

de Toulouse

THÈSE

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse III - Paul Sabatier Discipline ou spécialité : Chimie Organométallique et de Coordination

> Présentée et soutenue par Carine Maaliki Le 22 Novembre 2012

> > Titre :

Nouveaux Ligands Phospho-Carbonés :

Synthèse et Chimie de Coordination

JURY

Mme. Jeanne CRASSOUS, Directeur de recherche OMC, Université de Rennes I Mr. Thierry OLLEVIER, Professeur à l'Université Laval, Canada Mr. Sylvain JUGE, **Professeur à l'**Université de Bourgogne, Dijon Mr. Tsuyoshi KATO, Directeur de recherche CNRS, LHFA - Toulouse Mr. Remi CHAUVIN, Professeur à l'Université Paul Sabatier, Toulouse Mr. Yves CANAC, Chargé de recherche CNRS, LCC – Toulouse

> **Ecole doctorale :** Sciences de la matière **Unité de recherche :** Laboratoire de Chimie de coordination (UPR 8241) **Directeurs de thèses :** Mr. Yves CANAC et Mr. Remi CHAUVIN **Rapporteurs :** Mme. Jeanne CRASSOUS et Mr. Thierry OLLEVIER

Rapporteur Rapporteur Président du jury Examinateur Directeur de thèse Directeur de thèse

A mes Parents et à ma Grand-Mère,

REMERCIEMENTS

Je souhaite tout d'abord exprimer ma reconnaissance au Dr. Jeanne Crassous et au Prof. Thierry Ollevier qui ont référé ce travail avec beaucoup d'attention et de tolérance. Je tiens aussi à remercier le Prof. Sylvain Jugé pour m'avoir fait l'honneur d'être le Président du jury et d'avoir « arbitrer » la partie discussion avec une grande gentillesse. Merci au Dr. Tsuyoshi Kato pour sa présence et d'avoir ouvert de nouvelles perspectives à ces travaux de recherches.

Merci aux différents membres du jury pour l'intérêt qu'ils ont porté à ce travail et pour les commentaires chaleureux et enrichissants qu'ils ont fait au cours de ma soutenance.

Mes remerciements les plus profonds sont adressés à mes deux directeurs de thèse, Pr. Remi Chauvin et Dr. Yves Canac pour m'avoir permis de réaliser ce travail. Travailler à vos côtés fut extrêmement formateur.

Remi, parmi vos nombreuses qualités, je soulignerai votre grande rigueur scientifique, ainsi que votre optimisme. Bien sûr je vous remercie de m'avoir fait confiance pour mener à bien ce sujet. Je n'oublierais jamais nos réunions du soir, voir celles des samedis matins improvisées.

Yves, merci pour tout ce que vous m'avez appris, aux cours de ces trois années (qui sont passées si vite). Merci de m'avoir donnée de votre temps, d'avoir toujours été à mon écoute dans les moments délicats où la chimie ne marchait pas comme on le souhaitait. Vous avez toujours été présent et ceci jusqu'aux bouts avec de nombreuses relectures de ce manuscrit.

Je souhaite aussi dire un « grand merci » à tous les membres de l'équipe qui ont partagé cette aventure à mes cotés :

Dr. Christine Lepetit, pour les études théoriques nécessaires à ces travaux mais aussi pour ta grande gentillesse.

Dr. Valérie Maraval, nous ne travaillons pas sur le même sujet et ceci ne nous a pas empêchées de créer ce lien d'amitié qui a été très important pour moi pendant ces trois ans. Tu as toujours été là pour me soutenir aussi bien pour la chimie que pour les périodes personnelles plus difficiles.

Dr. Ibrahim Abdellah, j'ai repris ton flambeau...Merci de m'avoir accueillie dans l'équipe quand toi tu finissais ta thèse. Merci pour tous tes conseils pratiques mais aussi de m'avoir aidé à intégrer cette chimie si inconnue à mes débuts.

Un grand merci à Cécile Barthes, pour tous les petits moments sympas de nos pauses thés à l'organisation des pauses « gauffres ». Je suis certaine qu'un lien d'amitié s'est tissé.

Dr. Arnaud Rives, et oui Nono, on en aura passé du temps ensemble, finalement!! Toujours présent pour m'aider (merci pour toutes les bouteilles d'argon par exemple), de m'avoir remonté le moral à ta façon, de cette coordination et de cette compréhension mutuelles dans certaines situations, je savais sur qui compter...sans oublier que tu as été mon binôme du samedi matin (...avec de bons pains au chocolat!).

Merci au Dr. Jean-Marie Ducéré pour les nombreuses discussions scientifiques très pédagogues, ainsi qu'à tous les membres de l'équipe D : Kevin Cocq, merci pour ta bonne humeur, je suis sur que tu va bien animer cette équipe, Clève Mboyi, merci pour ta gentillesse (voir ta sagesse), Iaroslav Baglai, merci pour m'avoir entrainer à parler en anglais, Corantin Poidevin, merci pour le « tempo » pendant la fin de la rédaction (et oui même si tu ne t'en rends pas compte tu as le rythme dans la peau), à vous quatre je vous souhaite bon courage pour ces trois années à venir, serrez vous les coudes les gars !!!.

Je tiens également à remercier les différents stagiaires que j'ai pu encadrés lors ces trois ans de thèse : Mariam Raoudi, Mohamed Zaki ainsi que Laurent Dubrulle, mais aussi les différentes collaborations qui ont pu être développées avec le Pr. Jérôme Lacour à Genève (Suisse) en particulier avec le Dr. Radim Hrdina et avec le Pr. Sylvain Jugé à Dijon (France).

J'aimerais également remercier le personnel technique du LCC, en particulier Dr. Christian Bijani et le Dr. Carine Duhayon.

Christian, merci de m'avoir aidée à caractériser en RMN de nombreux produits instables et pas faciles à purifier. Merci de ta gentillesse, de ta patience mais aussi de ton investissement pour avoir tenu tête à ces différentes molécules.

Carine, merci de m'avoir formée à la diffraction des rayons X, domaine que je connaissais peu avant d'arriver ici. Merci d'avoir été patiente avec mes cristaux « casse tête ». Je te remercie de toute ta gentillesse et de tous les bons moments que nous avons passés à attendre les premières images de diffractions (avec suspens).

Un grand merci à tous les docteurs ou non, qui ont fait de ces trois années un pur bonheur à venir travailler: Hélène Eury (notre sortie à Paris restera mémorable), Bruno Alies, Gilles Caillot, Ganna Gogolieva, Andres Cardozo, Aurélien Bethegnies, Manel Kechaou, Remi Sylvain, Arnaud sans oublier CO Turrin et Régis Laurent que je rencontrais lors de mes « pauses » chez l'équipe M.

J'aimerais remercier tous les membres du LCC aussi bien techniques que administratives, en particulier Dr. Laure Vendier et Sonia Ladeira, Dr. Yannick Coppel, Francis Lacassin, David Paryl mais aussi Brigitte et Michel sans oublier Martine. Ma petite Martine tu vas me manquer.

Je voudrais aussi remercier une personne qui me connait maintenant depuis longtemps, le Dr. Elsa Anselmi de l'Université de Tours. Je tiens à te remercier de m'avoir « guidé » depuis mon DEUG de Biologie, après nos nombreuses discussions sur mon orientation entre la bio et la chimie mais aussi au cours de mon Master 1 où tu as pu m'encadrer lors mon stage... Je pense qu'un bout de cette thèse t'appartient vu la grande motivation, les encouragements et la confiance que tu m'as toujours donnés.

Je tiens aussi à faire un clin d'œil à tous mes prof et amis de Tours, Dr. Jean Claude Kizirian, Pr. Alain Duchêne, Pr. Jérôme Thibonnet, Dr. Yvan Carcenac, Pr. Mohamed Abarbri ainsi que Dr. Maud Picard qui a toujours été de bons conseils dans mon parcours.

Ces trois ans sont passés si vite bien sûr à cause du sujet, mais aussi grâce à une ambiance fantastique surtout crée par un groupe d'amis qui a toujours été là pour me soutenir. Je tiens à remercier mes amis Toulousains : Laurie, Aurélien, Michel, David, Micha et mes amis Libanais : Annie, Simona, Chadi, Momo, Hanna. Merci à vous tous pour toutes ces soirées passées ensemble à rigoler, pour toutes ces sorties (à Toulouse bien sûr, mais aussi à Tours, à St Lary, à Barcelone..), que de bons souvenirs enregistrés qui ne me quitteront pas.

Je tiens à remercier mon pilier, Georges Mouchaham, qui a toujours été a mes cotés depuis quatre ans maintenant. Toujours présent dans les oscillations de cette thèse, il m'a aidé à avancer.

Enfin je tiens à remercier du fond de mon cœur mes parents et ma grand-mère, les trois êtres les plus chers à mon cœur. Vous avez toujours été là pour moi et c'est vous qui m'avez conduit à l'aboutissement de cette thèse. Je vous la dois. Mamie tu m'as toujours conseillée d'aller au bout des choses et de ne pas abandonner, je pense que tu m'as transmis ta persévérance.

Un grand merci à vous tous......

Nouveaux ligands phospho-carbonés : Synthèse et Chimie de Coordination

Sommaire	1
Conditions générales	7
Abréviations	8
Introduction générale	13

Chapitre I : Ligands phosphorés pauvres en électrons : Amidiniophosphines et la nature ternaire de leur complexe

I] Eta	t de l'art	sur les l	igands		19				
	A]	Les ph	nosphites	5	19				
	B]	Les ar	es aryl(fluoro)phosphines						
	C]	Les ph	nosphine	s cationiques	22				
		1]	Systèr	ne imidazoliophosphine	23				
		2]	Systèr	ne carbéniophosphine (non-imidazoliophosphine)	27				
		3]	Propri	étés de coordination des carbéniophosphines	27				
			1.	Complexes de nickel	27				
			2.	Complexes de rhodium	29				
		4]	Réacti	vité intrinsèque des carbéniophosphines	31				
			1.	Carbéniophosphines comme précurseurs de ligands NHC	31				
			2.	Carbéniophosphines comme précurseurs d'espèces réactives	34				
		5]	Propriétés catalytiques des complexes de carbéniophosphines						
			1.	Catalyse dans des liquides ioniques	38				
			2.	Catalyse en phase non-ionique	41				
	D]	Conclu	usion		42				
II]	Amidi	niophos	phanes of	oxygénées	43				

A]	Les a	s amidiniophosphonites					
	1]	Résultats et discussion43					
		1. Amidiniophosphonites à partir du motif 1-(1-phényl)-1H-imidazole43					
		2. Amidiniophosphonites à partir de NHCs44					
		3. Synthèse d'un complexe de rhodium à ligand amidiniophosphonite45					
	2]	Etude théorique des imidazoliophosphanes46					
		1. Caractérisation de la liaison dative N_2C -P pour le modèle imidazoliophosphane46					
		2. Détermination de l'effet électro-donneur des imidazoliophosphanes.47					
B]	Les h	ydroxyphosphines cationiques49					
	1]	Résultats de la bibliographie51					
	2]	Résultats et discussion55					
		1. Synthèse d'hydroxyphosphines cationiques à partir du chlorohydrate d'imidazolium IMes, HC					
		2. Synthèse d'hydroxyphosphines cationiques à partir du 1-(1-phényl)- 1H-imidazole					
		a) Synthèse des ligands56					
		b) Coordination des ligands hydroxyphosphines neutres et cationiques dans des complexes de Rh (I)					
		3. Synthèse d'hydroxyphosphines cationiques à partir du sel de diamino- cyclopropénium [BAC][HBF ₄]59					
C]	Les c	halcogénophosphéniums61					
	1]	Etude bibliographique					
	2]	Résultats et discussion					
		1. Série monodente					
		2. Etude théorique de la série monodente70					
		3. Série bidente					
		4. Etude théorique de la série bidente					
Di-an	nidiniop	hosphanes					
A]	Résu	ltats et discussion					
B]	Etude	e théorique des di-amidiniophosphanes					
	1]	Caractérisation de la liaison N ₂ C-P des di-amidiniophosphanes84					
	2]	Propriétés electro-donneuses des di-amidiniophosphanes					

III]

		3]	Coordi	nation des di-amidiniophosphanes	86			
		4]	Conclu	sion	37			
IV]	Bis-am	idinioph	osphane	es conjuguées	88			
	A]	Etude b	oibliogra	phique	8			
	B]	Résulta	ts et dis	cussion	€1			
		1]	Systèm	e A	€1			
		2]	Systèm	e B	92			
		3]	Système C					
		4]	Systèm	e D) 3			
			1.	1ère voie de synthèse du 1,3,5-triaminopentane) 3			
			2.	2èmevoie de synthèse du 1,3,5-triaminopentane	95			
				a) Synthèse du « pentane-1, 3,5-triol » 54) 5			
				b) Synthèse du pentane-1,3,5-triyl-tris(trifluorométhanesulfonate)	96			
				c) Essai de synthèse du TAP 52	96			
V]	Conclu	sion			€7			
Partie	expérin	nentale.			99			

<u>Chapitre II : Ligands carbonés riches en électrons</u> <u>Ylure et di-ylures de phosphonium contraint et/ou chiraux</u>.

