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Chapter 1

General introduction

The general context

Polynomial Optimization is concerned with optimization problems of the form

P : f ∗ = inf
x
{f(x) : x ∈ K } (1.1)

with K = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m},

where f, gj, j = 1, . . . ,m, are polynomials. Why then give the name “Polynomial
Optimization" since P in (1.1) is just a particular case of the general Nonlinear
Programming Problem (NLP)?

The reason why this name has emerged in the last decade is because thanks to
powerful results of Real Algebraic Geometry it has been possible to define a systematic
numerical scheme to compute, or at least approximate as closely as desired, the global
minimum f ∗. In a more general framework where f and gj are not polynomials,
no such systematic procedure exists. Of course, in the case where the gj’s define
relatively simple feasible sets (e.g., a box) some brute force discretization procedure
is possible. Also for Mixed-Integer Linear and convex Mixed-Integer Non Linear
Problems (MILPs and convex MINLPs), a variety of effective exact solution methods
have been developed in the last decades. For examples, Branch & Bound schemes
[24], outer approximation [16], LP/NLP-based Branch & Bound [63], the extended
cutting-plane method [78], to cite a few. We refer the interested reader to the recent
contributions [48, 69, 79] and the references therein for a deep analysis of the theory
and of some effective software packages that came from theoretical developments (e.g.,
CPLEX [32], XPRESS-MP [12], BONMIN [9], DICOPT [36] and LaGO [60]). On
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2 Chapter 1 – General introduction –

the other hand, in non-convex MINLP and NLP in general, the situation is more
contrasted. Even though several software packages can sometimes provide exact or
good approximate solutions (e.g. BARON [66], αBB [2], Couenne [7], LINDO-Global
[51]), the computational effort is in general more important because the problems are
more difficult. Therefore one is often satisfied with finding only a local minimizer
x∗ ∈ K with f(x∗) > f ∗. For further details the interested reader is referred to the
excellent recent surveys [10, 27, 48].

In NLP the main tools are from Real and Convex Analysis as well as Linear
Algebra, whereas in Polynomial Optimization additional results from Real Algebraic
Geometry can also be exploited to derive powerful global representation theorems for
polynomial that are positive on certain sets. This is why polynomial optimization
is a subfield of NLP that deserves special attention. Examples of such represention
theorems are the Positivstellensatze1 of Handelman [25], Krivine [39], Stengle [71],
Schmüdgen [68] and Putinar [62] (the latter being especially useful for the moment-
SOS approach described in this thesis).

In particular, a popular approach to compute (or at least approximate) f ∗ is via
solving a hierarchy of convex relaxations whose associated sequence of optimal values
is monotone non decreasing and converges to f ∗. Convergence of this numerical
scheme is proved by invoking these powerful representation theorems. Depending on
which type of representation is used, the resulting convex relaxations in the hierarchy
are either linear programs (LP) or semidefinite programs (SDP). For more details on
this methodology the interested reader is referred to [44] , [47] and [61]

It turns out that the latter hierarchy (which we call the moment-SOS approach)
is more efficient and preferable. On the other hand, even though this approach is
very efficient, the size the semidefinite relaxations grows rapidly with the rank in
the hierarchy and becomes prohibitive. Typically, if problem P in (1.1) has n vari-
ables then the d-th semidefinite relaxation in the hierarchy has O(n2d) variables and
semidefiniteness constraints of matrices with size O(nd). Therefore, in view of the
present status of public semidefinite solvers available, so far this approach is limited
to small to medium size problems P only. However, as is often the case in large scale
problems, if symmetries and/or some structured sparsity are present in problem P,
they can be exploited right from the beginning to define appropriate hierarchies of
semidefinite relaxations of much smaller size. For more details on how to use symme-
tries the interested reader is referred to e.g. [19, 47, 74] and for structured sparsity
to e.g. [37, 76, 77].

1In german, “Positivstellensatz" is a theorem on positivity.
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In this thesis we are interested in problems P in (1.1) where symmetries and/or
structured sparsity are not easy to detect or to exploit, and where only a few (or even
no) semidefinite relaxations of the moment-SOS approach can be implemented. And
the issue we investigate is:

How can the moment-SOS methodology be still used to help solve such problems
P?

Our contribution

We provide two applications of the moment-SOS approach to help solve P in two
different contexts. Namely:

• In a first contribution we consider MINLP problems on a box B = [xL,xU ] ⊂ Rn

and propose a moment-SOS approach to construct polynomial convex underestimators
for the objective function f (if non convex) and for −gj if in the constraint gj(x) ≥ 0

the polynomial gj is not concave. Convex underestimators are used in most MINLP
algorithms to compute efficiently lower bounds at each node of a search tree in an as-
sociated Branch & Bound scheme to approximate f ∗. The interested reader is referred
to e.g. [10, 27, 48, 69, 79] for various contributions to solve MINLP problems and to
[4, 11, 57, 22, 49, 30, 67, 73] for typical approaches to obtain convex underestimators.

In most applications of interest the size of the resulting MINLPs is large but the
polynomial f is a sum

∑
` f` polynomials f` with a few variables only; for instance

think of f being of low degree d, hence a sum of monomials f`, each f` having no more
than d variables. Similarly for nonlinear constraints, in many cases each nonlinear
polynomial gj is concerned with very few variables only and the coupling of all (many)
variables x is through the coupling of constraints and the criterion f . Therefore for
practical efficiency, a popular convex under estimator of f is the sum

∑
` f̃` where

each f̃` is a convex underestimator of f`.

Hence we work in the context where one wishes to find a convex underestimator of
a non convex polynomial f of a few variables on a box B. The novelty with previous
works on this topic is that we want to compute a polynomial convex underestimator
pd of f that minimizes the important tightness criterion

∫
B
|f − h| dx over all convex

polynomials h of degree d fixed. Indeed in previous works for computing a convex un-
derestimator L of f , this tightness criterion is not taken into account directly. For in-
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stance, the popular αBB underestimator is of the form L = f−∑i αi(x
U
i −xi)(xi−xLi )

and various heuristics are proposed to compute appropriate coefficients αi’s to ensure
that L is convex on B; see e.g. [1, 2, 3, 4, 6, 22, 23, 57]. It turns out that the moment-
SOS approach is well suited to compute a polynomial convex underestimator pd that
minimizes the tightness criterion and numerical experiments on a sample of non triv-
ial examples show that pd outperforms L not only with respect to the tightness score
but also in terms of the resulting lower bounds obtained by minimizing respectively
pd and L on B. Similar improvements also occur when we use the moment-SOS un-
derestimator instead of the αBB-one in refinements of the αBB method proposed in
e.g. [22, 23] and [57].

• In a second contribution we consider problems P for which only a few semidef-
inite relaxations of the moment-SOS approach can be implemented, e.g., the first in
the hierarchy. So such problems are not very large as one should be able to imple-
ment at least the first semidefinite relaxation in the moment-SOS hierarchy. However
if one uses specialized softwares as in e.g. [65, 26] the first semidefinite relaxation
can be solved approximately for problems P of significant size (say n > 200). Also, if
some structured sparsity is present in the problem data, appropriate sparse versions
of the standard semidefinite relaxations can be defined and problems of up to say
a thousand variables can be handled. In general solving this semidefinite relaxation
provides only a lower bound on f ∗ and so the question is: How can we use an optimal
solution of this relaxation to help find a feasible solution of P?

Such an approach has already been proposed for some 0/1 programs. In particular
for the MAXCUT problem, the celebrated Goemans and Williamson’s randomized
rounding algorithm uses an optimal solution of a semidefinite relaxation (in fact
the first in the moment-SOS hierarchy to approximate f ∗) to construct a feasible
solution x ∈ {−1, 1}n with a performance guarantee; see [20]. This technique has
been extended with success to some other combinatorial optimizations problems; for
more details on this issue the interested reader is referred to e.g. [?, 14, 31, 33, 46]
and the many references therein.

Our contribution is to propose an algorithm that also uses an optimal solution
of a semidefinite relaxation in the moment-SOS hierarchy (in fact a slight modifi-
cation) to provide a feasible solution for the initial optimization problem but with
no rounding procedure. The rationale behind the algorithm is borrowed from re-
sults in [45] for parametric polynomial optimization. In the present context, we treat
the first variable x1 of x = (x1, . . . , xn) as a parameter in some bounded interval
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Y ⊂ R. Notice that f ∗ = min{J(y) : y ∈ Y} where J is the optimal value function
y 7→ J(y) := inf{f(x) : x ∈ K; x1 = y}. That is one has reduced the original n-
dimensional optimization problem P to an equivalent one-dimensional optimization
problem on a interval. But of course determining the optimal value function J is
even more complicated than P as one has to determine a function (instead of a point
in Rn), an infinite-dimensional problem. But the idea is to approximate J on Y by
a univariate polynomial y 7→ pd(y) of degree d and fortunately, computing such a
univariate polynomial is possible via solving a semidefinite relaxation associated with
the parameter optimization problem. The degree d of pd is related to the size of this
semidefinite relaxation. The higher the degree d is, the better is the approximation
of J(y) by pd(y) and in fact one may show that pd → J in a strong sense on Y.

But of course the resulting semidefinite relaxation becomes harder (or impossible)
to solve as d increases and so in practice d is fixed to a small value. Once the univariate
polynomial pd has been determined, one computes x̃1 ∈ Y that minimizes pd on Y, a
convex optimization problem that can be solved efficiently. The process is iterated to
compute x̃2 in a similar manner, and so on, until a point x̃ ∈ Rn has been computed.
Finally, as x̃ is not feasible in general, we then use x̃ as a starting point for a local
optimization procedure to find a final feasible point x ∈ K. When K is convex,
the following variant is implemented. After having computed x̃1 as indicated, x̃2 is
computed with x1 fixed at the value x̃1, and x̃3 is computed with x1 and x2 fixed at
the values x̃1 and x̃2 respectively, etc., so that the resulting point x̃ is feasible, i.e.,
x̃ ∈ K. The same variant applies for 0/1 programs for which feasibility is easy to
detect like e.g., for MAXCUT, k-CLUSTER or 0/1-KNAPSACK problems.





Chapter 2

Polynomial optimization

2.1 Introduction

In this thesis we consider the optimization problem:

P : f ∗ = min
x

{f(x) : x ∈ K } (2.1)

for some given measurable function f : Rn → R and some Borel subset K ⊂ Rn.
Here we insist on the fact that f ∗ is the global minimum on K, as opposed to a local
minimum. In full generality problem (2.1) is very difficult and there is no general
purpose method, even to approximate f ∗.

The primal and dual persective

If one is interested in the global minimum f ∗ then (2.1) has the two equivalent
formulations:

f ∗ := min
µ∈M(K)+

{
∫

K

fdµ : µ(K) = 1}, (2.2)

and

f ∗ := sup
λ
{λ : f(x)− λ ≥ 0, ∀x ∈ K}, (2.3)

where M(K)+ is the space of finite Borel measures on K (the convex positive cone
of the vector spaceM(K) of finite signed Borel measures on K).

That (2.3) is equivalent to (2.1) is straightforward. Indeed observe that for every

7
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x ∈ K, f(x) =
∫
K
fdµ with µ ∈M(K) being the Dirac measure σx at x. Therefore,

the infimum in (2.2) is not larger than the infimum in (2.1). On the other hand, in
(2.1) if f ∗ > −∞ then as f−f ∗ ≥ 0 on K, integrating with respect to any probability
measure µ ∈ M(K)+ yields

∫
K
fdµ ≥ f ∗, which completes the proof. In addition, if

x∗ ∈ K is a global minimizer then µ := σx∗ is also a global minimizer of (2.2).

In fact, the two formulations (2.2) and (2.3) are dual of each other in the sense of
classical LP-duality if one observes that (2.2) is the infinite-dimensional LP

f∗ := inf
µ∈M(K)

{〈f, µ〉 : 〈1, µ〉 = 1 ; µ ≥ 0} (2.4)

where 〈g, µ〉 =
∫
K
gdµ for every µ ∈ M(K) and every bounded measurable function

g on K (e.g. assuming that f is bounded measurable on K).
The optimization problems (2.3) and (2.4) are convex and even linear but also

infinite-dimensional. In (2.3) one has uncountably many constraints f(x) ≥ λ, x ∈ K,
whereas in (2.4) the unknown is a signed Borel measure µ ∈M(K) (and not a finite
dimensional vector as in classical LP). With no other assumption on neither f nor K,
one does not known how to solve (2.3) and (2.4) because one does not have tractable
characterizations of:

• Borel measures supported on K ⊂ Rn (for solving (2.4)).

• Or functions nonnegative on K (for solving (2.3)).

An so in general (2.3) and (2.4) are only a rephrasing of (2.1)!

However, if one now considers problem (2.1) with the restrictions that:

(i) f : Rn → R is a polynomial (or even a semi-algebraic function), and

(ii) K ⊂ Rn is a compact closed basic semi-algebraic set. (i.e. K = {x ∈ Rn :

gj(x) ≥ 0, j = 1, ...,m}).

then one may solve (or approximate as closely as desired) the linear programs (2.3)-
(2.4). This is possible due to the conjunction of two factors:

• On one side, remarkable and powerful representation theorem for polynomials
positive on a basic semi-algebraic set have been produced in the nineties by
real algebraic geometers, notably by Stengle [71], Schmüdgen [68], Putinar [62],
and importantly, the resulting conditions can be checked by solving appropriate



2.1 – Introduction – 9

semidefinite programs. For mored details see e.g. [44] and [47].

• On the other side, Semidefinite Programming has become a central tool of con-
vex optimization and several powerful software packages are now available to
solve highly non trivial problems of relatively large size. For various classical and
more recent aspects of semidefinite (and more generally conic) programming,
the interested reader is referred to [26, 15].

Let us briefly explain what we mean by that. Indeed, relatively recent results from
real algebraic geometry permit to characterize polynomials that are positive on K,
which is exactly what we need to solve (2.3). In addition, it turns out that those char-
acterizations are tractable as they translate into semidefinite (or sometimes linear)
conditions on the coefficients of certain polynomials that appear in some appropriate
representation of the polynomial x→ f(x)−λ, positive on K. Moreover, the previous
representation results have a nice dual interpret which is concerned with sequences of
reals y = (yα), α ∈ Nn, that are the moments of a measure µ supported on K, i.e.,

yα =

∫

K

xαdµ, α ∈ Nn, (2.5)

for some Borel measure µ, which is exactly what we need to solve the linear program
(2.4) when f is a polynomial. Indeed, an important observation is that in (2.1), when
f is a polynomial and f ∈ R[x] is written in the canonical basis (xα), α ∈ Nn, of R[x]

as

x→ f(x) =
∑

α∈Nn

fαx
α

(
=
∑

α∈Nn

fαx
α1
1 , ..., x

αn
n

)
,

for finitely many real non zero coefficients (fα), then

〈f, µ〉 =

∫

K

fdµ =
∑

α∈Nn

fα

(∫

K

xαdµ

)
=
∑

α∈Nn

fαyα.

That is, the unknown measure µ in (2.2) only appears in
∫
K
fdµ through its finite

sequence of moments y = (yα) defined in (2.5).
And so in the linear program (2.4) one may replace the unknown µ with a finite

sequence of real numbers y = (yα), along with appropriate conditions on y to ensure
that (2.5) holds for some probability measure µ on K. Hence, such conditions also
translate into semidefinite (or sometimes linear) conditions on the y′αs.

Even with the above two restrictions (i)-(ii) on data expressed in terms of poly-
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nomials, problem (2.1) still encompasses a lot of important optimization problems.
In particular, it includes 0/1 optimization problems, modelling xi ∈ (0, 1) via the
quadratic polynomial constraint x2

i = xi. Therefore, one should always have in mind
that one addressing a NP-hard problems in general.

In the next sections of this chapter, we present the notation used in the whole
document, review some preliminary results about moments and positive polynomials
and then describe the semidefinite relaxation associated with a polynomial (global)
optimization problem.

2.2 Notation and definitions

Let N denote the set of natural numbers (including 0). The letters xi, yj, x, y, z, .etc
stand for the real valued scalars and the bold letters x,y, z, etc. stand for vectors of
variables.

Denote by R[x] = R[x1, . . . , xn] the ring of polynomials with coefficients in R and
with d ∈ N, let R[x]d ⊂ R[x] be the R-vector space of polynomials of degree at most
d. For a multi-index α ∈ Nn, let |α| := ∑n

i=1 αi and let the notation xα stand for the
monomial xα1

1 · · · xαn
n . The vector

(xα)|α|≤d = (1, x1, x2, . . . , xn, x
2
1, x1x2, ..., x1xn, x

2
2, x2x3, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n)

is a (monomial) basis for vector space R[x]d whose dimension is s(d) =
(
n+d
n

)
. In this

basis, a polynomial f ∈ R[x] is written as

x 7→ f(x) :=
∑

α∈Nn

fα x
α, f ∈ R[x],

for some finite vector of coefficients f = (fα) ∈ Rs(d).

For any two real symmetric matricesA,B the notation 〈A,B〉 stands for trace (AB)

andA � 0 (resp. A � 0) stands forA is positive semidefinite (resp. positive definite).
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Sums of squares

A polynomial f ∈ R[x] is a sum of squares (in short SOS ) if f can be written as

x 7→ f(x) =
∑

j∈J
fj(x)2, x ∈ Rn, (2.6)

for some finite family of polynomials (fj : j ∈ J) ⊂ R[x]. Denote by Σ[x] ⊂ R[x] the
space of SOS polynomials.

Moment sequence

A sequence y = (yα) ⊂ Rn has a representing finite Borel measure supported on set
K if there exists a finite Borel measure µ such that

yα =

∫

K

xαdµ ∀α ∈ Nn.

The support suppµ of a finite Borel measure µ on Rn is the smallest (with respect to
inclusion) closed set K ⊆ Rn such that µ(Rn \K) = 0.

An old mathematical problem with many important and crucial applications is the
so-called K-moment problem, concerned with providing conditions on a real sequence
y = (yα), α ∈ Nn, to have a representing measure µ supported on K. It dates back to
the end of the nineteen century and has attracted attention of famous mathematicians.
Among them are Stieltjies, Hausdorff, Markov, to cite a few. Crucial in theK-moment
problem is the Riesz functional associated with a sequence y.

The Riesz functional

Given a real sequence y = (yα), α ∈ Nn, the Riesz linear functional Ly : R[x] → R
associated with y is defined by:

f

(
=
∑

α∈Nn

fα x
α

)
7→ Ly(f) :=

∑

α∈Nn

fα yα.

If the sequence y has a representing finite Borel measure µ on Rn, the Riesz functional
Ly can be rewritten:

Ly(f) :=
∑

α∈Nn

fα yα =

∫

Rn

(∑

α∈Nn

fαx
α

)
dµ =

∫

Rn

f(x)dµ.
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The important Riesz-Haviland theorem states necessary and sufficient conditions for
a sequence y = (yα), α ∈ Nn, to have a representing finite Borel measure µ supported
on a closed set K.

Theorem 1. (Riesz - Haviland) Let y = (yα), α ∈ Nn, be a real sequence and let
K ⊂ Rn be closed. Then y has a representing measure with support contained in K

if and only if Ly(f) ≥ 0 for all polynomials f ∈ R[x] that are nonnegative on K.

Even though it solves theK-moment problem, Theorem 1 is still mainly theoretical
in general because there is no simple characterization of polynomials nonnegative on
an arbitrary closed subset K of Rn. However as we will see, a notable exception is
the case where the set K is a compact basic semi algebraic set.

Moment matrix

Given a real sequence y = (yα), α ∈ Nn, the moment matrix Md(y) associated with
y is the real symmetric matrix with rows and columns indexed in the canonical basis
(xα), α ∈ Nn

d , and with entries

Md(y)(α, β) := Ly(xα+β) = yα+β, α, β ∈ Nn
d .

Equivalently, if vd(x) is the vector of monomials (xα), α ∈ Nn
d ,

Md(y) = Ly

(
vd(x)vd(x)T

)
,

where the above abuse of notation Ly

(
vd(x)vd(x)T

)
means that the linear functional

Ly is applied entrywise to the matrix vd(x)vd(x)T .

If y has a finite representing measure µ on Rn, and f ∈ R[x]d has coefficient vector
f ∈ Rs(d),

〈f ,Md(y)f〉 =

∫

Rn

f(x)2 dµ(x) ≥ 0,

and so as f ∈ R[x]d was arbitrary, Md(y) � 0. On the other hand not every sequence
y with Md(y) � 0 for all d, has a representing measure!

Localizing matrix

Similarly, given a real sequence y = (yα), α ∈ Nn, and a polynomial g ∈ R[x] with
coefficient vector g = (gα), the localizing matrix Md(g y) associated with y and g,
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is the real symmetric matrix with rows and columns indexed in the canonical basis
(xα), α ∈ Nn

d , and with entries

Md(g y)(α, β) := Ly(g(x)xα+β) =
∑

γ

gγ yα+β+γ, α, β ∈ Nn
d .

Equivalently, Md(g y) = Ly

(
vd(x)vd(x)Tg(x)

)
, where again the linear functional

Ly is applied entry wise to the matrix g(x)vd(x)vd(x)T .
If y has a finite representing measure µ whose support is contained in the set

{x : g(x) ≥ 0}, and if f ∈ R[x]d has coefficient vector f ∈ Rs(d),

〈f ,Md(y)f〉 =

∫

Rn

f(x)2 g(x)dµ(x) ≥ 0,

and so as f ∈ R[x]d was arbitrary, Md(g y) � 0. On the other hand not every
sequence y with Md(g y) � 0 for all d, has a representing measure supported on
{x : g(x) ≥ 0}!

2.3 Sums of squares and semidefinite programs

Checking whether a given polynomial f is nonnegative on Rn is very hard. On
the other hand, if f ∈ R[x] is SOS, i.e., f ∈ Σ[x], its decomposition (2.6) provides
an obvious certificate that f is nonnegative on Rn. And moreover, as we next see,
checking whether f is in Σ[x] is easy and amounts to solving a semidefinite program.
This is what makes the convex cone Σ[x] an important mathematical object that we
use extensively in the sequel.

2.3.1 Semidefinite programs

Positive semidefinite matrix

Recall that for an n × n real symmetric matrix M, the notation M � 0 means
that M is positive semidefinite, i.e. xTMx ≥ 0 for all x ∈ Rn. Several equivalent
characterizations for M � 0 are available. For instance M � 0 if and only if:

1. M = VVT for some V ∈ Rn × n. Here matrix V can be chosen in Rn×r where
r = rank M.

2. M = (vTj vj)
n
i,j=1 for some vectors (vj)

n
j=1 ⊂ Rn. Here the vj’s can be chosen in

Rr where r = rank M.
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3. All eigenvalues of M are nonnegative.

Semidefinite programs

Let Sp ⊂ Rp×p be the space of real p× p symmetric matrices. Whenever A,B ∈ Sp,
the notation A � B (resp. A � B) stands for A−B � 0 (resp. A−B � 0). Also,
the notation 〈A,B〉 stands for trace (AB) ( = trace (BA) ). In canonical form, a
semidefinite program reads:

P : inf
x
{c′x : F0 +

n∑

i=1

Fixi � 0} (2.7)

where c ∈ Rn, and {Fi}ni=0 ⊂ Sp for some p ∈ N. Denote by inf P its optimal value.
Associated with P is a dual problem D which is also a semidefinite program and

which reads:

D : sup
Z
{−〈F0,Z〉 : 〈Fi,Z〉 = ci, i = 1, 2, ..., n; Z � 0} (2.8)

with optimal value denoted supD.

Weak duality states that inf P ≥ supD and holds without any assumption.
Indeed, if x ∈ Rn and Z � 0 are feasible solutions of (2.7) and (2.8) respectively, then

c′x =
n∑

i=1

〈Fi,Z〉xi =

〈
n∑

i=1

Fixi,Z

〉
≥ −〈F0,Z〉.

The absence of a duality gap (i.e. inf P = supD is not always valid but holds under
some (sufficient) strict feasibility conditions.

Theorem 2.3.1. (Strong duality) Let P and D be as in (2.7) and (2.8) respectively.

• If there exists x ∈ Rn such that F(x) � 0 then inf P = supD and inf P = maxD

if the optimal value is finite.

• If there exists Z � 0 feasible for D then inf P = supD and minP = supD if
the optimal value is finite.
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• If there exists Z � 0 feasible for D and x ∈ Rn such that F(x) � 0 then
minP = maxD.

The strict feasibility condition in Theorem (2.3.1) is a specialization of Slater’s
condition in convex programming when applied to the conic problem P.

An important property of semidefinite programs is their tractability. Indeed, up
to arbitrary precision ε > 0 fixed, solving a semidefinite program can be done in time
polynomial in the input size of the problem.

2.3.2 Sums of squares

Recall that vd(x) = (xα), α ∈ Nn
d , is a (monomial) basis of R[x]d.

Theorem 2.3.2. A polynomial f ∈ R[x]2d is a sum of squares (SOS) if and only if
there exists a real symmetric and positive semidefinite matrix Q ∈ Rs(d)×s(d) such that
f(x) = vd(x)′Qvd(x), for all x ∈ Rn.

Proof. Suppose there exists a real symmetric s(d) × s(d) matrix Q � 0 for which
f(x) = vd(x)′Qvd(x), for all x ∈ Rn. From its spectral decomposition Q can be
writtent as

∑s
i=1 hih

′
i for some s ∈ N and some vectors hi ∈ Rs(d), i = 1, . . . , s. And

so,

f(x) = vd(x)′
(

s∑

i=1

hih
′
i

)
vd(x) =

s∑

i=1

vd(x)′hi︸ ︷︷ ︸
hi(x)

h′ivd(x)︸ ︷︷ ︸
hi(x)

=
s∑

i=1

hi(x))2, ∀x ∈ Rn.

Conversely, suppose that f ∈ R[x]2d is SOS, i.e., f(x) =
s∑

i=1

h2
i (x) for some finite

family (hi) ⊂ R[x]. Then necessarily, the degree of each hi is bounded by d. Let
hi ∈ Rs(d) be the vector of coefficients of the polynomial hi, i.e., hi(x) = h′ivd(x),
i = 1, . . . , s. Thus,

f(x) =
s∑

i=1

vd(x)′ hi h
′
i︸︷︷︸

Q

vd(x) = vd(x)′Qvd(x) ∀x ∈ Rn,

with Q ∈ Rs(d) × Rs(d), Q :=
k∑

i=1

hihi � 0.

Given a SOS polynomial f ∈ R[x]2d, the identity f(x) = vd(x)′Qvd(x) = 〈Q,vd(x)vd(x)′〉
for all x, provides linear equations that the coefficients of the matrix Q must satisfy.
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Hence, writing
vd(x)′vd(x) =

∑

α∈Nn
2d

Bα x
α,

for appropriate real symmetric matrices Bα, checking whether the polynomial f =∑
α fαx

α is SOS reduces to solving the semidefinite program:

Find Q ∈ Rs(d)×s(d) such that:

Q = Q′, Q � 0, 〈Q,Bα〉 = fα, ∀α ∈ Nn
2d. (2.9)

which, as already mentioned, is a tractable convex optimization problem for which
efficient software packages are available. Observe that the size s(d) =

(
n+d
d

)
of the

semidefinite program (2.9) is bounded by nd.
Example. Consider the polynomial in R[x1, x2]:

f(x) = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2.

Suppose we want to check whether f is a sum of squares. As f is homogeneous,
we may attempt to find Q with rows and columns indexed only by the quadratic
monomials x2

1, x1x2, x
2
2.

f(x) = 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2 (2.10)

= (x2
1 x1x2 x2

2)



q11 q12 q13

q21 q22 q23

q31 q32 q33







x2
1

x1x2

x2
2


 (2.11)

= q11x
4
1 + q22x

4
2 + (q33 + 2q21)x2

1x
2
2 + 2q31x

3
1x2 + 2q23x1x

2
3, (2.12)

for some Q � 0. Equating coefficients, we have:

q11 = 2, q22 = 5, q33 + 2q12 = −1, 2q12 = 2, q23 = 0.

One particular solution: q33 = 5, q12 = −3 and we have:

0 � Q =




2 −3 1

−3 5 0

1 0 5


 = HH′, with H =

1√
2




2 0

−3 1

1 3


 .
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and so
f(x1, x2) =

1

2
(2x2

1 − 3x2
2 + x1x2)2 +

1

2
(x2

2 + 3x1x2)2,

which is indeed a sum of squares.

2.4 Moments and positive polynomials

Checking whether f is nonnegative on Rn is very hard but we have just seen
that checking whether a given polynomial f ∈ R[x]2d is SOS reduces to solving a
semidefinite program whose unknown matrix Q � 0 has size O(nd). However not
all nonnegative polynomials are SOS and in fact, for fixed degree 2d, the cone of
nonnegative polynomials is much larger than that of SOS; see e.g. Blekherman [8].

However, if we are now interested in polynomials that are nonnegative on a com-
pact setK ⊂ Rn, the situation is much better ifK is a basic semi-algebraic set. Indeed
from relatively recent results from real algebraic geometry, and under some conditions
on the polynomials that define the compact basic semi-algebraic set K, powerful rep-
resentation for positive polynomials on K are available and are particularly useful for
solving problem (2.3).

Moreover these representation results also have a dual facet concerned with the
so-called K-moment problem which is concerned with conditions on a given sequence
y = (yα), α ∈ Nn, to have a representing finite Borel measure µ supported on K.
And those results are also particular useful for solving problem (2.2). These two real
algebraic and functional analysis facets nicely express the well-known duality between
positive polynomials and moments, which is why if the former are useful for solving
(2.3) then naturally and not surprisingly, the latter are useful for solving the dual
problem (2.2).

Given polynomials g1, . . . , gm ∈ R[x], the set

Q(g) = Q(g1, . . . , gm) :=

{
u0 +

m∑

j=1

uj gj : u0, uj ∈ Σ[x]

}
, (2.13)

is a convex cone called the quadratic module generated by the family g1, g2, . . . , gm.

Assumption 1. With (gj)
m
j=1 ⊂ R[x], there exists N ∈ N such that the quadratic

polynomial x→ N − ||x||2 belongs to Q(g).

When Assumption 1 holds the quadratic module Q(g) is said to be Archimedean.
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Observe that Assumption 1 is not on K itself but on its representation via the gj’s.
It is not very restrictive. For instance, it is satisfied in the following cases:

. K is compact and all the g′js are affine (and so K is a convex polytope). Or

. The set {x ∈ Rn : gj(x) ≥ 0 } is compact for some j ∈ {1, . . . ,m}.

Moreover, if K is compact, it is contained in a ball {x : M − ‖x‖2 ≥ 0} for some
M . If M is known then it suffices to add the redundant constraint gm+1(x) ≥ 0 (with
x 7→ gm+1(x) = M − ‖x‖2) in the definition of K and Assumption 1 holds.

Theorem 2.4.1 (Putinar’s Positivstellensatz [62]). Let K ⊂ Rn be the basic semi-
algebraic set:

K := { x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m } (2.14)

for some (gj) ⊂ R[x], and let Assumption 1 hold. If f ∈ R[x] is strictly positive on
K then f ∈ Q(g), that is,

f = σ0 +
m∑

j=1

σj gj, (2.15)

for some SOS polynomials σj ∈ Σ[x], j = 0, 1, . . . ,m.

In Theorem 2.4.1 nothing is said on the degree of the SOS polynomials σj involved
in the representation (2.15) of f . This is the reason why Theorem 2.4.1 does not lead
to a polynomial time algorithm to check whether a polynomial f is positive on K.

Observe that the SOS polynomials σj in (2.15) provide an obvious certificate of
non negativity on K for f . The strength of Putinar’s Positivstellensatz is to state
the (almost) converse result, i.e., that every polynomial f strictly positive on K has
such a certificate.

The next theorem is a dual facet of Theorem (2.4.1).

Theorem 2.4.2 (Dual facet of Theorem 2.4.1). Let K ⊂ Rn be the basic semi-
algebraic set defined in (2.14) for some (gj) ⊂ R[x], and let Assumption 1 hold. A
sequence y = (yα) has a representing measure µ supported on K if and only if, for all
d = 0, 1, . . .

Md(y) � 0; Md(gj y) � 0, j = 1, . . . ,m

or equivalent,
Ly(f) ≥ 0; Ly(gj f) ≥ 0, ∀f ∈ Σ[x].
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Proof. For every j ∈ {1, ...,m} and every f ∈ R[x]d, the polynomial f 2gj is nonneg-
ative on K. Therefore if y is the moment sequence of a measure µ supported on K,
then

∫
K
f 2gjdµ ≥ 0. Equivalently, Ly(f 2 gj) ≥ 0 or in view of the definition of the

localizing matrix, Md(gj y) ≥ 0 for all d = 0, 1, . . .

Conversely, assume that Md(gj y) ≥ 0 for all d = 0, 1, . . . and j = 1, . . . ,m.
Equivalently, Ly(f 2 gj) ≥ 0 for all f ∈ R[x]. If we prove that Ly(f) ≥ 0 for all
polynomials nonnegative on K then by Theorem 1 y has a representing measure
supported on K. Let f > 0 on K. As K is compact and Assumption 1 holds, by
Theorem 2.4.1, f = σ0 +

∑m
j=1 σjgj, for some SOS polynomials σj ∈ Σ[x], j =

0, 1, . . . ,m. But then

Ly(f) = Ly(σ0) +
m∑

j=1

Ly(σj gj) ≥ 0.

Next, if f ∈ R[x] is only nonnegative on K then for arbitrary ε > 0, f + ε > 0 on K,
and so Ly(f+ε) = Ly(f)+εy0 ≥ 0. As ε > 0 was arbitrary, we obtain Ly(f) ≥ 0.

In the next section we will see that Theorem 2.4.1 or its dual facet Theorem 2.4.2
are crucial in the proof of convergence of a numerical scheme for approximating as
closely as desired from below the optimal value f ∗ of problem (2.1).

2.5 Semidefinite relaxations for global optimization

In this section we introduce the moment-SOS approach solving the fundamental
(global) optimization problem (2.1):

P : f ∗ = min
x

{f(x) : x ∈ K }

where f ∈ R[x] and K ⊂ Rn is the basic semi-algebraic set defined in (2.14) for some
(gj) ⊂ R[x].

We assume that Assumption (1) holds. Recall that solving problem (2.1) is equiv-
alent to solving the infinite-dimensional linear program (LP) (2.2) or its LP dual (2.3)
and by the hierarchy of semidefinite relaxations, we can solving approximately (and
sometimes exactly) these problems LPs (2.2) or (2.3). The approach in this section
was outline in [43, 44].
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2.5.1 Semidefinite relaxations approach

We next see that the optimal value f ∗ of problem (2.1) can be approximated as
closely as desired (and sometimes can be obtained exactly) by solving an appropriate
hierarchy of convex relaxations of (2.1), each convex relaxation in the hierarchy is a
semidefinite program whose size increases with its rank in the hierarchy.

Let v0 := d(deg f)/2e, vj := d(deg gj)/2e, j = 1, . . . ,m, and for every d ≥
maxj=0,...,m vj consider the semidefinite program:

ρd := inf
y
Ly(f)

s.t Md(y) � 0

Md−vj(gjy) � 0, j = 1, . . . ,m

Ly(1) = 1. (2.16)

The dual of problem (2.16) is the semidefinite program:

ρ∗d := sup
λ,{σj}

λ

s.t f − λ = σ0 +
m∑

j=1

σj gj

degσ0 ≤ 2d; degσj ≤ 2d− 2vj, j = 1, . . . ,m. (2.17)

Note that if in the definition of K there is an equality constraint gj(x) = 0, then one
has the equality constraint Mi−vj(gjy) = 0 in (2.16) and accordingly, in (2.17) the
polynomial σj ∈ R[x] is not required to be a SOS.

