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Introduction

Version française

La simulation numérique est devenue un outil stratégique pour la recherche scientifique et
technologique au même titre que la théorie et l’expérience. Elle représente aussi un apport es-
sentiel dans le monde industriel où elle est synonyme de réduction des coûts de conception. Une
des raisons majeures est la forte croissance des moyens informatiques à coûts fixes qui permet
aujourd’hui d’avoir une machine de calcul personnelle pour quelques milliers d’euros là où un
super calculateur de puissance équivalente coûtaient plusieurs millions d’euros à l’achat et à
l’entretien quelques décennies en arrière. De ce fait, les méthodes numériques se démocratisent
et leur conception doit allier simplicité, flexibilité et efficacité de manière à les rendre accessibles
à des non spécialistes.

Ces trois objectifs représentent les principales motivations de ce travail de thèse. En effet, nous
proposons de développer un nouveau type de méthodes Volumes Finis d’ordre très élevé pour
la simulation en dynamique des gaz compressibles non-visqueux régie par les équations d’Euler.

Il existe déjà de nombreuses classes de méthodes numériques telles que les éléments finis
[47, 44, 43], Galerkin discontinu[10, 24, 63] ou encore les schémas distribuant le résidu [3, 2]
mais nous avons choisi la méthode Volumes Finis pour deux raisons principales. La première
est sa simplicité qui est en adéquation avec nos objectifs et explique sa grand diffusion dans
le monde du calcul scientifique et industriel. La deuxième est sa propriété de conservation des
quantités physiques du système (masse, quantité de mouvement et énergie totale) qui se révèle
cruciale dans la simulation de phénomènes physiques que nous considérons.

Dans la méthode Volumes Finis, qui est la généralisation du schéma de Godunov de 1959
[34], les inconnues du problème discret sont les valeurs moyennes par maille de la solution.
Sur chaque cellule, l’évolution en temps de l’approximation numérique de la valeur moyenne
s’obtient comme la somme des flux traversant les faces de la cellule. Plus précisément, le flux
au travers de chaque face est approché (i.e. flux numérique) de telle sorte que ce qui rentre
dans une cellule sort de l’autre impliquant automatiquement la propriété de conservation. De
plus pour une même classe d’équation (lois de conservation par exemple), il est aisé de passer
d’un problème à un autre par un simple changement de flux numérique en adéquation avec la
flexibilité recherchée.

Cependant la méthode originelle de Volumes Finis n’est que d’ordre un et génère une grande
quantité de diffusion numérique qui dégrade la qualité de la solution et empêche de capter toute

1



INTRODUCTION

la finesse de la physique sous-jacente (e.g. discontinuités de contact). Ce défaut motive notre
interêt pour les méthodes Volumes Finis d’ordre (très) élevé qui utilisent une reconstruction
locale plus pertinente de la solution à partir des valeurs moyennes pour obtenir une simula-
tion plus fine. Nous rappelons que la notion d’ordre de précision fait référence à la capacité à
réduire l’erreur sur la solution lorsque le maillage est raffiné : une méthode d’ordre un divise
par 2 l’erreur commise sur une solution lisse quand la taille caractéristique du maillage est
divisée par deux, alors que pour une méthode d’ordre quatre, l’erreur est divisée par 24. En
conséquence, une méthode d’ordre élevé permet d’améliorer considérablement la qualité de la
solution à maillage donné, et donc de fournir une solution de qualité fixée en utilisant moins de
ressources. On est donc en adéquation avec l’objectif d’efficacité.

Toute la difficulté de ce travail provient du type de physique que l’on souhaite simuler. En effet,
une caractéristique majeure de la dynamique des gaz compressibles est la création d’ondes de
choc et de discontinuités de contact qui rendent la solution localement singulière. L’emploi du
schéma d’ordre un permet de traiter les discontinuités sans difficultés, cependant l’approxima-
tion à l’ordre élevé de telles singularités génère des oscillations parasites connues sous le nom de
phénomène de Gibbs [12]. Celles-ci altèrent la qualité de la solution finale, et peuvent aller jus-
qu’à créer des situations non physiques qui peuvent interrompre la simulation. En conséquence
la méthode numérique utilisée doit être capable d’approcher les parties lisses de la solution
à l’ordre élevé tout en dégénérant vers l’ordre un sur les zones non lisses pour éviter toute
oscillation parasite. Cette capacité est obtenue par la procédure de limitation et c’est dans sa
conception que réside toute la difficulté.

On peut distinguer deux grandes familles de méthode Volumes Finis d’ordre élevé : les méthodes
d’ordre deux et celles d’ordre supérieur. Les premières sont pour la plupart basées sur une re-
construction linéaire de la solution sur chaque cellule permettant d’atteindre l’ordre deux en
précision et sur une limitation qui prévient les phénomènes parasites. La plus populaire est la
méthode MUSCL [87, 75, 42] dont la limitation consiste à réduire la pente de la reconstruction
linéaire pour prévenir les phénomènes parasites. Elle se caractérise par une mise en œuvre simple
et efficace qui fait d’elle la méthode Volumes Finis d’ordre deux la plus répandue. Néanmoins
l’ordre deux réduit fortement la capacité à capter des structures fines et des méthodes d’ordre
plus elevé sont apparues dans les années 90.

Parmi ces dernières, la méthode WENO [45, 33, 77, 31, 82] (extension de la méthode ENO
[40, 1]) a su s’imposer dans la communauté scientifique, en particulier dans la dynamique des
fluides. Le fondement de toute méthode d’ordre très élevé s’appuie sur une reconstruction po-
lynomiale locale (de degré aussi elevé que nécessaire) de la solution. Cependant les principes
de limitation de la méthode MUSCL n’étant plus valides pour l’ordre supérieur, la méthode
WENO utilise plusieurs reconstructions polynomiales par cellule et les combine pour obtenir une
représentation de la solution qui est Essentiellement Non-Oscillante (ENO) réduisant ainsi le
phénomène de Gibbs. De nombreuses applications en domaines multidimensionnels ont été pu-
bliées [90, 14, 60, 6], ce qui en fait une référence. Malheureusement la recontruction polynomiale
est très coûteuse dans le cas de maillages non structurés (en particulier en 3D) et la plupart
des applications physiques complexes requièrent de tels maillages. Par conséquent le coût de
la méthode WENO est important de par la nécessité d’avoir plusieurs reconstructions d’ordre
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élevé de la solution dans chaque cellule et handicape sérieusement sa popularisation. Pour au-
tant, elle était jusqu’à présent la seule méthode Volumes Finis d’ordre très elevé réellement
opérationnelle.

Un point commun à ces deux types de méthodes, et plus généralement aux procédures de li-
mitation existantes, est leur traitement a priori des phénomènes parasites. En d’autres termes,
dans toutes ces méthodes, la procédure de limitation agit sur les éléments précédents la mise à
jour de la solution numérique en temps. Cette approche implique que l’on doit prévoir la validité
de la solution même dans le pire scenario. Cependant les parasites numériques apparaissent au
voisinage des singularités de la solution qui ne représentent la plupart du temps que quelques
pourcents du domaine tandis que le schéma non limité produit des solutions pertinentes sur
les zones régulières. Il est donc clair que ces méthodes a priori qui agissent sans discernement
sur toutes les mailles effectuent un travail généralement inutile dans le sens où le schéma non
limité aurait fonctionné directement. Ceci est particulièrement clair dans la méthode WENO
pour laquelle une seule reconstruction polynomiale pourrait être utilisée la majorité du temps.

L’ensemble de ces constats nous a conduit à proposer un nouveau type de méthodes Volumes
Finis d’ordre très élevé dont les deux paradigmes de base sont : une seule reconstruction polyno-
miale par cellule et un traitement a posteriori des problèmes parasites. Nous avons nommé cette
méthode MOOD pour Multidimensional Optimal Order Detection, ce qui pourrait se traduire
par Detection Multidimensionnelle de l’Ordre Optimal. Elle est conçue de manière très différente
des méthodes déjà existantes : seuls des polynômes non limités sont utilisés et les problèmes
sont traités a posteriori en recalculant l’évolution en temps des cellules problématiques après
avoir localement réduit l’ordre du schéma utilisé. Ce concept s’appuie sur l’assurance que dans
le pire des cas le schéma d’ordre un sera utilisé et fournira une solution valide. Ce principe
permet donc d’éviter à la fois un traitement de toutes les cellules lorsque ce n’est pas nécessaire
et l’utilisation de plusieurs reconstructions polynomiales par cellule. On peut donc espérer un
gain en temps de calcul et en stockage mémoire important comparé aux méthodes actuelles
(WENO par exemple). Le cœur de la méthode réside de ce fait dans les critères de détection
utilisés pour définir si la solution calculée avec un schéma d’ordre élevé est acceptable ou non.

Nous montrons dans cette thèse, qu’avec un cadre et des outils bien définis, un tel concept a
posteriori est non seulement viable mais surtout plus efficace que l’état de l’art. L’approche est
validée par un nombre conséquent de tests numériques en dimension deux et trois sur l’équation
de convection et le systéme d’Euler.

La présente étude est divisée en trois chapitres. Nous rappelons le cadre théorique des méthodes
Volumes Finis multidimensionnelles ainsi que l’état de l’art des méthodes Volumes Finis d’ordre
élevé dans le chapitre 1. Dans le chapitre 2, nous développons le nouveau cadre théorique
associé au concept de limitation a posteriori pour ensuite définir clairement la méthode MOOD.
Nous présentons l’application de cette méthode à l’équation scalaire de convection linéaire et
au système d’équations d’Euler pour l’hydrodynamique. Le dernier chapitre réunie les trois
publications majeures élaborées sur la méthode, dans le but de mieux comprendre la solution
a posteriori que nous proposons au challenge des méthodes Volumes Finis d’ordre très élevé.
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Enfin nous terminons notre étude par une discussion sur les perspectives importantes de la
méthode MOOD.

English version

Numerical simulation has become a strategic tool for scientific and technological research as
well as theory and experiments. It plays a key role in the industry where it is synonym of design
cost reduction. One of the main reasons is the strong increase in the computational resources at
a constant price. For instance a today’s personal workstation costs thousands of euros whereas
a supercomputer of same processing power cost millions of euros decades ago. As a matter of
fact, numerical methods get generalized and their design has to combine simplicity, flexibility
and efficiency to open them to non-specialists.

These three objectives represent the strategic points of this doctoral work. Indeed we propose
to develop a novel type of very high-order Finite Volume methods to simulate the dynamics of
non-viscous compressible gas ruled by the Euler equations.
There already exist numerous classes of numerical methods such as finite elements [47, 44, 43],
discontinuous Galerkin [10, 24, 63] or residual distribution schemes [3, 2], but we have chosen
the Finite Volume method for two reasons. First, the simplicity of the method fits our first
objective and explains its large diffusion in scientific computation and industrial simulation.
The second reason is the built-in conservativity property of physical quantities of the system
(mass, momentum and total energy). It is of crucial importance for the simulations of physical
phenomena we shall consider.

In the Finite Volume method, which is the generalization of the Godunov’s scheme [34], the
unknowns of the discrete problem are the solution mean values on cells. Over each cell, the
time evolution of the numerical approximation of the mean value is obtained by the sum of
the physical fluxes crossing the cell interfaces. More precisely, the flux through each face is
approximated by a numerical flux so that what enters in a cell leaves the other one, so that
the conservativity property is automatically ensured. Moreover for a same class of equations
(e.g. conservation laws), Finite Volume methods can be easily adapted to different problems
in the sense that only the numerical flux has to be substituted. Such a property suits to our
flexibility objective to address a wide range of problems with few adjustments.

However the original Finite Volume method is first-order accurate and generates a large amount
of numerical diffusion which implies accuracy discrepancies and prevent from capturing the de-
tails of the underlying physics (e.g. contact discontinuities). This drawback motivates our
interest for (very) high-order Finite Volume methods which use a more relevant local recon-
struction of the solution from mean values to obtain a finer simulation. We recall that the notion
of accuracy order refers to the ability of the scheme to reduce the error on the solution when
the mesh is refined: a first-order method divides the error by 2 when the characteristic length
of the mesh is divided by two, while a fourth-order method divides it by 24. Consequently,
a high-order method increases the quality of the solution on a fixed mesh, and so provides a
fixed-quality solution with less computational resources. This fits to the efficiency objective.
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The main difficulty of this study comes from the physical phenomena we intend to simulate.
Indeed, one major characteristic of the compressible gas dynamics is the creation of shock
waves and contact discontinuities yielding to singularities in the solution. First-order schemes
treat these discontinuities without any difficulty, however the high-order approximation of such
singularities generates spurious oscillations, the so-called Gibbs phenomenon [12]. These affect
the final solution quality, and may create non-physical situations leading to a code crash. As a
consequence, the numerical method must be able to approximate the smooth part of the solution
with high-order while degenerating to a first-order scheme close to singularities to prevent any
spurious oscillation. Such a mechanism is obtained through the limitation procedure and the
difficulty lies in its design.

Two main families of high-order Finite Volume methods may be distinguished: the second-
order methods and the higher-order ones. The former are essentially based on a linear re-
construction of the solution over each cell to reach second-order and on a slope limitation to
prevent spurious phenomena. The most popular is the MUSCL method [87, 75, 42], the lim-
itation of which basically consists in multiplying the slope of the linear reconstruction by a
coefficient ranging between zero and one (limiter). The simplicity and efficiency of the MUSCL
method led it to be the most widespread second-order Finite Volume method. Nevertheless
the second-order strongly reduces its capacity to capture very fine structures and higher-order
methods have been developed since the 90’.

Amongst these, the WENO method [45, 33, 77, 31, 82] (an extension of the ENO one [40, 1])
has become well-established in the scientific community, particularly for fluid dynamics. The
basis of all higher-order methods is a local polynomial reconstruction (the degree of which is
as high as necessary) of the solution. However since the limitation principles of the MUSCL
method are not valid anymore, the WENO method uses several polynomial reconstructions per
cell and combine them to obtain an Essentially Non-Oscillatory representation of the solution
thus reducing the Gibbs phenomenon. The WENO method is a reference due to its wide range
of applications [90, 14, 60, 6] in multidimensional domains. Unfortunately the polynomial
reconstruction procedure is very costly on unstructured meshes (especially in 3D) and most
of complex physics applications requires such meshes. Consequently, the cost of the WENO
method is important since several high-order reconstructions per cell are needed and it seriously
handicaps its popularization. Nevertheless it was thus far the only very high-order Finite
Volume method effectively operational.

A common point to these two types of methods, and more generally to the existing limitation
techniques, is their a priori treatment of spurious phenomena. In other words, the limitation
procedure of these methods acts on the elements preceding the time update of the numerical
solution. Such an approach implies that we must predict the validity of the solution and take
into account the worst-case scenario. However the spurious phenomena appear in the vicinity
of solution singularities which most of the time represent few percents of the domain while the
unlimited scheme provides relevant solutions on regular zones. It is then clear that a priori
methods, which act without discrimination on every cells, generally carry out a useless effort
in the sense that the unlimited scheme would have performed well. This is particularly true in
the case of the WENO method for which only one polynomial reconstruction could be mostly
used.
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All these assessments led us to propose a novel type of very high-order Finite Volume meth-
ods based on the two following paradigms: only one polynomial reconstruction per cell and
an a posteriori treatment of spurious problems. We named it the MOOD method, standing
for Multidimensional Optimal Order Detection. It is designed in a very different manner than
the existing methods. Indeed the MOOD method only uses unlimited schemes and a posteri-
ori treat problems by recomputing the time evolution of problematic cells after reducing the
local scheme order. This concept relies on the claim that the first-order scheme is used in the
worst-case scenario and provides a valid solution. This principle avoids a useless treatment of
all cells when unnecessary, as well as the use of several polynomial reconstructions per cell.
We may thus expect a computational cost and memory storage improvement compared to the
existing methods (WENO as instance). The core of the method thus lies in the detection cri-
teria used to determine if the solution computed with a higher-order scheme is acceptable or not.

We show in this thesis that with well defined tools and framework, such an a posteriori concept
is not only viable but more efficient than the state-of-the-art very high-order Finite Volume
methods. This approach is validated with numerous numerical tests for the two- and three-
dimensional convection equations and hydrodynamics Euler system.

The present study is divided in three chapters. We recall the theoretical framework of the
multidimensional Finite Volume methods and the state-of-the-art higher-order Finite Volume
methods in chapter 1. In chapter 2, we develop the novel theoretical framework associated to
the a posteriori limitation concept in order to clearly define the MOOD method. We present
its application to the scalar convection equation and the hydrodynamics Euler system. In the
last chapter, we merge the three main publications written about the MOOD method with the
clear intention to better understand the a posteriori solution we propose to the challenge of
very high-order Finite Volume methods. Finally we conclude our study with a discussion on
the important perspectives of the MOOD method.

6



INTRODUCTION

List of contributions

We give in this section the contributions produced in the framework of this thesis. The first
paragraph gathers the publications in international peer reviewed journals, while the proceed-
ings to international conferences are given in the second paragraph.

� Journals

– S. Clain, S. Diot, R. Loubère, A high-order finite volume method for systems of conservation
laws – Multi-dimensional Optimal Order Detection (MOOD), J. Comput. Phys. 230 (2011)
4028–4050.

– S. Diot, S. Clain, R. Loubère, Improved detection criteria for the Multi-dimensional Op-
timal Order Detection (MOOD) on unstructured meshes with very high-order polynomials,
Comput. Fluids 64 (2012) 43–63.

– S. Diot, R. Loubère, S. Clain, The MOOD method in the three-dimensional case: Very-High-
Order Finite Volume Method for Hyperbolic Systems, submitted to Int. J. Numer. Meth.
Fl. (2012).

� Proceedings

– S. Clain, S. Diot, R. Loubère, Multi-dimensional Optimal Order Detection (MOOD) A very
high-order Finite Volume Scheme for conservation laws on unstructured meshes, FVCA 6,
Final Volume for Complex Applications, Prague, June 6–10 (2011).

– S. Diot, S. Clain, R. Loubère, Three-dimensional preliminary results of the MOOD method:
A Very High-Order Finite Volume method for Conservation Laws. YIC2012, First ECCO-
MAS Young Investigators Conference, Aveiro, April 24–27 (2012).

– S. Clain, G. Machado, R. Pereira, R. Ralha, S. Diot, R. Loubère, Very high-order finite
volume method for one-dimensional convection diffusion problems, 2nd International Con-
ference on Mathematical Models for Engineering Science (MMES 11), Tenerife December
10–12 (2011).

7





Chapter 1

From first- to higher-order Finite
Volumes schemes

Introduction

In 1959, S. K. Godunov proposed in [34] a conservative scheme to solve PDE’s where he
considered piecewise-constant approximation of the solution on cells, or Finite Volumes, as
variables. The conservative property was intrinsically ensured by the variables update that was
performed through the computation of fluxes at cells interfaces such that what enters in a cell
goes out from the other one. The fluxes were obtained from the exact solution of a Riemann
Problem at the interface, that is the exact solution of the problem at an interface separating
two constant states. The idea has been widely extended, for instance to multidimensional
domains and to different classes of problems, and is nowadays known as Finite Volume method.
There are two main reasons to choose the Finite Volume method for solving PDE’s. First, the
method is simple: the scheme is identical whichever types of cells or space dimension we intend
to use, since it only uses mean values of the solution and inter-cells fluxes computation, and
so, leads to a simplistic and robust implementation for a simulation code. The second reason
is the built-in conservativity property of the method in the sense that it preserves the physical
quantities of the problem, that is of crucial importance to reproduce the physics when dealing
with hydrodynamics for instance.
However the original Finite Volume method is only first-order accurate. This generates a large
amount of numerical diffusion and so requires the use of very fine meshes to get accurate simula-
tions. Actually, contrarily to Finite Elements methods for instance, there is no straightforward
higher-order extension of Finite Volume and reconstructing a high-order representation of the
solution from mean values is mandatory.

In section 1.1, we build the higher-order Finite Volume scheme that we consider in this thesis
from the first-order one using the high-order polynomial reconstructions of the solution from
mean values detailed in section 1.2. Then in section 1.3, we present the state-of-the-art high-
order Finite Volume methods and remind the mandatory points that must be taken into account
to effectively reach higher-order. Finally in the whole presentation, we consider problems
governed by a system of conservation laws, and although it already corresponds to many physical
problems, an extension to balanced laws could be easily developed to cover even more physics.
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CHAPTER 1. FROM FIRST- TO HIGHER-ORDER FINITE VOLUMES SCHEMES

1.1 Very high-order Finite Volumes schemes

We first introduce the notation for chapters 1 and 2 and illustrate them in Figure 1.1. All
denominations are based on the three-dimensional case, e.g. a face corresponds to an edge in
2D or a point in 1D. We assume that the computational domain Ω is a polyhedral bounded
set of Rn with n = 1, 2 or 3 and denote by x any of its points. A mesh of Ω is given by a
set of non-overlapping convex polyhedral cells, or Finite Volumes, Ki, i ∈ Eel, where Eel is the
cells index set. For the sake of simplicity, we only consider cells with coplanar faces and recall
that cells with non coplanar faces could be treated by a decomposition into coplanar ones. For
each cell Ki we denote its volume by |Ki| =

∫
Ki

1 dx and its centroid by ci = |Ki|−1
∫
Ki

x dx.
We moreover define two index sets of cells linked to a cell Ki: the index set ν(i) of all cells Kj

sharing a face fij with Ki, i.e. ν(i) =
{
j ∈ Eel\{i}|Ki∩Kj = fij

}
and the index set ν(i) of cells

sharing a geometrical element with Ki, i.e. ν(i) =
{
j ∈ Eel\{i}|Ki ∩Kj �= ∅}, see Figure 1.2

for illustrations in 2D and 3D. Finally for each face fij we denote by nij its unit normal vector
going from Ki to Kj (that is unique for coplanar faces) and by

(
qij,r, ξij,r , r = 1, . . . , Rij, the

quadrature points and weights, i.e. the quadrature rule, where Rij is the number of quadrature
points on fij. We detail in appendix A, the quadrature rules we have used to reach up to
6th-order.

Figure 1.1: Notations in 2D (left) and in 3D (right).

We consider a generic conservation law

∂tU +∇ F (U) = 0, ∀x ∈ Ω, t > 0, (1.1a)

U( , 0) = U0, ∀x ∈ Ω, (1.1b)

where U = U(x, t) is the vector of unknown functions, also referred to as conservative variables,
t is the time, F (U) = F (U(x, t),x, t) is the so-called physical flux function and U0 = U0(x)
stands for the initial condition. In the sequel, we omit to write the space and time dependence
of F for the sake of clarity and we shall precise boundary conditions.
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CHAPTER 1. FROM FIRST- TO HIGHER-ORDER FINITE VOLUMES SCHEMES

Figure 1.2: Illustrations of index sets in 2D and 3D: ν(i) represents the blue cells with dots while ν(i)
represents every non white cells.

Let us recall the first-order Finite Volume Godunov’s scheme for equation (1.1). We start with
the first-order spatial discretization by computing the mean value of (1.1a) over a generic cell
Ki

∂t
1

|Ki|
∫
Ki

U(x, t) dx+
1

|Ki|
∫
Ki

∇ F (U(x, t)) dx = 0.

Using the divergence theorem along with ∂Ω = ∪i∈ν(i)fij, we obtain

∂t
1

|Ki|
∫
Ki

U(x, t) dx+
1

|Ki|
∑
j∈ν(i)

∫
fij

F (U(x, t)) nij ds = 0, (1.2)

where ds corresponds to the measure on face fij. Finally the spatial discretization of equa-
tion (1.2) is obtained by approximating the flux integral. To his end, we introduce the so-called
numerical flux F(Ui(t), Uj(t),nij) which depends on mean values on both sides of fij and on
the normal vector nij. It is an approximation of F (U(x, t)) nij computed from the solution
of a Riemann Problem. More precisely, F(Ui(t), Uj(t),nij) is obtained from the exact or an
approximated solution to the problem defined by equations (1.1a)–(1.1b) rotated in the normal
direction nij at an interface separating the two constant states Ui(t) and Uj(t). A detailed
description can be found in [78]. Therefore the spatial discretization writes

∂tUi(t) +
∑
j∈ν(i)

|fij|
|Ki|F(Ui(t), Uj(t),nij) = 0, (1.3)

where notation Ui(t) ≈ |Ki|−1
∫
Ki

U(x, t) dx stands for an approximation of the time-dependent
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CHAPTER 1. FROM FIRST- TO HIGHER-ORDER FINITE VOLUMES SCHEMES

mean value of U on Ki.

We recall that the numerical flux F has to fulfill the following properties to ensure the mean-
ingfulness of the scheme. First, F must be continuous and Lipschitz with respect to the
first and second arguments. Then to ensure the conservativity of the scheme, F must fulfill
F(U, V,n) = −F(V, U,−n) for any constant states U and V and any normal vector n. At last,
the consistency of the scheme is ensured by asking F to fulfill F(U,U,n) = F (U) −n for any
constant state U and any normal vector n.

Finally the explicit first-order Godunov’s scheme for equation (1.1) is classically obtained by
a forward Euler method for time discretization of equation (1.3)

Un+1
i = Un

i −Δtn
∑
j∈ν(i)

|fij|
|Ki|F(U

n
i , U

n
j ,nij), (1.4)

where Un
i ≈ |Ki|−1

∫
Ki

U(x, tn) dx is an approximation of the mean value of U on cell Ki at

time tn and Δtn = tn+1 − tn is the time step. Notice that we use the superscript n for the
time step tn and for the dimension of the domain Ω ∈ R

n, however no confusion can be made
in the context. The treatment of the temporal discretization separately from the spatial one
is a classical technique that permits the use of traditional methods for Ordinary Differential
Equations (ODE) to solve equation (1.3) and is usually denominated as method of lines.

Although this scheme is easy to obtain and very robust to use, the major drawback of the
scheme is the large amount of numerical diffusion which generates strong accuracy discrep-
ancies. Following this claim, higher-order methods have been designed to reduce numerical
diffusion while trying to keep simplicity and robustness as main objectives. Different strategies
have been developed: a first trend for which the scheme is independent of the problem whereas
for the other trend, the equations of the problem are explicitly used to reach higher-order.
The former, so-called method of lines, consists in treating separately the spatial and temporal
discretizations, whereas the latter, that is more complex and less widespread, aims at reaching
higher-order in space and time in one step by mixing both discretizations.
We have chosen in this work to follow the first trend of higher-order Finite Volume methods to
design a problem-independent scheme. This choice is made for the sake of flexibility in the sense
that the physics of the problem only appears in the numerical flux, and so treating a different
problem is essentially equivalent to considering a different numerical flux. Our higher-order
schemes will thus rely on the method of lines for which both spatial and time discretizations
have to be high-order. From equation (1.2), we remark that reaching a spatial high-order is
equivalent to using high-order approximations of the flux integrals, which requires quadrature
rules on faces and higher-order approximations of the flux at quadrature points. Moreover since
solution U is only known through its mean values, we need a high-order representation of U on
each cell to compute high-order flux approximations. To this end, a polynomial approximation
of U on each cell is reconstructed from the neighboring mean values. This technique is detailed
in section 1.2 as it is a very important and non trivial point.
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In the sequel, the strategy consists in considering the first-order scheme of equation (1.4) as a
building block and defining the high-order scheme by means of linear convex combinations of
this building block so that the high-order update of an existing first-order code is simplified.

We consider on each face fij a quadrature rule (ξij,r, qij,r) and high-order approximations Un
ij,r,

Un
ji,r of U at the quadrature points qij,r and at time tn respectively computed from Ki and Kj.

The high-order spatial scheme then writes

Un+1
i = Un

i −Δt
∑
j∈ν(i)

|fij|
|Ki|

Rij∑
r=1

ξij,r F(U
n
ij,r, U

n
ji,r,nij), (1.5)

where we still use a forward Euler time discretization. We recall that
∑R

r=1 ξij,r=1 with ξij,r > 0
for any face fij, consequently an important property follows from equation (1.5)

Proposition 1.1 If higher-order approximations Un
ij,r, U

n
ji,r, in equation (1.6) are replaced by

first-order ones, Un
i and Un

j respectively, we recover the first-order Godunov scheme (1.4).

In 1D, 2D and 3D purely tetrahedral meshes, all faces are of same type. Consequently Rij

and ξij,r are independent of i and j and equation (1.5) can be written as a convex combination
of the first-order FV scheme

Un+1
i =

R∑
r=1

ξr

⎛⎝Un
i −Δt

∑
j∈ν(i)

|fij|
|Ki|F(U

n
ij,r, U

n
ji,r,nij)

⎞⎠ , (1.6)

When dealing with 3D polyhedral meshes, the quadrature rules may be different from a face
to another and such a convex combination form is not directly obtained. However by triangular
decomposition of polygonal faces, we may consider each cell with polygonal faces as a cell with
more faces but only triangular ones so that equation (1.6) still holds.

Let us now turn to the time discretization. Since we use a method of lines, the order of
accuracy in time should be equal to the spatial one to preserve the formal order of accuracy of
the complete scheme. We will use the 3rd-order Runge–Kutta 3 Total Variation Diminishing
(RK3 TVD) method (see [45]). Let us first rewrite equation (1.5) under the following operator
form

Un+1
h = Un

h +ΔtHR(Un
h ), (1.7)

where notation Un
h stands for

∑
i∈Eel U

n
i 1IKi

. The RK3 TVD method then writes as a convex
combination

Un+1
h =

Un
h + 2U (3)

h

3
with

⎧⎪⎨⎪⎩
U (1)

h = Un
h +Δt HR(Un

h ) at t = tn,

U (2)

h = U (1)

h +Δt HR(U (1)

h ) at t = tn +Δt,

U (3)

h = Û (2)

h +Δt HR(Û (2)

h ) at t = tn +Δt/2,

(1.8)

where Û (2)

h is the convex combination (3Un
h + U (2)

h )/4 and t is the current time for the update.
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Notice that we write the RK3-TVD as a convex combination of three forward Euler time
steps. This is important for our purpose since the properties fulfilled by the first-order Godunov
scheme (1.4) are preserved. More specifically, the proposition 1.2 implies that each stage of the
RK3-TVD is a first-order Godunov scheme (1.4) when first-order mean values are used in place
of the higher-order approximations. Furthermore since only convex combinations are used in
the RK3-TVD (1.8), the following proposition holds.

Proposition 1.2 A solution provided by the RK3-TVD method (1.8) fulfills all the properties
of the first-order Godunov scheme (1.4) that are preserved by convex combinations (DMP,
bounds on variables, etc.), if higher-order approximations of the three stages are replaced by the
first-order mean values.

Although this method introduces a 3rd-order error in time, O(Δt3), it is possible to reach
higher-order by setting Δt = Δxr/3, where Δx is a characteristic spatial length and r is the
target order of accuracy. However there exist higher-order time discretizations but either they
use more steps than the order (the Runge–Kutta Strong Stability Preserving methods) and
significantly increase the computational cost, or they explicitly use equations of the problem
(e.g. the ADER method, see further) and are less flexible.

Unfortunately accuracy and robustness are hardly compatible and high-order schemes are
usually plagued with robustness problems. In particular, they generate spurious oscillations
close to steep gradients and may even produce unphysical solutions (e.g. negative density or
pressure for a gas). In section 1.3, we review the existing methods used to prevent these stability
problems. In order to emphasize the characteristics of each method, we propose a simple sketch
based on Figure 1.3 in which we gather the relevant steps (for our purpose) of the unlimited
scheme defined by equations (1.5) and (1.8). But first and foremost, we present in next section
the crucial point to reach higher-order: the polynomial reconstruction.

Figure 1.3: Simplified flowchart to compute solution Un+1
i from Un

i by means of a very high-order unlimited
spatial discretization. Only the main steps are sketched: the polynomial reconstruction (Recon.), the evaluation
of high-order approximations at quadrature points (Eval.) and the high-order update of the solution (H-O
Update).

1.2 Arbitrary degree polynomial reconstruction

Contrary to other type of methods (e.g. Finite Elements or Discontinuous Galerkin methods)
based on local decomposition of the solution on a basis that can easily provide a high-order rep-
resentation of solution, the Finite Volume method only considers mean values of the solution.
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In consequence, reaching higher-order in a Finite Volume context necessarily implies that we
must reconstruct a high-order representation of the underlying function from its mean values.
Classically (but not necessarily, e.g. [4, 5]) such a representation is obtained by means of a
polynomial approximation (see [9, 57, 36] for instance), and the high-order nature is straight-
forwardly ensured through a Taylor expansion.
In this section, we only focus on the multidimensional case since the 1D case, for which building
a polynomial approximation is analytically tractable, is not representative of arising problems.
In practice the polynomial reconstruction is performed on each variable independently, so we
hereafter detail such a process in the case of a scalar function u.

In the sequel, we consider a generic cell Ki where we seek to reconstruct a polynomial ũi(x; d)
of arbitrary degree d≥1 for x ∈ Ki ⊂ Ω ⊂ R

n(n = 1, 2 or 3), of the form

ũi(x; d) = ui +
∑

1≤|α|≤d

Rα
i

(
(x− cKi

)α − 1

|Ki|
∫
Ki

(x− cKi
) dx

)
, (1.9)

where cKi
is a point linked to reference cell Ki (e.g. the cell centroid), α = (α1, . . . ,αn) ∈ N

n is
a multiindex with |α| = α1+−−−+αn andRα

i ∈ R are called (unknown) polynomial coefficients.

As stated, the reconstruction of such a polynomial uses the mean values of the solution since
they are the only available information. Moreover since ũi must locally represent the solution
on Ki, we only consider mean values on a set of cells in the neighborhood of Ki. Such a set is
called (reconstruction) stencil for degree d and denoted by Sd

i =
{Sd

i (1), . . . ,Sd
i (N

d
Si
)
}
where

Sd
i (r) corresponds to the index of the rth neighboring cell and Nd

Si
is the number of neighbors

in the stencil.

In the rest of the thesis, the expression reconstruction problem is employed to characterize
the process of determining the unknown polynomial coefficients Rα

i and we equally refer to the
polynomial ũi itself as polynomial representation, polynomial reconstruction or reconstructed
polynomial of u on Ki.

The number of unknowns Rα
i in the reconstruction problem, denoted N (d), depends on the

space dimension n, and on the polynomial degree d, through the formula

N (d) =

∏n
i=1(d + i)

n!
− 1.

At leastN (d) equations are necessary to fully define the reconstructed polynomial onKi. Those
are classically obtained by asking for the conservation property to be fulfilled for all cells of
the stencil, that is to say |Kj|−1

∫
Kj

ũi(x) dx = uj, ∀j ∈ Sd
i . However it is well known that

in the general case (for n = 2, 3), using same number of equations as the number of unknowns
(Nd

Si
= N (d)) does not necessarily provide a solution to the reconstruction problem. Therefore

more neighbors must be selected (Nd
Si

> N (d)) leading to a least-squares problem (see [9] for
instance).
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Remark: The form of ũi in (1.9) is our choice and may be different. Actually it is usual
to use cKi

to localize the polynomial with respect to the reference cell, but subtracting the
mean values of monomials is less common. The purpose of this last term is to ensure that the
conservation property |Ki|−1

∫
Ki

ũi(x; d) dx = ui is always fulfilled. This is not the case of all
polynomial reconstruction method, see [9, 33] for instance. It results that we only have N (d)
unknowns instead of N (d) + 1 which is the number of monomials of a polynomial of degree d
in R

n.

The next paragraph is dedicated to the setting of the least-squares reconstruction problem,
then we propose a technique to solve and store it. Finally the choice of the reconstruction
stencil is discussed in the last paragraph.

� Setting the least-squares problem

We consider a stencil Sd
i with cardinal Nd

Si
> N (d). As mentioned, we seek to minimize in

a least-squares sense the difference between the mean value of the reconstructed polynomial
and the solution mean value on the cells of Sd

i ; this is equivalent to minimizing the following
functional

E(Rα
i ) =

1

2

∑
j∈Sd

i

(
1

|Kj|
∫
Kj

ũi(x; d) dx− uj

)2

.

However solving this minimization at each time step would be very costly. In consequence,
the reconstruction problem is cast under a matrix form such that the solution of this matrix
problem minimizes the functional E, see [76] for details.

We now define the matrix form of the reconstruction problem. Let us first write the mean
value of ũi on a given cell Kj

1

|Kj|
∫
Kj

ũi(x; d) dx = ui +
∑

1≤|α|≤d

Rα
i X

α
i,j,

where we set

Xα
i,j =

(
1

|Kj|
∫
Kj

(x− cKi
)α dx− 1

|Ki|
∫
Ki

(x− cKi
)α dx

)
.

Then writing the equality between the mean value of ũi and the solution uj, we obtain

∑
1≤|α|≤d

Rα
i X

α
i,j = uj − ui. (1.10)

Finally we write the matrix system obtained when equation (1.10) is considered for all cells of
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the stencil Sd
i⎛⎜⎜⎜⎜⎜⎜⎜⎝

X
(1,0,0)
i,Si(1)

X
(0,1,0)
i,Si(1)

X
(0,0,1)
i,Si(1)

−−− X
(0,0,d)
i,Si(1)

X
(1,0,0)
i,Si(2)

X
(0,1,0)
i,Si(2)

X
(0,0,1)
i,Si(2)

−−− X
(0,0,d)
i,Si(2)

...
...

...
...

...

X
(1,0,0)
i,Si(NSi

) X
(0,1,0)
i,Si(NSi

) X
(0,0,1)
i,Si(NSi

) −−− X
(0,0,d)
i,Si(NSi

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R(1,0,0)
i

R(0,1,0)
i

R(0,0,1)
i

...

R(0,0,d)
i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

uSi(1) − ui

uSi(2) − ui

...

uSi(NSi
) − ui

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (1.11)

where we have dropped the superscript d for the sake of clarity. Let us denote the matrix by
Xi, the unknown coefficients vector by Ri and the vector of differences between mean values on
neighboring cells and on Ki by USi

. Hence the above linear system writes

XiRi = USi
. (1.12)

This overdetermined linear system is the basis of the polynomial reconstruction and contrary
to the functional form, the information on geometry and on the solution are decoupled. Indeed
all coefficients of matrix Xi are derived from the geometry of the mesh while information on
the solution are contained in the right-hand vector USi

. This is of crucial importance to ensure
an efficient method for which an important part of the problem is preprocessed since the mesh
information remains identical in time. The next paragraph is dedicated to solving this matrix
problem.

� Solving the least-squares problem

To ensure existence and uniqueness of a solution, we need to consider that the rank of matrix
Xi is maximal, or equivalently that its columns are linearly independent. In that case, the
matrix XT

i Xi is invertible (where T stands for the transpose) and equation (1.12) yields

Ri = (XT
i Xi)

−1XT
i USi

=: X†
i USi

, (1.13)

where the matrix X†
i := (XT

i Xi)
−1XT

i corresponds to the Moore-Penrose pseudoinverse of Xi in
the particular case of maximal rank. More details about the pseudoinverse can be found in [76].
This expression considerably simplifies the reconstruction procedure in the simulation since the
polynomial coefficients Ri are obtained by a matrix-vector product of X†

i with USi
. Furthermore

since Xi only depends on geometry, it is also true for its pseudoinverse and consequently X†
i is

computed in a preprocessing stage and stored in memory.

Several methods are available in the literature to decompose Xi and compute the pseudoin-
verse. We expose here two possibilities, the QR and the SVD decompositions.

The first method is the QR decomposition, with Q an orthogonal matrix and R an upper
triangular matrix, using Householder transformations (see [76] for instance). Once such de-
composition is available, the pseudoinverse is simply given by

X†
i = ((QR)T (QR))−1XT

i = (RTR)−1XT
i ,
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where the inverse of RTR is obtained by performing a forward- and a backward-substitution
consecutively.

The second method is based on the Singular Value Decomposition (SVD) of Xi under the form
UDV T , where U and V are orthogonal and D contains the singular values of Xi on the diagonal
and is zero elsewhere. We recall that the squares of the singular values are the eigenvalues of
the matrix XT

i Xi. Due to the assumed maximal rank of Xi, there is no null singular value in D
(D is invertible) and the pseudoinverse of UDV T writes

X†
i = (UDV T )−1 = (V T )−1D−1U−1 = V D−1UT .

We have adopted the QR decomposition in our code, however it seems that the SVD may
be more suitable since the conditioning number of X†

i is only impacted by the one of D (or
equivalently of Xi), whereas for the QR both R and RT are inverted.

To conclude this description of the reconstruction problem, we draw few remarks about what
may affect the conditioning number of matrix Xi, and so the stability of the reconstruction.
The first element is the form (1.9) of the polynomial ũi that we choose to localize around Ki

by considering monomials under the form (x − cKi
) in order to balance the rows of matrix

Xi and thus obtain analogous matrices from a cell to another. However this is not enough to
cure all problems. For instance, in the above description the conditioning number is dependent
of the cell size and grows when the mesh is refined, see [1, 33]. Therefore we adopt the trick
of O. Friedrichs [33] to make the conditioning number independent of cell size. Remark that
a barycentric technique has been proposed in [1] and a projection technique on a reference
element has been proposed in [32]. Nevertheless both techniques may not avoid very large
conditioning number problems when high aspect ratios are present between neighbors of the
reconstruction stencil.
Another possibility consists in using a preconditioning technique. For instance a weight may
be associated to each neighbor according to its distance to the reference cell, such that a closer
neighbor has a bigger weight. As a result, the reconstruction may be more accurate but we
have observed that it may also be less stable, particularly in 3D.
Finally the reconstruction stencil may be one the most important element that affects the
conditioning number, so we dedicate next paragraph to describe our algorithm to choose the
stencils.

� Choosing the reconstruction stencil

Although being an important step, the choice of neighbors for the reconstruction problem is
still an open problem in 2D and 3D, especially when neighboring cells have very different sizes
or large aspect ratios. Therefore we only expose in this paragraph the choice we made to build
the reconstruction stencils.

A classical way to pick the neighbors is to iteratively consider layers of cells around the refer-
ence one until a chosen number of neighbors is reached (between 1 to 1.5 times N (d) in 2D and
1.5 to 2.0 times N (d) in 3D are demanded in practice). It follows from empirical experiences
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that the more neighbors there are, the more robust the process is (but also the less accurate
the reconstruction is, though still at right order of convergence). For instance in a (W)ENO
method, the so-called central stencil is computed this way, while the so-called one-sided sten-
cils (for the same cell) are chosen such that each of them is representative of a different direction.

Reminding that the quality of matrix Xi (invertibility, conditioning) is strongly impacted by
the stencil, we propose to constrain the choice of neighbors with the conditioning number of
the matrix. Fixing a target conditioning number, we try different neighborhoods until the re-
sulting conditioning number of matrix Xi is below the target one. Note that the computational
cost is not a problem since this operation is performed during the preprocessing step and the
generated matrices, that are solution-independent, can be stored.

The picking algorithm for stencil Si of a reference cell Ki consists in the following steps:

0.