I]	Etat de l'art sur les ylures de phosphonium1					
	A]	Généra	alité sur les ylures de phosphonium	.137		
		1]	Définition et structure	137		
		2]	Historique	138		
		3]	Ylures de phosphonium stabilisés, semi-stabilisés et non-stabilisés	139		
		4]	Voies de synthèse des ylures	140		
		5]	Ylures en chimie organométallique	141		

	B] Bis-ylures de diphosphoniums								
		1]	Exemples143						
		2]	Résultats antérieurs de l'équipe en série cyclique147						
			1. Bis-ylures non stabilisés fusionnés en tête-à-tête : les carbodiphosphoranes						
			2. β-Bis-ylures non stabilisés fusionnés tête-à-tête148						
			3. α-Bis-ylures non stabilisés fusionnés en tête-à-tête148						
II]	Résult	ats et D	iscussion149						
	A]	Les bis	s-ylures à pont dppb en série acyclique149						
		1]	Diphosphoniums à pont ortho-phénylène (o-dppb)149						
			1. Diphosphoniums en série (Ph ₂ P+Me) ₂ 149						
			2. Diphosphoniums en séries $(Ph_2P+Et)_2$ et (Ph_2P+RR') avec $R = Me$ et $R' = Et$						
		2]	Diphosphonium en série méta-phénylène (Ph ₂ P+Me) ₂ 154						
		3]	Conclusion156						
	B]	Les ylu	ures de phosphonium chiraux157						
		1]	Rappels Bibliographiques157						
			1. Vers la synthèse d'un diphosphonium avec un espaceur porteur de la chiralité						
			2. Vers la synthèse d'un diphosphonium où la chiralité est porté sur l'atome de carbone						
		2]	Résultats160						
			1. Vers la synthèse d'un diphosphonium porteur d'un atome de phosphore chiral160						
III]	Conclu	usion							
Partie	Expérir	nentale							

Chapitre III : Ligands phospho-carbonés hybrides pauvre riche en électrons

I]	Introdu	ction			181		
II]	Résultats et Discussion						
	A]	Système extrême NHC-amidiniophosphine					
		1]	Synthè	ese du ligand imidazolium-amidiniophosphine	183		
			1.	Synthèse de la monophosphine 2	183		
			2.	Synthèse du dication imidazolium-imidazoliophosphine 3.	184		
			3.	Synthèse du monocation imidazolium-imidazolophosphine	184		
			4.	Structures cristallines des monophosphines 2, 3 et 4	184		
		2]	Synthè	ese de complexes à ligand « riche-pauvre »	187		
			1.	Pré-compléxation de l'amidiniophosphine	187		
			2.	Synthèse du complexe « riche-pauvre » monocationique 9.	188		
			3.	Synthèse du complexe neutre de référence 10	188		
III]	Perspec	ctives e	t conclu	usion	191		
		A]	Vers u	n système NHC-ylure de phosphonium « appauvri »	192		
		B]	Vers u	n système ylure de phosphonium-amidiniophosphine	192		
Partie	expérim	entale.			.197		

Conclusion générale	213
Annexes	217

CONDITIONS GENERALES

Les réactions nécessitant une atmosphère inerte sont effectuées sous argon sec. Les solvants utilisés sont fraîchement distillés sous argon et séchés selon les méthodes appropriées : le dichlorométhane, le pentane, l'acétonitrile et DMF sur hydrure de calcium ; le tétrahydrofurane, l'éther diéthylique, et le toluène sur sodium. Les chromatographies sont réalisées sur colonne de silicagel (60-100 Mesh).

Appareillage.

Résonnance Magnétique Nucléaire (RMN).

RMN en solution : Bruker ARX 250 et 300, AV 500. Les déplacements chimiques sont comptés positivement vers les champs faibles, et exprimés en ppm. Les références sont le tétraméthylsilane pour le ¹³C et le ¹H, l'acide phosphorique (solution à 85 %) pour le ³¹P et le complexe [Rh(acac)₃] (3,186477 MHz) pour le ¹⁰³Rh. Les abréviations suivantes ont été utilisées pour décrire les signaux : s (singulet), d (doublet), t (triplet), q (quadruplet), sept (septuplet), m (multiplet), br (broad, signal large).

Rayons X (RX).

Les études par diffraction des rayons X ont été effectuées par Carine Duhayon sur les diffractomètres suivants : Bruker Kappa APEX II, Oxford Xcalibur et Gemini.

Point de fusion.

Appareil digital Electrothermal.

Spectroscopie de masse.

Les spectres de masse ont été réalisés par le service commun de spectrométrie de masse de la Structure Fédérative de Chimie Moléculaire localisé à l'Université Paul Sabatier. *Microanalyse*. Les analyses élémentaires ont été réalisées avec un appareil Perkin Elmer 2400 série II (ICSN, Gif sur Yvette).

Etudes théoriques.

Les études théoriques ont été réalisées par le *Dr. Christine Lepetit*, avec le logiciel de calcul Gaussian 09.

LISTE DES ABREVIATIONS

Å : angström

Ac : acétyle

Ar : aromatique

BIMIP : 2,2'-bis(diphénylphosphino)-1,1'-bibenzimidazole

BIMINAP: 2-(diphénylphosphanyl)-N-(2'-diphénylphosphanyl-1'-naphthyl)-

1Hbenzimidazole

BIMIONAP: 2-(diphénylphosphanyl)-N-(2'-diphénylphosphanyl-1'-naphthyl)-N'-méthyl-

1H-benzimidazolium

BINAP : 2,2'-bis(diphénylphosphino)-1,1'-binaphthyl

Bu : butyle

t-Bu : *tert*-butyle

BV : orbitale moléculaire la plus basse vacante

CH2Cl2: dichlorométhane

CCM : chromatographie sur couche mince

COD : cyclooctadiène

Cy : cyclohexyle

DCE: 1,2-dichloroéthane

DFT : théorie de la fonctionnelle de la densité

DMF : diméthylformamide

DiPP: 1,3-Diisopropyl-phényle

DMSO : diméthylsulfoxyde

ee : excès énantiomérique

ELF : electron localization function

éq.: équivalent

ES+ : ionisation par électronébuliseur (electrospray ionization)

Et : éthyle

g : gramme

h : heure

HMBC : Heteronuclear Multiple-Bond Correlation

HSQC : Heteronuclear Single Quantum Correlation

HO : orbitale moléculaire la plus haute occupé

J : constante de couplage nucléaire spin-spin

Hz : hertz L : ligand Me : méthyle MeCN : acétonitrile Mes : mésityle (2,4,6-triméthylbenzène) MHz : mégahertz min : minute mmol : millimole MS : spectrométrie de masse (Mass Spectrometry) m/z : rapport masse-sur-charge NHC : carbène N-hétérocyclique OTf : triflate OTs : tosylate PCM : polarizable continuum model ppm : partie par million Ph : phényle Pr : propyle *i*-Pr : *iso*-propyle R : groupement organique RMN : résonance magnétique nucléaire RX : rayons X TsCl : chlorure de paratoluènesulfonyle T.A. : température ambiante TCE : 1,1',2,2' tétrachloroéthane THF : tétrahydrofurane

Rappels sur les appellations de certaines molécules phosphorées

INTRODUCTION GENERALE

L'amélioration et la découverte de processus catalytiques reposent en partie sur la conception de ligands de métaux de transition aux propriétés électroniques et stériques bien définies. La typologie des ligands neutres de métaux de transition est fondée sur la nature de l'atome coordinant pouvant être de type $sp^3 = \{\text{amines, phosphanes, éthers, thioéthers,...}\}$, de type $sp^2 = \{\text{carbènes, imines, oxo...}\}$, ou bien de type $sp = \{\text{cumulénylidènes, isonitriles, monoxyde de carbone, nitriles...}\}$.ⁱ Dans cette systématique élaborée pour les éléments des groupes 14, 15 et 16 de la classification périodique, les ligands spectateurs C-coordinants s'étant avérés spécifiquement performants en catalyse (en particulier en comparaison de ligands phosphorés analogues)ⁱⁱ restent limités aux carbènes, et en particulier aux carbènes N-hétérocycliques (NHC) directement coordinant du centre métallique.ⁱⁱⁱ

Après les inombrables variations de structure des carbènes et des phosphines, le carbone et le phosphore restent des éléments coordinants incontournables pour l'élaboration de nouveaux ligands de métaux de transition. C'est ainsi que l'équipe a récemment montré que les ylures de phosphonium et les amidiniophosphines étaient des variations « extrêmes » des NHC et des phosphanes, respectivement, tout en gardant un caractère de ligand spectateur en catalyse organométallique. Ces deux classes de ligands extrêmes peuvent être considérées de façon systématique comme résultat de l'insertion d'un carbène ou d'un phosphénium dans les liaisons phosphore-métal et carbone-métal, de ligands phosphines et carbènes, respectivement (**schéma 1**).

Phosphine
$$\stackrel{Ph}{\xrightarrow{}}_{Ph} \longrightarrow M$$
 $\stackrel{"+ |CH_2"}{\xrightarrow{}}_{(carbène)} \xrightarrow{Ph H}_{\oplus | |G_{\oplus}} \longrightarrow M$ Ylure de phosphonium
Ph H

NHC
$$\begin{pmatrix} N \\ N \\ N \end{pmatrix}$$
 $C \xrightarrow{\bullet} M$ $\begin{pmatrix} \oplus \\ H \\ H \\ H \\ (phosphénium) \end{pmatrix}$ $\begin{pmatrix} N \\ \oplus \\ C \\ H \\ H \\ H \end{pmatrix}$ M Amidiniophosphine

Schéma 1: Parallèle structural entre les ligands ylures de phosphonium et amidiniophosphines résultant de l'insertion formelle d'un carbène et d'un phosphénium dans des liaisons de coordination parentes phosphine-métal et carbène-métal, respectivement. Remarque : alors que les NHC et les amidiniophosphines sont classés comme étant des ligands de type L, les ylures de phosphonium doivent être considérés comme des ligands de type X (selon le formalisme de Green).

L'objectif du travail décrit dans ce mémoire, était l'exploration systématique de ce concept de ligand « extrême ». L'étude a été poursuivie dans les deux directions opposées et complémentaires des ligands « pauvres » et des ligands « riches ».

Le premier chapitre rapporte les principaux résultats bibliographiques des ligands « pauvres » en électrons, en particulier ceux des amidiniophosphines qui sont définies comme des phosphines cationiques où la charge positive est conjuguée avec le site de coordination (plus précisément l'atome de phosphore). La synthèse de nouveaux ligands encore plus pauvres en électrons, tels que les amidiniophosphonites, les amidiniohydroxyphosphines cationiques, et les di-amidiniophosphines est ensuite présentée. L'étude est plus spécifiquement concentré en série « imidazolio » à partir du 1-(1-phényl)-1H-imidazole. Des précurseurs amino-carbèniques vinylogues sont aussi envisagés.

Le deuxième chapitre est consacré à l'étude de ligands C,C-chélatants fortement σ donneurs, et plus précisément des bis-ylures de diphosphonium à pont *ortho-* et *méta*phénylène. La synthèse et la chimie de coordination de ces espèces C-coordinantes vis-à-vis du rhodium (I) sont présentées. L'élaboration de versions chirales, notamment par introduction d'un atome de phosphore stéréogènique (chirogène) est également abordée.

Le troisième chapitre est consacré à la synthèse de systèmes hybrides réunissant les caractères extrêmes « pauvre » des amidiniophosphines et « riche » des ylures, respectivement présentés dans les deux premiers chapitres. Ces systèmes présentant des extrémités hybrides « opposées » du type NHC-amidiniophosphine et ylure-amidiniophosphine sont envisagés afin d'agir de façon « capto-dative » à travers le centre métallique qu'elles peuvent chélater.

ⁱ a) E. Abel, F. Stone, G. Wilkinson, *Comprehensive organometallics chemistry II, vol 7-9*, Pergamon, **1995**, b) Y. Canac, C. Lepetit, R. Chauvin, *Top. Organomet. Chem.*, **2010**, *30*, 1.

ⁱⁱ G. Vougioukalakis, R. grubbs, *Chem. Rev.*, **1985**, 85, 367.