Interpretation: Problem (2.16) is an obvious relaxation of the LP problem (2.2).
To see this recall that under Assumption 1 the set K is compact and so if µ is a
probability measure onK (hence a feasible solution of (2.2)) all its moments y = (yα),
α ∈ Nn, are well-defined, and so Md(y),Md(gj y) � 0, j = 1, . . . ,m. That is, y is a
feasible solution of (2.16). Moreover Ly(f) =

∫
K
fdµ ≥ f ∗ and so ρd ≤ f ∗ for every

d ≥ max0,...,m vj. Indeed the conditions Md(y) � 0 and Md−vj(gj y) � 0 are only
necessary conditions for y to have a representing measure on K.

In the same vein, for every feasible solution ((σj), λ) of (2.17), the polynomial
x 7→ f(x)−λ being in Putinar form (2.15), is obviously nonnegative on K. Therefore
λ ≤ f ∗. And so one retrieves that if (2.16) is a relaxation of (2.2), then by duality
(2.17) is a strengthening of (2.3).
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Of course the size of (2.16) increases with d in the hierarchy because as one
considers more and more moments yα, the matrix Md(y) has s(d) rows and columns.
The following theorem states the convergence of the above hierarchy of relaxations
(2.16).

Theorem 2.5.1 (Convergence theorem). Let Assumption (1) hold and consider
the hierarchy of semidefinite relaxations (2.16) with optimal value ρd.

(i) The sequence (ρd), d ∈ N, is monotone nondecreasing and ρd → f ∗ as d→∞.

(ii) Assume that (2.1) has a unique optimal solution x∗ ∈ K and let yd be a nearly
optimal solution of (2.16), e.g. with value Lyd(f) ≤ ρi + 1/i. Then as d →
∞,Lyd(xj)→ x∗j for every j = 1, . . . , n.

(iii) If K is a finite set defined by polynomials equality and inequality constraints
then finite convergence ρd → f ∗ takes place.

A detailed proof can be found in e.g. [43, 44].

2.5.2 Extraction of global minimizers

After solving the semidefinite relaxation (2.16) for some value of d ∈ N, two important
issues remain to be investigated:

i. Can we decide whether ρd < f ∗ or ρd = f ∗?

ii. If ρd = f ∗, can we extract at least one global minimizer x∗ ∈ K from an optimal
solution y of the semidefinite relaxation (2.16)?

An easy case is when (2.16) has an optimal solution y∗ which satisfies rank Md(y
∗) =

1 so that neccessarily Md(y
∗) = vd(x

∗)vd(x∗)′ for some x∗ ∈ Rn. That is, y∗ is the
vector of moments up to order 2d of the Dirac measure at some point x∗ ∈ Rn. In
particular ρd = Ly(f) = f(x∗) and the constraints Md−vj(gj y

∗) � 0, j = 1, . . . ,m,
imply x∗ ∈ K. Therefore from ρd = f(x∗) ≤ f ∗ we conclude that x∗ is a global
minimizer of (2.1).

When rank Md(y
∗) 6= 1 the following sufficient condition is very helpful to extract

multiple global minimizers for problem (2.1):

Theorem 2.5.2 (Rank-test theorem, see [13]). Let f ∈ R[x] and suppose that
the optimal value ρd of problem (2.16) is attained at some optimal solution y∗. Let
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v := max
j=1,...,m

vj. If rank Md−v(y∗) = Md(y
∗) then ρd = f ∗ and there are at least

s := rankMd(y
∗) global minimizers.

A detailed proof can be found in e.g. [13] and the implementation of can be found
in [43] .

When the rank condition of Theorem (2.5.2) is satisfied, rankMd(y
∗) global min-

imizers are encoded in the optimal solution y∗ of (2.16) and they can be extracted
by a linear algebra procedure described in [28] and implemented in the GloptiPoly
software [29].

Finally, the moment-SOS algorithm for solving (or at least approximate) the poly-
nomial optimization problem (2.1) reads as follows:

Algorithm 2.5.3.
Input: A polynomial f ∈ R[x] of degree 2v0 or 2v0 − 1; A set K = {x ∈ Rn :

gj(x) ≥ 0, j = 1, . . . ,m}, where the polynomials gj ∈ R[x] are of degree 2vj or
2vj − 1, j = 1, ...,m; A number k, the order of the highest relaxation that can be
solved.
Output: The optimal value f ∗ = min

x
{f(x) : x ∈ K } and a list of global minimizers

or a lower bound ρk on f ∗.
Algorithm:

1. Solve the semidefinite program (2.16) with optimal value ρd and optimal solu-
tion y∗ (if it exists).

2. If there is no optimal solution y∗, (2.16) only provides a lower bound ρd ≤ f ∗.
If d < k, then set d := d+ 1 and go to Step 1; Otherwise stop and output ρk.

3. If rank Md−v(y∗) = Md(y
∗) (with v := maxj vj) then ρd = f ∗ and there are at

least rankMd(y
∗) global minimizers. Extract the solutions1.

4. If rankMd−v(y∗) 6= rankMd(y
∗) and d < k then set d := d + 1 and go to Step

1. Otherwise stop and output ρk which is a lower bound on f ∗.

Algorithm 2.5.3 with a linear algebra procedure for extracting global minimizers
(at step 3) is implemented in the GloptiPoly software described in [29].

Example 2.5.4. Consider the optimization problem

f ∗ = min
x
{x2

1x
2
2 (x2

1 + x2
2 − 1) : x2

1 + x2
2 ≤ 4 }

1For instance by the linear algebra procedure described in [28] and implemented in the GloptiPoly
software [29].
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whose optimal value is f ∗ = −1/27 with global minimizers x∗ = (±
√

3/3,±
√

3/3).
Running the GloptiPoly software, the optimal value f ∗ is obtained at d = 4 (up to
some numerical imprecision) and the rank test is passed. The four (approximately)
optimal solutions (±0.5774,±0.5774) ≈ x∗ are extracted.
If one adds the additional nonconvex constraint x1x2 ≥ 1, the optimal value is ob-
tained with ρ3 ≈ 1 and two optimal solutions (x∗1, x

∗
2) = (−1,−1) and (x∗1, x

∗
2) = (1, 1)

are extracted.

2.6 Discussion

2.6.1 Alternative LP-relaxations

The moment-SOS approach implemented in Algorithm 2.5.3 is based on Puti-
nar’s Positivstellenstaz (Theorem 2.4.1), an extremely powerful representation result.
However other representation results of real algebraic geometry are available. For
instance, Stengle’s Positivstellensatz [71] is even more powerful as it applies to sets K
that are much more general than compact basic semi-algebraic sets as K described in
(2.14), and to polynomials that are only nonnegative on K (and not strictly positive
on K as in Theorem 2.4.1); however it is not easily amenable to practical implemen-
tation.

On the other hand, another representation result due to Krivine [39] (and also
Handelman [25] for representation on polytopes) is also amenable to practical com-
putation. Let K ⊂ Rn be the compact basic semi-algebraic set defined in K, and
assume that the polynomials gj, j = 0, . . . ,m (with g0 = 1), generate the algebra
R[x]. For sake of simplicity assume that (possibly after scaling) 0 ≤ gj ≤ 1 on K for
all j = 1, . . . ,m. If f ∈ R[x] is strictly positive on K then

f(x) =
∑

α,β∈Nm

cαβ

(
m∏

j=1

gj(x)αj

)(
m∏

j=1

(1− gj(x))βj

)
∀x ∈ Rn, (2.18)

for finitely many real nonnegative coefficients (cαβ). See e.g. [44].
Notice that detecting whether f can be written as in (2.18) with say |α|+ |β| ≤ d,

reduces to solving a linear system of the form Ac = b, c ≥ 0, which can be done by
solving a linear program. Indeed, as (2.18) has to hold for every x ∈ Rn, expanding
(in the monomial basis (xα), α ∈ Nn) polynomials in each side of “=" in (2.18) and
equating coefficients, yields finitely many linear constraints between the nonnegative
coefficients cαβ. Hence one may replace the semidefinite relaxations (2.16) with the
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LP-relaxations

`d = max
λ,c
{λ : f − λ =

∑

α,β∈Nm

cαβ

(
m∏

j=1

g
αj

j

)(
m∏

j=1

(1− gj)βj
)

; c ≥ 0} (2.19)

and by Krivine’ result [39], `d → f ∗ as d→∞.

One might indeed prefer solving the LP-relaxations (2.19) rather than the semidef-
inite relaxations (2.16) (or their dual (2.17)) because LP-solvers can handle linear
programs of potentially huge size whereas this is not the case for semidefinite solvers.
In particular, in view of the present status of semidefinite solvers available, only
problems (2.1) of small to moderate size can be solved (or approximated) by the
moment-SOS approach. Unfortunately, and as explained in [44], the LP-relaxations
(2.19) can never be exact:

- as soon as there is a global minimizer x∗ ∈ K in the interior of K,

- or when x∗ ∈ ∂K, if there is a non-optimal feasible solution x ∈ K with J(x) =

J(x∗) (where J(x) := {j ∈ {1, . . . ,m} : gj(x) = 0} is the set of constraints gj(x) ≥ 0

that are active at x).

This is very annoying since the above situation is generic for easy convex problems!
Moreover the LP-relaxations (2.19) are numerically ill-conditioned as soon as d gets
relatively large (especially in view of large binomial coefficients that appear in the
expansion of (1− gj(x))βj when βi is relatively large).

2.6.2 Putinar versus Karush-Kuhn-Tucker

Let Assumption 1 hold for the basic semi-algebraic set K in (2.14) and assume that
the polynomial f − f ∗ can be written in Putinar’s form

f − f ∗ = σ∗0 +
m∑

j=1

σ∗j gj, (2.20)

for some SOS polynomials (σ∗j ) ⊂ Σ[x] (which is not always guaranteed as f − f ∗ is
only nonnegative on K and not strictly positive as required in Theorem 2.4.1). Then
if x∗ ∈ K is a global minimizer, using that all σ∗j are SOS,

• evaluating both sides of (2.20) at x = x∗ yields σ∗j (x
∗)︸ ︷︷ ︸

λ∗j≥0

gj(x
∗) = 0 for every
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j = 1, . . . ,m, and differentiating both sides of (2.20) at x = x∗ yields

∇f(x∗) =
m∑

j=1

σ∗j (x
∗)︸ ︷︷ ︸

λ∗j≥0

∇gj(x∗),

• Hf (x) := f(x)− f ∗ −∑m
j=1 σ

∗
j (x) gj(x) ≥ 0 for all x ∈ Rn, and Hf (x

∗) = 0.

In other words, letting λ∗j := σ∗j (x
∗), j = 1, . . . ,m, the pair (x∗, λ∗) ∈ K × Rm

+

satisfies the Karush-Kuhn-Tucker (KKT) optimality conditions and in addition x∗

is a global minimizer of the extended Lagrangian Hf . Notice that the extended La-
grangian Hf has SOS multipliers σ∗j ∈ Σ[x] instead of scalars multipliers λ∗j ∈ R+ in
the usual Lagrangian Lf := f − f ∗ −∑j λ

∗
j gj.

By Putinar’s representation (2.20) (when it holds), every global minimizer x∗ ∈ K

of f on K is also a global minimizer of the extended Lagrangian Hf on the whole
space Rn. This is to contrast with the KKT conditions where x∗ is a global minimizer
of Lf on Rn only in the convex case, i.e., when f and −gj are convex, j = 1, . . . ,m.

Moreover consider a constraint gj(x) ≥ 0 which is not active at a global mini-
mizer x∗ ∈ K but which is important for f ∗ meaning that if it is removed from the
definition (2.14) of K, the optimal value of the resulting modified optimization prob-
lem decreases strictly. In the KKT optimality conditions the corresponding Lagrange
multiplier λ∗j vanishes whereas in Putinar’s representation (2.20) σ∗j (x∗) = 0 (= λ∗j)

but σ∗j is not trivial (otherwise f ∗ would still be a global minimum when the con-
straint gj ≥ 0 is removed). Hence σ∗j 6= 0 in (2.20) (even if σj(x∗) = 0) reflects the
importance of the constraint gj(x) ≥ 0, which does not happen in the KKT optimality
conditions. This is due to the fact that Putinar’s representation (2.20) is global.

2.6.3 The no free lunch rule

As we have seen, the moment-SOS approach is very powerful as one may approximate
as closely as desired the optimal value f ∗ for the class of polynomial optimization
problems whose feasible set K is a compact basic semi-algebraic set as defined in
(2.14) (and for which Assumption (1) holds). As such problems encompass very hard
optimization problems (including 0/1 programs) the no-free lunch rule should apply.

And indeed the reader will have noticed that in Theorem 2.5.1 nothing is said
on the rate of convergence of ρd → f ∗. In fact, in Theorem 2.4.1 there exist degree
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bounds on the SOS polynomials σj in terms of the coefficients of the gj’s, the norm
of f and the minimum of f on K (see [59]). But as expected, these bounds are not
useful to analyze the computational complexity of Algorithm 2.5.3.

However, from many numerical experiments on non trivial examples (including
problems with non convex or non connected, or discrete feasible sets K), it seems that
in general convergence if fast and very often even finite. This is fortunate because
when d is fixed, the semidefinite relaxation (2.16) has O(n2d) variables yα and the
moment matrix Md(y) has size s(d)×s(d) (recall that s(d) = O(nd)). So with fixed d,
and even if solving the semidefinite relaxation (2.16) can be done in time polynomial
in the input size of (2.16) (up to arbitrary fixed precision), the size grows rapidly
with n and except for small to moderate size problems (2.1), solving (2.16) it is out
of reach for all present semidefinite solvers available.

On the other hand, large scale optimization problems usually exhibit some spe-
cial structure. For instance some structured sparsity and/or symmetries are often
present in the data that describe the problem. In this case one may take advantage
of such specific properties right from the begining and define appropriate semidefi-
nite relaxations in the same vein as those described in (2.16) but of much smaller
size. For more details and results in this direction the interested reader is refereed to
e.g. [35, 37, 76, 77] for semidefinite relaxations taking advantage of symmetries and
[35, 42] for sparse analogues of (2.16) in case of structured sparsity. For the latter
relaxations the authors of [77] could solve problems (2.1) with up to 1000 variables!

2.7 Conclusion

From what precedes one may see that the semidefinite relaxations (2.16) are very
powerful to approximate the optimal value f ∗ and sometimes to obtain f ∗ exactly
as well as and some global minimizers x∗ ∈ K. However, and unless some struc-
tured sparsity and/or symmetries can be taken into account, so far the moment-SOS
approach is limited to small to medium size problems only.

In many cases of interest one may implement the first or second relaxation of the
hierarchy (2.16) but not higher order relaxations because of the present limitation of
semidefinite solvers. Therefore one is left with only a lower bound ρd ≤ f ∗ (where d
is the last step in the hierarchy where the semidefinite program (2.16) can be solved).
And so a natural issued one is faced with is:

Can we use an optimal solution of the semidefinite relaxation (2.16) at step d (or
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a slight modification of (2.16)) to find an approximate solution of (2.1)?, or

Can we use the moment-SOS methodology and its associated hierarchy of semidef-
inite relaxations (2.16) to help solve potentially large scale optimization problems
(2.1)?

The purpose of this thesis is an attempt to provide answers to the above two
questions.





Chapter 3

Polynomial convex underestimators

3.1 Introduction

In this chapter we consider a polynomial optimization problem P in the form:

P : f ∗ = min
x

f(x)

s.t gj(x) ≥ 0, j = 1, ...,m

x ∈ B = [xL,xU ] ⊂ Rn

xi ∈ Z, i ∈ I ⊆ {1, ..., n}. (3.1)

where f, gj are polynomials ∀j = 1, ...,m and xl,xu ∈ Rn define the box [xL,xU ] ⊂ Rn.
When I 6= ∅ problem P is called a Mixed Integer Non Linear Program (MINLP) be-
cause it contains both continuous and discrete variables.

For solving P one can use the moment-SOS approach described in Chapter 1 to
compute, or at least approximate as closely as desired, the optimal value f ∗ and if pos-
sible to also obtain a global minimizer x∗. However, in the hierarchy of semidefinite
relaxations (2.16) associated with the moment-SOS approach, the size of semidefi-
nite relaxations grows rapidly with the rank in the hierarchy and with the number
of variables in P. Indeed recall that typically if P is an optimization in Rn then the
k-th semidefinite relaxation has O((2k)n) variables if n is fixed and O(n2k) variables
if k is fixed. Moreover it involves semidefiniteness constraints of matrices with size
O(kn) if n is fixed (resp. O(nk) if k is fixed). So, especially in view of the present
status of semidefinite solvers, solving such semidefinite relaxations becomes rapidly
impossible unless one may exploit some symmetry and/or sparsity that appear(s) in

29
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the description of P. Therefore if P has no particular structure (e.g. no symmetry
or no structured sparsity that can be exploited) the moment-SOS approach is limited
to problems of moderate size only. Consequently the following issue is natural and
worth investigating:

“Can the moment-SOS approach be still useful (and how) to help solve potentially
large scale problems?”

The purpose of this chapter is precisely to provide a positive answer to this ques-
tion. Indeed we apply the moment-SOS approach to improve some deterministic
method that try to solve large scale MINLP optimization problems in the format
(3.1).

More precisely: For practical efficiency, a typical approach to solve or approximate
a non convex MINLP problem P as defined in (3.1) is to first provide:

• a convex under estimator f̃ of f onB, as tight as possible, if f is non convex, and

• a convex underestimator −g̃j of −gj on B if −gj is non convex, ∀j = 1, ...,m.

Observe that the resulting set {x ∈ B : g̃j(x) ≥ 0, j = 1, . . . ,m} is convex and
contains the original feasible set in (3.1). Therefore the optimization problem:

P : f̃ ∗ = min
x

f̃(x)

s.t g̃j(x) ≥ 0, j = 1, . . . ,m

x ∈ B = [xL,xU ] ⊂ Rn. (3.2)

is obviously a relaxation of P and so f̃ ∗ is a lower bound on f ∗. Moreover, being con-
vex, the optimization problem (3.2) can be solved efficiently via standard algorithms
of convex optimization. This technique can be used to compute lower bounds in a
Branch and Bound (B&B) procedure where a certain box Bα is associated with each
node α of the search tree. A lower bound is computed at each node α by solving a
convex problem as defined in (3.2) with B := Bα.

In particular, for MINLP problems where some 0/1 (and more generally, discrete)
variables xj ∈ Z, j ∈ J ⊆ {1, . . . , n}, are present, the integrality constraints are
relaxed to the convex box constraint x ∈ B. Such lower bounding techniques are
already implemented in the B&B search treee for Mixed Integer Linear Programs
(MILPs) of powerful softwares such as XPRESS-MP or CPLEX, to cite a few. For
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MINLPs, an example of a popular B&B method is the so-called αBB algorithm and
its variants; see [1, 4, 6, 3, 22, 23].

Of course, as the reader may guess, crucial for the overall performance of the al-
gorithm is the quality of the lower bounds computed at each node of the B&B search
tree. And in addition, the quality of the lower bounds is strongly dependent on the
quality of the convex under estimators of f and −gj. Therefore developing tight con-
vex underestimators for non convex polynomials on a box B is of crucial importance
for B&B procedures, and for the αBB method in particular.

The context. We consider polynomials f ∈ R[x] of a few variables (to fix ideas
say e.g. n ≤ 5) only. Why? Because in typical large scale MINLPs, when the func-
tion f is a non convex polynomial it is a sum

∑
` f` of polynomials (or monomials)

f` with a few variables only; for instance if f ∈ R[x]d then f is a weighted sum of
monomials xα, each containing less than d variables, and in most MINLPs d is rather
small. Similarly, for a non convex polynomial constraint gj(x) ≤ 0, the polynomial
gj is also concerned with a few variables only and the coupling of all variables is done
through the intersection of the levels sets {x : gj(x) ≤ 0}, j = 1, . . . ,m. And so for
practical efficiency (e.g. in the αBB method), a convex under estimator f̃ of f is
simply the sum

∑
` f̃` where each f̃` is a convex underestimator of f` which can be

computed efficiently.

Contribution. In this chapter we consider the generic problem of computing
polynomial convex underestimators for a non convex polynomial f ∈ R[x] on a box
B = [xL,xU ] ⊂ Rn. As already mentioned above, such a problem is encountered
when one wishes to compute a convex underestimator f̃ of an objective function f ,
or when one wishes to relax a nonconvex constraint g(x) ≤ 0 to a convex constraint
g̃(x) ≤ 0.

More precisely, we are looking for a convex polynomial fd ∈ R[x]d (with degree d
fixed) which approximates f from below on a given box B ⊂ Rn. Hence a polynomial
candidate fd must satisfy two major conditions:

• The nonnegativity condition “f ≥ fd on B".

• The convexity condition on B, i.e., the Hessian matrix ∇2fd must be positive
semidefinite (i.e., ∇2fd � 0) on B.

But of course there are many potential polynomial candidates fd ∈ R[x]d and therefore
a meaningful criterion to select the “best" among them is essential.
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A natural candidate criterion to evaluate how good is fd, is the integral J(fd) :=∫
B
|f − fd|dx, which evaluates the L1-norm of f − fd on B, i.e., the “tightness" of

f − fd. Indeed, minimizing J tends to minimize the discrepancy (or “error") between
f and fd, uniformly on B. If desired, some flexibility is permitted by allowing any
weight function W : B→ R, positive on B, so as to minimize JW =

∫
B
|f − fd|Wdx.

The above two requirements on fd as well as the evaluation of J(fd) are far from
being trivial tasks.

Fortunately, to certify f − fd ≥ 0 and ∇2fd � 0 on B, a powerful tool is available,
namely Putinar’s Positivstellensatz [62] (or algebraic positivity certificate), already
extensively used in many other contexts, and notably in global polynomial optimiza-
tion as explained in Chapter 2; see Theorem 2.4.1 and also its many applications
in [44]. Moreover, since f ≥ fd on B, the criterion J(fd) to minimize becomes∫
B

(f − fd)dx and is linear in the coefficients of fd!

Therefore we end up with a hierarchy of semidefinite programs parametrized by
some integer k ∈ N. This parameter k reflects the size (or complexity) of Putinar’s
positivity certificates (2.15) for f − fd ≥ 0 on B and for ∇2fd � 0 on B. Any
optimal solution of a semidefinite program in this hierarchy provides a convex degree-
d polynomial underestimator fdk ∈ R[x]d with good tightness properties.

We then provide a sequence of convex degree-d polynomial underestimators (fdk) ⊂
R[x]d, k ∈ N, such that as k increases, ‖f − fdk‖1 → ‖f − f ∗d‖1 for the L1-norm on
B, where f ∗d minimizes J(h) over all convex degree-d polynomial underestimators h
of f on B. In fact, any accumulation point ϕ∗ of the sequence (fdk) ⊂ R[x]d also
minimizes J(h) and fdki → ϕ∗ pointwise for some subsequence.

This convergence analysis which provides a theoretical justification of the above
methodology is only theoretical because in practice one let k fixed (and even to a small
value). However, we also prove that if k is sufficiently large, then fdk is necessarily
better than αBB-type convex underestimators. A practical validation is also obtained
from a comparison with the αBB method carried out on a set of test examples taken
from the literature. Recall that the main motivation for computing underestimators
is to compute “good" lower bounds on a box B for non convex problems, and use these
lower bounds in a B&B algorithm. Therefore, to compare the two underestimators
we have computed the lower bound obtained my minimizing each of them on a box
B. In all examples the lower bounds as well as the tightness score obtained with the
moment approach are significantly better.

It is worth emphasizing that our convex underestimators can be also implemented
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in the improvements of the αBB method proposed by Meyer and Floudas [57] or
Gounaris and Floudas [22, 23]. Namely, since in those two variants [22, 57] a standard
αBB-type convex underestimator fk is computed in each one of the many sub-boxes
Bk of the box B, one may then replace each fk by a new one f̂k as proposed in this
chapter, and then construct a global one as in [22, 57]. The rationale behind this
strategy is that since our estimator f̂k is tighter than fk in each box Bk (at least in
all examples that we have tried), the resulting global convex underestimator should
also be better in the box B.

In addition, one may also use the moment-SOS approach to provide an alternative
way to compute the coefficients α of an αBB-type convex underestimator. Namely,
since our integral criterion J(h) is a good measure of tightness for any underestimator
h, we propose to compute the coefficients α which minimize

∫
B
|f − L|dλ (where L

is the αBB-underestimator), which reduces to solving a single semidefinite program!
A library of such α’s could be computed off-line for several important particular cases.

At last but not least we also provide parametric convex underestimators on the
box Bs := [0, s]n where the scalar s parametrizes the box size. The polynomial
underestimator is now a degree-d polynomial in R[x, s], which is convex on x for all
values of s ∈ [0, S] (for some fixed S). This can be especially useful in mixed integer
non linear programs where in the Branch & Bound search tree, one has to repeatedly
compute lower bounds on boxes of various sizes. Then it may be worth computing
off line a convex underestimator fd ∈ R[x, s] and then on line in the search tree, one
instantiates x 7→ fd(x, s) ∈ R[x]d when s is fixed at the value of the desired box size.

3.2 Convex underestimators

3.2.1 Explicit convex underestimators and convex envelopes

There are many results for computing convex underestimators or convex en-
velopes of simple functions (of a few variables) in explicit form. The basic underlying
idea common is to replace a nonconvex term by some new variables that satisfy some
constraints to express their link with the non convex term. In most of cases, the
relationships are expressed by linear constraints.

For instance, for a bilinear term xy, Al-Khayyal and Falk [5] have showed that
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the tightest convex lower bound over the domain [xL, xU ] × [yL, yU ] is the piecewise
linear function

(x, y) 7→ max{xLy + yLx− xLyL;xUy + yUx− xUyU}.

Therefore it suffices to introduce
• a new variable ωB and
• the two linear constraints ωB ≥ xLy+ yLx−xLyL and ωB ≥ xUy+ yUx−xUyU ,

and replace every occurrence of xy with the new variable ωB.

For the trilinear term xyz, the following eight linear functions in x, y, z whose
maximum is a tight convex lower bounding function in the the rectangular region
[xL, xU ]× [yL, yU ]× [zL, zU ] (see [54]) :

xyz ≥ max{xyLzL + xLyzL + xLyLz − 2xLyLzL,

xyUzU + xUyzL + xUyLz − xUyLzL − xUyUzU ,
xyLzL + xLyzU + xLyUz − xLyUzU − xLyLzL,
xyUzL + xUyzU + xLyUz − xLyUzL − xUyUzU ,
xyLzU + xLyzL + xUyLz − xUyLzU − xLyLzL,
xyLzU + xLyzU + xUyUz − xLyLzU − xUyUzU ,
xyUzL + xUyzL + xLyLz − xUyUzU − xLyLzL,
xyUzU + xUyzU + xUyUz − 2xUyUzU}.

Moreover, an explicit set of formulas for convex envelopes can be defined for each
set of conditions (see [55]).

For the fractional term x/y, Maranas and Floudas (see [54]) have provided a
convex underestimator by adding a new variable ωF and two new linear constraints
which depend on the sign of the bounds on x.

ωF ≥




xL/y + x/yU − xL/yU if xL ≥ 0

x/yU − xLy/yLyU + xL/yL if xL < 0

ωF ≥




xL/y + x/yU − xL/yU if xU ≥ 0

x/yU − xLy/yLyU + xL/yL if xU < 0.

Furthermore, Tawarmalani and Sahinidis, 2001 (see [72]) have provided an explicit
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form of convex envelopes for x/y in the interval (x, y) ∈ [x, x]× [y, y] where x ≥ 0, y ≥
0.

For the quadrilinear term xyzt, Cafieri et al. (see [11] ) have provided four types of
linear relaxations corresponding to the following grouping of terms ((xy)z)t, (xy)(zt),
(xyz)t and (xy)zt. After using the results of convex envelopes for bilinear or trilinear
terms, the authors provided a theoretical evidence for what is the best relaxation.

Convex envelopes and convex underestimators for other explicit forms have also
been presented. See for instance [49, 50]) for odd degree univariate monomials and
[56] for so-called edge-concave functions.

3.2.2 The αBB-type convex underestimators and their refine-

ments

For a general non convex function f a popular approach is the so-called αBB

method in which the convex underestimator is obtained from the original function
f by adding a negative part that satisfy some requirements. This part could be a
negative quadratic polynomial of the form

x 7→ L(x) = f(x) +
n∑

i=1

αi(xi − xLi )(xi − xUi ), (3.3)

as in e.g. Androulakis et al. (see [6]), or an exponential term from the original
function of the form

x 7→ L(x) = f(x)−
n∑

i=1

(1− eαi(xi−xLi ))(1− eαi(x
U
i −xi)),

e.g., as in Akrotirianakis and Floudas (see [4]).

In using such convex underestimators, the only remaining difficulty is to calculate
appropriate values for the parameters αi, i = 1, . . . , n. In doing so one is faced with
two conflicting conditions:

• The convexity condition: The negative part must be large enough to guarantee
convexity of the underestimator L(x).

• The convergence condition: The negative part also must be as small as possible
for tightness of the underestimator (and hence for the quality of the lower bounds
in a B&B algorithm).
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In the framework of the αBB method several techniques have been proposed for
computing the αi parameters, using interval analysis combined with the convexity
conditions. Since L is convex on B if and only if its Hessian matrix ∇2L is positive
semidefinite on B, the αi parameters must satisfy

∇2L(x) = ∇2f(x) + 2∆ � 0, ∀x ∈ B, (3.4)

where ∆ := diag{α1, α2, ..., αn} is referred to as the diagonal shift matrix. For the
general case where the Hessian matrix ∇2f is a nonconvex matrix polynomial, com-
puting a good matrix ∆ satisfying (3.4) is a difficult task. This task can be alleviated
through a transformation of the exact x-dependent Hessian matrix into an interval
matrix Hf such that ∇2f(x) ∈ [Hf ],∀x ∈ [xL,xU ].

Notice: An interval matrix [Hf ] is a matrix whose elements are interval numbers.
An interval matrix [Hf ] will be written as

[Hf ] = ãij(m×n) =

∣∣∣∣∣∣∣

ã11 ... ã1n

... ... ...

˜am1 ... ˜amn

∣∣∣∣∣∣∣
where each ãij = [aij, aij].

The elements of the original Hessian matrix are treated as independent when
calculating their natural interval extensions (see [58, 64]). The interval Hessian matrix
family [Hf ] is then used to obtain the following result:

Theorem 3.2.1 (Maranas and Floudas [17, 53]). Let [Hf ] be a real symmetric interval
matrix such that ∇2f(x) ∈ [Hf ],∀x ∈ [xL,xU ]. If [∇2

L] := [Hf ] + 2∆ � 0 then L is
convex on [xL,xU ].

One of the most efficient method based on interval Hessian matrix is called the
scaled Gershgorin method in which the α′is are determined by

αi = max
{

0,−1

2
(f

ii
−
∑

j 6=i
max{|f

ii
|, |f ij|})

dj
di

}
, (3.5)

where f
ij
and f ij are lower and upper bounds of ∂2f/∂xi∂xj on the interval [xL,xU ]

and di, i = 1, 2, ..., n are some chosen positive parameters. For instance in practical,
one can chose di = uUi −uLi to reflect the fact that the underestimator is more sensitive
to variables with a wide range than to variables with a small range. In fact, regardless
of the method being used, the size of the intervals [xLi , x

U
i ] within the Hessian matrix

affects the final accuracy of the computation. Therefore some αBB refinements have
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been introduced to reduce the size of the intervals. See [22, 23, 57] for instance.

However, a crucial remark is to observe that in the basic αBB method and its
refinements, the tightness score

∫
B
|f − L| dx of the resulting convex underestimator

L in (3.3) is not taken into account directly when one computes the αi parameters.
In the next Section we explain how to build up polynomials convex underestimators
that minimize this meaningful tightness score.

3.3 The moment-SOS approach

As already mentioned, a natural candidate criterion to evaluate how tight is an
underestimator L of f on a box B, is the integral J(L) :=

∫
B
|f − L| dx, which

evaluates the L1-norm ‖f − L‖1 of f − L on B.

Therefore an appropriate model to compute a polynomial convex underestimator
of f ∈ R[x]d is provided by the following optimization problem:

inf
h∈R[x]d

{∫

B

(f − h)dλ : f − h ≥ 0 on B; h convex on B
}
, (3.6)

where λ is the Borel probability measure uniformly distributed on B. In fact, as we
will see later, any finite Borel measure on B absolutely continuous with respect to λ
is fine provided that we can compute all (or sufficiently many of) its moments.

Recall that f ∈ R[x]d is convex on B if and only if ∇2f is positive semidefinite
on B. Therefore if we define the mapping T : R[x]→ R[x,y] as:

h 7→ Th(x,y) := y′∇2h(x)y, ∀h ∈ R[x],

then f is convex if and only if Tfd ≥ 0 on S = B × U, where U = {y ∈ Rn :∑n
i=1 y

2
i ≤ 1}.

Moreover, since
∫
B

(f − h)dλ =

∫

B

fdλ

︸ ︷︷ ︸
constant

−
∫
B
hdλ, the optimization problem (3.6)

is equivalent to:

ρd = sup
h∈R[x]d

{∫

B

hdλ : f − h ≥ 0 on B; Th ≥ 0 on S
}
. (3.7)

Existence of an optimal solution f ∗d ∈ R[x]d of problem (3.7) is proved in Lemma 3.1
(of the paper "Convex underestimators of polynomials" in Appendix A). In addition,
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as a direct consequence of Theorem 2.4.1, one may replace the constraint “f − h ≥
0 on B" (resp. “Th ≥ 0 on S" ) with “f − h ∈ QB" (resp. “f − h ∈ QS" ) where
QB ⊂ R[x] (resp. QS ⊂ R[x,y]) is the quadratic module1 associated with B (resp.
S). That is, an optimal solution f ∗d of (3.6) is an optimal solution of the problem Pd

defined by:

Pd : ρd = sup
h∈R[x]d

{∫

B

h dλ : f − h ∈ QB; Th ∈ QS

}
. (3.8)

3.3.1 Semidefinite relaxations for computing a convex under-

estimator

Given the box B = [xL,xU ] ⊂ Rn, let g0 be the constant polynomial g0 = 1, and
define the quadratic polynomials x 7→ gj(x) = (xUi − xj)(xj − xLj ), j = 1, . . . , n, as
well as x 7→ gn+1(x) = 1− ‖x‖2.

Associated with the optimization problem (Pd), we can construct a hierarchy of
semidefinite relaxations (Pdk) of problem Pd as follows:





sup
h∈R[x]d,σj ,θ`

∫
B
h dλ

f(x) = h(x) +
n∑

j=0

σj(x)gj(x) ∀x

s.t. Th(x,y) =
n∑

j=0

θj(x,y)gj(x)

+θn+1(x,y)gn+1(y) ∀x,y
σ0 ∈ Σ[x]k, σj ∈ Σ[x]k−1, j ≥ 1

θ0 ∈ Σ[x,y]k, θj ∈ Σ[x,y]k−1, j ≥ 1,

(3.9)

where k ≥ max[dd/2e, d(deg f)/2e] and with optimal value denoted by ρdk.