⎧⎪⎨⎪⎩
Set the number NSi

of neighbors to pick

Set the target conditioning number CNSi
for matrix Xi

Define a set Si of possible neighbors by considering layers of cells around Ki

Do while (conditioning number of Xi > CNSi
)

Do while (Si contains less than NSi
)

1. Randomly pick a cell in the set of possible neighbors Si

2. If it is a neighbor by face of an existing one, add the cell to the candidate stencil Si

end do
3. Compute the decomposition of the corresponding Xi and its conditioning number

end do

We now draw some remarks concerning this algorithm. First only the concept is represented
by the above description, since the do while may not stop if it is not possible to reach the pre-
scribed conditioning number with the prescribed number of cells. Consequently in that case, a
balance has to be found between both constraints, and it is not an obvious task for now as it
depends on the mesh and not only on the polynomial degree. Then, the target number of neigh-
bors is the same as reminded above for classical methods and the target conditioning number
is set by experiments trying to lower it at most. Furthermore the set of possible neighbors is
computed by iteratively picking the neighbors by nodes of already picked cells with cell Ki as
initialization, and condition 2. is imposed to ensure the compactness of the stencil.

Besides we would like to emphasize that lowering the stencil size at a given conditioning num-
ber is an interesting challenge since it would greatly lower the memory storage for reconstruction
matrices (which grows linearly with the number of neighbors).

Finally we believe that a fine understanding of the reconstruction problem in the multidi-
mensional case is a challenging problem for years to come and is the only way to make very
high-order Finite Volume methods get into the engineering world where robustness is manda-
tory.
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1.3 State-of-the-art high-order Finite Volume methods

In the previous sections, we dealt with Finite Volume numerical schemes to rich arbitrary
high-order of accuracy on regular solutions. However the high-order approximations of steep
gradients or discontinuities cause spurious phenomena and lead to the main difficulty in design-
ing a high-order method. Indeed a so-called limitation technique has to be designed in order
to still reach high-order on smooth solutions and prevent spurious effects on non-regular ones.
This point is of crucial importance since the oscillations generated by the unlimited schemes
may ruin solution accuracy or even worse, may lead to unphysical situations.

In this section, we give an overview of the state-of-the-art treatments to prevent such undesired
behavior and give a short description of the two major types of limitation techniques currently
used in multidimensional (very) high-order Finite Volume methods on unstructured meshes.
We first expose in section 1.3.1 the second-order MUSCL 1 method which is historically one of
the first high-order Finite Volume method and the most widespread in industrial simulation
codes. Then section 1.3.2 is devoted to a reminder of the four major obstacles which create
a second-order error and should be taken into account when designing higher-order methods.
Finally in section 1.3.3, we present the higher-order (W)ENO 2 Finite Volume methods and the
ADER method, which are the most established techniques to deal with very high-order Finite
Volume methods available nowadays.

Let us draw a preliminary remark. Most of the existing limitation procedures have a common
point, they act a priori, that is to say before the time update of the solution. That leads to
two major consequences, we always treat every cells and we usually consider the worst-case
scenario, while unlimited schemes perform well at least for smooth part of the solution. We
shall highlight these intrinsic drawbacks in this section.

1.3.1 The MUSCL method

Figure 1.4: Simplistic flowchart of the MUSCL method: on each cell, limitation is performed after sev-
eral evaluations of the unlimited polynomial reconstruction in order to enforce bounds for the evaluations at
quadrature points.

In the 70’s, Kolgan [48, 49, 50] and Van Leer [83] proposed a pioneering technique to improve
the scheme accuracy for scalar conservation law. In a series of papers [83, 84, 85, 86, 87], Van

1. Monotone Upstream-centered Scheme for Conservation Laws 2. (Weighted) Essentially Non-Oscillatory
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Leer designed the MUSCL scheme for the one-dimensional case by means of essentially two
ingredients: a linear reconstruction for second-order accuracy in space coupled with a limi-
tation procedure to enforce stability. As mentioned in section 1.1, the linear reconstruction
(polynomial of degree one) is the key to reach second-order of accuracy and may produce spuri-
ous oscillations. In consequence the limitation of the reconstruction was introduced to prevent
theses oscillations from appearing.

The MUSCL method was first developed in the one-dimensional case in order to fulfill the Total
Variation Diminishing (TVD) property which ensures that the BV norm of the solution at time
tn+1 is lower than the one at tn. Then the MUSCL method has been applied to multidimensional
Cartesian meshes through dimensional splitting [38, 75] where the TVD property is regarded
in each direction.
Since we are interested in numerical methods for multidimensional unstructured meshes, we
only present in the following the unstructured extension of the MUSCL method. In the 90’s,
the first unstructured extensions of the MUSCL method have been proposed in [8, 26] on the
basis of a multidimensional linear reconstruction coupled with a slope limiter Φi ∈ [0, 1] under
the form

ũi(x) = ui + Φi∇i(x− ci),

such that we use the unlimited polynomial when Φi = 1 and recover the mean value when
Φi = 0.

The notion of TVD in that case is not relevant anymore since Goodman & LeVeque proved in
[35] that a multidimensional TVD-satisfying Finite Volume method would necessarily be first-
order. Consequently the computation of the limiter Φi was first governed by the Maximum
Principle that is fulfilled by the solution of the linear convection equation. More specifically
the limitation was designed such that, for the convection equation, the numerical solution fulfills
a Discrete Maximum Principle on mean values defined by

Definition 1.3 (Discrete Maximum Principle) A Finite Volume numerical scheme pro-
viding mean values {un+1

i }i∈Eel at time tn+1 from mean values {un
i }i∈Eel at time tn preserves a

Discrete Maximum Principle (DMP) on mean values if the following property holds

min
j∈ν(i)

(un
i , u

n
j ) ≤ un+1

i ≤ max
j∈ν(i)

(un
i , u

n
j ), ∀i ∈ Eel,

where ν(i) is an index set of local neighbors of Ki.

As a consequence, the solution provided by such a scheme cannot contain new extrema and
therefore undesired oscillations are prevented. In order to enforce this property, the basic idea
of the multidimensional MUSCL method is to evaluate the unlimited linear reconstruction at
several prescribed points of the cell and to compute Φi such that reconstructed values are
bounded by neighboring mean values. Several versions can be found in [42] and references
therein.

Finally for vectorial problems (e.g. the Euler equations), the same limitation is applied to
each variable independently, even if the notion of maximum principle almost only applies in the
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case of convection with divergence-free velocity. However the mathematical properties implied
by such a limitation for those problems are not clear, and for instance, in the case of the Euler
equations, the positivity of variables such as density or pressure can only be ensured by very
restrictive timestep conditions, that might not be tractable for realistic complex simulations.
Therefore the scheme is hardly robust and there is still on-going research to ensure positivity
under lighter restriction, see [11, 61] for instance.

In conclusion, the MUSCL method clearly represents an important improvement of the first-
order scheme, leading to more accurate numerical approximations. Furthermore its simplicity
contributed to his popularity as the today most used Finite Volume method. Nevertheless
its second-order nature is not enough to reproduce fine physical phenomena (e.g. contact
discontinuities) on relatively coarse meshes and its a priori limitation may not ensure the
physical meaning of the computed solution. At last, several second-order approximations are
usually constitutive of the MUSCL method and prevent the concepts form being extended to
higher-order methods. We review these points in next section and give a short presentation of
the design principles developed for higher-order Finite Volume methods in section 1.3.3.

1.3.2 From second- to higher-order of accuracy

When designing higher-order (i.e. more than second-order) Finite Volume methods, several
usual approximations of second-order methods are not valid anymore. In this section we recall
the four points that must be carefully taken into account in the development of a higher-order
Finite Volume scheme.

� The analogy between cell mean value and cell centroid value

In second-order methods, the cell mean value is usually identified to the value at the cell
centroid. Indeed in most of second-order methods, the slope is computed through a linear
interpolation of the values at centroids (see [42]). Such an identification gives rise to a second-
order error. The proof for the one-dimensional case follows: Let f be a smooth function
and [a, b] be an interval of centroid c and of length Δx. From a Taylor expansion we have

f(x) ≈ f(c)+(x−c)∂xf(c)+
(x−c)2

2
∂xxf(c) and using the definition of cell centroid c = 1

Δx

∫ b

a
xdx

we obtain

1

Δx

∫ b

a

f(x)dx− f(c) ≈ ∂xf(c)

Δx

(∫ b

a

xdx− c

)
︸ ︷︷ ︸+

∂xxf(c)

2Δx

∫ b

a

(x− c)2dx︸ ︷︷ ︸,
= 0 + O(Δx2).

The same reasoning is still relevant for the multidimensional case by definition of the centroid.

� The Discrete Maximum Principle at smooth extrema

The MUSCL methods are usually designed to respect the Discrete Maximum Principle (def-
inition 1.3) that applies on cell mean values because of the nature of Finite Volume methods.

22



CHAPTER 1. FROM FIRST- TO HIGHER-ORDER FINITE VOLUMES SCHEMES

As a consequence, an accuracy discrepancy at smooth extrema occurs. More precisely approxi-
mating the point-wise smooth extrema by the mean value one generates at best a second-order
error since the first derivative vanishes in the Taylor expansion with respect to the point where
extrema is reached. Consequently if the numerical scheme fulfills a strict DMP on mean values,
this second-order error is propagated with time. In [27] (or chapter 3.2), a relevant example is
drawn in appendix and a numerical assessment for the convection equation is also shown. Such
considerations imply that the DMP is basically not used in the limitation process of existing
higher-order methods. However we would like to recall that this order discrepancy only occurs
at smooth extrema, and that consequently there is no reason to ban the use of DMP in the
limitation process if we are able to distinguish smooth extrema from non-smooth one.

� The non-linear combinations of mean values

From a general point of view, the approximation of the mean value of a non-linear combination
of variables by the non-linear combination of the mean values of these variables is only second-
order accurate. This claim is clear on this simple example: Let ρ and φ be two regular functions
on cell Ki and ρi, φi, (ρφ)i, denote their respective exact mean values. A Taylor expansion
with respect to the centroid of the cell gives (ρφ)i = ρiφi +O(h2). For instance let us consider
the following one-dimensional variables ρ, φ and (ρφ) and their mean values on cell K1 = [0, h]

ρ(x) = 1 + x, φ(x) = 1− x, (ρφ)(x) = 1− x2,

ρ1 = 1 + h/2, φ1 = 1− h/2, (ρφ)1 = 1− h2/3.

Then we obtain that |(ρφ)1 − ρ1φ1| = h2/12 leading to a second-order error.

In our context, the problem arises when we consider vectorial problems, such as the hydrody-
namics Euler system for which most of MUSCL methods use reconstructions of density, velocity
components and pressure (i.e. so-called primitive variables) to ensure the physical meaning of
reconstructed values at quadrature points. But velocity and pressure reconstructions are per-
formed from mean values computed by non-linear combinations of the conservative variables
mean values. Consequently even if polynomial reconstructions of degree greater than two are
used, the high-order approximations at quadrature points are only second-order accurate, and
so does the scheme. This has been numerically assessed in [27] (or section 3.2) for the Euler
equations.

We would like to point out that there exist in the literature higher-order Finite Volume schemes
that are based on polynomial reconstructions of primitive variables. Indeed this second-order
error does not appear in some particular test cases to check the convergence (Ringleb flow,
steady isentropic vortex) and it may be misleading. At last, it is important to remind that
non-linear combinations of point-wise values or of polynomial coefficients conserve the higher-
order property, see [31] for instance.

� The approximation of curved boundaries by straight faces

In section 1.1, we assume that the domain Ω can be meshed by polygonal/polyhedral cells.
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However in industrial simulations, the domain boundaries may be curved and consequently
only approximated by straight faces. This linear approximation of boundaries also generates a
second-order error. This claim is referenced in higher-order Finite Volume literature, see [58]
for instance. In this thesis, we did not implement any treatment of curved boundaries since we
do not consider such domains in our test cases.

1.3.3 Higher-order Finite Volume methods

In 1984, Woodward and Colella published the Piecewise Parabolic Method [91] as one of
the first attempts to reach more than second-order of accuracy. The technique only dealt
with one-dimensional geometry and up to our knowledge, never was extended in a truly multi-
dimensional case though it is still used in some specific applications where dimensional splitting
can be applied. Three years later, Harten et al proposed in [39, 40] the basic concepts of the
ENO 3 method which has been widely studied and extended in [14, 1, 74] for instance. Then
in 1994, Liu & Osher proposed in [54] the WENO 4 method as an important extension of the
ENO one.

In next paragraph, we merge the presentations of ENO and WENO methods since their limi-
tation techniques are based on same paradigms, and refer to them as (W)ENO methods. These
methods are currently considered as the state-of-the-art higher-order Finite Volume methods.
They have been successfully extended to a wide range of physical problems both on structured
and unstructured meshes in 2D and 3D. Nonetheless, the first application of the WENO method
for hydrodynamics Euler system on 3D mixed element meshes has been published in 2011 [82].

Finally an important improvement in the treatment of time discretization has been initiated in
2001 in [79] and led to the ADER 5 method which enables to reach arbitrary order of space-time
discretization in only one step. It has been successfully applied to 3D tetrahedral meshes in
[77, 31]. This technique, briefly presented in last paragraph of this section, may be seen as an
interesting alternative to the method of lines.

� The (W)ENO method

The fundamental idea of (W)ENO methods is to construct a non-oscillatory higher-order
representation of the solution. To this end, for both ENO and WENO methods, several re-
construction stencils are chosen for each cell, and the reconstruction problem is solved for all
of these stencils. Once all polynomials are available on a cell, ENO methods choose the least
oscillatory one by comparing numerical approximations of an oscillatory norm while WENO
methods compute the final polynomial as a convex combination with non-linear weights of all
available polynomials such that the most oscillatory ones have lighter weights than the least
oscillatory ones. At the end of the (W)ENO procedures, one essentially non-oscillatory poly-
nomial per cell is available and used in the high-order Finite Volume scheme. The a priori
limitation procedure is sketched in Figure 1.5.

3. Essentially Non-Oscillatory 4. Weighted Essentially Non-Oscillatory 5. Arbitrary accuracy DErivatives
Riemann problem
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Figure 1.5: Simplistic flowchart of the (W)ENO method: on each cell, limitation is performed after com-
putation of several polynomial reconstructions in order to obtain one Essentially Non-Oscillatory polynomial
reconstruction for the evaluation step.

As for MUSCL, (W)ENOmethods have been first developed and studied in the one-dimensional
case for which several authors have proved the method ability to reach very high-order of accu-
racy on smooth profiles still maintaining an Essentially Non-Oscillatory behavior in the vicinity
of steep gradients. Extensions to multidimensional problems on non-Cartesian meshes were
first proposed by [33, 41] and are now effective on 3D mixed element meshes, see [82]. However
these methods have their own drawbacks that we would like to mention in order to support the
paradigms we used in the design of the MOOD method.

The first point is intrinsically attached to the limiting procedure; the need of several polyno-
mial reconstructions per cell significantly increases the cost of the method in terms of memory
and CPU. Indeed in a very high-order Finite Volume method, memory is mainly filled with the
pseudoinverse matrices of the reconstruction problem even when only one polynomial per cell
is considered. It is then important to note that in the very recent paper [82], the (W)ENO
procedure uses at least Nf (number of faces) reconstructions per cell, and this is much less than
the classical number (e.g. 7 for triangles and 9 for tetrahedral in [31]). Moreover as stated
in [31] in page 239, obtaining the essentially non-oscillatory polynomial is the principal CPU
time consuming part of the (W)ENO method (75% in their case). This remark, along with the
fact that using only one centered reconstruction gives the same results on smooth profiles, led
us to suggest the design of a very high-order Finite Volume method on the basis of only one
polynomial per cell.

The second point depends on the problem to solve; the adaptation of (W)ENO methods to
non-linear systems of conservation laws, such that the hydrodynamics Euler equations, is not
straightforward in the sense that the set of variables on which the reconstructions are per-
formed is usually not the conservative ones (i.e. the unknown of the scheme). Actually when
the (W)ENO procedure is applied directly to the conservative variables, the essentially non-
oscillatory behavior is not properly obtained, see results in [41] for instance. Consequently
most of the (W)ENO implementations use characteristic variables since they fulfill indepen-
dent scalar conservation laws. Two remarks follow from this claim. The first one is that the
transformation from conservative variables to characteristic ones is costly in CPU time, e.g. the
matrix of right eigenvectors and its (analytical) inverse have to be computed at every interface.
The second point is that it makes the numerical scheme much more complex. Consequently our
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design will only consider performing polynomial reconstruction on the conservative variables.

The last point is about mathematical analysis; as for the MUSCL method the main properties
of the (W)ENO methods have been proved in the one-dimensional case and have not been
extended to the multidimensional one yet. For instance, the positivity-preserving ability of
(W)ENO methods is not ensured. We believe that these difficulties are generated by the a
priori limitation which makes difficult the mathematical analysis.

� The ADER method

In this paragraph, we draw the big picture of the the ADER method that is the only higher-
order Finite Volume method able to reach both space and time higher-order of accuracy in
a single step. For an history of the method and all the implementation details, the reader is
referred to the thesis of C.E. Castro [15] for instance.

Thus far, we only considered the so-called method of lines to design our higher-order Finite
Volume scheme by means of the RK3-TVD method for time discretization, see equation (1.8).
We recall that this choice was induced by its simpler implementation and the fact that it is
independent of equations, but has two drawbacks: being only 3rd-order accurate and using
several steps of the spatial high-order scheme. Actually, these two points can be overcome
by using more intensively the equations of the problem. The starting point is to integrate
equation (1.2) in the time interval [tn, tn+1] to get the exact time update

Un+1
i − Un

i +
1

|Ki|
∑
j∈ν(i)

∫ tn+1

tn

∫
fij

F (U(x, τ))−nij dsdτ = 0.

It is thus clear that building a single step higher-order space-time scheme is equivalent to
obtaining a higher-order approximation of the space-time flux integral. Following the same
philosophy as in section 1.1 but taking into account the time integral, we consider a quadrature
rule on the space-time element fij − [tn, tn+1] for which we need to provide higher-order ap-
proximations of the flux. Notice that a space-time quadrature formula can easily be obtained
by tensor product of a quadrature rule on the face with one on the time interval. Therefore the
whole problem is to obtain higher-order evaluations of the solution at different time levels for
each quadrature position on the face: this is the fundamental difference with our scheme for
which the solution is always evaluated at the current time of the RK3-TVD step.

We now present the original ADER method developed by Titarev and Toro in [80]. The fi-
nal goal of this method is to obtain at each spatial quadrature positions a unique polynomial
approximation of the solution in time. The fundamental idea is to completely use the spatial
informations contained by the two polynomials in Ki and Kj, instead of only using the extrap-
olated values as we do. To this end, the Riemann Problem (that we use in equation (1.3)) is
replaced by a Derivative Riemann Problem (DRP) in which the left and right states are not
constant anymore but entire polynomials. The solution of the DRP is therefore not constant
anymore with time, and the solution is sought under the form of a power series expansion in
time. Once such a time representation is available, the solution can be evaluated at the time
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quadrature points to compute the numerical flux with a high-order of accuracy.

Nevertheless it remains to solve the DRP and this is not a trivial task. The Titarev and Toro
technique relies on the following steps. First, compute the left and right polynomial states by
rotating polynomials on Ki and Kj in the normal direction nij, and consider their extrapolated
values of the solution and its derivatives at the spatial quadrature position. At this step, for
each spatial quadrature position, we have left and right constant values for the solution and
its spatial derivatives. Then similarly to section 1.1, the idea is to obtain unique values of the
solution and its spatial derivatives. To this end, a series of Riemann Problems is solved. More
precisely, the leading term of the solution is obtained by solving the same Riemann Problem
that we use in equation (1.3). Then considering the linearized equations (around the leading
term) fulfilled by each spatial derivative, a unique value of this derivative is obtained by solving
a Riemann Problem using the left and right corresponding (constant) values for this derivative.
The final stage is to transform these spatial informations into informations in time; this is
achieved by means of the so-called Cauchy-Kowalesky procedure: considering that the solution
of the problem is smooth enough, the time derivatives can be computed from the spatial ones
using the equations of the problem. This procedure is well known and clearly detailed in [31].
Finally for each spatial quadrature point a polynomial approximation of the solution in time is
available and is used to compute the flux at the corresponding space-time quadrature points.

Remark: Variants of the ADER method use the same ingredients, but in another order. For
instance in the Castro and Toro version, the Cauchy-Kowalesky procedure is first applied to
the extrapolated values and derivatives at quadrature points on both sides of fij, and the time
derivatives of the solution are directly obtained by solving classical Riemann problems for the
linearized (around the leading term) equations fulfilled by the time derivatives.

Remark: In the recent paper [29], the authors propose a problem-independent ADER method
for which an iterative procedure replaces the complex Cauchy-Kowalesky procedure. Although
this particular ADER method is problem-independent, it is still much more complicated than
the RK3 method and that explains why we did not use it.

Finally the limitation of oscillations for the ADER methods is ensured by a (W)ENO procedure
so that the same drawbacks are present. Nevertheless it is worth noticing that the WENO
procedure is only done once per time step while for Runge–Kutta-based methods the costly
procedure is repeated for each time sub-step. Therefore the great interest of this approach is in
the fact that arbitrary high-order of accuracy in time can be achieved. Hence in our context,
the ADER method may be seen as an efficient time discretization which overcomes all problems
of the RK3-TVD. However our purpose is to design a scheme independent of the problem and
that can be easily implemented from a first-order code, consequently we did not implement an
ADER type of time discretization. Nevertheless it is discussed in the perspectives part of this
thesis as an interesting possibility.
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Conclusion

The purpose of this chapter was to give a brief but clear introduction to the existing techniques
to reach higher-order of accuracy in a Finite Volume framework in order to support the choices
we made in the design of the MOOD method which is presented in next chapter.

First we have presented an arbitrary high-order Finite Volume scheme based on convex combi-
nations of the standard first-order Godunov scheme and on a separated treatment of the space
and time discretizations. It is simple to implement in an existing first-order code and that ex-
plains our motivation to choose it in the context of this thesis. However such unlimited schemes
are not suitable for simulations since they are not able to properly deal with solutions that are
not smooth. As a consequence, the main goal of this thesis is to propose a novel approach to
limitation.

In a second part, we have given an overview of the limitation concepts of the state-of-the-art
higher-order Finite Volume methods. From the second-order MUSCL method which is very
simple and inexpensive but not accurate enough, to the (W)ENO methods which are the most
widespread Finite Volume methods effectively capable to reach more than second-order of ac-
curacy.

The limitation procedures of these methods are always performed a priori, or in other words
before the update of the solution mean values. This implies that on smooth profiles a lot of
unnecessary computational effort is performed and that the worst-case scenario is usually con-
sidered in the limitation design. We shall show that the computational cost can be significantly
reduced by treating the arising problems a posteriori.

Furthermore the multidimensional (W)ENO methods are costly in CPU and memory storage
because several polynomials per cell are reconstructed. Let us recall that on smooth profiles
the central reconstruction stencil alone is enough to reach higher-order without any problems
and we believe that using only one reconstruction per cell is an achievable goal.

Last but not least, the mathematical analysis of such a priori multidimensional methods is
very difficult, and robustness problems may occur when dealing with physical problems. For
instance, most of (W)ENO methods are not proved to be positivity-preserving, and the classical
MUSCL methods are positivity-preserving only under a very restrictive timestep condition. We
shall show in next chapter that the a posteriori nature of the MOOD method make easy to
enforce such a properties by construction.
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Chapter 2

The Multi-dimensional Optimal Order
Detection (MOOD) method

Introduction

Following the conclusions drawn in previous chapter, we propose to design a method that
avoids useless a priori limitations. The development of the MOOD method has been ruled
by two main features: simplicity and efficiency. The MOOD philosophy holds in “Compute a
time-updated solution with the highest-order unlimited scheme and if it locally fails, recompute
with a lower-order one till it succeeds”, for which a simplified schematic is given in Figure 2.1.
It explains the Optimal Order Detection denomination of the method since, in a sense, the
principle is to find the scheme of maximal order which provides an acceptable solution. As
simple as it seems, the idea of an a posteriori treatment of problems generated by unlimited
schemes is the key point of the concept. It basically relies on the definition of acceptable solution
as well as on the fact that in the worst case scenario a stable first-order scheme will always
provide a solution free of spurious phenomena.

Figure 2.1: The simplistic concept of the MOOD method.

Nevertheless simplicity is not sufficient and the method also has to be efficient. Therefore
as previously mentioned, we choose to develop the MOOD method on the basis of only one
polynomial reconstruction per cell since the costly part (in terms of memory storage and CPU)
of a higher-order Finite Volume multidimensional method is the polynomial reconstruction. An
important computational gain is thus to be expected compared to (W)ENO methods for which
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several higher-order polynomials per cell have to be considered, see section 1.3.3. Furthermore,
we would like to point out that the a posteriori nature of the method is new with respect to
traditional techniques. Therefore we advise the reader to keep in mind the simple schematic of
Figure 2.2 that can be compared with those of classical methods presented in section 1.3.

Figure 2.2: Simplistic flowchart of the MOOD method: each cell Ki is first updated by an unlimited
high-order scheme, then an a posteriori Detection Process (Det. Proc.) is performed and cells that are not
satisfactory are re-updated with a lower polynomial degree until all cells are satisfactory.

The appropriate framework for the MOOD method, from fundamental notions to a complete
algorithm view, is defined in section 2.1. Then in sections 2.2 and 2.3, applications of the MOOD
method are detailed for the scalar convection equation and for the Euler hydrodynamics system
respectively. Finally we present in last section of this chapter some key optimizations to ensure
the efficiency of the MOOD concept.

2.1 Design of the MOOD method

Although the basic idea seems to be unrefined, the definition of an effective framework to the
MOOD method is patently not that simple and demands a careful design to preserve important
properties usually mandatory in Finite Volume methods such as conservativity. Furthermore
the whole a posteriori concept relies on the definition of “a solution fails”, or in other words,
of what is an acceptable solution. Therefore a clear definition of acceptable solution is given in
subsection 2.1.2, in which we begin with defining two notions related to the polynomial recon-
structions (and thus to the scheme order). But first and foremost, we give three denominations
associated to the a posteriori framework in next subsection.

Since we apply the MOOD concept to each on the three substeps of the RK3-TVD (1.8) in
the same way, we restrict our presentation in this section to the spatial higher-order scheme
(1.5) for the sake of clarity.

2.1.1 Some vocabulary to handle the a posteriori nature

Let us introduce three ingredients to easily deal with the a posteriori nature of the MOOD
method. The first one, that we name MOOD algorithm, is the overall iterative process sketched
in Figure 2.1 (or Figure 2.2) which intrinsically defines the MOOD method. That is to say, the
process which consists of first computing a solution with the highest-order numerical scheme
and then, iteratively recomputing a new solution with a locally lower-degree scheme until the
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solution is acceptable.

Moreover the expression candidate solution refers to any solution provided by an unlimited
numerical scheme for which we must check if it locally fails or succeeds.

Finally, the process of deciding if a candidate solution is acceptable, depicted in red in Fig-
ure 2.1 and Figure 2.2, is denominated detection process. The design of such detection processes
in the cases of the convection equation and of the hydrodynamics Euler system is described in
sections 2.2 and 2.3 respectively.

2.1.2 Fundamental notions and properties

This section is separated into two parts. Firstly we define two notions related to the poly-
nomial reconstruction, or equivalently related to the local order of accuracy of the scheme in
our context, and give the related important properties. Secondly we propose a definition of
acceptable solution and then give the proof of the MOOD algorithm convergence.

� Cell and Face Polynomial Degrees

While classical higher-order Finite Volume schemes use same order of accuracy in all cells, the
MOOD method strongly exploits the local scheme order decrementing procedure that allows
different spatial orders of accuracy from a cell to another. In consequence we have to define
specific notions to handle the local order of accuracy; these are the roles of the Cell and Face
Polynomial Degrees defined below.

We name Cell Polynomial Degree, shortened as CellPD and denoted by di, the degree of the
polynomial reconstruction on cell Ki. It is used in the decrementing procedure to enforce that
the update of the solution in cell Ki is performed with an at most (di+1)-order scheme. This
property, ensured by Theorem 2.2, guarantees that in the worst case scenario, the first-order
scheme is used.

We name Face Polynomial Degrees, shortened as FacePD and denoted by dij and dji, the
degrees of the polynomial reconstructions actually used to compute approximations, Uij,r and
Uji,r, of the solution on face fij at quadrature points qij,r respectively from Ki and Kj. The
computation of dij and dji, named FacePD strategy, must be done in accordance with CellPD
of the two neighbors and must be upper-limiting, that is

Definition 2.1 (Upper-limiting) A FacePD strategy is said to be upper-limiting with respect
to the CellPD if for any Ki and any degree d̄, the following property holds

di = d̄ =⇒ dij ≤ d̄ and dji ≤ d̄, ∀j ∈ ν(i).

Notice that the least restrictive upper-limiting FacePD strategy is dij = dji =min(di, dj), and
that we will use this strategy in the whole thesis. This property ensures the local order of
accuracy of the update, that is
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Theorem 2.2 (Local order of accuracy) We consider a higher-order Finite Volume scheme
(1.8) designed to reach an order of accuracy (dmax + 1). If the CellPD of a cell Ki equals
d ≤ dmax and the FacePD strategy under consideration is upper-limiting then the order of
accuracy of the solution update in Ki is at most (d+1)th-order accurate.

Proof: In the cell Ki, the upper-limiting property of the FacePD strategy implies that, both
FacePD (dij and dji) on all faces fij, for j ∈ ν(i), are lower or equal to d. Consequently all
approximations, Uij,r and Uji,r, at quadrature points qij,r are computed from an at most d-degree
polynomial, so they are at most (d+1)-order accurate. Since the leading error of the rest of the
scheme is (dmax + 1) > (d+1), the error of the whole scheme is dominated by the spatial error
of approximations. That is to say the scheme is at most (d+1)th-order accurate.

�

A straightforward but important corollary follows

Corollary 2.3 (First-order update) We consider a higher-order Finite Volume scheme (1.8)
designed to reach an order of accuracy (dmax + 1) > 1. If the CellPD of a cell Ki is equal to
0 and the FacePD strategy under consideration is upper-limiting then the solution in Ki fulfills
all the properties of the first-order scheme (1.4).

Proof: From theorem 2.2, the solution is locally first-order, and from proposition 1.1 the so-
lution is computed from the first-order Godunov scheme (1.4) and so fulfills its properties.

�

Let us now draw two remarks. Firstly, according to proposition 1.2 the corollary only holds for
the properties of the first-order scheme (1.4) that are preserved by convex combinations (DMP,
bounds on variables, etc.) when considering the complete RK3-TVD (1.8) time discretization.
Secondly, for the sake of simplicity we only consider in this work decrementing the local scheme
order by reducing the local polynomial reconstruction degrees, hence neglecting the accuracy
reduction of quadrature rules for instance. Nevertheless proposition 1.1 ensures it is sufficient.

� A-eligibility and acceptability of a solution

In previous paragraph, we provided some tools to handle the scheme-order decrementing.
Only one part of the MOOD concept remains to be properly defined: the notion of accept-
able solution. It is certainly the most important notion since the final solution properties will
mainly depend on it. In this paragraph, we first define the set of detection criteria A that is
used in the detection process, then give a clear definition of acceptable solution and finally we
prove that the MOOD method always converges to an acceptable solution under non-restrictive
assumptions.

Thanks to the a posteriori framework of the MOOD method, we expect to have a simplified
control on the final solution properties. Actually this control is achievable through the detection
process which consists in checking the compliance of a solution to a set of properties to decide if
solution fails or succeeds. In the sequel, such a set of properties (that we shall prescribe further)
is called (set of) detection criteria and denoted by A, while a solution is said to be A-eligible
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if it fulfills all criteria of A. Nevertheless it is obviously not feasible to ensure that the solution
will be A-eligible regardless of the set A, and so, to ensure that the MOOD algorithm has a
finite number of iterations. Therefore a definition of an acceptable solution is

Definition 2.4 (Acceptable solution) Let {U�
i }i∈Eel be a candidate solution and A be a set

of prescribed detection criteria. For a given cell Ki, the candidate solution U�
i is said to be

acceptable if either U�
i is A-eligible, or U�

i has been computed by the first-order scheme ( i.e.
CellPD is already zero). Accordingly the solution {U�

i }i∈Eel is said to be acceptable if U�
i is

acceptable for all i in Eel.
We would like to emphasize the fact that an acceptable solution is not necessarily A-eligible,
and consequently this is important that the first-order scheme provides a solution free of spu-
rious phenomena. The following theorem proves the viability of the MOOD method.

Theorem 2.5 (Finite number of iterations of the MOOD algorithm) Let {Un
i }i∈Eel be

a solution at time tn and A be a prescribed set of detection criteria. If the FacePD strategy is
upper-limiting then the MOOD algorithm always provides an acceptable solution at time tn+1

in a finite number of iterations.

Proof: The proof is performed by separating cases. The MOOD algorithm stops if the solution
is acceptable on all cells, and solution is acceptable if either it is A-eligible or updated with
the first-order scheme. Therefore if we consider a given cell Ki, two situations are possible:
either the solution is A-eligible and there is no problem; Or the solution is not A-eligible and
the CellPD is decremented until either the new candidate solution is A-eligible, or until the
CellPD di is zero. If di = 0, the corollary 2.3 implies that the solution is computed by the
first-order scheme and so, the solution is acceptable. This reasoning is valid for all cells, thus
the maximal number of iterations of the MOOD algorithm is the product of the number of cells
times the initial degree of polynomial reconstruction (say dmax), because each cell can at most
be decremented dmax times.

�

In this section, we defined the theoretical framework to ensure that such an a posteriori
approach for limitation is viable in the sense that it always provides a solution in a finite
number of iterations. Though it is a mandatory point, it does not give any informations
about the efficiency of the technique. However we shall see later that in real computations the
number of iterations of the MOOD algorithm remains low and provides an efficient method
when combined to the optimizations proposed in last section of this chapter.

2.1.3 The MOOD algorithm

We now complete the generic design of the MOOD method by presenting the different stages
of the MOOD algorithm. We only give here the general steps that must be respected exactly
whichever the implementation. We refer the reader to section 2.4 for the pseudo-code version
of the algorithm as it is implemented in our code.
The MOOD algorithm takes place in each of the three substeps of the RK3-TVD method. It is
thus embedded in the Runge-Kutta loop that is itself embedded in the loop from initial to final
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times. Therefore the different stages of the MOOD algorithm are presented for one substep of
the Runge-Kutta loop (the algorithm is depicted in Figure 2.3).

The zero-th stage is the initialization of the CellPD of each cell to the maximal degree, denoted
dmax, i.e. we set di = dmax to initialize the degree of the polynomial reconstruction that
is performed on each cell at the first stage. The second stage consists in computing each
FacePD in accordance with the CellPD and then evaluating the higher-order approximations
at quadrature points with the degree of the FacePD. Then a candidate solution is computed
during the third stage using the higher-order space scheme of equation (1.5). Therefore the
fourth stage is the detection process coupled with the CellPD decrementing of cells on which
solution is not acceptable. If there exist cells for which the solution is not acceptable then the
algorithm goes back to the first stage and uses the new CellPD map. This algorithm stops
when the solution is acceptable for all cells (theoretically ensured by theorem 2.5).

Do while (t < tfinal)

Do RK=1,3

0. Initialization of CellPD di = dmax, ∀i ∈ Eel
Do while (solution is not acceptable)

1. Polynomial reconstruction of degree di, ∀i ∈ Eel
2. Computation of FacePD dij and Evaluation of high-order approximations

Un
ij,r at quadrature points qij,r with degree dij, ∀i ∈ Eel, ∀j ∈ ν(i), ∀r = 1, .., Rij

3. Solution mean values update using equation (1.5)
4. Detection process: if solution in Ki is not acceptable decrement CellPD di

end do
end do

end do

Figure 2.3: The MOOD algorithm: complete overview.

Notice that for the sake of clarity, we considered the RK3 method as a loop over an index
RK = 1, 2, 3 though the loop is unrolled in the code for efficiency.

For specific applications, one has to provide the detection criteria with respect to physical
and/or mathematical properties of the problem (positivity of variables, maximum principle,
etc.). In the next two sections, we propose suitable detection criteria for the convection equation
and for the hydrodynamics Euler system respectively.

2.2 Application to the Convection equation

2.2.1 Equation and Finite Volume scheme

Thus far, we have provided all details to implement the MOOD method except from one
aspect: the detection process, or more precisely the set of detection criteria A. This point is of
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crucial importance though, since the final solution strongly depends on it. In this section, we
propose such a set in the case of the simple (but nonetheless representative) scalar convection
equation {

∂tU(x, t) +∇−(V U(x, t) = 0, with x ∈ Ω ⊂ R
n, t > 0,

U(x, 0) = U0(x), with x ∈ Ω ⊂ R
n,

where U(x, t) ∈ R is the unknown, U0(x) ∈ R the initial condition and V ∈ R
n is a constant

prescribed velocity. Moreover we prescribe periodic conditions on the domain boundary ∂Ω.

This scalar equation is the starting point of many numerical methods since the linearity avoids
the complexity of non-linear behaviors and the analytical solution is given by

U(x, t) = U0(x− V t) ∀x ∈ Ω ⊂ R
n, ∀t > 0. (2.1)

In particular, it is clear from equation (2.1) that the exact solution fulfills a maximum princi-
ple. This property still holds if the velocity is space-dependent, V =V (x) but divergence-free
∇−V =0.

The numerical scheme is defined by equation (1.6) and equation (1.8), where the numerical
flux F at time tn for any quadrature point qij,r is given by the classical upwind flux

F(Un
ij,r, U

n
ji,r,nij) = max(0, V −nij)U

n
ij,r +min(0, V −nij)U

n
ji,r.

Finally the treatment of periodic boundary conditions is the following: for each quadrature
point on a boundary face, the outside value is set by duplicating the inside value at the corre-
sponding quadrature point of the corresponding periodic face. Moreover after each detection
process, the CellPD map is treated to respect periodicity.

2.2.2 Detection process

In this section, we define the effective detection process we employ to solve the convection
equation. We expect the numerical solution to respect the maximum principle since the exact
solution does so. However in the Finite Volume context, the traditional maximum principle is
the Discrete Maximum Principle (DMP) which compares the mean values at time tn+1 to the
ones at tn:

min
j∈ν(i)

(Un
i , U

n
j ) ≤ Un+1

i ≤ max
j∈ν(i)

(Un
i , U

n
j ), (2.2)

where ν(i) represents a neighborhood of cell Ki.

It is noteworthy that the fundamental concept of the MUSCL method to prevent spurious
oscillations from appearing is to enforce the solution to fulfill such a DMP. It is then a natural
choice to reduce the set of detection criteria A to the DMP in a first approach. In other words,
once we have a candidate solution {U�

i } (computed from an unlimited higher-order scheme),
we check during the detection process if this candidate fulfills the DMP, i.e.

min
j∈ν(i)

(URK
i , URK

j ) ≤ U�
i ≤ max

j∈ν(i)
(URK

i , URK
j ), ∀i ∈ Eel, (2.3)
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where the superscript RK refers to the input mean values of three steps of RK3-TVD, i.e.
URK
i = Un

i , U
1
i or Û 2

i in equation (1.8), since we recall that the MOOD algorithm is indepen-
dently applied to each step of RK3.

Unfortunately as mentioned in section 1.3.2, such a DMP implies a second-order error at
smooth extrema. However before going further in the development of a suitable detection
process, we would like to highlight an appealing property of the a posteriori nature of the
method. Contrary to the MUSCL method for which (even in 1D) the proof the DMP property
is not mathematically straightforward and implies a necessary restricted timestep, the following
theorem holds in our context:

Theorem 2.6 Let {Un
i }i∈Eel be a solution at time tn and let A be constituted of the Discrete

Maximum Principle (DMP) principle of equation (2.3). If the FacePD strategy is upper-limiting
then the MOOD algorithm always converges and provides a solution for time tn+1 which satisfies
the DMP property of equation (2.2) under the CFL condition of the first-order scheme (1.4).

Proof: Let us first recall that the first-order Godunov scheme (1.4) provides a DMP-satisfying
solution under a CFL stability condition. Then theorem 2.5 ensures that at each substep of
RK3-TVD the MOOD algorithm always provides an acceptable solution, meaning that either
the solution is A-eligible, i.e. DMP-satisfying, or the solution is computed from the first-order
scheme which also provides a DMP-satisfying solution. Remark that the DMP property is satis-
fied when considering U 1

h compared to Un
h , U

2
h compared to U 1

h and U 3
h compared to Û 2

h. However
since every URK

h is a convex combination of solutions that satisfy a DMP property in regard
to Un

h and that the final solution Un+1
h is computed by a convex combination of same type, we

can conclude that the final solution satisfies the DMP of equation (2.2) under the CFL of the
first-order scheme. Finally it is worth noticing that each substep of RK3 fulfills a DMP over
the neighborhood ν(i) while for the complete scheme a larger one is to be considered.

�

Keeping in mind the remark we drew in 1.3.2, the strict DMP on mean values as detection
criteria provides a second-order scheme. Therefore we have two alternatives, either we choose
not to use the DMP as the main criterion and we have to find a different way to proceed; Or
we have to introduce new mechanisms to overcome accuracy discrepancy at smooth extrema.
We choose to consider the latter, for at least two reasons: firstly, the DMP is legitimate from
a mathematical point of view; secondly, it is very easy and computationally efficient to test it
on a solution even on 3D unstructured meshes. Therefore we propose a detection process on
the basis of successive filters where the DMP is used as the first filter and a more refined test
is applied as second filter on cells which do not respect the DMP. This last filter, denominated
u2, has been designed in [27] and improved in [28] in order to detect if a cell where the solu-
tion violates the DMP corresponds to a smooth extrema. In the following the whole detection
process is shortened to [DMP→u2] which recalls the succession of detection criteria.

In this context, the notion of numerical smoothness is independent of the time discretization,
hence we define the u2 detection criterion in the case of a candidate solution U�

h computed from
solution Un

h . Moreover the definition is given for the 3D case, and extra-dimensions have to be
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omitted for the 1D and 2D cases.

The purpose of the u2 detection criteria is to give a definition to the notion of numerical
smooth extrema in order to allow a relaxation of the DMP at these locations while preventing
DMP violation around steep gradients or discontinuities. So let us consider a cell Ki where
the solution does not fulfill the DMP, we want to determine if the solution was smooth at time tn.

The first step is to reconstruct quadratic (i.e. degree two) polynomials on Ki denoted by Ũi

and on its neighbors Kj for j ∈ ν(i) denoted by Ũj. Then we define

Xmin
i = min

j∈ν(i)

(
∂xxŨi, ∂xxŨj

)
and Xmax

i = max
j∈ν(i)

(
∂xxŨi, ∂xxŨj

)
,

Ymin
i = min

j∈ν(i)

(
∂yyŨi, ∂yyŨj

)
and Ymax

i = max
j∈ν(i)

(
∂yyŨi, ∂yyŨj

)
,

Zmin
i = min

j∈ν(i)

(
∂zzŨi, ∂zzŨj

)
and Zmax

i = max
j∈ν(i)

(
∂zzŨi, ∂zzŨj

)
,

where we emphasize that the second derivatives are constant and referred to as curvatures. The
u2 detection criterion holds in the following definition

Definition 2.7 (u2 detection criterion) A candidate solution U�
i in cell Ki which violates

the DMP is nonetheless eligible if

Xmax
i Xmin

i > 0 and

∣∣∣∣Xmin
i

Xmax
i

∣∣∣∣ ≥ 1− ε,

and Ymax
i Ymin

i > 0 and

∣∣∣∣Ymin
i

Ymax
i

∣∣∣∣ ≥ 1− ε,

and Zmax
i Zmin

i > 0 and

∣∣∣∣Zmin
i

Zmax
i

∣∣∣∣ ≥ 1− ε,

where ε is a smoothness parameter.