ⁱⁱⁱ a) M. Melaimi, M. Soleilhavoup, G. Bertrand, *Angew. Chem. Int. Ed.* **2010**, *49*, 8810; b) S. Marrot, T. Kato, H. Gornitzka, A. Baceiredo, *Angew. Chem. Int. Ed.* **2006**, *45*, 2598; c) J. Owen, J. Labinger, J. Bercaw, *J. Am. Chem. Soc.*, **2004**, *126*, 8247.

CHAPITRE I : LIGANDS PHOSPHORES PAUVRES EN ELECTRONS : AMIDINIOPHOSPHINES ET NATURE TERNAIRE DE LEURS COMPLEXES.

I]	Eta	t de l'art sur les ligands pauvres	. 19
A] L	es phosphites	. 19
B	L	es aryl(fluoro)phosphines	. 21
C] L	es phosphines cationiques	. 22
	1]	Système imidazoliophosphine	. 23
	2]	Système carbéniophosphine (non-imidazoliophosphine)	. 27
	3]	Propriétés de coordination des carbéniophosphines	. 27
	1	. Complexes de nickel	. 27
	2	Complexes de rhodium	. 29
	4]	Réactivité intrinsèque des carbéniophosphines	. 31
	1	. Carbéniophosphines comme précurseurs de ligands NHC	. 31
	2	. Carbéniophosphines comme précurseurs d'espèces réactives	. 34
	5]	Propriétés catalytiques des complexes de carbéniophosphines	. 37
	1	. Catalyse dans des liquides ioniques	. 38
	2	Catalyse en phase non-ionique	.41
D] (Conclusion	. 42
II]	Am	idiniophosphanes oxygénées	. 43
A] L	es amidiniophosphonites	. 43
	1]	Résultats et discussion	. 43
	1	. Amidiniophosphonites à partir du motif 1-(1-phényl)-1 <i>H</i> -imidazole	.43
	2	Amidiniophosphonites à partir de NHCs.	. 44
	3	Synthèse d'un complexe de rhodium à ligand amidiniophosphonite	. 45
	2]	Etude théorique des imidazoliophosphanes	. 46
	1	. Caractérisation de la liaison dative N_2C -P pour le modèle imidazoliophosphane	e46
	2	Détermination de l'effet électro-donneur des imidazoliophosphanes	. 47
B	L	es hydroxyphosphines cationiques	. 49
	1]	Résultats de la bibliographie	. 51
	2]	Résultats et discussion	. 55
	1 d	. Synthèse d'hydroxyphosphines cationiques à partir du chlorohydr imidazolium IMes, HCl	rate . 55
	2 ii	. Synthèse d'hydroxyphosphines cationiques à partir du 1-(1-phényl)- midazole	1 <i>H-</i> . 56
		a) Synthèse des ligands	. 56

b) Coordination des ligands hydroxyphosphines neutres et cationiques dans o complexes de Rh (I)	des . 57
3. Synthèse d'hydroxyphosphines cationiques à partir du sel de diamin cyclopropénium [BAC][HBF ₄]	no- . 59
C] Les chalcogénophosphéniums	61
1] Etude bibliographique	61
2] Résultats et discussion	64
1. Série monodente	. 64
2. Etude théorique de la série monodente	.70
3. Série bidente	.72
4. Etude théorique de la série bidente	.79
III] Di-amidiniophosphanes	.79
A] Résultats et discussion	. 80
B] Etude théorique des di-amidiniophosphanes	. 84
1] Caractérisation de la liaison N ₂ C-P des di-amidiniophosphanes	. 84
2] Propriétés electro-donneuses des di-amidiniophosphanes :	. 84
3] Coordination des di-amidiniophosphanes	. 86
4] Conclusion	. 87
IV] Bis-amidiniophosphanes conjuguées	. 88
A] Etude bibliographique	. 88
B] Résultats et discussion	.91
1] Système A	.91
2] Système B	. 92
3] Système C	.92
4] Système D	.93
1. 1 ^{ère} voie de synthèse du 1,3,5-triaminopentane	.93
2. 2 ^{ème} voie de synthèse du 1,3,5-triaminopentane	.95
a) Synthèse du « pentane-1, 3,5-triol » 54	.95
b) Synthèse du pentane-1,3,5-triyl-tris(trifluorométhanesulfonate) 55	.96
c) Essai de synthèse du TAP 52	. 96
V] Conclusion	. 97
Partie expérimentale	.99

I] Etat de l'art sur les ligands pauvres

Les ligands pauvres en électrons (faiblement donneurs) ont fait l'objet de peu d'études dans la bibliographie, par comparaison aux ligands riches (fortement donneurs). Trois types de ligands, les phosphites P(OR)₃, les aryl(fluoro)phosphines et les phosphines cationiques rentrent dans cette catégorie des ligands pauvres. Chaque type de ligands sera détaillé par la suite.

A] Les phosphites

Les phosphites comportent trois substituants -OR (avec R = alkyl ou aryl) liés directement à l'atome de phosphore. Ils correspondent à des ligands phosphorés pauvres en électrons, faiblement σ -donneurs et fortement π -accepteurs (**schéma 1**).

Schéma 1: Représentation du caractère faiblement σ -donneur et fortement π -accepteur des ligands phosphites.

Les phosphites ont été utilisées en catalyse organométallique, en particulier comme ligands du rhodium, quelques exemples seront détaillés ci-après pour illustration.

Leur première utilisation a été apportée par Pruett et Smith dans la réaction d'hydroformylation de l'oct-1-ène conduisant au produit linéaire avec des rendements allant de 78 à 97 % (schéma 2).¹

Schéma 2 : Premier exemple de réaction d'hydroformylation utilisant des ligands phosphites.

Dans les années 80, Leeuwen et Roobeek ont utilisé des ligands phosphites plus encombrants tel que $[P(O(2-R-C_6H_4))_3 \text{ avec } R = iPr, tBu...]$ afin d'accroître davantage la régiosélectivité dans les réactions d'hydroformylation d'alcènes.²

¹ R. L. Pruett, J. A. Smith, J. Org. Chem. 1969, 34, 327.

² P.W. N. M. Van Leeuwen, F. C. Roobek, J. Organomet. Chem. 1983, 258, 343.

Des ligands phosphites bidentes, en particulier des ligands chélatants à extrémités mixtes de type phosphine-phosphite ont aussi été développés pour la catalyse homogène. Un exemple caractéristique est celui reporté par Takaya et *coll*. qui décrivent un ligand atropochiral à squelette binaphthyle nommé BINAPHOS (**schéma 3**). Ce ligand s'est avéré très actif et stéréosélectif pour la réaction d'hydroformylation énantiosélective d'alcènes branchés.

Schéma 3: Catalyse d'hydroformylation énantiosélective d'alcènes utilisant le ligand atropochiral BINAPHOS.

D'autres types de ligands bidentes mixtes du type phosphine-phosphinite ont pu être synthétisés à partir du BINOL et utilisés en catalyse asymétrique de réduction des cétones et des aldéhydes aromatiques.³ Récemment, Reetz et *coll*. ont montré que l'utilisation de ligands phosphites chiraux monodentes et bidentes (I et II (schéma 4)) pour la réaction d'hydrogénation de l'itaconate de diméthyle permettait d'obtenir de bon excès énantiomériques (*ee*).

³ A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi et R.Noyori, *J. Am. Chem. Soc.*, **1980**, *102*, 7932.

L	Lla	L1b	L1c	L1d	L1e	L1f	L2a	L2b
<i>ee</i> [%]	89	97	97	90	39	28	88	95

Schéma 4: Réaction d'hydrogénation de l'itaconate de diméthyle catalysée par des complexes à ligands phosphites mono- et bi-dentes dérivés du BINOL.

Tout récemment, Gonzalez et *coll*. ont décrit l'utilisation d'un complexe d'or (I) à ligand phosphite (P(OAr)₃, avec Ar = $2,4-(tBu)_2-C_6H_3$), pour la cyclo-addition [2+2] intermoléculaire du 2,3-dihydrofurane **III** et de l'allénamide **IV** (**schéma 5**) avec de bons rendements.⁴

Schéma 5: Cyclo-addition [2+2] intermoléculaire du 2,3-dihydrofurane III et de l'allènamide IV.

De très nombreux autres travaux ont été réalisés en catalyse en utilisant des ligands phosphites. Ils n'ont pas tous été déclinés mais il est important de remarquer la diversité structurale de ces ligands pauvres en électrons et de noter qu'ils ont un fort potentiel en catalyse.

B] Les aryl(fluoro)phosphines

Les aryl(fluoro)phosphines peuvent être considérées comme des ligands pauvres en électrons du fait de l'effet σ -attracteur (-I) des atomes de fluor très électronégatifs liés au noyau aromatique.

Après le rapport en 1960 par Pummer *et coll*. de la synthèse de la tris(pentafluorophényl)phosphine (C_6F_5)₃P,⁵ différents ligands fluorés ont été synthétisés et utilisés en catalyse.⁶ Des catalyses d'hydroformylation d'alcènes ont été ainsi testées avec les ligands fluorés V et VI conduisant à de bons résultats (**schéma 6**).⁷

⁴ S. Suarez-Pantiga, C. Hernandez-Diaz, M. Piedrafita, E. Rubio, and J. M. Gonzalez, *Advanced Synthesis & Catalysis*, **2012**, *9*, 1651.

⁵ L. A. Wall, R. E. Donadio, W. J. Pummer, J. Am. Chem. Soc. **1960**, 82, 4846.

⁶ C. L. Pollock, G. C. Saunders, E. C. M. Sarah Smyth, V. I. Sorokin, J. Fluor. Chem. 2008, 129, 142

⁷ a) L. A. Van der Veen, M. D. K. Boele, F. R. Bregman, P. C. J. Kamer, P. W. N. M. van Leeuwen, K. Goubitz, J. Fraanje, H. Schenk, C. Bo, *J. Am. Chem. Soc.* **1998**, *120*, 11616; b) H. Klein, R. Jackstell, K. –D. Wiese, C. Borgmann, M. Beller, *Angew. Chem. Int. Ed.*, **2001**, *40*, 3408.

Schéma 6: Ligands fluorés V et VI utilisés en hydroformylation d'alcènes.

Les aryl(fluoro)phosphines ont été également utilisées dans d'autres processus catalytiques comme des réactions d'hydrocyanation,⁸ de carbonylation,⁹ de polymérisation des alcènes,¹⁰d'oxydation de type Baeyer-Villiger,¹¹ ou encore d'hydrogénation.¹²

C] Les phosphines cationiques

Les phosphines cationiques ont déjà été étudiées en tant que ligands, mais dans la plupart des cas, la charge cationique (imidazolium, ammonium, ou phosphonium) reste éloignée de l'atome de phosphore(III). Ceci permet d'obtenir des composés organométalliques zwitterioniques ou de réaliser de la catalyse en milieu polaire et ceci sans altérer les propriétés électroniques du centre métallique. A l'opposé, afin d'obtenir un centre métallique moins riche en électrons, le centre cationique peut être délibérément introduit à proximité du site de coordination. On retrouve ainsi cette disposition dans les amidiniophosphines, où le centre carbénium (couramment un diaminocarbénium N₂C⁺), est directement lié à l'atome de phosphore(III). En version cyclique, si la charge est apportée par un motif imidazolium, on obtient alors des imidazoliophosphines. Il a été récemment démontré que les imidazoliophosphanes étaient mieux décrits comme des systèmes donneur-accepteur, de type NHC-phosphénium. En effet, la paire libre de l'atome de phosphore est peu délocalisée et reste donc accessible pour se coordiner à un centre métallique (**schéma 7**). Plus généralement, le carbéne utilisé peut être différent d'un NHC, et dans ce cas on parlera alors de carbéniophosphines.

⁸ D. P. Fairlie, B. Bosnich, Organometallics, **1988**, 7, 936.

⁹ M. J. Howard, M. D. Jones, M. S. Roberts, S. A. Taylor, *Catal. Today*, **1993**, *18*, 325.

¹⁰ R. Wursche, T. Debaerdemaeker, M. Klinga, B. Rieger, Eur. J. Inorg. Chem. 2000, 9, 2063.

¹¹ R. A. Michelin, E. Pizzo, A. Scarso, P. Sgarbossa, G. Strukul, A. Tassan, *Organometallics*, **2005**, 24, 1012.

¹² K. Junge, B. Hagemann, S. Enthaler, A. Spannenberg, M. Michalik, G. Oehme, A. Monsees, T. Riermeier, M. Beller, *Tetrahedron : Asymmetry* **2004**, *15*, 2621.