Problem (3.9) is an obvious relaxation of problem Pd in (3.7). It is a semidefinite
program whose dual is the semidefinite program:

1Recall that if K = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m} for some polynomials (gj) ⊂ R[x], the
quadratic module QK ⊂ R[x] associated with K is defined by QK = {∑m

j=0 σj gj : σj ∈ Σ[x]}, where
g0 is the constant polynomial g0(x) = 1, and Σ[x] ⊂ R[x] is the space of SOS polynomials.
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



inf
z,v

Lv(f)

s.t. Mk(gjv) � 0, j = 0, ..., n

Mk(gn+1 z) � 0

Mk(gj z) � 0, j = 0, ..., n

vα − (T∗z)α = γα, α ∈ Nn
d .

(3.10)

where γα =
∫
B
xαdλ,v = (vα)∀α ∈ Nn

2k and z = (zαβ) ∀α, β ∈ Nn with |α+ β| ≤ 2k.
The optimal value of P∗dk is denoted by ρ∗dk.

Theorem 3.3.1. With d ∈ N fixed, consider problem Pd in (3.7) with optimal value
ρd and the associated semidefinite relaxations (3.9).

(i) The semidefinite program (3.9) has an optimal solution fdk ∈ R[x]d when 2k

is sufficiently large and satisfies 2k ≥ degf .
(ii) The sequence of optimal values (ρdk), k ∈ N, associated with the hierarchy of

semidefinite relaxations (3.9) is monotone non decreasing, and
∫
B
fdλ− ρdk → ρd as

k →∞.
(iii) In addition, any accumulation point ϕ∗ ∈ R[x]d of the sequence (fdk) ⊂ R[x]d,

is an optimal solution of (3.7), and fdki → ϕ∗ pointwise for some subsequence (ki),
i ∈ N.

The proof is given in the paper details.
Even though we can approximate the optimal value of problem (3.7) as closely as

desired by solving the hierarchy of semidefinite programs (3.9), the size of the moment
and localizing matrices Mk(gj v) and Mk(gj z) increases fast with k. Therefore in
practice one let k fixed at a small value. However, the computational experiments
presented below indicate that even with k fixed at its smallest possible value, the
resulting polynomial underestimator fdk provides (significantly) better lower bounds
than the αBB-underestimator.

3.3.2 Computing α in αBB-type convex underestimators

In fact we can also use the above approach to provide a new and systematic way to
compute the coefficients αi, i : 1, . . . , n, of an αBB-type convex underestimator L of
the form (3.3). That is, one may define a procedure to compute the αi-parameters
which minimize the tightness criterion

∫
B
|f −L|dx. Recall that in the various αBB

methods the tightness criterion is not taken into account directly as we do here.
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Indeed, after a rescaling of the box B = [xL,xU ] ⊂ Rn to [0, 1]n, and in view of
the definition (3.3) of L, one wishes to minimize:

J(L) =

∫

B

|f − L| dλ =

∫

B

(f − L) dλ =

∫

B

fdλ

︸ ︷︷ ︸
constant

+
n∑

i=1

αi

∫

B

xi(1− xi)dλ

=

∫

B

fdλ+
1

6

n∑

i=1

αi, (3.11)

over all convex underestimators L of the form (3.3). In other words one wants to
solve

J∗ := inf
α
{J(L) : L as in (3.3) and convex on B}. (3.12)

As already done in the previous section, the convexity constraint can be replaced with
Putinar’s positivity certificate y′∇2L(x)y ∈ QS, or equivalantly,

y′∇2f(x)y + 2
n∑

i=1

αi y
2
i ∈ QS,

so that (3.12) is equivalent to:

η = inf
α

{
n∑

i=1

αi : y′∇2f(x)y + 2
n∑

i=1

αi y
2
i ∈ QS

}
. (3.13)

And as before, an obvious way to approximate η is to replace the constraint

y′∇2f(x)y + 2
n∑

i=1

αi y
2
i ∈ QS

with the more tractable constraint

y′∇2f(x)y = −2
n∑

i=1

αiy
2
i +

n+1∑

j=0

θj gj ; θj ∈ Σ[x,y]k−vj , j = 0, . . . , n+ 1, (3.14)

where k ≥ d(deg f)/2e, and vj = d(deg gj)/2e, j = 0, . . . , n+1, and then let k increase.

Therefore to approximate the αi’s that minimize (3.11) one may solve the opti-
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mization problem

ηk = inf
α,θj

n∑

i=1

αi

s.t. y′∇2f(x)y = −2
n∑

i=1

αiy
2
i +

n+1∑

j=0

θjgj

α ≥ 0; θj ∈ Σ[x,y]k−vj , j = 0, . . . , n+ 1,

(3.15)

which is a semidefinite program whose size depends on the size of Putinar’s convexity
certificate (3.14) (parametrized by k). Once again, the optimal value η in (3.13) can be
approximated as closely as desired by solving the hierarchy of semidefinite programs
(3.15) whose associated monotone non increasing sequence of optimal values (ηk),
k ∈ N, converges to η as k →∞.

3.3.3 Parametric convex underestimators

In this section, we build up a family of convex underestimators f s, 0 ≤ s ≤ S,
on the box Bs := [0, s]n whose size is parametrized by the scalar s ∈ [0, S] for some
S. We are motivated by the fact that in deterministic methods such as Branch and
Bound (B&B), one has to repeatedly compute online convex under estimators on such
boxes. Therefore instead of computing a convex underestimator f s for every s in some
interval say [0, S], we might try to compute in one single shot (or once and for all
s ∈ [0, S]), a parametrized family of best degree-d convex polynomial underestimators
(f sd) ⊂ R[x]d of f on Bs, s ∈ [0, S].

Moreover, the “tightness" criterion ‖f − f s‖1 being a good indicator of the qual-
ity of the convex underestimator f s on the box [0, s]n, and in light of parameter
optimization, a natural criterion to evaluate the efficiency of a parametrized convex
underestimator f s is the integral

∫ S

0

‖f − f s‖1 ds =

∫ S

0

∫

Bs

(f(x)− f s(x)) dx ds.

For the dependence of f s on the parameter s, a natural choice is to consider
f s as a degree-d polynomial in s and x, i.e., f sd ∈ R[x, s]d, optimal solution of the
optimization problem:
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



ρd = min
h∈R[x,s]d

∫ S

0

∫

Bs

(f(x)− h(x, s)) dxds

s.t. f − h ≥ 0 on Bs × [0, S]

Th ≥ 0 on Bs × [0, S]×U

(3.16)

where the linear mapping T : R[x, s]→ R[x, s,y] is now given by:

h 7→ Th(x, s,y) = y′∇2
xh(x, s)y, h ∈ R[x, s],

and ∇2
xh(x, s) = (∂2h(x, s)/∂xi∂xj), i, j = 1, . . . , n.

For every s ∈ [0, S], let f sd ∈ R[x] be an optimal solution of (3.6) with Bs in lieu
of B, and consider the mapping s 7→ ρd(s) =

∫
Bs
f sd(x)dx. With f ∗d ∈ R[x, s] is an

optimal solution of problem (3.16), we have:

∫ S

0

∫

Bs

(f(x)− f ∗d (x, s)) dx ds ≥ ρ∗ :=

∫ S

0

∫

Bs

(f(x)− f sd(x)) dx ds

=

∫

∆

f(x)dxds−
∫ S

0

ρd(s) ds.

Ideally one would like to approximate ρ∗. This is possible if one consider polynomials
h(x, s) with degree d in x and degree in s arbitrary large. Indeed, if ρd(s) is Riemann
integrable on [0, S] then

∫ s

0

ρd(s) ds = lim
N→∞

S

N

N∑

k=1

ρd(kS/N),

and one may find a polynomial hN ∈ R[x, s] of degree d in x and degree at most N in
s, such that hN(x, s) = f sd(x) for all x ∈ Bs and all s = kS/N , k = 0, 1, . . . , N . Write
f sd(x) =

∑
α∈Nn

d
f sα x

α, for some coefficients (f sα), and for every α ∈ Nn
d let pα ∈ R[s]N

be such that
pα(kS/N) = fkS/Nα , k = 0, 1, . . . , N.

Then the polynomial

(x, s) 7→ hN(x, s) :=
∑

α∈Nn
d

pα(s)xα,

has degreeN in s and degree d in x, and matches f sd onBkS/N×{kS/N}, k = 0, . . . , N .
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Semidefinite approximations

For practical purpose, h ∈ R[x, s]2d in (3.16) is a polynomial of degree d in x and
each coefficient of xα is a polynomial of degree d in the parameter s, i.e.,

h(x, s) =
∑

α∈Nn
d

hα(s)xα, hα ∈ R[s]d. (3.17)

And again, one approximates f ∗2d ∈ R[x, s]2d by a sequence of polynomials (fdk) ⊂
R[x, s]2d, k ∈ N, of the form (3.17), by solving a hierarchy of semidefinite programs.
Let ĝj ∈ R[x, s], j = 1, . . . , n+ 2 be the polynomials

s 7→ ĝj(x, s) := xj(s− xj), j = 1, . . . , n,

and
ĝn+1(x, s) := s(S − s); ĝn+2(y) := 1− ‖y‖2.

Consider the hierarchy of semidefinite programs:

max
h∈R[x,s]d,σj ,θk

∫ S

0

∫

Bs

h(x, s) dx ds

s.t. f(x) = h(x, s) +
n+1∑

j=0

σj(x, s)ĝj(x, s)) ∀x

Th(x,y) =
n+1∑

j=0

θj(x, s,y)ĝj(x, s)

+θn+1(x, s,y)ĝn+2(y) ∀x, s,y

σ0 ∈ Σ[x, s]k, σj ∈ Σ[x, s]k−1, j ≥ 1

θ0 ∈ Σ[x, s,y]k, θj ∈ Σ[x, s,y]k−1, j ≥ 1,

(3.18)

with k ≥ max[dd/2e, d(deg f)/2e], and where h is of the form (3.17).

Moreover, we can also consider more general boxes like e.g. two-parameter boxes
of the form Bs := [s1, s2]n with 0 ≤ s1 ≤ s2 ≤ S for some fixed S > 0. But solving
the semidefinite program (3.16) is computationally more expensive as the criterion
now reads

max
h∈R[x,s1,s2]2d,σj ,θk

∫ S

0

∫ S

s1

(∫

Bs

h(x, s1, s2) dx

)
ds2ds1,
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and to define the constraints of (3.18) we also need introduce the polynomials

ĝj(x, s1, s2) = (xj − s1)(s2 − xj), j = 1, . . . , n,

as well as ĝn+1(x, s1, s2) = s1(S − s1), ĝn+2(x, s1, s2) := (s2 − s1)(S − s2), and
ĝn+3(x, s1, s2,y) = 1− ‖y‖2.

3.4 Comparison and computational results

We have compared our polynomial convex underestimator with αBB-type un-
derestimators on test examples of nonconvex optimization polynomials taken from
the literature. Among all possible choices of d (the degree of our polynomial convex
underestimator fd), we have considered the two practical choices d = 2 and d = deg
f . With the first choice, we try to construct a quadratic underestimator of f and
with the second one, we search for the best convex underestimator of same degree as
f . The results were presented in Table 3.1 and Table 3.2 .

Prob n deg f d [xL,xU ] f ∗αBB f ∗mom f ∗

Test2 4 3 2 [0,1] -1.54 -1.22 -1
Test3 5 4 2 [-1,1] -15 -13.95 -6
Test4 6 6 2 [-1,1] -60.15 -10.06 -3
Test5 3 6 2 [-2,2] -411.2 -12.66 -1
Test10 4 4 2 [0,1] -197.54 -0.9698 0
Test11 4 4 2 [0,1] -33.02 -0.623 0
Test14(1) 3 4 2 [-5,2] -2409 -300 -300
Test14(2) 4 4 2 [-5,2] -3212 -400 -400
Test14(3) 5 4 2 [-5,2] -4015 -500 -500
Fl.2.2 5 2 2 [0,1] -18.9 -18.9 -17
Fl.2.3 6 2 2 [0,1] -5270.9 -361.50 -361
Fl.2.4 13 2 2 [0,3] -592 -195 -195
Fl.2.6 10 2 2 [0,1] -269.83 -269.45 -268.01
Fl.2.8C1 20 2 2 [0,3] -560 -560 -394.75
Fl.2.8C2 20 2 2 [0,10] -1050 -1050 -884
Fl.2.8C3 20 2 2 [0,30] -13600 -12000 -8695
Fl.2.8C4 20 2 2 [0,30] -920 -920 -754.75
Fl.2.8C5 20 2 2 [0,30] -16645 -10010 -4150.41

Table 3.1: Comparing f ∗mom and f ∗αBB; d = 2.
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Prob n deg f d [xL,xU ] f ∗αBB f ∗mom f ∗

Test2 4 3 3 [0,1] -1.54 -1.22 -1
Test3 5 4 4 [-1,1] -15 -11.95 -6
Test5 3 6 6 [-2,2] -411.2 -12.07 -1
Test10 4 4 4 [0,1] -197.54 -0.778 0
Test11 4 4 4 [0,1] -33.02 0 0
Test14(1) 3 4 4 [-5,2] -2409 -300 -300
Test14(2) 4 4 4 [-5,2] -3212 -400 -400
Test14(3) 5 4 4 [-5,2] -4015 -500 -500

Table 3.2: Comparing f ∗mom and f ∗αBB; d = deg f.

Recall that one important motivation for computing underestimators is to obtain
“good" lower bounds on a box B for non convex problems, and e.g., use these lower
bounds in a B&B algorithm. Therefore, to compare the moment and αBB-type
convex underestimators, we have chosen non convex optimization problems from the
literature, and replaced the original non convex objective function by our underesti-
mator fd and an αBB-type convex underestimator L. We then compare the minimum
f ∗mom (resp. f ∗αBB) obtained by minimizing fd (resp. L) on the box B.

We have also compared the respective tightness scores
∫
B
|f − fd| dx and

∫
B
|f −

L| dx (see Table 3.3).
We have also compared the standard αBB underestimator with the new αBB

underestimator described in Section §3.3.2 where the αi’s minimize the tightness cri-
terion (see Table 3.4).

Moreover, we also illustrate the application of the moment-SOS method to re-
finements of αBB-type convex underestimator such as the recent αBB-spline and
piecewise-αBB underestimators. In such refinements the original domain B is di-
vided into some subdomains Bi, i ∈ I, and a global underestimator is obtained by
combining in certain manner local underestimators computed in each domain Bi,
i ∈ I. Therefore we propose to compute local polynomial underestimators in each
subdomain Bi via the moment-SOS method described earlier instead of the Scaled
Gershgorin method for αBB underestimators. In our (limited) computational exper-
iments (showed in Table 3.5) we have also obtained significantly better results.

All computations were made by running the Gloptipoly software described in
Henrion et al., and developed for solving the Generalized Problem of Moments whose
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Prob
∫
B |f−L|dλ

VB

∫
B |f−fd|dλ

VB

Test2 1 0.625
Test3 11.67 3.33
Test4 60 7.29
Test5 99.00 23.20
Test10 133.33 57.00
Test11 46.33 1
Test14(1) 1641.4e+003 149.2711
Test14(2) 2186.6 199.08
Test14(3) 2731 248.71
Fl.2.2 41.66 41.66
Fl.2.3 67500 833.33
Fl.2.4 0.005 0.0005
Fl.2.6 8.33 5.83
Fl.2.8C1 3.4989e+014 3.4989e+014
Fl.2.8C2 12200 12200
Fl.2.8C3 6.9979e-005 6.9979e-005
Fl.2.8C4 3.4989e-006 3.4989e-006
Fl.2.8C5 9.6077e-015 9.6077e-015

Table 3.3: Comparing
∫
B |f−L|dλ

VB
and

∫
B |f−fd|dλ

VB

Prob [xL, xU ] f ∗αBB f ∗mom f ∗

Fl 8.2.7 [0, 1]5 -899.5 -2.76 -0.5
Fl 8.2.7 [−1, 1]5 -2999 -23 -0.6
Fl 8.2.7 [−5, 5]5 -63000 -2987 -982
Test 10 [0, 1]4 -197.5 -61.9 0
Test 10 [−1, 1]4 -870.2 -323.8 0
Test 10 [−5, 5]4 -137e+05 -4.73e+04 -19

Table 3.4: Comparing the fαBB and fαd underestimators.

global optimization is only a special case. In all examples, the αBB-type convex
underestimators were computed via the Scaled Gershgorin method.
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Prob n deg f d [xL,xU ] f ∗1 f ∗2 f ∗3 f ∗4 f ∗

Test2 4 3 3 [0,1] -1.54 -1.006 -1.001 -1.22 -1
Test3 5 4 3 [-1,1] -15 -6.07 -6 -13.95 -6
Test4 6 6 2 [-1,1] -60.15 -18.5 -4.05 -10.06 -3
Test5 3 6 3 [-2,2] -411.2 -37.79 -12.17 -12.66 -1
Test10 4 4 3 [0,1] -197.54 -14.78 -0.8 -0.9698 0
Test11 4 4 3 [0,1] -33.02 -19.77 -0.007 -0.623 0
Test14(1) 3 4 3 [-5,2] -2409 -855 -300 -300 -300
Test14(2) 4 4 3 [-5,2] -3212 -1141.2 -400 -400 -400
Test14(3) 5 4 3 [-5,2] -4015 -1426.5 -500 -500 -500
Fl.2.2 5 2 3 [0,1] -18.9 -18.77 -17 -18.9 -17
Fl.2.3 6 2 2 [0,1] -5270.9 -2176.4 -361 -361.50 -361

Table 3.5: d:number of interval in each coordinate, f ∗1=f ∗αBB, f ∗2=f ∗spline−αBB,
f ∗3=f ∗spline−mom, f ∗4=f ∗mom

3.5 Conclusion

In this chapter we have presented a new application of moment-SOS approach to
construct convex polynomial underestimators for a nonconvex polynomial f on a box
B ⊂ Rn. Ideally this polynomial underestimator f̃ should minimize the important
tightness criterion ρ =

∫
B
|f − f̃ | dx. We have shown how to approximate ρ as closely

as desired by solving a hierarchy of semidefinite programs.
In fact, for practical purpose and computational efficiency we only use the convex

underestimator obtained at the first step in the hierarchy. However and perhaps
surprisingly, even though the resulting convex underestimator is obtained at the first
step in the hierarchy, it performs significantly better than a “standard" αBB-type
underestimator, at least on a sample of non convex problems from the literature. Not
only its tightness score is better but also the lower bound obtained by minimizing this
convex underestimator is also significantly better than the one obtained by minimizing
the popular αBB-type underestimator. In addition, the moment-SOS approach can
also be applied

- to improve αBB-type underestimators by computing the αi’s that minimize the
tightness criterion.

- to replace “local" αBB-type underestimators in some refinements of the αBB

method like in [22, 23, 57].
In both cases numerical experiments on a (limited) sample of problems have

demonstrated siginificants improvements
Finally, we have also provided parametric convex polynomial underestimators
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h ∈ R[x, s] where the parameter s ∈ [0, S] defines the size of the box [0, s]n where one
wishes to underestimate f by a convex polynomial f s ∈ R[x], namely x 7→ f s(x) =

h(x, s) with s fixed. And so this family of convex underestimators (f s), 0 ≤ s ≤ S,
can be computed off-line, which permits to avoid computing on-line at each node of
the search tree of a B& B method, a convex underestimator on [0, s]n, for each desired
value of s ∈ [0, S].
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3.6 The paper details

See Appendix A: Convex underestimators of polynomials appeared in Journal of
Global Optimization, (2012) pp 1-25, doi:10.1007/s10898-012-9974-4.





Chapter 4

A “Joint+marginal” algorithm for
optimization

4.1 Introduction

Consider the general polynomial program:

P : f ∗ = min
x
{ f(x) : gj(x) ≥ 0, j = 1, . . . ,m } (4.1)

where f, gj ∈ R[x], j = 1, . . . ,m. Let K = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m} ⊂
Rn be the feasible set and f ∗ be the global minimum of P.

One may use the moment-SOS approach described in Chapter 1 to approximate
f ∗ as closely as desired and sometimes to obtain f ∗ exactly as well as some global
minimizer(s) x∗ ∈ K. However, to deal with large size and even medium size prob-
lems P, only a few relaxations of the hierarchy of semidefinite relaxations (2.16) can
be implemented (the first, second or the third relaxation) and so one only obtain a
lower bound ρd on f ∗ and no feasible solution x ∈ K in general.

So a natural issue to consider is the following: “When only a few relaxations can
be solved, how can we use such relaxations (or a slight modification) to help find a
feasible solution of the original problem P?

In Chapter 3 we have seen how to use the moment-SOS approach to provide con-
vex underestimators for f (and for −gj when gj is not concave) on a box B ⊃ K.
And for instance, such convex under estimators can be used for computing good lower
bounds in a Branch & Bound procedure to approximate f ∗. In this chapter we take a

51
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different approach and provide another application of the moment-SOS approach. It
uses a simple idea combined with the so-called “Joint+Marginal" approach (in short
(J+M)-approach) developed in [45] for parametric polynomial optimization and re-
sults in a relatively simple heuristic method for the general polynomial problem P.

Brief outline

With problem P as in (4.1) and k = 1, . . . , n, let the compact intervalYk := [xk, xk] ⊂
R be contained in the projection of K into the xk-coordinate axis. In the context of
the (non-parametric) polynomial optimization P, the (J+M)-approach can be used
as follows in what we call the (J+M)-algorithm:

• (a) Treat x1 as a parameter in the compact interval Y1 = [x1, x1] with associated
probability distribution ϕ1 uniformly distributed on Y1.

• (b) Construct a hierarchy of semidefinite relaxations (in spirit of moment-SOS
approach) for the problem P(x1) with n− 1 variables (x2, . . . , xn) and parameter x1,
which is problem P with the additional constraint that the variable x1 ∈ Y1 is fixed.
With i ∈ N fixed, solve the i-th semidefinite relaxation; an optimal solution of its
dual provides a univariate polynomial x1 7→ J1

i (x1) which, if i would increase, would
converge to J1(x1) in the L1(ϕ1)-norm. (The map v 7→ J1(v) denotes the optimal
value function of P(v), i.e. the optimal value of P given that the variable x1 is fixed
at the value v).

• (c) Next, compute x̃1 ∈ Y1, a global minimizer of the univariate polynomial J1
i

on Y1 (e.g. this can be done by solving a single semidefinite program). Ideally, when
i is large enough, x̃1 should be close to the first coordinate x∗1 of a global minimizer
x∗ = (x∗1, . . . , x

∗
n) of P.

• (d) Go back from step (b) with now x2 ∈ Y2 ⊂ R instead of x1, and with ϕ2

being the probability measure uniformly distributed on Y2. With the same method,
compute a global minimizer x̃2 ∈ Y2, of the univariate polynomial x2 7→ J2

i (x2) on
the interval Y2. Again, if i would increase, J2

i would converge in the L1(ϕ2)-norm to
the optimal value function v 7→ J2(v) of P(x2) (i.e. the optimal value of P given that
the variable x2 is fixed at the value v.) Iterate until one has obtained x̃n ∈ Yn ⊂ R.

One ends up with a point x̃ ∈ ∏n
k=1 Yk and in general x̃ 6∈ K. This point x̃

can be used as initial guess of a local optimization procedure to find a local mini-
mum x̂ ∈ K. The rationale behind the (J+M)-algorithm is that if i is large enough
and P has a unique global minimizer x∗ ∈ K, then x̃ as well as x̂ should be close to x∗.
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When the feasible set K is convex, one may define the following variant to obtain
a feasible point x̃ ∈ K. Again, let Y1 be the projection of K1 into the x1-coordinate
axis. Once x̃1 ∈ Y1 is obtained in step (b), consider the new optimization problem
P(x̃1) in the n − 1 variables (x2, . . . , xn), obtained from P by fixing the variable
x1 ∈ Y1 at the value x̃1. Its feasible set is the convex set K1 := K ∩ {x : x1 = x̃1}.
Let Y2 be the projection of K1 into the x2-coordinate axis. Then go back to step
(b) with now x2 ∈ Y2 as parameter and (x3, . . . , xn) as variables, to obtain a point
x̃2 ∈ Y2, etc. until a point x̃ ∈∏n

k=1 Yk is obtained. Notice that now x̃ ∈ K because
K is convex. Then proceed as before with x̃ being the initial guess of a local mini-
mization algorithm to obtain a local minimizer x̂ ∈ K of P.

The computational complexity before the local optimization procedure is less than
solving n times the i-th semidefinite relaxation in the (J+M)-hierarchy (which is it-
self of same order as the i-th semidefinite relaxation in the hierarchy of semidefinite
relaxations (2.16) defined in Chapter 2, i.e., a polynomial in the input size of P (with
an a priori fixed precision).

Importantly the latter algorithm can be applied to 0/1 programs for which exis-
tence of a feasible solution is easy to decide. For instance, MAXCUT, k-CLUSTER
and 0/1 KNAPSACK are typical examples of such problems.

An outline of material in this chapter is as follows. In Section 2, we briefly discuss
the parametric polynomial optimization problem and a related infinite-dimensional
program. In Section 3 and 4, we show how to use results from parametric optimiza-
tion to define the “joint+marginal” approach and the “joint+marginal” algorithm for
helping solve problem P. Finally in the last section, we present numerical exper-
iments for some non convex NP-hard optimization problems (both continuous and
0/1 problems).

4.2 Parametric optimization

Most of the material of this section is taken from [45]. We recall here some nota-
tion: Let R[x,y] denote the ring of polynomials in the variables x = (x1, . . . , xn), and
the variables y = (y1, . . . , yp), whereas R[x,y]d denotes its subspace of polynomials
of degree at most d. Let Σ[x,y] ⊂ R[x,y] denote the subset of polynomials that are
sums of squares (in short SOS).
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4.2.1 Parametric polynomial optimization

Let Y ⊂ Rp be a compact set, called the parameter set, and let f, hj ∈ R[x,y],
j = 1, . . . ,m. Let K ⊂ Rn × Rp be the basic closed semi-algebraic set:

K := {(x,y) : y ∈ Y ; hj(x,y) ≥ 0, j = 1, . . . ,m} (4.2)

and for each y ∈ Y, let

Ky := {x ∈ Rn : (x,y) ∈ K }. (4.3)

For each y ∈ Y, fixed, consider the optimization problem:

(Py) J(y) := inf
x
{ f(x,y) : (x,y) ∈ K }. (4.4)

The interpretation is as follows: Y is a set of parameters and for each instance y ∈ Y

of the parameter, one wishes to compute an optimal decision vector x∗(y) that solves
problem (4.4). Let ϕ be a Borel probability measure on Y, with a positive density
with respect to the Lebesgue measure on Rp (or with respect to the counting measure
if Y is discrete). For instance

ϕ(B) :=

(∫

Y

dy

)−1 ∫

Y∩B
dy, ∀B ∈ B(Rp),

is uniformly distributed on Y. Sometimes, e.g. in the context of optimization with
data uncertainty, ϕ is already specified. The idea is to use ϕ (or more precisely, its
moments) to get information on the distribution of optimal solutions x∗(y) of Py,
viewed as random vectors. In this section we assume that for every y ∈ Y, the set
Ky in (4.3) is nonempty.

4.2.2 A related infinite-dimensional linear program

Let M(K) be the set of finite Borel probability measures on K, and consider the
following infinite-dimensional linear program P0:

ρ := inf
µ∈M(K)

{∫

K

f dµ : πµ = ϕ

}
, (4.5)

where πµ denotes the marginal of µ on Rp, that is, πµ is a probability measure on Rp

defined by πµ(B) := µ(Rn × B) for all B ∈ B(Rp). The dual of P0 is the following
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infinite-dimensional linear program:

ρ∗ := sup
p∈R[y]

∫

Y

p(y) dϕ(y)

f(x,y)− p(y) ≥ 0 ∀(x,y) ∈ K.

(4.6)

Theorem 4.2.1 ([45]). Let both Y ⊂ Rp and K in (4.2) be compact and assume that
for every y ∈ Y, the set Ky ⊂ Rn in (4.3) is nonempty. Let P0 be the optimization
problem (4.5) and let X∗y := {x ∈ Rn : f(x,y) = J(y)}, y ∈ Y. Then:

(a) ρ =

∫

Y

J(y) dϕ(y) and P0 has an optimal solution µ∗.

(b) Assume that for ϕ-almost y ∈ Y, the set of minimizers of X∗y is the singleton
{x∗(y)} for some x∗(y) ∈ Ky. Then there is a measurable mapping g : Y → Ky such
that

g(y) = x∗(y) for every y ∈ Y

ρ =

∫

Y

f(g(y),y) dϕ(y),
(4.7)

and for every α ∈ Nn, and β ∈ Np:
∫

K

xαyβ dµ∗(x,y) =

∫

Y

yβ g(y)α dϕ(y). (4.8)

(c) There is no duality gap between (4.5) and (4.6), i.e. ρ = ρ∗, and if (pi)i∈N ⊂
R[y] is a maximizing sequence of (4.6) then:

∫

Y

| J(y)− pi(y) | dϕ(y) → 0 as i→∞. (4.9)

Moreover, define the functions (p̃i) as follows: p̃0 := p0, and

y 7→ p̃i(y) := max [ p̃i−1(y), pi(y) ], i = 1, 2, . . .

Then p̃i → J(·), ϕ-almost uniformly1.

An optimal solution µ∗ of P0 encodes all information on the optimal solutions
x∗(y) of Py. Moreover from Theorem 4.2.1(c), any optimal or nearly optimal solution
of P∗0 provides us with some polynomial lower approximation of the optimal value
function y 7→ J(y) that converges to J(·) in the L1(ϕ) norm, and one may also obtain
a piecewise polynomial approximation that converges to J(·), ϕ-almost uniformly. As

1A sequence (gn) on a measure space (Y,B(Y), ϕ) converges to g, ϕ-almost uniformly, if and
only if for every ε > 0, there is a set A ∈ B(Y) such that ϕ(A) < ε and gn → g, uniformly on Y \A.
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a consequence of the Theorem 4.2.1, the dual of each semidefinite relaxation Qi

provides a polynomial qi ∈ R[y] bounded above by J(y), and as i→∞, the sequence
(q̃i) with y 7→ q̃i(y) := max`=1,...i q`(y), converges ϕ-almost uniformly to the optimal
value function J . This last property is the rationale behind the heuristic developed
below.

4.3 A “joint+marginal" approach

With {f, (gj)mj=1} ⊂ R[x], let K ⊂ Rn be the basic compact semi-algebraic set

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}, (4.10)

and consider the polynomial optimization problem (2.1) with optimal value f ∗.

Let Yk ⊂ R be some interval [xk, xk], assumed to be contained in the orthogonal
projection of K into the xk-coordinate axis.

For instance when the gj’s are affine (so thatK is a convex polytope), xk (resp. xk)
solves the linear program min (resp max ) {xk : x ∈ K}. Similarly, when K is convex
and defined by concave polynomials, one may obtain xk and xk, up to (arbitrary)
fixed precision. In many cases, (upper and lower) bound constraints on the variables
are already part of the problem definition.

Let ϕk be the probability measure uniformly distributed onYk; hence its moments
(β`), ` ∈ N, are given by:

β` =

∫ xk

xk

x`dϕk(x) =
x`+1
k − x`+1

k

(`+ 1)(xk − xk)
(4.11)

for every ` = 0, 1, . . .. Define the following parametric polynomial program in n − 1

variables:
Jk(y) = min

x
{f(x) : x ∈ K; xk = y}, (4.12)

or, equivalently Jk(y) = min {f(x) : x ∈ Ky}, where for every y ∈ Y:

Ky := {x ∈ K; xk = y}. (4.13)

Observe that by definition, f ∗ = min
x
{Jk(x) : x ∈ Yk}, and Ky 6= ∅ whenever y ∈ Yk,

where Yk is the orthogonal projection of K into the xk-coordinate axis.
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Semidefinite relaxations

To compute (or at least approximate) the optimal value ρ of problem P0 in (4.5)
associated with the parametric optimization problem (4.12), we now provide a hi-
erarchy of semidefinite relaxations in the spirit of those defined in Chapter 2. Let
vj := d(deg gj)/2e, j = 1, . . . ,m, and for i ≥ maxj vj, consider the semidefinite pro-
gram:

ρik = inf
z

Lz(f) (4.14)

s.t. Mi(z) � 0, Mi−vj(gj z) � 0, j = 1, . . . ,m

Lz(x
`
k) = β`, ` = 0, 1, . . . 2i,

where (β`) is defined in (4.11), and z = (zα), α ∈ Nn.

We call (4.14) the parametric semidefinite relaxation of P with parameter y =

xk. Observe that without the “moment" constraints Lz(x
`
k) = β`, ` = 1, . . . 2i, the

semidefinite program (4.14) is a relaxation of P and if K is compact and Assumption
1 holds, its corresponding optimal value f ∗i converges to f ∗ as k → ∞; see Chapter
2. Letting g0 ≡ 1, the dual of (4.14) reads:

ρ∗ik = sup
λ,(σj)

2i∑

`=0

λ` β`

s.t. f(x)−
2i∑

`=0

λ`x
`
k =

m∑

j=0

σj gj

σj ∈ Σ[x], 0 ≤ j ≤ m;

deg σjgj ≤ 2i, 0 ≤ j ≤ m.

(4.15)

Equivalently, recall that R[xk]2i is the space of univariate polynomials of degree at
most 2i, and observe that in (4.15), the objective reads

2i∑

`=0

λ` β` =

∫

Yk

pi(y)dϕk(y),

where pi ∈ R[xk]2i is the univariate polynomial xk 7→ pi(xk) :=
∑2i

`=0 λ`x
`
k. Then



58 Chapter 4 – A “Joint+marginal” algorithm for optimization –

equivalently, the above dual may be rewritten as:

ρ∗ik = sup
pi,(σj)

∫

Yk

pidϕk

s.t. f − pi =
m∑

j=0

σj gj

pi ∈ R[xk]2i; σj ∈ Σ[x], 0 ≤ j ≤ m;

deg σjgj ≤ 2i, 0 ≤ j ≤ m.

(4.16)

Theorem 4.3.1. Let K be as in (4.10) and let Assumption 1 hold. Let the interval
Yk ⊂ R be the orthogonal projection of K into the xk-coordinate axis, and let ϕk
be the probability measure, uniformly distributed on Yk. Assume that Ky (for all y)
in (4.13) is not empty, let y 7→ Jk(y) be as in (4.12) and consider the semidefinite
relaxations (4.14)-(4.16). Then as i→∞:

(a) ρik ↑
∫

Yk

Jkdϕk and ρ∗ik ↑
∫

Yk

Jkdϕk

(b) Let (pi, (σ
i
j)) be a nearly optimal solution of (4.16), e.g. such that

∫
Yk
pidϕk ≥

ρ∗ik − 1/i. Then pi(y) ≤ Jk(y) for all y ∈ Yk, and

∫

Yk

|Jk(y)− pi(y)| dϕk(y) → 0, as i→∞. (4.17)

Moreover, if one defines p̃0 := p0, and

y 7→ p̃i(y) := max [ p̃i−1(y), pi(y) ], i = 1, 2, . . . ,

then p̃i(y) ↑ Jk(y), for ϕk-almost all y ∈ Yk, and so p̃i → Jk, ϕk-almost uniformly
on Yk.