This definition relies on the idea that comparing the second derivatives on a local neighbor-
hood is sufficient to determine the numerical smoothness of a piecewise constant function. More
precisely, we consider that the solution is smooth if in each direction, the curvatures have the
same sign (no oscillation) and are close enough to each-other, in a sense to be characterized by
the smoothness parameter ε.

More specifically, the value of ε defines the threshold between what is considered as a smooth
extrema or as a discontinuity. Let us first remark that ε must range in [0, 1] to make sense since
the ratios between minimal and maximal curvatures are bounded by zero and one in the right
inequalities of definition 2.7. Moreover the limitation generated by ε is such that the closer to
zero ε is, the less smooth the functions will be considered. Therefore we may consider ε as a
function that has to be close to zero on discontinuities and close to one on smooth functions.
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We thus propose to define εx (in the x-direction) as a continuous increasing function of the
(x-direction) curvatures ratio such that εx(0) = 0 and εx(1) = 1. After several attempts, it
appears that the simple function εx(r) = r is an relevant choice leading to the following criterion
for the x-direction curvatures

Xmin
i

Xmax
i

≥ 1− Xmin
i

Xmax
i

,

that yields
Xmin

i

Xmax
i

≥ 1/2.

Finally applying the same reasoning for y- and z-directions, we obtain

Ymin
i

Ymax
i

≥ 1/2 and
Zmin

i

Zmax
i

≥ 1/2.

Note that the linearity of functions εx, εy and εz simplifies the final inequalities and leads to
the constant value ε = 1/2 in definition 2.7.

Numerically, we have shown in [27] et [28] that the u2 detection criterion relaxes the DMP
as expected: reaching up to 6th-order of accuracy while maintaining a non-oscillatory behavior
on discontinuous profiles. However no rigorous mathematical framework has been found yet
to support these observations. Note that extensive numerical tests have been performed and
compared to the ones obtained with the first value proposed for ε in [27] and no significant
differences have been noticed resulting in same quality results.

To conclude the design of the detection process for the convection equation, we sketch in
Figure 2.4 the stages of the [DMP→u2] embedded in the MOOD algorithm.

0. Initialization of CellPD di = dmax, ∀i ∈ Eel
Do while (solution is not acceptable)

1. Polynomial reconstruction of degree di, ∀i ∈ Eel
2. Computation of FacePD dij and Evaluation of high-order approximations Un

ij,r

at quadrature points qij,r with degree dij, ∀i ∈ Eel, ∀j ∈ ν(i), ∀r = 1, .., Rij

3. Solution mean values update using equation (1.5)
4. Detection process [DMP→u2]:

If candidate U�
i does not fulfill the Discrete Maximum Principle of equation (2.3) then

If it is not a smooth extrema according to the u2 detection criterion then
Decrement the CellPD di

end if
end if

end do

Figure 2.4: The detection process [DMP→u2] for the convection equation.

Let us conclude this presentation by emphasizing that both DMP and u2 detection criteria are
mesh-independent and intrinsically multidimensional which ensures flexibility and robustness
of the concept. It also implies that an important notion is the neighborhood used in both
criteria.
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2.2.3 Numerical results

A substantial number of relevant numerical tests has been published in [18, 27] and shall be
in [28]. Therefore we have chosen to reference all the numerical tests reproduced in chapter 3.
Each reference is thus commented to emphasize the interest of the test case.

� Convergence studies

We consider the classical convergence test in which the infinitely smooth initial function
U0(x, y) = sin(2πx) sin(2πy) in 2D (resp. U0(x, y) = sin(2πx) sin(2πy) sin(2πz) in 3D) is con-
vected with constant velocity V on the unit square [0, 1]2 (resp. unit cube [0, 1]3) with periodic
boundary conditions. The final time tfinal = 2 is such that the exact final solution corresponds
to the initial one.

Section 3.1 or [18]: 2D Cartesian Meshes

Tables with L1 and L∞ errors and rates along with corresponding convergence curves figures
are given for unlimited P1 and P2 schemes, the MOOD-P1 and MOOD-P2 methods and a
MUSCL method. Note that the set of detection criteria A only contains the DMP and that
the L∞ order is locked to two.

→ Tables 3.3–3.5 p.68 and Figure 3.3 p.68 for a series of uniform Cartesian meshes.
→ Tables 3.6–3.8 p.72 and Figure 3.6 p.71 for a series of non-uniform Cartesian meshes.

Section 3.2 or [27]: 2D Polygonal Meshes

Tables with L1 and L∞ errors and rates along with corresponding convergence curves figures
are given for the MOOD-P2, MOOD-P3 and MOOD-P5 methods. The [DMP] and [DMP→u2]
detection processes are compared and it shows the second-order limit of the former while the
latter provides up to 6th-order convergence.

→ Table 3.11 p.101 and Figure 3.18 p.100 for series of Delaunay and Voronoi meshes.

Section 3.3 or [28]: 3D Mixed-element Meshes

Tables with L1 and L∞ errors and rates are given for the MOOD-P2, MOOD-P3 and MOOD-
P5 methods using the [DMP→ u2] detection process. Note that the version of the u2 is the
one presented in this thesis and it enables to reach 6th-order.

→ Table 3.17 p.139 and Figure 3.36 p.138 for series of hexahedral and mixed hexahedral-
pyramidal meshes.

� Non-oscillatory behavior assessment

In 2D, we consider the classical solid body rotation test in which three bodies (a slotted
cylinder, a hump and a cone) are rotated around the center (0.5, 0.5) of the unit square [0, 1]2.
Periodic boundary conditions are still considered and the final time tfinal = 2π is such that the
exact final solution corresponds to the initial one.
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Section 3.1 or [18]: 2D Cartesian Meshes

We propose an 3D elevation view for the MOOD-P1 method, MOOD-P2 method and a MUSCL
one. Note that the set of detection criteria A only contains the DMP and that the MOOD-P1
results are better than the MUSCL ones tough both are second-order accurate.

→ Figure 3.4 p.69 for a uniform Cartesian meshes.
→ Figure 3.7 p.73 for a non-uniform Cartesian meshes.

Section 3.2 or [27]: 2D Polygonal Meshes

We propose profile views of the results with the unlimited P5 method and the MOOD-P5
method using [DMP] and [DMP→u2] detection processes in order to show that the u2 main-
tains the accuracy of the unlimited scheme on smooth parts of the solution while it prevents the
oscillations as well as the [DMP] on the discontinuous ones. Moreover a comparison between a
MUSCL method and the MOOD-P1, MOOD-P3 and MOOD P5 methods using [DMP→u2] on
isoline views of the slotted cylinder shows the improvement in using higher-order polynomials.
All results are obtained on a non-regular Delaunay mesh mixing coarse and fine zones.

→ Figure 3.20 p.103 for the profile views.
→ Figure 3.21 p.104 for the isoline views.

In 3D, we propose a H-like shape rotation test detailed in [28], in which a discontinuous profile
is rotated in the unit cube [0, 1]3 around the line going from the origin to (1, 1, 1). Periodic
boundary conditions are still considered and the final time tfinal = 2π is such that the exact
final solution corresponds to the initial one.

Section 3.3 or [28]: 3D Mixed-element Meshes

Since it is a novel test, we propose several views of the initialization of the problem. A first
one shows the H-like shape by means of an isosurface of value 1/2 along with the axis of ro-
tation. Then we propose to check the final result on the cut plane z = 1/2 in order to see if
spurious oscillations are present. At last, we pot an 3D elevation view of the initial solution on
this plane. The final solution is then presented for the unlimited P3 and P5 schemes and the
MOOD-P3 and MOOD-P5 methods using [DMP→ u2] detection process, where we highlight
in green cells which under/overshoot the exact solution.

→ Figure 3.37 p.140 for the complete initialization view.
→ Figure 3.38 p.141 for the final solution views.
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2.3 Application to the Hydrodynamics Euler equations

2.3.1 Equations and Finite Volume scheme

In this section, we describe the application of the MOOD method to the Euler hydrodynamics
system that governs the dynamics of non viscous gases. It is the non-linear hyperbolic system
of conservation laws given by

∂t

⎛⎜⎜⎜⎜⎝
ρ
ρu
ρv
ρw
E

⎞⎟⎟⎟⎟⎠+ ∂x

⎛⎜⎜⎜⎜⎝
ρu

ρu2 + p
ρuv
ρuw

u(E + p)

⎞⎟⎟⎟⎟⎠+ ∂y

⎛⎜⎜⎜⎜⎝
ρv
ρuv

ρv2 + p
ρvw

v(E + p)

⎞⎟⎟⎟⎟⎠+ ∂z

⎛⎜⎜⎜⎜⎝
ρv
ρuw
ρvw

ρw2 + p
w(E + p)

⎞⎟⎟⎟⎟⎠ = 0. (2.4)

We use the classical notation, that is ρ for density, u, v and w for velocity components in the
x, y and z directions respectively, p for the pressure and E for the total energy. This system is
closed by an Equation Of State (EOS) that relates two different thermodynamic variables; in
this thesis, we only consider the perfect gas law, given by

p = (γ − 1)ρε, (2.5)

where ε is the specific internal energy and γ the ratio of specific heats, while the total energy
writes

E = ρ

(
u2 + v2 + w2

2
+ ε

)
.

We moreover recall that the conservative variables of the system are U = (ρ, ρu, ρv, ρw,E),
while the primitive ones are (ρ, u, v, w, p). Finally as stated in sections 1.3.2 and 1.3.3, we shall
not consider the characteristic variables to design the scheme and the polynomial reconstruc-
tions are always performed on conservative variables.

Remark: The use of a perfect gas law is not restrictive in the sense that the scheme we
propose is independent of the EOS.

The complete numerical scheme is defined by equation (1.6) and equation (1.8), where the
numerical flux F is defined by determining the exact or an approximate solution to a Riemann
problem associated to the augmented one dimensional system in the direction normal to the
face under consideration. This technique is possible thanks to the rotational invariance of the
Euler equations. For all details concerning the resolution of the Riemann problem, the reader
is referred to chapter 4 of [78] for an exhaustive overview. In our study, we shall employ two
popular numerical fluxes. Considering two states UL and UR that are the rotated versions of
Un
ij,r and Un

ji,r, the Rusanov flux is given by

F(Un
ij,r, Uji,r,

n ,nij) =
F (UL) + F (UR)− S∗(UR − UL)

2

where the wave speed estimate S∗ is computed by

S∗ = max(|uL − aL|, |uL + aL|, |uR − aR|, |uR + aR|),
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using the speed of sound aK =

√
γpK
ρK

where K stands for L or R.

And the HLLC flux is defined by

F(Un
ij,r, U

,
ji,rn,nij) =

⎧⎪⎪⎨⎪⎪⎩
F (UL), if 0 ≤ SL

F∗(UL), if SL ≤ 0 ≤ S∗
F∗(UR), if S∗ ≤ 0 ≤ SR

F (UR), if 0 ≥ SR

,

where for K representing L or R, we have

F∗(UK) = F (UK) + S(UK)(U∗(UK)− UK),

with

U∗(UK) = ρK

(
S(UK)− uK

S(UK)− S∗

)
⎛⎜⎜⎜⎜⎜⎝

1
S∗
vK
wK

EK

ρK
+ (S∗ − uK)

(
S∗ +

pK
ρK(SK−uK)

)

⎞⎟⎟⎟⎟⎟⎠ ,

and the wave speed estimates are given by

SL = min(uL − aL, uR − aR),

SR = max(uL + aL, uR + aR),

S∗ =
pR − pL + ρLuL(S(UL)− uL)− ρRuR(S(UR)− uR)

ρL(S(UL)− uL)− ρR(S(UR)− uR)
.

The boundary conditions are treated in a classical way. First let us remark that the FacePD
of a boundary face is directly given by the CellPD since only one cell is connected to the face.
Then for each quadrature point on a boundary face, we consider an inside evaluation computed
from the polynomial on the connected cell and an outside value computed according to the
boundary condition. More precisely:
– for inflow boundary conditions: we prescribe the imposed values on the outside;
– for reflective boundary conditions: we duplicate values of density, tangential momentum
components and total energy while we take the opposite for normal momentum component;

– for outflow boundary conditions: we simply duplicate the inside values;
– for periodic boundary conditions: we refer the reader to section 2.2 for treatment details.

Finally we choose to consider only one CellPD per cell and two FacePD per face, that is to
say all conservative variables are evaluated with the same polynomial degree. Though more
refined adaptations could be envisaged, this proposition already provides good results for our
applications.

2.3.2 Detection process

Contrary to the convection equation, numerous and stronger constraints apply to the variables
of this system. In particular the density ρ, pressure p and internal energy ε must be positive.
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The a posteriori essence of the method radically simplifies the way to enforce positivity of these
variables. Indeed while most of existing multidimensional (a priori) higher-order methods do
not guarantee the positivity-preserving property, we only have to put into the set of detection
criteria A the conditions ρ�i > 0 and p�i > 0. In the sequel, such a detection process is called
Physical Admissibility Detection (PAD) and the following theorem holds.

Theorem 2.8 Let {Un
i }i∈Eel =

{
ρni , (ρu)

n
i , (ρv)

n
i , (ρw)

n
i , E

n
i

}
i∈Eel be a positivity-preserving so-

lution at time tn and let A corresponds to the PAD, namely ρ�i > 0 and p�i > 0. If the FacePD
strategy is upper-limiting and the first-order Godunov method is positivity-preserving, then the
MOOD algorithm always converges and provides a solution at time tn+1 which satisfies ρn+1

i > 0
and pn+1

i > 0 for all i ∈ Eel under the CFL condition of the first-order scheme (1.4).

Proof: We first recall that most of first-order Godunov schemes (1.4) provide a positivity-
preserving solution under a CFL stability condition, thus this condition is not restrictive. Then
theorem 2.5 implies that the candidate solution is always acceptable. Either the solution is A-
eligible, i.e. positivity-preserving, or the solution is computed from the first-order scheme which
also provides a positivity-preserving solution. Consequently each candidate solution of the three
steps of the RK3-TVD is positivity-preserving under the CFL of the first-order scheme and the
final solution is positivity-preserving as a convex combination of the three candidate solutions.

�

Remark: Note that in the case of a perfect gas law the positivity of density and pressure
implies the positivity of energy. In the case of other gas laws, we would simply include the
positivity of energy in the set of criteria A.

Remark: We emphasize that since we do not limit the reconstructed values a priori, they
may be non-physical (e.g. negative density or total energy) at quadrature points. Consequently
from a programming point of view, the calculated fluxes will be returned as a Not-a-Number
(NaN) but we do treat this situation a posteriori. This is easily done by also checking if density
or pressure is a NaN (Not-a-Number) via the function ISNAN in Fortran.

This important result highlights the potentiality of such an a posteriori concept. Nevertheless
the PAD does not ensure a solution free of spurious oscillations and a complementary filter has
to be designed. To this end, we remark that numerical non-physical oscillations always violate a
Discrete Maximum Principle. Consequently the DMP may be relevant as second detection filter
although the continuous solution of the Euler equations does not fulfill a maximum principle.
Furthermore, we recall that the Euler system with constant pressure and velocity corresponds
to a convection equation on the density. Therefore the u2 detection criterion is applied as a
third filter to relax the DMP and recover the results of previous section.

Finally numerous numerical results have shown that the detection process [PAD→DMP→u2]
provides good results when the [DMP→u2] part is only performed on the density. Indeed the
detection and decrementing procedures of the MOOD method are decoupled, and it is relevant
to perform the detection on only one variable that is affected by all types of waves, like density,
since decrementing affects all variables.
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0. Initialization of CellPD di = dmax, ∀i ∈ Eel
Do while (solution is not acceptable)

1. Polynomial reconstruction of degree di, ∀i ∈ Eel
2. Computation of FacePD dij and Evaluation of high-order approximations

Un
ij,r at quadrature points qij,r with degree dij, ∀i ∈ Eel, ∀j ∈ ν(i), ∀r = 1, .., Rij

3. Solution mean values update using equation (1.5)
4. Detection process [PAD→DMP→u2]:

If candidate fulfills the Physical Admissibility Detection then
If candidate ρ�i does not fulfill the DMP of equation (2.3) then

If it is not a smooth extrema according to the u2 detection criterion then
Decrement the CellPD di

end if
end if

else
Decrement the CellPD di

end if
end do

Figure 2.5: The detection process for the Euler system [PAD→DMP→u2].

An algorithm of the [PAD→DMP→u2] detection process is given in Figure 2.5.

To conclude this section, we would like to underline some implementation details about the
detection process. Actually in the above algorithm, the [PAD→DMP→u2] performs well but
does not completely provide very high-order on smooth solutions (say, the isentropic vortex in
motion for instance, see next section for details). Deeper investigations show that the vortex
profile is appropriately detected as smooth but that some decrementings occur on the flat part,
i.e. plateaus, of the solution. This problem is due to the treatment of small curvatures in
the u2 detection criterion which detects some spurious micro-oscillations as non smooth. More
precisely, the same sign condition is not relevant when both curvatures are of the size of an
epsilon. The following corrected definition of the u2 detection criterion fixes the problem.

Definition 2.9 (u2 detection criterion) A candidate solution U�
i in cell Ki for which the

density ρ�i violates the DMP is nonetheless eligible if

Xmax
i Xmin

i > −δ and

(
max

(|Xmax
i |, |Xmin

i | < δ or

∣∣∣∣Xmin
i

Xmax
i

∣∣∣∣ ≥ 1/2

)
,

and Ymax
i Ymin

i > −δ and

(
max

(|Ymax
i |, |Ymin

i | < δ or

∣∣∣∣Ymin
i

Ymax
i

∣∣∣∣ ≥ 1/2

)
,

and Zmax
i Zmin

i > −δ and

(
max

(|Zmax
i |, |Zmin

i | < δ or

∣∣∣∣Zmin
i

Zmax
i

∣∣∣∣ ≥ 1/2

)
,

where δ is the longest one dimensional geometrical entity of cell Ki.
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We would like to emphasize that the value of δ has been set following numerous test cases,
and does not alter the capacity of the method to capture discontinuous profiles, while it is a
necessary improvement to fully reach very high-order for the Euler system. It is worth noticing
that this correction has even been tested for the convection equation without any loss in the
quality of results. Furthermore we would like to point out that this modification only relaxes
small oscillations. Indeed in the case when the product of minimal and maximal curvatures is
satisfying left condition and maximal curvatures is big compared to δ (say O(1)) the condition
on the ratios of curvatures will ensure that the underlying function is considered as non regular.

In the same way, we slightly relax the DMP criteria to reduce the computational effort to avoid
the waste of resources when performing the u2 detection criterion on plateaus. We consider
that a DMP violation is not relevant if

max
j∈ν(i)

(ρRK
i , URK

j )− min
j∈ν(i)

(ρRK
i , URK

j ) < δ3

where we use notation RK as in equation (2.3) and δ is set as in definition 2.9. Note that the
purpose of this relaxation is to improve efficiency while maintaining the quality of results. It
has been numerically verified for both the convection equations and the Euler system.

2.3.3 Numerical results

A substantial number of relevant numerical tests has been published in [18, 27] and shall be
in [28]. Therefore we have chosen to reference all the numerical tests reproduced in chapter 3.
Each reference is thus commented to emphasize the interest of the test case.
Results are presented in three complementary paragraphs. We refer to convergence test cases
in the first paragraph while the second and third ones are dedicated to numerical results ob-
tained with the [PAD] and [PAD → DMP → u2] detection processes respectively. Note that
comparisons with the [PAD→DMP→ u2] results always accompany the [PAD] ones. It thus
supports the non-oscillatory behavior of the MOOD method using the [PAD→DMP→u2].

� Convergence studies

There exist at least three popular convergence test cases that employ an exact solution to
the Euler equations, namely the Ringleb flow, the steady isentropic vortex and the isentropic
vortex in uniform motion. We do not consider the former since curved boundaries are manda-
tory, and we only run the vortex in motion since the second-order error generated by non-linear
combinations of mean values (see section 1.3.2) does not affect the steady version. Details of
the initialization can be found in [27] or [28].

Section 3.2 or [27]: 2D Polygonal Meshes

Tables with L1 and L∞ errors and rates along with corresponding convergence curves figures
are given for the MOOD-P2, MOOD-P3 and MOOD-P5 methods. Only the [PAD] detection
processes is considered and effective higher-order is reached up to 6th-order while a comparison
is drawn between performing the reconstruction on the conservative variables and the primitive
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ones in order to prove the claim of section 1.3.2. Moreover since the correction proposed in
definition 2.9 was not investigated at that time, the [PAD] and [PAD→DMP→ u2] did not
reach the optimal order of convergence.

→ Table 3.14 p.106 and Figure 3.22 p.107 for a series of regular triangular meshes.

Section 3.3 or [28]: 3D Mixed-element Meshes

Tables with L1 and L∞ errors and rates are given for the MOOD-P2, MOOD-P3 and MOOD-
P5 methods using the [PAD → DMP → u2] detection process given by definition 2.9. The
correction brought to the u2 detection criteria enables to reach a full order of convergence up
to 6th-order.

→ Table 3.18 p.147 and Figure 3.42 p.146 for a series of hexahedral and pyramidal meshes.

� Euler with [PAD]

In this part we reference results computed with the MOOD method using the [PAD] detec-
tion process. We recall that the [PAD] is only intended to ensure a physical solution and do
not prevent spurious oscillations. Consequently the results presented below numerically assess
the theorem 2.8 about the positivity-preserving property.

Section 3.2 or [27]: 2D Polygonal Meshes

Result to the Double Mach reflection of a strong shock problem is given for the MOOD-P5
method on a mesh of 102,720 cells obtained by refinement of a coarser Delaunay one.

→ Figure 3.25 p.112 provides global and zoomed views.

Result to the Noh test case is given for the MOOD-P3 method on a circular polygonal mesh.
Note that our implementation of the MUSCL method creates negative pressures and crashes.

→ Figure 3.26 p.114 provides a 2D density-colored view and density vs radius one.

Section 3.3 or [28]: 3D Mixed-element Meshes

Result to the 3D explosion problem is given for the MOOD-P5 method on a mesh of [0, 1]3

with 48,000 regular mesh of pyramids.

→ Figure 3.47 p.152 for a density vs radius view.

� Euler with [PAD→DMP→u2]

In this part we reference results computed with the MOODmethod using the [PAD→DMP→
u2] detection process and should be compared to the state-of-the-art results. Some references
are duplicated from the previous part and thus correspond to results for which a comparison
between [PAD] and [PAD→DMP→u2] is proposed to support the non-oscillatory property of
the latter.
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Section 3.1 or [18]: 2D Cartesian Meshes

Note that all results referred herein are obtained with the [DMP] detection process alone.

Results to the Sod shock tube are given for the MUSCL, MOOD-P1 and MOOD-P2 methods.

→ Figure 3.8 p.75 for a uniform 100− 10 Cartesian mesh.
→ Figure 3.9 p.77 for a non-uniform 100− 10 Cartesian mesh.

Results to a four-states Riemann Problem are given for the MUSCL, MOOD-P1 and MOOD-
P2 methods. The classical isoline view and a 3D elevation one are shown.

→ Figure 3.10 p.78 for a uniform 400− 400 Cartesian mesh.

Results to the Mach 3 wind with a step problem are given for the MUSCL, MOOD-P1 and
MOOD-P2 methods.

→ Figure 3.11 p.80 for complete isoline views on a uniform 120− 40 Cartesian mesh.
→ Figure 3.12 p.81 for complete isoline views on a uniform 480− 160 Cartesian mesh.

Results to the Double Mach reflection of a strong shock problem are given for the MUSCL,
MOOD-P1 and MOOD-P2 methods.

→ Figure 3.13 p.82 for complete isoline views on a uniform 480− 120 Cartesian mesh.
→ Figure 3.14 p.83 for zoomed isoline views on uniform finer Cartesian meshes.

Section 3.2 or [27]: 2D Polygonal Meshes

Results to the Lax shock tube are given for the MOOD-P3 method. We propose a comparison
with the WENO4 method and show very good non-oscillatory behavior for the MOOD method.

→ Figure 3.23 p.108 for a uniform 100− 10− 2 triangular mesh.

Results to the Double Mach reflection of a strong shock problem are given for the MOOD-P2,
MOOD-P3 and MOOD-P5 methods on a mesh of 102,720 cells obtained by refinement of an
original coarse Delaunay one. We plot usual isolines views and give a computational costs com-
parison in terms of CPU and memory storage which shows the efficiency of the MOOD method.

→ Figure 3.24 p.110 for complete isoline views.
→ Figure 3.25 p.112 for a zoomed isoline view of the MOOD-P5 result.
→ Table 3.16 p.111 for a computational costs comparison.

Result to the Noh test case is given for the MOOD-P3 method on a circular polygonal mesh.
Note that our implementation of the MUSCL method creates negative pressures and crashes.

→ Figure 3.26 p.114 provides a 2D density-colored view and density vs radius one.
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At last, we propose a realistic test case of the impact of a shock on a cylindrical cavity
extracted from [72]. The simulation is carried out on a non-regular polygonal mesh that contains
degenerated cells. The result shows that the MOOD method is able to capture complex physics
even on a second-rate mesh.

→ Figure 3.29 p.117 for top view at different times.
→ Figure 3.30 p.118 for zoomed views on instabilities.

Section 3.3 or [28]: 3D Mixed-element Meshes

Results to the Sod and Lax shock tubes are given for the MOOD-P3 method on a tetrahedral
mesh of a tube of unit length. The results shows that the MOOD method is able to capture
simple waves without oscillations.

→ Figure 3.40 p.143 for density vs radius views.

Results to the Blastwave and Shu-Osher problem are given for the MOOD-P3 method on a
regular pyramidal mesh of a tube of unit length. The results show that the MOOD method is
able to catch complex structures while preventing spurious oscillations on shocks and contact
discontinuities.

→ Figure 3.41 p.144 for density vs radius views.

Result to the impact of a shock wave on a cylindrical cavity is given the MOOD-P2 method
on a mesh made of triangular and quadrangular prisms. This test case proves that the MOOD
method is able to simulate complex realistic physics on a mesh of prisms.

→ Figure 3.44 p.149 for density gradient views at several times.
→ Figure 3.45 p.150 for a zoom on created instabilities.

Results to the 3D explosion problem is given for the MUSCL, MOOD-P2, MOOD-P3 and
MOOD-P5 methods on a mesh of [0, 1]3 with 48,000 regular mesh of pyramids. The first figure
gathers results of all methods and show the improvement of using higher-order polynomials,
while in the second figure a comparison is drawn between the MOOD-P5 method with [PAD]
and with [PAD → DMP → u2] which highlights the non-oscillatory improvement. Finally a
comparison of computational costs in terms of CPU and memory storage is given in the last
reference and shows that the MOOD method is very efficient.

→ Figure 3.46 p.151 for a density vs radius view with all methods results.
→ Figure 3.47 p.152 for an all points density vs radius view.
→ Table 3.19 p.153 for a computational costs comparison.

At last, result to the interaction of a shock wave with a quarter of cone is given for the MOOD-
P3 method on a mesh of 1.1 million of tetrahedra to support the efficiency of the MOOD method
on simple workstations.

→ Figure 3.48 p.155 for numerical Schlieren-type images on the Ox−Oy and Ox−Oz planes.
→ Figure 3.49 p.156 for a 3D plot of the main density isosurfaces.
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2.4 Key optimizations

In this section, we first present two simple but mandatory optimizations to radically improve
the efficiency of the presented MOOD method. Then we discuss the parallelization of the
MOOD method and complete this chapter by providing in Figure 2.6 a detailed flowchart of
the MOOD method as it is currently implemented in our 3D code.

� Local re-updating

At first sight, the MOOD method seems computationally expensive because of the iterative
nature of the MOOD algorithm since we have to repeat the spatial high-order scheme several
times while polynomial degrees have been modified on only some cells. However we remark
that in the high-order scheme (1.5), the time update of the solution mean value on a cell only
involves the informations on the neighbors by face. Therefore, inside the MOOD algorithm, it
is only necessary to recompute cells that have been detected and their neighbors by face. This
is a drastic optimization since in most cases solution is acceptable for more than 80–90% of
cells, even when solution contains shocks.

Practically speaking, the simplest implementation of this optimization is to use a table of one
logical element per cell that contains the information on the acceptability of the cell, coupled
with a simple if test at the beginning of the loop over cells in the MOOD algorithm and the
same kind of technique may be used for a loop over faces if needed. This implementation is
described in Figure 2.6 by the use of two tables, namely DetCell and DetFace, and has been used
in our sequential code where its efficiency has been confirmed. Nevertheless it may have non-
desired behavior in a massively parallelized code. Therefore a more parallel-like implementation
would be to use tables of detected cells and detected faces, initialized with all cells and faces
as detected. On the one hand it would demand an extra computational cost to fill the table of
detected cells but on the other hand it would improve the management of the charge balance
between nodes of the cluster.

� Reduced polynomial degree decrementing

In the above presentation of the MOOD method, we did not specified how the decrementing
is performed. The natural decrementing is to drop one-by-one polynomial degrees until zero is
reached. However this may be costly in CPU time and even more in memory since reconstruction
matrices would have to be stored for all degrees (it would nonetheless still be less memory
consuming than for (W)ENO methods in most cases). Moreover in all the numerical tests we
have observed that it is useless to consider so many different degrees since most of the time if
the highest-order scheme fails, a discontinuity is to be expected. However it is worth testing
one more degree than the highest one, especially because the size of the reconstruction stencil
is much smaller for lower degrees (1 or 2).

Hence we advise to decrement from highest degree to degree 2 and then to degree 0, for at
least two reasons: the symmetry brought by a degree 2 reconstruction (diffusive error), and
because the quadratic reconstruction is used in the u2 detection processes presented in section
2.2 and 2.3. At the end, we only store two reconstruction matrices per cell, one for the maximal
degree and one for the degree two. It is then important to note that already in 2D the memory
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cost of a matrix for degree 2 (about 10 times 5 elements) is much smaller compared to a matrix
of greater degree (about 16 times 9 for P3 and about 28 times 20 for P5). And it is even more
relevant in 3D where the P2 reconstruction matrix represents about 16 times 9 elements while
it is about 38 times 19 for P3 and 110 times 55 for P5.

� Perspectives for parallelization

Considering today capabilities of many high-performance computers, the next major opti-
mization that should be investigated is the parallelization of the MOOD method. There are
currently three major parallelizations techniques: the OpenMP 1 for workstation with shared
memory, the MPI 2 for massively parallel cluster with distributive memory and the GPGPU 3

to perform parallel operations on graphics cards or accelerators. It is moreover possible to
combine them to obtain a hybrid parallelization.
Whichever type of parallelization we choose, the major purpose is to speed-up the simulations
by a factor close to the number of processors we use. If so, some large simulations can be carried
out in a reasonable time whereas they are not achievable on sequential machines. For instance a
one-year sequential simulation might run in one day with a 400 cores cluster, or even in one hour
with 10000 cores one. Nevertheless there is another interesting purpose to the massive paral-
lelization on clusters using MPI. Indeed the memory storage is limited on a workstation (about
512 Go nowadays) while using the distributive memory of a cluster it becomes almost unlimited.

In the context of the MOOD method, these observations are still valid but the important
savings in memory storage (compared to (W)ENO methods as instance) change the importance
of the above remark. Indeed, as mentioned in [28] it is possible to run a 1 million cells Euler
simulation with the fourth-order MOOD-P3 method with only 16 Go of memory. Therefore a
computation up to about 30 millions cells is possible on a single workstation. We believe that
this is an important improvement in regard to existing very high-order Finite Volume methods.
Two important consequences result: the OpenMP parallelization is still suitable for realistic
simulations since a today workstation can contain up to 64 cores and 512 Go of memory and
these capacities are always growing; it makes realistic higher-order computations available to
individuals and small companies since a complete up-to-date workstation costs less than ten
thousands euros which is negligible compared to the millions of euros that a cluster costs (with-
out taking the maintaining into account).

We have implemented an OpenMP version of our 3D code with about ten OpenMP directives
and obtain a speed-up factor of two-to-three on a four-cores processor. However as stated in
the first paragraph of this section, the method to deal with detected cells is not optimized for
parallelization and may ruin the scalability on more than 4 cores. Furthermore it is noteworthy
that the structure of the code has to be thought in advance to ensure an efficient parallelization,
and this was not the case of our code. Going further in the reasoning, we can remark that our
method is purely an unlimited one until the detection process is reached, and so there is no
reason for this part of the code to cause more problems than for existing parallelized methods.
In regard to the detection process, all informations needed in the detection criteria we proposed

1. Open Multi-Processing 2. Message Passing Interface 3. General-Purpose Processing on Graphics Processing
Units
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are local, i.e. restricted to the neighbors by nodes, which is very suitable for parallelization.
Finally the reconstruction process has to be efficiently parallelized since it is one of the main
costly part of the code. A first remark is that requiring the very same number of neighbors
for each reconstruction stencil may be an important point for the charge balance. A second
point is proposed in appendix B where we first write each polynomial coefficient as a linear
combination of the stencil mean values and discuss the way to obtain the curvatures for the u2
detection process. Then as an extension of the reasoning, we write the higher-order evaluations
at a quadrature points as linear combinations of the stencil mean values. This may be an
interesting way to merge the two steps (polynomial coefficients computation and evaluation of
polynomial at quadrature points) currently used and consequently improve the scalability.
In the near future, the parallelization of the MOOD method shall complete the proof of
efficiency of the MOOD method.

Conclusion

In the first part of this chapter, we have developed a complete mathematical framework to
handle the a posteriori essence of the MOOD method. Then, the application of the concept to
the linear convection equation and the non-linear Euler equations has been carefully detailed
and supported by a list of significant published (or to-be-published) numerical tests. At last,
we have provided simple optimizations that make the MOOD method one of the most efficient
very high-order Finite Volume method currently available.
Throughout the chapter, we have pointed out the novelty of the approach and particularly
the simplicity of the method to enforce strong constraints independently of the mesh and the
domain spatial dimension. For instance the solution can be constrained in prescribed bounds
(positivity of density, mass or volume fraction bounded by 0 and 1, etc.) if the first-order
scheme ensures this property. This is of crucial importance to ensure the robustness of the
method when applied to complex realistic simulations.
Apart from the a posteriori approach, two other original ideas have contributed to guarantee
the quality of results at the state-of-the-art standards level. The first one is the u2 detection
criteria which provides a definition to a numerically smooth function in our context. It allows
to overcome the second-order limitation of a strict application of the DMP on mean values,
and thus to reach arbitrary high-order of convergence. Up to our knowledge, such a definition
has never been proposed before. The second crucial idea, that applies in the case of vectorial
problems, is to separate the variables on which the detection is performed from the ones that
are limited. Basically, this is workable thanks to the a posteriori treatment which intrinsically
separates the detection process from the decrementing one.
Finally we believe that the MOOD method has been proved to be a viable and efficient alter-
native to existing very high-order Finite Volume methods and moreover to ensure appreciable
properties (DMP, positivity-preserving, etc.) with an outstanding easiness.

The next chapter is dedicated to a review of the MOOD method design for the hydrodynamics
Euler equations through the three journal publications. We give a short summary along with
a review of the problems we encountered and the ones we corrected in order for the reader to
understand the final design of the a posteriori MOOD method.
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Figure 2.6: Complete flowchart of the MOOD method.
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Chapter 3

Towards the MOOD method for the
Hydrodynamics Euler System.

In chapters 1 and 2, we have presented an up-to-date version of the MOOD method for the
hydrodynamics Euler equations. Naturally, the design has involved numerous stages during
the three years of this doctorate leading to the suitable final ingredients. Through the history
of the three main publications, we intend in this chapter to help the reader to figure out the
details of the MOOD method.
This chapter is divided in three sections where we reproduce the two published articles [18, 27]
and the submitted one [28] in order of appearance. Moreover, all papers reproduced hereafter
are preceded by a summary & review paragraph in which we recap the main ideas contained in
the paper and propose a retrospective review pointing out the problems that were not settled
at the time of the paper. This way, we intend to enlighten the reasons for the final concepts of
the MOOD method.

3.1 Part I: 3rd-order accuracy on 2D Cartesian meshes

This section is dedicated to the first publication introducing the MOOD method. The refer-
ence is:

S. Clain, S. Diot, R. Loubère, A high-order finite volume method for systems of conservation
laws – Multi-dimensional Optimal Order Detection (MOOD), J. Comput. Phys. 230 (2011)
4028–4050.

In next paragraph, we sum up the content of the publication and highlight with hindsight
the pros and cons of the MOOD method at that time. We then reproduce the paper from the
abstract to the conclusion only correcting the misprints and modifying the references to fit the
global bibliography.

Summary & Review

The article was the first step toward the a posteriori concept presented in this thesis. Most
of the ingredients we developed in chapter 2 were introduced: genuinely multidimensional

53



CHAPTER 3. TOWARDS THE MOOD METHOD FOR EULER

polynomial reconstruction, CellPD, FacePD (EdgePD since it was 2D), a posteriori detection
process, decrementing procedure. Although the study was restricted to Cartesian meshes (but
not necessarily uniform) and to linear and quadratic reconstructions, the main characteristics
of the MOOD method were already present in the numerical tests. Actually, the second-order
MOOD-P1 method performed better than the classical MUSCL method on non-uniform meshes
for an equivalent cost when convection equation and Euler system are considered. Furthermore
the MOOD-P2 results showed promising improvements in the quality of the solution, and a very
good aptitude of the MOOD method to capture discontinuities without spurious oscillations
for the hydrodynamics Euler equations. At last, a brief cost comparison between the MUSCL
method and the MOOD-P1 and MOOD-P2 ones demonstrated that the proposed method had
strong basis to be efficient.

These investigations led this paper to be a first proof of efficient feasibility of an a posteriori
concept for limitation. Nevertheless we would like to highlight four points in this paper that
needed to be treated.

The first one deals with the polynomial reconstruction. Contrary to what we have proposed
in chapter 2, we did not use one polynomial reconstruction per degree but a truncation of
the maximal degree one in order to obtain the lower degree reconstructions. This technique is
valid and ensures the right order of convergence, but always involves the large stencil of the
maximal polynomial degree. We discovered that using a lower-degree reconstruction with a
smaller stencil produces better approximations of discontinuities.

The second remark comes from a question that has arisen at the HONOM2011 conference.
Actually in this first publication, when solving the Euler equations, we checked if the quadra-
ture points evaluations of the polynomials were physical or not, and replaced the high-order
approximations by the mean value if not. As suggested during the after-talk questions session,
this may be seen as an a priori limitation. Consequently a simple modification based on the
NaN convention fixed this problem and the method has become totally a posteriori.

The next point concerns the use of the strict DMP on mean values alone in the detection
process, that locks the scheme to second-order in L∞ norm (and third-order in L1 norm). We
have observed this limitation when carrying out the Double Sine Translation test case and knew
that the DMP was responsible for this accuracy discrepancy. Actually even in the second-order
MUSCL method, a full second L∞ rate of convergence is never reached because the limiting
principle is to ensure a DMP on mean values. However in the case of the hydrodynamics Euler
equations, the second-order lock had an additional cause that was sharper and is the purpose
of the last point.

At the time of the paper, we were new comers in the field of very high-order Finite Volume
methods and discovered that performing the polynomial reconstruction from primitive vari-
ables mean values (in the Euler context), also creates a second-order error. We would like to
emphasize that this point is mostly not stated in the literature and that there exist very high-
order Finite Volume schemes based on primitive variables. It is even more subtle since this
second-order error does not occur for at least two classical test cases for convergence, namely
the Ringleb flow problem and the steady isentropic vortex. Note that these two last points
appear in the section 1.3.2.

54



CHAPTER 3. TOWARDS THE MOOD METHOD FOR EULER

Abstract

In this paper, we investigate an original way to deal with the problems generated by the
limitation process of high-order finite volume methods based on polynomial reconstructions.
Multi-dimensional Optimal Order Detection (MOOD) breaks away from classical limitations
employed in high-order methods. The proposed method consists of detecting problematic situ-
ations after each time update of the solution and of reducing the local polynomial degree before
recomputing the solution. As multi-dimensional MUSCL methods, the concept is simple and
independent of mesh structure. Moreover MOOD is able to take physical constraints such as
density and pressure positivity into account through an “a posteriori” detection. Numerical
results on classical and demanding test cases for advection and Euler system are presented on
quadrangular meshes to support the promising potential of this approach.

3.1.1 Introduction

High-order methods for systems of nonlinear conservation laws are an important challenging
question with a wide range of applications. Furthermore in an engineering context such meth-
ods may deal with complex multi-dimensional domains requiring unstructured, heterogeneous
or even non-conformal meshes. To handle highly stretched unstructured meshes made with
different cell shapes, one has to design genuinely multi-dimensional numerical methods which
exclude dimensional splitting techniques.
Due to its simplicity (one unknown mean value per cell) and built-in conservativity property,
first-order finite volume method is very popular in today’s engineering applications or commer-
cial codes. However, it suffers from a major drawback, namely the presence of a large amount
of numerical diffusion leading to a poor accuracy and over smoothed discontinuities. High-
order space and time finite volume methods based on local polynomial reconstructions and
Runge-Kunta algorithm have been developed to improve the approximation accuracy. MUSCL
methods are probably the most popular second-order finite volume schemes. First developed
in the one-dimensional situation with linear reconstructions [48, 84, 49, 50], the technique has
been extended to genuinely multi-dimensional case using structured or unstructured meshes
[8, 7, 42, 94, 20, 62, 13]. Stability is achieved using a limiting procedure based on the Maxi-
mum Principle. In the present study, the Multi-dimensional Limiting Process (MLP) of [94, 62]
is employed since it is one of the most up-to-date MUSCL methods. Besides, (Weighted) Es-
sentially Non Oscillatory polynomial reconstruction procedures (ENO/WENO) were designed
to reach higher-order of accuracy [39, 40, 1, 70, 69] using less restrictive conditions for the
limitation which do not guarantee a strict Maximum Principle for scalar problems. More-
over, although ENO/WENO schemes can retain high-order spatial accuracy even at points of
extrema, extra difficulties and complexities have to be faced for the implementation on multi-
dimensional unstructured grids (see [1, 92]) as a large number of stencils for the polynomial
reconstructions must be proceeded. Such drawbacks lead us to put ENO/WENO methods
aside from the present study.
In this work we propose a genuinely multi-dimensional high-order method within a finite volume
Eulerian framework on non-uniform meshes, the Multi-dimensional Optimal Order Detection
(MOOD) method. In contrast to the traditional methods which use an a priori limitation
procedure, the MOOD technique is based on an a posteriori detection of problematic cells.
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In each cell optimal polynomial degrees are determined to build approximated states leading
to a discrete maximum principle preserving solution. In an hydrodynamics context, physical
properties such as the density and the pressure positivity are considered. Roughly speaking,
the polynomial degree may drop to zero in the vicinity of discontinuities leading to a local sta-
ble first-order finite volume scheme whereas high-order scheme is achieved in smooth regions.
As for other methods, the MOOD method is embedded into the sub-steps of a high-order
Runge-Kutta time discretization.

