c-semiring
C1 = 〈2N ,∪,∩, ∅, N〉. We might have that propagation links have a certain
delay which we represent with an optimization c-semiring C2. Sending of the
object might involve a price to pay, represented by a tropical c-semiring C3.
Hence, C is defined as P H(C0 ×C1 ×C2 ×C3), i.e. the Hoare Power Domain
of the Cartesian product of C0, C1, C2 and C3.

Cost functions of K are intended to associate such QoS attributes to edges
and nodes. Note that if a edge or arc does not have one of the basic attributes
(type, delay or prize) the function must associate the top element to such
attribute. For example, we need a function cost to associate arrows, and
sending edges with their QoS. Arrows have type and delay, but no price or
node name. Hence, cost : E → A associates to every arrow edge a value
{(X, a, d, 0)}, for some real d. To simplify things we assume to have one cost
functions for characterizing each type of arc. More precisely we consider to
have functions a, q, s and o. For example a(e) returns 1 if edge e has type a

and 0 otherwise.

4 Graph logic over c-semirings

Once fixed our notion of QoS we present our logic. We first describe syntax and
semantics mentioning some differences with the spatial logic for graphs of [15].
Then we show some how to express some QoS properties of our example.

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160 151

4.1 Syntax.

Let VX be a set of node variables and VR be a set of recursion variables.
Formulae of the graph logic are generated by φ in the following grammar:

φ ::= nil | k(ξ) | k(ξ, ξ) | φ|φ | φ‖φ spatial operators

φ+φ | φ × φ | f(φ, . . . , φ) c-semiring operators
∑

x.φ |
∏

x.φ quantification

r(ξ) | (µr(x).φ)ξ | (νr(x).φ)ξ fixpoints

where x ∈ X , x ∈ VX , ξ ∈ X ∪ VX , k ∈ K, f ∈ F , r ∈ VR. In the last
three terms of φ, ξ and x are vectors and we respectively require |r| = |ξ|,
|r| = |ξ| = |x| and r(ξ) to occur as operand of a monotone function or under
an even number of antimonotonic functions.

Before giving a formal definition of the semantics of our logic, which is
done in the next section, we give an intuition of the different syntactic ingre-
dients. With nil we characterize graphs with no edges, k(ξ) and k(ξ, ξ) are
used to express the cost of nodes and edges. With φ1|φ2 we range over all
decompositions (G1, G2) of the graph multiplying the evaluation of φ1 in G1

and the evaluation of φ2 in G1. To all such values, the additive operation
is applied. The spatial operator || is dual with respect to + and ×. Node
quantification evaluates φ for each node x and then quantifies using + or
×. Finally, c-semiring operations have a straightforward interpretation and
fixpoints have the usual meaning.

We highlight some differences with the spatial logic of [15]. Instead of
boolean constants and connectives, we have c-semiring constants, operators
and functions. Edge existence is enriched with a function k which assigns a
c-semiring value to the edge. Cost functions can also be applied to nodes and
quantifier symbols are substituted by the corresponding quantifiers

∑
and∏

, and non-derivable operators like duals are introduced explicitly since we
cannot assume the existence of a negation operator which provides the usual
derivations. Our logic does not include name equality, since it can be done via
c-semiring functions. It suffices to consider node names as a QoS attribute an
include a c-semiring function for expressing and comparing names. We neglect
an explicit representation of labels, preferring to model edge labels as a QoS
attributes (as we do with edge types in the example). As a consequence we
do not include label quantification.