For a detailed proof the interested reader is referred to e.g. [45].

4.4 A “joint+marginal" algorithm

4.4.1 A “joint+marginal" algorithm for the general nonconvex

case

Theorem 4.3.1 provides a rationale for the following (J+M)-algorithm in the
general nonconvex case. In what follows we use the primal and dual semidefinite
relaxations (4.14)-(4.15) with index i fixed.
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ALGO 1: (J+M)-algorithm: non convex K, relaxation i

Set k = 1;
Step k: Input: K, f , and the orthogonal projection Yk = [xk, xk] of K into the
xk-coordinate axis, with associated probability measure ϕk, uniformly distributed on
Yk.
Ouput: x̃k ∈ Yk.

Solve the semidefinite program (4.16) and from an optimal (or nearly optimal) solution
(pi, (σj)) of (4.16), get a global minimizer x̃k of the univariate polynomial pi on Yk.
If k = n stop and output x̃ = (x̃1, . . . , x̃n), otherwise set k = k + 1 and repeat.

Of course, in general the vector x̃ ∈ Rn does not belong to K. Therefore a final
step consists of computing a local minimum x̂ ∈ K, by using some local minimization
algorithm starting with the (unfeasible) initial point x̃. But again, the rationale
behind this algorithm is Theorem 4.3.1 which suggests that if the order i of the
relaxation (in the algorithm i is fixed) is sufficiently large then the cost associated
with x̃ should be close to the optimal cost.

Also note that when K is not convex, the determination of bounds xk and xk for
the interval Yk may not be easy, and so one might be forced to use a subinterval
Y′k ⊆ Yk with conservative (but computable) bounds x′k ≥ xk and x′k ≤ xk.

Remark 4.4.1. Theorem 4.3.1 assumes that for every y ∈ Yk, the set Ky in (4.13)
is not empty, which is the case if K is connected. If Ky = ∅ for y in some open
subset of Yk, then the semidefinite relaxation (4.14) has no solution (ρik = +∞),
in which case one proceeds by dichotomy on the interval Yk until ρik < ∞. That is,
with z := (xk +xk)/2, consider the subintervals Y1

k := [xk, z] and Y2
k := [z, xk]. Solve

(4.14) where the (β`) in (4.11) are updated according to Y1
k (resp. Y2

k) to obtain ρ1
ik

(resp. ρ2
ik). If ρsik <∞ for some s, stop and proceed with Ys

k instead of Yk, otherwise
choose randomly Y1

k or Y2
k and iterate.

4.4.2 A “joint+marginal" algorithm when K is convex

In this section, we now assume that the feasible set K ⊂ Rn of problem P is convex
(and compact). The idea is to compute x̃1 as in ALGO 1 and then repeat the
procedure but now for the (n − 1)-variable problem P(x̃1) which is problem P in
which the variable x1 is fixed at the value x̃1. This alternative is guaranteed to work
if K is convex (but not always if K is not convex).

For every j ≥ 2, denote by xj ∈ Rn−j+1 the vector (xj, . . . , xn), and by x̃j−1 ∈ Rj−1
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the vector (x̃1, . . . , x̃j−1) (and so x̃1 = x̃1).

Let the interval Y1 ⊂ R be the orthogonal projection of K into the x1-coordinate
axis. For every x̃1 ∈ Y1, let the interval Y2(x̃1) ⊂ R be the orthogonal projection
of the set K ∩ {x : x1 = x̃1} into the x2-coordinate axis. Similarly, given x̃2 ∈
Y1 × Y2(x̃1), let the interval Y3(x̃2) ⊂ R be the orthogonal projection of the set
K ∩ {x : x1 = x̃1; x2 = x̃2} into the x3-coordinate axis, and etc. in the obvious way.

For every k = 2, . . . , n, and x̃k−1 ∈ Y1 ×Y2(x̃1) · · · ×Yk−1(x̃k−2), let f̃k(xk) :=

f((x̃k−1,xk)), and g̃kj (xk) := gj((x̃k−1,xk)), j = 1, . . . ,m. Similarly, let

Kk(x̃k−1) := {xk : g̃kj (xk) ≥ 0, j = 1, . . . ,m},
= {xk : (x̃k−1,xk) ∈ K}, (4.18)

and consider the problem:

P(x̃k−1) : min {f̃k(xx) : xx ∈ Kj(x̃k−1)}, (4.19)

i.e. the original problem P where the variable x` is fixed at the value x̃`, for every
` = 1, . . . , k − 1.

Write Yj(x̃k−1) = [xk, xk], and let ϕk be the probability measure uniformly dis-
tributed on Yk(x̃k−1).

Let z be a sequence indexed in the monomial basis of R[xk]. With index i, fixed,
the parametric semidefinite relaxation (4.14) with parameter xk, associated with prob-
lem P(x̃k−1), reads:

ρik = inf
z

Lz(f̃k)

s.t. Mi(z), Mi−vj(g̃
k
j z) � 0, j = 1, . . . ,m

Lz(x
`
k) = β`, ` = 0, 1, . . . , 2i,

(4.20)

where (β`) is defined in (4.11). Its dual is the semidefinite program (with g̃k0 ≡ 1)):

ρ∗ik = sup
pi,(σj)

∫

Yk(x̃k−1)

pidϕk (4.21)

s.t. f̃k − pi = σ0 +
m∑

j=1

σj g̃
k
j

pi ∈ R[xk]2i, σj ∈ Σ[xk], j = 0, . . . ,m

deg σj g̃
k
j ≤ 2i, j = 0, . . . ,m.
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The important difference between (4.14) and (4.20) is the size of the corresponding
semidefinite programs, since z in (4.14) (resp. in (4.20)) is indexed in the canonical
basis of R[x] (resp. R[xk]).

The (J+M)-algorithm for K convex

Recall that the order i of the semidefinite relaxation is fixed. The (J+M)-algorithm
consists of n steps. At step k of the algorithm, the vector x̃k−1 = (x̃1, . . . , x̃k−1)

(already computed) is such that x̃1 ∈ Y1 and x̃` ∈ Y`(x̃`−1) for every ` = 2, . . . , k−1,
and so the set Kk(x̃k−1) is a nonempty compact convex set.

ALGO 2: (J+M)-algorithm: convex K, relaxation i

Set k = 1;
Step k ≥ 1: Input: For k = 1, x̃0 = ∅, Y1(x̃0) = Y1; P(x̃0) = P, f1 = f and
g̃1
j = gj, j = 1, . . . ,m.
For k ≥ 2, x̃k−1 ∈ Y1 ×Y2(x̃1) · · · ×Yk−1(x̃k−2).
Output: x̃k = (x̃k−1, x̃k) with x̃k ∈ Yk(x̃k−1).
Consider the parametric semidefinite relaxations (4.20)-(4.21) with parameter xk,
associated with problem P(x̃k−1) in (4.19).

• From an optimal solution of (4.21), extract the univariate polynomial xk 7→
pi(xk) :=

∑2i
`=0 λ

∗
`x

`
k.

• Get a global minimizer x̃k of pi on the interval Yk(x̃k−1) = [xk, xk], and set
x̃k := (x̃k−1, x̃k).

If k = n stop and ouput x̃ ∈ K, otherwise set k = k + 1 and repeat.

As K is convex, x̃ ∈ K and one may stop. A refinement is to now use x̃ as the
initial guess of a local minimization algorithm to obtain a local minimizer x̂ ∈ K of
P. In view of Theorem 4.3.1, the larger the index i of the relaxations (4.20)-(4.21),
the better the values f(x̃) and f(x̂).

4.4.3 The (J+M)-algorithm for some 0/1 programs

Of course, ALGO 2 can also be used when K is not convex. However, it may
happen that at some stage k, the semidefinite relaxation (4.20) may be infeasible
because Jk(y) is infinite for some values of y ∈ Yk(x̃k−1). This is because the feasible
set K(x̃k−1) in (4.18) may be disconnected.
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However there is an interesting class of problems with non convex set K for which
ALGO 2 can be applied. It consist of 0/1 programs for which feasibility is easy
to test. Among them let us cite the celebrated MAXCUT, k-CLUSTER and 0/1
KNAPSACK problems.

In this case the set K is contained in the hyper cube {0, 1}n (or {−1, 1}n for
MAXCUT), i.e., the set K is now defined by:

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m; uk(x) = 0, k = 1, . . . , n},

where x 7→ uk(x) = x2
k − xk, k = 1, . . . , n. The parameter set Y = {0, 1}n and

Yk = {0, 1} for all k = 1, . . . , n. As a probability measure ϕ on Yk we take p and
1− p for some fixed p ∈ (0, 1) (e.g. p = 1/2).

The semidefinite relaxation (4.20) now reads

ρik = inf
z

Lz(f̃k) (4.22)

s.t. Mi(z) � 0, Mi−vj(g̃
k
j z) � 0, j = 1, . . . ,m

Mi−1(u` z) = 0, ` = k, . . . , n; Lz(1) = 1, Lz(xk) = p,

Indeed the additional moment constraints Lz(x
`
k) = β` of (4.20) are redundant since

Lz(x
2`
k ) = Lz(1) = 1 and Lz(x

2`+1
k ) = Lz(xk) = p. This semidefinite program (4.22)

can be simplified to work modulo the ideal 〈x2
k − xk, · · · , x2

n − xn〉. Get rid of the
constraints Mi−1(u` z) = 0, ` = k, . . . , n, and replace every moment variable zα with
zβ where β` = 1 if α` > 0, and β` = 0 if α` = 0. Next, the row and column of Mi(z)

associated with the monomial xα is identical to that associated with xβ and can be
deleted; same thing with the localizing matrices Mi−vj(gjz). The dual of (4.22) reads:

ρ∗ik = sup
λ,(σ`)

λ0 + pλ1

s.t. f̃k − (λ0 + λ1xk) = σ0 +
m∑

j=1

σj g̃
k
j +

n∑

`=k

ψ` u`

σj ∈ Σ[xk], ψ` ∈ R[xk], j = 0, . . . ,m; ` = k, . . . , n

deg σj g̃
k
j ≤ 2i, degψ` ≤ 2i− 2, j = 0, . . . ,m; ` = k, . . . , n.

(4.23)

So the polynomial pi of (4.15) is now an affine polynomial xk 7→ pi(xk) := λ0 + λ1xk

and the global minimum of pi on Yk = {0, 1} is just xk = 0 if λ1 ≥ 0 and xk = 1
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otherwise.

Since we are not in the convex setting anymore, it remains to check whether af-
ter having chosen xk = 0 (or xk = 1) the remaining problem P(x̃k) with variables
(xk+1, . . . , xn) has at least a solution. And this why this approach is possible for 0/1
problems for which feasibility is easy to detect. For several problems like e.g., MAX-
CUT, KNAPSACK or k-CLUSTER, whenever P(x̃k) is feasible, it has an obvious
feasible solution denoted sk+1 ∈ {0, 1}n−k.

For instance, the 0/1 knapsack problem P(x̃k) : minxj
{c′jxj :

∑n
`=k+1 a` x` ≤

b(x̃k)}, has the obvious feasible solution sk+1 = 0 whenever b(x̃k) ≥ 0, and no solu-
tion otherwise. Similarly, the k-cluster problem P(x̃k) : minxj

{x′jQxj :
∑n

`=k+1 x` =

k(x̃k)} (with k(x̃k) ∈ Z), has no solution if k(x̃k) < 0 or k(x̃k) > n − k, has the
obvious optimal solution sk+1 = 0 if k(x̃k) = 0, and whenever 0 < k(x̃k) ≤ n− k− 1,
it has the obvious feasible solution sk+1 = (s(k+1)`) with s(k+1)` = 1, ` = 1, . . . , k(x̃k),
and s(k+1)` = 0, ` = k(x̃k) + 1, . . . , n.

So assume that one already knows that P(x̃k−1) has at least a feasible solution.
One solves (4.22) and determines xk from a solution of (4.23) as above only when
P(x̃k−1) has at least a solution (0, sk+1, . . . , sn) (if not set xk = 1) and a solution
(1, s′k+1, . . . , s

′
n) (if not then set xk = 0). By construction, after having determined

xk like this, the resulting next problem P(x̃k) has at least a solution and one may
continue the procedure.

Of course an alternative to this procedure of computing xk from a solution of (4.23)
is to proceed like in standard Branch & Bound. That is, compute the value of the i-th
SDP relaxation of Chapter 2 associated with the original problemP and the additional
constraint x1 = 0 (resp. x1 = 1), and branch on x1 = 0 or on x1 = 1 depending on
the resulting optimal values; then iterate with x2, etc. But this requires to solve two
semidefinite relaxations of same size (with only one linear constraint less) instead
of one in the parametric approach. Moreover, the parametric approach can easily
deal with groups of variables (rather than 1 variable) at a time. Indeed, with s ∈ N
fixed, consider (x1, . . . , xs) ∈ Y := {0, 1}s with associated probability distribution
ϕ uniformly distributed on Y. Then one now solves the i-th SDP relaxation of
the (J+M)-hierarchy applied to problem P with n − s variables xs+1, . . . , xn and
parameter (x1, . . . , xs) ∈ {0, 1}s. The dual provides a (square free) polynomial map
(x1, . . . , xs) 7→ Jk(x1, . . . , xs) that converges to J(x1, . . . , xs) as k increases. Then one
selects a global minimizer of Jk on Y by inspecting 2s values, and one iterates the
procedure with now a 0/1 problem with n− s variables, etc.
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4.5 Computational results

We have tested the algorithms on a set of difficult global optimization problems
taken from Floudas et al. [15]. To solve the semidefinite programs involved in ALGO
1 and in ALGO 2, we have used the GloptiPoly software [29] that implements the
hierarchy of semidefinite relaxations defined in Chapter 2.

4.5.1 Computational results for continuous problems

We present computational experiments on some non convex NP-hard optimiza-
tion problems.

In a first set of examples, the set K is a convex polytope and the function f is a
nonconvex quadratic polynomial x 7→ x′Qx + b′x for some real symmetric matrix Q
and vector b. The optimal value obtained using the output x̃ of ALGO 2 as initial
guess in a local minimization algorithm of the MATLAB toolbox; notice that since
x̃ ∈ K one might have stopped with this current feasible solution. As may be seen
from Table 4.1, the associated relative error is very small.

In a second set of examples the set K is not convex and we have used ALGO 1
to find a minimizer x̃ (which may not belong to K). Therefore a final step of ALGO
1 is to use some local minimization algorithm starting with the initial (infeasible)
point x̃. Also in some cases, the determination of bounds xk and xk for the interval
Yk may not be easy, and so one might be forced to use a subinterval Y′k ⊆ Yk with
conservative (but computable) bounds x′k ≥ xk and x′k ≤ xk (table 4.2).

Results are displayed in Table 4.1 and Table 4.2 in which the columns respectively
stand for the problem’s name, the number n of variables, the numberm of constraints,
the global opitimum f ∗, the index i of the semidefinite relaxation, the optimal value
obtained by using the output of algorithms as initial guess in a local minimization
algorithm of the MATLAB toolbox, and the associated relative error.

For the non convex examples it is worth mentioning that sometimes the output x̃
(not in K in general) of ALGO 1 is far from the final feasible solution x ∈ K and
so it is hard to evaluate the importance of the final step of local minimization from
the initial infeasible solution x̃.
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Prob n m f ∗ i ALGO 2 rel. error

2.2 5 11 -17 2 -17.00 0%
2.3 6 8 -361.5 1 -361.50 0%
2.6 10 21 -268.01 1 -267.00 0.3%
2.9 10 21 0 1 0.00 0%

2.8C1 20 30 -394.75 1 -385.30 2.4%
2.8C2 20 30 -884.75 1 -871.52 1.5%
2.8C3 20 30 -8695 1 -8681.7 0.15%
2.8C4 20 30 -754.75 1 -754.08 0.09%
2.8C5 20 30 -4150.41 1 -3678.2 11%

Table 4.1: ALGO 2 for convex set K

Prob n m f ∗ i ALGO 1 rel. error

3.2 8 22 7049 1 7049 0%
3.3 5 16 -30665 1 -30665 0%
3.4 6 18 -310 1 -310 0%

5.2.2 (1) 9 24 400 1 400 0%
5.2.2 (2) 9 24 600 1 600 0%
5.2.3 (3) 9 24 750 1 750 0%
5.2.4 9 24 450 1 450 0%

7.2.2 6 17 -0.3746 1 -0.3746 0%
7.2.3 8 22 7049.25 1 7049.25 0%
7.2.5 5 16 10122 1 10122 0%
7.2.6 3 7 -83.254 1 -83.258 1%

8.2.8 6 17 -0.3768 1 -0.3767 0%

Table 4.2: ALGO 1 for non convex set K
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4.5.2 Computational results for some 0/1 programs

4.5.2.1 The MAXCUT problem

The celebrated MAXCUT problem formally consists of solving the optimization prob-
lem:

P : max
x

{
1

2

∑

1≤i<j≤n
Qij (1− xixj) : x ∈ {−1, 1}n

}
,

for some real symmetric matrix Q = (Qij) ∈ Rn×n.

In our sample of randomly generated problems, the entry Qij of the real sym-
metric matrix Q is set to zero with probability 1/2 and when different from zero,
Qij is randomly (and independently) generated according to the uniform probability
distribution on the interval [0, 10].

We have tested the basic version of the (J+M)-algorithm with i = 1 and p = 1/2,
i.e. solving the SDP-relaxations (4.22)-(4.23), for MAXCUT problems on random
graphs with n = 20, 30, 40 and 50 variables. For each value of n, we have generated
50 problems (and 20 for n = 50). In (4.14) the parameter p ∈ (0, 1) is set to 0.5. Let
Q1 denote the optimal value of the SDP-relaxation (4.22) (with i = k = 1) without the
marginal constraint x1 = p, that is, Q1 is the Shor’s relaxation with famous Goemans
and Williamson’s 0.878 performance guarantee (for maximization and nonnegative
weights Qij). Let P1 denote the cost of the solution x ∈ {−1, 1}n generated by
the (J+M)-algorithm2. In Table 4.5.2.1 below, we have reported the average relative
error (Q1 −P1)/|Q1|, which, as one may see, is very small and comparable with the
relative error (Q1 − GW)/|Q1| obtained from the Goemans and Williamson (GW)
solution. The latter was obtained by the randomized rounding procedure described
in [20] with a sample size of 50 as recommended in [20] for n ≈ 50 and we used the
schurMATLAB subroutine to compute eigenvectors. The value of the GW-solution is
significantly better than the theoretical bound, in accordance with the computational
results displayed in [20]. For n = 50 the (J+M)-solution was better than the GW-
solution in 7 out of the 20 randomly generated problems. For n = 40 (resp. n = 50)

2Q1 and P1 were computed with the GloptiPoly software dedicated to solving the generalized
problem of moments [29].
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n 20 30 40 50

(Q1 −P1)/|Q1| 3.23% 3.28% 3.13% 2.92%

(Q1 −GW)/|Q1| 2.58% 2.60% 2.84% 2.60%

Table 4.3: Relative error for MAXCUT; p = 0.5

variables the CPU time was 218s (resp. 945s) whereas it was 232s (resp. 507s) for
the GW solution. The reader should keep in mind that the (J+M)-algorithm is not
specific to the MAXCUT problem and was run with the smallest possible choice i = 1

of the parameter i.

4.5.2.2 The k-CLUSTER problem

We have also tested the (J+M)-algorithm for the k-CLUSTER problem:

P : max
x

{
x′Qx : x ∈ {0, 1}n;

n∑

`=1

x` = k

}
, (4.24)

again for some real symmetric matrix Q = (Qij) ∈ Rn×n, and some fixed integer
k ∈ N, 1 ≤ k < n. Observe that the constraint

∑
` x` = k is linear. Therefore, to take

full advantage of the i-th SDP relaxation (4.22) which contains moments zα of order
up to 2i, one may add the n constraints xi(k −

∑n
`=1 x`) = 0, i = 1, . . . , n, in the

definition (4.24) of P because they are redundant. However these constraints make
the i-th SDP relaxation more constrained. They also correspond to the first-level
RLT constraints defined in Sherali and Adams [70].

As for MAXCUT, Q1 denotes the optimal value of the first SDP-relaxation in the
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hierarchy to solve problem P, i.e.,

Q1 :





max
x,X

trace (QX)

s.t.

[
1 x′

x X

]
� 0, X′ = X ∈ Rn×n

Xii = xi, i = 1, . . . , n∑n
`=1 xi = k

k xi −
∑n

`=1 Xi` = 0, i = 1, . . . , n

whereas P1 denote the cost of the solution x ∈ {0, 1}n generated by the (J+M)-
heuristic.

We have tested the (J+M)-algorithm on problems randomly generated as for
MAXCUT, and with k = n/2 = 10. The average relative error Q1 −P1|/|Q1| was

• 5.7% on 4 randomly generated problems with n = 60 variables,

• 4.5% and 5.6% on 2 randomly generated problems with n = 70 variables. The
"max-gap" variant was a little better (≈ 4% and ≈ 4.5% respectively).

• 5.7% on a problem with n = 80 variables.

The CPU times were of the same order of magnitude as for the MAXCUT problem.

4.5.2.3 The 0/1 KNAPSACK problem

Finally, we have also tested the (J+M)-algorithm for the 0/1 KNAPSACK problem:

P : max
x

{
c′x : x ∈ {0, 1}n;

n∑

`=1

a` x` ≤ b

}
, (4.25)

for some real vector c ∈ Rn and a ∈ Nn, b ∈ N.
As for the k-CLUSTER problem, the constraint

∑
` a` x` ≤ b is linear. Therefore,

again, to take full advantage of the i-th SDP relaxation (4.20) which contains moments
zα of order up to 2i, one may add the n redundant constraints xi(b −

∑
` a`x`) ≥ 0,
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and (1 − xi)(b −
∑

` a`x`) ≥ 0, i = 1, . . . , n, in the definition (4.25) of P; they also
correspond to the first-level RLT constraints in [70].

Again, and as for MAXCUT and k-CLUSTER problems, Q1 denotes the optimal
value of the first SDP-relaxation in the hierarchy to solve problem P, i.e.,

Q1 :





max
x,X

c′x

s.t.

[
1 x′

x X

]
� 0, X′ = X ∈ Rn×n

Xii = xi, i = 1, . . . , n

b xi −
∑n

`=1 a`Xi` ≥ 0, i = 1, . . . , n

b− b xi −
∑n

`=1 a`(x` −Xi`) ≥ 0, i = 1, . . . , n

whereas P1 denote the cost of the solution x ∈ {0, 1}n generated by the (J+M)-
algorithm.

We have tested the “joint+marginal" algorithm on a sample of 16 problems with
n = 50 variables and 3 problems with n = 60 variables where, b =

∑
` a`/2, and

the integers a`’s are generated uniformly in [10, 100]. The vector c is generated by:
c` = sε + a` with s = 0.1 and ε is a random variable uniformly distributed in [0, 1].
From the results reported in Table 2 (of the paper “A “joint + marginal" heuristic
for 0/1 programs" in Appendix C), one may see that very good relative errors are
obtained, in accordance with the fact that the 0/1 knapsack problem is considered
as an easy problem since there is a Fully Polynomial Time Approximation Scheme.
Moreover, recently, Karlin et al. [34] have shown that solving the t-th SDP-relaxation
of the Lasserre hierarchy produces an integrality gap of at most t/(t− 1). The CPU
time is very comparable (for same value of n) to the one for MAXCUT and k-cluster
problems since we solve the same sequence of very similar semidefinite programs.
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n 50 60

(Q1 −P1)/|Q1| 2.1% 0.62%

Table 4.4: Relative error for 0/1 knapsack

Conclusion

Our first preliminary results are promising, even with the smallest possible re-
laxation order i. In general, the efficiency of ALGO 1 or ALGO 2 with i fixed,
should be related to how close to the global optimum f ∗ is the optimal value f ∗i at
step i of the hierarchy of relaxations defined in Chapter 2 to approximate the optimal
value f ∗ of the original problem. When the feasible set is non convex, it may become
difficult to obtain a feasible solution and an interesting issue for further investigation
is how to proceed when Ky = ∅ for y in some open subinterval of Yk (proceeding by
dichotomy on Yk is one possiblity).
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4.6 The paper details

4.6.1 Continuous cases:

See Appendix B: A “Joint+marginal" algorithm for polynomial optimization appeared
in Decision and Control (CDC), 2010 49th IEEE Conference. Publication Year: 2010
, Page(s): 3871 - 3876.

4.6.2 Discrete cases:

See Appendix C: A “joint + marginal" heuristic for 0/1 programs appeared in Journal
of Global Optimization (27 September 2011), pp. 1-16, doi:10.1007/s10898-011-9788-
9





Conclusion

The moment-SOS approach which consists of solving a hierarchy of semidefinite re-
laxations of increasing size is a powerful methodology for solving global optimization
problems where the objective function is a polynomial and the feasible set is a compact
basic semi-algebraic set. However, in view of present status of semidefinite solvers this
approach is so far limited to problems of modest size only, unless some symmetries
and/or structured sparsity are present in the problem data and can be exploited.

In general, for medium to large size problems only a few (if not only one) relax-
ations of the hierarchy can be implemented and provide only a lower bound on the
global optimum. Therefore the issue addressed in this thesis was how to use an opti-
mal solution of such relaxations (or a slightly modified version of them) to construct
a “good" feasible solution of the original problem. We have addressed this issue in two
different ways:

• In a first contribution we have considered how to use the moment-SOS ap-
proach to help solve (potentially) large scale MINLP problems. Typically, to
solve (or help solve) MINLP problems, a popular approach is to use Branch
& Bound techniques and for obvious efficiency reasons, the lower bounds com-
puted at each node of the search tree need be computed efficiently. To do so,
one usually solves a convex relaxation obtained from convex underestimators
(on some appropriate box) of the objective function and of the polynomials
that define non convex constraints. We have thus considered the generic prob-
lem of computing a polynomial convex underestimator of a given polynomial f
on a box B =

∏n
i=1[ai, bi] of Rn. The novelty with previous approaches is that

the moment-SOS approach permits to minimize directly the important L1-norm

73



74 General conclusion

tightness criterion
∫
B
|f − h|dx (which measures the “error" between f and its

convex underestimate h) over all polynomials of degree at most d, convex on
B. Indeed one may use SOS-type certificates of increasing quality (and size) to
ensure that h ∈ R[x]d is convex and is dominated by f on B. As a result one
obtains a hierarchy of semidefinite programs whose size is parametrized by the
size of the latter certificates, and each semidefinite relaxation provides a poly-
nomial convex underestimator of degree d. Experimental computational results
have demonstrated that the resulting estimator is significantly better than the
popular αBB underestimator (and some of its refinements), both for the tight-
ness criterion and for the quality of the lower bounds obtained by minimizing
the convex underestimator on B.

• In a second contribution we have considered polynomial optimization problems
for which only a few semidefinite relaxations of the moment-SOS approach can
be implemented. The basic idea is to consider the variable x1 as a parameter
in some interval Y1 ⊂ R and compute an approximation of the optimal value
function J(y) = min{f(x) : x ∈ K; x1 = y}. Then the global optimum
satisfies J∗ = min{J(y) : y ∈ Y1}, a univariate problem. By using results
from polynomial parametric optimization, a good polynomial approximation
pk ∈ R[x]k of J(y) on Y1, can be obtained by the moment-SOS approach (in
solving an appropriate hierarchy of semidefinite programs). In fact pk → J

as k → ∞ for the L1-norm on Y1. But in practice one only computes pk for
the largest possible index k (according to the maximum size of the semidefinite
relaxations that can be handled). Then one obtains x̃1 ∈ Y1 by minimizing
the univariate polynomial pk on Y1, an easy convex optimization problem. The
process is iterated with x2 instead of x1, etc., until a point x̃ ∈ Rn is obtained.
If the feasible set K is convex and also for some 0/1 optimization problems, one
may use a variant to guarantee that x̃ is feasible. Computational experiments
on a sample of non trivial problems show promising results, and particularly for
discrete 0/1 problems like MAXCUT, k-CLUSTER, and KNAPSACK.
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Future works

Here are some possible extensions to the work presented in this thesis:

• For convex underestimator problems, it would be interesting to compare the
one obtained here by minimizing the L1-norm and the one that minimizes the
sup-norm on B, i.e., supx∈B |f(x)−h(x)|. The resulting convex underestimator
might provide a better lower bound when minimized on B.

• The “joint+marginal" approach for parametric optimization could also be used
in multi-objective optimization to approximate the Pareto curve. To illustrate
the idea, suppose that one has two conflicting polynomial criteria f1, f2 ∈ R[x]

to minimize. One may obtain a subset (f ∗1 (λ), f ∗2 (λ)), λ ∈ [0, 1], of the Pareto
curve by minimizing J(λ) = min{λf1(x)+(1−λ)f2(x) : x ∈ K}, with λ ∈ [0, 1],
a parametric polynomial optimization problem. By using ideas from parametric
polynomial optimization, one may obtain (approximate) moments of the func-
tions f ∗1 (λ) and f ∗2 (λ) on [0, 1]. It remains to approximate the functions f ∗1 (λ)

and f ∗2 (λ) on [0, 1], which can be done by several methods (like e.g. maximum-
entropy).
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Abstract Convex underestimators of a polynomial on a box. Given a non convex poly-
nomial f ∈ R[x] and a box B ⊂ Rn , we construct a sequence of convex polynomials
( fdk) ⊂ R[x], which converges in a strong sense to the “best” (convex and degree-d) poly-
nomial underestimator f ∗

d of f . Indeed, f ∗
d minimizes the L1-norm ‖ f − g‖1 on B, over

all convex degree-d polynomial underestimators g of f . On a sample of problems with non
convex f , we then compare the lower bounds obtained by minimizing the convex underes-
timator of f computed as above and computed via the popular αBB method and some of its
other refinements. In most of all examples we obtain significantly better results even with
the smallest value of k.

Keywords Convex underestimators · Polynomials · Semidefinite programming

1 Introduction

Consider the general polynomial optimization problem P:

P : f ∗ = min
x

f (x)

s.t gi (x) ≥ 0, i = 1, . . . , m

x ∈ [xL , xU ] ⊂ Rn .

where f, gi are polynomials and xL , xU ∈ Rn define the box [xL , xU ] ⊂ Rn . To approximate
f ∗ and global minimizers of P, one of the popular methods (especially for large scale opti-
mization problems) is the deterministic global optimization algorithm αBB. It uses a branch
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and bound scheme where the lower bounds computed at nodes of the search tree are obtained
by solving a convex problem where f is replaced with some convex underestimators on a
box B ⊂ Rn ; see e.g. [6, pp. 1–12], Floudas [5], Androulakis et al. [1]. Of course, the overall
efficiency of the αBB algorithm depends heavily on the quality of the lower bounds computed
in the branch and bound search tree, and so, ultimately, on the quality of the underestimators
of f that are used.

Therefore, the development of tight convex underestimators for non convex polynomials
on the feasible region (compact or non compact) is of crucial importance. Several results
are available in the literature for computing convex envelopes of specific simple functions in
explicit form, on a box B ⊂ Rn . See for instance Floudas [5] for convex envelopes of bilin-
ear, trilinear, multilinear monomials, Tawarmalani and Sahinidis [15]) for fractional terms,
and Cafieri et al. [3] for quadrilinear terms. For a general non convex function f , a convex
underestimator can be obtained from the original function f by adding a negative part. For
instance, this part could be a negative quadratic polynomial of the form

x '→ L(x) = f (x) +
n∑

i=1

αi

(
xi − x L

i

) (
xi − xU

i

)
,

e.g., as in Androulakis et al. [1], or an exponential term from the original function of the form

x '→ L(x) = f (x) −
n∑

i=1

(
1 − eαi (xi −x L

i )
) (

1 − eαi (xU
i −xi )

)
,

e.g., as in Akrotirianakis and Floudas [2]). This is the spirit of the αBB method, and several
heuristics have been proposed for choosing appropriate nonnegative coefficients α ∈ Rn in a
tradeoff between two conflicting criteria. On the one hand, the additional term must be neg-
ative enough to overpower all the non convexities, which requires positive semidefiniteness
of the Hessian matrix ∇2L of the twice-differentiable function L. But on the other hand,
this additional part should also be as small as possible to obtain good lower bounds when
using L as a substitute for f in the Branch and Bound search tree. Indeed, bad lower bounds
would slow down convergence of the αBB method. The so-called scaled Gershgorin method
is among the most efficient.

Finally, to improve the basicαBB method Meyer and Floudas [13] have proposed the spline
αBB variant where the resulting convex underestimator is a piecewise quadratic perturbation
of the function f . The initial box B is partitioned into smaller boxes Bk, k = 1, . . . , s, and in
each box Bk a convex underestimator fk of f on Bk is computed as in the basic αBB method.
In addition, for smoothness and continuity, all convex underestimators fk are constrained to
agree on boundaries of boxes (whence the spline name). More recently, Gounaris and Floudas
[8] have developed another variant of the αBB method in which each convex underestimator
fk on Bk is computed independently of the others f j ’s. Then a global convex underestimator
on B is constructed from the fk’s. Both variants have resulted in significant improvements
over the basic αBB method.

Contribution. We present a new class of convex underestimators for a non convex poly-
nomial on a box B ⊂ Rn , different in spirit from the αBB convex underestimators. We use
two certificates for (a) L ≤ f and (b), convexity of L on the box B. More precisely, we
are looking for a convex polynomial fd ∈ R[x]d (with degree d fixed) which approximates
f from below on a given box B ⊂ Rn . Hence a polynomial candidate fd must satisfy two
major conditions:
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• f ≥ fd on B,
• The Hessian matrix ∇2 fd must be positive semidefinite (i.e., ∇2 fd + 0) on B.

But of course, there are many potential polynomial candidates fd ∈ R[x]d and therefore, a
meaningful criterion to select the “best” among them is essential. A natural candidate cri-
terion to evaluate how good is fd , is the integral J ( fd) :=

∫
B | f − fd |dx, which evaluates

the L1-norm of f − fd on B, i.e., the “tightness” of f − fd . Indeed, minimizing J tends to
minimize the discrepancy (or “error”) between f and fd , uniformly on B. If desired, some
flexibility is permitted by allowing any weight function W : B → R, positive on B, so as to
minimize JW ( fd) =

∫
B | f − fd | Wdx.

Fortunately, to certify f − fd ≥ 0 and ∇2 fd + 0 on B, a powerful tool is available,
namely Putinar’s Positivstellensatz (or algebraic positivity certificate) [14], already exten-
sively used in many other contexts, and notably in global polynomial optimization; see e.g.
[11,12] and the many references therein. Moreover, since f ≥ fd , the criterion J ( fd) to
minimize becomes

∫
B( f − fd)dx and is linear in the coefficients of fd ! Therefore, we end

up with a hierarchy of semidefinite programs, parameterized by some integer k ∈ N. This
parameter k reflects the size (or complexity) of Putinar’s positivity certificate. Any optimal
solution of a semidefinite program in this hierarchy provides a convex degree-d polynomial
underestimator fdk ∈ R[x].