The paper is organized as follows. Section 3.1.2 is dedicated to the generic framework used
to describe the MOOD method. Section 3.1.3 is devoted to the linear reconstruction and to
a short presentation of the MLP method [94, 62]. The MOOD method for scalar problems is
detailed in the fourth section while section 3.1.5 is dedicated to an extension of MOOD method
to the Euler equations. At last, the numerical results for the advection and the Euler equations
problems are respectively gathered in sections 3.1.6 and 3.1.7. Classical tests are carried out
and comparisons to the results of MLP method are provided. Several numerical examples prove
the efficiency of the MOOD method in its second- and third-order version. The last section
finally gathers conclusion and perspectives.

3.1.2 General framework

We consider the generic scalar hyperbolic equation defined on a domain Ω ⊂ R
2, t > 0 cast in

the conservative form

∂tu+∇−F (u) = 0, (3.1a)

u(−, 0) = u0, (3.1b)

where u = u(x, t) is the unknown function, x = (x1, x2) denotes a point of Ω and t the time.
F is the physical flux and u0 is the initial condition. Boundary conditions shall be prescribed
in the following.
To elaborate the discretization in space and time, we introduce the following ingredients. We
assume that the computation domain Ω is a polygonal bounded set of R2 divided into quad-
rangles Ki, i ∈ Eel where Eel is the cell index set with ci being the cell centroid. For each cell
Ki, λ(i) is the set of all the nodes Pm, m ∈ λ(i) while eij denotes the common edge between Ki

and Kj with j ∈ ν(i), ν(i) being the index set of all the elements which share a common side
with Ki. Moreover, ν(i) represents the index set of all Kj such that Ki ∩ Kj �= ∅ (see figure
3.1). At last, |Ki| and |eij| measure the surface of Ki and the length of eij respectively and nij

is the unit outward normal vector of Ki.
To compute an approximation of the solution of equation (3.1), we recall the generic first-order
explicit finite volume scheme

un+1
i = un

i −Δt
∑
j∈ν(i)

|eij|
|Ki| F(u

n
i , u

n
j ,nij), (3.2)

where F(un
i , u

n
j ,nij) is a numerical flux which satisfies the classical properties of consistency

and monotonicity.
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Figure 3.1: Mesh notation. Ki is a generic element with the centroid ci. Index set ν(i) corresponds to blue
cells with dots, ν(i) corresponds to every non-white cells and λ(i) is the set of red Pm node indexes. Edges are
denoted by eij with nij the unit outward normal vector of element Ki. Numerical integration on edge eil is
performed with the two Gauss points q1

il, q
2

il.

Unfortunately, such a scheme only provides first-order accuracy in space and higher-order
reconstruction techniques are used to improve the solution approximation. To this end, we
substitute in equation (3.2) the first-order approximation un

i and un
j with better approximations

of u on the eij edge and consider the generic spatial high-order finite volume scheme

un+1
i = un

i −Δt
∑
j∈ν(i)

|eij|
|Ki|

R∑
r=1

ξrF(u
n
ij,r, u

n
ji,r,nij), (3.3)

where un
ij,r and un

ji,r, r = 1, ..., R are high-order representations of u on both sides of edge eij
and ξr denote the quadrature weights for the numerical integration. In practice, un

ij,r and un
ji,r

are two approximations of u(qrij, t
n) at quadrature points qrij ∈ eij, r = 1, ..., R (see figure 3.1).

For the sake of simplicity, let us write the scheme under the compact form

un+1
h = un

h +Δt HR(un
h), (3.4)

with un
h =

∑
i∈Eel u

n
i 1IKi

the constant piecewise approximation of function u and operator HR

being defined as

HR(un
h) :=

∑
i∈Eel

⎛⎝−
∑
j∈ν(i)

|eij|
|Ki|

R∑
r=1

ξrF(u
n
ij,r, u

n
ji,r,nij)

⎞⎠ 1IKi
. (3.5)

To provide a high-order method in time, we use the third-order TVD Runge-Kutta method
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(see [70]) which corresponds to a convex combination of three explicit steps

u(1)

h = un
h +Δt HR (un

h) , (3.6a)

u(2)

h = u(1)

h +Δt HR(u(1)

h ), (3.6b)

u(3)

h =

(
3un

h + u(2)

h

4

)
+Δt HR

(
3un

h + u(2)

h

4

)
, (3.6c)

un+1
h =

un
h + 2u(3)

h

3
. (3.6d)

Remark 3.1 Note that a high-order scheme in space and time can be rewritten as convex
combinations of the first-order scheme. From a practical point of view, implementation of the
high-order scheme from an initial first-order scheme is then straightforward. �

The main challenge is to build the approximations un
ij,r and un

ji,r on both sides of edge eij with
r = 1, ..., R to be plugged into relations (3.5) and (3.6). Polynomial reconstructions provide
high-order approximations but unphysical oscillations arise in the vicinity of discontinuities.
Indeed, the exact solution of an autonomous scalar conservation law (3.1) satisfies a local
Maximum Principle and we intend to build the reconstructions such that this stability property
is fulfilled at the numerical level (see [16, 17] and references herein). To this end, we state the
following definition.

Definition 3.2 A numerical scheme (3.4) satisfies the Discrete Maximum Principle (DMP) if
for any cell index i ∈ Eel one has

min
j∈ν(i)

(un
i , u

n
j ) ≤ un+1

i ≤ max
j∈ν(i)

(un
i , u

n
j ). (3.7)

3.1.3 A short review on a multi-dimensional MUSCL method

All L∞ stable second-order schemes are based on piecewise linear reconstructions equipped
with a limiting procedure. The polynomial reconstruction provides the accuracy while the
limitation algorithm ensures the physical relevancy of the numerical approximation. We briefly
present the piecewise linear reconstruction step and recall the MLP method proposed in [62]
which is used in the numerical part of this paper.

3.1.3.1 Linear reconstruction

Let (ui)i∈Eel be a set of cell centered mean values given on cells Ki. In order to simplify
notations, let K be a generic cell with centroid c = (c1, c2). Considering mean values on a
chosen neighborhood made of cells Kj, j ∈ ν, we seek a polynomial function ũ(x) of degree
d = 1. Let us define the notation for the mean value as〈

ũ(x)
〉
K

def
=

1

|K|
∫
K

ũ(x)dx.

Usually we ask for the following criteria
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Criterion 3.3 The polynomial reconstruction ũ must fulfill

1.
〈
ũ(x)

〉
K
= ū where ū is the mean value approximation of u on K.

2. The polynomial coefficients are the ones minimizing the functional

E(ũ) =
∑
j∈ν

(
uj −

〈
ũ(x)

〉
Kj

)2

, (3.8)

A classic way to write ũ is

ũ(x) = ū+G−(x− c), (3.9)

where G = (G1 , G2) is a constant approximation of ∇u on K. The first condition of criterion
3.3 is directly satisfied and classical techniques like least squares methods are used to determine
vector G that minimizes the functional E in equation (3.8) .

3.1.3.2 Gradient limitation

As we mentioned above, a finite volume scheme only based on a local polynomial reconstruc-
tion without limiting procedure produces spurious oscillations. Initiated by the pioneer works
of Kolgan and Van Leer [48, 49, 84, 50], the MUSCL technique deals with a local linear re-
construction like (3.9) on each cell K where the gradient G is reduced by a limiter coefficient
φ ∈ [0, 1]

ũ(x) = ū+ φ (G−(x− c)) . (3.10)

such that any reconstructed values satisfy the Discrete Maximum Principle (see [7, 8, 42]).
We choose to detail and use the MLP limiter instead of the classical Barth-Jespersen limiter
because it provides more accurate results (see [62]). The MLP limiter applies the following
procedure.
– Construction of an unlimited slope G using the neighbor cells Kj, j ∈ ν.
– Evaluation of the unlimited reconstruction (3.9) at the vertices Pm of K: um = ũ(Pm),
m ∈ λ the nodes index set of K.

– Evaluation of the bounds for each node Pm

δumax
m = max

j, Pm∈λ(j)
(uj − ū), δumin

m = min
j, Pm∈λ(j)

(uj − ū).

– Evaluation of the vertex based limiter φm

φm =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min

(
1,

δumax
m

um − ū

)
if um − ū > 0,

min

(
1,

δumin
m

um − ū

)
if um − ū < 0,

1 if um − ū = 0.

– Cell-centered limiter φ = min
m∈λ

φm.
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Figure 3.2: Classical high-order methods idea (top) and MOOD idea (bottom).

The MLP technique provides a second-order finite volume scheme which satisfies the Discrete
Maximum Principle under a more restrictive CFL condition than the CFL condition of the
first-order scheme.

Remark 3.4 Although there exists a large literature about piecewise linear limitation, the ex-
tension of MUSCL type methods to piecewise quadratic or even higher degree polynomials in a
multi-dimensional context is not yet achieved. An efficient limitation process is still an under-
investigation field of research.

�

3.1.4 The Multi-dimensional Optimal Order Detection method (MOOD)

Classical high-order methods are based on an a priori limitation of the reconstructed values
which are plugged into a one time step generic finite volume scheme to update the mean values
(see figure 3.2 top).
Unlike existing methods, the MOOD technique proceeds with an a posteriori limitation. Over
each cell, an unlimited polynomial reconstruction is carried out to build a prediction u�

h of the
updated solution. Then the a posteriori limitation consists of reducing the polynomial degree
and recomputing the predicted solution u�

h until the DMP property (3.7) is achieved. To this
end, a prescribed maximum degree dmax is introduced and used to perform an initial polynomial
reconstruction on each cell. Through an iterative decremental procedure, we determine the
optimal degree di ≤ dmax on each cell Ki such that each updated mean value u�

i fulfills the
DMP property (see figure 3.2 bottom).

In the following we focus on the quadratic polynomial case dmax = 2 and first present the local
quadratic reconstruction of [57]. Then the MOOD method is detailed and we prove that the
numerical approximations satisfy the DMP property.
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3.1.4.1 Quadratic reconstruction

Using the same framework as in section 3.1.3.1, the quadratic polynomial reconstruction is
written

ũ(x) = ū+G−(x− c) +
1

2

(
(x− c)tH(x− c)− H̄

)
, (3.11)

with

H̄ =
〈
(x− c)tH(x− c)

〉
K
, H =

[
H11 H12

H12 H22

]
,

where matrix H is an approximation of the Hessian matrix ∇2u on K. Note that by construc-
tion, the mean value of ũ on K is still equal to ū.
A minimization technique is used to compute G and H. To this end, for a cell Kj, let us define
the integrals

x
{α,β}
Kj

=
〈
(x− c1)

α(y − c2)
β
〉
Kj

−
〈
(x− c1)

α(y − c2)
β
〉
K
.

Algebraic manipulations yield the following expression for
〈
ũ(x)

〉
Kj〈

ũ(x)
〉
Kj

= ū+
(
G1 x

{1,0}
Kj

+G2 x
{0,1}
Kj

)
+

1

2

(
H11x

{2,0}
Kj

+ 2H12x
{1,1}
Kj

+H22x
{0,2}
Kj

)
. (3.12)

This expression is further derived for any cell Kj with j ∈ ν to form an over-determined linear
system of the form AΛ = B with

A =

⎛⎜⎜⎜⎜⎜⎜⎝
x
{1,0}
K1

x
{0,1}
K1

x
{2,0}
K1

x
{1,1}
K1

x
{0,2}
K1

x
{1,0}
K2

x
{0,1}
K2

x
{2,0}
K2

x
{1,1}
K2

x
{0,2}
K2

...
...

...
...

...

x
{1,0}
KN

x
{0,1}
KN

x
{2,0}
KN

x
{1,1}
KN

x
{0,2}
KN

⎞⎟⎟⎟⎟⎟⎟⎠ , Λ =

⎛⎜⎜⎜⎜⎝
G1

G2
1
2
H11

H12
1
2
H22

⎞⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎝
u1 − ū

u2 − ū

...

uN − ū

⎞⎟⎟⎟⎟⎟⎠ , (3.13)

with N = #ν. This system is solved with a QR decomposition of A using Householder trans-
formations, such that Q ∈ MN−N(R) is an orthogonal matrix and R ∈ MN−5(R) an upper-
triangular one. Finally back-substitution of RΛ = QtB defines ũ (see [57]).

Remark 3.5 A left preconditioner matrix can be applied to reduce the system sensitivity and
improve the reconstruction quality. For example, in [57], the authors use a diagonal matrix
whose coefficients ωjj = ‖cj − c‖−2 (j = 1, . . . , N) correspond to geometrical weights in order
to promote closest informations. �

3.1.4.2 Description of the MOOD method

We now detail the MOOD technique considering the simple case where an explicit time dis-
cretization is employed. Moreover, without loss of generality, we present the method using only
one quadrature point (R = 1) and skip the subscript r denoting uij in place of uij,r. Extension
to several quadrature points (R > 1) is straightforward.
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Assume that we have a given sequence un
h = (un

i )i∈Eel of mean value approximations at time
tn, the goal is to build a relevant sequence un+1

h = (un+1
i )i∈Eel at time tn+1 = tn + Δt. To this

end, we define the following fundamental notions.

– di is the Cell Polynomial Degree (CellPD) which represents the degree of the polynomial
reconstruction on cell Ki.

– dij and dji are the Edge Polynomial Degrees (EdgePD) which correspond to the effective
degrees used to respectively build uij and uji on both sides of edge eij.

The MOOD method consists of the following iterative procedure.

1. CellPD initialization. Each CellPD is initialized to dmax.

2. EdgePD evaluation. Each EdgePD is set up as a function of the neighboring CellPD
(see table 3.1).

3. Quadrature points evaluation. Each uij is evaluated with the polynomial reconstruc-
tion of degree dij.

4. Mean values update. The updated values u�
h are computed using the finite volume

scheme (3.3).

5. DMP test. The DMP criterion is checked on each cell Ki

min
j∈ν(i)

(un
i , u

n
j ) ≤ u�

i ≤ max
j∈ν(i)

(un
i , u

n
j ). (3.14)

If u�
i does not satisfy (3.14) the CellPD is decremented, di := max(0, di − 1).

6. Stopping criterion. If all cells satisfy the DMP property, the iterative procedure stops
with un+1

h = u�
h else go to step 2.

We give in table 3.1 three possible strategies of EdgePD calculation. The simplest one named
EPD0 consists of setting dij = di and dji = dj whereas EPD1 chooses the minimal value between
di and dj for both dij and dji. At last, the smallest CellPD of all the direct neighbor cells is
taken in the EPD2 strategy.

To conclude the section, there are two important remarks which dramatically reduce the
computational cost.

Remark 3.6 If dij < dmax, there is no need to recompute a polynomial of degree dij, a simple
truncation of the initial polynomial of degree dmax should be performed. �

Remark 3.7 Only cells Ki where CellPD has been decremented and their neighbors in a com-
pact stencil have to be updated. Consequently only these cells have to be checked during next
iterations of the MOOD procedure in the current time step. For instance the compact stencil
for EPD0 and EPD1 is ν(i) while for EPD2 it is

{
ν(i) ∪ {ν(j), j ∈ ν(i)}}. �
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EPD0 strategy EPD1 strategy EPD2 strategy

EdgePD dij di min(di, dj) min
j∈ν(i)

(di, dj)

Example

Table 3.1: Evaluation of the EdgePD dij using the CellPD of the two neighbor elements. Analytic formula
on first line. Examples on the second line where CellPD are surrounded in red and EdgePD for internal edges
are in black. Missing cells are assumed to have CellPD equal to 2.

3.1.4.3 Convergence of the MOOD method

We first recall the classical stability result (see [17] and references herein).

Proposition 3.8 Let us consider the generic first-order finite volume scheme (3.2) with re-
flective boundary conditions. If the numerical flux is consistent and monotone, then the DMP
property given by definition 3.2 is satisfied.

It implies that if uij = ui and uji = uj for all j ∈ ν(i) then relation (3.7) holds. To prove
that the iterative MOOD method provides a solution which satisfies the DMP, we introduce
the following definition.

Definition 3.9 An EPD strategy is said upper-limiting (with respect to the CellPD) if for any
Ki

di = d̄ =⇒ dij ≤ d̄ and dji ≤ d̄, ∀j ∈ ν(i). (3.15)

We then have the following theorem.

Theorem 3.10 Let us consider the generic high-order finite volume scheme with reflective
boundary conditions and assume that the numerical flux is consistent and monotone. If the
EPD strategy is upper-limiting then the MOOD method provides an updated solution un+1

h which
satisfies the DMP property after a finite number of iterations.

Proof. Let di be the CellPD of cell Ki. If di = 0, then equation (3.15) implies that dij =
dji = 0, hence un

ij = un
i and un

ji = un
j , for all j ∈ ν(i). We recover the first-order scheme (3.2)

and proposition 3.8 yields that un+1
i satisfies the DMP property (3.7). Otherwise, if di > 0 then

two situations arise. Either the Maximum principle is satisfied and we do not modify di or we
decrement di. Consequently if the maximum principle is not satisfied for all cells, then there
is at least one cell having its CellPD positive which has to be decremented. Since we can not
decrement more than dmax −#(Eel) times, the iterative procedure stops after a finite number
of iterations and the solution satisfies the DMP property. �
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Remark 3.11 Note that EPD1 and EPD2 are upper-limiting strategies whereas EPD0 strategy
does not satisfy condition (3.15). Thus EPD0 cannot be used since MOOD iterative procedure
may loop endlessly. �

Remark 3.12 To carry out a third-order Runge-Kutta time discretization (3.6) which provides
a solution satisfying the DMP property, one has to perform the MOOD technique for each
explicit sub-step since (3.6) can be written as a convex combination. �

3.1.5 Extension to the Euler Equations

In this section, we propose an extension of the MOOD method to the Euler equations.

∂t

⎛⎜⎜⎝
ρ
ρu1

ρu2

E

⎞⎟⎟⎠+ ∂x1

⎛⎜⎜⎝
ρu1

ρu2
1 + p

ρu1u2

u1(E + p)

⎞⎟⎟⎠+ ∂x2

⎛⎜⎜⎝
ρu2

ρu1u2

ρu2
2 + p

u2(E + p)

⎞⎟⎟⎠ = 0, (3.16)

where ρ, V = (u1, u2) and p are the density, velocity and pressure respectively while the total
energy per unit volume E is given by

E = ρ

(
1

2
V2 + e

)
, V2 = u2

1 + u2
2,

where e is the specific internal energy. For an ideal gas, this system is closed by the equation
of state

e =
p

ρ(γ − 1)
,

with γ the ratio of specific heats.
Despite that the physical variables do not have to respect the maximum principle, classical
methods such as the MUSCL technique use a limiting procedure derived from the scalar case
to keep the numerical solution from producing spurious oscillations. A popular choice consists
of reconstructing and limiting the density, the velocity components and the pressure variables
but other limitations can be carried out: the internal energy, the specific volume or the char-
acteristic variables for instance.
Although applying the MOOD technique to each variable independently gives physically ad-
missible solutions, an excessive diffusion is noticed. We thus propose a strategy to both have
an accurate approximation where the solution is smooth and prevent the oscillations from ap-
pearing close to the discontinuities. In the following we consider ρ, u1, u2 and p as the variables
to be reconstructed.
First we have to provide physically relevant reconstructed values at quadrature points, and
since no limitation is used in the MOOD method, negative reconstructed values for pressure
or density must be avoided (it would be the same for energy or specific volume). In that case,
first-order values are substituted to the unphysical reconstructed values, for instance if the
reconstructed value ρij is negative on cell Ki, we replace it with the mean value ρi.
We now describe how we choose to use the two fundamental notions of the MOOD method
(CellPD and EdgePD) in the Euler equations framework. Instead of using one CellPD per cell
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and per variable, we choose to define only one CellPD per cell and to use it for all variables.
Consequently only one EdgePD is defined per side of an edge and used for all variables.
As in the scalar case, we first build the local polynomial reconstruction of maximal degree dmax

for each variable. Then we apply the MOOD algorithm of Section 3.1.4.2 where we substitute
steps 5 and 6 with the following stages.

5. Density DMP test. The DMP criterion is checked on the density

min
j∈ν(i)

(ρni , ρ
n
j ) ≤ ρ�i ≤ max

j∈ν(i)
(ρni , ρ

n
j ). (3.17)

If ρ�i does not satisfy (3.17) the CellPD is decremented, di := max(0, di − 1).

6. Pressure positivity test. The pressure positivity is checked and if p�i ≤ 0 and di has
not been altered by step 5 then the CellPD is decremented, di := max(0, di − 1).

7. Stopping criterion. If, for all i ∈ Eel, di has not been altered by steps 5 and 6 then
the iterative procedure stops and returns (ρ, ρu1, ρu2, E)n+1

h = (ρ, ρu1, ρu2, E)�h else go to
step 2.

Next section is dedicated to numerical experiments to assess the computational efficiency of
the MOOD method.

3.1.6 Numerical results — the scalar case

Let Ω be the unit square [0, 1] − [0, 1]. We first consider the linear advection problem of a
scalar quantity u with velocity V (x):

∂tu+∇.(V u) = 0, (3.18a)

u(., 0) = u0, (3.18b)

where V (x) is a given continuous function on Ω and u0 is the initial function we shall characterize
in the following. In this section periodic boundary conditions are prescribed on ∂Ω.
Comparisons are drawn between the simple first-order Finite Volume method (denoted FV with
an abuse of terminology), the MUSCL method proposed in [62] (MLP) and the MOOD method
with dmax = 1 (MOOD-P1) and dmax = 2 (MOOD-P2).
We use the following monotone upwind numerical flux (see equation (3.2))

F(un
i , u

n
j ,nij) = [V (x)−nij]

+ un
i + [V (x)−nij]

− un
j ,

where the velocity is evaluated at the quadrature point x and the positive and negative parts
are respectively defined by

[α]+ = max(0, α) and [α]− = min(0, α).

Notice that we use ν(i) as the reconstruction stencil. Lastly two Gauss points are used on each
edge to provide a third-order accurate spatial integration while time integration is performed
with a forward Euler scheme for the FV method and with the RK3-TVD method given by
system (3.6) for the MLP and MOOD methods.
Following remark 3.12, we simply apply the MOOD procedure detailed in section 3.1.4.2 to
each sub-step of the RK3-TVD. The CellPD are thus reinitialized to dmax at the beginning of
each time sub-step.
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3.1.6.1 Test descriptions

The method accuracy is measured using L1 and L∞ errors which are computed with

err1 =
∑
i∈Eel

|uN
i − u0

i ||Ki| and err∞ = max
i∈Eel

|uN
i − u0

i |,

where (u0
i )i and (uN

i )i are respectively the cell mean values at initial time t = 0 and final time
t = tf = NΔt.
Two classical numerical experiments are carried out to demonstrate the ability of the method to
provide effective third-order accuracy and to handle discontinuities with a very low numerical
diffusion.
Double Sine Translation (DST)
We consider a constant velocity V = (2, 1) and the initial condition is the C∞ function

u0(x1, x2) = sin(2πx1) sin(2πx2).

The final time is tf = 2.0. Since we use periodic boundary conditions, the final time corresponds
to a full revolution such that the exact solution coincides with the initial one.
Solid Body Rotation(SBR)
First introduced by R.J. Leveque in [52], this solid body rotation test uses three shapes which
are a hump, a cone and a slotted cylinder. Each shape is located within a circle of radius
r0 = 0.15 and centered at (x0

1, y
0
2)

Hump centered at (x0
1, x

0
2) = (0.25, 0.5)

u0(x1, x2) =
1

4
(1 + cos(πmin(r(x1, x2), 1))).

Cone centered at (x0
1, x

0
2) = (0.5, 0.25)

u0(x1, x2) = 1− r(x1, x2).

Slotted cylinder centered at (x0
1, x

0
2) = (0.5, 0.75)

u0(x1, x2) =

{
1 if |x1 − 0.5| < 0.25, or x2 > 0.85,
0 elsewhere,

where r(x1, x2) =
1

r0

√
(x1 − x0

1)
2 + (x2 − x0

2)
2. To perform the rotation, we use the velocity

V (x) = (−x2 + 0.5, x1 − 0.5) and the final time tf = 2π corresponds to one full rotation.

3.1.6.2 Numerical results

� Comparison between EPD1 and EPD2 strategies

We consider the DST test case on uniform meshes from 20−20 to 160−160 cells and compare
the L1 and L∞ errors and convergence rates displayed in table 3.2 using EPD1 and EPD2

strategies with the MOOD-P2 method. We obtain an almost effective third-order convergence
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in L1 norm and a 1.6 convergence rate in L∞ norm for the two strategies. We observe in this
case that the L1 and L∞ errors for EPD1 are slightly less important than for EPD2 and the
convergence orders seem to indicate that the EPD1 strategy should be privileged. Moreover,
from a practical point of view, the EPD1 implementation is performed with a more compact
stencil than the EPD2 (see remark 3.7). In the sequel, only EPD1 strategy is used.

Nb of EPD1 EPD2

Cells err1 err∞ err1 err∞
20x20 9.469E-02 — 3.960E-01 — 1.104E-01 — 4.506E-01 —

40x40 1.113E-02 3.09 1.333E-01 1.57 1.382E-02 3.00 1.566E-01 1.52

80x80 1.768E-03 2.65 4.164E-02 1.68 2.309E-03 2.58 5.196E-02 1.59

160x160 2.481E-04 2.83 1.304E-02 1.68 3.262E-04 2.82 1.698E-02 1.61

Table 3.2: L1 and L∞ errors and convergence rates for DST problem with the MOOD-P2 method: EPD1

strategy (left) and EPD2 strategy (right).

� Comparison between FV, MLP, MOOD-P1 and MOOD-P2 with EPD1 strategy
on uniform meshes

Double Sine Translation. We report in table 3.3, 3.4 and 3.5 the L1 and L∞ errors and
convergence rates for FV, MLP, MOOD-P1, MOOD-P2, unlimited P1 and P2 reconstruction
methods respectively. At last, we plot in figure 3.3 the convergence curves for the four methods
as well as the convergence curves for the unlimited versions.

Nb of FV MLP
Cells err1 err∞ err1 err∞
20x20 3.924E-01 — 9.371E-01 — 1.417E-01 — 3.765E-01 —
40x40 3.480E-01 0.17 8.375E-01 0.16 3.038E-02 2.22 1.121E-01 1.75
80x80 2.663E-01 0.39 6.241E-01 0.42 6.904E-03 2.14 3.534E-02 1.67

160x160 1.734E-01 0.62 3.964E-01 0.65 1.693E-03 2.03 1.167E-02 1.60

Table 3.3: L1 and L∞ errors and convergence rates for the DST on uniform meshes with FV and MLP
methods.

Nb of MOOD-P1 MOOD-P2
Cells err1 err∞ err1 err∞
20x20 1.502E-01 — 4.876E-01 — 9.469E-02 — 3.960E-01 —
40x40 3.141E-02 2.26 1.629E-01 1.58 1.113E-02 3.09 1.333E-01 1.57
80x80 7.438E-03 2.08 5.188E-02 1.65 1.768E-03 2.65 4.164E-02 1.68

160x160 1.787E-03 2.06 1.675E-02 1.63 2.481E-04 2.83 1.304E-02 1.68

Table 3.4: L1 and L∞ errors and convergence rates for the DST on uniform meshes with MOOD-P1 and
MOOD-P2 methods.
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Nb of P1 P2
Cells err1 err∞ err1 err∞
20x20 1.334E-01 — 3.227E-01 — 7.130E-02 — 1.729E-01 —
40x40 2.896E-02 2.20 6.593E-02 2.29 9.877E-03 2.85 2.427E-02 2.83
80x80 6.604E-03 2.13 1.408E-02 2.23 1.255E-03 2.98 3.091E-03 2.97

160x160 1.603E-03 2.04 3.310E-03 2.09 1.573E-04 3.00 3.876E-04 3.00

Table 3.5: L1 and L∞ errors and convergence orders for the DST on uniform meshes with P1 and P2
methods.

Figure 3.3: Convergence curves of err1(left) and err∞(right) for the DST on uniform meshes.

The high-order finite volume methods with the two Gauss points and the RK3 time scheme
reach the optimal convergence rate for the unlimited P1 and P2 reconstructions hence the
limiting procedure has to be blamed for the accuracy discrepancy.
Figure 3.3 shows that the optimal convergence rate in L1 error for P1, MOOD-P1 and MLP
methods is achieved since the curves fit very well. On the other hand, the P2 and MOOD-P2
curves are very close and parallel which confirms that MOOD-P2 is an effective third-order
method for the L1 norm. For the L∞ norm, none of the limited methods is over the effective
second-order while the unlimited P1 and P2 provide an effective second- and third-order re-
spectively. Indeed the strict maximum principle application at extrema is responsible for the
L∞ error discrepancy and we can expect nothing more than a second-order scheme in L∞ norm,
whatever the polynomial degree is when the DMP condition is enforced.

Solid Body Rotation. We employ a 140 − 140 uniform mesh of square elements in order to
compare our results with 100− 100− 2 triangular mesh in reference [62]. We display in the left
panels of figure 3.4 three-dimensional elevations while top views of ten uniformly distributed
isolines from 0 to 1 are printed in the right panels. We can measure the scheme accuracy by
counting the number of isolines outside of the slot since the exact solution isolines would fit the
slot shape. The smaller number of isolines outside of the slot is, the more accurate the scheme
is. With the MLP reconstruction, we observe three isolines outside while we have only two
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Figure 3.4: Results of SBR on a 140x140 uniform mesh. Isolines are from 0 to 1 by 0.1. Top: MLP method — Middle:

MOOD-P1 method — Bottom: MOOD-P2 method.

69



CHAPTER 3. TOWARDS THE MOOD METHOD FOR EULER

with the MOOD-P1. At last, the outstanding result is that we have just one isoline outside of
the slot with the MOOD-P2 method which proves the great ability of the technique to handle
and preserve discontinuities.

� Comparison between FV, MLP, MOOD-P1 and MOOD-P2 with EPD1 strategy
on non-uniform meshes

Approximation accuracy is reduced when one employs meshes with large deformations, i.e.
the elements are no longer rectangular but quadrilateral with large aspect ratios. The present
subsection investigates the MOOD method sensitivity to mesh distortion.
To obtain the distorted mesh for the DST, we proceed in two stages. First the following
transformation is applied to an uniform mesh

x1 →
{

x1(10x
2
1 + 5x1 + 1), if x1 ≤ 0.5,

(x1 − 1)(10(x1 − 1)2 + 5(x1 − 1)) + 1, elsewhere,

and we operate in the same way with variable x2.
Then we apply a second transformation

x1 → x1 + 0.1|x1 − 0.5| cos(6π(x2 − 0.5)) sin(4π(x1 − 0.5)),

x2 → x2 + 0.1|x2 − 0.5| cos(4π(x1 − 0.5)) sin(6π(x2 − 0.5)).

As an example two non-uniform meshes are given in figure 3.5. Notice that the shape of domain
Ω is preserved by the transformation.
Double Sine Translation. We report in tables 3.6, 3.7 and 3.8 the L1 and L∞ errors and
convergence rates for FV, MLP, MOOD-P1, MOOD-P2, unlimited P1 and P2 reconstruction
methods respectively. At last, we plot in figure 3.6 the convergence curves for the four methods
as well as the convergence curves for the unlimited versions.

Nb of FV MLP
Cells err1 err∞ err1 err∞
20x20 4.053E-01 — 9.032E-01 — 3.907E-01 — 8.752E-01 —
40x40 4.038E-01 0.01 9.822E-01 -0.12 1.893E-01 1.05 5.306E-01 0.72
80x80 3.834E-01 0.07 9.486E-01 0.05 4.370E-02 2.11 1.806E-01 1.55

160x160 3.144E-01 0.29 7.825E-01 0.28 9.846E-03 2.15 5.889E-02 1.62

Table 3.6: L1 and L∞ errors and convergence rates for the DST on non-uniform meshes with FV and MLP
methods.

We first observe in table 3.8 an accuracy discrepancy with the unlimited reconstructions since
the L∞ errors are roughly ten times larger for the distorted mesh than for the uniform one
given in table 3.5. Nevertheless, we obtain good effective rates of convergence both in L1 and
L∞ norm for the P1 and P2 reconstructions. Optimal second-order scheme is achieved for the
P1 method and convergence rate is around 2.9 for the P2 reconstruction.
For the L1 norm, P1, MOOD-P1 and MLP convergence curves fit well hence we get the optimal
accuracy with the three methods. In the same way, the P2 and MOOD-P2 are also superimposed
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Figure 3.5: The 40− 40 and 80− 80 non-uniform meshes for the DST.

Figure 3.6: Convergence curves of err1(left) and err∞(right) for the DST on non-uniform meshes.
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Nb of MOOD-P1 MOOD-P2
Cells err1 err∞ err1 err∞
20x20 3.770E-01 — 8.557E-01 — 3.408E-01 — 7.897E-01 —
40x40 1.599E-01 1.24 4.541E-01 0.91 8.992E-02 1.92 3.222E-01 1.29
80x80 3.892E-02 2.04 1.314E-01 1.79 1.375E-02 2.71 9.199E-02 1.81

160x160 9.170E-03 2.09 3.374E-02 1.96 1.922E-03 2.84 2.483E-02 1.89

Table 3.7: L1 and L∞ errors and convergence rates for the DST on non-uniform meshes with MOOD-P1
and MOOD-P2 methods.

Nb of P1 P2
Cells err1 err∞ err1 err∞
20x20 3.658E-01 — 8.312E-01 — FAIL — FAIL —
40x40 1.534E-01 1.25 3.793E-01 1.13 8.328E-02 — 2.135E-01 —
80x80 3.856E-02 1.99 9.760E-02 1.96 1.403E-02 2.57 3.582E-02 2.58

160x160 9.052E-03 2.09 2.643E-02 1.88 1.920E-03 2.87 4.917E-03 2.86

Table 3.8: L1 and L∞ errors and convergence rates for the DST on non-uniform meshes with P1 and P2
methods.

which means that MOOD-P2 is optimal with respect to the unlimited case. For the L∞ norm,
MLP method convergence rate is around 1.6 whereas the MOOD-P1, MOOD-P2 and P1 provide
a 1.9 convergence rate. Notice that the MOOD-P2 produces more accurate results but does not
reach the third-order convergence since it has to respect a strict DMP property. Finally, table
3.9 shows that the extrema are better approximated with respect to the exact solution with
the MOOD methods than the MLP method, in particular when coarse meshes are employed.

Nb of MLP MOOD-P1 MOOD-P2
Cells Min Max Min Max Min Max

20x20 -3.740E-02 3.479E-02 -7.168E-02 7.566E-02 -1.376E-01 1.516E-01
40x40 -4.634E-01 4.645E-01 -5.445E-01 5.458E-01 -6.738E-01 6.792E-01
80x80 -8.179E-01 8.204E-01 -8.747E-01 8.743E-01 -9.098E-01 9.079E-01

160x160 -9.433E-01 9.431E-01 -9.655E-01 9.668E-01 -9.752E-01 9.748E-01

Table 3.9: Min and Max for DST on non-uniform meshes with MLP, MOOD-P1 and MOOD-P2.

Solid Body Rotation. The mesh deformation presented above is not as relevant for the SBR
as for the DST since the solid bodies rotate and do not go through the boundaries. A slight
modification of the first step has been done

x1 →
{

x1(5x
2
1 + 2.5x1 + 1), if x1 ≤ 0.5,

(x1 − 1)(5(x1 − 1)2 + 2.5(x1 − 1)) + 1, elsewhere.
,

and we operate in the same way with variable x2.
The 140 − 140 non-uniform mesh is visible on the isolines top views. We display in the left
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Figure 3.7: Results of SBR on a 140x140 non-uniform mesh. Isolines are from 0 to 1 by 0.1. Top: MLP method — Middle:

MOOD-P1 method — Bottom: MOOD-P2 method.
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panels of figure 3.7 three-dimensional elevations while top views of ten uniformly distributed
isolines from 0 to 1 are in the right panels.
As in the smooth case, MOOD methods perform better than MLP on the distorted mesh.
Although they are both second-order methods, we notice that MOOD-P1 gives a clearly better
solution than the one computed with MLP, even on the smooth profiles. Moreover the MOOD-
P2 result supports the usefulness of using a third-order method since an important gain in
symmetry of the solution is obtained.

3.1.7 Numerical results — the Euler case

We now turn to the Euler equations (3.16) to test the MOOD method. Efficiency, accuracy
and stability of the method are investigated on classical tests. In the present article, we use the
HLL numerical flux detailed in [78]. Once again comparisons are drawn with the MLP technique
proposed in [62]. We apply the MOODmethod using the detection strategy presented in Section
3.1.5 to each sub-step of the RK3-TVD time discretization.
First the classical 1D Sod shock tube is used to test the ability of MOOD in reproducing simple
waves. This test is first run on an uniform mesh and then on a non-uniform one to estimate
the gain obtained when using MOOD method. Then we proceed with a 2D Riemann problem
proposed by [71] (see also [53]). We conclude the series of tests with two classical references, the
Mach 3 wind tunnel with a step problem [62, 91] and the double Mach problem [62, 91]. These
two tests are run with MLP, MOOD-P1 and MOOD-P2 on uniform meshes for comparison
purposes with classical results from literature.

3.1.7.1 Sod Shock Tube

The one dimensional Sod problem is used as a sanity check for the MOOD method. The
computational domain is the rectangular domain Ω = [0, 1] − [0, 0.2]. The exact solution is
invariant in x2-direction. The interface between the left state (ρ, u1, u2, p) = (1, 0, 0, 1) and the
right one (0.125, 0, 0, 0.1) is located at x1 = 0.5. Reflective boundary conditions are prescribed.
The final time is tf = 0.2.
Uniform mesh. The computational domain is uniformly meshed by 100 cells in the x1 direction
and 10 cells in the x2 direction. We plot the density and the x1-velocity at the final time
with the exact solution using the MLP, MOOD-P1 and MOOD-P2 methods in figure 3.8. The
curves show a very good agreement between the three methods. The plateau between the
contact and the shock is wavy with the MLP method while MOOD produces better constant
states. However we observe an undershoot (resp. overshoot) at the tail of the rarefaction with
MOOD-P2 for the density (resp. velocity).
Non-uniform mesh. The same simulation is performed on the non-uniform mesh plotted in
figure 3.9. The density and the x1-velocity solutions at the final time using the MLP, MOOD-
P1 and MOOD-P2 methods are also printed in figure 3.9. All cell values are represented so that
the preservation of the 1D symmetry in the x2 direction can be evaluated by the thickness of the
points cloud. Clearly the MLP method provides the largest dispersion whereas the MOOD-P2
method manages to better preserve the x2 invariance. Such a test case suggests that the MOOD
method is less sensitive to mesh deformation. As in the uniform case an undershoot at the tail of
the rarefaction wave appears for MOOD-P2 method but the solution is genuinely improved by
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Sod shock tube problem: Density and x1-velocity solutions on 100− 10 uniform mesh for (a-b): MLP — (c-d):

MOOD-P1 — (e-f): MOOD-P2.
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comparison with MLP. The MOOD-P1 is an intermediate case where the dispersion is reduced
in comparison with the MLP method but where the MOOD-P2 accuracy is not reached.

3.1.7.2 Four states Riemann problem

We now deal with one of the four states Riemann problem which corresponds to a truly 2D
Riemann problem. The computational domain Ω = [0, 1] − [0, 1] is first uniformly meshed by
a 100 − 100 and then by a 400 − 400 quadrangles grid. The four sub-domains correspond to
four identical squares separated by the lines x1 = 0.5 and x2 = 0.5. Initial conditions on each
sub-domains are
– for the lower-left domain Ωll, (ρ, u1, u2, p) = (0.029, 0.138, 1.206, 1.206),
– for the lower-right domain Ωlr, (0.3, 0.5323, 0, 1.206),
– for the upper-right domain Ωur, (1.5, 1.5, 0, 0),
– for the upper-left domain Ωul, (0.3, 0.5323, 1.206, 0).
Each sub-domain is filled with a perfect gas of constant γ = 1.4. Outflow boundary conditions
are prescribed and the computation is carried out till the final time tf = 0.3. Density at the
final time is presented for the three methods in figure 3.10. For each method on the left side
one displays a three-dimensional elevation on the 100 − 100 mesh while in the right panels 30
isolines are plotted between the minimal density, ρm, and maximal one, ρM of each method on
the 400− 400 mesh. The 3D views clearly show that some artificial oscillations on the plateau
are generated by the MLP method whereas the MOOD method better preserves the constant
states. On the isoline view, we observe that the MOOD-P2 method gives thinner shocks and a
finer resolved central peak at x1 = x2 = 0.35. As expected, this suggests that the MOOD-P2
method is more accurate.

3.1.7.3 Mach 3 wind tunnel with a step

The test was initially proposed in [91]. A uniform Mach 3 flow enters in a tunnel which
contains a 0.2 unit length step leading to a flow with complex structures of interacting shocks.
The wind tunnel is 1 length unit wide and 3 length units long and the step is located at 0.6
length unit from the left-hand side of the domain. At the initial time we consider a perfect
gas (γ = 1.4) with constant density ρ0 = 1.4, uniform pressure p0 = 1.0 and constant velocity
V0 = (3, 0). Reflective boundary conditions are prescribed for the upper and lower sides as
well as in front of the step. An inflow condition is set on the left boundary and an outflow
condition on the right one. Numerical simulations are carried out till the final time tf = 4.
We plot a series of figures presenting 30 density isolines for two different uniform meshes on
which the three methods are tested. We first consider the situation with coarse mesh using
120− 40 cells. Figure 3.11 represents the density computed with the MLP, the MOOD-P1 and
MOOD-P2 methods respectively on top, middle and bottom panels. It is noticeable that the
MOOD method results are the most accurate. The shocks are less diffused and we can already
observe the contact discontinuity formation of the upper slip line. With the MLP method, we
remark that the formation of a triple point at x1 = 1.25 above the step (at a distance of about
0.1) while the junction point should be exactly on the step interface. With the MOOD-P2
method, the triple point is closer to the interface (half the distance with respect to the MLP
case).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Sod shock tube problem: Non-uniform 100 − 10 mesh (Top) — Density and x1-velocity solutions on the above

mesh for (a-b): MLP — (c-d): MOOD-P1 — (e-f): MOOD-P2.
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Figure 3.10: Density solution to the Four states Riemann problem. On the left 3D views on the 100 − 100 mesh. On the

right top views with 30 isolines between ρm and ρM on the 400−400 mesh. Top: MLP method ρm = 0.138 ρM = 1.821 — Middle:

MOOD-P1 method ρm = 0.1377 ρM = 1.805 — Bottom: MOOD-P2 method ρm = 0.1379 ρM = 1.805.
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We plot the density obtained with a finer uniform mesh of 480 − 160 cells in figure 3.12.
The mesh refinement implies more accurate solutions for any method. Nevertheless MOOD
methods still provide the best numerical approximations. However the method does not reveal
the Kelvin-Helmholtz instabilities as in [24] as the strict DMP on the density reduces the scheme
accuracy along the slip line and consequently increases the numerical dissipation.