Schéma 7: Mésomérie entre les formes binaire et ternaire de complexes métalliques à ligand carbéniophosphine ou carbène-phosphénium.

Notons que les complexes de carbéniophosphines (dans la description binaire classique) peuvent être vus comme des systèmes ternaires carbène-phosphénium-métal avec formellement deux liaisons datives successives, orientées dans le même sens.

De façon générale, pour une liaison A-B, deux types de dissociations sont alors à *priori* possibles, la rupture homolytique A-B \rightarrow A'+'B (D_0), et la rupture hétérolytique A-B \rightarrow A⁺ + :B', (D_+) ou A-B \rightarrow A: ' + B⁺, (D_-). La liaison sera dite dative si la rupture hétérolytique est favorisée, ce qui est le cas pour les liaisons [N₂C-PPh₂]⁺.

La préparation, la réactivité et les applications en catalyse des amidiniophosphines sont développées ci-après.

1] Système imidazoliophosphine

La désignation « carbéniophosphane » est définie par la topologie de Lewis C⁺-P, indiquant une liaison entre un groupement où l'atome de carbone forme une liaison formellement non-dative avec l'atome de phosphore. Dans les schémas qui suivent, la liaison pourra aussi être représentée par la forme mésomère dative C : \rightarrow P⁺ (schéma 7).

La plupart des carbéniophosphanes connus à ce jour sont représentés par les imidazoliophosphines. Ces dernières sont obtenues principalement par phosphanylation directe de NHCs.

Après, une brève description par Zollet et *coll.*,¹³ la première imidazoliophosphine **VIII** a été entièrement caractérisée par Kuhn et *coll.* en 1998.¹⁴ Elle a été obtenue par addition d'un équivalent (éq.) de chlorodiphénylphosphine sur le carbène libre (2,3-dihydro-1,3-diisopropyl-4,5-diméthylimidazol-2-ylidène) **VII**, avec un rendement de 87 % (**schéma 8**).

¹³ U. Zoller, *Tetrahedron*, **1988**, *44*, 7413.

¹⁴ (a) N. Kuhn, J. Fahl, D. Blaser et R. Boese, Z. Anorg. Allg. Chem., **1999**, 625, 729; (b) N. Kuhn, M. Gohner et G. Henkel, Z. Anorg. Allg. Chem., **1999**, 625, 1415.

Schéma 8 : Synthèse de la première imidazoliophosphine VIII.

Plus récemment, par cette voie de synthèse, un cation phosphiranylium **X** stabilisé par la coordination d'un carbène NHC a pu être décrit par H. Grutzmacher et *coll*. (schéma 9).¹⁵

Schéma 9: Préparation de l'adduit NHC-phosphiranylium X à partir de l'amine phosphiranylium IX.

L'atome de phosphore dont la charge formelle est stabilisée par donation du doublet de l'atome d'azote de l'amine de façon intramoléculaire est alors substitué par le carbène NHC beaucoup plus σ -donneur.

Les deux composés **IXa** et **Xa** peuvent alors être décrits par leur structure de Lewis amoniophosphine et carbéniophosphine, respectivement. Les études DFT du composé **Xa** confirment la donation de la paire libre du NHC vers l'orbitale p vide du centre phosphénium et montre une faible rétro-donation de la paire libre du centre phosphénium (en compétition avec celle des atomes d'azote) dans l'orbitale p* de l'atome de carbone hybridé sp².

En 2007, Andrieu et *coll*. ont décrit la préparation de plusieurs imidazoliophosphines à partir du 1,3-diméthylimidazolium-2-carboxylate **XI** (schéma 10) avec des rendements allant de 58 à 91 %.¹⁶

¹⁵ H. Jansen, F. B. Lang, J. Chris Slootweg, A. W. Ehlers, M. Lutz, K. Lammerstma et H. Grutzmacher, *Angew. Chem., Int. Ed.*, **2010**, *49*, 548.

¹⁶ M. Azouri, J. Etrieu, M. Picquet, P. Richard, B. Hanquet et I. Tkatchenko, *Eur. J. Inorg. Chem.*, 2007, 4877.

$$Me^{-N \oplus N - Me} \xrightarrow{1) R_2PCI}_{2) KPF_6} Me^{-N \oplus N - Me} \qquad a: R = Ph, 91\%$$

$$b: R = i-Pr, 75\%$$

$$c: R = Cy, 58\%$$

XII

Schéma 10 : Préparation d'adduits NHC-phosphéniums à partir du carboxylate d'imidazolium XI.

La réaction peut être interprétée comme un échange de l'ion chlorure du réactif chlorophosphénium par le NHC (Cl-PR₂ \leftrightarrow Cl⁻,[PR₂]⁺).

Récemment, le composé **XIV** a pu être préparé par la réaction de PCl_3 sur le sel de 2silylimidazolium avec un rendement de 97 %. La dichlorophosphine cationique **XIV** est obtenue par l'addition de Me₃SiOTf sur le carbène libre NHC **VII** (schéma 11).¹⁷

Schéma 11 : Préparation de l'adduit NHC-dichlorophosphénium XIV à partir du sel de 2silylimidazolium XIII.

Une approche différente consiste à quaterniser l'atome d'azote de type imine des précurseurs imidazolophosphine **XV**. La bibliographie mentionne des rendements allant de 81 à 91 % (schéma 12).¹⁸

Schéma 12 : Quaternisation de l'atome d'azote sp² du noyau imidazole par un groupement alkyle.

Cette dernière voie de synthèse a été récemment appliquée dans l'équipe pour synthétiser le ligand bidente **XVIII**, BIMIONAP, à partir du précurseur neutre BIMINAP

¹⁷ J. J. Weigand, K. O. Feldmann et F. D. Henne, J. Am. Chem. Soc., **2010**, 132, 16321.

¹⁸ A. A. Tolmachev, A. A. Yurchenko, A. S. Merculov, M. G. Semenova, E. V. Zarudnitskii, V. V. Ivanov et A. M. Pinchuk, *Heteroat. Chem.*, **1999**, *10*, 585.

XVII, et les mono- et bis(imidazolio)phosphines **XX** et **XXI** à partir de l'analogue neutre **XIX** (**schéma 13**).¹⁹ La quaternisation de l'atome d'azote est régiosélective et quasiquantitative en utilisant MeOTf comme agent alkylant dans CH_2Cl_2 .

Schéma 13 : Synthèse du BIMIONAP et de bis-(imidazolio)phosphines par *N*-méthylation des précurseurs imidazolophosphines.

L'exemple suivant montre que la quaternisation de l'atome d'azote peut aussi être réalisée sur un complexe d'imidazolophosphine (**schéma 14**), où la nucléophilie de l'atome de phosphore est masquée par le fragment métallique W(CO)₅.

Schéma 14 : *N*-méthylation du complexe neutre de tungstène XXII en complexe de carbéniophosphine XXIII.

Les imidazoliophosphines peuvent donc être obtenues suivant quatre voies de synthèse résumées dans le **schéma 15** suivant :

¹⁹ a) N. Debono, Y. Canac, C. Duhayon and R. Chauvin, *Eur. J. Inorg. Chem.*, **2008**, 2991 ; b) I. Abdellah, N. Debono, Y. Canac, L. Vendier and R. Chauvin, *Chem. Asian. J.*, **2010**, *5*, 1225, c) Y. Canac, N. Debono, L. Vendier and R. Chauvin, *Inorg. Chem.*, **2009**, *48*, 5562.

D: $R_1 = H$, (-CH=CH-)₂; $R_2 = Me$, Et; $R_3 = Ph$, NEt₂

2] Système carbéniophosphine (non-imidazoliophosphine)

Une méthode de synthèse de carbène (non-NHC)-phosphénium a été décrite par Alcarazo et *coll.*.²⁰ Les adduits cyclopropenylylidène(BAC)-phosphénium **XXVa-e** ont été obtenus avec de bons rendements par réaction entre des sels de chlorocyclopropénium **XXIV** et des phosphines secondaires (**schéma 16**).

Schéma 16 : Synthèse de diaminocyclopropénylidène-phosphéniums XXVa-e à partir du chlorodiaminocyclopropénium XXIV et de diaryl- ou dialkyl-phosphines.

3] Propriétés de coordination des carbéniophosphines

1. Complexes de nickel

Dans les amidiniophosphanes, la présence de la charge positive conjuguée avec l'atome de phosphore(III) induit un caractère faiblement σ -donneur. Cependant, Il a été

²⁰ J. Petuskova, H. Bruns et M. Alcarazo, Angew. Chem., Int. Ed., 2011, 50, 3799.

démontré que les amidiniophosphines conservaient un caractère suffisamment donneur pour se coordiner à un centre métallique.

Afin d'évaluer leurs propriétés électroniques, les valeurs des fréquences d'élongation des co-ligands carbonyles (\tilde{v}_{co}) ont été mesurées par infra-rouge dans des complexes de nickel et comparées à l'échelle de Tolman (**tableau 1**).

Phosphine	PH ₃	PF ₃	(MeO) ₃ P	Me ₃ P	PCl ₃	Ph ₂ PH	Et ₃ P	PMePh ₂	Cy ₃ P	<i>t</i> -Bu ₃ P
IR : \tilde{V}_{CO} (cm ⁻¹)	2083	2110	2079	2064	2097	2073	2061	2067	2056	2056

Tableau 1: Quelques exemples de fréquences IR $\tilde{\nu}_{co}$ dans des complexes de ligands phosphorés avec Ni(CO)₃.

En 2007, Andrieu et *coll*. ont ainsi rapporté, des complexes de nickel **XXVI** avec différentes amidiniophosphines (**schéma 17**).²¹ La fréquence caractéristique $\tilde{\nu}_{co}$ de **XXVI** (avec R = Ph) à 2082 cm⁻¹ permet de situer l'amidiniophosphine **XIIa** (R = Ph) comme étant un ligand moins électro-donneur que la triphénylphosphine ($\tilde{\nu}_{co} = 2069 \text{ cm}^{-1}$).

Schéma 17 : Synthèse de complexes de nickel XXVI à ligands imidazoliophosphines.

Le remplacement des groupements phényles par des groupements alkyles présentant un fort effet inductif +I (isopropyles (cas b) ou cyclohexyles (cas c)), induit une diminution de la valeur de la fréquence ($\tilde{v}_{CO} = 2075 \text{ cm}^{-1}$ et $\tilde{v}_{CO} = 2078 \text{ cm}^{-1}$ pour **XXVIb** et **XXVIc**, respectivement).

Le caractère donneur des imidazoliophoshines **XXVIa-c**, est comparable à celui des phosphites $[P(OiPr)_3, \tilde{v}_{CO} = 2076 \text{ cm}^{-1} \text{ et } P(OPh)_3, \tilde{v}_{CO} = 2085 \text{ cm}^{-1}].^{22}$ Ces résultats

²¹ M. Azouri, J. Andrieu, M. Picquet, P. Richard, B. Hanquet et I. Tkatchenko, *Eur. J. Inorg. Chem.*, 2007, 4877.

²² C. A. Tolman, *Chem. Rev.*, **1977**, 77, 313.
démontrent que les amidiniophosphines pourraient être des alternatives aux phosphites pour une utilisation en catalyse nécessitant des ligands pauvres en électrons.

2. <u>Complexes de rhodium.</u>

La mesure de la fréquence d'élongation \tilde{v}_{co} dans des complexes [LRhCl(CO)] est aussi couramment utilisée pour estimer le caractère donneur des co-ligands.²³

Récemment, l'équipe a décrit un complexe de rhodium **XXVII** à partir du ligand dicationique **XXI** de type bis-amidiniophosphine (**schéma 18**).²⁴ Ce complexe a été complètement caractérisé par RMN multi-noyaux. En RMN ³¹P, un doublet unique à + 31.3 ppm (J_{PRh} = 133,7 Hz) indique la présence de l'enchaînement P-Rh-P et montre donc que les deux atomes de phosphores sont dans des environnements équivalents. L'atome de Rh est situé au centre d'une géométrie plan-carrée du complexe (Σ° =358.96°) où le caractère *trans*-chélatant du ligand **XXI** est confirmé par les angles P-Rh-P et CO-Rh-Cl de 163,8° et de 175,5°, respectivement.

Schéma 18 : Synthèse du complexe de rhodium à ligand diphosphine *trans*-chélatant XXVII à partir du ligand dicationique bidente XXI.

L'analyse par diffraction des rayons X d'un monocristal de **XXVII** permet de confirmer la structure et la configuration *trans* du complexe. La structure de ce dernier est à comparer avec celle du complexe **XXVIII** (schéma 19).

Schéma 19: Synthèse du complexe de rhodium XXVIII à partir de la *N*-méthylimidazoliodiphénylphosphine XIIa.