We then provide a sequence of convex degree-d polynomial underestimators ( fdk) ⊂
R[x]d , k ∈ N, such that ‖ f − fdk‖1 → ‖ f − f ∗

d ‖1 for the L1-norm on B, where f ∗
d mini-

mizes J (h) over all convex degree-d polynomial underestimators h of f on B. In fact, any
accumulation point ϕ∗ of the sequence ( fdk) ⊂ R[x]d also minimizes J (h) and fdki → ϕ∗

pointwise for some subsequence.
So when k increases the convex polynomial underestimator fdk converges to the best con-

vex polynomial underestimator of degree d . However this convergence is only theoretical
because in practice one does not let k increase; one let k fixed (and even to a small value).
We also prove that if k is sufficiently large, then fdk is necessarily better than the αBB
underestimator. Finally, a practical justification is also obtained from a comparison with the
αBB method carried out on a set of test examples taken from the literature [4,5,8]. Recall
that the main motivation for computing underestimators is to compute “good” lower bounds
on a box B for non convex problems, and use these lower bounds in a Branch and Bound
algorithm. Therefore, to compare the two underestimators,

• we have computed the lower bound obtained by minimizing each one of them (instead
of f ) on the box B, and

• we have evaluated the same “tightness” criterion
∫

B | f − f̂ |dx for both of them. This
latter criterion is important because one may also use a convex underestimator f̂ to relax
a nonconvex constraint f (x) ≤ 0 by the convex one f̂ (x) ≤ 0. The closer f̂ is to f , the
better is the relaxation.

In all examples, and on both criteria, the results obtained with the moment approach are
significantly better. Observe that with respect to the latter criterion, our underestimator is by
essence trying to minimize the discrepancy between f and its underestimator f̂ .

Finally, we also provide an alternative way to compute the coefficients α in the αBB
method. Namely, we propose to compute the coefficients α which minimize

∫
B | f − L|dλ

(where L is the αBB-underestimator), which reduces to solving a single semidefinite
program. A library of such α could be computed off-line for several important particular
cases.

As already mentioned, some refinements combining underestimators defined on boxes
of smaller size have been proposed in the literature, notably by Meyer and Floudas [13],
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Gounaris and Floudas [7,8], with significant improvements over the basic αBB method. It
is worth emphasize that our convex underestimators can be also implemented in the above
refinements [7,8,13]. Namely since in those two variants [8,13] a standard αBB-type convex
underestimator fk is computed in each one of the many sub-boxes Bk of the box B, one may
then replace each fk by a new one f̂k as proposed in this paper, and then construct a global
one as in [8,13]. The rationale behind this strategy is that since our estimator f̂k is tighter
than fk in each box Bk (at least in all examples that we have tried), the resulting convex
underestimator should also be better in the box B.

At last but not least, we also provide parametric convex underestimators on the box
Bs := [0, s]n where the scalar s parameterizes the box size. The polynomial underestimator
is now a degree-d polynomial in R[x, s], which is convex on x for all values of s ∈ [0, S] (for
some fixed S). This can be especially useful in mixed integer non linear programs where in the
Branch and Bound search tree, one has to compute lower bounds repeatedly on boxes of var-
ious sizes. Then it may be worthy to compute off line a convex underestimator fd ∈ R[x, s]
and then on line in the search tree, one instantiates x '→ fd(x, s) ∈ R[x]d when s is fixed at
the value of the desired box size.

Computational burden. Typically in large scale problems (in particular, mixed integer
nonlinear programs), the non convex objective function f is a sum of many functions fi , each
with a small number of variables. As convex underestimators of f would be too costly to
compute, the common practice is to add up convex underestimators of the fi ’s, much easier
to obtain and which can be computed separately. Hence the moment approach described in
this paper can be implemented. However, if some sparsity is present in the data then it may
be worth trying the specific and efficient semidefinite relaxations of Waki et al. [16] that take
sparsity into account, to compute a convex underestimator of f . (Such “sparse” semidefi-
nite relaxations have been implemented in [16] for solving some non convex optimization
problems with up to a thousand variables!)

2 Notation and definitions

Let R[x] be the ring of real polynomials in the n variables x = (x1, . . . xn), and for every
d ∈ N , let R[x]d ⊂ R[x] be the vector space of polynomials of degree at most d whose
dimensions is s(d) :=

(n+d
n

)
. Similarly, let R[x, y]d ⊂ R[x, y] be the vector space of poly-

nomials of degree at most d whose dimension is v(d) :=
(2n+d

2n

)
. Also, let $[x]d ⊂ R[x] be

the cone of sums of squares of degree at most 2d . With (xα), α ∈ Nn , being the canonical
(monomial) basis of R[x], a polynomial f ∈ R[x]d is written

x '→ f (x) =
∑

α∈Nn

fα xα,

for some vector of coefficients f = ( fα) ∈ Rs(d).
For every α ∈ Nn let |α| := ∑

i αi , and let Nn
d := {α ∈ Nn : |α| ≤ d}. Let the box

B := [0, 1]n be described as the compact basic semi-algebraic set:

B :=
{
x ∈ Rn : g j (x)(:= x j (1 − x j )) ≥ 0, j = 1, . . . , n

}
.

Let go be the constant polynomial equal to 1, and let QB ⊂ R[x] be the quadratic module
associated with the g′

j s, i.e.,
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QB :=






n∑

j=0

σ j g j : σ j ∈ $[x], j = 1, . . . , n




 .

The quadratic module QB is Archimedean, i.e., there exists some M > 0 such that the qua-
dratic polynomial x '→ M−‖x‖2 belongs to QB. The following result is a direct consequence
of Putinar’s Positivstellensantz [14] for Archimedean quadratic modules.

Proposition 2.1 (Putinar [14]) Every polynomial strictly positive on B belongs to QB.

Let K ∈ Rn be the closure of some open bounded set, and let U := {x ∈ Rn := ‖x‖2 ≤ 1}.
Recall that f ∈ R[x]d is convex on K if and only if ∇2 f (x) is positive semidefinite on K.
Equivalently, f is convex if and only if T fd ≥ 0 on K × U, where T : R[x] → R[x, y] is
the mapping:

h '→ Th(x, y) := y′∇2h(x)y, ∀h ∈ R[x]. (1)

The vector of coefficients ((Th)αβ), α, β ∈ Nn , of the polynomial Th ∈ R[x, y] is a vector
with finitely many zeros and is obtained from the vector h of h ∈ R[x] by a linear mapping
with associated infinite matrix T whose rows (resp. columns) are indexed in the canonical
basis of R[x, y] (resp. R[x]) and with entries:

T((α, β), δ) = (Txδ)αβ , α,β, δ ∈ Nn . (2)

Next let f = ( fα) be the vector of coefficients of f ∈ R[x]. Expanding the polynomial
T f = y′∇2 f (x)y in the canonical basis (xαyβ) of R[x, y]d , yields

y′∇2 f (x)y =
∑

(α,β)∈N2n
d

(T f )αβxαyβ =
∑

δ∈Nn
d

fδTxδ .

3 Main result

Let λ denote the Borel probability measure uniformly distributed on the unit ball B := [0, 1]n
(i.e. a normalization of the Lebesgue measure on Rn), and consider the associated optimiza-
tion problem:

min
h∈R[x]d






∫

B

( f − h)dλ : f − h ≥ 0 on B; h convex on B




 . (3)

whose optimal value is denoted by ρd . Equivalently,

ρd = min
h∈R[x]d






∫

B

( f − h)dλ : f − h ≥ 0 on B; T h ≥ 0 on S




 , (4)

where T is defined in (1), and S = B × U with U := {y ∈ Rn := ‖y‖2 ≤ 1}.
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Lemma 3.1 The optimization problem (4) has an optimal solution f ∗
d ∈ R[x]d .

Proof Observe that for every feasible solution fd ∈ R[x]d , fd ≤ f on B and so

∫

B

( f − fd) dλ =
∫

B

| f − fd | dλ = ‖ f − fd‖1,

where ‖ · ‖1 denotes the norm on L1([0, 1]n), and which also defines a norm on R[x]d (or,
equivalently, on Rs(d)). Indeed, if f, g ∈ R[x] and ‖ f − g‖1 = 0 then f = g, almost every-
where on B, and so on all of B because both are polynomials and B has nonempty interior. So
if ( fdk) ⊂ R[x]d , k ∈ N, is a minimizing sequence then fdk ∈ )a := {h : ‖ f − h‖1 ≤ a}
for all k (where a :=

∫
B( f − fd0) dλ), and

∫
B( f − fdk) dλ → ρd as k → ∞. Notice that

)a ⊂ R[x]d is a ball and a compact set. Therefore, there is a subsequence ki and a element
f ∗
d ∈ )a such that fdki → f ∗

d as i → ∞. Therefore, fdki (x) → f ∗
d (x) for every x ∈ B.

Next, since B is bounded we also have supi ‖ fdki ‖∞ < M for some M , and as a consequence
of the Bounded Convergence Theorem (see e.g. Wade [17]),

ρd = lim
i→∞

∫

B

( f − fdki ) dλ →
∫

B

( f − f ∗
d ) dλ.

It remains to prove that f ∗
d is a feasible solution of (4). So, let x ∈ B be fixed, arbitrary. Then

since f − fdk ≥ 0 on B, the pointwise convergence fdki → f ∗
d yields f (x) − f ∗

d (x) ≥ 0.
Hence f − f ∗

d ≥ 0 on B. Similarly, let (x, y) ∈ S be fixed, arbitrary. Again, from T fdk(x, y) ≥
0, the convergence fdki → f ∗

d , and the definition of T in (1), it immediately follows that
T f ∗

d (x, y) ≥ 0. Therefore, T f ∗
d ≥ 0 on S, and so f ∗

d is feasible for (4). 01

With U := {y ∈ Rn : ‖y‖2 ≤ 1}, the set S = B × U ⊂ R2n is a compact basic
semi-algebraic set. So, let QS ⊂ R[x, y] be the quadratic module associated with S, i.e.,

QS =






n+1∑

j=0

θ j g j : θ j ∈ $[x, y], j = 0, . . . , n + 1




 ,

where (x, y) '→ gn+1(x, y) := 1 − ||y||2; it is straightforward to show that QS is Archime-
dean.

By Proposition 2.1, ρ =
∫

B f dλ − ρd , and the optimal solution f ∗
d of (3) is an optimal

solution of the problem Pd defined by:

ρd = max
h∈R[x]d






∫

B

h dλ : f − h ∈ QB; Th ∈ QS




 . (5)
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So with T being the mapping defined in (1), introduce the following semidefinite relaxation
Pdk of Pd , defined by:






max
h∈R[x]d ,σ j ,θ+

∫

B
h dλ

f (x) = h(x) +
n∑

j=0

σ j (x)g j (x) ∀x

s.t. Th(x, y) =
n∑

j=0

θ j (x, y)g j (x)

+ θn+1(x, y)gn+1(x, y) ∀x, y
σ0 ∈ $[x]k, σ j ∈ $[x]k−1, j ≥ 1
θ0 ∈ $[x, y]k, θ j ∈ $[x, y]k−1, j ≥ 1,

(6)

with k ≥ max[2d/23, 2(deg f )/23] and with optimal value denoted by ρdk .
(6) is a semidefinite program. To see that (6) is a semidefinite program, recall that h =∑

α∈Nn
d

hα xα . Moreover, let vk(x) ∈ Rs(k) be the vector of monomials (xα), α ∈ Nn
k . A

polynomial u ∈ R[x]2k is of the form σ j g j with σ j ∈ $[x]k−1 if and only if there exists
some real symmetric s(k − 1) × s(k − 1) matrix Z j + 0 such that uα = 〈Z j , C j

α〉 for all
α ∈ Nn

2k ; the matrices C j
α,α ∈ Nn

2k , are the coefficients of xα in the expansion

x '→ g j (x) vk−1(x)vk−1(x)′ =
∑

α∈Nn
2k

C j
α xα,

Similarly, let wk(x, y) be the vector of monomials (xαyβ), (α, β) ∈ N2n
k . A polynomial

v ∈ R[x, y]2k is of the form θ j g j with θ j ∈ $[x, y]k−1 if and only if there exists some
real symmetric v(k − 1) × v(k − 1) matrix , j + 0 such that vαβ = 〈, j ,)

j
αβ〉 for all

(α, β) ∈ N2n
2k ; the matrices )

j
αβ , (α,β) ∈ N2n

2k , are the coefficients of xαyβ in the expansion

(x, y) '→ g j (x) wk−1(x, y)wk−1(x, y)′ =
∑

(α,β)∈N2n
2k

)
j
αβ xα yβ .

For more details the interested reader is referred to e.g. [12]. Therefore (6) is equivalent to:





max
h∈R[x]d ,Z j ,,+

∑

α∈Nn
d

hαγα

fα = hα +
n∑

j=0

〈Z j , C j
α〉, ∀ α ∈ Nn

2k

s.t. (Th)αβ =
n+1∑

+=0

〈,+,)
+
αβ〉, ∀ (α, β) ∈ N2n

2k

Z j , ,+ + 0, j = 0, . . . , n; + = 0, . . . , n + 1,

(7)

where fα = 0 for all α with |α| > deg f , and γα =
∫

B xα dλ for every α ∈ Nn .

Lemma 3.2 For sufficiently large 2k ≥ deg f , the semidefinite program (7) has an optimal
solution fdk ∈ R[x]d .

The proof being a little technical is postponed to Appendix.
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Theorem 3.3 Let ρd be the optimal value of (4) and consider the hierarchy of semidefinite
relaxations (6) with associated sequence of optimal values (ρdk), k ∈ N. Then

∫
B f dλ−ρdk ↓

ρd as k → ∞, so that ‖ f − fdk‖1 ↓ ρd if fdk ∈ R[x]d is any optimal solution of (6). More-
over, any accumulation point ϕ∗ ∈ R[x]d of the sequence ( fdk) ⊂ R[x]d , is an optimal
solution of (4), and fdki → ϕ∗ pointwise for some subsequence (ki ), i ∈ N.

Proof Let f ∗
d ∈ R[x]d be an optimal solution of (4), which by Lemma 3.1, is guaranteed to

exist. As f ∗
d is convex on B, s∇2 f ∗

d + 0 on B. Let ε > 0 be fixed and such that ε‖x‖2 < 1
on B. Let gε := f ∗

d − ε + ε2‖x‖2, so that ∇2gε + ε2I on B. Hence, by the matrix version
of Putinar’s Theorem (see [12, Theorem 2.22]), there exist SOS matrix polynomials F j such
that

∇2gε(x) = F0(x) +
n∑

j=1

F j (x) g j (x).

(Recall that an SOS matrix polynomial F ∈ R[x]q×q is a matrix polynomial of the form
x '→ L(x)′L(x) where L is a matrix polynomial L ∈ R[x]p×q for some p ∈ N.)

And so, for every j = 0, . . . , n, the polynomial (x, y) '→ θε
j (x, y) := y′F j y is SOS for

every j = 0, . . . , n + 1, and

Tgε =
n∑

j=0

θε
j (x, y) g j (x) + θε

n+1(x, y)(1 − ‖y‖2).

Moreover, observe that f − gε = f − f ∗
d + ε(1 − ε‖x‖2) is strictly positive on B. Hence by

Putinar’s Theorem,

f − gε =
n∑

j=0

σ ε
j g j ,

for some SOS polynomials σ j ∈ R[x], j = 1, . . . , n. Let 2t ≥ max{[maxk deg σk + 2,

max j [deg F j + 4] }. Then the polynomial gε is a feasible solution of (6) whenever k ≥ t . Its
value satisfies

∫

B

gεdλ =
∫

B

( f ∗
d − ε + ε2‖x‖2)dλ ≥

∫

B

f ∗
d dλ − ε,

and so ρdt ≥ ρd − ε. As ε > 0 was arbitrary and the sequence (ρdk) is monotone non
decreasing, the first result follows.

Next, any optimal solution fdk ∈ R[x]d of (6) satisfies ‖ f − fdk‖1 ≤
∫

B f dλ−ρd1 =: a
and so belongs to the ball )a := {h : ‖ f − h‖1 ≤ a}. Let ϕ∗ ∈ )a be an arbitrary accu-
mulation point of the sequence ( fdk) for some subsequence (ki ), i ∈ N. Proceeding as in the
proof of Lemma 3.1, fdki → ϕ∗ pointwise, f − ϕ∗ ≥ 0 and ∇2ϕ∗ + 0 on B. Moreover, by
the Bounded Convergence Theorem [17],

ρd = lim
i→∞

ρdki = lim
i→∞

∫

B

( f − fdki )dλ =
∫

B

( f − ϕ∗)dλ,

which proves that ϕ∗ is an optimal solution of (4). 01

Theorem 3.3 states that the optimal value of the semidefinite relaxation (6) can become
as close as desired to that of problem (4), and accumulation points of solutions of (6) are also
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optimal solutions of (4). The price to pay is the size of the semidefinite program (6) which
becomes larger and larger as k increases. In practice one let k fixed at a small value and the
computational experiments presented below indicate that even with k fixed at its smallest
possible value, the polynomial underestimator fdk provides better lower bounds than the
αBB-underestimator.

4 Comparing the moment and αBB methods

4.1 Convex underestimators from the αBB method

To obtain a convex underestimator of a non convex polynomial, the αBB method is based on
a decomposition of f into a sum of non convex terms of special type (e.g., linear, bilinear,
tri-linear, fractional, fractional tri- and quadri-linear) and non convex terms of arbitrary type.
The terms of special type are replaced with their convex envelopes which are already known
(see Floudas [5]).

For an arbitrary type f , the underestimator L is obtained by adding a separable negative
quadratic polynomial, i.e.,

L(x) = f (x) +
n∑

i=1

αi

(
xi − x L

i

) (
xi − xU

i

)
, (8)

where the positive coefficients αi ’s are determined so as to make the polynomial underesti-
mator L convex. As L is convex on B if and only if its Hessian ∇2L is positive semidefinite
on B, the coefficients αi , , i = 1, . . . , n must satisfy

∇2L(x) = ∇2 f (x) + 2) + 0, ∀x ∈ B, (9)

where ) = diag{α1,α2, . . . ,αn} is referred to as the diagonal shift matrix. The separation
distance between the original polynomial f and its convex underestimator L is

dαBB = f (x) − L(x) = −
n∑

i=1

αi

(
xi − x L

i

) (
xi − xU

i

)
≥ 0,

which achieves its maximum at the middle point of the interval [xL , xU ]. Therefore,

dmax
αBB = −1

4

n∑

i=1

αi

(
xU

i − x L
i

)2
.

hence, the value of dαBB is proportional to the α′
i s and the size of the domains [xL , xU ]. A

number of methods to calculate the parameters of the diagonal matrix ) have been devel-
oped using interval analysis (see e.g. Floudas [5], Kramer et al. [10]), and are based on the
following result:

Theorem 4.1 Let [H f ] be a real symmetric interval matrix such that ∇2 f (x) ∈ [H f ],∀x ∈
[xL , xU ]. If [∇2

L] := [H f ] + 2) + 0 then L is convex on [xL , xU ].
Among the most efficient methods is the scaled Gershgorin method where (αi ) ∈ Rn is

determined by

αi = max




0,−1
2



 f
ii

−
∑

j 7=i

max{| f
ii
|, | f i j |}



 d j

di




 (10)
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where f
ii

and f i j are the lower and upper bounds of ∂2 f /∂xi∂x j in the interval [xL , xU ]
and di , i = 1, 2, . . . , n are some chosen positive parameters. The choice di = uU

i − uL
i

reflects the fact that the underestimator is more sensitive to variables with a wide range than
to variables with a small range.

4.2 Comparison with the moment method

Given an arbitrary polynomial f ∈ R[x] and d ∈ N, one searches for an ideal polynomial
f ∗
d ∈ R[x]d convex on B, that is an optimal solution of Pd , i.e., f ∗

d solves:

ρd = max
h∈R[x]d






∫

B

h dλ : f − h ∈ QB; Th ∈ QS




 . (11)

(See Lemma 3.1.) In practice, one obtains a convex underestimator fdk ∈ R[x]d by solving
the semidefinite relaxation (6) of Pd for a small value of k.

We can now compare fdk with the αBB underestimator L in (8), with x L
i = 0 and

xU
i = 1, i = 1, . . . n (possibly after scaling).

Lemma 4.2 With f being a non convex polynomial, let fdk ∈ R[x]d be an optimal solution
of (6) and let L be as in (8). If ∇2L(x) 8 0 for all x ∈ B then

‖ f − fdk‖1 ≤ ‖ f − L‖1, (12)

whenever k is sufficiently large. That is, the convex underestimator fdk ∈ R[x]d is better
than L when evaluated for the L1-norm

∫
B | f − g|dλ.

Proof Observe that

f (x) − L(x) =
n∑

i=1

αi︸︷︷︸
σi ∈$[x]0

xi (1 − xi ),

that is, the separation distance dαBB is a very specific element of QB, where the SOS weights
σ j are the constant polynomials α j , j = 1, . . . , n.

Moreover, if TL 8 0 on B then by [12, Theorem 2.22]

∇2L(x) =
n∑

j=0

F j (x) g j (x),

for some SOS polynomial matrices x '→ F j (x) (i.e., of the form L j (x)L j (x)′ for some matrix
polynomials L j ) and so

TL(x, y) = y′∇2L(x)y =
n∑

j=0

(L j (x)y)2

︸ ︷︷ ︸
θ j ∈$[x,y]

g j (x).

Hence TL ∈ QS and L is a feasible solution of (6) as soon as 2k ≥ max j degF j + 4.
Therefore, at least for sufficiently large k,

∫

B

fdkdλ ≥
∫

B

L dλ,

and so as f ≥ fdk and f ≥ L on B, (12) holds. 01
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Fig. 1 Bivariate Camelback function. a f ∗ = −1; f ∗
αBB = −3.33, b f ∗ = −1; f ∗

mom = −1.36

4.3 Computational results

Among all possible choices of d we consider the two natural choices, d = deg f or d =
2, and k ≥ max[2d/23, 2(deg f )/23]. With the former one searches for the best convex
underestimator of same degree as f , while with the latter one searches for the best quadratic
underestimator of f .

Recall that the main motivation for computing underestimators is to compute “good” lower
bounds on a box B for non convex problems, and use these lower bounds in a Branch and
Bound algorithm. Therefore, to compare the moment and αBB underestimators, we have
chosen non convex optimization problems in the literature, and replaced the original non
convex objective function by its moment and αBB underestimator, respectively fd and L.
We then compare:

• The minimum f ∗
mom (resp. f ∗

αBB) obtained by minimizing1 fd (resp. L) on the box B.
• The respective values of the “tightness score”, i.e., the L1-norm

∫
B | f − fd |dλ and∫

B | f − L|dλ. In view of (8), the latter is easy to compute.
In Fig. 1 is displayed a first illustrative example with the Six-Hump Camelback func-
tion (see Meyer [13]) x '→ f (x) = 4x2

1 − 2.1x4
1 + 1

3 x6
1 + x1x2 − 4x2

2 + 4x4
2 in the

box B = [0, 1]2. The global minimum is f ∗ = −1 to be compared with f ∗
mom =

−1.36, f ∗
αBB = −3.33.

• Choice 1: d = 2 (quadratic underestimator) Given f ∈ R[x], one searches for a convex
polynomial fd ∈ R[x]2 of the form x '→ fd(x) = x′Ax + a′x + b for some real positive
semidefinite symmetric matrix A ∈ Rn×n , vector a ∈ Rn and scalar b. Let Mλ be the
moment matrix of order 1 of the (normalized) Lebesgue measure λ on B, i.e.,

Mλ =
[

1 γ ′

γ 0

]

with γi =
∫

B xi dλ for all i = 1, . . . , n, and 0i j =
∫

B xi x j dλ for all 1 ≤ i, j ≤ n. The
semidefinite relaxation Pdk in (6) reads:

1 All computations were made by running the Gloptipoly software described in Henrion et al. [9], and devel-
oped for solving the Generalized Problem of Moments whose global optimization is only a special case. The
αBB underestimator was computed via the scaled Gershgorin method.
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Table 1 Comparing f ∗
mom and f ∗

αBB; d = 2

Prob n deg f d [xL , xU ] f ∗
αBB f ∗

mom f ∗

Test2 4 3 2 [0,1] −1.54 −1.22 −1

Test3 5 4 2 [−1,1] −15 −13.95 −6

Test4 6 6 2 [−1,1] −60.15 −10.06 −3

Test5 3 6 2 [−2,2] −411.2 −12.66 −1

Test10 4 4 2 [0,1] −197.54 −0.9698 0

Test11 4 4 2 [0,1] −33.02 −0.623 0

Test14(1) 3 4 2 [−5,2] −2,409 −300 −300

Test14(2) 4 4 2 [−5,2] −3,212 −400 −400

Test14(3) 5 4 2 [−5,2] −4,015 −500 −500

Fl.2.2 5 2 2 [0,1] −18.9 −18.9 −17

Fl.2.3 6 2 2 [0,1] −5,270.9 −361.50 −361

Fl.2.4 13 2 2 [0,3] −592 −195 −195

Fl.2.6 10 2 2 [0,1] −269.83 −269.45 −268.01

Fl.2.8C1 20 2 2 [0,3] −560 −560 −394.75

Fl.2.8C2 20 2 2 [0,10] −1,050 −1,050 −884

Fl.2.8C3 20 2 2 [0,30] −13,600 −12,000 −8,695

Fl.2.8C4 20 2 2 [0,30] −920 −920 −754.75

Fl.2.8C5 20 2 2 [0,30] −16,645 −10,010 −4,150.41






max
b,a,A

b + a′γ + 〈A,0〉

s.t. f (x) = b + a′x + x′Ax +
n∑

j=0

σ j (x)g j (x), ∀x

A + 0; σ0 ∈ $[x]k, σ j ∈ $[x]k−1, j ≥ 1.

(13)

Table 1 displays results for some examples and choice d = 2. The test functions f are
taken from Floudas et al. [4] and Floudas [5] and Gounaris and Floudas [8]. On a box
B that contains the feasible set, we compute the convex αBB underestimator L and the
(only degree-2) moment underestimator fd of the initial objective function f via solving
(13) with the smallest value of k = 2d/23. We then compute their respective minimum
f ∗
αBB and f ∗

mom on B. All examples were run on a Intel(R) Core(TM) i5 2.53 GHz pro-
cessor with 4 Gb of Ram. In a typical example with degree 4 and 5 variables, the CPU
time was 0.68 s to find the underestimator fd with d = 2.

• Choice 2: d = deg f . Table 2 displays results for some examples taken from Table 1 but
now using the moment underestimator fd with choice d = deg f (the Test 4 example
was excluded because f6 was too expensive to compute). Again k in (6) is set to its
smallest possible value 2d/23. As one may see and as expected, the lower bound f ∗

mom is
better, and in several examples f ∗

mom is very close to the global minimum f ∗. However,
depending on the degree of f , the computing time is now larger than with d = 2; recall
that the size of the semidefinite program (6) is parameterized by k, chosen here to be
equal to its smallest possible value 2d/23. For a typical example with degree 4 and 5
variables, the CPU time was 1.68 s to find the underestimator fd with d = 4.
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Table 2 Comparing f ∗
mom and f ∗

αBB; d = deg f

Prob n deg f d [xL , xU ] f ∗
αBB f ∗

mom f ∗

Test2 4 3 3 [0,1] −1.54 −1.22 −1

Test3 5 4 4 [−1,1] −15 −11.95 −6

Test4 6 6 2 [−1,1] −60.15 −10.06 −3

Test5 3 6 6 [−2,2] −411.2 −12.07 −1

Test10 4 4 4 [0,1] −197.54 −0.778 0

Test11 4 4 4 [0,1] −33.02 0 0

Test14(1) 3 4 4 [−5,2] −2,409 −300 −300

Test14(2) 4 4 4 [−5,2] −3,212 −400 −400

Test14(3) 5 4 4 [−5,2] −4,015 −500 −500

Table 3 Comparing
∫
B | f −L|dλ

VB

and
∫
B | f − fd |dλ

VB

Prob
∫
B | f −L|dλ

VB

∫
B | f − fd |dλ

VB

Test2 1 0.625

Test3 11.67 3.33

Test4 60 7.29

Test5 99.00 23.20

Test10 133.33 57.00

Test11 46.33 1

Test14(1) 1641.4e+003 149.2711

Test14(2) 2,186.6 199.08

Test14(3) 2,731 248.71

Fl.2.2 41.66 41.66

Fl.2.3 67,500 833.33

Fl.2.4 0.005 0.0005

Fl.2.6 8.33 5.83

Fl.2.8C1 3.4989e+014 3.4989e+014

Fl.2.8C2 12,200 12,200

Fl.2.8C3 6.9979e−005 6.9979e−005

Fl.2.8C4 3.4989e−006 3.4989e−006

Fl.2.8C5 9.6077e−015 9.6077e−015

Finally, Table 3 displays the respective values of the “tightness” score
∫

B | f − L|dλ and∫
B | f − fd |dλ with d = 2, normalized with respect to the volume of the box B. Again, the

tightness score of the moment underestimator fd with d = 2 is significantly better than that
of the αBB underestimator L.

In view of the above experimental results (even though they are limited) it seems that the
practical choice d = 2 combined with the smallest possible value k := 2(deg f )/23 in (6),
is enough to obtain a good convex polynomial underestimator.

4.4 Computing α for the αBB underestimator

The above approach can also be used to provide a new and systematic way to compute the
coefficients α ∈ Rn

+ of the αBB underestimator. Indeed it suffices to impose the additional
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Table 4 Comparing the fαBB and f α
d underestimators

Prob [x L , xU ] f ∗
αBB f ∗

mom f ∗

Fl 8.2.7 [0, 1]5 −899.5 −2.76 −0.5

Fl 8.2.7 [−1, 1]5 −2,999 −23 −0.6

Fl 8.2.7 [−5, 5]5 −63,000 −2,987 −982

Test 10 [0, 1]4 −197.5 −61.9 0

Test 10 [−1, 1]4 −870.2 −323.8 0

Test 10 [−5, 5]4 −137e+05 −4.73e+04 −19

requirement that the underestimator (now called f α
d ) has the αBB form (8). And so, possibly

after a rescaling of the box
∏n

i=1[x L
i , xU

i ] to [0, 1]n , one wishes to minimize

∫

B

( f − L)dλ =
∫

B

f dλ

︸ ︷︷ ︸
constant

+
n∑

i=1

αi

∫

B

xi (1 − xi )dλ, (14)

=
∫

B f dλ + 1
6

∑n
i=1 αi , under the convexity constraint:

y′∇2L(x)y =
n+1∑

j=1

θ j g j ; θ j ∈ $[x, y]k−v j , j = 0, . . . , n + 1,

where k ≥ 2(deg f )/23, and v j = 2(deg g j )/23, j = 0, . . . , n + 1. Therefore computing
the best αi ’s reduce to solving

min
α,θ j

n∑

i=1

αi

s.t. y′∇2 f (x)y = −2
n∑

i=1

αi y2
i +

n+1∑

j=0

θ j g j

α ≥ 0; θ j ∈ $[x, y]k−v j , j = 0, . . . , n + 1,

(15)

which is a semidefinite program. The results displayed in Table 4 for various box sizes
and again the smallest value k = 2(deg f )/23 in (15). As can be seen, this strategy can
yield significantly better lower bounds than with the scaled Gershgorin method, at least on
examples with highly nonconvex functions. Indeed, for various box sizes the resulting lower
bound f ∗

mom obtained by minimizing f α
d on B is always much better than f ∗

αBB obtained by
minimizing fαBB.

4.5 On other refinements of the αBB method

In the αBB method, the size of the interval di = xU
i − x L

i has a direct impact on the resulting
coefficients αi ’s and so also on the tightness of the resulting convex underestimator. There-
fore some refinements combining underestimators defined on boxes of smaller size have been
proposed in the literature. Such refinements, notably by Meyer and Floudas [13], Gounaris
and Floudas [7,8], have resulted in significant improvements over the basic αBB method.
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Basically, the idea is to partition the domain [xL , xU ] in N > 1 subdomains Bk , calculate
a convex under estimator f̂k of f on each subdomain Bk with the basic αBB method, and
then build up a global convex underestimator f̂ on B from the partial f̂k’s.

For instance, in the SplineαBB method of Meyer and Floudas [13] one proceeds as follows:
For each variable xi ∈ R, let the interval [x L

i , xU
i ] be partitioned into Ni subintervals with

endpoints satisfying x L
i = x0

i < x1
i < · · · < x Ni

i = xU
i . A smooth convex underestimator φ

over the domain [xL , xU ] is defined by:

φ(x) := f (x) + q(x)

where q(x) :=
n∑

i=1

qk
i (xi ) for xi ∈

[
xk−1

i , xk
i

]
,

qk
i (xi ) := αk

i (xi − xk−1
i )(xi − xk

i ) + βk
i xi + γ k

i .

Continuity and smoothness of q(x) are obtained as for spline methods, i.e., the functions
qk

i ’s and their derivatives must match at the endpoints xk
i . In addition, one requires q(xL) =

q(xU ) = 0. So after the αk
i ’s have been computed via the scaled Gershgorin method in each

subdomain (xk
i , xk+1

i ), this results in a linear system of equations on the βk
i ’s and γ k

i ’s of the
form:






β1
i x0

i + γ 1
i = 0,

βk
i xk

i + γ k
i = βk+1

i xk
i + γ k+1

i ∀k = 1, . . . , Ni − 1,

β
Ni
i x0

Ni
+ γ

Ni
i = 0,

−αk
i (xk

i − xk−1
i ) + βk

i = −αk+1
i (xk+1

i − xk
i ) + βk+1

i ∀k = 1, . . . , Ni − 1.

The resulting convex underestimator φ on B is tighter than the one obtained in the αBB
method directly applied on B.

In the other refinement of αBB method by Gounaris and Floudas [7,8], one proceeds
as follows: For chosen integers Ni > 1, i = 1, 2, . . . , n, each interval [x L

i , xU
i ] is parti-

tioned into Ni segments of equal length. The initial box [xL , xU ] is then partitioned into
N = ∏n

i=1 Ni subdomains of equal volume. And so the kth subdomain is of the form
Bk = [xk1−1

1 , xk1
1 ] × · · · × [xkn−1

n , xkn
n ]. For every subdomain Bk, k = 1, . . . , N , the corre-

sponding αBB underestimator is of the form:

Lk(x) := f (x) +
n∑

i=1

αk
i

(
xi − xki −1

i

) (
xi − xki

i

)
,

where the value of each αk
i is computed via the scaled Gershgorin method:
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αk
i := max




0,−1
2



 f k
ii

−
∑

j 7=i

max
{
| f k

ji
|, | f

k
ji |

}




(
x

k j
j − x

k j −1
j

)

(
xki

i − xki −1
i

)




 ,

in which { f k
ji
, f

k
ji } are lower and upper bounds on ∂2 f /∂x j∂xi , and f k

ii is a lower bound

on ∂2 f /∂x2
i , in the subdomains Bk ; see Androulakis et al. [1].

Then a global convex underestimator on B is computed by combining these piecewise
convex underestimators as detailed in [7,8].