3.1.7.4 Double Mach reflection of a strong shock

The last problem is the double mach reflection of a strong shock proposed in [91]. This test
problem involves a Mach 10 shock which initially makes a 60◦ angle with a reflecting wall. The
air ahead of the shock is at rest and has uniform initial density ρ0 = 1.4 and pressure p0 = 1. A
perfect gas with γ = 1.4 is considered. The reflecting wall lies along the bottom of the domain,
beginning at x1 = 1/6. The shock makes a 60 degrees angle with the x1 axis and extends to
the top of the domain at x2 = 1. The short region from x1 = 0 to x1 = 1/6 along the bottom
boundary at x2 = 0 is always assigned values for the initial post-shock flow. We prescribe a
reflective condition on the bottom part for x1 > 1/6, inflow boundary condition on the left side
and outflow condition on the right side. At the top boundary, the boundary conditions are set
to describe the exact motion of the Mach 10 flow (see [24]).
First for the three methods, a 30 density isolines top view on the 480−120 uniform mesh using
Lax-Friedrich’s flux are plotted in figure 3.13. These results have to be compared to results of
figure 12 in [33] and figure 13 in [45]. Then zoomed top views of 50 isolines — between minimal
and maximal values, ρm and ρM respectively, taken over the results of the three methods on
a same mesh — of the results obtained with the HLL flux are plotted in figure 3.14 for the
960− 240 uniform mesh on left and for the 1920− 480 one on right.
The first Mach stem M1 is connected to the main triple junction point with the incident shock
wave and the reflected wave. A slip line is generated from the triple junction point behind
the incident shock. A secondary Mach stem M2 also appear and interact with the slip line.
As expected, the MOOD-P2 manages to better capture the Mach stem M1 (and M2 when
we employ finer meshes) with respect to the two other methods. The slip line corresponds to
a contact discontinuity where the jump of tangential velocity may generate Kelvin Helmholtz
instabilities. Usually, the amount of instabilities measures the numerical diffusion influence [67]:
large instabilities derive from small numerical diffusion and the number of plane vortexes in the
slip line is a qualitative measure of the scheme diffusivity. In our test, even with the finest mesh,
no instability is reported. Indeed, the application of a strict DMP reduces the accuracy of the
scheme in the vicinity of the slip line maintaining a too large amount of diffusion. Nevertheless,
other choices of detection variables could be investigated to reduce the numerical diffusion of
contact discontinuities.

� Computational cost comparison between MLP, MOOD-P1 and MOOD-P2

In this last section, we give in table 3.10 the ratios between MOOD methods computational
times and MLP ones. For each test case, computational times are calculated on a given mesh.
Numerical experiments show that the ratios are equivalent for finer or coarser meshes.
We recall that these ratios should only be taken as examples because computational times
are strongly dependent of implementation and compilation and all runs are carried out on a
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Figure 3.11: Mach 3 problem — Density solutions with 30 isolines between ρm and ρM on a 120 − 40 uniform mesh. Top:

MLP method ρm = 0.5437 ρM = 6.75 — Middle: MOOD-P1 method ρm = 0.5589 ρM = 6.58 — Bottom: MOOD-P2 method

ρm = 0.5358 ρM = 6.047.
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Figure 3.12: Mach 3 problem — Density solutions with 30 isolines between ρm and ρM on 480 − 160 mesh. Top: MLP

method ρm = 0.176 ρM = 6.802 — Middle: MOOD-P1 method ρm = 0.150 ρM = 6.483 — Bottom: MOOD-P2 method ρm = 0.123

ρM = 6.257.
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Figure 3.13: Double Mach problem on 480−120 — Top: MLP method ρm = 1.40 ρM = 22.21 — Middle: MOOD-P1 method

ρm = 1.40 ρM = 20.05 — Bottom: MOOD-P2 method ρm = 1.40 ρM = 20.10.
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Figure 3.14: Double Mach problem on 960 − 240 (left) and on 1920 − 480 (right) — Zoom on the wave interaction zone —

Top: MLP method ρm = 1.400 ρM = 22.400 on left and ρm = 1.400 ρM = 22.68 on right— Middle: MOOD-P1 method ρm = 1.236

ρM = 22.550 on left and ρm = 1.216 ρM = 22.0 on right — Bottom: MOOD-P2 methodρm = 1.162 ρM = 22.800 on left and

ρm = 1.146 ρM = 21.99 on right.
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single core. Table 3.10 shows that the MOOD-P1 method is slightly more expensive than MLP

������������Problem
Method

MLP MOOD-P1 MOOD-P2

DST 1 1.1 1.73
SBR 1 1.4 2.65

Sod Shock Tube 1 0.84 1.3
Mach 3 Wind 1 1.08 1.6
Double Mach 1 0.99 1.06

Average 1 1.08 1.67

Table 3.10: Computational time ratios between MOOD methods and MLP for different problems.

but gives better results on general meshes. In the scalar case, the difference between ratios
of DST and SBR problem are explained by the fact that more iterations during the MOOD
procedure, due to more DMP violations, are implied by non-smooth profiles. The MOOD-P2
computational cost is competitive (at most around 2.7 times more expensive than MLP on
our numerical experiments) in regard to the observed accuracy improvement, see for instance
figures 3.7 or 3.9.

3.1.8 Conclusion and perspectives

This paper presents a high-order polynomial finite volume method named Multi-dimensional
Optimal Order Detection (MOOD) for conservation laws. Contrarily to classical high-order
methods MOOD procedure is based on a test of the Discrete Maximum Principle (DMP) after
an evaluation of the solution with unlimited polynomials. If the DMP property is not fulfilled
then the polynomial degree is reduced and the solution is locally re-evaluated. This procedure
is repeated up to satisfaction of the DMP which is always achieved after a finite number of
iterations.
There are several important features of MOOD method which have to be compared with clas-
sical high-order methods, namely
– The MOOD method is an a posteriori limiting process, whereas classical limiting strategies
perform an a priori limitation.

– The MOOD method computes one and only one high-order polynomial per cell and employs
it without any limitation.

– Within the same cell the polynomial degree can be different on each edge.
– The MOOD method ensures the Discrete Maximum Principle (DMP) under the first-order
CFL constraint.

– The MOOD method has no restriction to deal with higher polynomial degrees and polygonal
meshes.

Two-dimensional numerical results are provided for advection and the Euler equations problems
on regular and highly non-regular quadrangular meshes. They clearly show that MOODmethod
presents some promising good behaviors. The second-order MOODmethod is at least equivalent
to a second-order multi-dimensional MUSCL method on uniform grids but produces better
results on non-uniform ones. A third-order version of MOOD has been shown to be effective
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on regular and non-regular solutions for a small extra computational effort.
This paper is the first one presenting the MOOD concept and extensions are currently under
investigations, as instance the behavior of the MOOD with polynomials of degree greater than
two on polygonal meshes.

3.2 Part II: 6th-order accuracy on 2D polygonal meshes

This section is dedicated to the second publication introducing important improvements of
the MOOD method. The reference is:

S. Diot, S. Clain, R. Loubère, Improved detection criteria for the Multi-dimensional Optimal
Order Detection (MOOD) on unstructured meshes with very high-order polynomials, Comput.
Fluids 64 (2012) 43–63.

In next paragraph, we sum up the content of the publication and highlight with hindsight
the pros and cons of the MOOD method at that time. We then reproduce the paper from the
abstract to the conclusion only correcting the misprints and modifying the references to fit the
global bibliography.

Summary & Review

The second publication has brought very important improvements to the MOOD method.
First we have extended the concept to polygonal 2D meshes and to polynomials of degree up to
five leading to the denomination of very high-order Finite Volume method. We have moreover
refined the ingredients of the MOOD method that implied a clearer and more flexible frame-
work, in particular by introducing the set of detection criteria A.

Then concerning the DMP locking mentioned in previous section, we have noticed that the
accuracy discrepancy only occurred at smooth extrema, and introduced a relaxation, namely
the u2 detection criteria, which allows DMP violation only on these locations. As a result, we
have obtained up to 6th-order convergence for the convection equation of smooth solution while
discontinuous solutions are prevented from spurious oscillations.

In the context of the hydrodynamics Euler equations, we have provided a comparison of con-
vergence for the isentropic vortex in motion between the MOOD method using primitive and
conservative variables for reconstructions. As stated in previous section and in section 1.3.2,
the primitive variables version is only second-order. As a consequence all test cases for the
Euler equations are carried out with polynomial reconstructions performed on the conservative
variables.

Furthermore, the truncation of the maximal degree polynomial has been dropped and substi-
tuted by a lower-degree polynomial reconstruction when necessary. Also the a priori limitation
of reconstructed values at quadrature points has been inserted in the a posteriori treatment by
verifying the numerical validity of the solution.
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Finally we have given precise measurements of the cost of the MOOD method on the so-called
Double Mach reflexion of strong shocks problem using three computers with different architec-
tures. According to these values, the MOOD method seems to be more efficient than the fast
quadrature-free ADER method of [31].

All these improvements have made the MOOD method more robust and efficient but the u2
detection criteria was still to be investigated more deeply. Actually two issues were addressed
later. First the ε parameter we have proposed, was dependent of the cell size and may be
inefficient for large cells. This has been easily solved, and the correction is presented in section
2.2 and in next section. The second point was the extension to the Euler system since we
were not able to reach the optimal order of convergence. The investigations led to observe that
the decrementing were occurring on the plateaus so that the small curvatures were treated as
irregular. An effective correction is presented in 2.3 and next section.

Abstract

This paper extends the MOODmethod proposed by the authors in [“A high-order finite volume
method for hyperbolic systems: Multi-dimensional Optimal Order Detection (MOOD)”, J.
Comput. Phys. 230, pp 4028-4050, (2011)], along two complementary axes: extension to very
high-order polynomial reconstruction on non-conformal unstructured meshes and new Detection
Criteria. The former is a natural extension of the previous cited work which confirms the good
behavior of the MOOD method. The latter is a necessary brick to overcome limitations of
the Discrete Maximum Principle used in the previous work. Numerical results on advection
problems and hydrodynamics Euler equations are presented to show that the MOOD method is
effectively high-order (up to sixth-order), intrinsically positivity-preserving on hydrodynamics
test cases and computationally efficient.

3.2.1 Introduction

In a recent paper [18], an original high-order method, namely the Multidimensional Opti-
mal Order Detection (MOOD) method, has been introduced to provide up to third-order ap-
proximations to hyperbolic scalar or vectorial solutions for two-dimensional geometry. The
present article deals with new extensions of the method to general unstructured 2D meshes and
to sixth-order convergence in space. Classical high-order reconstructions such as MUSCL or
ENO/WENO methods are based on an a priori limiting procedure to achieve stability prop-
erty. The MOOD method follows a fundamentally different way since the limiting procedure
(polynomial degree reduction for instance) is achieved a posteriori and provides the optimal
local polynomial reconstruction which satisfies given stability criteria.

The quest [83] of the (very) high-order schemes starts in the early 70’s with the pioneer works
of Van-Leer [84] and Kolgan [48, 49, 50]. Since this date, a large literature was dedicated to
the limited reconstruction methods for structured and unstructured meshes. Several strategies
became very popular due to their intrinsic simplicity such that the MUSCL method [7, 13, 17,
42, 52, 62] or their efficiency to achieve very high-order accuracy such that the ENO/WENO
method [1, 45, 33, 57, 68, 70, 92, 40, 41, 66, 95, 82], the Discontinuous Galerkin method
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[22, 21, 23, 24], the ADER method [30, 77, 81, 32, 31], the Residual Distribution Scheme
[2, 25, 64] and the spectral method [37, 88, 89].

While second-order methods do not require particular cautions, dealing with higher-order
methods leads to at least three specific difficulties which, up to our knowledge, are not always
clearly identified. First point one should not consider the mean value of a function equivalent
to the cell centroid value as it is often done in the MUSCL community. The point is straightfor-
ward to overcome but important to notice for newcomers in the field of higher-order numerical
schemes. Second point, for vectorial problems the reconstruction process must be done on mean
values of the conservative variables and not on non-linear combinations of them. This point
is often implied in the classical ENO/WENO papers but is rarely clearly stated and this may
mislead newcomers in the high-order community because the order of accuracy discrepancy
can be missed depending on the numerical tests used. Contrarily one proposes the isentropic
vortex in motion test case to numerically prove that if the primitive variables are used for the
reconstruction process then very high-order of accuracy cannot be reached. Third point the
Discrete Maximum Principle property on mean values should not be used anymore as a guide
line for limitation. We propose in this paper to overcome this difficulty by a new limiting cri-
teria (or Detection Criteria in the MOOD jargon) adapted to provide a full high-order method
still maintaining robust stability. Simple examples are introduced within the text when some
difficulties related to these points are to be expected.

The basic idea of the MOOD method consists of determining the higher polynomial degree
of each local cell still satisfying some stability restrictions. To this end, an iterative process is
developed. We perform a local polynomial reconstruction of degree di for each cell Ki at the
current time tn and compute a candidate solution at time tn+1 without any limiting features.
Then a detecting procedure is carried out to check the cells which do not respect the stability
criteria and we reduce the local polynomial degree to obtain a better stability. We state that the
method is a posteriori since the limiting procedure (namely the polynomial degree reduction) is
performed after the candidate solution computation. Such a situation is very useful to test the
admissibility of the solution. Furthermore, one has to carry out the limiting algorithm if, and
only if, it is necessary while the traditional a priori method performs unnecessary limitation.

In this paper we propose extensions of the MOOD method which take into account the three
difficulties mentioned above. More precisely different detection processes both for the advec-
tion and hydrodynamics equations are developed. We numerically prove that these detection
processes provide the effective higher-order of accuracy on smooth profiles (up to sixth-order).
Moreover we show that for the hydrodynamics equations the method is positivity-preserving
by construction and we numerically observe this behavior. The test case have been carried out
on non-regular, polygonal and non-conformal meshes and the last test case of the paper show
the ability of the MOOD method to simulate complex physics from an experimental set-up of
the impact of a shock wave on a cylindrical cavity.

The paper is organized as follows. Section 3.2.2 is dedicated to the generic framework used to
describe the MOOD method where the high-order finite volume scheme is presented. Several
obstacles to achieve high-order reconstruction are pointed out and the polynomial reconstruc-
tion based on the mean value approximation is detailed. In Section 3.2.3, we introduce new
criteria to obtain very high-order accurate schemes still preserving local stability. To show the
MOOD method efficiency, numerical tests both for the scalar and the vectorial case are carried
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out in Section 3.2.4. We mainly focus on the method accuracy and its robustness. We draw
some remarks and future developments in the last section.

3.2.2 The MOOD method

3.2.2.1 General concept

The MOOD method is a generic procedure that solves multidimensional hyperbolic system of
equations on an unstructured grid in the Eulerian framework. Given different numerical finite
volume schemes the MOOD method provides an optimal choice for each computational cell
by mitigating accuracy vs robustness. From an abstract point of view the MOOD algorithm
involves two main ingredients: An ordered list of numerical schemes and a set of constraints
with detection criteria which defines the desirable properties the numerical solution should
have.
The over-topping numerical scheme represents the best scheme one would like to employ.
Usually this scheme is the most accurate but less robust one. At the very end of the list
lays the least accurate but more robust scheme which is assumed to be satisfactory in all
possible situations due to the stabilization effect generated by its intrinsic numerical dissipation.
In this paper the list is composed of a robust first-order scheme (an upwind or a Rusanov,
HLL, HLLC scheme as instance) while several second or higher-order schemes using polynomial
reconstructions compose an ordered list of desirable schemes (see Fig. 3.15 for instance). The
second ingredient is the detecting procedure of a set of constraints which determine the local
eligibility of the solution for each cell.
We recall that discontinuous solutions may not be handled with high-order reconstructions
since local spurious and unphysical oscillations may take place. The low-order numerical scheme
should be used to prevent the numerical approximations from oscillating and force to respect
some constraints or mathematical properties that depend on equations under consideration.
The numerical solution is considered as eligible if it fulfills given properties. As instance the
positivity of certain variables such as density or pressure in hydrodynamics equations or the
Discrete Maximum Principle for advection equation shall be considered.
In this paper the k-th numerical scheme of the list is a finite volume scheme using unlimited
piecewise polynomial reconstruction of degree k. Ultimately this scheme has a k + 1th-order
of accuracy for smooth solutions. Consequently the LO scheme is the generic firs-order finite
volume scheme and the HO-1 scheme corresponds to an unlimited MUSCL method.
The core of the MOOD method is a loop over the cells to determine the optimal polynomial
degree one can safely use to produce an eligible numerical solution. It amounts to select a
numerical method in the ordered list of Fig.3.15.
To this end, given a generic cell Ki and its neighbor cells Kj having edge eij in common, we
first recall two definitions introduced in [18] and then give a new one to extend the MOOD
concept:
– di is the Cell Polynomial Degree (CellPD) which represents the degree of the polynomial
reconstruction on Ki.

– dij = dji = min(di, dj) are the Edge Polynomial Degrees (EdgePD) corresponding to the
degrees of the polynomial reconstructions used to compute approximations of the solution
on edge eij.
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Figure 3.15: Schematic representation of an ordered list of numerical schemes used in the MOOD method.
The bottom scheme is the most robust but least accurate one denoted “Low-Order”. All over-topping schemes
are successively more accurate but less robust. The MOOD method is designed to choose the more adapted
scheme for each cell of the computational domain.

– A is a set of prescribed physical and/or stability constraints. If for each cell Ki the mean
values of the numerical solution fulfill the constraints then the numerical solution is said to
be A-eligible.

The last item concerns the detecting procedure to distinguish if a candidate solution is eligible
according to a set of constraints. In practice we decrement the di for any cell Ki which does
not respect all the constraints. Such a cell is called problematic. Moreover since neighbor cells
fluxes may be affected by this process, the decrementing is spread over the direct neighborhood.
Such a polynomial degree decrementing for a problematic cell is repeated up to a di > 0 for
which the set of constraints is fulfilled or to di = 0. At that ultimate step the robust and
diffusive LO scheme is employed and its first-order solution is always taken as valid. In other
words unlike traditional high-order schemes (using a priori limiting procedure), we introduce
an a posteriori detecting procedure where the decision to alter the polynomial degree is carried
out after computing the candidate solution.

We finally highlight that such a procedure may be interpreted as a try and fail algorithm.
Such a generic strategy might be adapted to other classes of method such as the Discontinuous
Galerkin method and detect the best polynomial degree in each cell or Finite Element method
and detect the most appropriate finite element one can employ in a cell.
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3.2.2.2 Framework

Let us consider a generic autonomous hyperbolic equation defined on a domain Ω ⊂ R
2, t > 0

which casts in the conservative form

∂tU +∇−F (U) = 0, (3.19a)

U(−, 0) = U0, (3.19b)

where U = U(x, t) is the vector of unknown functions, x = (x, y) denotes a point of Ω, t is the
time, F is the physical flux function and U0 is the initial condition. Boundary conditions shall
be prescribed in the following.
We assume that the computational domain Ω is a polygonal bounded set of R2 divided into
convex polygonal cells Ki, i ∈ Eel, ci being the cell centroid and Eel the cell index set. For
each boundary edge, Ki ∩ ∂Ω, we introduce a virtual cell Kj with j /∈ Eel which represents the

exterior side of Ω and denote by Ebd the index set of all virtual cells. Ẽel = Eel ∪Ebd is the index
set of all cells. This notation avoids a special treatment for boundary edges in the scheme, and
provides a natural notation for ghost cells should they exist or not.

For each cell Ki, one denotes by eij the common edge between Ki and Kj, with j ∈ ν(i) ⊂ Ẽel,
ν(i) being the index set of all the elements which share an edge with Ki. The extended

neighborhood is represented by the index set ν(i) ⊂ Ẽel of all Kj such that Ki ∩Kj �= ∅ (see
Fig. 3.16).
Moreover |Ki| and |eij| measure the surface of Ki and the length of eij respectively while nij

is the unit outward normal vector to eij pointing from Ki to Kj. At last, qr
ij, r = 1, ..., R

represent the Gaussian quadrature points employed for numerical integration on edge eij.

Figure 3.16: Mesh notation. Index set ν(i) corresponds to blue cells with dots, ν(i) corresponds to non-white
cells.
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The generic first-order explicit finite volume scheme is given by

Un+1
i = Un

i −Δt
∑
j∈ν(i)

|eij|
|Ki| F(U

n
i , U

n
j ,nij), (3.20)

where F(Un
i , U

n
j ,nij) is a numerical flux which satisfies the classical properties of consistency

and monotonicity. To provide higher-order accuracy, we substitute in equation (3.20) the first-
order approximation Un

i and Un
j with better approximations of U at the quadrature points of

edge eij leading to the generic spatial high-order finite volume scheme

Un+1
i = Un

i −Δt
∑
j∈ν(i)

|eij|
|Ki|

R∑
r=1

ξrF(U
n
ij,r, U

n
ji,r,nij), (3.21)

where Un
ij,r and Un

ji,r, r = 1, ..., R are high-order approximations of U at quadrature points
qrij ∈ eij, r = 1, ..., R on both sides of edge eij and ξr denote the quadrature weights.

For the sake of simplicity, let us write the scheme under the compact form

Un+1
h = Un

h +Δt HR(Un
h ), (3.22)

with Un
h =

∑
i∈Eel

Un
i 1IKi

the constant piecewise approximation of function U and operator HR

being defined as

HR(Un
h ) := −

∑
i∈Eel

⎛⎝∑
j∈ν(i)

|eij|
|Ki|

R∑
r=1

ξrF(U
n
ij,r, U

n
ji,r,nij)

⎞⎠ 1IKi
. (3.23)

Finally to provide a high-order method in time, we use the third-order TVD Runge-Kutta
method (RK3, see [70]) which corresponds to a convex combination of three explicit steps

Un+1
h =

Un
h + 2U (3)

h

3
with

⎧⎨⎩
U (1)

h = Un
h +Δt HR(Un

h )
U (2)

h = U (1)

h +Δt HR(U (1)

h )

U (3)

h = Û (2)

h +Δt HR(Û (2)

h )

(3.24)

where Û (2)

h is the convex combination (3Un
h + U (2)

h )/4.

3.2.2.3 Arbitrary degree polynomial reconstruction

In the introduction we have reminded one classical obstacle to reach higher-order of accuracy
when polynomial reconstruction is to be used. It is well-known that the mean value Ui of a
regular function U on Ki is approximated by the value of the solution at the cell centroid,
U(ci), with an error of O(h2) where h represents the characteristic length of the cell. It results
that any reconstruction based on geometrical arguments using U(ci) in place of Ui can only
provide second-order approximation.
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Therefore as classical higher-order finite volume methods the MOOD method is based on
polynomial reconstructions from mean values on cells. Let us consider a generic reconstructed
polynomial of degree d, given mean values U on a generic cell K, under the form

ũ(x; d) = U +
∑

1≤|α|≤d

Rα

(
(x− c)α − 1

|K|
∫
K

(x− c)α dx

)
, (3.25)

where c is the centroid of K, x a generic point in K and Rα are the unknowns polynomial
coefficients where α = (αx, αy) ∈ N

2 is a multi-index with |α| = αx + αy. Note that by
construction, the mean value on K of the polynomial function is equal to U since the integral
over K of the term between parenthesis in (3.25) vanishes. It thus fulfills the conservation
property on K.
There exist several techniques [1, 33] to determine the coefficients Rα. Here, we consider a
least square approximation of neighbor mean values Uj where Kj belongs to a compact stencil
S(K). It amounts to minimizing the functional

E(ũ) =
∑

j∈S(K)

ωk

[
1

|Kj|
∫
Kj

ũ dx− Uj

]2

, (3.26)

where ωk are positive weights used to provide a better condition number. In particular, the
condition number of the associated linear system dependents on the spatial characteristic length
thus we use the solution proposed in [33] to overcome this problem.
In practice, we do not directly solve the symmetric linear system associated with the minimiza-
tion problem. Instead we use the technique from [9, 57] where an over-determined linear system
is solved in a least-squares sense with a QR decomposition using Householder transformations.
The reconstructed polynomial ũ is thus exact for any polynomial function of degree lower than
d which provides the consistency of the reconstruction method and further the status of a
(d + 1)th-order numerical method.

Remark 3.13 In 2D, at least N (d) = (d + 1)(d + 2)/2−1 neighbors are needed to provide the
minimal number of equations. However for the sake of robustness more cells are involved. In
details, we use at least 5 cells for d = 1, 8 cells for d = 2, 16 cells for d = 3, 20 cells for d = 4
and 26 cells for d = 5.

Remark 3.14 In the introduction we have stated that in the general case one should not iden-
tify the mean value of a non-linear combination with the non-linear combination of mean
values. Let ρ and φ be two regular functions on cell Ki and ρi, φi, (ρφ)i, denote their re-
spective exact mean values. A Taylor expansion with respect to the centroid of the cell gives
(ρφ)i = ρiφi +O(h2). For instance let us consider the one-dimensional variables ρ, φ and (ρφ)
and their mean values on cell K1 = [0, h]

ρ(x) = 1 + x, φ(x) = 1− x, (ρφ)(x) = 1− x2,

ρ1 = 1 +
h

2
, φ1 = 1− h

2
, (ρφ)1 = 1− h2

3
.

We then deduce that |(ρφ)1 − ρ1φ1| = h2/12 leading to a second-order error. As instance it is
well known that for Euler system of equations the non-linear transformation of the conservative
mean values into primitive ones introduces a second-order error in the general case.
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3.2.2.4 Algorithm

Let us assume that we have access to a given sequence Un
h = (Un

i )i∈Eel of mean value ap-
proximations at time tn, the goal is to build an eligible sequence Un+1

h = (Un+1
i )i∈Eel at time

tn+1 = tn +Δtn in the sense that each approximation Un+1
i respects a set of constraints A. We

only consider here a forward Euler time step without loss of generality. The MOOD method
algorithm is the following:

1. Initialization at tn. The MOOD procedure starts by initializing the CellPD to di = dmax

and by computing the coefficients of the polynomial reconstruction Ũi(x; di) on each cell.

2. Evaluation of EdgePD and values at Gauss points. We compute the EdgePD dij on each

edge and use polynomial function Ũi(x; dij) and Ũj(x; dij) to compute approximations of
U at Gaussian points on eij.

3. Computation of candidate solution U�
h . Numerical fluxes are computed using the recon-

structed solution at Gauss points and one time step is carried out to provide a candidate
U�
h at time tn+1 = tn +Δtn.

4. Check U�
i for A-eligibility. If di �= 0 we check the A-eligibility of each mean value U�

i

with respect to the constraints set A. In the case U�
i is not A-eligible then CellPD di

is decremented. If all cells are A-eligible then the candidate solution is valid and we set
Un+1
h = U�

h else the solution is recomputed following steps 2., 3. and 4.

Remark 3.15 Only cells Ki where CellPD has been decremented and their neighbors in the
compact stencil ν(i) have to be re-updated. Consequently only these cells will have to be checked
for the next iterations of the MOOD procedure within the current time step. This dramatically
reduces computational cost.

Remark 3.16 Since polynomial reconstruction is costly in CPU time and memory, we pro-
posed in [18] to truncate Ũi(−; dmax) to obtain lower-order polynomials. However we found that
for dmax > 2 this technique implies non desirable behavior on discontinuous profiles as the re-
construction stencil remains large.
Moreover numerical experiments show that a one-by-one degree decrementing leads to avoidable
computational effort since the decrementing procedure is usually performed around discontinu-
ities. We thus slightly modify the decrementing algorithm by jumping from d = dmax to d = 2
and then from d = 2 to d = 0 if needed. This also reduces the computational effort while pro-
viding equivalent results on a wide range of test cases compared to a one-by-one decrementing.

Remark 3.17 Polynomial reconstruction on boundary cells are treated using ghost cells in
order to to be consistent with the prescribed boundary conditions.

The major difficulty remains to determine a list of constraints which both provides a very high
accurate solution while avoids numerical artifacts such as spurious oscillations in the vicinity
of discontinuity. This is the purpose of the next section.

3.2.3 Detection process

The list of constraints A corresponds to eligible criteria that the numerical approximation has
to fulfill. To this end, detection process is necessary to list where the candidate numerical
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solution fails to respect the constraints. Such process must be very carefully designed to
preserve high accuracy for regular solutions whereas discontinuities should be treated with
the lower order scheme to avoid non-physical oscillations. The first subsection deals with the
advection problem and a new detection process called u2 and based on a smoothness detector.
In the second subsection the Euler system is considered: Two detection processes are proposed
and we show the positivity-preserving property of the MOOD method.

3.2.3.1 Advection problem: The u2 detection process

Solutions of autonomous scalar hyperbolic problems satisfy the Maximum Principle property.
Such a property is also valid for advection problem with divergence free velocity. Therefore the
Discrete Maximum Principle (DMP) seems to be a good candidate to detect problematic cells.
Unfortunately, as mentioned in the introduction, the strict DMP applied to mean values reduces
the order of accuracy to two (see the appendix for an example), and thus can not be used alone.
Classical studies show that the accuracy discrepancy only occurs at extrema [65, 59, 46]. We
will then mainly focus on extrema since the DMP detection process is still relevant where the
solution is locally monotone. We propose the relaxation of the strict DMP at smooth extrema in
order to avoid accuracy discrepancy. This leads to the introduction of an additional procedure
to detect smooth extrema. Notice that in (W)ENO type of methods the DMP is not strictly
enforced which implies that extrema are well approximated and consequently arbitrary high-
order of accuracy is achieved.
The first detection criteria is the DMP: No polynomial degree decrementing is performed for
cells where the DMP is satisfied. Let us now consider a cell Ki where U�

i does not fulfill the
DMP. Two situations may arise whether we deal with a discontinuity or a smooth extrema.
The major difficulty is to give a concrete definition of the concept of a smooth extrema from
a numerical point of view. Actually a function may be considered irregular for a coarse mesh
but regular with a finer one. We try to overcome this difficulty by introducing the following
definition.

Definition 3.18 Let Ki be a cell and ũi = ũi(.; 2) a polynomial reconstruction of degree 2 for an
underlying function U. We define the second derivatives in x and y directions by Xi = ∂xxũi ∈ R

and Yi = ∂yyũi ∈ R. We will refer to these second derivatives as “curvatures”.
For all cell Kj, j ∈ ν(i), we define the maximal and minimal curvatures as

Xmin
i = min

j∈ν(i)
(Xi,Xj) and Xmax

i = max
j∈ν(i)

(Xi,Xj) ,

Ymin
i = min

j∈ν(i)
(Yi,Yj) and Ymax

i = max
j∈ν(i)

(Yi,Yj) .

We now introduce the new detection criterion to select smooth extrema.

Definition 3.19 A numerical solution U�
i in cell Ki which violates the DMP is nonetheless

eligible if
Xmax

i Xmin
i > 0 and Ymax

i Ymin
i > 0, (3.27)

|Xmin
i |

|Xmax
i | ≥ 1− εi and

|Ymin
i |

|Ymax
i | ≥ 1− εi, (3.28)
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where εi is a cell dependent parameter defined by

εi = (Δxi)
1

2m , with Δxi = |Ki| 1
m ,

m being the spatial dimension (m = 2 here).

Such a detection criterion is motivated by the following considerations. For a given mesh, the
solution is locally considered as non-oscillating if condition (3.27) is fulfilled meaning that, at
the numerical level, the “curvatures” of the P2 approximation have the same sign.
Moreover for a given mesh, the solution is considered locally C2 from a numerical point of view
if condition (3.28) is fulfilled. The parameter ε is a mesh dependent coefficient which prescribes
the tolerance. Such criteria verifies if the “curvatures” are almost identical in the vicinity of
cell Ki with respect to the local characteristic space length Δxi.
The choice of ε derives from numerous tests. In fact our numerical experiments have shown
that ε scales like a cell dependent characteristics length to a power depending on the dimension
of space (tests have been carried out in 1D and 2D). It seems to the authors to be the best
compromise to gain a very high-order of convergence while maintaining reasonable monotonicity.
Finally we remark that at the limit ε = 0 we recover the DMP.
The set of constraints A for advection equation is thus constituted by the DMP relaxed by
the smooth extrema detector described above. The detection process is called u2 detection in
reference to the second-order derivatives and is summarized in the sequel.
Being given a sequence U�

h = (U�
i )i∈Eel , the u2 detection procedure in the case of the advection

problem is given by the following algorithm.

1. The DMP criterion is first checked on each cell Ki

min
j∈ν(i)

(Un
i , U

n
j ) ≤ U�

i ≤ max
j∈ν(i)

(Un
i , U

n
j ). (3.29)

2. If U�
i does not satisfy (3.29) then

a- Compute Xk,Yk for k ∈ ν(i)
⋃{i} and coefficient εi,

b- Check criteria (3.27) and (3.28). If cell i is not a smooth extrema then di is decre-
mented, else U�

i is eligible.

3.2.3.2 Euler system: Two detection processes and positivity-preserving

The compressible hydrodynamics Euler system of equations is the following hyperbolic un-
steady non-linear system involving conservation of mass, momentum and total energy

∂t

⎛⎜⎜⎝
ρ
ρu
ρv
E

⎞⎟⎟⎠+ ∂x

⎛⎜⎜⎝
ρu

ρu2 + p
ρuv

u(E + p)

⎞⎟⎟⎠+ ∂y

⎛⎜⎜⎝
ρv
ρuv

ρv2 + p
v(E + p)

⎞⎟⎟⎠ = 0. (3.30)

The primitive variables are the density ρ, the velocity U = (u, v) and the pressure p. The pres-
sure is linked to two thermodynamical variables such as density and specific internal energy ε
through an Equation Of State (EOS) p = p(ρ, ε). As instance the classical ideal gas law states
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that p = (γ − 1)ρε where γ is the ratio of specifics heats. Moreover the total energy E is such
that E = ρ(ε+ 1/2‖U‖2).
Even if the DMP property is used in most of limiting procedures (MUSCL technique as in-
stance), the DMP property does not make sense in the case of the Euler system, for the density
or the total energy for instance, since the velocity is not divergence free. Consequently we can
not rely only on DMP. We propose here two detecting procedures which we have been widely
experimented and present in the next sections the pros and cons of such procedures.

� Physical Admissible Detection (PAD)

The first and minimal detection criteria consists of ensuring the physical meaningfulness of
the primitive variables, namely positivity of density and pressure.
Then the set of constraints A are used to test if the candidate solution satisfies ρ�i > 0 and
p�i > 0. Note that p�i is not a conservative variable and derives from nonlinear combinations of
conservative ones. The PAD algorithm is the following.

1. The Physical Admissibility criterion is first checked on each cell Ki

ρ�i > 0, p�i > 0. (3.31)

2. If the PAD criterion is not satisfied then di is decremented, else U∗
i is eligible.

The PAD procedure only consists of maintaining the physical meaningfulness of the numerical
approximation. In other words, the high-order MOOD method coupled with the PAD Detection
Process is positivity-preserving for density and pressure. This point is further discussed in
section 3.2.3.2.

� Extension of the u2 detection process

Physical admissibility of the solution is not enough to prevent oscillations in the vicinity of
discontinuities. It is a precondition but we require an supplementary detection criterion to
decide whether the numerical solution is locally smooth or not. To this end, we adapt the
u2 criterion to the density variable using local P2 polynomial reconstruction ρ̃i = ρ̃i(.; 2) to
evaluate Xi = ∂xxρ̃i and Yi = ∂yyρ̃i. The u2 detection algorithm for the Euler system is thus
the following.

1. The PAD criterion is first checked on each cell Ki. If it is not satisfied then di is decre-
mented and Steps 2. and 3. are skipped.

2. The DMP criterion of the density function is checked on each cell Ki

min
j∈ν(i)

(ρni , ρ
n
j ) ≤ ρ�i ≤ max

j∈ν(i)
(ρni , ρ

n
j ). (3.32)

3. If ρ�i does not satisfy (3.32) then

a- Compute Xk,Yk for k ∈ ν(i)
⋃{i} and coefficient εi,

b- Check criteria (3.27) and (3.28). If cell i is not a smooth extrema then di is decre-
mented for any conservative variable, else U∗

i is eligible.
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The set of constraints A consists of the PAD, and the u2 detection process on the density. Note
that the density is thus the variable onto which the detection is performed. However there is a
large number of possible choices of detection variables and decrementing procedures.

� Positivity-preserving property

One important property a scheme must fulfill is to be positivity-preserving, that is given a set
of physically admissible mean values the scheme provides another set of physically admissible
ones. It is absolutely mandatory for the simulation to continue. In the case of the Euler
equations density and pressure must be positive but this is not straightforwardly ensured by
most of classical MUSCL or ENO/WENO schemes and most of simulation codes need a special
treatment when the positivity is violated. Indeed designing a positivity-preserving scheme may
be a difficult task and often leads to a more complex scheme because of the classical a priori
limitation philosophy. This classical difficulty is stated by the authors in [96] page 2754 as “ It
is very difficult to design a conservative high-order accurate scheme preserving the positivity”.
However the a posteriori treatment implies that the MOOD method is intrinsically positivity-
preserving assuming the three following points:

1. The lowest order scheme is positivity-preserving, in our case it is the first-order finite
volume one.

2. The positivity of density and pressure are parts of the set of constraints A.

3. The EdgePD strategy is upper-limiting see [18] definition 9 page 4033. This implies that
if the CellPD of a given cell is 0 then this cell is fully updated with the first-order scheme.

The proof that the MOOD method is positivity-preserving is analogous to the one in theorem
10 page 4033 of [18]. In short, given a candidate solution one checks the positivity of density
and pressure. If a cell is problematic that is to say density or pressure is negative then the
CellPD is decremented. The next candidate solution is computed and checked again: Either
this next candidate is positive or the decrementing process carries on until the CellPD is zero.
In this latter case points 1. and 3. necessarily imply the positivity of the candidate solution.
As this process is the same for any cell it leads to a positivity-preserving solution in a finite
number of MOOD iterations.
In the numerical section we propose the Noh test case for which our implementation of the
classical MUSCL scheme generates a negative pressure and fails to complete the simulation
whereas the MOOD method always gives a physical meaningful solution.

3.2.4 Numerical tests

MOOD has been implemented into a 2D unstructured (polygonal) code which can deal with
advection equation and hydrodynamics equations. The polynomial reconstruction ranges from
piecewise constant up to piecewise polynomial of fifth degree. Following remark 3.16 one uses
two decrementing sequences: P5-P2-P0 and P3-P2-P0. It implies that only two precomputed
matrices for the reconstruction step per cell are only stored in memory for d = dmax and d = 2.
The flux computation involves integrals which are approximated using Gaussian numerical
integration. We use two Gaussian points on edges for P2 and P3 reconstructions and three
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for P5 to reach the expected order of accuracy for numerical integrations. Time integration is
performed with the RK3-TVD method given by system (3.24). We apply the MOOD procedure
detailed in section 3.2.2 to each sub-step of the RK3-TVD. The CellPD are thus reinitialized
to dmax at the beginning of each time sub-step. By default we use classical time step control
with CFL=0.6. In the case of convergence study we use a fixed time step Δt = Δxr/3 to reach
rth-order of accuracy. Given a variable ϕ the relative L1 and L∞ errors are measured by:

err1 =

∑
i∈Eel |ϕN

i − ϕ0
i ||Ki|∑

i∈Eel |ϕ0
i ||Ki| and err∞ =

maxi∈Eel |ϕN
i − ϕ0

i |
maxi∈Eel |ϕ0

i |
,

where (ϕ0
i )i and (ϕN

i )i are respectively the cell mean values at initial time t = 0 and final time
t = tfinal = NΔt.
The unstructured meshes used in this paper are of different kinds, logically rectangular, De-
launay triangulation, Voronoi tessellation and non-conformal polygonal mesh. Contrarily to
what was done in [18] the whole detection is made a posteriori, namely we do not check if the
reconstructed values at Gauss points are physically admissible or not. If they are not, the flux
and the cell mean values are usually undefined therefore the cell is flagged as problematic.

3.2.4.1 Advection equation

Let us consider the scalar linear advection of a quantity u with velocity V (x){
∂tu+∇.(V u) = 0,

u(., t = 0) = u0,
(3.33)

where V (x) is a continuous function on Ω ∈ R
2 and u0 is the initial condition. Boundary

conditions are prescribed as periodic ones on ∂Ω.
The Double Sine Translation (DST) is first tested on Delaunay triangulations and Voronoi
tessellations in order to prove that on smooth solution MOOD can actually maintain very
high-order of accuracy with the u2 detection criteria. Only second-order of accuracy is reached
when DMP detection criterion is used. The second test is the Solid Body Rotation (SBR) that
is used to prove that MOOD-u2 can preserve smooth extrema but can still limit discontinuous
profiles. This problem is further used to show the improvement obtained when polynomial
reconstruction degree is increased, in other word when high-(P1) and very high-order (P3, P5)
numerical schemes are used.

� Double Sine Translation (DST)

Let Ω be the unit square. We consider a constant velocity V = (2, 1) and the C∞ initial
condition

u0(x, y) = sin(2πx) sin(2πy).

The final time is tfinal = 2.0. Periodic boundary conditions imply that the exact final solution
coincides with the initial one. The solution is therefore always smooth during the computation.
The computations are carried out on series of successively refined Delaunay triangulations (from
456 up to 29184 cells, see an example in Fig. 3.17 left panel) and polygonal Voronoi tessellations
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Figure 3.17: Example of Delaunay (left) and Voronoi (right) meshes for the DST problem.

(from 300 up to 19200 cells, see Fig. 3.17 right panel). Note that the meshes are far from
being regular, see right panel of Fig. 3.17 fro instance. We plot in Fig. 3.18 the convergence
curves obtained on the series of Delaunay triangulations and Voronoi tessellations. The MOOD
method with the DMP detection process is displayed on top panels whereas the u2 Detection
Process is on bottom panels. It clearly shows the strong limitation implied by the DMP since
only 3rd-order and 2nd-order are reached in L1 and L∞ norms respectively independently of the
polynomial degree. On the contrary the proposed u2 Detection Process reaches the expected
order of convergence. This is actually explained by the fact that only polynomials of maximal
degree are used during the whole computation, i.e. no CellPD decrementing is ever recorded.
L1 and L∞ errors and rates are given in Table 3.11 for the DMP and the u2 detection criteria.
One observes that the optimal order of convergence is reached for the u2 detection criterion
whereas only second-order accurate results are obtained when the DMP is used.
This accuracy test on smooth functions is passed by the MOOD method with u2 Detection
Process, the next section is thus dedicated to the study of its behavior on non-smooth profiles.

� Solid Body Rotation (SBR)

First introduced by R.J. Leveque in [52], the Solid Body Rotation test on the unit domain
consists of one rotation of three shapes: a hump, a cone and a slotted cylinder. Each shape is
located within a circle of radius r0 = 0.15

Hump centered at (x0, y0) = (0.25, 0.5)

u0(x, y) =
1

4
(1 + cos(πmin(r(x, y), 1))).
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Figure 3.18: Error curves for the DST problem for series of Delaunay meshes (empty symbols) and of
Voronoi meshes (filled symbols) for the DMP detection process (top) and the u2 one (bottom).

Cone centered at (x0, y0) = (0.5, 0.25)

u0(x, y) = 1− r(x, y).