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160152

4.2 Semantics.

We interpret a formula as a mapping from the set of graphs G into the domain
of the c-semiring A. Let σ : VX → X denote the name and label environment
that maps node variables with nodes 4 , and let ρ be the usual propositional
environment mapping recursion variables into functionss G → A. With abuse
of notation we let environments be applied to actual names and mappings
resulting in the identity, and we abbreviate their application using postfix
notation. The interpretation of formulae is as follows:

�nil�σ;ρ(G) = E = ∅

�k(ξ)�σ;ρ(G) = (ξσ ∈ X) × I(k)(xσ)

�k(ξ1, ξ2)�σ;ρ(G) = (E = {e}) × (edge(e) = (ξ1σ, ξ2σ)) × I(k)(e)

�φ1|φ2�σ;ρ(G) =
∑

(G1,G2)∈Θ(G){�φ1�σ;ρ(G1) × �φ2�σ;ρ(G2)}

�φ1‖φ2�σ;ρ(G) =
∏

(G1,G2)∈Θ(G){�φ1�σ;ρ(G1)+�φ2�σ;ρ(G2)}

�φ1+φ2�σ;ρ(G) = �φ1�σ;ρ(G)+�φ2�σ;ρ(G)

�φ1 × φ2�σ;ρ(G) = �φ1�σ;ρ(G) × �φ2�σ;ρ(G)

�f(φ1, . . . , φn)�σ;ρ(G) = I(f)(�φ1�σ;ρ(G), . . . , �φn�σ;ρ(G))

�κx.φ�σ;ρ(G) = κx∈X�φ�σ;ρ(G)

�r(ξ)�σ;ρ(G) = rρ(ξσ)

�(µr(x).φ)ξ�σ;ρ(G) = lfp(λs.λy.�φ�σ[y/x],ρ[s/r])(ξσ)(G)

�(νr(x).φ)ξ�σ;ρ(G) = gfp(λs.λy.�φ�σ[y/x],ρ[s/r])(ξσ)(G),

where κ ∈ {
∑

,
∏
}. All terms in the right hand side are interpreted over C.

For example ξσ ∈ X returns 1 if ξσ is an element of X and 0 otherwise.

One can show that the sets Ri of pointwise-ordered total functions of type
X i → (G → A) are complete lattices or, more generally 5 , c-semirings. It
can be also shown that with the mentioned syntactic restrictions functions
λy.�φ�σ[y/x],ρ[s/r] are monotone on ≤S. Thus, the fixpoints are well de-
fined [28]. If, in addition, functions λs.λy.�φ�σ[y/x],ρ[s/r] are continuous with
respect to �,�, fixpoint iteration can be applied.

Note that some of the formulae just evaluate to 0 or 1. In a way, they allow
us to include boolean reasoning. For instance, nil is just 1 if the graph has
no edges and 0 otherwise. On the other hand, formulae like k(ξ) or k(ξ1, ξ2)

4
VX , X are required to be disjoint.

5 Recall c-semirings form complete lattices [4].

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160 153

return the cost associated to the corresponding nodes and edges if they exist
in the graph. More precisely, k(ξ1, ξ2) is 0 if the set of edges is not an edge
between ξ1σ and ξ2σ. Otherwise it evaluates to the cost associated to the only
edge of the graph by function k.

Composition φ1 | φ2 is interpreted as follows. One looks at every possible
decomposition of the graph into two graphs G1 and G2. The evaluation of φ1

in G1 and φ2 in G2 are combined using ×. The set of values we get for all the
decomposition is then combined using the additive operation.

As a trivial example, assume we want to find optimal QoS among the edges
of a graph that go from a node x to a node y. Suppose that the QoS of an
edge is given by a function k. The formula we need is k(x, y)|1. Note that
�k(x, y)�(G1)× �1�(G2) is 0 if G1 is empty or has more than two edges. Thus
it is easy to see that k(x, y)|1 is the addition of the QoS of all edges from x

to y.

To illustrate the use of the other form of composition suppose we want
to measure the QoS of a graph as the combination of the QoS of all edges of
the graph. For this purpose we write the formula (nil+(nil|nil)+k(x, y))||0.
Note that the left part of the decomposition evaluates to 1 if applied to a
graph that is either empty (nil) or has more than one edge (nil|nil). If the
graph is composed by one edge the term evaluates to the QoS of that edge.
Thus, (nil+(nil|nil)+k(x, y))||0 is the product of the QoS of all the edges of
a graph.