As already mentioned, in both refinement methods [13] and [7,8] the quality of param-
eters αk

i ’s in each of the subdomains is crucial for the overall performance of the resulting
convex underestimator on B. Therefore in view of the comparison in Sect. 4.3 between the
standard αBB and the “moment” estimator that we propose, an alternative refinement of
the standard αBB method is to proceed as in [13] or [7,8], but now in each subdomain Bk
use a moment estimator as developed in Sect. 3 or in Sect. 4.4 instead of the standard αBB
estimator.
Computational results. First, for illustration purpose, consider the Six-Hump Camelback
function in Fig. 1 with the spline αBB underestimation method as computed in e.g. Gounaris
and Floudas [8]. When the box B = [0, 1]2 is partitioned into 9 sub-boxes Bk, k = 1, . . . , 9,
the resulting lower bound f ∗

spline−αBB is −1.28 which is strictly better than the lower bound
−1.36 obtained with the (global) moment method. But if we use the moment method instead of
the αBB method for each sub-box Bk , then not only the resulting lower bound f ∗

spline−mom =
−1.26 is better, but also the new convex underestimator fd is strictly “tighter” than the spline-
αBB underestimator (as can be seen in Fig. 2). And indeed,

∫
B | f − fd |dλ = 0.28 whereas∫

B | f − fspline−αBB|dλ = 0.67.
We have also compared the spline-αBB and the spline-moment underestimator when the

original box B is partitioned in dn sub-boxes of equal volume (i.e., with d segments of
equal length on each coordinate axis) with up to n = 6 variables. As dn grows very fast
with n, in our examples d takes the values 2 and 3 only. Table 5 displays the results on
some examples taken from Table 1 and the notation f ∗

1 = f ∗
αBB, f ∗

2 = f ∗
spline−αBB, f ∗

3 =
f ∗
spline−mom, f ∗

1 = f ∗
mom , stand for the lower bounds obtained by minimizing on B, the basic

αBB, the spline-αBB, the spline-moment and the basic moment underestimators, respec-
tively. The results confirm that the spline-αBB lower bounds f ∗

spline−αBB are significantly
better than the basic αBB lower bounds f ∗

1 , and as expected, the lower bounds f ∗
spline−mom

are strictly better than f ∗
spline−αBB. In addition, in many cases the lower bounds f ∗

mom are
closer to the global minimum f ∗ than f ∗

spline−αBB.

5 Parametric convex underestimators

We next build up convex underestimators f s on the box Bs := [0, s]n whose size is parame-
terized by the scalar s ∈ [0, S] for some S. That is, instead of repeatedly computing a convex
underestimator f s for every s in some interval say [0, S], one wishes to compute in one
single shot (or once and for all s ∈ [0, S]), a parameterized family of best degree-d convex
polynomial underestimators ( f s

d ) ⊂ R[x]d of f on Bs, s ∈ [0, S].
Since the “tightness” criterion ‖ f − f s‖1 is a good indicator of the quality of the convex

underestimator f s on the box [0, s]n , and in light of Sect. 3, a natural criterion to evaluate
the efficiency of a parameterized convex underestimator f s is the integral
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Fig. 2 Bivariate polynomial case. a f ∗ = −1; f ∗
spline−αBB = −1.28, b f ∗ = −1; f ∗

mom = −1.36,
c f∗spline−mom = −1.26

Table 5 d: number of sub-intervals in each coordinate axis; f ∗
1 = f ∗

αBB, f ∗
2 = f ∗

spline−αBB, f ∗
3 =

f ∗
spline−mom , f ∗

4 = f ∗
mom

Prob n deg f d [xL , xU ] f ∗
1 f ∗

2 f ∗
3 f ∗

4 f ∗

Test2 4 3 3 [0,1] −1.54 −1.006 −1.001 −1.22 −1

Test3 5 4 3 [−1,1] −15 −6.07 −6 −13.95 −6

Test4 6 6 2 [−1,1] −60.15 −18.5 −4.05 −10.06 −3

Test5 3 6 3 [−2,2] −411.2 −37.79 −12.17 −12.66 −1

Test10 4 4 3 [0,1] −197.54 −14.78 −0.8 −0.9698 0

Test11 4 4 3 [0,1] −33.02 −19.77 −0.007 −0.623 0

Test14(1) 3 4 3 [−5,2] −2,409 −855 −300 −300 −300

Test14(2) 4 4 3 [−5,2] −3,212 −1,141.2 −400 −400 −400

Test14(3) 5 4 3 [−5,2] −4,015 −1,426.5 −500 −500 −500

Fl.2.2 5 2 3 [0,1] −18.9 −18.77 −17 −18.9 −17

Fl.2.3 6 2 2 [0,1] −5,270.9 −2,176.4 −361 −361.50 −361
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Fig. 3 Case Bs := [0, s]2 = [0, 0.4]2. a f ∗ = 0.36, b f ∗
mom = 0.0883, c ( f 0.4

mom )∗ = −5.5395,
d f ∗

αBB = −5.7240

S∫

0

‖ f − f s‖1 ds =
S∫

0

∫

Bs

( f (x) − f s(x)) dx ds.

For the dependence of f s on the parameter s, a natural choice is to consider f s as a
degree-d polynomial in s and x, i.e., f s

d ∈ R[x, s]d , optimal solution of the optimization
problem:






ρd = min
h∈R[x,s]d

S∫

0

∫

Bs

( f (x) − h(x, s)) dxds

s.t. f − h ≥ 0 on Bs × [0, S]
T h ≥ 0 on Bs × [0, S] × U

(16)
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Fig. 4 Case Bs := [0, s]2 = [0, 0.6]2. a f ∗ = 0.1600, b f ∗
mom = −0.5259, c ( f 0.6

mom )∗ = −2.1770,
d f ∗

αBB = −22.117

where the linear mapping T : R[x, s] → R[x, s, y] is now given by:

h '→ Th(x, s, y) = y′ ∇2
x h(x, s) y, h ∈ R[x, s],

and ∇2
x h(x, s) = (∂2h(x, s)/∂xi∂x j ), i, j = 1, . . . , n.

Lemma 5.1 For every d ≥ deg f , (16) has an optimal solution f ∗
d ∈ R[x, s].

Proof Let ) := Bs × [0, S]. Notice that for every feasible solution h ∈ R[x, s]d of (16),

S∫

0

∫

Bs

( f (x) − h(x, s)) dxds =
∫

)

| f (x) − h(x, s)| dxds = ‖ f − h‖1,
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Fig. 5 Case Bs := [0, s]2 = [0, 1]2. a f ∗ = 0, b f ∗
mom = −4.888, c ( f 1

mom )∗ = −5.0467, d f ∗
αBB =

−121.76

where ‖ · ‖1 denote the L1-norm on ). Therefore (16) reads

{
ρd = min

h∈R[x,s]d
‖ f − h‖1

s.t. f − h ≥ 0 on ) ; T h ≥ 0 on ) × U.
(17)

Hence with arguments similar to those used in the proof of Lemma 3.1, existence of a solution
f ∗
d ∈ R[x, s]d is guaranteed. 01

For every s ∈ [0, S], let f s
d ∈ R[x] be an optimal solution of (3) with Bs in lieu of B, and

consider the mapping s '→ ρd(s) =
∫

Bs
f s
d (x)dx. With f ∗

d ∈ R[x, s]d as in Lemma 5.1
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Table 6 Comparing f ∗
αBB, ( f s

mom )∗, f ∗
mom and f ∗ with d = 2

Prob n deg f [xL , xU ] f ∗
αBB ( f s

mom )∗ f ∗
mom f ∗

Test14 3 4 [−5,1] −1,726.0 −310.6 −300 −300

Test14 3 4 [−5,1.5] −2,054.9 −335.5 −300 −300

Test14 3 4 [−5,2] −2,408.9 −374.9 −300 −300

Test2 4 3 [0,0.2] −0.21 −1.50 −0.2118 −0.2

Test2 4 3 [0,0.4] −0.46 −1.03 −0.4423 −0.4

Test2 4 3 [0,0.6] −0.73 −0.81 −0.6882 −0.6

Test2 4 3 [0,0.8] −1.07 −0.94 −0.9496 −0.8

Test2 4 3 [0,1] −1.55 −1.37 −1.2258 −1.0

Test10 4 4 [0,0.2] 50.74 16.17 50.75 50.75

Test10 4 4 [0,0.6] 3.09 18.76 26.29 28.83

Test10 4 4 [0,0.8] −71.52 11.41 7.42 13.45

Test10 4 4 [0,1] −197.55 −1.84 −0.96 0.00

S∫

0

∫

Bs

( f (x) − f ∗
d (x, s)) dx ds ≥ ρ∗ :=

S∫

0

∫

Bs

( f (x) − f s
d (x)) dx ds

=
∫

)

f (x)dxds −
S∫

0

ρd(s) ds.

Ideally one would like to approximate ρ∗. This is possible if one considers polynomials
h(x, s) with degree d in x and degree in s arbitrary large. Indeed, if ρd(s) is Riemann
integrable on [0, S] then

s∫

0

ρd(s) ds = lim
N→∞

S
N

N∑

k=1

ρd(kS/N ),

and one may find a polynomial hN ∈ R[x, s] of degree d in x and degree at most N in
s, such that hN (x, s) = f s

d (x) for all x ∈ Bs and all s = kS/N , k = 0, 1, . . . , N . Write
f s
d (x) = ∑

α∈Nn
d

f s
α xα , for some coefficients ( f s

α ), and for every α ∈ Nn
d let pα ∈ R[s]N be

such that

pα(kS/N ) = f kS/N
α , k = 0, 1, . . . , N .

Then the polynomial

(x, s) '→ hN (x, s) :=
∑

α∈Nn
d

pα(s) xα,

has degree N in s and degree d in x, and matches f s
d on BkS/N × {kS/N }, k = 0, . . . , N .

Semidefinite approximations. For practical purpose, h ∈ R[x, s]2d in (16) is a polynomial
of degree d in x and each coefficient of xα is a polynomial of degree d in the parameter s,
i.e.,

h(x, s) =
∑

α∈Nn
d

hα(s) xα, hα ∈ R[s]d . (18)
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And again, one approximates f ∗
2d ∈ R[x, s]2d by a sequence of polynomials ( fdk) ⊂

R[x, s]2d , k ∈ N, of the form (18), by solving a hierarchy of semidefinite programs. Let
ĝ j ∈ R[x, s], j = 1, . . . , n + 2 be the polynomials

s '→ ĝ j (x, s) := x j (s − x j ), j = 1, . . . , n,

and

ĝn+1(x, s) := s(S − s); ĝn+2(x, s, y) := 1 − ‖y‖2.

Consider the hierarchy of semidefinite programs:

max
h∈R[x,s]2d ,σ j ,θk

S∫

0




∫

Bs

h(x, s) dx



 ds

s.t. f (x) = h(x, s) +
n+1∑

j=0

σ j (x, s)ĝ j (x, s) ∀x

Th(x, s, y) =
n+1∑

j=0

θ j (x, s, y)ĝ j (x, s) (19)

+ θn+2(x, s, y)ĝn+2(y) ∀x, s, y

σ0 ∈ $[x, s]k, σ j ∈ $[x, s]k−1, j ≥ 1

θ0 ∈ $[x, s, y]k, θ j ∈ $[x, s, y]k−1, j ≥ 1,

with k ≥ max[2d/23, 2(deg f )/23], and where h ∈ R[x, s]2d is of the form (18).
Of course, one may also consider more general boxes like e.g. two-parameter boxes of

the form Bs := [s1, s2]n with 0 ≤ s1 ≤ s2 ≤ S for some fixed S > 0. But solving the
semidefinite program (19) is computationally more expensive as the criterion now reads

max
h∈R[x,s1,s2]2d ,σ j ,θk

S∫

0

S∫

s1




∫

Bs

h(x, s1, s2) dx



 ds2ds1,

and to define the constraints of (19) we also need introduce the polynomials

ĝ j (x, s1, s2) = (x j − s1)(s2 − x j ), j = 1, . . . , n,

as well as ĝn+1(x, s1, s2) = s1(S − s1), ĝn+2(x, s1, s2) := (s2 − s1)(S − s2), and
ĝn+3(x, s1, s2, y) = 1 − ‖y‖2.
Computational results. We present experimental results in case where the convex polyno-
mial underestimator is quadratic, i.e., d = 2 and k in (19) is set to its smallest possible value.
All examples are taken from Gounaris and Floudas [8]. Given f ∈ R[x] on the box [0, 1]n ,
we try to find the best convex polynomial underestimator h(x, s) of degree d = 2 in the
variable x and the coefficients of x are univariate polynomials of degree 2 in the parameter
s; see (18).

The lower bounds ( f s
mom)∗ of f on Bs obtained by minimizing the parametric underes-

timator f s
mom on Bs , are computed for some values of s ∈ [0, 1]. Figures 3, 4 and 5 display

results for the simple bivariate example

x '→ f (x) = 1 − 2x1 + x2
1 + 100 x2

2 − 200 x2
1 x2 + 100 x4

1
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in the box B = [0, 1]2; three see [8]. The moment convex underestimator fd(x) of Sect. 3
is constructed for the three boxes [0, 0.4]2, [0, 0.6]2 and [0, 1]2. The parametric convex
underestimator f s

mom on the box Bs := [0, s]2 is computed for all s ∈ [0, S] with S = 5, via
solving (19).

Table 6 illustrates some examples with 4 variables from Gounaris and Floudas [8]. By
increasing the size of box Bs := [0, s]n with s ∈ [0, 5] or s ∈ [−5, 5], we compute the
respective minima ( f s

mom)∗, f ∗
mom and f ∗ of the parametric convex underestimator f s , the

convex underestimator fmom and the initial polynomial f .
Final remark. Notice that such convex underestimators f s, s ∈ [0, S], can be computed

off-line before starting the search in the branch and bound search tree. But then these con-
vex underestimators f s are restricted to boxes [0, s]n, s ∈ [0, S]. On the other hand, if the
computation is done on-line at each node of the search tree, then one may compute paramet-
ric convex polynomial underestimators f s on any box [−s, s]n(or[0, s]n), s ∈ [0, 1], after
the initial box B = ∏n

i=1[ai , bi ] is rescaled to [−1, 1]n(or[0, 1]n) via a suitable change of
variable.

6 Conclusion

We have provided an algorithm to compute convex polynomial underestimators of a given
polynomial f on a box B ⊂ Rn . By solving a hierarchy of semidefinite programs one may
approximate, as closely as desired, the best degree-d convex underestimator of a noncon-
vex polynomial f , for the L1-norm. i.e., the one which minimizes the discrepancy

∫
B | f −

g|dλ over B. On a sample of non convex problems from the literature, the lower bounds
obtained (even at the first semidefinite program in the hierarchy), by minimizing this convex
underestimator are significantly better than those obtained by minimizing the popular αBB
underestimator. Finally we have also provided parametric convex polynomial underestima-
tors h ∈ R[x, s] where the parameter s ∈ [0, S] defines the size of the box [0, s]n where one
wishes to underestimate f by a convex polynomial f s ∈ R[x], namely x '→ f s(x) = h(x, s)
with s fixed. And so in mixed integer non linear programs, this convex underestimator can
be computed off-line, which permits to avoid computing on-line at each node of the search
tree of the Branch and Bound, a convex underestimator on [0, s]n , for each desired value of
s ∈ [0, S].

Acknowledgments The authors wish to thank anonymous referees for very helpful comments and sugges-
tions to improve the initial version of this paper.

Appendix

Recall that the moment matrix Mk(y) associated with a sequence y = (yα), α ∈ Nn
2k , is the

real symmetric matrix with rows and columns indexed by the monomial basis (xα), α ∈ Nn
k ,

and with entries

Mk(y)[α, β] = yα+β , ∀ α, β ∈ Nn
k .

Similarly, the localizing matrix Mk(y g j ) associated with the polynomial x '→ g(x) :=∑
γ gγ xγ and with a sequence y = (yα), α ∈ Nn

2k , is the real symmetric matrix with rows
and columns indexed by the monomial basis (xα), α ∈ Nn

k , and with entries
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Mk(g y)[α, β] =
∑

γ∈Nn

gγ yα+β+γ , ∀ α, β ∈ Nn
k .

For more details on moment and localizing matrices the interested reader is referred to e.g.
Lasserre [12].

Proof of Lemma 3.2

Proof From the definition (1) of T, define the operator T∗ : R[x, y]∗2k → R[x]∗2k by:

〈g, T∗ z〉 = 〈T g, z〉, ∀g ∈ R[x]2k, z ∈ R[x, y]∗2k .

The dual of (6) is a semidefinite program whose feasible set is described by:

Mk(u), Mk−1(g j u) + 0, j = 1, . . . , n
Mk(z), Mk−1(g j z) + 0, j = 1, . . . , n + 1
−(T∗z)α + uα = γα, ∀α ∈ Nn

d ,

(20)

where:

– u ∈ R[x]∗2k, z ∈ R[x, y]∗2k and γα =
∫

B xαdx for every α ∈ Nn , and
– Mk(u) (resp. Mk−1(g j u)) is the moment (resp. localizing) matrix associated with the

sequence u and the polynomial g j . And similarly for Mk(z) and Mk−1(g j z).

It suffices to show that the set (20) has a strictly feasible solution (u, z), in which case (a)
there is no duality gap between (6) and its dual, and (b) the dual has an optimal solution if
the optimal value is finite. So with ε > 0 fixed, let z ∈ R[x, y]∗2k be the moment sequence
associated with the Borel measure ε · λ ⊗ ν on B × U, where λ and ν are Borel probability
measures uniformly supported on B and U respectively. Hence Mk(z), Mk−1(g j z) 8 0, j =
1, . . . , n + 1, because both U and B have nonempty interior. Observe that

−(T∗z)α = 〈−xα, T∗ z〉 = −ε θα,

with

θα :=
n∑

i, j=1

∫

B

∂2xα

∂xi∂x j
dλ(x)

∫

U

yi y j dν(y), ∀ α ∈ Nn
2k .

In particular, (T∗z)α = 0 whenever |α| < 2. Next, let u ∈ R[x]∗2k be such that

uα =
{

γα + ε θα ∀ α ∈ Nn
d

γα ∀ α ∈ Nn
2k, |α| > d.

(21)

So the linear constraints −(T∗z)α +uα = γα of (20) are all satisfied. Moreover, from (21), the
moment matrix Mk(u) reads Mk(γ )+ ε)k for some matrix )k , and similarly, the localizing
matrix Mk−1(g j u) reads Mk−1(g j u) = Mk−1(g j γ ) + ε, jk for some appropriate matrix
, jk, j = 1, . . . , n. Since Mk(γ ) 8 0 and Mk−1(g j γ ) 8 0 we also have Mk(u) 8 0 and
Mk−1(g j u) 8 0 provided that ε > 0 is sufficiently small. Hence we have found a strictly
feasible solution (u, z) for the set (20).

We next prove that (6) has a feasible solution. With δ > 0 and k sufficiently large, the
constant function h := f ∗ −δ ∈ R[x]d is feasible for (6). Indeed, by Putinar’s Positivstellen-
satz, f − f ∗ + δ being strictly positive on B, it can be written f − f ∗ + δ = ∑n

j=0 σ j g j for

some SOS polynomials (σ j ) ∈ $k−1[x]. And since Th = 0 one also has Th = ∑n+1
j=0 θ j g j

with θ j = 0 for all j . Finally, every feasible solution h of (6) satisfies h ≤ f on B, and so
the objective value

∫
B hdx is bounded above by

∫
B f dx which is finite. Hence (6) has an

optimal solution. 01
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A “joint+marginal” algorithm for polynomial optimization

Jean B. Lasserre and Tung Phan Thanh

Abstract— We present a new algorithm for solving a poly-
nomial program P based on the recent “joint + marginal”
approach of the first author for parametric polynomial opti-
mization. The idea is to first consider the variable x1 as a
parameter and solve the associated (n−1)-variable (x2, . . . , xn)
problem P(x1) where the parameter x1 is fixed and takes values
in some interval Y1 ⊂ R, with some probability ϕ1 uniformly
distributed on Y1. Then one considers the hierarchy of what
we call “joint+marginal” semidefinite relaxations, whose duals
provide a sequence of univariate polynomial approximations
x1 7→ pk(x1) that converges to the optimal value function
x1 7→ J(x1) of problem P(x1), as k increases. Then with k fixed
à priori, one computes x̃∗

1 ∈ Y1 which minimizes the univariate
polynomial pk(x1) on the interval Y1, a convex optimization
problem that can be solved via a single semidefinite program.
The quality of the approximation depends on how large k can
be chosen (in general for significant size problems k = 1 is the
only choice). One iterates the procedure with now an (n− 2)-
variable problem P(x2) with parameter x2 in some new interval
Y2 ⊂ R, etc. so as to finally obtain a vector x̃ ∈ Rn. Preliminary
numerical results are provided.

I. INTRODUCTION

Consider the general polynomial program

P : f∗ := min
x
{f(x) : x ∈ K } (1)

where f is a polynomial, K ⊂ Rn is a basic semi-algebraic
set, and f∗ is the global minimum of P (as opposed to a local
minimum). One way to approximate the global optimum
f∗ of P is to solve a hierarchy of either LP-relaxations
or semidefinite relaxations as proposed in e.g. Lasserre [4],
[5]. Despite computational experiments seem to reveals that
convergence is fast, the matrix size in the i-th semidefinite
relaxation of the hierarchy grows up as fast as O(ni). Hence,
for large size (and sometimes even medium size) problems,
only a few relaxations of the hierarchy can be implemented
(the first, second or third relaxation). In that case, one only
obtains a lower bound on f∗, and no feasible solution in
general. So an important issue is:

How can we use the result of the i-th semidefinite relax-
ation to find an approximate feasible solution of the original
problem?

For some well-known special cases of 0/1 optimization
like e.g. the celebrated MAXCUT problem, one may gener-
ate a feasible solution with guaranteed performance, from a
randomized rounding procedure that uses an optimal solution
of the first semidefinite relaxation (i.e. with i = 1); see

J.B. Lasserre is with LAAS-CNRS and the Institute of Mathematics,
University of Toulouse, France. lasserre@laas.fr

Tung Phan Thanh is with LAAS-CNRS, University of Toulouse, France.
tphanth@laas.fr

Goemans and Williamson [2]. But in general there is no
such procedure.

Our contribution is to provide two relatively simple al-
gorithms for polynomial programs which build up upon
the so-called “joint+marginal” approach (in short (J+M))
developed in [6] for parametric polynomial optimization.
The (J+M)-approach for variables x ∈ Rn and parameters
y in a simple set Y, consists of the standard hierarchy of
semidefinite relaxations in [4] where one treats the param-
eters y also as variables. But now the moment-approach
implemented in the semidefinite relaxations, considers a joint
probability distribution on the pair (x,y), with the additional
constraint that the marginal distribution on Y is fixed (e.g.
the uniform probability distribution on Y); whence the name
“joint+marginal”.

For every k = 1, . . . , n, let the compact interval Yk :=
[xk, xk] ⊂ R be contained in the projection of K into the
xk-coordinate axis. In the context of the (non-parametric)
polynomial optimization (1), the above (J+M)-approach can
be used as follows in what we call the (J+M)-algorithm:
• (a) Treat x1 as a parameter in the compact interval Y1 =

[x1, x1] with associated probability distribution ϕ1 uniformly
distributed on Y1.
• (b) with i ∈ N fixed, solve the i-th semidefinite

relaxation of the (J+M)-hierarchy [6] applied to problem
P(x1) with n− 1 variables (x2, . . . , xn) and parameter x1,
which is problem P with the additional constraint that the
variable x1 ∈ Y1 is fixed. The dual provides a univariate
polynomial x1 7→ J1

i (x1) which, if i would increase, would
converge to J1(x1) in the L1(ϕ1)-norm. (The map v 7→
J1(v) denotes the optimal value function of P(v), i.e. the
optimal value of P given that the variable x1 is fixed at the
value v.) Next, compute x̃1 ∈ Y1, a global minimizer of
the univariate polynomial J1

i on Y1 (e.g. this can be done
by solving a single semidefinite program). Ideally, when i is
large enough, x̃1 should be close to the first coordinate x∗1
of a global minimizer x∗ = (x∗1, . . . , x

∗
n) of P.

• (c) go back to step (b) with now x2 ∈ Y2 ⊂ R instead
of x1, and with ϕ2 being the probability measure uniformly
distributed on Y2. With the same method, compute a global
minimizer x̃2 ∈ Y2, of the univariate polynomial x2 7→
J2
i (x2) on the interval Y2. Again, if i would increase, J2

i

would converge in the L1(ϕ2)-norm to the optimal value
function v 7→ J2(v) of P(x2) (i.e. the optimal value of P
given that the variable x2 is fixed at the value v.) Iterate until
one has obtained x̃n ∈ Yn ⊂ R.

One ends up wih a point x̃ ∈ ∏n
k=1 Yk and in general

x̃ 6∈ K. One may then use x̃ as initial guess of a local
optimization procedure to find a local minimum x̂ ∈ K.



The rationale behind the (J+M)-algorithm is that if i is large
enough and P has a unique global minimizer x∗ ∈ K, then
x̃ as well as x̂ should be close to x∗.

The computational complexity before the local optimiza-
tion procedure is less than solving n times the i-th semidef-
inite relaxation in the (J+M)-hierarchy (which is itself of
same order as the i-th semidefinite relaxation in the hierarchy
defined in [4]), i.e., a polynomial in the input size of P.

When the feasible set K is convex, one may define the
following variant to obtain a feasible point x̃ ∈ K. Again,
let Y1 be the projection of K1 into the x1-coordinate axis.
Once x̃1 ∈ Y1 is obtained in step (b), consider the new opti-
mization problem P(x̃1) in the n−1 variables (x2, . . . , xn),
obtained from P by fixing the variable x1 ∈ Y1 at the
value x̃1. Its feasible set is the convex set K1 := K ∩ {x :
x1 = x̃1}. Let Y2 be the projection of K1 into the x2-
coordinate axis. Then go back to step (b) with now x2 ∈ Y2

as parameter and (x3, . . . , xn) as variables, to obtain a point
x̃2 ∈ Y2, etc. until a point x̃ ∈∏n

k=1 Yk is obtained. Notice
that now x̃ ∈ K because K is convex. Then proceed as
before with x̃ being the initial guess of a local minimization
algorithm to obtain a local minimizer x̂ ∈ K of P.

II. THE “JOINT+MARGINAL” APPROACH TO PARAMETRIC
OPTIMIZATION

Most of the material of this section is taken from [6].
Let R[x,y] denote the ring of polynomials in the variables
x = (x1, . . . , xn), and the variables y = (y1, . . . , yp),
whereas R[x,y]d denotes its subspace of polynomials of
degree at most d. Let Σ[x,y] ⊂ R[x,y] denote the subset of
polynomials that are sums of squares (in short s.o.s.). For a
real symmetric matrix A the notation A � 0 stands for A
is positive semidefinite.

A. The parametric optimization problem

Let Y ⊂ Rp be a compact set, called the parameter set,
and let f, hj ∈ R[x], j = 1, . . . ,m. Let ∆ ⊂ Rn × Rp be
the basic closed semi-algebraic set:

∆ := {(x,y) : y ∈ Y ; hj(x,y) ≥ 0, j = 1, . . . ,m} (2)

and for each y ∈ Y, let

∆y := {x ∈ Rn : (x,y) ∈ ∆ }. (3)

For each y ∈ Y, fixed, consider the optimization problem:

J(y) := inf
x
{ f(x,y) : (x,y) ∈ ∆ }. (4)

The interpretation is as follows: Y is a set of parameters
and for each instance y ∈ Y of the parameter, one wishes
to compute an optimal decision vector x∗(y) that solves
problem (4). Let ϕ be a Borel probability measure on Y, with
a positive density with respect to the Lebesgue measure on
Rp (or with respect to the counting measure if Y is discrete).
For instance

ϕ(B) :=

(∫

Y

dy

)−1 ∫

Y∩B
dy, ∀B ∈ B(Rp),

is uniformly distributed on Y. Sometimes, e.g. in the context
of optimization with data uncertainty, ϕ is already specified.
The idea is to use ϕ (or more precisely, its moments) to get
information on the distribution of optimal solutions x∗(y)
of Py, viewed as random vectors. In this section we assume
that for every y ∈ Y, the set ∆y in (3) is nonempty.

B. A related infinite-dimensional linear program

Let M(∆) be the set of finite Borel probability measures
on ∆, and consider the following infinite-dimensional linear
program P:

ρ := inf
µ∈M(∆)

{∫

∆

f dµ : πµ = ϕ

}
, (5)

where πµ denotes the marginal of µ on Rp, that is, πµ is a
probability measure on Rp defined by πµ(B) := µ(Rn×B)
for all B ∈ B(Rp). The dual of P is the following infinite-
dimensional linear program:

ρ∗ := sup
p∈R[y]

∫

Y

p(y) dϕ(y)

f(x)− p(y) ≥ 0 ∀(x,y) ∈∆.

(6)

Theorem 1 ([6]): Let both Y ⊂ Rp and ∆ in (2) be
compact and assume that for every y ∈ Y, the set ∆y ⊂ Rn
in (3) is nonempty. Let P be the optimization problem (5)
and let X∗y := {x ∈ Rn : f(x,y) = J(y)}, y ∈ Y. Then:

(a) ρ =

∫

Y

J(y) dϕ(y) and P has an optimal solution.

(b) Assume that for ϕ-almost y ∈ Y, the set of minimizers
of X∗y is the singleton {x∗(y)} for some x∗(y) ∈∆y. Then
there is a measurable mapping g : Y →∆y such that

g(y) = x∗(y) for every y ∈ Y

ρ =

∫

Y

f(g(y),y) dϕ(y),
(7)

and for every α ∈ Nn, and β ∈ Np:
∫

∆

xαyβ dµ∗(x,y) =

∫

Y

yβ g(y)α dϕ(y). (8)

(c) There is no duality gap between (5) and (6), i.e. ρ = ρ∗,
and if (pi)i∈N ⊂ R[y] is a maximizing sequence of (6) then:

∫

Y

| J(y)− pi(y) | dϕ(y) → 0 as i→∞. (9)

Moreover, define the functions (p̃i) as follows: p̃0 := p0, and

y 7→ p̃i(y) := max [ p̃i−1(y), pi(y) ], i = 1, 2, . . .

Then p̃i → J(·), ϕ-almost uniformly1.
An optimal solution µ∗ of P encodes all information on

the optimal solutions x∗(y) of Py. Moreover from Theorem
1(c), any optimal or nearly optimal solution of P∗ provides
us with some polynomial lower approximation of the optimal
value function y 7→ J(y) that converges to J(·) in the L1(ϕ)
norm, and one may also obtain a piecewise polynomial
approximation that converges to J(·), ϕ-almost uniformly.

1A sequence (gn) on a measure space (Y,B(Y), ϕ) converges to g, ϕ-
almost uniformly, if and only if for every ε > 0, there is a set A ∈ B(Y)
such that ϕ(A) < ε and gn → g, uniformly on Y \A.



In [6] the first author has defined a (J+M)-hierarchy of
semidefinite relaxations (Qi) to approximate as closely as
desired the optimal value ρ. In particular, the dual of each
semidefinite relaxation Qi provides a polynomial qi ∈ R[y]
bounded above by J(y), and as i → ∞, the sequence (q̃i)
with y 7→ q̃i(y) := max`=1,...i q`(y), converges ϕ-almost
uniformly to the optimal value function J . This last property
is the rationale behind the heuristic developed below.

III. A “JOINT+MARGINAL” APPROACH

Let Nni := {α ∈ Nn : |α| ≤ i} with |α| =
∑
i αi. With

a sequence z = (zα) indexed in the canonical basis (xα) of
R[x], let Lz : R[x]→ R be the linear mapping:

f (=
∑

α

fα(x)) 7→ Lz(f) :=
∑

α

fα zα, f ∈ R[x].

Moment matrix: The moment matrix Mi(z) associated
with a sequence z = (zα), α ∈ Nn2i, has its rows and columns
indexed in the canonical basis (xα), and with entries

Mi(z)(α, β) = Lz(xα+β) = zα+β , ∀α, β ∈ Nni .

Localizing matrix: Let q be the polynomial x 7→ q(x) :=∑
u qux

u. The localizing matrix Mi(q z) associated with q ∈
R[x] and a sequence z = (zα), has its rows and columns
indexed in the canonical basis (xα), and with entries.

Mi(q z)(α, β) = Lz(q(x)xα+β)

=
∑

u∈Nn

quzα+β+u, ∀α, β ∈ Nni .

A sequence z = (zα) ⊂ R is said to have a representing
finite Borel measure supported on K if there exists a finite
Borel measure µ such that

zα =

∫

K

xα dµ, ∀α ∈ Nn.

A. A “joint+marginal” approach

With {f, (gj)mj=1} ⊂ R[x], let K ⊂ Rn be the basic
compact semi-algebraic set

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}, (10)

and consider the polynomial optimization problem (1).
Let Yk ⊂ R be some interval [xk, xk], assumed to be

contained in the orthogonal projection of K into the xk-
ccordinate axis.

For instance when the gj’s are affine (so that K is a
convex polytope), xk (resp. xk) solves the linear program
min(resp max ) {xk : x ∈ K}. Similarly, when K is convex
and defined by concave polynomials, one may obtain xk and
xk, up to (arbitrary) fixed precision. In many cases, (upper
and lower) bound constraints on the variables are already
part of the problem definition.

Let ϕk be the probability measure uniformly distributed
on Yk; hence its moments (β`), ` ∈ N, are given by:

β` =

∫ xk

xk

x`dϕk(x) =
x`+1
k − x`+1

k

(`+ 1)(xk − xk)
(11)

for every ` = 0, 1, . . .. Define the following parametric
polynomial program in n− 1 variables:

Jk(y) = min
x
{f(x) : x ∈ K; xk = y}, (12)

or, equivalently Jk(y) = min {f(x) : x ∈ Ky}, where for
every y ∈ Y:

Ky := {x ∈ K; xk = y}. (13)

Observe that by definition, f∗ = min
x
{Jk(x) : x ∈ Yk},

and Ky 6= ∅ whenever y ∈ Yk, where Yk is the orthogonal
projection of K into the xk-coordinate axis.

Semidefinite relaxations

To compute (or at least approximate) the optimal value
ρ of problem P in (5) associated with the parametric
optimization problem (12), we now provide a hierarchy of
semidefinite relaxations in the spirit of those defined in [4].
Let vj := d(deg gj)/2e, j = 1, . . . ,m, and for i ≥ maxj vj ,
consider the semidefinite program:

ρik = inf
z

Lz(f) (14)

s.t. Mi(z) � 0, Mi−vj (gj z) � 0, j = 1, . . . ,m

Lz(x`k) = β`, ` = 0, 1, . . . 2i,

where (β`) is defined in (11). We call (14) the parametric
semidefinite relaxation of P with parameter y = xk. Observe
that without the “moment” constraints Lz(x`k) = β`, ` =
1, . . . 2i, the semidefinite program (14) is a relaxation of P
and if K is compact, its corresponding optimal value f∗i
converges to f∗ as k →∞; see Lasserre [4].

Letting g0 ≡ 1, the dual of (14) reads:

ρ∗ik = sup
λ,(σj)

2i∑

`=0

λ` β`

s.t. f(x)−
2i∑

`=0

λ`x
`
k =

m∑

j=0

σj gj

σj ∈ Σ[x], 0 ≤ j ≤ m;
deg σjgj ≤ 2i, 0 ≤ j ≤ m.

(15)

Equivalently, recall that R[xk]2i is the space of univariate
polynomials of degree at most 2i, and observe that in (15),
the objective reads

2i∑

`=0

λ` β` =

∫

Yk

pi(y)dϕk(y),

where pi ∈ R[xk]2i is the univariate polynomial xk 7→
pi(xk) :=

∑2i
`=0 λ`x

`
k. Then equivalently, the above dual

may be rewritten as:

ρ∗ik = sup
pi,(σj)

∫

Yk

pidϕk

s.t. f − pi =
m∑

j=0

σj gj

pi ∈ R[xk]2i; σj ∈ Σ[x], 0 ≤ j ≤ m;
deg σjgj ≤ 2i, 0 ≤ j ≤ m.