Slotted cylinder centered at (x0, y0) = (0.5, 0.75)

u0(x, y) =

{
1 if |x− 0.5| < 0.25, or y > 0.85,
0 elsewhere,

where r(x, y) =
1

r0

√
(x− x0)2 + (y − y0)2. To perform the rotation, we use the velocity V (x) =

(−y + 0.5, x− 0.5) and the final time tfinal = 2π corresponds to one full rotation.
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DMP detec. process u2 detec. process
Deg./Type Cell Nb L1 error L∞ error L1 error L∞ error

P2/Delaunay 456 1.775E-01 — 2.629E-01 — 1.656E-01 — 1.549E-01 —

1824 2.303E-02 2.95 8.016E-02 1.71 2.351E-02 2.82 2.283E-02 2.76

7296 3.142E-03 2.87 2.522E-02 1.67 3.049E-03 2.95 2.995E-03 2.93

29184 4.391E-04 2.84 8.082E-03 1.64 3.870E-04 2.98 3.784E-04 2.98

P2/Voronoi 300 4.804E-01 — 5.278E-01 — 4.423E-01 — 4.339E-01 —

1200 7.483E-02 2.68 1.359E-01 1.96 7.482E-02 2.56 7.070E-02 2.62

4800 9.779E-03 2.94 3.432E-02 1.99 9.788E-03 2.93 9.348E-03 2.92

19200 1.244E-03 2.97 1.039E-02 1.72 1.233E-03 2.99 1.176E-03 2.99

Expected order 3 3 3 3

P3/Delaunay 456 6.383E-02 — 1.801E-01 — 9.474E-03 — 1.007E-02 —

1824 8.369E-03 2.93 5.920E-02 1.61 5.751E-04 4.04 7.916E-04 3.67

7296 9.916E-04 3.08 2.057E-02 1.53 3.611E-05 3.99 4.664E-05 4.09

29184 1.185E-04 3.06 7.146E-03 1.53 2.140E-06 4.08 2.774E-06 4.07

P3/Voronoi 300 1.158E-01 — 2.826E-01 — 6.431E-02 — 5.961E-02 —

1200 2.263E-02 2.36 9.234E-02 1.61 4.017E-03 4.00 3.632E-03 4.04

4800 2.157E-03 3.39 2.787E-02 1.73 2.583E-04 3.96 2.539E-04 3.84

19200 2.393E-04 3.17 9.295E-03 1.58 1.649E-05 3.97 1.718E-05 3.89

Expected order 4 4 4 4

P5/Delaunay 456 6.098E-02 — 1.691E-01 — 3.034E-04 — 3.715E-04 —

1824 9.660E-03 2.66 6.383E-02 1.41 6.796E-06 5.48 9.939E-06 5.22

7296 1.359E-03 2.83 2.399E-02 1.41 1.207E-07 5.82 1.831E-07 5.76

29184 1.704E-04 3.00 8.574E-03 1.48 1.767E-09 6.09 2.836E-09 6.01

P5/Voronoi 300 1.352E-01 — 2.610E-01 — 4.584E-03 — 4.955E-03 —

1200 2.213E-02 2.61 9.116E-02 1.52 7.327E-05 5.97 8.740E-05 5.83

4800 2.119E-03 3.38 2.914E-02 1.65 1.341E-06 5.77 1.573E-06 5.80

19200 2.449E-04 3.11 1.005E-02 1.54 3.017E-08 5.47 3.703E-08 5.41

Expected order 6 6 6 6

Table 3.11: L1 and L∞ errors and convergence rate for the DST problem for the MOOD method with DMP
and u2 detection process.

For this test case we use a genuinely unstructured and non-uniform mesh made of 5190 triangles
see Fig. 3.19 where we also display the initial data in isolines view, see also Fig. 3.20 top-left
panel where a side view of the initial data is provided. This mesh is refined around the slotted
disk, the ratio between the largest and smallest edge length is approximately 7. The three
shapes while rotating move across the refined and coarse zones. The purpose is to emphasize
the effects on the numerical results of using a truly non-regular mesh.
We plot in Fig. 3.20 profile views of the solution obtained from three methods but all with

a P5 polynomial reconstruction. First the MOOD method with the DMP Detection Process,
then the MOOD method with the u2 Detection Process, and finally the unlimited version of
the FV scheme. These results show on one hand that the solution with u2 Detection Process
on the non-smooth slotted cylinder is almost the same as for the DMP. On the other hand it
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Figure 3.19: Initial mesh and initial data for the SBR problem. The mesh is composed of 5190 triangles
refined around the slotted disk. The resulting mesh is genuinely non-uniform.

shows that the u2 solution on the two smooth profiles are exactly the ones obtained by the
unlimited scheme. In other words, the u2 Detection Process maintains the same accuracy as
an unlimited scheme on smooth profiles and almost the monotonicity of a limited scheme on
non-smooth ones. The same conclusion applies for any other polynomial degrees tested hence
we have skipped these figures. In Fig. 3.21 are displayed a zoom on the slotted disk at the final
time for the initial/final, the limited MUSCL scheme (MLP [62]), MOOD-P1, MOOD-P3 and
MOOD-P5 with u2 detection process.

In Table 3.12 are gathered the errors for P3 and P5 in order to show that the u2 Detection
Process provides a slightly better accuracy than the DMP detection process. Finally we display
in Table 3.13 the min/max values of the final numerical solution for the limited MUSCL method
(MLP), MOOD-P1, MOOD-P3 and MOOD-P5 all with DMP detection or u2 Detection Process.
This table shows that the u2 detection process permits slight undershoots which is one of the
reasons MOOD can reach high-order accuracy.
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Initial≡Final MOOD-P5 DMP

MOOD-P5 u2 UNLIMITED P5

Figure 3.20: Profiles of the SBR solution for the initial/final exact solution, MOOD-P5 with DMP detection
process, MOOD-P5 with u2 detection process, MOOD-P5 without any limitation.
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Figure 3.21: Profiles of the SBR solution for the initial/final exact solution (top), for a limited MUSCL
method (MLP) and MOOD-P1, MOOD-P3, MOOD-P5 with u2 detection process.
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L1 Error DMP u2 UNLIMITED

P3 3.219E-1 3.171E-1 3.734E-1

P5 2.690E-1 2.621E-1 3.223E-1

Table 3.12: L1 error for the SBR problem for different detection processes and polynomial degrees.

Method MUSCL MOOD-P1 MOOD-P3 MOOD-P5

Detec. DMP u2 DMP u2 DMP u2

Min 5.58E-10 0.00E+00 -2.45E-03 3.27E-08 -1.31E-03 1.10E-08 -5.60E-05

Max 7.48E-01 8.53E-01 8.51E-01 9.49E-01 9.54E-01 9.61E-01 9.60E-01

Table 3.13: Minimal and maximal mean values for the SBR problem for different detection processes and
polynomial degrees.

3.2.4.2 Euler system

In this section we test the MOODmethod on unstructured meshes for hydrodynamics problems
governed by the Euler system. First we need to assess the effective numerical accuracy of the
method on a smooth problem for which an exact solution exists. We choose an isentropic
vortex which presents a smooth profile during the entire simulation and, as such, permits the
estimation of errors and convergence orders. In a second test we run the Lax shock tube to
assess the essentially non-oscillatory behavior of MOOD compared to classical WENO results.
Then we run the Double Mach reflection problem to highlight the good capacity of the MOOD
method to capture strong shocks and contact discontinuities. Moreover we provide CPU cost
and memory storage tables. Next the Noh problem is used to assess the positivity-preserving
property of the MOOD method. Last we propose a genuine physical problem extracted from
[72] for which experimental results are available.

� Isentropic vortex

The isentropic vortex problem is detailed in [68] and [93], therefore we only mention the
basic data for the sake of consistency. The simulation domain Ω is the square [−5, 5]− [−5, 5]
and we consider an initial gas flow given by the following condition (ambient gas) ρ∞ = 1.0,
u∞ = 1.0, v∞ = 1.0, p∞ = 1.0, with a normalized ambient temperature T ∗

∞ = 1.0 computed
with the perfect gas equation of state and γ = 1.4.
A vortex centered at xvortex = (xvortex, yvortex) = (0, 0) is added to the ambient gas at the initial
time t = 0 with the following conditions u = u∞ + δu, v = v∞ + δv, and T ∗ = T ∗

∞ + δT ∗

δu = −y′ β
2π

exp
(

1−r2

2

)
, δv = x′ β

2π
exp

(
1−r2

2

)
,

δT ∗ = − (γ−1)β
8γπ2 exp (1− r2) .

with r =
√

x′2 + y′2, (x′ = x− xvortex, y
′ = y− yvortex) and vortex strength is given by β = 5.0.
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Consequently, the initial density is given by

ρ = ρ∞

(
T ∗

T ∗∞

) 1
γ−1

=

(
1− (γ − 1)β

8γπ2
exp

(
1− r2

]) 1
γ−1

(3.34)

We assume periodic condition on the boundary and the exact solution at any time t is the same
vortex but translated.
The goal of the present test is to highlight the stagnation of the rate of accuracy when primitive
variables are used for the polynomial reconstructions instead of conservative ones. As pointed
out in the previous section, nonlinear operations on means values reduces the method order up
to at most a second-order one. We have performed the numerical simulations of the isentropic
vortex problem with the same mesh using the less restrictive Physical Admissible Detection
(PAD) procedure to provide effective very high-order. A series of refined meshes (from 200 up
to 51200 cells) are successively used to compute the numerical solution.
In Table 3.14 are gathered the L1 and L∞ errors and rates of convergence for MOOD-P2,
MOOD-P3, MOOD-P5 using the Physical Admissible Detection Clearly, conservative variable
reconstructions provide the optimal convergence rate whereas the reconstruction with primitive
variables is systematically reduced to a second-order one. We also display in Fig. 3.22 the

Conservative variables Primitive variables
Deg. Cell Nb L1 error L∞ error L1 error L∞ error

P2 200 1.850E-02 — 2.680E-01 — 2.002E-02 — 2.884E-01 —

800 6.519E-03 1.50 1.255E-01 1.09 7.621E-03 1.39 1.771E-01 0.70

3200 1.444E-03 2.17 2.208E-02 2.51 1.536E-03 2.31 4.054E-02 2.13

12800 2.504E-04 2.53 3.631E-03 2.60 2.554E-04 2.59 6.060E-03 2.74

51200 3.347E-05 2.90 4.923E-04 2.88 4.540E-05 2.49 8.756E-04 2.79

Expected order 3 3 3 3

P3 200 1.137E-02 — 1.880E-01 — 1.424E-02 — 2.384E-01 —

800 2.504E-03 2.18 4.686E-02 2.00 3.530E-03 2.01 8.358E-02 1.51

3200 3.524E-04 2.83 5.977E-03 2.97 5.666E-04 2.64 8.835E-03 3.24

12800 1.947E-05 4.18 3.725E-04 4.00 1.377E-04 2.04 1.649E-03 2.42

51200 1.069E-06 4.19 1.996E-05 4.22 3.460E-05 1.99 4.091E-04 2.01

Expected order 4 4 4 4

P5 200 8.193E-03 — 1.200E-01 — 1.161E-02 — 1.915E-01 —

800 1.762E-03 2.22 3.433E-02 1.81 2.492E-03 2.22 3.740E-02 2.36

3200 6.767E-05 4.70 1.133E-03 4.92 5.482E-04 2.18 6.112E-03 2.61

12800 1.011E-06 6.06 2.237E-05 5.66 1.382E-04 1.99 1.598E-03 1.94

51200 2.583E-08 5.29 4.809E-07 5.54 3.462E-05 2.00 4.039E-04 1.98

Expected order 6 6 6 6

Table 3.14: L1 and L∞ errors and convergence rates for the isentropic vortex problem with MOOD and the
Physical Admissible Detection Process. Comparison between conservative and primitive variables polynomial
reconstructions for different polynomial degrees.

convergence curves corresponding to the errors of Table 3.14. Finally we also mention that
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Figure 3.22: Convergence curves for the isentropic vortex. Top figures correspond to the reconstruction
with primitive variables while bottom figures use reconstruction with conservative variables. The left column
represents the L1-norm error and the right column the L∞-norm error. The PAD detection process has been
used.

when the vortex is not in motion, i.e. (u∞, v∞) = (0, 0), then the reconstruction using primitive
variables does produce the correct order of convergence.

� Lax shock tube

The 1D Lax shock tube consists of two states (ρL, uL, pL)=(0.445, 0.698, 3.528) and (ρR, uR, pR)
= (0.5, 0, 0.571) separated by the interface x = 0. In order to compare with the finite volume
multi-dimensional WENO results of [41], we run the problem on the domain Ω = [−1; 1]−[0, 0.2]
until final time t = 0.26 using a mesh made of 100 − 10 quadrangles split into two triangles
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through the same diagonal for all cells (see Fig. 5.5 of [41]).
The goal of this test is to compare the essentially non-oscillatory behavior of the MOOD
method using the u2 detection process with the classical genuinely multi-dimensional finite
volume WENO results based on conservative or characteristic variables.
On the top panels of Fig. 3.23 we reproduce the density profiles from [41] obtained with the
4th-order WENO method based on conservative (left) and characteristic (right) variables. We
recall that this method uses combinations of P

2 (3rd-order) polynomials to reach 4th-order.
The bottom panel presents the MOOD-P3 density profiles on conservative variables with the
u2+PAD detection process where only one line of triangles is displayed to comply with Fig. 5.6
of [41]. On the left we plot the result obtained with the Lax-Friedrichs numerical flux (which
is used for the WENO results) and on the right the result using the HLLC flux.

Figure 3.23: Comparison betweenWENO and MOODmethods on 100−10 quadrangles split into triangles —
Top: results of the 4th-order WENO method using Lax-Friedrichs flux from [41] on conservative variables (left)
and on characteristic variables (right) — Bottom: results of the 4th-order MOOD-P3 method with u2+PAD
detection process using Lax-Friedrichs (left) and HLLC (right) fluxes.
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We observe that the non-oscillatory behavior of the MOOD method with u2+PAD detection
process is equivalent to the WENO on characteristic variables while it is clearly better than the
WENO on conservative variables. Moreover we see that the use of HLLC gives better a result
for a negligible additional cost, with only three points in the contact discontinuity instead of
five and remains essentially non-oscillatory.

� Double Mach reflection of a strong shock

The double mach reflection of a strong shock was first proposed in [91]. This test problem
involves a Mach 10 shock in a perfect gas with γ = 1.4, which is initially positioned at x = 1/6,
y = 0 and makes a 60◦ angle with the x-axis. The gas ahead of the shock is at rest and has
uniform initial density ρ0 = 1.4 and pressure p0 = 1. The reflecting wall lies along the bottom
of the domain, beginning at x = 1/6. The region from x = 0 to x = 1/6 along the bottom
boundary at y = 0 is always assigned values for the initial post-shock flow. Inflow boundary
condition on the left side and outflow condition on the right side are also set. At the top, the
boundary conditions are set to describe the exact motion of the Mach 10 flow (see [24]).
The goal of the test is, on one hand, to quantitatively show the effect of the polynomial degree
reconstruction when dealing with strong shock and, on the other hand, to observe the capacity
of the method to reproduce the complex structure due to the contact discontinuities in the
right part of the shock.
The mesh has been obtained using the free mesher Gmsh by a refinement of a coarser Delaunay
ones, it is constituted of 102720 triangles (see Fig. 3.24 top.). Moreover for all figures 30 isolines
between 1.39 and 23 have been drawn.
We depict in Fig. 3.24 the impact of the polynomial degree of the reconstruction on the
numerical solution using the same mesh. The u2+PAD Detection Processes has been employed
to control the oscillations in the vicinity of the shock. Clearly the degree of the reconstruction
has a strong impact on the solution accuracy and improve the shock capture. Most relevant
parts are the contact discontinuities in the right zone x ∈ [2.3, 2.7] which show the capacity of
the scheme to reduce numerical viscosity when employing higher-order reconstructions.
Figure 3.25 is a comparison between the Physical Admissible Detection (PAD) and the cou-
pling u2+PAD. The u2 Detection Process reduces the oscillations but increases the numerical
viscosity close to contact discontinuities. It is worth noting that even with a weak Detection
Process, namely the PAD procedure, the MOOD method is still very robust and provides a
solution resembling the classical ones from the literature [91]. The choice of the detecting pro-
cedure depends of the simulation goal: Less oscillations with the u2+PAD or less diffusive with
the PAD alone.
To conclude with this test case, we provide in Tables 3.15 and 3.16 the cost of the MOOD
method running on a single core of the three following machines (using -O3 flag for gfortran
compiler)

M1 : A laptop with Intel Core2Duo P7550 (2 cores) @ 2.26GHz, 3MB of L2 Cache, 8GB of
RAM.

M2 : A server with two Intel Xeon E5335 (4 cores) @ 2.00Ghz, 8MB of L2 Cache, 16GB of
RAM.

M3 : A desktop with Intel Core i5 2500 (4 cores) @ 3.30GHz, 6MB of L2 Cache, 8GB of RAM.

109



CHAPTER 3. TOWARDS THE MOOD METHOD FOR EULER

Figure 3.24: Comparison between the P2 (top), P3 (middle) and P5 (bottom) polynomial reconstructions
with the conservative variables using the same mesh. Physical Admissible Detection (PAD) and u2 Detector
have been both used to prevent numerical oscillations

This comparison is done on two different meshes, one made of 57600 uniform quadrilaterals and
one Delaunay triangulation with 17624 cells. We compare MOOD-P2, MOOD-P3 and MOOD-
P5 for both the PAD and u2+PAD detection processes. We give in Table 3.15 the memory cost
(in left column) and the total number of iterations (in right column) for all simulations, while
we provide in Table 3.16 the total CPU time (in left column) and the time in micro-seconds
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needed for one complete time step of a single cell (in right column) including reconstruction,
flux computation and time integration (RK3) of all variables.
It is fairly difficult to compare the cost of two methods running on different machines, for
instance the method is faster on triangles with M2 compared to M1 but it is the opposite for
quadrilaterals. However according to reference [31] the MOOD method is competitive when
compared to truly unstructured methods of the same order.

Mesh
P2 - 3rd-order P3 - 4th-order P5 - 6th-order

Detection
memory iterations memory iterations memory iterations

57600 qua.
240Mo 1012 385Mo 998 840Mo 1004 u2+PAD

180Mo 1016 270Mo 1010 572Mo 1031 PAD

17624 tri.
60Mo 1264 105Mo 1265 250Mo 1265 u2+PAD

50Mo 1268 67Mo 1272 165Mo 1275 PAD

Table 3.15: Memory storage and total number of iterations for the Double Mach problem according to the
different configurations with the MOOD method.

Machine Mesh
P2 - 3rd-order P3 - 4th-order P5 - 6th-order

Detection
total per iter. total per iter. total per iter.

M1

57600 qua.
2157s 37μs 3162s 55μs 8964s 155μs u2+PAD

1346s 23μs 2327s 40μs 8314s 140μs PAD

17624 tri.
601s 27μs 1003s 45μs 1650s 74μs u2+PAD

492s 22μs 762s 34μs 1573s 70μs PAD

M2

57600 qua.
2228s 38μs 4785s 83μs 12371s 214μs u2+PAD

1629s 28μs 3830s 66μs 11629s 196μs PAD

17624 tri.
615s 27μs 922s 41μs 1292s 58μs u2+PAD

521s 23μs 707s 32μs 1079s 48μs PAD

M3

57600 qua.
683s 12μs 1089s 19μs 3696s 66μs u2+PAD

490s 8μs 859s 15μs 3604s 61μs PAD

17624 tri.
265s 12μs 397s 18μs 594s 27μs u2+PAD

230s 10μs 308s 14μs 492s 22μs PAD

Table 3.16: Total time and cost for one complete time step of a single cell for the Double Mach problem.
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Figure 3.25: Results of the MOOD method with P5. In the top figure, simulation has been carried out
with the Physical Admissible Detection (PAD) Detection Process while we have both employed the PAD and
u2 Detection in the middle figure. The left bottom and right bottom figure give a zoom of the solution with
the PAD and u2+PAD Detection Process respectively.
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� Noh problem as a positivity-preserving test case.

The goal of the Noh problem in Cartesian geometry is to numerically prove that the MOOD
method is positivity-preserving, see section 3.2.3.2 for a discussion on this point. It is a difficult
problem well-known in the Lagrangian community, see as instance [56, 55]. It is noticeable
that our implementation of the classical MUSCL scheme is not able to simulate this problem
without creating negative pressures.
The problem is run in the disk of radius 1.2 centered at (0, 0). We initialize a perfect gas with
γ = 5/3, density ρ0 = 1, pressure p0 = 10−10 and velocity U0(x, y)=

(−x,−y
]
/
√

x2 + y2 such
that ||U0(x, y)|| = 1. A cylindrical shock wave generated at the origin further diverges until
final time tfinal = 2.0. The exact solution at tfinal is thus given by

{ρ, p, ur} =

{ {
16, 16

3
, 0
}

if r < rs,{
(1 + 2

r
), 10−10,−1

}
if r > rs,

(3.35)

where r is the radius, ur the radial velocity and rs = 2/3 the shock wave position. This
problem is simulated on a polygonal mesh made of 19756 cells with about 100 cells in the
radial direction. Notice that the mesh is made of seven layers of quadrangles separated with
degenerated polygons, see Fig. 3.26. We display the MOOD-P3 results for the density maps
(left panels) and the density as a function of cell radius (right panels) in Fig. 3.26. The top
panels correspond to the PAD detection process whereas the bottom ones correspond to the
u2+PAD process. One obverves that the symmetry is almost perfectly reproduces. Notice that
the PAD detection process is only intended to ensure the physical meaningfulness of the solution
but does not prevent oscillations to occur. Independently of the order of the scheme the PAD
always provides a meaningful solution. As a consequence the u2+PAD not only provides a
valid solution without negative pressure but also removes the oscillation after the shock wave.

� Impact of a shock on a cylindrical cavity

We finally test the ability of MOOD method to capture physics in realistic conditions by
simulating the experiment proposed in [72] where a planar shock impacts a cylindrical cavity.
We consider the case of a nominal incident shock Mach number of 1.33 in ambient air (with
γ = 1.4) at 0.95 bar pressure. Moreover we use the domain configuration A (following notation
of [72]) we detail in Figure 3.27.
The variables initialization is split in two parts, the pre-shock values

(ρ, u, v, p) = (1.1175, 0.0, 0.0, 95000.0),

and the post-shock ones

(ρ, u, v, p) = (1.7522, 166.3435, 0.0, 180219.75),

leading to conditions of [72] at temperature T = 296.15K.
The simulation is only preformed in the lower half part of the domain for symmetry argument,
namely from y = 0 mm to y = 75 mm. The 193615 cells mesh is composed of triangles, quad-
rangles but also more general polygons with non-conformal elements (see Figure 3.28) to better
suit with the complex geometry of the set-up. Notice that non-conformity is simply handled
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Figure 3.26: Noh problem at tfinal = 2.0 on a polygonal grid — Left: Density map and mesh — Right: Cell
density as a function of cell radius vs exact solution — Top panels correspond to the PAD detection process —
Bottom panels correspond to the u2+PAD detection process.

using polygons, i.e. no special treatment is used. We also deliberately use a heterogeneous
mesh to highlight that the MOOD method is not much affected by the quality of the mesh.

The simulation are carried out with the MOOD-P3 method (fourth-order) using the PAD and
the u2 Detection Process. Pictures are rendered as a full mesh by symmetry even if the com-
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Figure 3.27: Domain characteristics for the shock impacting a cylindrical cavity. Red arrows represent
inflow and outflow boundary conditions.

putation was done on a half-domain to easier compare with physical results of [72]. Figure 3.29
represents the density gradient magnitude at six different times to embrace the global behavior
of the solution. In details, top right is chosen to be compared to Fig. 7 (a) of [72], bottom
center to Fig. 8 (d) and bottom right to Fig. 9 (c) of same paper. Our results are clearly in
agreement with physical results. In Figure 3.30 different zooms on solution at several times
are plotted. On the top part, density gradient magnitude at a late time is given and is to be
compared to Fig. 14 (b) in [72] while we superpose, in the bottom figure, the velocity vectors
on the density magnitude gradient to show the created vortices at the entrance of the cavity
(left) and highlight the instabilities lying along the wall.
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Figure 3.28: On top, we display the global view of the mesh where the different mesh zones are clearly
visible. On bottom, zooms on the non-convex part of the mesh (on left) and on the junction between the polar
part of the mesh and the quasi-uniform one (right). Non-conformity are clearly visible.

116



CHAPTER 3. TOWARDS THE MOOD METHOD FOR EULER

Figure 3.29: Gradient density magnitude is shown at different times. Time 0 corresponds to the initial
shock at position x=0.
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Figure 3.30: Zooms on different parts of the solution. On top, gradient density magnitude is shown at a
late time when instabilities are well developed. On bottom, vortices at the entry of the cavity (left) and the
instabilities (right) along the wall are displayed with density gradient magnitude in color and velocity vectors.
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3.2.5 Conclusion and perspectives

The paper presents important new extensions of the MOOD method for unsteady advection
and hydrodynamics equations, that ensure high-order approximations (up to the sixth-order)
on unstructured meshes.
We introduced new efficient detection processes and proved that the MOOD method is in-
trinsically positivity-preserving for the hydrodynamics system of equations assuming that the
first-order scheme is. This has been numerically assessed on the Noh problem for which our
implementation of the MUSCL scheme fails due to negative pressures.
Then both for the advection equation and the hydrodynamics Euler system, we proposed nu-
merical tests to confirm that the MOOD method provides very high-order of accuracy on un-
structured meshes for smooth solutions (e.g. isentropic vortex in motion) and non-oscillatory
behavior on discontinuous ones (e.g. Lax shock tube). Moreover the memory storage and CPU
time have also been reported for the double Mach problem, proving that the MOOD method
is competitive. The last numerical test showed that the MOOD method, on a relatively coarse
and non-conformal polygonal mesh, is able to simulate complex physics from an experimental
set-up of the impact of a shock wave on a cylindrical cavity.
Finally we plan to improve the detection procedure, especially for vectorial problems to achieve
a very low diffusion but still preventing the oscillations from appearing. Application to full
three-dimensional problem is also an attractive task since performing an efficient computational
solution is always a challenging problem. The extension of the MOOD method to deal with
steady-state solution needs also more investigations. Overall an important perspective is the
polynomial reconstruction itself. We have observed that the main computational cost comes
from the reconstruction stage and that the reconstruction quality strongly depends on the
stencil employed. Such a point is of crucial importance from a computational point of view to
obtain tractable complex numerical simulations.

Appendix: The Discrete Maximum Principle on mean values provides
at most a second-order scheme.

We recall that a time explicit scheme preserves the Discrete Maximum Principle (DMP) if for
all cell Ki

min
j∈ν(i)

(Un
i , U

n
j ) ≤ Un+1

i ≤ max
j∈ν(i)

(Un
i , U

n
j ). (3.36)

It has been shown in [65, 59, 46] that any scheme based on the DMP property reduces the
accuracy to second-order for regular functions due to inaccurate approximation at extrema.
Indeed following [96], let us consider the advection problem in R to avoid boundary condition
issues {

∂tU + ∂xU = 0,
U(x, t = 0) = cos(x).

(3.37)

We consider a uniform discretization xi = ih, i ∈ Z and h > 0 being the cell size and initialize
the mean value on cell K0 = [0, h] as

U t=0
0 =

1

h

∫ h

0

cos(x) dx =
sin(h)

h
. (3.38)

119



CHAPTER 3. TOWARDS THE MOOD METHOD FOR EULER

Now, let us perform one time step with Δt = h/2 of a finite volume scheme which respects
the DMP property. The exact solution at time t = h/2 is U ex(x, h/2) = cos(x − h/2) and
accordingly the exact mean value on K0 is

U ex,t
0 =

1

h

∫ h

0

cos(x− h/2) dx =
2 sin(h/2)

h
. (3.39)

However a Taylor expansion provides

U ex,t
0 =

2 sin(h/2)

h
= 1− h2

24
+O(h4).

But the initial mean values are bounded by

U t=0
0 =

sin(h)

h
= 1− h2

6
+O(h4).

Clearly, the exact mean value U ex,t
0 on cell K0 is greater than the maximum mean values over

all cells at time t = 0 with an error of h2/8 as

|U ex,t
0 − U t=0

0 | ≤ |h
2

24
− h2

6
+O(h4)| = h2

8
+O(h4).

Therefore a scheme which fulfills the DMP property necessarily provides a solution lower than
sin(h)/h, hence after the first cycle the numerical solution verifies U t

0 ≤ U t=0
0 = 1− h2

6
+O(h4).

It follows that the approximation of the mean value has an error of order O(h2) compared to
the exact mean value on cell K0. Consequently the scheme is at most second-order accurate
and DMP-type of criteria cannot be used strictly for higher than second-order schemes and has
to be relaxed.

3.3 Part III: 6th-order accuracy on 3D mixed-element

meshes

This section is dedicated to the third article introducing the 3D version of the MOOD method.
The reference is:

S. Diot, R. Loubère, S. Clain, The MOOD method in the three-dimensional case: Very-High-
Order Finite Volume Method for Hyperbolic Systems, submitted to Int. J. Numer. Meth. Fl.
(2012).

In next paragraph, we sum up the content of the publication and highlight with hindsight
the pros and cons of the MOOD method at that time. We then reproduce the paper from the
abstract to the conclusion only correcting the misprints and modifying the references to fit the
global bibliography.
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Summary & Review

The following article has been submitted few weeks before the defense and contains two im-
portant extensions to the MOOD method. Firstly the method is applied to mixed-element
3D meshes with polynomial up to degree five. This is an important step forward toward the
effective use of the MOOD method for realistic computations.

Secondly the correction of the u2 detection process described in section 2.2 is presented in
order to handle the convergence problems for the Euler system mentioned in previous section.
This correction cancels the cell-dependence of the only parameter used in this criteria. The
optimal convergence using this correction is assessed on the isentropic vortex in motion ran on
a series of uniform hexahedral and pyramidal 3D meshes.

Furthermore as for the 2D case, we propose a precise computational cost comparison for the
3D explosion problem carried out on a regular mesh of pyramids. The same three computers
as for the second publication are used and the results demonstrate the high efficiency of the
method. In particular, the memory storage is very low compared to (W)ENO methods since
basically only one reconstruction matrix per cell and per degree is stored. We thus remark that
a one million cells simulation with the 4th-order MOOD-P3 method only uses about 16 GB of
memory.

At last, we propose some new directions for the parallelization of the MOOD method in order
to complete its design and to run huge realistic simulations.

Finally these results corroborate the claim that the MOOD method is simple in the sense
that we have been able to develop in three years an effective 3D very high-order Finite Volume
method which is more efficient and promising than the existing ones. We thus believe that this
publication will be a major improvement.

Abstract

The Multi-dimensional Optimal Order Detection (MOOD) method for two-dimensional ge-
ometries has been introduced in “A high-order finite volume method for hyperbolic systems:
Multi-dimensional Optimal Order Detection (MOOD)”, J. Comput. Phys. 230 (2011), and
enhanced in “Improved Detection Criteria for the Multi-dimensional Optimal Order Detection
(MOOD) on unstructured meshes with very high-order polynomials”, Comput. & Fluids 64
(2012). We present in this paper the extension to 3D mixed meshes composed of tetrahedra,
hexahedra, pyramids and prisms. In addition, we simplify the u2 detection process previously
developed and show on a relevant set of numerical tests for both the convection equation and
the Euler system that the optimal high-order of accuracy is reached on smooth solutions while
spurious oscillations near singularities are prevented. At last, the intrinsic positivity-preserving
property of the MOOD method is confirmed in 3D and we provide simple optimizations to
reduce the computational cost such that the MOOD method is very competitive compared to
existing high-order Finite Volume methods.
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3.3.1 Introduction

First introduced in [18], the Multi-dimensional Optimal Order Detection (MOOD) method
proposes a new strategy to provide third-order approximations to hyperbolic scalar or vectorial
problems for two-dimensional geometry with structured meshes. The author then gave an ex-
tension in [27] to general unstructured 2D meshes where they achieved a sixth-order convergence
in space introducing new detection-limitation procedure. The issue we address in the present
paper is to extend the MOOD method to three-dimensional geometries with general polyhedral
unstructured meshes for the scalar advection equation and the hydrodynamics Euler system.
The method casts in the generic framework of the finite volume method but fundamentally dif-
fers from the traditional techniques by the specific detection-limitation procedure implemented
by the authors. Indeed, classical high-order polynomial reconstruction-based schemes such as
MUSCL [48, 83, 84, 49, 42, 13, 50] or ENO/WENO methods [39, 40, 70, 95, 69] rely on an
a priori limiting procedure to achieve some stability properties. For instance, in MUSCL-like
methods unlimited slopes are reduced through the use of limiters to respect some Discrete Max-
imum Principle or Total Variation Diminishing properties. In the same way, ENO/WENO-like
methods employ an essentially non-oscillatory polynomial which provides an accurate solution
while preventing undesirable oscillations from appearing.

We state that such limitation strategies are a priori in the sense that only the data at time
tn are used to first perform the limitation procedure and then compute an approximation at
time tn+1. Generally, the “worst case scenario” (speculative approach) has to be considered
as plausible and, consequently a “precautionary principle” is applied. It results that most of
the time the limitation mechanism unnecessarily operates and may reduce the scheme accuracy
due to restrictive assessments. The MOOD principle lies in a different approach since we first
compute a candidate solution for time tn+1 and use this a posteriori information to check if the
proposed approximation is valid. Roughly speaking, we compute a candidate solution without
any limitation using local polynomial reconstructions to provide accurate approximation of the
flux (the degree is set to a prescribed maximal value). We then detect if this solution locally
fails to fulfill some stability criteria (detection of problematic cells) and further decrement
polynomial degree only on problematic regions (limitation step) before recomputing a new can-
didate solution. An iterative procedure (the MOOD algorithm) is carried out by successively
decrementing the degree to provide the optimal local polynomial reconstruction for each cell to
satisfy the given stability criteria. At the end of the MOOD algorithm, the candidate solution
is eligible and turns out to be the approximation at time tn+1. The a posteriori strategy brings
new benefits. We dramatically reduce the number of polynomial reconstructions regarded to
the ENO/WENO method since our technique only requires one polynomial function for each
cell. Most of the time, the polynomial with maximal degree is employed since the limitation
mechanism is only activated for problematic cells (objective approach). From a physical point
of view, the positivity preserving property (for the Euler equations as instance) is simply guar-
anteed by the a posteriori strategy applying a simple detection procedure which checks the
physical admissibility of the solution.

The paper is organized as follows. In section 3.3.2, we detail the concept of the MOOD method,
while the detection criteria are developed in section 3.3.3 both for the advection equation and
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the hydrodynamics Euler system of equations. Numerical tests are proposed in section 3.3.4
to prove the efficiency of the method: we first consider the scalar advection equation and
show effective high-order of accuracy for regular solutions with the fourth- and sixth-order
schemes considering meshes made of hexahedra and pyramids. We then propose an H-shaped
discontinuous profile in rotation to verify the non-oscillatory property of the MOOD method.
Finally, numerical simulations are carried out for the Euler system to test the method with a
nonlinear vectorial problem. As preliminary experiments, the classical 1D test cases, namely
the Sod and Lax shock tubes and the Shu-Osher and Woodward-Collela problems, are run on
3D tetrahedral and pyramidal meshes. Then the numerical order of accuracy is checked on the
2D isentropic vortex in motion extended by invariance for a 3D mesh and a realistic 2D test
case (introduced in [27]), namely the impact of a shock wave on a cylindrical cavity, is carried
out on a mesh made of triangular and quadrangular prisms. At last, we present results for the
3D explosion problem on a pyramidal mesh and the interaction of a shock wave with a quarter
of cone on a mesh of 1.1 millions of tetrahedra. We moreover provide computational cost
(CPU and memory storage) for the 3D explosion problem for the MOOD method for different
polynomial degrees. We conclude with section 3.3.5 and delineate some future perspectives.

3.3.2 The MOOD concept

We consider the generic hyperbolic equation defined on a domain Ω ⊂ R
3, t > 0 cast in the

conservative form

∂tU +∇−F (U) = 0, (3.40a)

U(−, 0) = U0, (3.40b)

where U = U(x, t) is the vector of unknown functions depending on x = (x, y, z) ∈ Ω and on
the time t. We denote by F the so-called physical flux where we shall consider the autonomous
case F = F (U) (Euler system as instance) and the non-autonomous situation F = F (x, U) such
as ∇x.F (x, .) = 0 (scalar convection case). Function u0 stands for the initial condition while
the boundary conditions will be prescribed in section devoted to the numerical simulations.

3.3.2.1 Framework

In order to design the numerical scheme, we introduce the following notation illustrated in
Figure 3.31. The computational domain Ω is assumed to be a polyhedron bounded set of
R

3 divided into polyhedral cells Ki, i ∈ Eel where Eel is the cell index set. For each cell Ki,
we denote by ci the cell centroid, and define the set ν(i) of all the indexes j ∈ Eel such that
elements Kj share a common face fij with Ki and the set ν(i) of all the indexes j ∈ Eel such that
Ki ∩Kj �= ∅ (see illustrations in Figure 3.32). Moreover for each face fij = Ki ∩Kj, nij stands
for the unit normal vector going from Ki to Kj and we denote by

(
ξij,r, qij,r

]
, r = 1, ..., Rij the

quadrature rule for the numerical integration on fij where ξij,r is the weight associated to the

rth quadrature point qij,r with
∑R

r=1 ξij,r = 1, ∀i ∈ Eel and ∀j ∈ ν(i) (see Figure 3.31).
To avoid a specific treatment of the boundary faces we introduce the notion of virtual cell.
To this end, assuming that cell Ki has a face fie = Ki ∩ ∂Ω on ∂Ω, we introduce the virtual
cell Kj where j /∈ Eel obtained by symmetrical transformation of the original cell Ki which
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Figure 3.31: Notation for a three-dimensional mesh: exploded view of the face fij between two cells Ki

and Kj . Centroids are respectively denoted by ci and cj . Three quadrature points qij,r, r = 1, 2, 3, on fij are
drawn for illustration. The unit normal vector pointing from Ki to Kj is denoted nij .

represents the exterior side of Ω. We shall denote by Ebd the index set of all virtual cells such
that Ẽel = Eel ∪ Ebd is the index set of all cells (including the virtual ones).

The generic first-order Finite Volume scheme associated to equation (3.40) writes

Un+1
i = Un

i −Δt
∑
j∈ν(i)

|fij|
|Ki| F(U

n
i , U

n
j ,nij), (3.41)

where Un
i is an approximation of the mean value of U at time tn on Ki, F(U

n
i , U

n
j ,nij) is a

numerical flux which satisfies the properties of consistency and monotonicity for the scalar case,
Δt stands for the time step while |fij| and |Ki| are the area of face fij and the volume of cell
Ki respectively.
To provide high-order finite volume schemes, we use convex combinations of the initial building-
block (3.41) with better approximations at the quadrature points to compute the numerical flux
(see [18, 27] for instance). The high-order schemes are thus obtained from an original first-order
Finite Volume and that is of crucial importance from a computational and implementation
point of view (re-use of the original first-order code to achieve high-order approximations).
We substitute the first-order approximations of the flux integral by higher-order versions, the
scheme then writes

Un+1
i = Un

i −Δt
∑
j∈ν(i)

|fij|
|Ki|

Rij∑
r=1

ξij,rF(U
n
ij,r, U

n
ji,r,nij), (3.42)

where Un
ij,r, U

n
ji,r are high-order approximations of U at quadrature points qij,r on both side of

fij.
For meshes constituted of tetrahedral cells, all faces are triangles. Consequently Rij and ξij,r
are independent of i and j and the previous scheme rewrites as a convex combination of the
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Figure 3.32: Illustrations for index sets ν(i) (left) and ν(i) (right) in 3D.

first-order scheme (3.41)

Un+1
i =

R∑
r=1

ξr

⎛⎝Un
i −Δt

∑
j∈ν(i)

|fij|
|Ki|F(U

n
ij,r, U

n
ji,r,nij)

⎞⎠ . (3.43)

Remark 3.20 When dealing with general polyhedral cells, the quadrature rules may be different
from a face to another and such a convex combination is not valid anymore. However, since
each polygonal face can be split into triangles, one can recover equation (3.43) by considering
each polyhedron as a polyhedron only constituted by triangular faces (and consequently with
more faces than the original one).

Let denote by Un
h =

∑
i∈Eel U

n
i 1IKi

the constant piecewise representation of approximation

(Un
i )i∈Eel , we introduce operator HR(Un

h ) such that relation (3.42) rewrites as

Un+1
h = Un

h +ΔtHR(Un
h ). (3.44)

From the original forward Euler discretization in time (3.44) we derive a high-order approxi-
mation in time using a Runge–Kutta 3 TVD method:

Un+1
h =

Un
h + 2U (3)

h

3
with

⎧⎪⎪⎨⎪⎪⎩
U (1)

h = Un
h +Δt HR(Un

h )

U (2)

h = U (1)

h +Δt HR(U (1)

h )

U (3)

h = Û (2)

h +Δt HR(Û (2)

h )

(3.45)
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where Û (2)

h is the convex combination (3Un
h + U (2)

h )/4.

The time discretization introduces a 3rd-order error which makes the whole scheme to be
formally 3rd-order accurate. However setting Δt = Δxr/3 where r is the spatial order of
accuracy and Δx is a characteristic length provide same order for spatial and time errors.

3.3.2.2 Reconstruction

We have formally defined an arbitrary high-order accurate Finite Volume scheme, providing
that Uij,r is a high-order accurate point-wise approximation of U(qij,r) computed from cell Ki.
In this subsection, we briefly describe the technique to produce such approximations and we
refer to [18, 27] and references herein for details. Let us consider a scalar variable u and denote
by ũi(−, d) a local polynomial approximation of degree d reconstructed on cell Ki from the mean
values of function u on a set of neighboring cells Sd

i called stencil. For the sake of conservation,
i.e. 1

|Ki|
∫
Ki

ũi(x; d) dx = ui, we assume that the polynomial has the following structure

ũi(x; d) = ui +
∑

1≤|α|≤d

Rα
i

(
(x− c)α − 1

|K|
∫
K

(x− c)α dx

)
, (3.46)

where the polynomial coefficients Rα
i are fixed by solving a least-squares problem equivalent to

minimizing the functional

E =
∑
j∈Sd

i

(
1

|Kj|
∫
Kj

ũi(x; d) dx− uj

)2

.

In practice, the polynomial coefficients are obtained by multiplying the pseudoinverse of the
least-square problem matrix (that we store in memory) with the vector of mean values on the
stencil, see [27] for details. We moreover recall that for the vectorial case, the reconstructions
are performed for all the conservative components independently.

Finally, considering that polynomial reconstructions ũi(x; d) are provided for all cells Ki,
i ∈ Eel, we compute the approximation at each quadrature point of each face fij by uij,r =
ũi(qij,r; d). The so-called (d-)unlimited scheme (3.42) is thus defined by employing the recon-
structed values in the numerical flux without any restriction (i.e. no limitation).

Remark 3.21 We recall that the reconstruction process is very time and memory consuming
and would like to emphasize that contrarily to WENO methods we consider only one reconstruc-
tion stencil per cell and per degree, so that a lot of computational resources are saved.