²³ Y. Canac, C. Lepetit, M. Abdalilah, C. Duhayon et R. Chauvin, J. Am. Chem. Soc., 2008, 130, 8406.

²⁴ Y. Canac, N. Debono, L. Vendier et R. Chauvin, *Inorg. Chem.*, **2009**, *48*, 5562.

La structure cristalline du complexe **XXVIII** confirme la présence de deux ligands imidazoliophosphines liés au rhodium, ainsi que la géométrie plan carrée de la sphère de coordination du métal. La coordination *trans* de **XIIa** dans **XXVIII** s'explique ici principalement par des facteurs stériques, alors que celle observée dans le cas du complexe de rhodium **XXVII**, est en partie controlée par la répulsion électrostatique entre les extrémités cationiques du ligand chélate. Cependant, grâce à sa flexibilité, la coordination *cis* du ligand **XXI** est également possible, comme il l'a été montré par la structure cristalline du composé tricationique [(*cis*-ŋ²-**XXI**)Rh(MeCN)₂]⁺, où l'atome de rhodium porte une charge positive supplémentaire.²⁵

Les valeurs de fréquences d'élongation \tilde{v}_{co} à 2003 et 2007 cm⁻¹ des complexes **XXVII** et **XXVIII**, respectivement, sont similaires à celles du complexe de rhodium à ligands phosphites [*trans*-RhCl(CO)[P(OMe)₃]₂; \tilde{v}_{co} = 2011 cm⁻¹]. ²⁶ De plus, elles confirment que le pont *ortho* phénylène n'a que peu d'influence sur les propriétés électroniques du ligand (**schéma 20**).

Schéma 20 : Valeurs des fréquences d'élongations \tilde{v}_{co} .dans les complexes de rhodium(I) trans-coordinés de triméthylphosphite XXIX, des ligands monodentes et bidentes de *N*méthyl-imidazoliodiphénylphosphine XXVIII et XXVII, respectivement.

Le complexe de rhodium(I) à ligand bis(diisopropylamino)cyclopropénylidène (BAC)phosphénium **XXVa-e** (schéma 16) adopte également une coordination *trans* (schéma 21).²⁷

XXV	R	$\widetilde{V}_{\rm CO} = (\rm cm^{-1})$
a	p-F-C ₆ H ₄	1976
b	Ph	1971
с	Су	1968
d	<i>p</i> -MeO-C ₆ H ₄	1969

²⁵ Y. Canac, N. Debono, L. Vendier et R. Chauvin, *Inorg. Chem.*, 2009, 48, 5562.

²⁶ M. L. Wu, M. J. Desmond et R. S. Drago, *Inorg. Chem.*, **1979**, *18*, 679.

²⁷ J. Petuskova, H. Bruns et M. Alcarazo, Angew. Chem., Int. Ed., 2011, 50, 3799.

Schéma 21 : Valeur des fréquences IR d'élongations \tilde{v}_{co} des complexes de rhodium *trans*coordinés de triphénylphosphine **XXX** et des ligands diaminocyclopropényliophosphines **XXXIa-e**.

Les valeurs des fréquences d'élongation mesurées (\tilde{v}_{CO}) montrent que ces cyclopropényliophosphines sont plus donneuses que les phosphites et que les diphénylimidazoliophosphines de type **XVI** et **XXI**, et même légèrement plus donneuses que la triphénylphosphine (\tilde{v}_{CO} (**PPh**₃) = 1979 cm⁻¹ > \tilde{v}_{CO} (**XXVb**) = 1971 cm⁻¹).

Les BACs sont en effet connus de la littérature comme étant des carbènes beaucoup plus σ -donneurs que les NHCs (\tilde{v}_{CO} [RhCl(CO)₂(BAC)] = 2031 cm⁻¹ < \tilde{v}_{CO} [RhCl(CO)₂(NHC)] = 2041 cm⁻¹).²⁸

- 4] <u>Réactivité intrinsèque des carbéniophosphines</u>
 - 1. Carbéniophosphines comme précurseurs de ligands NHC

Comme détaillé dans l'introduction, la nature dative d'une liaison covalente A-B est déterminée par ses énergies de dissociation : le mode de dissociation hétérolytique $A-B \rightarrow A^+$ + B⁻ doit être plus favorable que le mode de dissociation homolytique $A-B \rightarrow A^+ + B^{-29}$

La rupture de la liaison N₂C-P dans un carbéniophosphane a été observée pour la première fois par Baker et *coll.* en 2004. Les auteurs ont ainsi montré que l'adduit triazolylidène-diaminophosphénium **XXXII** pouvait se dissocier et réagir avec le complexe de platine $[Pt(PPh_3)_3]^0$ pour donner le complexe cationique tri-coordiné **XXXIII** ($[Pt(phosphane)(phosphénium)(carbène)]^+$ (**schéma 22**).

²⁸ G. Kuchenbeiser, B. Donnadieu et G. Bertrand, J. Organomet. Chem., **2008**, 693, 899.

²⁹ R. S. Mulliken et W. B. Person, Annu. Rev. Phys. Chem., **1962**,13, 107.

Schéma 22 : Synthèse du complexe [Pt(phosphane)(phosphénium/phosphine)(carbène)]⁺ à partir du précurseur NHC-phosphénium **XXXII**.

Bien que le mécanisme n'a pas été précisé, cette réaction consiste formellement à déplacer deux ligands PPh₃ par le carbène NHC σ -donneur et le groupement phosphénium résultant de la coupure hétérolytique de la liaison C-P de **XXXII**.

Dans l'équipe, l'utilisation de nucléophiles non métalliques comme les anions chlorure ou butyle a récemment été mise en évidence pour la coupure hétérolytique de la liaison N₂C-P de la BIMIONAP **XVIII** (schéma 23). Cette rupture permet d'obtenir le NHC libre qui est ensuite soit protoné par le milieu solvant pour conduire au H-MIOP, soit sulfurisé pour donner le composé **XXXV**, soit hydrolysé pour donner le formamide **XXXVI** (schéma 23).

Schéma 23 : Coupure de la liaison N₂C-P de la BIMIONAP par un anion chlorure ou butyle, suivie d'un traitement par une source protique (CH₃CN, H₂O) ou par du soufre élémentaire.

Une réactivité similaire est observée dans les complexes de palladium à ligand BIMIONAP, **XXXVII** et **XXXIX**. Dans ce cas, la rupture de la liaison N_2C -P conduit au

NHC libre qui se coordine instantanément et sélectivement au centre métallique pour former de nouveaux complexes de palladium (II) à ligand NHC-phosphine **XXXVIII** et **XL** respectivement (**schéma 24**).

Schéma 24 : Rupture de la liaison N_2 C-P du ligand BIMIONAP dans les complexes de palladium XXXVII et XXXIX par l'anion chlorure et formation de nouveaux complexes de palladium NHC-phosphine XXXVIII et XL.

Après séparation des deux énantiomères (*S*)- et (*R*)- de la BIMIONAP et la formation de leurs complexes de palladium, les (*S*)- et (*R*)- H-MIOP et les complexes (*S*)- et (*R*)-NHC-phosphine de palladium (*S*)-**XXXVIII** et (*R*)-**XXXVIII**, respectivement, ont pu être obtenus par l'utilisation des mêmes conditions que précédemment.³⁰ Ces résultats constituent le premier exemple d'amidiniophosphine atropochirale énantiomériquement pure, ouvrant ainsi des perspectives en catalyse asymétrique.

En plus de la preuve expérimentale, le caractère datif a été confirmé par des calculs DFT des énergies de dissociations hétérolytiques et homolytiques. Ces résultats en série amidiniophosphine rejoignent ainsi ceux décrits par Mcdonal et *coll*. en série phosphine-phosphénium.³¹

³⁰ I. Abdellah, M. Boggio-Pasqua, Y. Canac, C. Lepetit, et R. Chauvin, *Chem.-Eur. J.*, **2011**, *17*, 5110.

³¹ B. D. Ellis, P. J. Ragogna et C. L. B. Macdonald, *Inorg. Chem.*, **2004**, *43*, 7857.

2. Carbéniophosphines comme précurseurs d'espèces réactives

Les NHCs sont utilisés comme ligands pour stabiliser des espèces électro-déficientes non métalliques. La stabilisation d'espèces électro-déficientes du bloc p à l'état d'oxydation 0 (:Si=Si :, :Ge=Ge :, ::P=P ::, P_n, et fragment C₁),³² des germylènes (Ge(II)),³³ des silylènes (Si(II)),³⁴ et des cations boréniums (B(III))³⁵ ou tellurium (Te(II))³⁶ en est l'illustration (schéma 25).

Schéma 25 : Exemples de stabilisation d'espèces non-métalliques.

A titre d'exemple, Baines et *coll*. ont rapporté la synthèse de systèmes de type carbène-dihalogermylène **XLI** et **XLII**, obtenus à partir de la réaction du carbène libre avec un équivalent de GeCl₂. Les ligands chlorures sont ensuite substitués par des ligands iodures par l'addition de Me₃SiI (**schéma 25a**).

³² (a) D. Martin, M. Soleilhavoup et G. Bertrand, *Chem. Sci.*, **2011**, *2*, 389 ; (b) Y. Wang et G. H. Robinson, *Dalton Trans.*, **2012**, *41*, 337.

³³ (a) P. A. Rupar, V. N. Staroverov, P. J. Ragogna et K. M. Baines, *J. Am. Chem. Soc.*, **2007**, *129*, 15138; (b) A. J. Ruddy, P. A. Rupar, K. J. Bladek, C. J. Allan, J. C. Avery et K. M. Baines, *Organometallics*, **2010**, *29*, 1362.

³⁴ (a) R. S. Ghadawal, H. W. Roesky, S. Merkel, J. Henn et D. Stalke, *Angew. Chem., Int. Ed.*, **2009**, *48*, 5683;

⁽b) A. C. Filippou, O. Chernov et G. Schnakenburg, Angew. Chem., Int. Ed., 2009, 48, 5687.

³⁵ T. Matsumoto et F. P. Gabbai["], *Organometallics*, **2009**, 28, 4252.

³⁶ J. L. Dutton, H. M. Tuononen et P. J. Ragogna, Angew. Chem., Int. Ed., 2009, 48, 4409.

Récemment, des NHCs ont été utilisés pour stabiliser un atome de bore cationique disubstitué, ou de silicium disubstitué, dans les systèmes [(IMe)BMes₂][OTf] (IMe=1,3-diméthylimidazol-2-ylidène) **XLIII** et [(Idipp)SiBr₂] (Idipp=1,3-bis(2,6-diisopropylphényl) imidazol-2-ylidène) **XLIV**, décrits par Gabbai et *coll*. et par Y.Wang et G. H. Robinson, respectivement (**schéma 25b et c**).

Les travaux de Robinson et *coll*. ont montré que les NHC réagissaient avec PCl_3 (schéma 11) afin de former l'adduit NHC \rightarrow PCl₃. A l'état solide, une géométrie de type bipyramide à base triangulaire centrée sur l'atome de phosphore est observée. Cependant, une des liaisons P-Cl_{ax} est, significativement plus longue que les autres, indiquant que le composé **XLV** est en fait en résonance entre la forme hypervalente **XLVa** et la forme ionique **XLVb** (schéma 26).³⁷

Schéma 26 : Préparation d'un système NHC-P₂-NHC XLVI à partir de l'adduit NHC-PCl₃ XLV.

La réduction de **XLV** par le graphite de potassium (KC₈) permet d'obtenir l'espèce diphosphorée **XLVI** qui peut être considérée comme un bis-phosphinidène stabilisé par deux ligands NHC **XLVIc**, (**Schéma 26**).

Un adduit similaire a été récemment préparé par Bertrand et *coll*. par réaction du phosphore blanc avec un alkyl(amino)carbène acyclique (**schéma 27**).³⁸

³⁷ (a) Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gilliard, Jr., Pingrong Wei, H. F. Schaeffer III, P. v. R. Schleyer et G. H. Robinson, *Organometallics*, **2010**, *29*, 4778 ; (b) Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer et G. H. Robinson, J. Am. Chem. Soc., **2008**, *130*, 14970.

³⁸ (a) O. Back, G. Kuchenbeiser, B. Donnadieu et G. Bertrand, *Angew. Chem., Int. Ed.*, **2009**, *48*, 5530 ; (b) O. Back, B. Donnadieu, P. Parameswaran, G. Frenking et G. Bertrand, *Nat. Chem.*, **2010**, *2*, 369.

Schéma 27 : Réaction du phosphore blanc avec un alkyl(amino)carbène acyclique.