(16)



Assumption 1: The family of polynomials (gj) ⊂ R[x] is
such that for some M > 0,

x 7→M − ‖x‖2 =

m∑

j=0

σj gj ,

for some M and some s.o.s. polynomials (σj) ⊂ Σ[x].
Theorem 2: Let K be as (10) and Assumption 1 hold.

Let the interval Yk ⊂ R be the orthogonal projection of K
into the xk-coordinate axis, and let ϕk be the probability
measure, uniformly distributed on Yk. Assume that Ky in
(13) is not empty, let y 7→ Jk(y) be as in (12) and consider
the semidefinite relaxations (14)-(16). Then as i→∞:

(a) ρik ↑
∫

Yk

Jkdϕk and ρ∗ik ↑
∫

Yk

Jkdϕk

(b) Let (pi, (σ
i
j)) be a nearly optimal solution of (16), e.g.

such that
∫
Yk

pidϕk ≥ ρ∗ik − 1/i. Then pi(y) ≤ Jk(y) for
all y ∈ Yk, and

∫

Yk

|Jk(y)− pi(y)| dϕk(y) → 0, as i→∞. (17)

Moreover, if one defines p̃0 := p0, and

y 7→ p̃i(y) := max [ p̃i−1(y), pi(y) ], i = 1, 2, . . . ,

then p̃i(y) ↑ Jk(y), for ϕk-almost all y ∈ Yk, and so p̃i →
Jk, ϕk-almost uniformly on Yk.

Theorem 2 is a direct consequence of [6, Corollary 2.6].

B. A “joint+marginal” algorithm for the general case

Theorem 2 provides a rationale for the following (J+M)-
algorithm in the general case. In what follows we use the
primal and dual semidefinite relaxations (14)-(15) with index
i fixed.

ALGO 1: (J+M)-algorithm: non convex K, relaxation i

Set k = 1;
Step k: Input: K, f , and the orthogonal projection Yk =
[xk, xk] of K into the xk-coordinate axis, with associated
probability measure ϕk, uniformly distributed on Yk.
Ouput: x̃k ∈ Yk.
Solve the semidefinite program (16) and from an optimal
(or nearly optimal) solution (pi, (σj)) of (16), get a global
minimizer x̃k of the univariate polynomial pi on Yk.
If k = n stop and output x̃ = (x̃1, . . . , x̃n), otherwise set
k = k + 1 and repeat.

Of course, in general the vector x̃ ∈ Rn does not
belong to K. Therefore a final step consists of computing
a local minimum x̂ ∈ K, by using some local minimization
algorithm starting with the (unfeasible) initial point x̃. Also
note that when K is not convex, the determination of bounds
xk and xk for the interval Yk may not be easy, and so
one might be forced to use a subinterval Y′k ⊆ Yk with
conservative (but computable) bounds x′k ≥ xk and x′k ≤ xk.

Remark 1: Theorem 2 assumes that for every y ∈ Yk,
the set Ky in (13) is not empty, which is the case if K is
connected. If Ky = ∅ for y in some open subset of Yk, then
the semidefinite relaxation (14) has no solution (ρik = +∞),

in which case one proceeds by dichotomy on the interval Yk

until ρik <∞. That is, with z := (xk + xk)/2, consider the
subintervals Y1

k := [xk, z] and Y2
k := [z, xk]. Solve (14)

where the (β`) in (11) are updated according to Y1
k (resp.

Y2
k) to obtain ρ1ik (resp. ρ2ik). If ρsik <∞ for some s, stop and

proceed with Ys
k instead of Yk, otherwise choose randomly

Y1
k or Y2

k and iterate.

C. A “joint+marginal” algorithm when K is convex
In this section, we now assume that the feasible set K ⊂

Rn of problem P is convex (and compact). The idea is to
compute x̃1 as in ALGO 1 and then repeat the procedure
but now for the (n − 1)-variable problem P(x̃1) which is
problem P in which the variable x1 is fixed at the value x̃1.
This alternative is guaranteed to work if K is convex (but
not always if K is not convex).

For every j ≥ 2, denote by xj ∈ Rn−j+1 the vector
(xj , . . . , xn), and by x̃j−1 ∈ Rj−1 the vector (x̃1, . . . , x̃j−1)
(and so x̃1 = x̃1).

Let the interval Y1 ⊂ R be the orthogonal projection of
K into the x1-coordinate axis. For every x̃1 ∈ Y1, let the
interval Y2(x̃1) ⊂ R be the orthogonal projection of the set
K ∩ {x : x1 = x̃1} into the x2-coordinate axis. Similarly,
given x̃2 ∈ Y1×Y2(x̃1), let the interval Y3(x̃2) ⊂ R be the
orthogonal projection of the set K∩{x : x1 = x̃1; x2 = x̃2}
into the x3-coordinate axis, and etc. in the obvious way.

For every k = 2, . . . , n, and x̃k−1 ∈ Y1 ×Y2(x̃1) · · · ×
Yk−1(x̃k−2), let f̃k(xk) := f((x̃k−1,xk)), and g̃kj (xk) :=
gj((x̃k−1,xk)), j = 1, . . . ,m. Similarly, let

Kk(x̃k−1) := {xk : g̃kj (xk) ≥ 0, j = 1, . . . ,m},
= {xk : (x̃k−1,xk) ∈ K}, (18)

and consider the problem:

P(x̃k−1) : min {f̃k(xx) : xx ∈ Kj(x̃k−1)}, (19)

i.e. the original problem P where the variable x` is fixed at
the value x̃`, for every ` = 1, . . . , k − 1.

Write Yj(x̃k−1) = [xk, xk], and let ϕk be the probability
measure uniformly distributed on Yk(x̃k−1).

Let z be a sequence indexed in the monomial basis
of R[xk]. With index i, fixed, the parametric semidefinite
relaxation (14) with parameter xk, associated with problem
P(x̃k−1), reads:

ρik = inf
z

Lz(f̃k)

s.t. Mi(z), Mi−vj (g̃kj z) � 0, j = 1, . . . ,m
Lz(x`k) = β`, ` = 0, 1, . . . , 2i,

(20)
where (β`) is defined in (11). Its dual is the semidefinite
program (with g̃k0 ≡ 1)):

ρ∗ik = sup
pi,(σj)

∫

Yk(x̃k−1)

pidϕk (21)

s.t. f̃k − pi = σ0 +
m∑

j=1

σj g̃
k
j

pi ∈ R[xk]2i, σj ∈ Σ[xk], j = 0, . . . ,m

deg σj g̃
k
j ≤ 2i, j = 0, . . . ,m.



The important difference between (14) and (20) is the size
of the corresponding semidefinite programs, since z in (14)
(resp. in (20)) is indexed in the canonical basis of R[x] (resp.
R[xk]).

The (J+M)-algorithm for K convex

Recall that the order i of the semidefinite relaxation is
fxed. The (J+M)-algorithm consists of n steps. At step k of
the algorithm, the vector x̃k−1 = (x̃1, . . . , x̃k−1) (already
computed) is such that x̃1 ∈ Y1 and x̃` ∈ Y`(x̃`−1) for
every ` = 2, . . . , k − 1, and so the set Kk(x̃k−1) is a
nonempty compact convex set.

ALGO 2: (J+M)-algorithm: convex K, relaxation i

Set k = 1;
Step k ≥ 1: Input: For k = 1, x̃0 = ∅, Y1(x̃0) = Y1;
P(x̃0) = P, f1 = f and g̃1j = gj , j = 1, . . . ,m.
For k ≥ 2, x̃k−1 ∈ Y1 ×Y2(x̃1) · · · ×Yk−1(x̃k−2).
Output: x̃k = (x̃k−1, x̃k) with x̃k ∈ Yk(x̃k−1).
Consider the parametric semidefinite relaxations (20)-(21)
with parameter xk, associated with problem P(x̃k−1) in (19).
• From an optimal solution of (21), extract the univariate

polynomial xk 7→ pi(xk) :=
∑2i
`=0 λ

∗
`x
`
k.

• Get a global minimizer x̃k of pi on the interval
Yk(x̃k−1) = [xk, xk], and set x̃k := (x̃k−1, x̃k).

If k = n stop and ouput x̃ ∈ K, otherwise set k = k + 1
and repeat.

As K is convex, x̃ ∈ K and one may stop. A refinement
is to now use x̃ as the initial guess of a local minimization
algorithm to obtain a local minimizer x̂ ∈ K of P. In view
of Theorem 2, the larger the index i of the relaxations (20)-
(21), the better the values f(x̃) and f(x̂).

Of course, ALGO 2 can also be used when K is not
convex. However, it may happen that at some stage k, the
semidefinite relaxation (20) may be infeasible because Jk(y)
is infinite for some values of y ∈ Yk(x̃k−1). This is because
the feasible set K(x̃k−1) in (18) may be disconnected.

IV. COMPUTATIONAL EXPERIMENTS

We report on preliminary computational experiments on
some non convex NP-hard optimization problems. We have
tested the algorithms on a set of difficult global optimization
problems taken from Floudas et al. [1]. To solve the semidef-
inite programs involved in ALGO 1 and in ALGO 2, we
have used the GloptiPoly software [3] that implements the
hierarchy of semidefinite relaxations defined in [4, (4.5)].

A. ALGO 2 for convex set K

Those problems are taken from [1, §2]. The set K is a
convex polytope and the function f is a nonconvex quadratic
polynomial x 7→ x′Qx+b′x for some real symmetric matrix
Q and vector b. In Table I one displays the problem name,
the number n of variables, the number m of constraints, the
gobal optimum f∗, the index i of the semidefinite relaxation
in ALGO 2, the optimal value obtained using the output of
ALGO 2 as initial guess in a local minimization algorithm
of the MATLAB toolbox, and the associated relative error.

Prob n m f∗ i ALGO 2 rel. error

2.2 5 11 -17 2 -17.00 0%
2.3 6 8 -361.5 1 -361.50 0%
2.6 10 21 -268.01 1 -267.00 0.3%
2.9 10 21 0 1 0.00 0%

2.8C1 20 30 -394.75 1 -385.30 2.4%
2.8C2 20 30 -884.75 1 -871.52 1.5%
2.8C3 20 30 -8695 1 -8681.7 0.15%
2.8C4 20 30 -754.75 1 -754.08 0.09%
2.8C5 20 30 -4150.41 1 -3678.2 11%

TABLE I
ALGO 2 FOR CONVEX SET K

As recommended in GloptiPoly [3] for numerical stability
and precision, the problem data have been rescaled to obtain
a polytope contained in the box [−1, 1]n. As one may see,
and excepted for problem 2.8C5, the relative error is very
small. For the last problem the relative error (about 11%)
is relatively high despite enforcing some extra upper and
lower bounds xi ≤ xi ≤ xi, after reading the optimal
solution. However, using x̃ ∈ K as initial guess of the
local minimization algorithm in MATLAB, one still finds
the optimal value f∗.

B. ALGO 1 for non convex set K

Again in Table II below, n (resp. m) stands for the number
of variables (resp. constraints), and the value displayed in
the “ALGO 1” column is obtained in running a local
minimization algorithm of the MATLAB toolbox with the
output x̃ of ALGO 1 as initial guess.

In Problems 3.2, 3.3 and 3.4 from Floudas et al. [1, §3],
one has 2n linear bound constraints and additional linear and
non convex quadratic constraints. As one may see, the results
displayed in Table II are very good.

For the Haverly Pooling problem 5.2.2 in [1, §5] with three
different data sets, one has n = 9 and m = 24 constraints,
among which 3 nonconvex bilinear constraints and 18 linear
bound constraints 0 ≤ xi ≤ 500, i = 1, . . . , 9. In the first
run of ALGO 1 we obtained bad results because the bounds
are very loose and in the hierarchy of lower bounds (f∗k )
in [4] that converge to f∗, if on the one hand f∗2 = f∗, on
the other hand the lower bound f∗1 < f∗ is loose. In such a
case, and in view of the rationale behind the “joint+marginal”
approach, it is illusory to obtain good results with ALGO
1 or ALGO 2. Therefore, from the optimal solution x∗ in
[1], and when 0 < x∗i < 500, we have generated stronger
bounds 0.4x∗i ≤ xi ≤ 1.6x∗i . In this case, f∗1 is much closer
to f∗ and we obtain the global minimum f∗ with ALGO
1 followed by the local minimization subroutine; see Table
II. Importantly, in ALGO 1, and before running the local
optimization subroutine, one ends up with a non feasible
point x̃. Moreover, we had to sometimes use the dichotomy
procedure of Remark 1 because if Yk is large, one may have
Ky = ∅ for y in some open subintervals of Yk.

Problem 7.2.2 has 13 linear constraints and 4 nonlinear
constraints with bilinear terms. To handle the non-polynomial



Prob n m f∗ i ALGO 1 rel. error
3.2 8 22 7049 1 7049 0%
3.3 5 16 -30665 1 -30665 0%
3.4 6 18 -310 1 -310 0%

5.2.2 (1) 9 24 400 1 400 0%
5.2.2 (2) 9 24 600 1 600 0%
5.2.3 (3) 9 24 750 1 750 0%

5.2.4 9 24 450 1 450 0%
7.2.2 6 17 -0.3746 1 -0.3746 0%
7.2.3 8 22 7049.25 1 7049.25 0%
7.2.5 5 16 10122 1 10122 0%
7.2.6 3 7 -83.254 1 -83.258 1%
8.2.8 6 17 -0.3768 1 -0.3767 0%

TABLE II
ALGO 1 FOR NON CONVEX SET K

function x0.5i , one uses the lifting u2i = xi, ui ≥ 0,
i = 5, 6. Problem 7.2.6 has only 3 variables, 6 linear
bound constraints, and one highly nonlinear constraint (and
criterion). Here one uses the lifting ux2 = 1, to handle
the term x−12 . Again one obtains the optimal value f∗ with
ALGO 1 followed by a local optimization subroutine.

Notice that in some examples, running the local procedure
with 100 randomly chosen initial guesses, also gave the
global optimum with a high percentage of success. On the
other hand, the rate of success was less than 17% for Prob
3.4, 10% for Prob. 5.2.2(2), 6% for Prob 5.2.4, 35% for Prob.
8.2.8, and 60% for Probs 5.2.2(1), 5.2.2(3), 7.2.6.

C. ALGO 2 for MAXCUT

Finally we have tested ALGO 2 on the famous NP-hard
discrete optimization problem MAXCUT, which consists of
minimizing a quadratic form x 7→ x′Qx on {−1, 1}n, for
some real symmetric matrix Q ∈ Rn×n. In this case, Yk =
{−1, 1} and the marginal constraint Lz(x`k) = γ` in (20)
need only be imposed for ` = 1, because of the constraints
x2k = 1 for every k = 1, . . . , n. Accordingly, in an optimal
solution of the dual (21), pi ∈ R[xk] is an affine polynomial
xk 7→ pi(xk) = λ0+λ1xk for some scalars λ0, λ1. Therefore
after solving (21) one decides x̃k = −1 if pi(−1) < pi(1)
(i.e. if λ1 > 0) and x̃k = 1 otherwise.

Recall that in ALGO 2 one first compute x̃1, then with x1
fixed at the value x̃1, one computes x̃2, etc. until one finally
computes x̃n, and get x̃. In what we call the “max-gap”
variant of ALGO 2, one first solves n programs (14)-(15)
with parameter x1 to obtain an optimal solution pi(x1) =
λ10 + λ11x1 of the dual (15), then with x2 to obtain (λ20, λ

2
1),

etc., and finally with xn to obtain (λn0 , λ
n
1 ). One then select

k such that |λk1 | = max` |λ`1|, and compute x̃k accordingly.
This is because the larger |λ1|, (i.e. the larger |pi(−1) −
pi(1)|), the more likely the choice −1 or 1 is correct. After

n 20 30 40

(ρ− f∗1 )/|f∗1 | 10.3% 12.3% 12.5%

TABLE III
RELATIVE ERROR FOR MAXCUT

xk is fixed at the value x̃k, one repeats the procedure for the
(n− 1)-problem P(x̃k), etc.

We have tested the “max-gap” variant for MAXCUT
problems on random graphs with n = 20, 30 and 40 nodes.
For each value of n, we have solved 50 randomly generated
problems and 100 for n = 40. The probability ϕk on Yk =
{−1, 1} is uniform (i.e., β1 = 0 in (20)). Let f∗1 denote the
optimal value of the Shor’s relaxation with Goemans and
Williamson’s 0.878 performance guarantee. Let ρ denote the
cost of the solution x ∈ {−1, 1}n generated by the ALGO
2. In Table III we have reported the average relative error
(ρ − f∗1 )/|f∗1 |, which as one may see, is comparable with
the Goemans and Williamson (GW) ratio. (Recall that the
relative error is measured with respect to the lower bound
f∗1 and not the optimal value f∗.)

V. CONCLUSION

First preliminary results are promising, even with small
relaxation order i. In general, the efficiency of ALGO 1 or
ALGO 2 with i fixed, should be related to how close to
the global optimum f∗ is the optimal value f∗i at step i of
the hierarchy of relaxations defined in [4] to approximate
f∗. When the feasible set is non convex, it may become
difficult to obtain a feasible solution and an interesting issue
for further investigation is how to proceed when Ky = ∅ for
y in some open subinterval of Yk (proceeding by dichotomy
on Yk is one possiblity).
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Abstract We propose a heuristic for 0/1 programs based on the recent “joint + marginal”
approach of the first author for parametric polynomial optimization. The idea is to first con-
sider the n-variable (x1, . . . , xn) problem as a (n − 1)-variable problem (x2, . . . , xn) with
the variable x1 being now a parameter taking value in {0, 1}. One then solves a hierarchy of
what we call “joint + marginal” semidefinite relaxations whose duals provide a sequence of
polynomial approximations x1 �→ Jk(x1) that converges to the optimal value function J (x1)

(as a function of the parameter x1). One considers a fixed index k in the hierarchy and if
Jk(1) > Jk(0) then one decides x1 = 1 and x1 = 0 otherwise. The quality of the approxima-
tion depends on how large k can be chosen (in general, for significant size problems, k = 1
is the only choice). One iterates the procedure with now a (n − 2)-variable problem with one
parameter x2 ∈ {0, 1}, etc. Variants are also briefly described as well as some preliminary
numerical experiments on the MAXCUT, k-cluster and 0/1 knapsack problems.

Keywords 0/1 Programs · Semidefinite relaxations

1 Introduction

Consider the general 0/1 program

P : f ∗ = min
x

{ f (x) : x ∈ K ∩ {0, 1}n }

where f is a polynomial and K ⊂ Rn is a basic closed semi-algebraic set. One way to
approximate the optimal value of P is to solve a hierarchy of either LP-relaxations as in
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Sherali–Adams [14] and Lovász–Schrijver [11], or semidefinite (SDP) relaxations as in
Lovász–Schrijver [11] or Lasserre [6] (the latter being defined for general polynomial opti-
mization problems). For 0/1 programs, the convergence of both LP and semidefinite relax-
ations of Lasserre [6], Lovász–Schrijver [11] and Sherali–Adams [14] is finite and for the
semidefinite relaxations [6], there is a stopping criterion which, when met, guarantees that
the semidefinite relaxation is exact and one may extract global minimizers. If on the one
hand SDP relaxations are more powerful than LP relaxations, on the other hand the present
status of SDP solvers is far from that of LP solvers in terms of size of problems that can
be handled. For a comparison of those approches for 0/1 programs, the interested reader is
referred to e.g. Lasserre [7] and Laurent [10].

Despite that practice seems to reveal that the finite convergence is fast, the matrix size in
the kth semidefinite relaxation of the hierarchy grows up as fast as O(nk). Hence for prob-
lems of reasonable size, and in view of the present status of SDP solvers, one can implement
only the first or second relaxation, which in general only provides a lower bound on f ∗. Of
course, this lower bound can be exploited in some other search procedure, like e.g. Branch
& Bound, but more generally, the following natural question arises:

How can we use the results of the kth SDP relaxation to find (or help find) an approximate
solution of the original problem?

In some well-known special cases like e.g. the MAXCUT problem, one may generate
a feasible solution with guaranteed performance, e.g. from the Goemans and Williamson
randomized rounding procedure [3] that uses an optimal solution of the first SDP relaxation
(i.e. with k = 1). But there is no recipe for the general case and one is left with the possibility
to use the lower bound provided by the SDP relaxation in a standard Branch & Bound.

Contribution. We here provide a simple heuristic for 0/1 polynomial programs which
builds upon the so-called “joint + marginal” approach (in short (J + M)) recently developed
in Lasserre [8] for parametric polynomial optimization. The (J + M)-approach for polyno-
mial optimization problems with variables x ∈ Rn and parameters y in a simple set Y, consists
of the standard hierarchy of SDP relaxations in Lasserre [5,6] where one treats the parameters
y also as variables but now with the additional constraint that some marginal distribution on
Y (e.g. the uniform probability distribution on Y) is fixed. Among other things, it permits to
provide a polynomial approximation of the optimal value function y �→ J (y) (viewed as a
function of the parameter). For more details, the interested reader is referred to Lasserre [8].

In the context of a non-parametric 0/1 polynomial optimization, the above (J + M)-
approach with (fixed) parameter k can be used as follows:

• (a) Treat x1 as a parameter in Y := {0, 1} with distribution (p1, 1 − p1) for some given
0 < p1 < 1, fixed arbitrary (typically p1 = 1/2).

• (b) solve the (single) kth SDP relaxation of the (J + M)-hierarchy applied to problem P
with n − 1 variables x2, . . . , xn and parameter x1 ∈ {0, 1}. The dual provides a polyno-
mial map x1 �→ Jk(x1). Here k is fixed but if k increases then Jk(x1) converges to J (x1).
(The map v �→ J (v) denotes the optimal value function of P given that the variable x1

is fixed at the value v). Therefore, to decide if x1 = 0 or 1 in an optimal solution, one
replaces the exact test J (1) > J (0) with the approximate test Jk(1) > Jk(0), and of
course, the larger k the better; in fact the latter test becomes exact for k sufficiently large.

• (c) If Jk(1) < Jk(0) then fix x̃1 := 1 (and x̃1 = 0 otherwise). For feasibility, check if there
exists x ∈ K∩{0, 1}n with x1 = x̃1; if not then set x1 = 1− x̃1. For general 0/1 programs
this step is NP-hard. However, when k is large enough, feasibility is guaranteed because
Jk(x̃1) ≈ J (x̃1) implies that there is an optimal solution x ∈ K ∩ {0, 1}n with x1 = x̃1.
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Moreover, for several interesting problems like MAXCUT, k-cluster, 0/1-knapsack, the
feasibility issue is trivial.

• (d) Iterate and go to step (a) with now a 0/1 program P(x̃1)with n−2 variables x3, . . . , xn

and parameter x2 in {0, 1} with distribution (p2, 1 − p2), and with 0 < p2 < 1 arbi-
trary. Of course, all data of P(x̃1) are updated according to the value 1 or 0 taken
by x̃1.

After n iterations, one ends up with a feasible solution x̃ = (x̃1, . . . , x̃n). The computa-
tional cost is less than solving n times the kth SDP relaxation in the (J + M)-hierarchy, which
is itself of same order than the kth SDP relaxation in the hierarchy defined in Lasserre [6] (in
fact, when k = 1 it includes only one additional constraint!).

Of course, in step (b) one may instead use the kth (or higher order) LP relaxation in
view of the size limitation of current SDP solvers. An alternative to steps (a)–(b)–(c) is to
proceed like in standard Branch & Bound. That is, compute the value δ0k (resp. δ1k) of kth
SDP relaxation associated with P and the additional constraint x1 = 0 (resp. x1 = 1), and
branch on x1 = 0 if δ0k < δ1k , and on x1 = 1 otherwise; then iterate with x2, etc. But
this requires to solve two SDP relaxations of same size (with only one linear constraint less)
instead of one in the parametric approach. Moreover, the parametric approach can easily deal
with groups of variables (rather than 1 variable) at a time. Indeed, with s ∈ N fixed, consider
(x1, . . . , xs) ∈ Y := {0, 1}s with associated probability distribution ϕ uniformly distributed
on Y. Then in step (b) one now solves the kth SDP relaxation of the (J + M)-hierarchy applied
to problem P with n − s variables xs+1, . . . , xn and parameter (x1, . . . , xs) ∈ {0, 1}s . The
dual provides a (square free) polynomial map (x1, . . . , xs) �→ Jk(x1, . . . , xs) that converges
to J (x1, . . . , xs) as k increases. Then one selects a global minimizer of Jk on Y by inspect-
ing 2s values, and one iterates the procedure with now a 0/1 problem with n − s variables,
etc.

Compared with the standard kth SDP relaxation, the kth SDP relaxation of the (J + M)-
hierarchy has only ns

k additional linear equality constraints where ns
k counts all monomials

xβ1
1 · · · xβs

s of degree at most 2k, with βi ≤ 1 for all i = 1, . . . , s.
Concerning computational experiments, we have tested the basic version with k = 1 on a

sample of MAXCUT, k-cluster and 0/1 knapsack problems with up to 50 and 80 variables and
we have compared the cost of our solution with the lower bound obtained with the first (now
standard) SDP-relaxation. In average, we have obtained small relative errors of at most 5.7%
on k-cluster, 2% on knapsack and 3.5% on MAXCUT. For the latter MAXCUT problems, we
are close by less than 1% to the Goemans-Williamson solution obtained via the randomized
rounding procedure described in Goemans and Williamson [3]. In evaluating those results,
the reader should keep in mind that the “joint + marginal” heuristic is relatively general as
opposed to an ad hoc algorithm that takes into account specific features of the given problem
to solve.

2 The “joint + marginal” approach for parametric optimization

Most of the material in this section is taken from Lasserre [8]. Let R[x, y] denote the ring of
polynomials in the variables x = (x1, . . . , xn), and the variables y = (y1, . . . , yp), whereas
R[x, y]k denotes its subspace of polynomials of degree at most k. Let �[x, y] ⊂ R[x, y]
denote the subset of polynomials that are sums of squares (in short s.o.s.). For a real sym-
metric matrix A the notation A 
 0 stands for A is positive semidefinite.
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The parametric optimization problem

Let Y ⊂ Rp be a compact set, called the parameter set, and for each y ∈ Y, fixed, consider
the following parametric optimization problem:

Py : J (y) := inf
x

{ f (x, y) : h j (x, y) ≥ 0, j = 1, . . . ,m} (2.1)

for some polynomials f, h j ∈ R[x, y], j = 1, . . . ,m.
The interpretation is as follows: Y is a set of parameters and for each instance y ∈ Y of

the parameter, one wishes to compute an optimal decision vector x∗(y) that solves problem
(2.1). Let ϕ be a Borel probability measure on Y, with a positive density with respect to
the Lebesgue measure on Rp (or with respect to the counting measure if Y is discrete). For
instance

ϕ(B) :=

⎛

⎝
∫

Y

dy

⎞

⎠
−1 ∫

Y∩B

dy, ∀B ∈ B(Rp),

is uniformly distributed on Y. Sometimes, e.g. in the context of optimization with data uncer-
tainty, ϕ is already specified.

The idea is to use ϕ (or more precisely, its moments) to get information on the mapping
y �→ J (y) and on the distribution of optimal solutions x∗(y) of Py, viewed as random vectors.

A related infinite-dimensional linear program

Let K ⊂ Rn × Rp be the set:

K := { (x, y) : y ∈ Y ; h j (x, y) ≥ 0, j = 1, . . . ,m }, (2.2)

and for each y ∈ Y, let

Ky := { x ∈ Rn : h j (x, y) ≥ 0, j = 1, . . . ,m }. (2.3)

In what follows we assume that for every y ∈ Y, the set Ky in (2.3) is nonempty.
Let M(K) be the set of finite Borel probability measures on K, and consider the following

infinite-dimensional linear program P:

ρ := inf
μ∈M(K)

⎧
⎨

⎩

∫

K

f dμ : πμ = ϕ

⎫
⎬

⎭ (2.4)

where πμ denotes the marginal of μ on Rp , that is, πμ is a probability measure on Rp

defined by πμ(B) := μ(Rn × B) for all B ∈ B(Rp). Notice that μ(K) = 1 for any feasible
solution μ of P. Indeed, as ϕ is a probability measure and πμ = ϕ one has 1 = ϕ(Y) =
μ(Rn × Rp) = μ(K).

The dual of P is the the following infinite-dimensional linear program:

ρ∗ := sup
p∈R[y]

∫

Y

p(y) dϕ(y)

f (x, y)− p(y) ≥ 0 ∀(x, y) ∈ K.

(2.5)

Recall that a sequence of measurable functions (gn) on a measure space (Y,B(Y), ϕ) con-
verges to g ϕ-almost uniformly if and only if for every ε > 0, there is a set A ∈ B(Y) such
that ϕ(A) < ε and gn → g uniformly on Y \ A.
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Theorem 2.1 ([8]) Let both Y ⊂ Rp and K in (2.2) be compact and assume that for every
y ∈ Y, the set Ky ⊂ Rn in (2.3) is nonempty. Let P be the optimization problem (2.4) and let
X∗

y := {x ∈ Rn : f (x, y) = J (y)}, y ∈ Y. Then:

(a) ρ =
∫

Y J (y) dϕ(y) and P has an optimal solution.
(b) Assume that for ϕ-almost y ∈ Y, the set of minimizers of X∗

y is the singleton {x∗(y)}
for some x∗(y) ∈ Ky . Then there is a measurable mapping g : Y → Ky such that

g(y) = x∗(y) for every y ∈ Y ; ρ =
∫

Y

f (g(y), y) dϕ(y), (2.6)

and for every α ∈ Nn, and β ∈ Np:
∫

K

xαyβ dμ∗(x, y) =
∫

Y

yβ g(y)α dϕ(y). (2.7)

(c) There is no duality gap between (2.4) and (2.5), i.e. ρ = ρ∗, and if (pi )i∈N ⊂ R[y] is
a maximizing sequence of (2.5) then:

∫

Y

| J (y)− pi (y) | dϕ(y) → 0 as i → ∞. (2.8)

Moreover, define the functions ( p̃i ) as follows:

p̃0 := p0, y �→ p̃i (y) := max [ p̃i−1(y), pi (y) ], i = 1, 2, . . .

Then p̃i → J (·)ϕ-almost uniformly.

An optimal solution μ∗ of P encodes all information on the optimal solutions x∗(y) of
Py. For instance, let B be a given Borel set of Rn . Then from Theorem 2.1,

Prob (x∗(y) ∈ B) = μ∗(B × Rp) =
∫

Y

IB(g(y)) dϕ(y) = ϕ[g−1(B) ∩ Y],

with g as in Theorem 2.1(b).
Moreover from Theorem 2.1(c), any optimal or nearly optimal solution of P∗ provides us

with some polynomial lower approximation (pi ) of the optimal value function y �→ J (y) that
converges to J (·) in the L1(ϕ) norm. Moreover, one may also obtain a piecewise polynomial
approximation ( p̃i ) that converges to J (·), ϕ-almost uniformly.

In [8] the first author has defined a (J + M)-hierarchy of SDP relaxations (Qk) to approx-
imate as closely as desired the optimal value ρ. In particular, the dual of each SDP relax-
ation Qk provides a polynomial pk ∈ R[y] bounded above by J (y), and y �→ p̃k(y) :=
max
=1,...k pk(y) converges ϕ-almost uniformly to the optimal value function J . This last
property is the rationale behind the heuristic for polynomial 0/1 programs developed below.

3 A “joint + marginal” heuristic for 0/1 polynomial programs

Let Nn
i := {α ∈ Nn : |α| ≤ i} with |α| = ∑

i αi . With a sequence z = (zα), α ∈ Nn , indexed
in the canonical basis (xα) of R[x], let Lz : R[x] → R be the linear mapping:

f

(

=
∑

α

fα(x)

)

�→ Lz( f ) :=
∑

α

fα zα, f ∈ R[x].
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Moment matrix

The moment matrix Mi (z) associated with a sequence z = (zα), has its rows and columns
indexed in the canonical basis (xα), and with entries:

Mi (z)(α, β) = Lz(xα+β) = zα+β, ∀α, β ∈ Nn
i .

Localizing matrix

Let q be the polynomial x �→ q(x) := ∑
u quxu . The localizing matrix Mi (q z) associated

with q ∈ R[x] and a sequence z = (zα), has its rows and columns indexed in the canonical
basis (xα), and with entries.

Mi (q z)(α, β) = Lz(q(x)xα+β) =
∑

u∈Nn

qu zα+β+u, ∀α, β ∈ Nn
i .

A sequence z = (zα) ⊂ R is said to have a representing finite Borel measure supported on
K if there exists a finite Borel measure μ such that

zα =
∫

K

xα dμ, ∀α ∈ Nn .

3.1 A “joint + marginal” approach

With { f, (g j )
m
j=1} ⊂ R[x], let K ⊂ Rn be the basic semi-algebraic set

K := {x ∈ Rn : g j (x) ≥ 0, j = 1, . . . ,m}, (3.1)

and consider the 0/1 polynomial optimization problem:

P : f ∗ = min { f (x) : x ∈ K ∩ {0, 1}n }. (3.2)

Let Y := {0, 1} and 0 < p < 1, and with y ∈ Y, define the parametrized 0/1 polynomial
program in n − 1 variables

Py : J1(y) = min
x

{ f (x) : x ∈ K ∩ {0, 1}n ; x1 = y}, (3.3)

or, equivalently J1(y) = min { f (x) : x ∈ Ky}, where for every y ∈ Y:

Ky := {x ∈ K ∩ {0, 1}n : x1 = y}. (3.4)

Observe that by definition, f ∗ = miny {J1(y) : y ∈ Y} = min[J1(1), J1(0)].

Semidefinite relaxations

To compute (or at least approximate) the optimal value f ∗ of problem P in (3.2), we now
provide a hierarchy of SDP relaxations in the spirit of those defined in Lasserre [5]. Define
the polynomials:

x �→ uk(x) := x2
k − xk, k = 1, . . . , n,
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and let v j := �(deg g j )/2�, j = 1, . . . ,m. For k ≥ max j v j and some fixed p ∈ (0, 1),
consider the semidefinite program:

ρk = inf
z

Lz( f ) (3.5)

s.t. Mk(z) 
 0, Mk−v j (g j z) 
 0, j = 1, . . . ,m

Mk−1(ui z) = 0, i = 1, . . . , n; Lz(1) = 1, Lz(x1) = p.

This semidefinite program (3.5) can be simplified as done in Lasserre [6] to work modulo
the ideal 〈(x2

i − xi )〉. Get rid of the constraints Mk−1(ui z) = 0, i = 1, . . . , n, and replace
every moment variable zα with zβ where βi = 1 if αi > 0, and βi = 0 if αi = 0. Next, the
row and column of Mk(z) associated with the monomial xα is identical to that associated
with xβ and can be deleted; same thing with the localizing matrices Mk(g j z).

Letting g0 := 0, the dual of (3.5) reads:

ρ∗
k = sup

λ,(σ j ),(ψi )

λ0 + pλ1

s.t. f − (λ0 + λ1x1) = σ0 +
m∑

j=1

σ j g j +
n∑

i=1

ψi ui

σ j ∈ �[x], ψi ∈ R[x], 0 ≤ j ≤ m; 1 ≤ i ≤ n
deg σ j g j ≤ 2k, degψi ≤ 2k − 2, 0 ≤ j ≤ m; 1 ≤ i ≤ n.