The intuition behind the rest of the formulae should be clear: c-semiring
operations and functions have a straightforward interpretation and quantifica-
tion applies the additive or the multiplicative operation to the evaluation of a
formula for every substitution of x by a node of the graph. Least and greatest
point fixpoint use multiple recursion variables and have the usual meanining.

In addition to the fact that we interpret formulae as values of a c-semiring,
the main semantic difference with the spatial logic of [8] is that quantification
here is done over the set X of nodes of the graph and not over the infinite
set of node names X . This does not compromise decidability in GL, since one
can indeed look at a finite set of nodes [15]. This would not apply to our logic
since we allow formulae like

∏
x.k(x) which might require to examine all the

nodes.

Another difference is that in the original logic, decomposition is quantified
over all decompositions, and not just those preserving the set of nodes and
labels, as we do. It is easy to see that in the original logic this makes no
difference, since one cannot distinguish between unconnected nodes and nodes
that are not in the graph. To the contrary, our logic allows this since we find
it interesting to make such distinctions.

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160154

Example.

Let us now briefly illustrate how to represent Property 1 of our motivat-
ing example, namely that the maximal unique path induced by non-terminal
arrows leads either to the owner of the object or to a node that has requested
it. The property is purely boolean and one can use the spatial logic of [8] to
express it. Though the use of recursion is not necessary we will make use of
it in order to use as many ingredients of the logic as possible. We show first
how to state that there exists a path of arrows between two nodes:

path(x,y) ≡ µr(x,y).(x = y)+
∑

z.a(x, z)|r(z,y).

The intuition behind this formula is the following: there is a path from x

to y in a graph if x is exactly y (x = y) or the graph can be decomposed in
two subgraphs such that in one subgraph we have an arc from x to a node z

and in the other subgraph there is a path from z to y (
∑

z.a(x, z)|r(z,y)).

In our example we are interested in paths that end in a terminal node, i.e.
a node with a self-arrow. But before we define an abbreviation for a formula
stating that a node has no outgoing arrow edges: out0(y) ≡ (

∑
x.a(y,x)|1) =

0. Observe that
∑

x.a(y,x)|1 is 1 in graphs with outgoing arrows from node
y. Thus we require the value of that expression to be 0.

Now we can characterize terminal nodes by t(x) ≡ a(x,x)|out0(x), i.e.
nodes that have only one outgoing self-arrow.

The kind of paths we want to want to express must be unique, i.e. the
number of outgoing transitions from every node of the path must be one
(except for the last node). Hence, we have:

ump(x,y) ≡ µr(x,y).(x = y) × t(y)+
∑

z.a(x, z)|(out0(x) × r(z,y)),

where ump stands for unique maximal path. Finally, we can state that for
each node such a path exists and ends in a node owning the object or waiting
for it as :

property1 ≡
∏

x.
∑

y.(ump(x,y) × (owner(y)+waiter(y))|1)

In words, for every node x there is a node y such that we have unique ter-
minal arrow path from x to y, which is the node owning the object (owner(y))
or a terminal node that is not the owner (waiter(y)).

Abbreviation owner(y) is t(y,y) × o(y, o) and waiter(y) is t(y,y) ×
(owner(y) = 0).

We now extend Property 1 to include QoS aspects. Instead of the existence
of a path, we can now reason about the QoS attributes of a path:

costp(x,y) ≡ µr(x,y).(x = y)+
∑

z.(a(x, z) × cost(x, z))|r(z,y)

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160 155

Note that the only thing that changes with respect to path is the introduc-
tion of the cost function cost(x, z). The rest is the same. Indeed the formula
combines both boolean aspects to characterize paths and QoS aspects. The
formula should be intuitively interpreted as follows: The optimal path from x

to y is 0 if x and y are the same node or the optimal between cost of and edge
from x to a node z combined with the cost of the optimal path from z to y.
Note that the expression of optimal paths by decomposition is possible since
we work with a c-semiring, i.e. since the multiplicative operation distributes
over the additive operation.