L'adduit NHC-dichlorophosphénium **XIV** peut être généré par réaction de PCl₃ avec l'imidazolium silylé **XIII** qui se comporte alors comme un agent de transfert du fragment imidazolium (**schéma 11 et 28**). ³⁹ La réaction de deux équivalents (éq.) de **XIII** avec PCl₃ conduit à la diamidiniophosphine chlorée **XLVIII** avec un bon rendement (**schéma 28**).

Schéma 28 : Synthèse des cations $[NHC-PCl_2]^+$ XIV et $[(NHC)_2-PCl]^{2+}$ XLVIII à partir du réactif XIII.

Andrieu et *coll.*, ont décrit l'analogue dicationique P-phénylé L obtenu par réaction de la dichlorophénylphosphine (PhPCl₂) avec le carboxylate de 1,3-diméthylimidazolium **XI** (schéma 10 et 28).⁴⁰

En série CAAC (carbène amino(alkyl)cyclique), un adduit CAAC-phosphénium, synthétisé à partir du carbène libre CAAC⁴¹ et de la dichloro-2,2,6,6- (tétraméthylpipéridino)phosphine, conduit au phosphaalcène **LII** après réduction avec du magnésium. Ce dernier peut ensuite être oxydé par le cation trityle pour former le radical

³⁹ J. J. Weigand, K. O. Feldmann et F. D. Henne, J. Am. Chem. Soc., **2010**, 132, 16321.

⁴⁰ M. Azouri, J. Andrieu, M. Picquet et H. Cattey, *Inorg. Chem.*, 2009, 48, 1236.

⁴¹ (a) V. Lavallo, Y. Canac, C. Prasang, B. Donnadieu et G. Bertrand, *Angew. Chem., Int. Ed.*, 2005, 44, 5705;
(b) R. Jazzar, R. D. Dewhurst, J. B. Bourg, B. Donnadieu, Y. Canac et G. Bertrand, *Angew. Chem., Int. Ed.*, 2007, 46, 2899.

cationique phosphinyle **LIII** qui s'est avéré être stable aussi bien en solution qu'à l'état solide (**schéma 29**).⁴²

Schéma 29 : Synthèse d'un radical phosphinyle stable LIII à partir d'un adduit CAAC-phosphénium LI.

Afin de fonctionnaliser la position C₄ du noyau imidazol-2-ylidène, et donc de moduler leur caractère électro-donneur, Bertrand et *coll*. ont décrit une procédure efficace d'isomérisation des imidazoliums substitués en position 2. Le traitement par une base forte du composé **LV** permet la formation du 4-phosphinyl phosphinocarbène **LVI** (schéma 30). Le mécanisme proposé est fondé sur la déprotonation de la position 4 dite « anormale » de l'imidazoliophosphine **LV** conduisant au «abnormal NHC» (*a*NHC) **LVa**, suivie de la migration du groupement phosphinyle.⁴³

Schéma 30: Préparation du 4-phosphinyl imidazol-2-ylidene LVI à partir du 2-phosphinylimidazolium LV.

5] Propriétés catalytiques des complexes de carbéniophosphines

La charge positive conjuguée des carbéniophosphines leur confère un caractère donneur similaire à celui des phosphites, qui devait permettre une utilisation de leurs complexes en catalyse. Les principaux exemples d'utilisation de carbéniophosphanes en catalyse sont ainsi résumés ci-après.

⁴² O. Back, M. A. Celik, G. Frenking, M. Melaimi, B. Donnadieu et G. Bertrand, J. Am. Chem. Soc., **2010**, 132, 10262.

⁴³ D. Mendoza-Espinosa, B. Donnadieu et G. Bertrand, J. Am. Chem. Soc., 2010, 132, 7264.

1. Catalyse dans des liquides ioniques

Jusqu'à tout récemment, les amidiniophosphines ont été utilisées principalement en catalyse homogène polyphasique impliquant une phase de type liquide ionique. La première description d'une réaction catalytique avec une amidiniophosphine a été donnée, par Knochel et *coll.*, en 2000. Les auteurs ont ainsi décrit une réaction de couplage de type Negishi catalysée par un complexe de palladium [(Pd(dba)₂/PBMIP] entre des halogénures d'aryle- ou de benzyle de zinc et des iodures d'aryles dans un solvant bi-phasique (liquide ionique (BDMIP) /toluène) (**schéma 31**).⁴⁴

Ar ¹	Y Ar ² -ZnB toluène / (1:1	Br, A BDMIB)	A = Pd(dba) ₂ /PBMIP ((cat.), 25°C BDMIP : N N N-Me Bu N Me	1:2) (PBMIP : M ⊖ BF ₄	N-Bu N-Bu PPh ₂
	Ar ¹ -Ar ²	Ar ¹	Ar ²	Y	Rendements
	а	-COOEt		-I	91 %
	b	-COOEt		-O-SO ₂ -(CF ₂) ₃ - CF ₃	83 %
	c	COOEt		-I	71 %
	d	OMe	s	-I	84 %

Schéma 31 : Réaction de couplage de Negishi catalysée au palladium.

Andrieu et *coll*. ont montré que la phosphine cationique **LVII** où l'atome de phosphore est substitué par des groupements électro-attracteurs de type furyle est un ligand efficace pour l'arylation de substrats acétyléniques avec des bromures d'aryles électrophiles (**schéma 32**).⁴⁵

⁴⁴ J. Sirieix, M. Obberger, B. Betzemeier et P. Knochel, *Synlett*, **2000**, 1613.

⁴⁵ S. Saleh, E. Fayad, M. Azouri, J. C. Hierso, J. Andrieu et M. Picquet, Adv. Synth. Catal., 2009, 351, 1621.

Schéma 32 : Réaction de catalyse au palladium entre des dérivés du phénylacétylène et des bromures d'aryles en présence d'un adduit NHC-phosphénium.

Cependant, du fait de la sensibilité du ligand amidiniophosphine **LVII**, l'activité catalytique décroît au cours des cycles catalytiques. L'observation de bromure de pyrrolidinone comme produit secondaire peut expliquer la désactivation du système catalytique par le déplacement du NHC par un anion de type bromure, comme il l'a été récemment démontré dans l'équipe dans le cas de la BIMIONAP avec l'anion chlorure (**schéma 23**).⁴⁶

De multiples recyclages du système ligand/métal ont été décrits dans la réaction d'hydrogénation du *m*-chloronitrobenzène catalysée par un complexe de platine. Andrieu et *coll*. ont ainsi montré que le complexe d'amidiniophosphine **LVIII** de chlorure de platine (II) a un temps vie supérieur à celui du complexe neutre [*trans*-PtCl₂(PPh₃)₂] (**schéma 33**). Cet exemple correspond au premier cas de catalyse sélective pour l'hydrogénation des chloronitroarènes immobilisés en phase liquide ionique [BMIN/BF₄].⁴⁷

Schéma 33 : Réduction du *m*-chloronitrobenzène en *m*-chloroaniline catalysée, par un complexe de platine en présence de l'imidazoliophosphine LVIII.

⁴⁶ I. Abdellah, C. Lepetit, Y. Canac, C. Duhayon et R. Chauvin, *Chem. Eur. J.*, **2010**, *16*, 13095.

⁴⁷ S. Saleh, E. Fayad, M. Azouri, J. C. Hierso, J. Andrieu et M. Picquet, Adv. Synth. Catal., 2009, 351, 1621.

En 2001, Brauer et *coll*. ont utilisé les imidazoliophosphines **LIX** et **LX** (schéma 34) pour la réaction d'hydroformylation du 1-octène catalysée par des sels de rhodium [Rh(CO)₂(acac)] dans le liquide ionique [BMIN][PF₆].⁴⁸

Schéma 34 : Ligands LIX et LX utilisés pour l'hydroformylation du 1-octène.

Ces résultats montrent alors que les ligands de type imidazolio-phosphine peuvent également in situ être utilisés et conduire à un système catalytique efficace, comme l'avait observé Brasse et *coll*. avec l'utilisation d'un autre liquide ionique.⁴⁹

En 2008, Wu et *coll*., ont décrit l'utilisation d'un mélange de liquides ioniques (contenant l'imidazoliophosphine BDPPMIM) (**schéma 35**) et de $PdCl_2$ dans la réaction de Heck utilisant des bromures ou iodures d'aryles.⁵⁰

Schéma 35 : Réaction de Heck entre l'iodobenzène et l'acrylate d'éthyle catalysée par PdCl₂ en présence d'un mélange de liquides ioniques.

Récemment, des complexes de rhodium à ligand imidazoliophosphine ont été utilisés dans la réaction d'hydrosilylation d'oléfines (**schéma 36**). Les ligands permettent une conversion du substrat allant de 66 à 98 % avec une sélectivité vis-à-vis de l'adduit β allant de 81 % à 99 %, selon les substituants R.⁵¹

⁴⁸ D. J. Brauer, K. W. Kottsieper, C. Liek, O. Stelzer, H. Waffenschmidt et P. Wasserscheid, *J. Organomet. Chem.*, **2001**, *630*, 177.

⁴⁹ C.C Brasse, U. Englert et A. Salzer, *Organometallics*, **2000**, *19*, 3818.

⁵⁰ Q. X. Wan, Y. Liu, Y. Lu, M. Li et H. H. Wu, *Catal. Lett.*, **2008**, *121*, 331.

⁵¹ J. Li, J. Peng, Y. Bai, G. Zhang, G. Lai et X. Li, J. Organomet. Chem., **2010**, 695, 431.

Schéma 36 : Hydrosilylation d'oléfines en présence de triéthoxysilane.

2. <u>Catalyse en phase non-ionique</u>

L'équipe a décrit l'utilisation d'amidiniophosphines en phase non ionique pour une réaction de couplage de type Sonogashira. Il a ainsi été montré que le ligand mono-cationique BIMIONAP **XVIII** était plus efficace que le ligand neutre BIMINAP **XVIII** pour la réaction de couplage entre le chlorure de benzoyle et le phénylacétylène (**schéma 37**).⁵² Il a été proposé que le ligand BIMIONAP augmenterait l'électrophilie du complexe de palladium mis en jeu, accélérant ainsi la vitesse de l'attaque nucléophile supposée être l'étape limitante du cycle catalytique.

Schéma 37 : Réaction de couplage de type Sonogashira catalysée avec les complexes de BIMINAP- et BIMIONAP-PdCl₂.

Récemment, des complexes d'or à ligand de cyclopropénylylidène-phosphénium **XXVa-e (schéma 16)** ont été préparés à partir du complexe [(Me₂S)AuCl]. Le pré-catalyseur correspondant a été testé en cycloisomérisation d'alcynes, donnant de bons rendements, et dans certains cas des rendements supérieurs à ceux obtenus avec des complexes de

⁵² N. Debono, Y. Canac, C. Duhayon et R. Chauvin, *Eur. J. Inorg. Chem.*, **2008**, 2991.

triphénylphosphine analogues. Prenant avantage de la nature cationique du ligand, les auteurs ont décrit la possibilité de recyclage du complexe **LXI** (schéma 38).⁵³

Schéma 38 : Catalyse de cycloisomérisation d'alcynes par un complexe d'or LXI.

D] Conclusion

La stabilité relative des carbéniophosphines (rupture de la liaison C-P en conditions nucléophiles) peut constituer une limite à leur développement, cependant de récentes publications montrent que la modification de la partie carbénique (NHC \rightarrow BAC) peut permettre de limiter ce problème.

De même, la modification des substituants de l'atome de phosphore (par des groupements amino ou oxo) devrait influencer la stabilité des systèmes et les propriétés électroniques des ligands. L'accessibilité de la paire libre de l'atome de phosphore démontrée par la formation de complexes pourrait permettre la synthèse d'adduits oxydés de type (R_2C^+ - $R_2P=X$ avec X=O, S, Se), représentant un défi au regard du peu d'exemples mentionnés dans la bibliographie.

Finalement, les carbéniophosphoranes sont non seulement des ligands phosphorés pauvres en électrons, mais aussi de bons précurseurs pour la stabilisation d'espèces hautement réactives, comme des radicaux phosphorés ou encore des carbènes anormaux.

La suite de ce chapitre sera consacrée à l'étude de nouveaux défis envisagés ci-dessus. Dans un premier temps les résultats concernant la synthèse et la réactivité de nouveaux ligands à caractère extrême pauvres en électrons telles que les amidiniophosphanes oxygénées seront décrites, puis dans un deuxième temps la synthèse et la coordination de nouveaux types de ligands pauvres du type bis-amidiniophosphanes conjuguées seront présentées.

⁵³ J. Petuskova, H. Bruns and M. Alcarazo, Angew. Chem., Int. Ed., 2011, 50, 3799.