(3.6)

Equivalently, and denoting by R[x1]t the space of polynomials of degree at most t , the above
dual may be rewritten as:

ρ∗
k = sup

q,(σ j ),(ψi )

pq(1)+ (1 − p)q(0)

⎛

⎝=
∫

Y

qdϕ

⎞

⎠

s.t. f − q = σ0 +
m∑

j=1

σ j g j +
n∑

i=1

ψi ui

q ∈ R[x1]1; σ j ∈ �[x], ψi ∈ R[x], 0 ≤ j ≤ m; 1 ≤ i ≤ n
deg σ j g j ≤ 2k, degψk ≤ 2k − 2, 0 ≤ j ≤ m; 1 ≤ i ≤ n.

(3.7)

Observe that with I1 := 〈x2
1 − x1〉 being the ideal of R[x1] generated by the polynomial

x2
1 − x1, one may also replace the polynomial q in (3.7) with q̃ := q + I1, i.e. an element of

R[x1]/I1. Indeed it is also admissible and pq̃(1)+ (1 − p)q̃(0) is the same.

Theorem 3.1 Let K be as (3.1), Y = {0, 1}, and 0 < p < 1. Assume that for every y ∈ Y
the set Ky in (3.4) is nonempty, and consider the SDP relaxations (3.7). Then as k → ∞:

(a) ρ∗
k ↑ p J1(1)+ (1 − p) J1(0) (=

∫
Y J1dϕ). In fact finite convergence takes place, i.e.,

there exists an integer k∗ such that ρk∗ =
∫

Y J1dϕ.
(b) Let (qk, (σ

k
j , ψ

k
i )) be a nearly optimal solution of (3.7), e.g. such that pqk(1) + (1 −

p)qk(0) ≥ ρ∗
k − 1/k. Then qk(y) ≤ J1(y) for y ∈ Y, and

lim
k→∞

qk(y) = J1(y), y = 0, 1. (3.8)

Moreover if one defines

q̃0 := q0, y �→ q̃k(y) := max [ q̃k−1(y), qk(y) ], i = 1, 2, . . . ,
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then q̃k(y) ↑ J (y) for y = 0, 1, i.e. pointwise monotone nondecreasing convergence takes
place.

Proof (a) The first part follows from Lasserre [8, Theorem 3.3] (adapted to the discrete case
Y = {0, 1}) whereas the second statement is a consequence of Lasserre [6, Theorem 3.2].
On the other hand, (b) follows from Lasserre [8, Theorem 3.5]. ��

We also have the following sufficient condition which permits to detect whether finite
convergence has occured.

Lemma 3.2 Let z be an optimal solution of the SDP relaxation (3.5) and assume that

rank Mk(z) = rank Mk−v(z), (3.9)

where v = max j v j . Then ρk = ρ∗
k =

∫
Y J1dϕ.

Proof The proof is the same as that of Theorem 3.6 in Lasserre [6] and also follows from
Theorem 4.1 in Lasserre [9] in a more general context. ��

So when the sufficient condition (3.9) of Lemma 3.2 holds, z is the sequence of moments

of a measure μ∗ on Rn , supported on
(
{0} × X∗

{0}
)

∪
(
{1} × X∗

{1}
)

(see the notation of

Theorem 2.6). More precisely,

μ∗ = p ν1 + (1 − p) ν2,

where ν1 (resp. ν2) is supported on finitely many optimal solutions of P given that x1 = 0
(resp. given that x1 = 1). One may extract such optimal solutions as indicated in Lasserre
[9, §4.3] and Henrion et al. [4].

Remark 3.3 If the set Ky is empty for either y = 0 or y = 1 then ρk = +∞ provided
k is sufficiently large. Indeed otherwise one may show that ρk =

∫
Y J1(y)dφ(y) = (1 −

p)J1(0) + pJ1(1) for all k ≥ k∗ for some index k∗, in contradiction with J1(0) = +∞
or J1(1) = +∞. However, if k < k∗ one may have ρk < +∞ while J1(0) = +∞ or
J1(1) = +∞.

In what follows we will use the primal relaxation (3.5) with index k fixed. Hence since k will
be fixed, it is important to check whether ρk is finite.

A sufficiency test for persistency

In the context of 0/1 deterministic optimization, persistency of a boolean variable xi in a 0/1
program P is concerned with whether one may determine if either x∗

i = 1 or x∗
i = 0 in any

optimal solution x∗ ∈ {0, 1}n of P; see e.g. Bertsimas et al. [2], Natarajan et al. [13] and also
the LP-based RLT relaxations described in Adams et al. [1].

There is a simple sufficient condition to detect whether x1 = 0 (resp. x1 = 1) cannot
happen in any feasible solution of P defined in (3.2), in which case one may safely state that
x∗

1 = 1 (resp. x∗
1 = 0) in any optimal solution x∗ ∈ {0, 1}n .

Corollary 3.4 Consider the SDP relaxation (3.5) with x �→ f (x) := x1 (resp. x �→ f (x) :=
−x1) and without the marginal constraint Lz(x1) = p. Denote its optimal value by ρ0

k (resp.
ρ1

k ).
If ρ0

k > 0 (resp. −ρ1
k < 1) then x∗

1 = 1 (resp. x∗
1 = 0) in any optimal solution x∗ ∈ {0, 1}n

of P.
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Proof This is because ρ0
k (resp. ρ1

k ) always produces a lower bound on f ∗. ��

Hence the difficult case is when solving (3.5) with f = x1 and f = −x1, one obtains
ρ0

k = 0 and ρ1
k = −1, respectively. But then the SDP relaxation (3.5) with f as in (3.2) is

well-defined, that is, ρk is finite.

Corollary 3.5 Let P be the 0/1 problem defined in (3.2) and let ρi be the optimal value asso-
ciated with the SDP relaxation (3.5). If ρ0

k = 0 and ρ1
k = −1 (as defined in Corollary 3.4)

then ρk is finite.

Proof Let z1 (resp. z2) be an optimal solution of (3.5) associated with f = x1 (resp. f = −x1)
without the marginal constraint Lz(x1) = p, and with optimal value ρ0

k = 0 (resp. ρ1
k = −1).

Then the sequence z = p z2 + (1− p)z1 is feasible for (3.5), hence with finite value. Indeed,
Lz1(x1) = 0 and Lz2(x1) = 1 so that by linearity Lz(x1) = L(1−p)z1+pz2(x1) = p. ��

3.2 The “joint + marginal” heuristic

Fix i and 0 < p < 1. Denote by x j ∈ Rn− j+1 the vector (x j , . . . , xn). For every j =
2, . . . , n, and x̃ j−1 = (x̃1, . . . , x̃ j−1) ∈ {0, 1} j−1, let f̃ j (x j ) := f (x̃ j−1, x j ), and g̃ j


 (x j ) :=
g
(x̃ j−1, x j ), 
 = 1, . . . ,m. Similarly, let

K j := {x j ∈ Rn− j+1 : g̃ j

 (x j ) ≥ 0, 
 = 1, . . . ,m},

and given x̃ j−1 ∈ {0, 1} j−1, let P(x̃ j ) denote the parametric optimization problem

P(x̃ j ) : ρ(x̃ j ) = min
x j

{ f̃ j (x j ) : x j ∈ K j ∩ {0, 1}n− j+1 ; x j = x̃ j }, (3.10)

with parameter x̃ j , i.e., the original problem P with the variables xi , i = 1, . . . , j −1, already
fixed at the value x̃i ∈ {0, 1}, i = 1, . . . , j − 1, and where we now fix x j at the value x̃ j .

With z being a sequence indexed in the monomial basis of R[x j ], the associated SDP
relaxation (3.5) reads:

ρ jk = inf
z

Lz( f̃ j ) (3.11)

s.t. Mk(z) 
 0, Mk−v
 (g̃
j

 z) 
 0, 
 = 1, . . . ,m

Mk−1(ui z) = 0, i = j, . . . , n; Lz(1) = 1, Lz(x j ) = p,

with associated dual:

ρ∗
jk = sup

λ,(σi )

λ0 + pλ1

s.t. f̃ j − (λ0 + λ1x j ) = σ0 +
m∑


=1

σ
 g̃ j

 +

n∑

i= j

ψi ui

σ
 ∈ �[x j ], ψi ∈ R[x j ], 
 = 0, . . . ,m; i = j, . . . , n

deg σ
g̃
j

 ≤ 2k, deg ψi ≤ 2k − 2, 
 = 0, . . . ,m; i = j, . . . , n.

(3.12)

The “joint + marginal” heuristic

For several problems like e.g., knapsack or k-cluster, whenever P(x̃ j ) in (3.10) is feasible, it
has an obvious feasible solution denoted s j+1 ∈ {0, 1}n− j .
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For instance, the 0/1 knapsack problem P(x̃ j−1) : minx j {c′
j x j : ∑n


= j a
 x
 ≤ b(x̃ j−1)},
has the obvious feasible solution s j = 0 whenever b(x̃ j−1) ≥ 0, and no solution otherwise.

Similarly, the k-cluster problem P(x̃ j−1) : minx j {x′
j Qx j : ∑n


= j x
 = k(x̃ j−1)} (with
k(x̃ j−1) ∈ Z), has no solution if k(x̃ j−1) < 0 or k(x̃ j−1) > n− j +1, has the obvious optimal
solution s j = 0 if k(x̃ j−1) = 0, and whenever 0 < x̃ j−1 ≤ n − j , it has the obvious feasible
solution s j = (s j
) with s j
 = 1, 
 = 1, . . . , k(x̃ j−1), and s j
 = 0, 
 = k(x̃ j−1)+ 1, . . . , n.

The (J + M)-heuristic consists of n steps. At step j of the algorithm, the vector x̃ j−1 =
(x̃1, . . . , x̃ j−1) (already computed) is such that P(x̃ j−1) has a feasible solution s j ∈
{0, 1}n− j+1. For the first step j = 1, one has: x̃0 = ∅, f j = f and g̃1

k = gk, k = 1, . . . ,m:

Step j : Input: x̃ j−1 ∈ {0, 1} j−1. Output: x̃ j = (x̃ j−1, x̃ j ) ∈ {0, 1} j .
Consider the SDP relaxation (3.11) for problem P(x̃ j ):

• Compute ρ0
jk for the SDP relaxation (3.11) without the moment constraint Lz(x j ) = p

(see Corollary 3.4). If ρ0
jk > 0 then set x̃ j = 1 else compute ρ1

jk ; if −ρ1
jk < 1 then set

x̃ j = 0.
• Else if ρ0

jk = 0 and ρ1
jk = −1 compute ρ jk in (3.11) and extract λ0, λ1 from the dual

(3.12). If λ1 < 0 set x̃ j = 1, otherwise set x̃ j = 0.
• Feasibility.1 If P((x̃ j−1, x̃ j )) has a feasible solution s j+1 ∈ {0, 1}n− j then set x̃ j =

(x̃ j−1, x̃ j ), otherwise set x̃ j = (x̃ j−1, 1 − x̃ j ).

Repeat until j = n.

Computational complexity

At step j of the (J + M)-heuristic, one has to solve three semidefinite programs (3.11) (two of
them without the moment constraint Lz(x j ) = p) whose number of variables is O((n − j +
1)k) and with m semidefinite constraints with matrix size at most O((n − j)k). Observe that
when k = 1, the semidefinite program (3.11) has exactly same computational complexity as
the standard kth SDP relaxation for 0/1 programs with n − j + 1 variables! Indeed the only
difference is the single additional (linear) moment constraint Lz(x j ) = p. For instance, for
the MAXCUT problem:

max
x

⎧
⎨

⎩
1

2

∑

i≤i< j≤n

Qi j (1 − xi x j ) : x ∈ {−1, 1}n

⎫
⎬

⎭ ,

where Q = Q′ = (Qi j ) ∈ Rn×n with Qii = 0 for all i , and with k = 1, the SDP relaxation
(3.11) at step 1 of the (J + M)-heuristic reads:

max
x,X

{
−1

2
trace (Q X) : Xi i = 1;

[
1 x′

x X

]

 0, (3.13)

X′ = X ∈ Rn×n; x1 = 1 − 2p
}
,

which is the standard Goemans and Williamson (or Shor) SDP relaxation with the single
additional constraint x1 = 1 − 2p. At step j > 1, and with n j := n − j + 1, (3.11) reads:

1 When k is large enough, feasiblity is guaranteed because +∞ > ρ jk ≈ P(x̃ j ) implies that there is a solution
x∗ ∈ K ∩ {0, 1}n with x∗



= x̃
, 
 = 1, . . . , j . So the above feasibility test is conservative, in case k is not

large enough.
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max
x,X

{
c′

j x j + trace (Q j X) : Xi i = 1;
[

1 x′
j

x j X

]

 0, (3.14)

X′ = X ∈ Rn j ×n j ; x j = 1 − 2p

}
,

for some appropriate vector c j ∈ Rn− j+1, and matrix Q j ∈ Rn j ×n j .

3.3 Variants

We here briefly describe two variants of the basic (J + M)-heuristic of Sect. 3.2.

3.3.1 The max-gap variant

In what we call the “max-gap” variant of the (J + M)-heuristic, at each step j one may try
to optimize the choice of the variable to treat as parameter instead of the simple choice x1

at j = 1, then x2 at j = 2, etc. For instance, at step j = 1, solve the SDP relaxation (3.11)
with xi as parameter, and get (λi

0, λ
i
1) from an optimal solution of the dual, i = 1, . . . , n.

Then select the index i for which |λi
1| is maximum, and fix x̃i = 1 if λi

1 < 0 and x̃i = 0
otherwise. The rationale behind this variant is that the larger |λi

1| is, the better is the approx-
imation |qk(0) − qk(1)| of |Ji (0) − Ji (1)|, and so the more likely the decision xi = 0 or
xi = 1 is correct. Then repeat in the obvious manner with now the remaining variables
(x1, . . . , xi−1, xi+1, . . . , xn), etc. Of course this variant is computationally more demanding
since one must solve nkth SDP relaxations instead of one, then n − 1, n − 2, etc.

3.3.2 Compound variant

As already mentioned in introduction, one may also easily consider groupings of, say s > 1,
variables at a time, instead of one variable at a time in the basic (J + M)-heuristic. Recall
that Ns

k = {α ∈ Ns : ∑
i αi ≤ k}. Let Y = {0, 1}s and let ϕ be the probability uniformly

supported on Y, with moments

γβ =
∫

Y

xβ dϕ = 2−s
∑

x∈Ys

xβ, ∀β ∈ Ns
2k .

Let �s
k := {α ∈ Ns

2k : ∑s
i=1 αi ≤ 2k; αi ≤ 1,∀i}. The first kth SDP relaxation now reads

ρk = inf
z

Lz( f ) (3.15)

s.t. Mk(z) 
 0, Mk−v j (g j z) 
 0, j = 1, . . . ,m

Mk−1(ui z) = 0, i = 1, . . . , n; Lz(1) = 1, Lz(xβ) = γβ, ∀β ∈ �s
k,

that is, the moment constraints Lz(xβ) = γβ are only concerned with the monomials xβ =
xβ1

1 · · · xβs
s of degree at most 2k, and with βi ≤ 1 for all i = 1, . . . , s. Observe that

|�s
k | =

⎧
⎪⎨

⎪⎩

2s if 2k ≥ s
2k∑


=0

(
s



)
if 2k < s.
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The dual reads

ρ∗
k = sup

λ,(σ j ),(ψi )

∑

β∈�s
k

γβλβ

s.t. f −
∑

β∈�s
k

λβxβ = σ0 +
m∑

j=1

σ j g j +
n∑

i=1

ψi ui

σ j ∈ �[x], ψi ∈ R[x], 0 ≤ j ≤ m; 1 ≤ i ≤ n
deg σ j g j ≤ 2k, degψk ≤ 2k − 2, 0 ≤ j ≤ m; 1 ≤ i ≤ n.

(3.16)

Let q ∈ R[x1, . . . , xs]2k be the polynomial

x �→ q(x) :=
∑

β∈�s
k

λ∗
βxβ,

of degree at most 2k, obtained from an optimal solution (λ∗) of (3.16).
One computes us = (u1, . . . , us) ∈ Ys which minimizes q on Ys by inspection of the 2s

values of q on Y. For feasibility, one proceeds one variable by one. If P(u1) has a feasible
solution then one sets x̃1 = u1 and x̃1 = 1−u1 otherwise. If P(x̃1, u2) has a feasible solution
then one sets x̃2 = u2 and x̃2 = 1 − u2 otherwise, etc. until one obtains x̃s ∈ Ys for which
P(x̃s) has a feasible solution. Then one iterates with problem P in which (x1, . . . , xs) is fixed,
equal to x̃s , etc. in the obvious way.

4 Computational experiments

We report on a first set of computational experiments on the MAXCUT, k-cluster and 0/1
knapsack problems. All experiments were run on a Intel(R) Core(TM)2 Due CPU 2.00GHz
with 2Gb ram.

4.1 The MAXCUT problem

The celebrated MAXCUT problem formally consists of solving the optimization problem:

P : max
x

⎧
⎨

⎩
1

2

∑

1≤i< j≤n

Qi j (1 − xi x j ) : x ∈ {−1, 1}n

⎫
⎬

⎭ ,

for some real symmetric matrix Q = (Qi j ) ∈ Rn×n .
In our sample of randomly generated problems, the entry Qi j of the real symmetric matrix

Q is set to zero with probability 1/2 and when different from zero, Qi j is randomly (and
independently) generated according to the uniform probability distribution on the interval
[0, 10].

We have tested the basic version of the (J + M)-heuristic (see Sect. 3.3.1) with k = 1 and
p = 1/2, i.e. solving the SDP-relaxations (3.13)–(3.14), for MAXCUT problems on random
graphs with n = 20, 30, 40 and 50 variables. For each value of n, we have generated 50
problems (and 20 for n = 50). In (3.5) the parameter p ∈ (0, 1) is set to 0.5. Let Q1 denote
the optimal value of the SDP-relaxation (3.13) without the marginal constraint x1 = p, that
is, Q1 is the Shor’s relaxation with famous Goemans and Williamson’s 0.878 performance
guarantee (for maximization and nonnegative weights Qi j ). Let P1 denote the cost of the
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Table 1 Relative error for
MAXCUT; p = 0.5

n 20 (%) 30 (%) 40 (%) 50 (%)

(Q1 − P1)/|Q1| 3.23 3.28 3.13 2.92

(Q1 − GW)/|Q1| 2.58 2.60 2.84 2.60

solution x ∈ {−1, 1}n generated by the (J + M)-heuristic.2 In Table 1, we have reported the
average relative error (Q1 − P1)/|Q1|, which, as one may see, is very small and compara-
ble with the relative error (Q1 − GW)/|Q1| obtained from the Goemans and Williamson
(GW) solution. The latter was obtained by the randomized rounding procedure described in
Goemans and Williamson [3] with a sample size of 50 as recommended in Goemans and
Williamson [3] for n ≈ 50 and we used the schur MATLAB subroutine to compute eigen-
vectors. The value of the GW-solution is significantly better than the theoretical bound, in
accordance with the computational results displayed in Goemans and Williamson [3]. For
n = 50 the (J + M)-solution was better than the GW-solution in 7 out of the 20 randomly
generated problems. For n = 40 (resp. n = 50) variables the CPU time was 218s (resp. 945s)
whereas it was 232s (resp. 507s) for the GW solution. The reader should keep in mind that
the (J + M)-heuristic is not specific to the MAXCUT problem and was run with the smallest
possible choice k = 1 of the parameter k.

4.2 The k-cluster problem

We have also tested the (J + M)-heuristic for the k-cluster problem:

P : max
x

{

x′Qx : x ∈ {0, 1}n;
n∑


=1

x
 = k

}

, (4.1)

again for some real symmetric matrix Q = (Qi j ) ∈ Rn×n , and some fixed integer k ∈ N, 1 ≤
k < n. Observe that the constraint

∑

 x
 = k is linear. Therefore, to take full advantage of

the kth SDP relaxation (3.11) which contains moments zα of order up to 2k, one may add the
n constraints xi (k − ∑


 x
) = 0, i = 1, . . . , n, in the definition (4.1) of P because they are
redundant. However these constraints make the kth SDP relaxation more constrained. They
also correspond to the first-level RLT constraints defined in Sherali and Adams [14].

As for MAXCUT, Q1 denotes the optimal value of the first SDP-relaxation in the hierarchy
to solve problem P, i.e.,

Q1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x,X

trace (Q X)

s.t.

[
1 x′

x X

]

 0, X′ = X ∈ Rn×n

Xii = xi , i = 1, . . . , n
n∑

=1

xi = k

k xi −
n∑

=1

Xi
 = 0, i = 1, . . . , n

whereas P1 denote the cost of the solution x ∈ {0, 1}n generated by the (J + M)-heuristic.

2 Q1 and P1 were computed with the GloptiPoly software dedicated to solving the generalized problem of
moments [4].
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We have tested the (J + M)-heuristic on problems randomly generated as for MAXCUT,
and with k = n/2 = 10. The average relative error Q1 − P1|/|Q1| was

• 5.7% on 4 randomly generated problems with n = 60 variables,
• 4.5 and 5.6% on 2 randomly generated problems with n = 70 variables. The “max-gap”

variant was a little better (≈ 4 and ≈ 4.5% respectively).
• 5.7% on a problem with n = 80 variables.

The CPU times were of the same order of magnitude as for the MAXCUT problem.

4.3 The 0/1 knapsack problem

Finally, we have also tested the (J + M)-heuristic for the 0/1 knapsack problem:

P : max
x

{

c′x : x ∈ {0, 1}n;
n∑


=1

a
 x
 ≤ b

}

, (4.2)

for some real vector c ∈ Rn and a ∈ Nn, b ∈ N.
As for the k-cluster problem, the constraint

∑

 a
 x
 ≤ b is linear. Therefore, again, to take

full advantage of the kth SDP relaxation (3.11) which contains moments zα of order up to 2k,
one may add the n redundant constraints xi (b −∑


 a
x
) ≥ 0, and (1− xi )(b −∑

 a
x
) ≥

0, i = 1, . . . , n, in the definition (4.2) of P; they also correspond to the first-level RLT
constraints in Sherali and Adams [14].

Again, and as for MAXCUT and k-cluster problems, Q1 denotes the optimal value of the
first SDP-relaxation in the hierarchy to solve problem P, i.e.,

Q1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
x,X

c′x

s.t.

[
1 x′

x X

]

 0, X′ = X ∈ Rn×n

Xii = xi , i = 1, . . . , n

b xi −
n∑

=1

a
Xi
 ≥ 0, i = 1, . . . , n

b − b xi −
n∑

=1

a
(x
 − Xi
) ≥ 0, i = 1, . . . , n

whereas P1 denote the cost of the solution x ∈ {0, 1}n generated by the (J + M)-heuristic.
We have tested the “joint + marginal” heuristic on a sample of 16 problems with n = 50

variables and 3 problems with n = 60 variables where, b = ∑

 a
/2, and the integers

a
’s are generated uniformly in [10, 100]. The vector c is generated by: c
 = sε + a
 with
s = 0.1 and ε is a random variable uniformly distributed in [0, 1]. From the results reported
in Table 2, one may see that very good relative errors are obtained, in accordance with the
fact that the 0/1 knapsack problem is considered as an easy problem since there is a Fully
Polynomial Time Approximation Scheme. Moreover, recently, Karlin et al. [12] have shown

Table 2 Relative error for 0/1
knapsack

n 50 (%) 60 (%)

(Q1 − P1)/|Q1| 2.1 0.62
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that solving the t th SDP-relaxation of the Lasserre hierarchy produces an integrality gap of at
most t/(t − 1). The CPU time is very comparable (for same value of n) to the one for MAX-
CUT and k-cluster problems since we solve the same sequence of very similar semidefinite
programs.

Discussion

Concerning sensitivity to the parameter p ∈ (0, 1), we have also tried the values p = 1/3,
and p = 3/4 on the MAXCUT problem without any significant change in the quality of the
results. For instance, on a sample of 50 randomly generated examples with n = 40 variables,
the average relative error was 4.5% for p = 0.25 and 3.79% for p = 0.75 (to be compared
with 3.13% for p = 0.5). Moreover, the running time is independent of p (taking for granted
that two semidefinite programs whose data differ at the right-hand-side of a single equality
constraint have same running time).

Also, we have tried the compound variant with two variables, i.e., after solving the
first SDP-relaxation we test four values of the polynomial J1(x̃1, x̃2) [at the points
(0, 0), (1, 0), (0, 1), (1, 1)] and branch on the point (x̃1, x̃2) with smallest value. We then
repeat the process on the (n − 2)-variables problem P where (x1, x2) is fixed at the value
(x̃1, x̃2), etc. As mentioned, instead of the single linear constraint Lz(x1) = p, the first SDP-
relaxation (3.11) has now three linear constraints Lz(x1) = Lz(x2) = p and Lz(x1x2) = p2

with associated dual variables λ10, λ01, λ11 in (3.12). Hence, the polynomial J1 obtained
from an optimal solution of the dual (3.12) is of the form λ0 + λ10x1 + λ01x2 + λ11x1x2.
Tested on the MAXCUT problem with n = 40 nodes, this compound variant did not bring
any improvement. The relative error was 7.14% for p = 0.5 and 5.55% for p = 0.25. A
higher value of the parameter k (e.g. k = 2) would provide better performance but at the cost
of a prohibitive CPU time.

5 Conclusion

We have proposed an algorithm for 0/1 programs which builds upon results from the
“joint + marginal” approach developed in Lasserre [8]. The preliminary results presented
here are very encouraging. Indeed, we have obtained good results in testing the (J + M)-
heuristic with k = 1, that is, using moments of order up to 2 only (whereas the rationale
behind this algorithm invokes potentially large k)! On the other hand, there is also a ratio-
nale behind the idea of using small values of k (typically 1 or 2) as it is well-known that
for some combinatorial problems (like e.g. MAXCUT) the first SDP-relaxation (i.e. with
k = 1) already provides good lower bounds (sometimes even with some guarantee). Nev-
ertheless, there are several issues that remain to be investigated. For instance, it would also
be interesting to test the (J + M)-heuristic that uses LP-relaxations with higher order, say
for instance k = 2 (instead of the too costly SDP-relaxations (for k = 2), and compare the
results with the one presented here with SDP-relaxations (and k = 1). Also the compound
variant of Sect. 3.3.2 that uses marginals on 2, 3, or say s, variables (with s relatively small
anyway) instead of 1 variable in the present version, and using again LP-relaxations with
higher order k = 2. Finally, how to adapt the method for 0/1 problems where the feasibility
issue is crucial?

Acknowledgments The authors are grateful to anonymous referees for very helpful remarks and suggestions
that helped preparing this revised version.
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Résumé de la thèse: 

L''Optimisation Polynomiale' s'intéresse aux problèmes d'optimisation P de la forme  

 min {f(x): x dans K} où f est un polynôme et K est un ensemble semi-algébrique de base, c'est-à-dire 
défini par un nombre fini de contraintes inégalité polynomiales, K={x dans Rn : gj(x) <= 0}. Cette 
sous discipline de l'optimisation a émergé dans la dernière décennie grâce à la combinaison de deux 
facteurs: l'existence de certains résultats puissants de géométrie algébrique réelle et la puissance de 
l'optimisation semidéfinie (qui permet d'exploiter les premiers). Il en a résulté une méthodologie 
générale (que nous appelons ``moments-SOS') qui permet d'approcher aussi près que l'on veut 
l'optimum global de P en résolvant une hiérarchie de relaxations convexes. Cependant, chaque 
relaxation étant un programme semi-défini dont la taille augmente avec le rang dans la hiérarchie, 
malheureusement, au vu de l'état de l'art actuel des progiciels de programmation semidéfinie, cette 
méthodologie est pour l'instant limitée à des problèmes P de taille modeste sauf si des symétries ou de 
la parcimonie sont présentes dans la définition de P. Cette thèse essaie donc de répondre à la question: 
Peux-t-on quand même utiliser la méthodologie moments-SOS pour aider à résoudre P même si on ne 
peut résoudre que quelques (voire une seule) relaxations de la hiérarchie? Et si oui, comment? Nous 
apportons deux contributions: 

I. Dans une première contribution nous considérons les problèmes non convexes en variables mixtes 
(MINLP) pour lesquelles dans les contraintes polynomiales {g(x) <=0} où le polynôme g n'est pas 
concave, g est concerné par peu de variables. Pour résoudre de tels problèmes (de taille est 
relativement importante) on utilise en général des méthodes de type ``Branch-and-Bound'. En 
particulier, pour des raisons d'efficacité évidentes, à chaque nœud de l'arbre de recherche on doit 
calculer rapidement une borne inférieure sur l'optimum global. Pour ce faire on utilise des relaxations 
convexes du problème obtenues grâce à l'utilisation de sous estimateurs convexes du critère f (et des 
polynômes g pour les contraintes g(x)<= 0 non convexes). Notre contribution est de fournir une 
méthodologie générale d'obtention de tels sous estimateurs polynomiaux convexes pour tout 
polynôme g, sur une boite. La nouveauté de notre contribution (grâce à la méthodologie moment-
SOS) est de pouvoir minimiser directement le critère d'erreur naturel qui mesure la norme L_1 de la 
différence f-f' entre f et son sous estimateur convexe polynomial f'. Les résultats expérimentaux 
confirment que le sous estimateur convexe polynomial que nous obtenons est nettement  meilleur que 
ceux obtenus par des méthodes classiques de type ``alpha-BB' et leurs variantes, tant du point de vue 
du critère L_1 que du point de vue de la qualité des bornes inférieures obtenus quand on minimise f' 
(au lieu de f) sur la boite. 

II: Dans une deuxième contribution on considère des problèmes P pour lesquels seules quelques 
relaxations de la hiérarchie moments-SOS peuvent être implantées, par exemple celle de rang k dans 
la hiérarchie, et on utilise la solution de cette relaxation pour construire une solution admissible de P. 
Cette idée a déjà été exploitée pour certains problèmes combinatoire en variables 0/1, parfois avec des 
garanties de performance remarquables (par exemple pour le problème MAXCUT). Nous utilisons 
des résultats récents de l'approche moment-SOS en programmation polynomiale paramétrique pour 
définir un algorithme qui  calcule une solution admissible pour P à partir d'une modification mineure 
de la relaxation convexe d'ordre k. L'idée de base est de considérer la variable x_1 comme un 
paramètre dans un intervalle Y_1 de R et on approxime la fonction ``valeur optimale' J(y) du 
problème d'optimisation paramétrique P(y)= min {f(x): x dans K; x_1=y} par un polynôme univarié 
de degré d fixé. Cette étape se ramène à la résolution d'un problème d'optimisation convexe 
(programme semidéfini). On calcule un minimiseur global y de J sur l'intervalle Y (un problème 
d'optimisation convexe ``facile') et on fixe la variable x_1=y. On itère ensuite sur les variables 
restantes x_2,…,x_n en prenant x_2 comme paramètre dans  un intervalle Y_2, etc. jusqu'à obtenir 
une solution complète x de R^n qui est faisable si K est convexe ou dans certains problèmes en 
variables 0/1 où la faisabilité est facile à vérifier (e.g., MAXCUT, k-CLUSTTER, Knapsack). Sinon 
on utilise le point obtenu x comme initialisation dans un procédure d'optimisation locale pour obtenir 
une solution admissible. Les résultats expérimentaux obtenus sur de nombreux exemples sont très 
encourageants et prometteurs. 



Summary of the thesis: 

Polynomial Optimization is concerned with optimization problems of the form (P) :  f* = { f(x) with x 
in set K}, where K is a basic semi-algebraic set in Rn defined by K={x in Rn such as gj(x) less or 
equal 0}; and f is a real polynomial of n variables x = (x1, x2, ..., xn).  

In this thesis we are interested in problems (P) where symmetries and/or structured sparsity are not 
easy to detect or to exploit, and where only a few (or even no) semidefinite relaxations of the 
moment-SOS approach can be implemented. And the issue we investigate is: How can the moment-
SOS methodology be still used to help solve such problem (P)? We provide two applications of the 
moment-SOS approach to help solve (P) in two different contexts.  

* In a first contribution we consider MINLP problems on a box B = [xL, xU] of Rn and propose a 
moment-SOS approach to construct polynomial convex underestimators for the objective function f 
(if non convex) and for -gj if in the constraint gj(x) less or equal 0, the polynomial gj is not concave. 
We work in the context where one wishes to find a convex underestimator of a non-convex 
polynomial f of a few variables on a box B of Rn. The novelty with previous works on this topic is 
that we want to compute a polynomial convex underestimator p of f that minimizes the important 
tightness criterion which is the L1 norm of (f-h) on B, over all convex polynomials h of degree d 
_fixed. Indeed in previous works for computing a convex underestimator L of f, this tightness 
criterion is not taken into account directly. It turns out that the moment-SOS approach is well suited to 
compute a polynomial convex underestimator p that minimizes the tightness criterion and numerical 
experiments on a sample of non-trivial examples show that p outperforms L not only with respect to 
the tightness score but also in terms of the resulting lower bounds obtained by minimizing 
respectively p and L on B. Similar improvements also occur when we use the moment-SOS 
underestimator instead of the aBB-one in refinements of the aBB method. 

* In a second contribution we propose an algorithm that also uses an optimal solution of a 
semidefinite relaxation in the moment-SOS hierarchy (in fact a slight modification) to provide a 
feasible solution for the initial optimization problem but with no rounding procedure. In the present 
context, we treat the first variable x1 of x = (x1, x2, ...., xn) as a parameter in some bounded  interval 
Y of R. Notice that f*=min { J(y) : y in Y} where J is the function J(y) := inf {f(x) : x in K ; x1=y}. 
That is one has reduced the original n-dimensional optimization problem (P) to an equivalent one-
dimensional optimization problem on an interval. But of course determining the optimal value 
function J is even more complicated than (P) as one has to determine a function (instead of a point in 
Rn), an infinite-dimensional problem. But the idea is to approximate J(y) on Y by a univariate 
polynomial p(y) with the degree d and fortunately, computing such a univariate polynomial is possible 
via solving a semidefinite relaxation associated with the parameter optimization problem. The degree 
d of p(y) is related to the size of this semidefinite relaxation. The higher the degree d is, the better is 
the approximation of J(y) by p(y) and in fact, one may show that p(y) converges to J(y) in a strong 
sense on Y as d increases. But of course the resulting semidefinite relaxation becomes harder (or 
impossible) to solve as d increases and so in practice d is fixed to a small value. Once the univariate 
polynomial p(y) has been determined, one computes x1* in Y that minimizes p(y) on Y, a convex 
optimization problem that can be solved efficiently. The process is iterated to compute x2 in a similar 
manner, and so on, until a point x in Rn has been computed. Finally, as x* is not feasible in general, 
we then use x* as a starting point for a local optimization procedure to find a final feasible point x in 
K. When K is convex, the following variant is implemented. After having computed x1* as indicated, 
x2* is computed with x1 fixed at the value x1*, and x3 is computed with x1 and x2 fixed at the values 
x1* and x2* respectively, etc., so that the resulting point x* is feasible, i.e., x* in K. The same variant 
applies for 0/1 programs for which feasibility is easy to detect like e.g., for MAXCUT, k-CLUSTER 
or 0/1-KNAPSACK problems. 
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