Now, we can combine this formula with the one defined to characterize
the correct paths. Thus obtaining a formula to represent the QoS of unique
maximal arrow paths:

costump(x,y) ≡ ump(x,y) × costp(x,y)

Recall that Property 1 requires a path to lead either to the object owner
or to a waiter. Hence, we can take into account the QoS attributes associated
to acquiring the object. We can now write the following formula:

costump(x, y) × (cost(y, x) × sending(y, x)|1)

4.3 Computing the semantics.

We informally discuss the problem of evaluating our formulae. First of all when
considering complexity issues we abstract from the complexity of c-semiring
operations as usual [20] since this depends on the actual c-semiring instance.
Take for example, the power set of a c-semiring which domain is infinite. The
result is a c-semiring where elements of the domain are possibly infinite sets.
Storing and manipulating such elements might be unfeasible.

We consider first the fixpoint-free fragment of the logic. Evaluating nil,
k(ξ) and k(ξ, ξ) can be done in constant time. One of the most complex
computations regards composition. Indeed, additive and multiplicative com-
position require to enumerate all decompositions of a graph, from which there
are exponentially many in the number of edges of the graph. Node quantifi-
cation requires to enumerate the finite set X.

Thus, it is easy to see that this fragment of the logic is decidable. Our logic
subsumes a fragment of the spatial logic for graphs [8] for which the model
checking problem has been shown to be PSPACE-Complete [15]. Hence, our
logic is in PSPACE, and we conjecture that model checking the fixpoint-free
fragment of our logic is PSPACE-complete if we abstract from the complexity
of the c-semiring.

The main drawback of our approach regards the full logic, since fixpoint
iteration might be infeasible. Take, for example this alternative formula for

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160156

computing the QoS of the optimal arrow path between two nodes:

costp’(x,y) ≡ µr(x,y).(x = y)+
∑

z.(a(x, z) × cost(x, z)|1) × r(z,y)

It is easy to see that, if we are given a graph with cycles, two nodes
x, y such that y is not reachable from x and an optimization c-semiring then
evaluation costp’(x, y) might require infinitely many iterations to return +∞,
the bottom of the c-semiring. Observe, however that this is not a problem
in the original formula costp because there the recursion variable appears
as operand of composition. Hence, fixpoint iteration necessarily ends after a
finite number of steps; the initial graph is finite and each iteration removes
an arc.

Restricting the use of recursion, such that recursion appears inside com-
position where the other side evaluates to 0 in the empty graph only will
guarantee fixpoint iteration to terminate. It is an open question whether this
syntactic restriction implies a significant loss of expressive power. We still did
not find a property that can be expressed by a fixpoint formula where recur-
sion does not appear as operand of composition, that cannot be expressed by
a formula that satisfies the restriction. Intuitively, it might not be interesting
to consider an edge more than once in a recursive formula.

5 Further Applications.

Constrained-based routing [29] is an interesting field of application of our logic.
The problem is in general to find optimal routes satisfying some constraints,
where both the optimization and the constraint criteria concern QoS proper-
ties. For example, one is interested in optimizing bandwidth and price while
requiring the total delay to be less or equal than a certain value. For a survey
on such problems we refer to [29].

Various of these problems prioritize some QoS attributes over others. For
example, the shortest-widest path aims at finding the shortest path among
those which have optimal bandwidth. In such cases the implicit QoS structure
might not form a c-semiring. This is indeed the case of the shortest-widest
path problem. A solution to this problem is to ignore the priorities in a first
step and optimize all the QoS attributes using the Hoare Power Domain. The
evaluation of a formula will be a set of non-dominated tuples, from which one
can select a subset according to the priorities.