3.3.2.3 The MOOD concept

It is well-known that the first-order scheme (3.41) is robust but tremendously diffusive, while
unlimited schemes of higher-order produce spurious oscillations in the vicinity of steep gradients.
Limitation mechanisms have been developed to prevent the oscillations from appearing, such as
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the slope or flux limitation in MUSCL methods [48, 83, 84, 49, 42, 13, 50] or the computation of
an Essentially Non-Oscillatory polynomial reconstruction in WENOmethods [39, 40, 70, 95, 69].
As we mention in the introduction, all the classical techniques act a priori in the sense that
we determine the limitation process in function of the current data (i.e. the solution at time
tn). As a consequence, the a priori strategy imposes very drastic accuracy reduction due to
strong and unnecessary limitations (the worst case scenario has to be considered). Moreover,
computational resources are allocated to perform the limitation process where most of the
time it is useless. In the ENO/WENO case for instance, several polynomial reconstructions
are required even if the solution is locally regular and can be approximated with only one
polynomial function.
In two recent papers [18, 27], we have introduced a new approach based on an a posteriori
evaluation of the solution to determine if the limitation procedure has to be applied and where.
The technique is a posteriori in the sense that we compute a candidate solution (a potential
approximation at time tn+1) and we use the data of the candidate solution to determine if
the solution is valid. More precisely, the detection-limitation mechanism operates in several
steps. A candidate solution is first computed with the highest-order unlimited scheme (the
polynomials with maximal degree). Then a detection procedure is performed to determine the
problematic cells, i.e. all cells where the approximation does not respect some given criteria (see
next section). For problematic cells, the solution is recomputed with a lower-order unlimited
scheme (using polynomials with lower degree) and we repeat the procedure detection-degree
decrementing (the MOOD algorithm) till the cell satisfy the detection criteria or the polynomial
degree is zero. In the last case, a robust first-order scheme (3.41) is triggered and a meaningful
solution is thus provided. Note that we need to guarantee that the MOOD algorithm stops
after a finite number of iterations.

We now set some fundamental notions to define the MOOD method. We name Cell Polynomial
Degree, shortened as CellPD and denoted by di, the degree of the polynomial reconstruction on
cell Ki. We name Face Polynomial Degrees, shortened as FacePD and denoted by dij and dji,
the degrees of the polynomial reconstructions actually used to compute approximations, Uij,r

and Uji,r, of the solution on face fij at quadrature points qij,r respectively from Ki and Kj. The
computation of dij and dji, named FacePD strategy, consists in evaluating the FacePD dij, dji
that we employ on both sides of the interface fij with respect to the CellPD of the neighboring
cells. In previous studies (see [18] for details), we have proposed and experimented several
strategies and introduced the upper-limiting property for a FacePD strategy which states that
for any degree d̄, the following property holds

di = d̄ =⇒ dij ≤ d̄ and dji ≤ d̄, ∀j ∈ ν(i).

This guarantees (see [18]) that the MOOD algorithm stops after a finite number of iterations.
In practice, we use the simple rule dij=dji=min(di, dj).

As mentioned above, the detection mechanism is performed on the candidate solution U�
h and

criteria have to be set to specify what is a good solution. To this end, we denote by A the set
of detection criteria (e.g. positivity of a variable or a maximum principle) that the numerical
approximation has to respect on each cell and we say that a candidate solution is A-eligible if
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Figure 3.33: Flowchart of the MOOD algorithm: Recon. stands for polynomial reconstruction, Eval. for
high-order evaluations at quadrature points, H-O Update for high-order update of the solution and Det. Proc.
for detection process.

it fulfills all the criteria of A. If the candidate solution is not A-eligible on cell Ki, then we
decrement the polynomial degree. However the solution may not be A-eligible regardless of the
set A even if the polynomial degree is zero for the cell. Consequently, we shall consider the
solution acceptable on the cell if either it is A-eligible, or is a first-order solution (i.e. CellPD
has been decremented to zero). To sum up, the MOOD algorithm for the explicit discretization
in time consists in the following stages depicted in Figure 3.33:

0. Initialize di = dmax, ∀i ∈ Eel.
1. Compute polynomial reconstruction of degree di, ∀i ∈ Eel.
2. Compute FacePD dij and dji and evaluate high-order approximations at quadrature points

on face fij, ∀j ∈ ν(i), ∀i ∈ Eel.
3. Compute candidate solution mean values through unlimited scheme (3.42), ∀i ∈ Eel.
4. Detection process: decrement CellPD of cells where solution is not acceptable.

5. Stop if the solution is acceptable else go to stage 1.

Following [18, 27] we extend the MOOD algorithm initially designed for a one-time step scheme
to the RK3-TVD scheme by applying it to each sub-step of the RK3-TVD (3.45) procedure.
The MOOD method is now completely defined except from the detection criteria that have to
be suited to the problem we intend to solve. Such a difficult task requires the complete next
section.

3.3.3 Detection Criteria

The crucial point of the MOOD method is the elaboration of the detection criteria set A
which characterizes the properties we want the numerical solution to fulfill. A fundamental
purpose of the detection criteria is to obtain higher-order of accuracy for regular solutions
while preventing numerical oscillations in the vicinity of discontinuous profiles. This would
consequently provide an efficient and robust method. We face several difficulties to design such
a set since accuracy and robustness are antagonist objectives. Moreover, in the Euler problem,
a physically admissible solution is mandatory since the positivity of the density and the pressure
is required to compute the numerical flux. It results that the detection criteria would cover a
wide spectrum of properties and restrictions. A key point we shall detail in the following is the
notion of “numerical regularity” in the sense that we have to determine if, for a local stencil and
a set of data (for instance the mean values), we can associate a regular or a irregular function.
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This point is really important since the choice of the reconstruction (namely the polynomial
degree) depends on it.
The present section intends to extend and improve detection criteria initially introduced in
[27] to evaluate the local ”numerical regularity” of the approximation. We first begin the study
for the advection equation in section 3.3.3.1 and address the hydrodynamics Euler system in
section 3.3.3.2.

3.3.3.1 Advection equation

The scalar advection problem is characterized by the physical flux F (U) = V U where V ∈ R
3

stands for the velocity that we assume to be a regular function on Ω and satisfies ∇xV (x) = 0
while U = U(t,x) ∈ R is the passive scalar quantity transported by the fluid.
When dealing with a constant velocity, the exact solution is simply given by U(x, t) = U0(x−
V t) and clearly fulfills a maximum principle, e.g. the minimum of the solution can not be lower
than the initial condition minimum (and a similar property for the maximum). Consequently,
it seems natural to impose such a condition at the numerical level and, as proposed in [18], we
integrate in the set A the Discrete Maximum Principle (DMP) on mean values for the candidate
solution U�

h formulated like this:

min
j∈ν(i)

(Un
i , U

n
j ) ≤ U�

i ≤ max
j∈ν(i)

(Un
i , U

n
j ). (3.47)

A solution is A-eligible if condition (3.47) is satisfied for all the cells and we have proved in
[18] that the scheme equipped with such set A provides a numerical solution which, under
first-order scheme CFL condition, satisfies the DMP. However a strict application of relation
(3.47) at smooth extrema unavoidably reduces the scheme accuracy to two. It suggests that
relation (3.47) is too restrictive and should be relaxed.
In [27] we have relaxed the condition on cells which violate the DMP. More specifically, the
relation (3.47) has been supplemented with a new criteria, the so-called u2 detection criteria
which provides an effective arbitrary high-order of accuracy. As mention in the beginning of
the section, the key point is to determine if the numerical solution is regular enough to be
approximated by a high-order polynomial reconstruction and avoid the Gibbs phenomena. To
this end, let assume that the candidate solution does not satisfy the DMP criteria on cell Ki.
A first step consists in reconstructing quadratic polynomials on Ki denoted by Ũi and on its
neighbors Kj for j ∈ ν(i) denoted by Ũj. In a second step, we define approximations to the
local minimal and maximal curvatures, namely

Xmin
i = min

j∈ν(i)

(
∂xxŨi, ∂xxŨj

)
and Xmax

i = max
j∈ν(i)

(
∂xxŨi, ∂xxŨj

)
, (3.48)

Ymin
i = min

j∈ν(i)

(
∂yyŨi, ∂yyŨj

)
and Ymax

i = max
j∈ν(i)

(
∂yyŨi, ∂yyŨj

)
, (3.49)

Zmin
i = min

j∈ν(i)

(
∂zzŨj, ∂zzŨj

)
and Zmax

i = max
j∈ν(i)

(
∂zzŨi, ∂zzŨj

)
, (3.50)
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where we emphasize that the second derivatives are constant and naturally referred to as cur-
vatures. The u2 detection criterion holds in the following definition.

Definition 3.22 (u2 detection criterion) A candidate solution U�
i in cell Ki which violates

the DMP is nonetheless eligible if the following holds

Xmax
i Xmin

i > 0 and

∣∣∣∣Xmin
i

Xmax
i

∣∣∣∣ ≥ 1− ε,

and Ymax
i Ymin

i > 0 and

∣∣∣∣Ymin
i

Ymax
i

∣∣∣∣ ≥ 1− ε,

and Zmax
i Zmin

i > 0 and

∣∣∣∣Zmin
i

Zmax
i

∣∣∣∣ ≥ 1− ε,

where ε is a smoothness parameter.

The definition derives from the idea that the comparison of local second derivatives of the
quadratic reconstructions on a neighborhood provides a relevant information on the numerical
smoothness of the underlying solution. More precisely, we consider that the underlying solu-
tion (characterized by the piecewise constant mean value) is (ε-)smooth if for each direction
the curvatures have the same sign (no oscillation or inflection point) and are (ε-)close enough
to each-other. Such a definition lies in a fitting of the parameter ε the value of which defines
the threshold between what is considered as smooth extrema or as discontinuity. Therefore the
determination of ε is of crucial importance since it rules the decrementing process activation.

From a practical point of view, the u2 detection criteria operates in two stages. First the
test on the sign of curvatures (left inequalities) is performed. If oscillations are detected, i.e.
the product is negative, the cell is considered as problematic and the decrementing procedure
must be applied. The second stage is performed only if the product is positive. It consists in
computing the ratios between minimal and maximal curvatures and comparing it to 1−ε (right
inequalities). If the curvatures ratio does not respect the inequality, the cell is considered as
problematic and the decrementing process must be applied.

In [27], we propose a parameter ε depending on a local characteristic length and on the spatial
dimension of the domain. This was a first attempt to the determination of ε and deeper
investigations have shown that a simpler definition provides same quality results. To set the ε

value, we extend the parameter as a new function εx = εx

(Xmin
i

Xmax
i

)
(for the x-direction) with

respect to the curvatures which have to satisfy the restriction

Xmin
i

Xmax
i

≥ 1− εx. (3.51)

The goal is to determine a relevant function εx which enables high-order approximation and
robustness. We first note that the curvatures ratio ranges between zero and one so that εx
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must range in [0, 1] to make sense. Moreover, the ratio is expected to be close to zero on
discontinuities and close to one on smooth functions which are the two extreme cases. For a
non-smooth function, we expect that the limiting procedure operates and since the closer to
zero ε is, the less smooth the underlying function is considered, εx is expected to be close to
zero on discontinuities, i.e. lim

r→0+
εx(r) = 0+. On the other hand, a ratio close to one indicates

smooth functions, so we expect lim
r→1−

εx(r) = 1− to relax the restriction. We thus propose to

define εx as a continuous increasing function of the curvatures ratio such that εx(0) = 0 and
εx(1) = 1. After several attempts, it appears that the simple function εx(r) = r is an excellent
choice. When substituting expression of εx = Xmin

i /Xmax
i in relation (3.51), the x-direction

curvatures criterion becomes

Xmin
i

Xmax
i

≥ 1− Xmin
i

Xmax
i

,

and yields

Xmin
i

Xmax
i

≥ 1/2.

Finally we apply the same reasoning for y- and z-directions and obtain

Ymin
i

Ymax
i

≥ 1/2 and
Zmin

i

Zmax
i

≥ 1/2.

The linearity of function εx simplifies the final inequalities and leads to the constant value
ε = 1/2 in definition 3.22.

Remark 3.23 The definition of ε is really simpler than the one proposed in [27]. However
numerous numerical test cases have been carried out and no change in the quality of results
have been reported.

Remark 3.24 Numerical experiments show that the choice of the neighborhood where the cur-
vatures are computed should define a convex hull which contains the reference cell Ki. To con-
stitute such a stencil, we used the index set of cells ν(i) in 2D (see [27]) but this choice is not
relevant for three-dimensional meshes and we use the index set ν(i) in equations (3.48)-(3.50)
to provide the expected results even for large form factor meshes.

To conclude the section we propose in Figure 3.34 an algorithmic view of the complete de-
tection process [DMP → u2] for the advection equation constituted of the DMP of equation
(3.47) relaxed by the u2 detection criteria of definition 3.22. We emphasize that the algorithm
is given in the case of a cell Ki with U�

i its associated candidate solution mean value.
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Figure 3.34: Algorithmic view of the [DMP→u2] detection process for the advection equation.

3.3.3.2 Hydrodynamics Euler system

The Euler system for three-dimensional geometries writes

∂t

⎛⎜⎜⎜⎜⎝
ρ
ρu
ρv
ρw
E

⎞⎟⎟⎟⎟⎠+ ∂x

⎛⎜⎜⎜⎜⎝
ρu

ρu2 + p
ρuv
ρuw

u(E + p)

⎞⎟⎟⎟⎟⎠+ ∂y

⎛⎜⎜⎜⎜⎝
ρv
ρuv

ρv2 + p
ρvw

v(E + p)

⎞⎟⎟⎟⎟⎠+ ∂z

⎛⎜⎜⎜⎜⎝
ρv
ρuw
ρvw

ρw2 + p
w(E + p)

⎞⎟⎟⎟⎟⎠ = 0, (3.52)

where ρ stands for the density, u, v and w for the velocity components in the x, y and z directions
respectively, p for the pressure and E for the total energy. This system is closed by the Equation
Of State (EOS) of a perfect gas p = (γ − 1)ρε, where ε is the specific internal energy, γ the
ratio of specific heats and the total energy is constituted of the internal and kinetic energy

E = ρ
(
(u2 + v2 + w2)/2 + ε

]
.
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At last, vector U = (ρ, ρu, ρv, ρw,E) represents the conservative variables of the system while
W = (ρ, u, v, w, p) are the primitive ones. Note that contrarily to WENO methods we do not
use the characteristic variables.

To provide accurate and oscillation-free solutions we use on the one hand polynomial re-
construction and apply, on the other hand the MOOD algorithm. We mention that all the
polynomial reconstructions are performed on conservative variables and only one CellPD is
used for all variables (see [27] for the motivations and justifications). We now turn to the
detection-limitation procedure and we have to design specific detection criteria for the Euler
problem.

Following [27], a first and also mandatory detection criteria corresponds to ensuring the phys-
ical meaningfulness of the primitive variables. We then introduce the Physical Admissibility
Detection (PAD in short) which considers that the candidate solution on a cell Ki is not valid if
we have ρ�i or p

�
i are negative (after having computed pressure p�i ). We underline the important

property that a high-order scheme (whichever the degree of the polynomial reconstruction)
equipped with the PAD and a first-order scheme which preserves the positivity (of density and
pressure) under a CFL condition is automatically positivity preserving. This property straight-
forwardly derives from the a posteriori nature of the MOOD method and has been proved in
[27]. However the PAD detection process does not prevent spurious oscillations from appearing
and we turn to the adaptation of the [DMP→u2] detection process proposed in [27]. Initially
defined for scalar quantity, we apply the [DMP→ u2] on the density ρ (detection) and recall
that the decrementing is performed for all variables (limitation). Note that the smoothness
parameter ε is still set as 1/2 in the u2 definition as in previous section.

The set of constraints A for Euler system is thus constituted by the PAD followed by the
[DMP → u2] detection process applied to the density variable since we first check the PAD
and if the cell is valid we continue with the [DMP→u2] detection. In Figure 3.35 we give an
algorithmic view of the complete detection process [PAD→DMP→u2] for the hydrodynamics
Euler system constituted of the PAD detection criteria, the DMP of equation (3.47) on the
density relaxed by the u2 detection criteria of definition 3.22. We emphasize that the algorithm
is given in the case of a cell Ki with U�

i =
(
ρ�i , (ρu)

�
i , (ρv)

�
i , (ρw)

�
i , E

�
i

]
its associated candidate

solution mean value and that the candidate pressure p�i has to be computed.

We now highlight some implementation aspects about the detection process which enable to
improve the solution accuracy. Actually in the above algorithm, the [PAD→DMP→u2] per-
forms well but does not, in some cases, fully reach the optimal order of accuracy for smooth
solutions. Deeper investigations on the isentropic vortex in motion problem have shown that
the detection process inappropriately decrements some cells of the flat region while it operates
well in the area where curvatures are not negligible. The undesirable limitation derives from the
extra-small curvatures treatment by the u2 detection where some spurious micro-oscillations
take place on the flat area and wrongly activate the curvature sign detection. It results that the
sign criterion is not relevant when all the curvatures sizes are too small with respect to a mesh
parameter δ. To overcome the over-detection phenomena, we introduce a relaxation parameter
in the u2 criterion to fix the problem.
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Figure 3.35: Algorithmic view of the [PAD→DMP→u2] detection process for the Euler system.

Definition 3.25 (u2 detection criterion) A candidate solution U�
i in cell Ki for which the

density ρ�i violates the DMP is nonetheless eligible if

Xmax
i Xmin

i > −δ and

(
max

(|Xmax
i |, |Xmin

i |]< δ or

∣∣∣∣Xmin
i

Xmax
i

∣∣∣∣ ≥ 1/2

)
,

and Ymax
i Ymin

i > −δ and

(
max

(|Ymax
i |, |Ymin

i |]< δ or

∣∣∣∣Ymin
i

Ymax
i

∣∣∣∣ ≥ 1/2
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,

and Zmax
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i > −δ and

(
max

(|Zmax
i |, |Zmin

i |]< δ or

∣∣∣∣Zmin
i

Zmax
i

∣∣∣∣ ≥ 1/2

)
,

where δ is the greatest length of geometrical entity of dimension one defined by the length of the
cells in R, the maximal length of the cell interfaces in R

2 and the maximal length of edges of
the cell interface for three-dimensional meshes.

The correction only damps extra-small oscillations such that minimal and maximal curvatures
product satisfies the left condition. When maximal curvatures are larger than δ, the condition
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on the ratios of curvatures implies that the underlying function will be considered as non-
smooth.

Remark 3.26 The value of δ has been determined after numerous simulation experiments. It
enables to fully reach the optimal order for the Euler system but does not affect the method in
wisely capturing discontinuous profiles. The correction has even been tested for the convection
equation and accuracy losses have not been reported.

In the same way, we slightly relax the DMP criteria to reduce the computational effort to avoid
the waste of resources when performing the u2 detection criterion on plateaus. We consider
that a DMP violation is not relevant if

max
j∈ν(i)

(ρRK
i , URK

j )− min
j∈ν(i)

(ρRK
i , URK

j ) < δ3

where index RK corresponds to one of the Runge-Kutta sub-steps.
The MOOD method for the Euler hydrodynamics system is now completely defined and nu-
merical simulations are carried out for three-dimensional geometries presented in section 3.3.4.

3.3.3.3 Implementation and optimizations

To conclude the section we detail two important and simple optimizations that we apply to
drastically improve the efficiency of the MOOD method.

Local re-updating. The MOOD method may seem computationally expensive since the
MOOD algorithm we run for each time step, recompute the candidate solution several times
whereas polynomial degrees have been only modified for a small number cells. At the first stage,
an initial candidate solution is computed on all cells. Then the MOOD algorithm successively
detects and limits the problematic cells. The evaluation of a new candidate solution during
the MOOD algorithm by means of scheme (3.43) only involves the fluxes at the interfaces of
corrected cells. Consequently only problematic cells and their neighbors by face must be re-
computed. It drastically reduces the computational effort since in most cases the solution is
acceptable on more than 80–90% of cells, even when shocks are present.

Reduced polynomial degree decrementing. The original decrementing procedure con-
sists in dropping one-by-one polynomial degrees until zero is reached. Such an approach may
be both costly in CPU and memory resources since reconstruction matrices must be stored for
all degrees. It would nonetheless still be less memory consuming than for the WENO method
due to the large number of polynomial functions involved in the WENO technique. Moreover
numerical experiments suggest the following alternative: whether the solution is very smooth,
whether the solution presents some discontinuities. To take advantage of it, we change the
decrementing strategy by starting from the highest degree, reducing to degree 2 if any and
setting degree equal to 0 if the candidate solution is still not A-eligible. We then manage to
reduce the number of decrementing stages and save computational resources. We point out
that the size of the reconstruction stencil is also an important parameter since a large stencil
(required for the maximal degree) will be influenced by a discontinuity located in the second or
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third layer of cells around the reference one while a more compact one (for a P2 reconstruction)
still preserves the local regularity of the underlying function. Another reason to use the P2

reconstruction is that it is also used for the u2 detection process and always has to be stored.
Therefore in practice, we only store two reconstruction matrices per cell, one for the maximal
degree and one for the degree two. It is thus important to remark that the storage cost of the
matrix for degree two is always much lower than the one for the maximal degree. Indeed for
two-dimensional situations, the memory cost of the pseudoinverse matrix associated to polyno-
mial of degree 2 represents about 10 times 5 elements, about 16 times 9 for P3 reconstruction
and around 28 times 20 for P5. Analogically for three-dimensional situations, the P2 recon-
struction matrix represents about 16 times 9 elements while it is about 38 times 19 for P3 and
110 times 55 for P5.

To conclude this section, we would like to draw some remarks about the potentiality of the
MOOD method to be parallelized. Within the MOOD algorithm, only classical unlimited
schemes are used without modification so that the parallelization of this part of the method
can be done as efficiently as the state-of-the-art methods (WENO method for instance). The
only novelty brought by the MOOD method is the iterative process constituting the MOOD
algorithm. A potential difficulty comes from the fact that the number of cells on which the
numerical scheme acts changes from an iteration of the MOOD algorithm to another, since
the procedure is only applied to problematic cells. However it may not dramatically affect the
parallelization efficiency: firstly, because an efficient treatment of the list of problematic cells
can be achieved and secondly, because the time spent to recompute new candidate solutions is
negligible compared to the time to compute the initial one since the number of problematic cells
is (in general) very low compared to the total number of cells. The parallelization capacity of
the MOOD method is thus as good as the state-of-the-art higher-order finite volume methods.

3.3.4 Numerical results

The MOOD method has been implemented into a 3D unstructured code dealing with poly-
hedra having coplanar faces: tetrahedron, hexahedron, pyramid and prism. The polynomial
reconstruction procedure is implemented independently of the degree dmax and we provide in
the present paper numerical results up to dmax = 5. Following [27] and remarks in section
3.3.3.3, we use the decrementing sequence Pdmax − P2 − P0. The reconstruction matrices are
computed and stored in a preprocessing step since they only depend on geometry. Moreover
fluxes across faces are approximated by the mean of Gaussian quadrature formulae on a trian-
gular decomposition of the faces (see Figure 3.31). At last concerning the time discretization,
the first-order time step Δt is controlled by a CFL coefficient equal to 0.5. For the convergence
studies on smooth solutions we use the time step Δt = Δxr/3 to achieve a global rth-order of
accuracy and compute the relative L1 and L∞ errors for a a bounded, L1 function ϕ by

L1 error:

∑
i∈Eel |ϕN

i − ϕex
i ||Ki|∑

i∈Eel |ϕex
i ||Ki| and L∞ error:

maxi∈Eel |ϕN
i − ϕex

i |
maxi∈Eel |ϕex

i | ,

where (ϕex
i )i∈Eel and (ϕN

i )i∈Eel are respectively the exact and the approximated cell mean values
at final time t = tfinal.
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3.3.4.1 Advection equation

For the scalar advection equation, the MOOD method is employed with the [DMP → u2]
detection process and two test cases are carried out: the Triple Sine Translation (TST) to
assess the effective very high-order of accuracy and the rotation of a discontinuous H-like shape
to test its ability to damp the spurious oscillations.

� Triple Sine Translation

Let Ω be the unit cube. We consider a constant translation velocity V = (1, 1, 1) and the
C∞ initial condition

U0(x, y, z) = sin(2πx) sin(2πy) sin(2πz).

The final time is tfinal = 2.0 and periodic boundary conditions imply that the exact final so-
lution coincides with the initial one. The computations are first carried out on a series of
successively refined regular hexahedral meshes from 83 to 643 cells. To underline the capability
of the MOOD method to handle mixed element meshes, we also consider a series of meshes
built from a series of regular hexahedral meshes from 43 to 483 cells into which we regularly
split half of cells into 6 pyramids (see top line of Figure 3.36).

In Figure 3.36, we display the convergence curves for the L1 and L∞ errors of the MOOD-P2,
MOOD-P3 and MOOD-P5 methods and give in Table 3.17, the corresponding errors and rates
of convergence. As expected, the optimal rate of convergence is achieved. Notice that on the
coarsest meshes the initial mean values are not representative of the underlying smooth function
and are coherently handled by the method as discontinuous profiles. As such the sine function is
under-resolved; for instance in 1D, averaging the function sin(2πx) or an Heaviside-like function
on [0; 1] using four cells provides to same mean values.

� H-like shape rotation

We now turn to the rotation of an H-like shape in the unit cube Ω. The initial shape is given
by

U0(x, y, z) =

{
1 if (|x− 0.5| > 0.1) or (|y − 0.5| < 0.1),
0 elsewhere,

in the cube [0.2; 0.8]3 and 0 elsewhere. The rotation axis is the diagonal line joining the origin
(0, 0, 0) and the point (1, 1, 1). We stop the simulation after one full rotation when the shape
is back to its original position. Note that the velocity depends on the spatial position but is
divergence-free so that the maximum principle also applies in that case. Numerical simulations
are carried out on a 86215 tetrahedra mesh generated by the free mesher Gmsh. Results are
displayed with an extruded view on the cut plane z = 1/2. Initialization details are illustrated
in Figure 3.37.
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Figure 3.36: Triple sine translation: convergence curves for L1 (middle) and L∞ (bottom) errors for series
of hexahedral (left) and hexahedral/pyramidal (right) meshes. Examples of such meshes are given on top line.
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MOOD on hexahedra

Deg. h L1 error L2 error L∞ error

P2 0.125 9.9682484294e-1 — 9.9680699621e-1 — 1.0038484635 —

0.0625 5.0100730661e-1 0.99 5.0179199583e-1 0.99 5.1327069642e-1 0.97

0.03125 8.6946371321e-2 2.53 8.6934402652e-2 2.53 8.7634409525e-2 2.55

0.015625 1.1429255953e-2 2.93 1.1424251727e-2 2.93 1.1459635442e-2 2.93

Expected order 3 3 3

P3 0.125 9.8673015719e-1 — 9.8688657294e-1 — 1.0110942145 —

0.0625 6.8019691177e-2 3.86 6.9068026293e-2 3.84 7.4325569597e-2 3.77

0.03125 2.8693653411e-3 4.57 2.7741019990e-3 4.64 3.0819084097e-3 4.59

0.015625 1.7856449887e-4 4.01 1.5709922281e-4 4.14 1.8874795858e-4 4.03

Expected order 4 4 4

P5 0.125 9.7842521971e-1 — 9.7924733246e-1 — 1.0169454936 —

0.0625 6.9230110414e-3 7.14 6.9967747247e-3 7.13 7.9478234947e-3 7.00

0.03125 1.2666634416e-4 5.77 1.1021776542e-4 5.99 1.0247433118e-4 6.28

0.015625 2.4614368833e-6 5.69 2.0386571852e-6 5.76 1.6605387870e-6 5.95

Expected order 6 6 6

MOOD on mixed hexahedra/pyramids

Deg. h L1 error L2 error L∞ error

P2 0.25 1.0000027468 — 1.0000052406 — 1.0143912168 —

0.125 8.3799247906e-1 0.25 8.3412664416e-1 0.26 8.6799172420e-1 0.20

0.0625 1.8662020042e-1 2.17 1.8646014762e-1 2.16 2.5210598518e-1 1.78

0.03125 2.5647018453e-2 2.86 2.4729005004e-2 2.91 2.4798614346e-2 3.35

0.020833 7.6897099615e-3 2.97 7.4071918780e-3 2.97 7.3982102275e-3 2.98

Expected order 3 3 3

P3 0.25 9.9952627605e-1 — 1.0018017690 — 1.1083447073 —

0.125 3.9219135702e-1 1.35 4.1718119801e-1 1.26 5.3531820180e-1 1.05

0.0625 2.6501056786e-2 3.89 2.2797888150e-2 4.19 1.9364138004e-2 4.79

0.03125 1.7829686262e-3 3.90 1.5178093945e-3 3.91 1.2521397100e-3 3.95

0.020833 3.5401059785e-4 3.99 3.0038884987e-4 4.00 2.5551614705e-4 3.92

Expected order 4 4 4

P5 0.25 1.0009285907 — 1.0025919881 — 1.0496962436 —

0.125 3.1141644019e-1 1.68 4.0086400280e-1 1.32 5.4249781220e-1 0.95

0.0625 1.3246287256e-3 7.88 1.1541322861e-3 8.44 2.1098853389e-3 8.00

0.03125 2.3443624169e-5 5.82 2.0015998229e-5 5.85 1.6596915121e-5 6.99

0.020833 2.0207215760e-6 6.05 1.7188485947e-6 6.05 1.5127171717e-6 5.91

Expected order 6 6 6

Table 3.17: L1, L2 and L∞ errors and convergence rates for the TST problem with the MOOD-P2, MOOD-P3

and MOOD-P5 methods. Top lines: hexahedral meshes. Bottom lines: mixed hexahedral/pyramidal meshes.
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Figure 3.37: Initialization of the H-like shape rotation problem. Top left: interior view of the tetrahedral
mesh. Top right: initialization of the H-like shape (isosurface 1/2, rotation axis is the red line). Bottom left:
cut plane z = 1/2. Bottom right: extruded initial values from the cut plane.
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We plot in Figure 3.38 the solution on the cut plane z = 1/2 for the unlimited P3 and
P5 schemes and the MOOD-P3, MOOD-P5 methods. We notice that the unlimited schemes
produce oscillations, depicted in green in the figure, whereas the MOOD method provides
an oscillation-free solution even for polynomials of degree 5. It highlights the capacity of the
[DMP→u2] detection process to correctly treat discontinuous shapes on genuinely unstructured
3D meshes.

Figure 3.38: Results of the H-like shape rotation problem on the cut plane z = 1/2 for the unlimited P3

and P5 schemes (top line) and for the MOOD P3 and P5 methods (bottom line). The highlighted green cells
correspond to values below 0 or above 1.
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3.3.4.2 Euler system

We now consider the three-dimensional hydrodynamics Euler system on unstructured meshes.
The first test cases proposed in section 3.3.4.2 deal with the Sod and Lax shock tubes following
the Ox axis (invariant with respect to the other directions). The simulations are carried out
on a tetrahedral mesh to study the MOOD method capacity to handle simple waves. Section
3.3.4.2 is dedicated to the Shu-Osher and Blastwave problems approximated on pyramidal
cells which respectively involve a complex oscillatory solution and strong interactions between
simple waves along the Ox direction. We address in section 3.3.4.2 the effective numerical
accuracy of the method with the isentropic vortex problem for which an exact smooth solution
exists. Then in section 3.3.4.2, we assess the ability of the MOOD method to simulate complex
realistic physics on a mesh of triangular and quadrangular prisms by carrying out the impact of
a shock wave on a cylindrical cavity proposed in [27]. At last, we provide the MOOD method
results for two genuinely three-dimensional test cases. First we compare the behavior and
computational cost (CPU and memory storage) of the MOOD method with different degrees
and detection processes by simulating the so-called explosion problem [78] using unstructured
pyramidal meshes in section 3.3.4.2; Then in section 3.3.4.2, we consider the interaction of a
shock wave with a quarter of cone on a mesh of 1.1 millions of tetrahedra with the 4th-order
MOOD method.

� Sod and Lax shock tubes

The original Sod [73] and Lax [51] problems concern one-dimensional Riemann shock tubes
whose solutions consist of a left-moving rarefaction fan, a right-moving contact discontinuity
and a right-moving shock wave. In the three-dimensional context, we reproduce the expansion
following the Ox axis setting initial condition invariant in y, z and we prescribe reflecting bound-
ary conditions on the cylinder sides as in [31]. The domain is filled with an ideal gas with γ = 1.4
and the discontinuity is located in x = 0.5 at t = 0. The initial density/velocity/pressure values
and final time tfinal are given by
– Sod: (ρ, u, p)L = (1.0, 0.0, 1.0) and (ρ, u, p)R = (0.125, 0.0, 0.1), tfinal = 0.2,
– Lax: (ρ, u, p)L = (0.445, 0.698, 3.528) and (ρ, u, p)R = (0.5, 0.0, 0.571), tfinal = 0.13.
The computational domain we consider is a cylinder of unit length and radius R = 0.025 with
0x line as symmetry axis which is paved with 7517 unstructured tetrahedra as shown in figure
3.39.

Figure 3.39: Mesh constituted of 7517 tetrahedra used for the Sod and Lax problems. Some cells are drawn
non-opaque to see some interior tetrahedra.

We display in Figure 3.40 the numerical approximations of the density computed with the
MOOD-P3 method using the [PAD→DMP→u2] detection process and the exact solution (red

142



CHAPTER 3. TOWARDS THE MOOD METHOD FOR EULER

line). In order to provide a clear and relevant representation of the solution along the Ox axis,
we slice the whole cylinder in 100 uniform cylinders (since the average characteristic length is
10−2) and plot the average of the solution on each of them. As expected the MOOD-P3 method
provides a very good approximation of the solution and maintains sharp discontinuities. In
particular, we underline the very few numbers of points in the contact discontinuity.

Figure 3.40: The MOOD-P3 density results are displayed for the Sod (left) and Lax (right) problems on
tetrahedral mesh vs the exact solution (red line).

� Shu-Osher and Blastwave problems

The Shu-Osher problem has been introduced in [70] to test the ability of a scheme to
capture both small-scale smooth flow along with shock wave. The one-dimensional compu-
tational domain is Ω = [−5; 5] and the final time is tfinal = 1.8. An initial x-directional
shock wave located at x = −0.4 separates the domain into a left post-shock state (ρ, u, p)L =
(3.857143, 2.629369, 10.333333) and a right state (ρ, u, p)R = (1 + 0.2 sin(5x), 0, 1.0). We con-
sider a perfect gas with γ = 1.4. Reflecting boundary conditions are used to preserve the
invariance following axis Oy, Oz except from the left boundary condition which is an inflow
one.

The Blastwave problem has been introduced by Collela and Woodward in [91] to test the per-
formance of numerical schemes on problems involving strong and thin shock structures. The
initial conditions consist of two parallel planar flow discontinuities on domain Ω = [0, 1] sepa-
rated by the planes x1 = 0.1 and x2 = 0.9. The density is unity on the whole domain and the
gas is assumed initially at rest. The pressure is given by pL = 1000 on the left, pC = 0.01 in
the center and pR = 100 on the right. Reflecting boundary conditions are prescribed and the
final time is tfinal = 0.038.
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We consider a 21600 regular pyramids mesh (see Figure 3.42-top right for a pattern exam-
ple) obtained from a 400 − 3 − 3 regular hexahedral mesh for which each cell is split into six
pyramids. The original hexahedral mesh is built by setting Δx = Δy = Δz with Δx = 0.075
for Shu-Osher problem and Δx = 0.0075 for the Blastwave problem. Since there is no exact
solution for both tests we have computed reference solutions using a first-order finite volume
scheme with very fine meshes. As in the previous simulations, the solutions are plotted fol-
lowing the Ox direction considering an underlying 400 points uniform one-dimensional mesh
and circles in Figure 3.41 represent the mean density on three-dimensional slices of thickness Δx.

Density approximations obtained with the MOOD-P3 are presented in Figure 3.41 and com-
pared to the reference solution (red line). For the Shu-Osher problem (left) we report that
the [PAD→DMP→ u2] detection criteria does not over-smooth the oscillatory solution and
accurately capture the high-frequencies waves. On the other hand, for the Blastwave problem
(right) we observe sharp contact discontinuities and shock waves are well-preserved. No spurious
oscillations are generated and the central structure of the solution is very well approximated.

Figure 3.41: Results for the Shu-Osher (left) and Blastwave (right) problems on pyramids. MOOD-P3

density results are displayed on the left and right columns respectively vs the reference solution (red line).

� Isentropic vortex

The isentropic vortex problem was initially introduced for the two-dimensional space [68, 93]
to test the accuracy of numerical methods since the exact solution is smooth and has an ana-
lytical expression. We simply extend the original problem for the three-dimensional situation
taking the two-dimensional solution invariant following Oz. Let us consider the computational
domain Ω = [−5, 5] − [−5, 5] − [0, zmax] and an ambient flow characterized with ρ∞ = 1.0,
u∞ = 1.0, v∞ = 1.0, w∞ = 1.0, p∞ = 1.0, with a normalized ambient temperature T ∗

∞ = 1.0
computed with the perfect gas equation of state and γ = 1.4.
A z-invariant vortex is centered on the axis line xvortex = (xvortex, yvortex, z) = (0, 0, z) z ∈ R
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and supplemented to the ambient gas at the initial time t = 0 with the following conditions
u = u∞ + δu, v = v∞ + δv, T ∗ = T ∗

∞ + δT ∗ where

δu = −y′
β

2π
exp

(
1− r2

2

)
, δv = x′ β

2π
exp

(
1− r2

2

)
, δT ∗ = −(γ − 1)β

8γπ2
exp

(
1− r2

]
,

with r =
√

x′2 + y′2 and x′ = x − xvortex, y
′ = y − yvortex. The vortex strength is given by

β = 5.0 and the initial density follows relation

ρ = ρ∞

(
T ∗

T ∗∞

) 1
γ−1

=

(
1− (γ − 1)β

8γπ2
exp

(
1− r2

]) 1
γ−1

. (3.53)

The domain is paved either withN−N−4 hexahedra , N = 20, 40, 60, 80, 120 or withN−N−24
pyramids (each hexahedron from the previous mesh is split into 6 pyramids, see Figure 3.42).
To reduce the computational effort, only four cells are considered in the z-direction and zmax

is taken such that Δx = Δy = Δz, that is to say zmax = 4Δx = 40/N . The minimal/maximal
number of cells is 1600/57600 hexahedra and 9600/153600 pyramids. We prescribe periodic
boundary conditions everywhere.

In Figure 3.42 we display the convergence curves for the L1 and L∞ errors on the density
approximations for MOOD-P2, MOOD-P3, MOOD-P5 methods, while we provide in Table 3.18
the corresponding errors and convergence rates. We report effective orders corresponding to
the expected optimal rates of convergence for both types of meshes and underline the MOOD
method capacity to provide effective high-order of accuracy on a smooth but non-trivial solution
for the three-dimensional Euler system.

� Impact of a shock wave on a cylindrical cavity

Based on the experiment proposed in [72], we have introduced this test case in [27] for the
two-dimensional case. We here extend it to 3D by invariance along the z-direction. It consists
in a planar shock wave which impacts a cylindrical cavity creating complex structures and
instabilities. The original purpose of this stringent numerical test is to prove the ability of the
MOOD method to capture physics in realistic conditions. In this paper it moreover assesses the
capacity of the MOOD method to deal with mixed triangular and quadrangular prisms since
the mesh is obtained by extrusion (only two layers) along the Oz axis of a 2D mesh containing
101127 cells (triangles and quadrangles). We moreover point out that important differences
between cell sizes are present in the domain, since the largest characteristic length is 0.008 and
the smallest one is 0.00015. At last, we run the simulation on the lower half part of the domain
but plot a full domain using a symmetry argument. Details of the mesh are provided in Figure
3.43.

145



CHAPTER 3. TOWARDS THE MOOD METHOD FOR EULER

Figure 3.42: Isentropic vortex in motion: convergence curves for L1 (middle) and L∞ (bottom) errors for
series of hexahedral (left) and pyramidal (right) meshes. Examples of such meshes are given on top line.
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MOOD on hexahedra

Deg. Cell nb L1 error L2 error L∞ error

P2 20− 20− 4 1.2149125472e-2 — 3.1900165943e-2 — 2.4441600308e-1 —

40− 40− 4 3.2245099895e-3 1.91 8.0410260168e-3 1.98 5.8071095773e-2 2.07

60− 60− 4 1.2274201731e-3 2.38 3.0952199533e-3 2.35 2.2241472168e-2 2.37

80− 80− 4 5.8449248920e-4 2.57 1.4891720330e-3 2.54 1.0333244490e-2 2.66

120− 120− 4 1.8870676632e-4 2.78 4.8726522430e-4 2.75 3.2966795901e-3 2.82

Expected order 3 3 3

P3 20− 20− 4 3.8426301161e-3 — 9.2866634542e-3 — 6.3860302401e-2 —

40− 40− 4 7.2909293814e-4 2.39 1.6463735019e-3 2.49 1.3928173243e-2 2.19

60− 60− 4 1.4537313954e-4 3.97 3.4725838178e-4 3.84 2.5316808689e-3 4.20

80− 80− 4 4.3014601762e-5 4.23 1.1403422006e-4 3.87 8.9234157884e-4 3.62

120− 120− 4 7.7653485653e-6 4.22 2.0827671718e-5 4.19 1.7793186459e-4 3.98

Expected order 4 4 4

P5 20− 20− 4 2.8991068920e-3 — 4.8543664172e-3 — 3.2038381504e-2 —

40− 50− 4 2.2151699683e-4 3.71 5.5851141683e-4 3.12 6.2194475329e-3 2.36

60− 60− 4 2.8610132561e-5 5.04 7.5286576723e-5 4.94 4.9068468256e-4 6.26

80− 80− 4 5.4168534310e-6 5.78 1.5519206048e-5 5.49 1.5955744462e-4 3.90

120− 120− 4 4.0840597698e-7 6.38 1.1795674119e-6 6.36 1.0709587465e-5 6.66

Expected order 6 6 6

MOOD on pyramids

Deg. Cell nb L1 error L2 error L∞ error

P2 20− 20− 24 3.3660908651e-3 — 8.2020368268e-3 — 5.8966752971e-2 —

40− 40− 24 6.0800306087e-4 2.47 1.4780372369e-3 2.47 1.2917288297e-2 2.19

60− 60− 24 1.9831385885e-4 2.76 5.0256415975e-4 2.66 3.4489695638e-3 3.25

80− 80− 24 7.9096059248e-5 3.19 2.0028509695e-4 3.19 1.3642153624e-3 3.22

Expected order 3 3 3

P3 20− 20− 24 8.8005733635e-4 — 2.0405839361e-3 — 2.2060839273e-2 —

40− 40− 24 6.4460987694e-5 3.77 1.4763173293e-4 3.78 1.3204082077e-3 4.06

60− 60− 24 1.2809782719e-5 3.98 2.9223354775e-5 3.99 2.8960192576e-4 3.74

80− 80− 24 4.0713141263e-6 3.98 9.3121356054e-6 3.97 8.6899534957e-5 4.18

Expected order 4 4 4

P5 20− 20− 24 3.7944742185e-4 — 9.8016940506e-4 — 2.0273963181e-2 —

40− 40− 24 9.7451977113e-6 5.28 2.4664732108e-5 5.31 2.4540502338e-4 6.36

60− 60− 24 8.0304771455e-7 6.15 2.0569058735e-6 6.12 2.0022941712e-5 6.18

80− 80− 24 1.2520658320e-7 6.46 3.1436119294e-7 6.53 3.2667224251e-6 6.30

Expected order 6 6 6

Table 3.18: L1, L2 and L∞ errors and convergence rates for the isentropic vortex problem with the MOOD-
P2, MOOD-P3 and MOOD-P5 methods. Top lines: hexahedral meshes. Bottom lines: pyramidal meshes.
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Figure 3.43: Impact of a shock on a cylindrical cavity: details of the mesh containing 202254 triangular and
quadrangular prisms.