II] Amidiniophosphanes oxygénées

Les amidiniophosphines ont surtout été développées en série monodente. Ce motif a été modifié au niveau de la partie carbénique, mais peu de variation au niveau des substituants de l'atome de phosphore n'a encore été réellement amenée. La partie qui suit porte sur des modifications de la partie phosphénium afin de préparer des ligands encore plus pauvres en électrons. Autrement dit, la synthèse et les propriétés de ligands encore plus pauvres à priori, à savoir les amidiniophosphonites et les amidiniohydroxyphosphines seront présentées.

A] Les amidiniophosphonites

1] <u>Résultats et discussion</u>

Afin d'aboutir aux amidiniophosphonites, deux approches complémentaires ont été envisagées, la première à partir du 1-(1-phényl)-1*H*-imidazole et la seconde, à partir des NHC.

1. <u>Amidiniophosphonites à partir du motif 1-(1-phényl)-1*H*-imidazole.</u>

A partir du 1-(1-phényl)-1*H*-imidazole **1a** ou du 1-(1-phényl)-(2-diphénylphosphino)-1*H*-imidazole **1b**,⁵⁴ l'addition de deux éq. de butyllithium (*n*-BuLi) dans de l'éther diéthylique (Et₂O), suivie de l'addition d'un éq. de chlorodiéthylphosphite permet d'obtenir le phosphonite **2a** et le phosphino-phosphonite **2b** avec des rendements de 60 % et 79 %, respectivement (**schéma 39**). La quaternisation de l'atome d'azote sp² par un éq. de trifluorométhanesulfonate de méthyle (MeOTf) dans le toluène conduit sélectivement aux amidiniophosphonites **3a** et **3b** avec des rendements quasi-quantitatifs.

En RMN ³¹P, le déplacement chimique à champ faible du composé **3a** (δ = +142,4 ppm) est en accord avec la bibliographie des dérivés phosphonites.⁵⁵ Pour le composé **3b** en RMN ³¹P, le déplacement chimique du groupement phosphonite est du même ordre de

⁵⁴ Y. Canac, C. Duhayon, R. Chauvin, Angew. Chem. 2007, 119, 6429 ; Angew. Chem. Int. Ed. 2007, 46, 6313;

b) Y. Canac, C. Lepetit, M. Abdalilah, C. Duhayon, R. Chauvin, J. Am. Chem. Soc. 2008, 130, 8406.

⁵⁵ A. B. Salah, D. Zargarian, *Dalton Trans.* **2011**, 40, 8977.

grandeur (δ = +141,1 ppm, d, J_{pp} = 65,8 Hz), alors que le groupement phosphine (δ = -17,8 ppm, d, J_{pp} = 65,8 Hz) correspond aux valeurs classiques des déplacements chimiques des triarylphosphines. La nature ionique des produits **3a** et **3b** est indiquée par leur insolubilité dans les solvants non polaires (hexane, toluène..) et par le déplacement chimique du substituant N-CH₃ en RMN ¹H ($\delta_{\rm H}$ = + 4,1 ppm).

2. <u>Amidiniophosphonites à partir de NHCs.</u>

Cette deuxième stratégie commence par la génération du carbène libre **4a** (IMes) à partir du sel d'imidazolium IMesHCl en présence d'une base forte.⁵⁶ Par addition d'un éq. de trifluorométhanesulfonate de triméthylsilyle (Me₃SiOTf), le composé **XIII** est obtenu avec un rendement de 76 %. Cependant, l'ajout d'un éq. de chlorodiéthylphosphite (ClP(OEt)₂) n'a pas permis d'accéder au produit souhaité par élimination de Me₃SiCl (**schéma 40**).

Schéma 40: Tentative de préparation de l'amidiniophosphonite 5a à partir du 2silylimidazolium XIII.

Une voie plus directe a alors été envisagée. Par addition, d'un éq. de chlorodiéthylphosphite sur les carbènes **4a** et **4b** dans Et₂O, les phosphonites cationiques **5a** et **5c** ont été obtenus directement avec des rendements de 70 % et 89 % respectivement (**schéma 41**).

$$Ar \xrightarrow{N \xrightarrow{} N} Ar \xrightarrow{(RO)_2 PCI}_{Et_2 O} \xrightarrow{Ar \xrightarrow{N \oplus N}}_{C1} Ar \xrightarrow{(RO)_2 PCI}_{C1} \xrightarrow{Ar \xrightarrow{N \oplus N}}_{C1} Ar \xrightarrow{(P) \oplus N}_{C1} Ar \xrightarrow$$

Schéma 41 : Synthèse des amidiniophosphonites 5a-c à partir des carbènes 4a et 4b.

⁵⁶ Nolan SP. US Patent 7109348. **2006**.

La formation de la liaison C-P est confirmée par RMN ³¹P qui indique un déplacement chimique du même ordre de grandeur que pour les composés précédents **3a** et **3b** (pour **5a**, δ = + 149,9 ppm ; pour **5c**, δ = + 156,6 ppm). L'addition de 2-chloro-1,3-dioxaphospholane sur le carbène libre IMes donne l'amidiniophosphite **5b** avec un rendement de 83 %. En comparaison au déplacement chimique RMN ³¹P de **5a**, celui du produit **5b** est blindé d'environ 10 ppm (δ = + 134,6 ppm). Cette différence est attribuée à la présence du cycle phosphonite à cinq chaînons de **5b**.

La préparation des amidiniophosphonites avec des anions différents dans les deux séries (ions triflates ou ions chlorures) montrent un temps de demi-vie faible en solution ($t_{1/2}$ = 10-20 h). Leur décomposition s'effectue par rupture de la liaison N₂C-P, conduisant à l'imidazolium correspondant et l'oxyde de phosphine.

3. Synthèse d'un complexe de rhodium à ligand amidiniophosphonite

Le caractère donneur des amidiniophosphonites décrites plus haut, a été évalué vis-àvis de métaux de transition.

Dans ce but, l'amidiniophosphonite **5a** est mis en solution avec 0,5 éq. de $[Rh(cod)Cl]_2$ (cod = 1,5-cyclooctadiène) dans du CH_2Cl_2 à basse température. La spectrométrie RMN ³¹P indique la présence d'un doublet témoin de la formation d'une liaison entre l'atome de phosphore et le métal (δ = +121,2 ppm, d, ¹J_{PRh} = 241,0 Hz).

La formation du complexe **6** indique que malgré la présence de deux substituants éthoxy π -accepteurs sur l'atome de phosphore, l'amidiniophosphonite **5a** retient un caractère donneur suffisant envers le centre métallique de Rh (I) (**schéma 42**).

Schéma 42 : Préparation du complexe de rhodium 6 à partir du ligand amidiniphosphonite 5a.

Le complexe **6** a été obtenu avec un rendement faible de 7 %. Cependant, la réaction conduit à la formation de deux autres produits. Un deuxième complexe de rhodium **7**, a pu

être obtenu avec un rendement de 24 % et caractérisé. Le troisième produit correspond au sel d'imidazolium de départ, IMes,HCl isolé avec un rendement de 69 %.

La formation du complexe 7 peut-être expliquée par le déplacement du motif NHC de l'atome de phosphore coordinant le fragment métallique. IMesH,Cl provient quant à lui de la protonation du NHC libre, par le solvant (CH₂Cl₂). Nous avons vu dans l'introduction qu'un faible nucléophile comme l'ion chlorure pouvait induire la rupture hétérolytique des imidazoliophosphines à 50°C. Cette rupture conduit à la chlorodiphénylphosphine et au NHC correspondant. Une rupture de même type a aussi été observée dans la sphère de coordination du palladium et dans ce cas le carbène se lie au centre métallique. Une réactivité similaire est ainsi observée ici à plus basse température dans le cas de l'amidiniophosphonite **5a**.

L'effet électrodonneur des imidazoliophosphanes et la nature de la liaison N_2 C-P ont été ensuite étudiés selon une approche théorique par le Dr Christine Lepetit. Les résultats sont présentés ci-après.

- 2] Etude théorique des imidazoliophosphanes
 - 1. <u>Caractérisation de la liaison dative N₂C-P pour le modèle</u> <u>imidazoliophosphane</u>

Les amidiniophosphines complètent la famille des ligands phosphorés pauvres en électrons comme les phosphites. Il a été montré récemment, en particulier à l'aide de l'analyse de la fonction de localisation électronique (ELF), que les amidiniophosphines sont des adduits diaminocarbène (NHC)-phosphénium qui mettent en jeu une liaison dative C-P.⁵⁷

Plus généralement, le caractère datif de la liaison générique $X \cdots P$ varie d'une situation covalente (X-P) à une situation ionique (X⁻, P⁺) en dépendant de la différence d'énergie entre les dissociations homolytique (X⁻ + 'P) et hétérolytique (X⁻ + P⁺) (**Schéma 43 & Tableau 2**).

Schéma 43 : Modes de dissociation de la liaison N_2C -P des imidazoliophosphanes.

⁵⁷ a) I. Abdellah, C. Lepetit, Y. Canac, C. Duhayon, R. Chauvin, *Chem. Eur. J.* **2010**, *16*, 13095 ; b) R. S. Mulliken, W. B. Person, *Ann. Pharm. Belg. Ann. Rev. Phys. Chem.* **1962**, *13*, 107 ; c) R. S. Mulliken, J. Am. *Chem. Soc.* **1952**, *74*, 811 ; d) A. Haaland, *Angew. Chem.* **1989**, *101*, 1017 ; *Angew. Chem. Int. Ed. Engl.* **1989**, *28*, 992 ; e) V. I. Minkin, *Pure Appl. Chem.* **1999**, *71*, 1919.

charge	Donneur	Accepteur	$\Delta G_{ m homo}$	$\Delta G_{ m hetero}$	$\Delta(\Delta G)$
0	Ph ⁻	⁺ PPh ₂	57,2	112,5	-55,3
	Cl^{-}	$^{+}PPh_{2}$	60,9	34,7	26,2
	H_3N	BH_3	133,5	27,1	106,4
+1		$^{+}PCl_{2}$	58,6	79,4	-20,8
		$^{+}PPh_{2}$	65,8	57,4	8,4
		⁺ PPh(OH)	66,3	50,6	15,7
		$^{+}P(OMe)_{2}$	70,5	45,6	24,9
	(NHC)	$^{+}P(OEt)_{2}$	72,2	44,4	27,8
	(1(110)	$^{+}P(NMe_{2})_{2}$	67,6	25,3	42,3
		$^{+}PPh_{2}$	62.7	62.5	0.2
+2		²⁺ P(NHC)Ph	52.6	66.3	-13.7
	NHC	²⁺ P(O)(NHC) ^t Bu	49.4	64.8	-15.4
		²⁺ P(NHC) ^t Bu	50.3	72.5	-22.2

Tableau 2: Energies libres de dissociation homolytique et hétérolytique (kcal/mol) de différents adduits calculées au niveau PCM-(U)B3PW91/6-31G**. Valeurs des liaisons covalentes en gras. (Résultats du Dr Christine Lepetit).

Suivant le critère énergétique de la liaison dative, c'est-à-dire la préférence d'une dissociation hétérolytique sur une dissociation homolytique, les énergies de dissociations de Gibbs de la série cationique [NHC-PR₁R₂]⁺ ont été calculées au niveau B3PW91/6-31G** $\Delta(\Delta G)$ à 298,15 K, prenant en compte l'acétonitrile comme solvant via la méthode PCM (travaux du Dr Christine Lepetit).

Dans la série [NHC-PR₁R₂]⁺, la différence d'énergie entre les modes de dissociations homolytique et hétérolytique de la liaison C-P, varie de - 20,8 à + 42,3 kcal/mol, dans l'ordre suivant : ⁺PCl₂ < ⁺PPh₂ < ⁺PPhOH < ⁺PPh₂O < ⁺P(OR)₂ < ⁺P(NMe₂)₂. Donc, plus stable est le cation phosphénium, plus grande est la valeur de $\Delta(\Delta G)$ et plus fort est le caractère datif de la liaison C-P (approchant le paradigme H₃N \rightarrow BH₃). En effet, alors que l'énergie de dissociation homolytique varie peu, l'énergie de dissociation hétérolytique varie plus fortement, allant de $\Delta G_{hétéro} = 25,3$ kcal/mol pour le phosphénium le plus stable (⁺P(NMe₂)₂) à $\Delta G_{hétéro} = 79,4$ kcal/mol pour le moins stable (⁺PCl₂).