The expression of constrained-based unicast route optimization has a naive
solution. Let path(x,y) be a formula that characterizes graphs which are
paths from node x to node y, let cost be a formula that expresses the mul-
tiplication of the costs of all arcs in a graph, and let c be the global QoS
constraint on the path, i.e. the maximal QoS level allowed for the path. Note

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160 157

that inequalities can be considered as part of the c-semiring functions in F .
The desired formula is then:

(path(x,y) × cost × cost ≥ c)|1

This formula suggests a general pattern to express graph constrained op-
timization problems:

• Define a formula p that characterizes the valid graphs.

• Define a formula q that assigns the QoS level to a graph (not necessarily
the product of all edge costs).

• Define a formula r that constraints the QoS of a graph (not necessarily a
global constraint on the QoS level of a graph).

• The desired formula is then (p × q × r)|1.

While this pattern allows to express such problems in a fairly intuitive
way, the actual computation of the resulting formulae might be very ineffi-
cient, mainly due to redundancy in the formula and the nesting of composi-
tions. Observe that the intuition behind the pattern is that one enumerates
all subgraphs of the graph and selects the optimal one satisfying the desired
properties and constraints. In a way this is a sort of brute-force specifica-
tion. In some cases redundancy can be avoided. Formula costp, for example,
combines both path characterization and cost expression and profits from the
distributive property of c-semirings to use recursion in an efficient way.

6 Conclusions.

We have extended a spatial logic for graphs with QoS attributes which formal
structure is a c-semiring. The evaluation of a formula of our logic is not just
a boolean value but a value of the domain of the c-semiring, representing
the QoS level associated to a graph. We have shown how our logic can be
used to express common QoS properties of graphs, like optimal constrained
routes or minimal spanning trees, concentrating in an example of a distributed
protocol, using a fairly intuitive design pattern. Unfortunately, the resulting
formulae may lead to inefficient computations. In current work we are trying
to establish formulae for common QoS problems that avoid such problems.

We are also studying the complexity and expressivity of our logic. The
main problem concerns the computation of fixpoints. Fixpoint iteration is
not guaranteed to terminate in a finite number of steps in general. Syntactic
restrictions can ensure termination but it is an open question to establish if
the loss of expressivity due to the restriction is significant.

We also plan to precisely analyze potential applications of our logic in

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160158

the domain of SON systems and to extend our concepts to a logic including
QoS, temporal and spatial aspects. This is an interesting avenue that would
allow us to reason about QoS in graph transition systems (roughly speaking,
transition system which states are graphs). Approaches to express and verify
boolean properties of graph transitions systems already exist, e.g. [25,2] and
can serve as inspiration for our purposes.

References

[1] Baier, C., B. Havekort, H. Hermanns and J.-P. Katoen, Model checking continuous-time Markov
chains by transient analyisis, in: Computer Aided Verification, LNCS 1855, 2000, pp. 358–372.

[2] Baldan, P., A. Corradini, B. König and B. König, Verifying a behavioural logic for graph
transformation systems, in: CoMeta’03, ENTCS, 2004.

[3] Bella, G. and S. Bistarelli, Soft constraint programming to analysing security protocols, Theory
and Practice of Logic Programming To appear.

[4] Bistarelli, S., U. Montanari and F. Rossi, Semiring-based constraint satisfaction and
optimization, Journal of the ACM 44 (1997), pp. 201–236.

[5] Bistarelli, S., U. Montanari and F. Rossi, Soft constraint logic programming and generalized
shortest path problems, Journal of Heuristics 8 (2002), pp. 25–41.

[6] Caires, L. and L. Cardelli, A spatial logic for concurrency (part II), in: Proceedings of the 13th
International Conference on Concurrency Theory (2002), pp. 209–225.

[7] Caires, L. and L. Cardelli, A spatial logic for concurrency (part I), Inf. Comput. 186 (2003),
pp. 194–235.

[8] Cardelli, L., P. Gardner and G. Ghelli, A spatial logic for querying graphs, in: P. W. et al,
editor, ICALP’2002, Lecture Notes in Computer Science 2380 (2002), pp. 597–610.