The detailed configuration and boundary conditions are provided in [27], and we recall that
we consider the case of a nominal incident shock Mach number of 1.33 in ambient air (with
γ = 1.4) at 0.95 bar pressure and that the variables initialization consists in the pre-shock
values (ρ, u, v, w, p) = (1.1175, 0.0, 0.0, 0.0, 95000.0) and the post-shock ones (ρ, u, v, w, p) =
(1.7522, 166.3435, 0.0, 0.0, 180219.75) leading to conditions of [72] at temperature T = 296.15K.
In Figure 3.44, we plot the magnitude of the density gradient computed with the MOOD
P2 method equipped with the [PAD→DMP→ u2] detection process at different times of the
simulation in order to give an overview of the physical phenomena. We emphasize that the
instabilities along the cylindrical wall are very well captured. Finally in Figure 3.45, we provide
a zoom of the final solution on the created instabilities which perfectly match the experimental
results of [72].
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Figure 3.44: Impact of a shock on a cylindrical cavity: magnitude of the density gradient at different times
from left to right and top to bottom.
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Figure 3.45: Impact of a shock on a cylindrical cavity: Zoom on the created instabilities at final time.
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� The explosion problem

We consider the so-called explosion problem [78] given by a gas initially at rest in the unit
cube where a quarter of the ball of radius rc = 0.4 centered at the origin has a density ρb = 1.0,
a pressure pb = 1.0 whereas the exterior is characterized by ρe = 0.125, pe = 0.1. The domain is
partitioned into 203 hexahedral cells for which each hexahedron is split into 6 pyramids leading
to a mesh of 48000 pyramids. Simulations are carried out till the final time tfinal = 0.25. A
reference solution has been computed with a two-dimensional cylindrical staggered numerical
Lagrangian scheme [55].

We report in Figure 3.46 the density approximations in function of the radius for a classi-
cal MUSCL scheme [62], the MOOD-P2, MOOD-P3, MOOD-P5 methods equipped with the
[PAD→DMP→ u2] detection and the reference solution. Note that we use the same type of
representation than for the previous test cases by slicing the radius in 100 uniform cells.

Figure 3.46: Density results for the explosion problem in 3D. Comparison between a classical MUSCL
method and the MOOD-P2, MOOD-P3 and MOOD-P5 methods with [PAD→DMP→u2] detection process on
tetrahedral mesh. The straight line corresponds to the reference solution.
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The solution shape is well reproduced by all methods and the higher the polynomial degree is
the sharper the contact discontinuity and the shock wave are. In a three-dimensional context
with discontinuous solutions, the MOOD-P3 method seems to be the right balance between
accuracy and cost. The slight improvement gained by the MOOD-P5 compared to MOOD-P3

may not justify the computational over-cost (see further). We also notice that the head of the
rarefaction wave is badly resolved by the MUSCL method whereas the MOOD-P2 and espe-
cially the MOOD-P3 method give accurate approximations.

To compare the different detection strategies, we present in Figure 3.47 the final solutions
obtained by the MOOD method with the PAD alone and the [PAD→DMP→ u2] detection
processes using P5 polynomial reconstructions.

Figure 3.47: Density results for the explosion problem in 3D obtained with the MOOD-P5 method. Com-
parison between the PAD alone and [PAD→DMP→ u2] detection process. The straight line corresponds to
the reference solution and the symbols represent mean values of all cells.

Note that contrary to previous figures, we plot the density values for all cells by associat-

152



CHAPTER 3. TOWARDS THE MOOD METHOD FOR EULER

ing them with the radius corresponding to the cell centroid. As expected, the PAD detection
process does not damp spurious oscillations close to the shock wave (see the zoom panel) and
extra oscillations are also visible on the head of the rarefaction. We recall that the numerical
approximation using the PAD detection process is the most accurate one on smooth solutions
since only the physical admissibility of the solution is required so that few numerical diffusion
is produced. On the opposite, the [PAD→DMP→u2] detection process damps the oscillations
close to the shock and to the head of rarefaction but also maintain a very good accuracy with
a slight non monotonic behavior.

Finally we provide in Tables 3.19 the computational cost of the MOOD method for this
test case in this particular configuration when running on a single core of the three following
machines (using -O3 flag for gfortran compiler):

M1: server with two Intel Xeon E5335 (4 cores) @ 2.00Ghz, 8MB of L2 Cache, 16GB of RAM

M2: laptop with Intel Core2Duo P7550 (2 cores) @ 2.26GHz, 3MB of L2 Cache, 8GB of RAM

M3: desktop with Intel Core i5 2500 (4 cores) @ 3.30GHz, 6MB of L2 Cache, 8GB of RAM

Note that the same three machines have been used in [27] to assess the computational cost of
the MOOD method for two-dimensional geometries.

Machine 1 Machine 2 Machine 3 Memory
MOOD with Intel Xeon E5335 Intel Core2Duo P7550 Intel Core i5 2500 storage

[PAD→DMP→u2] @ 2.00Ghz @ 2.26GHz @ 3.30GHz

MOOD-P2 66μs/it./cell 57μs/it./cell 30μs/it./cell 0.4 GB

MOOD-P3 163μs/it./cell 136μs/it./cell 69μs/it./cell 0.8 GB

MOOD-P5 439μs/it./cell 385μs/it./cell 185μs/it./cell 3.0 GB

Table 3.19: CPU time in microseconds per iteration per cell and memory storage in Gigabytes for the
MOOD-Pk methods (k = 2, 3, 5) with the [PAD→DMP→u2] detection process on three different computers.

We first observe that the memory storage doubles when the polynomial degree is increased by
one: 0.4 for P2, 0.8 for P3, 1.6 for P4 (not presented in the table) and 3.0 for P5. Notice that
the memory consumption is very low since only two reconstruction pseudoinverse matrices (for
P2 and Pdmax) per cell are effectively stored. The CPU cost increases by a factor about 2.4 from
P2 to P3 and about 2.7 from P3 to P5.

By extrapolation of these results we estimate the cost of the MOOD method for larger meshes.
As instance for one million cells mesh and 1000 time steps the method cost should be:
– MOOD-P2 is 66000 seconds on M1, that is to say ∼ 18 hours (∼ 16 hours on M2 and ∼ 8.3
hours on M3) with about 8 Gb of memory storage,

– MOOD-P3 is 163000 seconds, ∼ 2 days on M1 (∼ 1.5 day and ∼ 19 hours on M2 and M3)
with about 16 Gb of memory storage,

– MOOD-P5 is 439000 seconds, ∼ 5 days on M1 (∼ 4.5 days and ∼ 2.1 days on M2 and M3)
with about 62 Gb of memory storage.
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Consequently simulations with nowadays sequential computers with a one million cells mesh
(assuming one thousand time steps) can be obtained for about one day of computation with
MOOD-P3 method. The MOOD method is thus a very competitive very high-order finite vol-
ume method, and these results shall be improved by an efficient parallelization.

� Interaction of a shock wave with a quarter of cone

To conclude the numerical tests section, we run the test case named interaction of a shock
wave with a quarter of cone with the 4th-order MOOD-P3 method equipped with the [PAD→
DMP→u2] detection process. This 3D extension of the so-called interaction of a shock wave
with a wedge has been proposed in [31] as instance.

The domain consists in a quarter on cylinder of radius R = 2.25 centered on the Ox axis which
covers the interval [−1.1; 3.0] in the x-direction. Note that three modifications have been made
in comparison to [31] in order to reduce the computational cost: the test is run on a quarter
of cylinder instead of a half one, the initial interface is placed at x = −0.2 instead of x = −1.0
and the domain covers in the x-direction the interval [−1.1; 3.0] instead of [−1.5; 3.0]. Finally
the mesh obtained by the free mesher Gmsh contains 1161854 tetrahedra in three refinement
zones and exactly matches the initial interface, see top of Figure 3.49.

We recall that the circular cone under consideration is such that its length is 1, its tip and foot
radii are 0.02 and 0.5 respectively while its tip is placed at the origin. Moreover wall boundary
conditions are prescribed everywhere except from the top and bottom of the quarter of cylinder
where the exact solution according to the Rankine-Hugoniot conditions is imposed. At last the
initial pre- and post shock conditions are given by (ρ, u, v, w, p) = (2.122, 0.0, 0.0, 0.0, 1.805)
and (ρ, u, v, w, p) = (1.4, 0.0, 0.0, 0.0, 1.0) respectively with γ = 1.4 and the final time is chosen
such that it corresponds to the final time of [31].

In Figure 3.48, we propose numerical Schlieren-type images on the solution in the Ox − Oy
and Ox − Oz planes. We remark that the symmetry is very well conserved since both images
are almost identical and that all waves that are present in results of [31] are also resolved here
although much less cells (more than 3.5 times less) are considered. This proves that the MOOD
method performs very well on 3D unstructured meshes. Finally on bottom of Figure 3.49, we
provide a 3D view for which isosurfaces have been chosen to represent the principal waves in the
whole domain. It is thus clear that the method properly reproduces the cylindrical symmetry
even on this fully unstructured 3D tetrahedral mesh.
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Figure 3.48: Interaction of a shock wave with a half cone: on top, numerical Schlieren-type image on the
Ox−Oy plane; on bottom, numerical Schlieren-type image on the Ox−Oz plane.
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Figure 3.49: Interaction of a shock wave with a half cone: on top, view of the interior of the tetrahedral
mesh with the different zones of refinement; on bottom, isosurfaces corresponding to the principal waves.
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3.3.5 Conclusion

In this paper we have proposed the three-dimensional extension of the so-called MOODmethod
[18, 27]. The Multi-dimensional Optimal Order Detection expression refers to an original way
of determining the optimal local polynomial degree to be used in the reconstruction step of a
classical high-order unlimited scheme. To each cell corresponds a polynomial reconstruction for
which we a posteriori determine the degree according to given criteria (positivity as instance)
against which we test each candidate solution. The detection criteria is based on a relaxed
version of the discrete maximum principle (DMP) associated with a so-called u2 detection pro-
cedure which analyses the numerical curvatures in the neighborhood of a DMP violating cell and
determine if the underlying function is regular or not. In the latter case the polynomial degree in
the associated cell is decremented and the solution is locally recomputed. We have detailed the
numerical method for three-dimensional unstructured meshes and improved the detection crite-
ria both for the advection equation and the Euler system. Moreover some optimizations for the
three dimensional case have been provided to significantly improve the efficiency of the method.

The MOOD method has been implemented on several kinds of unstructured meshes with Pk

polynomial reconstructions (k varying from 1 to 5). We have provided some sanity checks with
simple configurations and performed more advanced full three-dimensional tests to assess the
ability of the MOOD method to accurately capture waves on real unstructured meshes. For the
scalar convection equation with a regular initial shape the method gives an effective high-order
of accuracy corresponding to the optimal one and we have shown that spurious oscillations
are damped when discontinuous profiles are convected. The results for unidirectional prob-
lems for the Euler system with three-dimensional unstructured meshes show that small scaled
structures are captured while shock waves are resolved within few cells. For the isentropic
vortex test case extended to the three-dimensional context with non-trivial exact solution, ef-
fective high-orders of accuracy are measured and optimal orders are reported for P2,P3 and
P5 polynomials. We prove that the MOOD method is able to capture the realistic physics
of the impact of a shock wave on a cylindrical cavity on a non trivial mesh made of a mix of
triangular and quadrangular prisms. At last, the three-dimensional explosion problem has been
carried out to show the improvement gained with the use of high-order MOOD methods and
the slight numerical diffusion generated by the u2 detection process which enables to prevent
spurious numerical oscillations from appearing. We have also provided the solution computed
with the PAD detection process alone to support the intrinsic positivity-preserving property
of the MOOD method and measures of the CPU cost to underline that the MOOD method is
effective on nowadays personal computers. Finally the interaction of a shock wave on a quarter
of cone with the 4th-order MOOD method proves that the MOOD method provides a very good
reproduction of the physics on a unstructured non-regular 3D mesh of 1.1 millions of tetrahedra.

In a near future, we plan to adapt the MOOD within an ADER technique to avoid the multiple
time steps of the Runge-Kutta approach and overcome the third-order accuracy restriction.
Furthermore although the MOOD method significantly reduces the necessary computational
resources (CPU and memory storage), a parallelized version is of crucial importance to treat
huge size simulations. Finally the application of the MOOD method to more complex physics
(multi-material, multi-phase, etc.) is also an important challenge that has to be tackled.
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Version française

Dans cette thèse, nous avons conçu et développé un nouveau type de méthodes Volumes Finis
d’ordre très élevé pour la simulation des équations d’Euler régissant la dynamique des gaz com-
pressibles non-visqueux, dénommé MOOD pour Multidimensional Optimal Order Detection.
La principale nouveauté de notre approche est le traitement a posteriori des phénomènes pa-
rasites engendrés par l’approximation d’ordre élevé des zones non-régulières de la solution, en
opposition avec les méthodes classiques qui utilisent des limitations a priori. Il en résulte que
sur les zones régulières de la solution, le schéma non limité est utilisé sans aucune modification
et que la limitation ne s’effectue que sur les parties non-régulières en recalculant localement la
solution avec un schéma d’ordre moins élevé.

Nous avons défini un cadre et des outils adaptés à l’approche a posteriori et prouvé sur de
nombreux cas tests numériques en dimension deux et trois que la méthode MOOD est non
seulement viable mais surtout plus efficace que l’état de l’art. Le concept proposé n’étant pas
intrinsèquement lié aux équations que nous avons considérées, tout semble donc favorable à
l’extension de la méthode MOOD à d’autres classes de problèmes. Dans ce qui suit, nous pro-
posons un ensemble de pistes à suivre dans le futur qui permettront de renforcer et populariser
la méthode MOOD.

En premier lieu, nous présentons des évolutions possibles de la méthode dans le contexte dans
lequel nous l’avons présentée dans cette thèse. Nous distinguons au moins trois possibilités
intéressantes.

La première que nous avons évoquée dans la section 2.4 est la parallélisation de la méthode
de manière à la rendre encore plus efficace et permettre ainsi de considérer des simulations à
plusieurs dizaines de millions de mailles sur une machine de calcul personnelle (via OpenMP,
GPGPU) et plus encore sur un supercalculateur (via MPI). Or la structure de la méthode
MOOD semble adaptée au calcul parallèle puisque les éléments qui la constituent (reconstruc-
tion polynomiale, processus de détection) ne prennent en compte que des données locales sur
un voisinage identique aux méthodes existantes. La parallélisation effective n’est donc qu’une
question de temps et d’opportunités.

Une deuxième direction intéressante, évoquée en section 1.3.3, pour réduire le coût de la
méthode est d’utiliser une méthode de type ADER à la place de la méthode RK3-TVD comme
discrétisation en temps. D’une part cela diviserait par trois le nombre d’étapes pour obtenir

159



CONCLUSION AND PERSPECTIVES

la solution mise à jour, et par conséquent diminuerait significativement le temps de calcul.
D’autre part cela permettrait d’avoir une discrétisation en temps d’ordre aussi élevé qu’en
espace. Rappelons toutefois que les méthodes ADER restent complexes et que par suite la
simplicité du schéma proposé dans cette thèse serait réduite. Cependant dans l’optique d’un
code de calcul performant sur une application précise, cette amélioration est particulièrement
pertinente.

Enfin nous pensons qu’une méthode MOOD simplifiée à l’extrême et d’ordre limité à deux
serait une passerelle concrète vers le monde industriel dans lequel simplicité, robustesse et ra-
pidité sont des facteurs prédominants. En effet, la reconstruction à l’ordre deux est robuste et
extrêmement performante même en dimension trois et nous avons montré dans [18, 27, 28] que
numériquement la méthode MOOD-P1 fournit de meilleurs résultats que la méthode MUSCL
classique. De plus, puisque les paradigmes de la méthode MOOD sont indépendants de l’ordre,
nous pourrions aisément proposer aux ingénieurs ayant assimilés ces paradigmes, une migration
vers la version à l’ordre élevé.

La deuxième grande classe de perspectives importantes est celle de l’étude mathématique de la
méthode et de ce qui la compose. La reconstruction polynomiale à partir des valeurs moyennes
est un élément central des méthodes Volumes Finis d’ordre élevé. Pour autant sa compréhension
mathématique est encore incomplète dans le cadre multidimensionnel non-structuré et l’en-
semble de ses propriétés n’est pas établi. La plupart des caractéristiques associées à la recons-
truction sont empiriques et relèvent souvent plus de la recette de cuisine que d’un processus
mathématique rigoureux. Il semble pourtant nécessaire que cet élément de base soit bien com-
pris pour d’une part assurer la robustesse, et d’autre part pouvoir réduire son coût, par exemple
en diminuant le nombre de voisins nécessaires.

Ensuite la méthode MOOD devra être analysée précisément afin de mettre à jour ses propriétés
mathématiques en tant que schéma numérique suivant les différents processus de détection uti-
lisés. Par exemple, il serait intéressant de pouvoir démontrer que la méthode MOOD associée
au processus de détection [DMP→u2] pour la convection satisfait une propriété de Variation
Totale Bornée (TVB), ou encore qu’elle assure que les inégalités d’entropie associées au système
d’Euler sont vérifiées. On connâıt toute la difficulté de démontrer ce genre de propriétés dans le
cadre multidimensionnel non-structuré, mais on peut espérer que l’approche a posteriori four-
nisse de nouvelles techniques de démonstration.

La troisième évolution majeure de la méthode concerne bien entendu son application à d’autres
classes de problèmes, et plusieurs travaux ont déjà été entrepris : la méthode MOOD a été
étendue aux équations de Shallow-Water avec succès [19] et son application au problème de
convection-diffusion est en cours. L’extension du concept MOOD ne pose pas de problèmes
majeurs et ne requiert en fait que l’existence d’un schéma de base robuste garantissant une so-
lution dans les situations critiques (singularités, discontinuités). Ensuite il faut développer des
mécanismes d’optimisations du type de celles de la section 1.3.2 de manière à assurer l’effica-
cité de la méthode MOOD. Un des challenges majeurs à venir sera l’application de la méthode
MOOD aux équations de Navier-Stokes incompressibles.

Nous réservons la conclusion de ces perspectives au point qui est peut-être le plus important
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pour le futur. Nous avons montré dans cette thèse qu’une nouvelle approche à la limitation des
schémas d’ordre très élevé est possible, et qu’elle se base sur un principe a posteriori qui aurait
pu parâıtre rudimentaire et inefficace. Une nouvelle voie de réflexion est donc ouverte.
De plus, le recul pris sur ce travail permet de repenser la méthode MOOD présentée ici
dans le cadre des Volumes Finis pour l’hydrodynamique comme un cas particulier d’un concept
MOOD plus général. En effet, il suffit d’appréhender la méthode présentée comme un algorithme
de sélection locale du schéma le plus approprié aux caractéristiques de la solution que l’on
recherche. Il est alors clair que les seuls éléments importants sont : une liste de schémas ordonnée
du plus précis au plus robuste et un ensemble de propriétés que l’on désire pour la solution. De
ce fait, la méthode Volumes Finis, l’ordre du schéma, ou encore les équations que l’on considère
ne sont pas des éléments importants de ce concept.
La méthode MOOD développée ici, pourrait donc devenir le concept MOOD qui s’appuyant
sur une liste ordonnée de schémas numériques et un ensemble de propriétés à satisfaire per-
met de sélectionner localement le schéma le plus adapté aux équations que l’on résoud. Par
exembple, une utilisation proche de ce que nous avons présenté serait de se baser sur une
méthode de type Galerkin Discontinu (au lieu des Volumes Finis) qui contient intrinsèquement
une représentation d’ordre élevée de la solution. La décrementation du degré n’agirait donc plus
sur la reconstruction polynomiale mais directement sur la base locale dans laquelle la solution
est représentée.

Pour conclure, nous pensons que la méthode MOOD possède l’ensemble des qualités requises
pour trouver un écho favorable dans le monde du calcul scientifique tout autant que celui de
l’industrie. Nous espèrons donc que les idées originales proposées dans ce travail de doctorat
vont initier de nouvelles collaborations multi-disciplinaires.

English version

In this thesis, we have designed and developed a novel type of very high-order Finite Volume
methods to simulate the Euler equations ruling the non-viscous compressible gas dynamics,
named MOOD for Multidimensional Optimal Order Detection. The major novelty of our
approach is the a posteriori treatment of spurious phenomena generated by the high-order
approximation of the irregular parts of the solution, whereas classical methods use a priori
limitations. As a result, the unlimited scheme is applied on the smooth part of the solution
and limitation only acts in the vicinity of the singularities by locally recomputing the solution
with a lower-order scheme.

We have defined a framework along with tools suitable for the a posteriori approach. Numer-
ical tests for the two- and three-dimensional cases have been carried out and showed that the
MOOD method is not only viable but more efficient than the state-of-the-art very high-order
Finite Volume methods. The innovative concept is not intrinsically tied to the equations we
consider, so that all conditions seem to be favorable to the extension of the MOOD method to
other classes of problems. In the following, we propose a set of selected directions for future
investigations which may reinforce and popularize the MOOD method.
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Firstly, we present possible improvements of the MOOD method in the same context as this
thesis. At least three interesting possibilities come up.

The first one was mentioned in section 2.4 and consists in the parallelization of the method to
make it more efficient so that simulations using tens of millions of cells on a personal worksta-
tion (via OpenMP, GPGPU) and even more on supercomputers (via MPI) would be possible.
Furthermore the MOOD method seems to be suitable for parallel computations since its consti-
tutive elements (polynomial reconstruction, detection process) only deal with local informations
on the same neighborhood as existing methods. Therefore an effective parallelization is a ques-
tion of time and opportunities.

A second interesting direction, mentioned in section 1.3.3, to reduce the computational cost of
the method is to use an ADER method as a substitute for the RK3-TVD as time discretization.
On the one hand, the number of steps to get the time update of the solution would be divided
by three so that it would significantly lower the computational cost. On the other hand it would
provide a time discretization of arbitrary order. Let us recall that the ADER methods are still
complex so that the simplicity of our scheme would be reduced; however from the perspective of
a high-performance simulation code for a specific application, this improvement is particularly
relevant.

Finally we think that an extremely simplified second-order MOOD method would be a prac-
tical gateway to the industrial world for which simplicity, robustness and speed are prevailing
considerations. Indeed, the second-order reconstruction is robust and extremely efficient even
in the three-dimensional case, and we have proved in [18, 27, 28] that the method MOOD-P1
method numerically provides better results than the classical MUSCL one. Moreover, since the
paradigms of the MOOD method are independent of the scheme order, we could easily propose
a high-order update to the engineers who have assimilated these paradigms.

The second class of important perspectives concerns the mathematical analysis of the MOOD
method and its constitutive elements. The polynomial reconstruction from mean values is a
key process of very high-order Finite Volume methods. Its mathematical understanding is still
incomplete for unstructured meshes of multidimensional geometries and all its properties are
not set yet. Most of the characteristics of the reconstruction are empirical and is often closer to
a recipe than to a rigorous mathematical process. A fine understanding of this basic element is
also necessary to ensure the robustness and to be able to lower its cost, for instance in reducing
the stencil size.

Then the MOOD method will have to be accurately analyzed in order to demonstrate its
mathematical properties as a numerical scheme in regard to the detection process used. For
instance, it would be interesting to prove that the MOOD method using the [DMP+u2] de-
tection process for the scalar convection equation fulfills a Total Variation Bounded (TVB)
property, or else that the entropy inequalities associated to the Euler system hold. Such issues
are usually difficult to demonstrate in an unstructured multidimensional context, but we may
expect that the a posteriori approach provides new techniques of demonstration.

The third main evolution of the MOOD method naturally concerns its application to other
classes of problems, and several investigations have already been initiated: the MOOD method
has been extended to the Shallow-Water equations successfully [19] and its application to the
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convection-diffusion problem is an on-going study. No major problem arises in the extension
of the MOOD concept. It only requires the existence of a basic robust scheme which guar-
antees a solution in critical situations (e.g. singularities, discontinuities). Then optimization
mechanisms such as in section 1.3.2 have to be developed to ensure the efficiency of the MOOD
method. One of the challenges to come is the application of the MOOD method to the incom-
pressible Navier-Stokes equations.

The conclusion of these perspectives is dedicated to the possibly most important point for the
future of the method. We have shown in this study that a novel approach to the limitation of
very high-order schemes is feasible and driven by an a posteriori principle which could have
been judged unrefined and inefficient. A new way of thinking is thus wide open.
Furthermore, standing back from this work, we find out that the MOOD method we have
presented as a Finite Volume method for hydrodynamics may be considered as a particular
case of a more general MOOD concept. Actually, the MOOD technique may be generalized as
an algorithm of local selection of the optimal (i.e. most appropriate) scheme according to the
solution characteristics we seek. It is then clear that the truly important elements are: a list
of schemes ordered from the most accurate to the most robust and a set of properties desired
for the solution. As a matter of fact, the Finite Volume method, the scheme order, or even the
equations we consider are not important elements of this concept.
Consequently, the MOOD method may become a MOOD concept which, considering an or-
dered list of numerical schemes and a set of properties to satisfy, locally selects the most
appropriate scheme to the equations we solve. As instance, this could be considered to develop
a MOOD strategy using Discontinuous Galerkin method (instead of Finite Volume ) which
intrinsically contains a high-order representation of the solution. The decrementing process
would then act on the local functions basis on which solution is projected, instead of the degree
of the polynomial reconstruction.

To conclude, we believe that the MOOD method has the set of required properties to ex-
pect a positive response from the scientific computation community and the industrial world.
We thus hope that the original ideas proposed in this doctoral dissertation will initiate new
multidisciplinary collaborations.
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[12] M. Bôcher, Introduction to the theory of Fourier’s series, Annals of Math. 7 (1906) 81–152
(Cited pages 2 and 5.)

[13] T. Buffard, S. Clain, Monoslope and Multislope MUSCL Methods for unstructured meshes,
J. Comput. Phys. 229 (2010) 3745–3776. (Cited pages 55, 86, 122, and 127.)

[14] J. Casper, H. Atkins, A finite-volume high order ENO scheme for two dimensional hyper-
bolic systems, J. Comp. Phys. 106 (1993) 62–76. (Cited pages 2, 5, and 24.)

165



BIBLIOGRAPHY

[15] C. E. Castro, High Order ADER FV/DG Numerical Methods for Hyperbolic Equations,
PhD thesis, Monographs of the School of Doctoral Studies in Environmental Engineering
(2007). (Cited page 26.)

[16] S. Clain, Finite volume L∞-stability for hyperbolic scalar problems, preprint HAL available
at http://hal.archives-ouvertes.fr/hal-00467650/fr/. (Cited page 58.)

[17] S. Clain, V. Clauzon, L∞ stability of the MUSCL methods, Numer. Math. 116 (2010)
31–64. (Cited pages 58, 63, and 86.)

[18] S. Clain, S. Diot, R. Loubère, A high-order finite volume method for systems of conserva-
tion laws – Multi-dimensional Optimal Order Detection (MOOD), J. Comput. Phys. 230
(2011) 4028–4050. (Cited pages 39, 40, 45, 47, 53, 86, 88, 93, 97, 98, 122, 124, 126, 127,
128, 129, 157, 160, and 162.)

[19] S. Clain, J. Figueiredo, C. Ribeiro, A finite volume scheme for the shallow-water sys-
tem with the polynomial reconstruction operator, in proceeding CSEI2012 (2012). (Cited
pages 160 and 162.)

[20] I. Christov, B. Popov, New non-oscillatory central schemes on unstructured triangulations
for hyperbolic systems of conservation laws, J. Comput Phy. 227 (2008) 5736–5757. (Cited
page 55.)

[21] B. Cockburn, S. Y. Lin, C.-W. Shu, TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: One dimensional systems, J.
Comput. Phys. 84 (1989) 90–113. (Cited page 87.)

[22] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for scalar conservation laws II: General framework, Math. Comp. 52 (1989)
411–435. (Cited page 87.)

[23] B. Cockburn, S. Hou, C.-W. Shu, TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws IV: The multidimensional case, Math.
Comp. 54 (1990) 545–581. (Cited page 87.)

[24] B. Cockburn, C.-W. Shu, The Runge-Kutta Discontinuous Galerkin Method for Conser-
vation Laws V: Multidimensional Systems, J. Comput. Phys. 141 (1998) 199–224. (Cited
pages 1, 4, 79, 87, and 109.)
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Appendix A

Quadrature rules with positive weights
up to 6th-order

In this appendix, we provide the Gaussian quadrature rules for 1D, 2D and 3D elements up
to 6th-order of accuracy that we used in our simulation codes. These quadrature rules are all
made up with positive weights to ensure the convex combination property. Moreover, we recall
that polygonal and polyhedral cells have simply been treated by triangular and tetrahedral
decompositions to.

A.1 Quadrature rules for a segment

We consider a segment K defined by two points a, b ∈ R (orR2) and seek to approximate the
integral

∫
K
f(x)dx. To this end we consider the Gaussian quadrature formulae that provides

an approximation under the form∫
K

f(x)dx ≈ |K|
R∑

r=1

ξrf(qr).

We give in the following table, for degree one to five, the quadrature weights ξr and the barycen-
tric coordinates (αr, βr) corresponding to the quadrature points qr = αra+ βrb.

Degree R Bary. coord. Weight ξr

1 1
(

1
2
, 1
2

)
1

2,3 2
(

1
2
± 1

2

√
1
3
, 1
2
∓ 1

2

√
1
3

)
1
2

4,5 3
(

1
2
, 1
2

)
8
18(

1
2
± 1

2

√
3
5
, 1
2
∓ 1

2

√
3
5

)
5
18
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A.2 Quadrature rules for a triangle

We consider a triangle K defined by three points a, b, c ∈ R
2 (orR3) and seek to approximate

the integral
∫
K
f(x)dx. To this end we consider the quadrature formulae that provides an

approximation under the form ∫
K

f(x)dx ≈ |K|
R∑

r=1

ξrf(qr).

We give in the following table, for degree one to five, the quadrature weights ξr and the barycen-
tric coordinates (αr, βr, γr) corresponding to the quadrature points qr = αra + βrb + γrc. For
the sake of clarity, the barycentric coordinates are given with their multiplicities which provide
the number of permutations that have to be performed to obtain all quadrature points.

Degree R Bary. coord. Multiplicity Weight ξr

1 1
(

1
3
, 1
3
, 1
3

)
1 1

2 3
(

1
2
, 1
2
, 0
)

3 1
3

3,4 6
(
ai, ai, 1− 2ai

)
i ∈ {1, 2} 3

a1 = 0.091576213509771 0.109951743655322
a2 = 0.445948490915965 0.223381589678011

5 7
(

1
3
, 1
3
, 1
3

)
1 9

40(
ai, ai, 1− 2ai

)
i ∈ {1, 2} 3

a1 =
5−√

15
21

155−√
15

1200

a2 =
5+

√
15

21
155+

√
15

1200

A.3 Quadrature rules for a tetrahedron

We consider a tetrahedron K defined by four points a, b, c, d ∈ R
3 and seek to approximate

the integral
∫
K
f(x)dx. To this end we consider the quadrature formulae that provides an

approximation under the form ∫
K

f(x)dx ≈ |K|
R∑

r=1

ξrf(qr).

We give in the following table, for degree one to five, the quadrature weights ξr and the barycen-
tric coordinates (αr, βr, γr, δr) corresponding to the quadrature points qr = αra+βrb+γrc+δrd.
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For the sake of clarity, the barycentric coordinates are given with their multiplicities which pro-
vide the number of permutations that have to be performed to obtain all quadrature points.

Degree R Bary. coord. Multiplicity Weight ξr

1 1
(

1
4
, 1
4
, 1
4
, 1
4

)
1 1

2 4
(
a, a, a, 1− 3a

)
4 1

4

a = 5−√
5

20

3,4,5 15
(

1
4
, 1
4
, 1
4
, 1
4

)
1 16

135(
ai, ai, ai, 1− 3ai

)
i ∈ {1, 2} 4

a1 =
7−√

15
34

2665−14
√
15

37800

a2 =
7+

√
15

34
2665+14

√
15

37800(
a, a, 1

2
− a, 1

2
− a

)
6

a2 =
10−2

√
15

40
10
189
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Appendix B

Linear dependence of the polynomial
reconstruction and evaluation on mean
values

In the first section, we propose to explicitly write each polynomial coefficients as a linear
combination of the mean value on the reference cell Ki and the ones of the stencil Sd

i . We
then draw a remark about the ways to obtain the curvatures used in the u2 detection process.
The second part is dedicated to explicitly writing each reconstructed value as a similar linear
combination. This result is new up to our knowledge and may be an important improvement
for the parallelized version of the MOOD method.

Notice that the notation used in this chapter is the one defined in section 1.2 and the index d

corresponding to the degree of the polynomial reconstruction is omitted for the sake of clarity.

B.1 Linear dependence of the polynomial coefficients on

neighbors mean values

In this section we seek to write the polynomial coefficients Rα
i as a linear combination of the

mean value on the reference cell Ki and the ones of the stencil Sd
i , that is

Rα
i =

∑
j∈Si∪{i}

γα
i,j uj, (B.1)

where γα
i,j are the weights of the combination and only depend on geometrical entities.

To this end, we recall that the solution of the reconstruction problem, i.e. the polynomial
coefficients Ri =

{Rα
i

}
1≤|α|≤d

, are obtained by

Ri = X†
iUSi

,

where USi
=
(
uSi(1) − ui,−−−, uSi(NSi

) − ui

]t
and X†

i is the pseudoinverse of the reconstruction
matrix Xi for which each row corresponds to a multiindex α and each column to one neighbor
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in the stencil Si. Then we exploit the linearity of the matrix-vector product and obtain that
each polynomial coefficient writes

Rα
i =

NSi∑
j=1

(
X†
i

⎧⎩α,Si(j)
⎫⎭ uj

)
−
( NSi∑

j=1

X†
i

⎧⎩α,Si(j)
⎫⎭) ui,

where the notation X†
i

⎧⎩α,Si(j)
⎫⎭ stands for the term of X†

i of the row corresponding to the

multiindex α and the column corresponding to neighboring cell KSi(j).

Therefore the contribution of the neighbor mean value of cell KSi(j) in equation (B.1) is

γα
i,j = X†

i

⎧⎩α,Si(j)
⎫⎭,

and the one of Ki is

γα
i,i = −

NSi∑
j=1

X†
i

⎧⎩α,Si(j)
⎫⎭.

Finally this development may be used to directly compute the curvatures necessary to the
u2 detection process from the vector of mean values on the reconstruction stencil and on the
reference cell. Nevertheless let us remark that the polynomial coefficients may have been
directly obtained through a linear combination of the form

Rα
i =

∑
j∈Si∪{i}

γα
i,j (uj − ui).

However the equation (B.1) is important for the result provided in the next section.

At last we discuss the way to obtain the curvatures in the u2 detection process. The use of
the pseudoinverse is not always considered in the literature, and there exist high-order Finite
Volume methods for which the decomposition, say QR for instance, of the matrix Xi is stored
and directly used to compute the polynomial coefficients through Ri = R−1QTUSi

. This tech-
nique reduces the condition number problems since R is only inverted one time. However it is
impossible to compute each polynomial coefficient independently such as we proposed above.
In consequence, if we were to use such a technique to obtain the curvatures for the u2 detection
process, we would have to compute almost all polynomial coefficients to only get the curvatures.
On the opposite, a major advantage of the pseudoinverse technique, is the possibility to directly
obtain the curvatures without computing all polynomial coefficients.

B.2 Linear dependence of the reconstructed values on

neighbors mean values

In this section, we propose to write the evaluation of the reconstructed polynomial ũi of degree
d at any point x as a linear combination of the mean value on the reference cell Ki and the
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ones of the stencil Sd
i , that is

ũi(x) =
∑

j∈Si∪{i}
βi,j(x) uj. (B.2)

B.2.1 Obtaining the linear combination

We recall the two necessary elements that we need: first, the reconstruction form

ũi(x) = ui +
∑

1≤|α|≤d

Rα
i

(
(x− cKi

)α − 1

|Ki|
∫
Ki

(x− cKi
)α dx

)
,

and the linear combination of previous section to obtain the polynomial coefficients

Rα
i =

∑
j∈Si∪{i}

γα
i,j uj.

For the sake of clarity, let us define

Mα
i (x) = (x− cKi

)α − 1

|Ki|
∫
Ki

(x− cKi
)α dx,

where M stands for monomials. The polynomial reconstruction can thus be written

ũi(x) = ui +
∑

1≤|α|≤d

Rα
i M

α
i (x),

and replacing Rα
c by the linear combination leads to

ũi(x) = ui +
∑

1≤|α|≤d

⎛⎝ ∑
j∈Si∪{i}

γα
i,j uj

⎞⎠Mα
i (x),

that equivalently writes

ũi(x) = ui +
∑

j∈Si∪{i}

⎛⎝ ∑
1≤|α|≤d

γα
i,j M

α
i (x)

⎞⎠uj.

Therefore the contribution of the neighbor mean value of cell KSi(j) in equation (B.2) is

βi,S(j)(x) =
∑

1≤|α|≤d

γα
i,j M

α
i (x) =

∑
1≤|α|≤d

X†
i

⎧⎩α,Si(j)
⎫⎭Mα

i (x),

and the one of Ki is

βi,i(x) = 1 +
∑

1≤|α|≤d

γα
i,i M

α
i (x) = 1−

∑
1≤|α|≤d

NSi∑
j=1

X†
i

⎧⎩α,Si(j)
⎫⎭ Mα

i (x).

The definition of all βi,j(x), j ∈ Si ∪ {i} is therefore complete and only depends on geometry.
In other words, for given mesh, polynomial degree, reconstruction stencil and quadrature point,
all weights appearing in equation (B.2) may be precomputed and stored.
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B.2.2 Using the linear combination

Following this claim, the evaluation of a polynomial at a given quadrature point does not
require the computation of the polynomial coefficients. More precisely, the high-order approx-
imation at a given point x is computed by a dot product of two vectors of size NSi

+ 1, where
the first vector is determined during the preprocessing step and the other is vector of the mean
value on the reference cell Ki and the ones of the stencil Sd

i

ũc(x) =

⎛⎜⎜⎜⎝
βi,i(x)

βi,Si(1)(x)
...

βi,Sc(NSi
)(x)

⎞⎟⎟⎟⎠−

⎛⎜⎜⎜⎝
ui

uSi(1)
...

uSci(NSi
)

⎞⎟⎟⎟⎠ .

We can then imagine to reconstruct all quadrature points values in a cell in one matrix-vector
operation. For instance, considering the (q1, q2, . . . , qR) where we want to reconstruct ũi(−), the
operation is ⎛⎜⎜⎜⎝

ũi(q1)
ũi(q2)

...
ũi(qR)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
βi,i(q1) βi,Si(1)(q1) −−− βi,Si(NSi

)(q1)

βi,i(q2) βi,Si(1)(q2) −−− βi,Si(NSi
)(q2)

...
... −−− ...

βi,i(qR) βi,Si(1)(qR) −−− βi,Si(NSi
)(qR)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ui

uSi(1)
...

uSi(NSi
)

⎞⎟⎟⎟⎠ ,

where the matrix is only depending on the geometry, the polynomial degree and the quadrature
points. Remark that it may be more interesting in a computational point of view to reconstruct
values at all quadrature points of a face, if the code if face-based.

Finally we discuss the computational interest of such a technique. Though it seems more effi-
cient not to reconstruct the polynomial coefficients, one has to be careful about the number of
operations. Indeed let us assume that we intend to reconstruct the values of the reconstructed
polynomial ũi at all quadrature points of a cell Ki.

Using the traditional technique, we need to first compute the polynomial coefficients and it
demandsN (d) dot products between vector of sizeNSi

(where we recall thatN (d) is the number
of polynomial coefficients). Then the reconstructed values are obtained by R (i.e. number of
quadrature points on all faces) dot products between vector of size N (d). Consequently the
total number of operation is

Nold = N (d)(2NSi
− 1) +R(2N (d)− 1).

Considering the proposed technique we need R dot products between vectors of size NSi
so

that the total number of operations is

Nnew = R(2NSi
− 1).

It is now interesting to compare these two operations numbers when the stencil size is set ac-
cording to N (d). We consider the three cases, NSi

= N (d), NSi
= (3/2)N (d) and NSi

= 2N (d)
and seek the condition linking the number of quadrature points to the number of polynomial
coefficients such that the cost of both methods is the same.
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� Case NSi
= N (d)

The first case implies that Nold = Nnew + N (d)(2N (d) − 1), so that the cost of the new
technique is always lower than the traditional one. However the condition NSi

= N (d) means
that the stencil size is the minimal required one, and we claimed in section 1.2 that this is not
sufficient in the general case.

� Case NSi
= (3/2)N (d)

The second case is realistic since NSi
= (3/2)N (d) is basically the relation that holds in 2D.

We write the equality between both numbers of operation and obtain

N (d)(3N (d)− 1) +R(2N (d)− 1) = R(3N (d)− 1)

⇔ N (d)(3N (d)−R− 1) = 0

⇔ 3N (d)−R− 1 = 0

⇔ R = 3N (d)− 1.

It means that if the number of quadrature points on all faces of the cell Ki is lower than three
times the number of polynomial coefficients the new technique is cheaper than the old one.

In order to better understand the implications of such a constraint, we give in the following
table, the number of faces flim below which the new technique is cheaper. We moreover recall
the number of polynomial coefficients N (d) and the number of quadrature points per face QPf

necessary to reach optimal order according to the degree of the polynomial.

We assume that in 3D faces are triangular, but it does not restrict the results since other faces
can be triangulated. In consequence a pyramid may be seen as a 6 faces polyhedron, a prism
as an 8 faces one and an hexahedron as a 12 faces one.

Domain Degree d N (d) QPf flim

Ω ⊂ R
2

1 2 1 6
3 9 2 13
5 20 3 19

Ω ⊂ R
3

1 3 1 8
3 19 6 9
5 55 7 23

The values of flim shows that in 2D the new technique basically always performs better while
in 3D it is true for tetrahedra, pyramids or prisms. Furthermore the greater the polynomial
degree is, the more gain the new technique brings, in particular for the degree five.
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� Case NSi
= 2N (d)

This case is closer to the 3D case since NSi
= (3/2)N (d) is basically the relation that holds.

We write the equality between both numbers of operation and obtained

N (d)(4N (d)− 1) +R(2N (d)− 1) = R(4N (d)− 1)

⇔ N (d)(4N (d)− 2R− 1) = 0

⇔ 4N (d)− 2R− 1 = 0

⇔ R = 2N (d)− 1/2

It means that if the number of quadrature points on all faces of the cell Ki is lower than two
times the number of polynomial coefficients the new technique is cheaper than the old one.
As for the previous case, we provide in the following table the number of faces flim below
which the new technique is cheaper.

Domain Degree d N (d) QPf flim

Ω ⊂ R
2

1 2 1 3
3 9 2 8
5 20 3 13

Ω ⊂ R
3

1 3 1 5
3 19 6 6
5 55 7 15

The values of flim shows that in 2D the new technique always performs better except for degree
one on cells with more than 3 faces. However in 3D, the technique is interesting for degree
5 again, or for tetrahedral meshes. This result supports the need for reduction of the stencil size.

We conclude this appendix with two important remarks. First this direct approach to obtain
the high-order approximations at quadrature points is more flexible since only one global step
(a matrix-vector product) is necessary whereas the traditional technique demands to first re-
construct the polynomial coefficients and then the reconstructed values. It may be of crucial
importance for the sake of parallelization. Finally this few examples completely support the
fact that we should try to reduce the stencil size since the less cells there are in the stencil, the
more efficient the new technique is.
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