[9] Cardelli, L., P. Gardner and G. Ghelli, Manipulating trees with hidden labels, in: Foundations of
Software Science and Computation Structures (FOSSACS), Lecture Notes in Computer Science
(2003), pp. 216–232.

[10] Chechik, M., S. Easterbrook and A. Gurfinkel, Multi-valued symbolic model-checking, ACM
Transactions on Software Engineering and Methodology (2003), to appear.

[11] Clarke, E. and J. Wing, Formal methods: State of the art and future directions., ACM
Computing Surveys 28 (1996), pp. 626–643.

[12] Clarke, E. M., O. Grumberg and D. A. Peled, “Model Checking,” MIT Press, 1999.

[13] Corradini, A., U. Montanari and F. Rossi, An abstract machine for concurrent modular systems:
Charm, Theoretical Computer Science (1994), pp. 165–200.

[14] Courcelle, B., “Handbook of graph grammars and computing by graph transformations,”
Theoretical Computer Science 1 : Foundations, World Scientific, 1997 pp. 313–400.

[15] Dawar, A., P. Gardner and G. Ghelli, Expressiveness and complexity of graph logic, Technical
Report 2004/3, Imperial College, Department of Computing (2004).

[16] de Alfaro, L., Quantitative verification and control via the mu-calculus, in: R. M. Amadio
and D. Lugiez, editors, Proceedings of 14th International Conference on Concurrency Theory,
Lecture Notes in Computer Science 2761 (2003), pp. 102–126.

[17] Demmer, M. J. and M. Herlihy, The arrow distributed directory protocol, in: International
Symposium on Distributed Computing (DISC 98), 1998, pp. 119 –133.

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160 159

[18] Duan, Z., Z. Zhang and Y. T. Hou, Service overlay networks: SLAs, QoS, and bandwidth
provisioning, IEEE/ACM Transactions on Networking (TON) 11 (2003), pp. 870–883.

[19] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg, editors, “Handbook of Graph
Grammars and Computing by Graph Transformation,” World Scientific, 1999.

[20] Fink, E., A survey of sequential and systolic algorithms for the algebraic path problem, Technical
Report CS-92-37, Department of Computer Science, University of Waterloo (1992).

[21] Gaubert, S., Methods and applications of (max,+) linear algebra, Technical Report 3088,
Institut National de Recherche en Informatiqu et en Automatique (1997).

[22] Gu, X., K. Nahrstedt, R. Chang and C. Ward, QoS-assured service composition in managed
service overlay networks, in: IEEE International Conference on Distributed Computing Systems
(ICDCS2003) (2003).

[23] Lluch-Lafuente, A. and U. Montanari, Quantitative mu-calculus and CTL based on constraint
semirings, in: A. Cerone and A. di Pierro, editors, 2nd Workshop on Quantitative Aspects of
Programming Languages, Electronic Notes in Theoretical Computer Science (2004).

[24] Milner, R., “Communication and Concurrency,” Prentice Hall, 1989.

[25] Rensink, A., Towards model checking graph grammars, in: 3rd Workshop on Automated
Verification of Critical Systems, Tech. Report DSSE-TR-2003, 2003, pp. 150–160.

[26] Reynolds, J., Separation logic: A logic for shared mutable data structures, in: LICS 2002, 2002,
pp. 55–74.

[27] Rote, A., A systolic array algorithm for the algebraic path problem (shortest path; matrix
inversion), Computing (1985), pp. 191–219.

[28] Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of
Mathematics (1955).

[29] Younis, O. and S. Fahmy, Constraint-based routing in the internet: Basic principles and recent
research, IEEE Communications Surveys and Tutorials 5 (2003).

G. Ferrari, A. Lluch-Lafuente / Electronic Notes in Theoretical Computer Science 142 (2006) 143–160160

	Introduction
	The Arrow Distributed Directory Protocol
	Preliminaries
	C-Semirings.
	Graphs.
	Example.

	Graph logic over c-semirings
	Syntax.
	Semantics.
	Computing the semantics.

	Further Applications.
	Conclusions.
	References