2. Détermination de l'effet électro-donneur des imidazoliophosphanes

Les orbitales moléculaires frontières (OFM) des imidazoliophosphanes ont été déterminées dans la série $[NHC-PR^{1}R^{2}]^{+}$ (Ri = Ph ou OEt, i = 1,2; Figure 1). Le

remplacement d'un substituant phényle par un substituant éthoxy provoque une diminution de l'énergie de la HO (orbitale moléculaire la plus haute en énergie, fortement polarisée au niveau de l'atome de phosphore) et de la BV (orbitale la plus basse en énergie non occupée, résultant du recouvrement de l'orbitale anti-liante π^* du fragment NHC avec l'orbitale p du fragment phosphénium sp²).

Figure 1 : OMF des adduits [NHC \rightarrow PR_{2-i}R_i] (avec R = Ph ou OEt ; i = 0,1 ou 2) par la méthode PCM-B3PW91/6-31G** dans l'acétonitrile (ε = 35,688).

L'atome de phosphore (P^{III}) dans les imidazoliophosphonites ($R^1 = R^2 = OEt$) est donc moins σ -donneur et plus π -accepteur que l'atome de phosphore des imidazoliophosphinites ($R_1 = Ph$, $R_2 = OEt$) et des imidazoliophosphanes ($R^1 = R^2 = Ph$), respectivement.

Le caractère donneur de ces ligands a été estimé par le calcul de la mesure de la fréquence d'élongation (\tilde{v}_{CO}) dans leurs complexes de rhodium de type [NHC-PR¹R²)Rh(CO)₂Cl]⁺ (**Tableau 3**).

	L	$\widetilde{v}_{ m co}$
	$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{P}\mathbf{h}$	2071,6
$[1 n n C - 1 n^2]^+$	$R^1 = Ph; R^2 = OEt$	2072,7
	$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{OEt}$	2075,9
PF ₃		2077,9
$(2,6-Me_2C_6H_3CH_2CH_2)P^tBu_2$		2034,9 (Exp. 2042,5)

Tableau 3: Quantification du caractère donneur des ligands L par les valeurs de leurs fréquences d'élongation $\tilde{\nu}_{CO}$ dans le complexe [RhLCl(CO)₂] correspondant. Calculs au niveau PBEPBE/6 31G**/LANL2DZ*(Rh) (Résultat du Dr Christine Lepetit).

Les valeurs $\tilde{\nu}_{co}$ ont été en effet largement utilisées pour mesurer l'effet donneur des phosphanes et des NHC aussi bien expérimentalement que théoriquement (plus la valeur de $\tilde{\nu}_{co}$ est grande, plus l'effet donneur est faible).

Le niveau PBEPBE/6-31G**/LANL2DZ*(Rh) a été sélectionné pour sa capacité à reproduire les fréquences \tilde{v}_{CO} expérimentales (**Tableau 3**). Pour les ligands [NHC-PR¹R²)]⁺, les valeurs calculées de \tilde{v}_{CO} varient de 2071,6 cm⁻¹ pour R¹ = R² = Ph à 2075,9 cm⁻¹ pour R¹ = R² = OEt, ceci indique un caractère donneur faible comparable à celui de la trifluorophosphine (PF₃) \tilde{v}_{CO} =2077,9 cm⁻¹.

En accord avec l'analyse des OMFs, le remplacement du groupement phényle par un groupement éthoxy, induit la diminution du caractère donneur du ligand correspondant.

Ces résultats ont donc suggéré la synthèse de nouveaux ligands de type amidiniophosphonite plus pauvres en électrons que les amidiniophosphines. Grâce aux calculs théoriques, leur caractère faiblement donneur a pu être confirmé. Une nouvelle série de ligands a pu être développée en vue de leur utilisation en catalyse.

B] Les hydroxyphosphines cationiques

Les imidadazoliophosphonites **E** étant des ligands encore plus pauvres en électrons que les imidazoliophosphines **C**, le caractère donneur des imidazoliophosphinites de type **D** devraient se situer entre celui des imidazoliophosphines **C** et des imidazoliophosphonites **E**.

Schéma 44 : Influence des substituants de l'atome de phosphore sur le caractère donneur des imidazoliophosphanes.

Les imidazoliophosphinites **D** sont des esters d'acides imidazoliophosphineux. En 1968, Chatt et Heaton ont rapporté que les acides phosphineux (ou hydroxyphosphines, HOP) sont en équilibre tautomère avec les oxydes de phosphines secondaires (OPS) de type **I**, ces dernières étant majoritaires (**schéma 45**).⁵⁸ Les facteurs chimiques et physiques gouvernant cet équilibre, n'ont cependant pas été clairement mis en évidence.⁵⁹ Cependant, il a été montré que la présence d'un groupement électro-attracteur sur l'atome de phosphore pouvait déplacer l'équilibre vers la forme acide **II**, suggérant alors que les HOP pourraient agir comme ligands de type L dans des complexes métalliques de type III (**schéma 45**).

Schéma 45 : Equilibre entre la forme pentavalente I et trivalente II des HOP et OPS avec un ligand de type imidazolium et formation du complexe métallique correspondant III. Représentation d'un complexe d'acide phosphineux à ligand de type imidazole IV (à droite).

Ceci a récemment été confirmé par des calculs théoriques montrant qu'un groupement perfluoroaryle (fortement électro-attracteur) pouvait en effet stabiliser la forme acide.⁶⁰ Encore plus électronégative que l'atome de fluor, la charge cationique d'un substituant imidazolium rendrait les ligands cationiques encore plus pauvres en électrons.

⁵⁸ J. Chatt, B. Heaton, J. Chem. Soc (A), **1968**, 2745; T. Achard, L. Giordano, A. Tenaglia, Y. Gimbert, G. Buono, Organometallics, **2010**, 29, 3936.

⁵⁹ a) D. M. Roundhill, R. P. Sperline, W. B. Beaulieu, *Coord. Chem. Rev.* **1978**, 26, 263; b) B. Walther, *Coord. Chem. Rev.* **1984**, 60, 67; c) R. P. Sperline, D. M. Roundhill, *Inorg. Chem.* **1977**, *16*, 2612; d) R. Ludwig, A. Borner et *coll., Eur. J. Org. Chem.*, **2010**, 2733.

⁶⁰ B. Kurscheid, W. Wiebe, B. Neumann, H. Stammler et B. Hoge, *Eur. J. Inorg. Chem.* 2011, 5523.

Dans cette optique, l'équipe s'est intéressée à la synthèse d'amidiniohydroxyphosphines. Avant de discuter les premiers résultats obtenus, un rappel bibliographique sur les oxydes de phosphines secondaires est présenté.

1] <u>Résultats de la bibliographie</u>

Les oxydes de phosphines secondaires (OPS) sont utilisés comme ligands stables à l'air pour la catalyse organométallique homogène.⁶¹ La forme oxyde de phosphine est généralement la forme la plus favorisée, mais l'équilibre peut être déplacé vers la forme trivalente lors de la coordination de l'atome de phosphore avec un métal (**schéma 46**).

Schéma 46 : Equilibre tautomère acide phosphineux - oxyde de phosphine, et chimie de coordination associée.

La forme A est facilement déprotonée pour donner le composé zwitterionique du type B ou former l'espèce oxo-métalée C.

La présence d'un substituant hydroxyle sur l'atome de phosphore peut jouer un rôle critique dans certains processus. Certains exemples de synthèse, de coordination et d'utilisation en catalyse seront décrits par la suite.

En 2007, Buono et *coll*. ont rapporté la synthèse énantiosélective d'oxydes de phosphines secondaires. Le traitement de l'oxazaphospholidine V par du *t*-BuLi dans le THF à basse température conduit ainsi à l'oxyde de *tert*-butylphénylphosphine VI P-chirogénique (schéma 47).

Schéma 47 : Synthèse de l'oxyde de *tert*-butylphénylphosphine VI énantiopur.

⁶¹ a) N. V. Dubrovina, A. Borner, *Angew. Chem.*, **2004**, *116*, 6007; *Angew. Chem. Int. Ed.*, **2004**, *43*, 5883 ; b) L. Ackermann, *Synthesis*, **2006**, 1557.

En utilisant un autre substrat de départ tel que le menthyle d'hydrogénophénylphosphinate **VII**, les auteurs décrivent alors la synthèse des OPS par addition de précurseurs organométalliques R-M avec des rendements compris entre 60 et 98 % (schéma 48).⁶²

Schéma 48 : Synthèse asymétrique d'OPS VIII par addition d'organométalliques.

Deux ans après ces premiers travaux, les auteurs décriront pour la première fois l'utilisation des OPS comme « pré-ligands » chiraux dans la cycloaddition [2+1] palladocatalysée entre le norbornène **IX** et un alcyne vrai **X** (**schéma 49**).⁶³

IX/X/Pd/L* = 2/1/0.05/0.1

Schéma 49 : Cycloaddition [2+1] catalysée au palladium (II) entre le norbornène IX et un alcyne vrai X en présence de OPS chiraux VIII.

Les excès énantiomériques les plus élevés (de l'ordre de 60 %) sont observés lors de l'utilisation du ligand (*S*)- ou (*R*)-L avec R = t-Bu, avec des rendements de 40 % environ. Dans des conditions optimisées, la réaction est réalisée en présence d'additifs (acides aminés ou hydroxyacides). Le meilleur excès énantiomérique est obtenu en présence de 10 mol % d'acide mandélique (rdt = 46 %, ee = 74 %).

En 2010, Herzon et *coll*. ont décrit la synthèse d'OPS en « un seul pot». Il s'agit de l'addition d'une phosphine primaire R'-PH₂ (R' = Ph, Cy, *t*-Bu) **XIII** sur un aldéhyde ou une cétone **XII** dans de l'acide trifluoroacétique à 80°C conduisant alors aux OPS **XIV** avec des rendements variant de 48 à 96 % (**schéma 50**).⁶⁴

⁶² A. Leyris, J. Bigeault, D. Nuel, L. Giordano et G. Buono, *Tetrahedron Letters*, **2007**, *48*, 5247.

⁶³ D. Gatineau, et al. Tetrahedron-Asymmetry, 2009, 20, 1912.

⁶⁴ A. J. Bloomfield, J. M. Qian et S. B. Herzon, *Organometallics*, **2010**, *29*, 4193.

Schéma 50 : Synthèse d'OPS par l'addition de phosphine XIII sur un composé carbonylé XII.

L'utilisation des OPS chirales monodentes en catalyse asymétrique présente peu de résultats satisfaisants en série rhodium, iridium ou ruthénium, qui sont usuellement utilisés pour les réactions d'hydrogénation asymétrique. Pugin et Pfaltz ont donc mis au point une synthèse de ligands OPS de type phosphine-oxyde de phosphine (P-OPS),⁶⁵ qui permet une meilleure coordination avec le centre métallique. Les auteurs se sont intéressés plus particulièrement à la synthèse de ligands P-OPS chiraux possédant un espaceur ferrocényle dans le cas du ligand JoSPOphos et un substituant menthyle dans le cas du ligand TerSPOphos (**schéma 51**).

Schéma 51 : Synthèse des ligands JoSPOphos (voie a) et TerSPOphos (voie b).

Ces ligands P-OPS se sont révélés intéressants pour les réactions d'hydrogénation d'alcènes fonctionalisés catalysée au rhodium.

⁶⁵ H. Landert, F. Spindler, A. Wyss, H. Blaser, Y. Ribouruoille, B. Gshwend, B. Ramalingam, B. Pugin et A. Pfaltz, *Angew. Chem. Int. Ed.*, **2010**, *49*, 6873.

Récemment, Buono et *coll*. ont rapporté la synthèse d'un complexe de rhodium à ligands OPS (**schéma 52**). En RMN ³¹P, le complexe **XV** obtenu avec un rendement de 97 %, apparaît sous la forme d'un doublet, indiquant la coordination des deux atomes de phosphore équivalents avec le centre métallique Rh (I) avec une constante de couplage identique ${}^{1}J_{PRh}$ de 109 Hz.

Schéma 52 : Synthèse du complexe de rhodium XV à deux ligands OPS.

La présence du ligand carbonyle dans le complexe **XV** permet de mesurer la valeur de la fréquence d'élongation en infra-rouge ($\tilde{v}_{CO} = 1962 \text{ cm}^{-1}$) qui montre que les ligands OPS sont des ligands à caractère électrodonneur supérieur à la triphénylphosphine (\tilde{v}_{CO} (OPS) = $1962 < \tilde{v}_{CO} \text{ PPh}_3$)= 2069 cm⁻¹). Ce type de complexe a aussi été préparé avec un substituant cyclohexyle mais n'a pas pu être obtenu en série phényle (aucune coordination de l'atome de phosphore avec le rhodium n'a été observée).

En 2011, Hong et *coll*. ont décrit la synthèse d'oxydes de phosphines secondaires **XVIIa** et **b** à partir du motif de départ phényl-imidazole **XVIa et b** avec des rendements de 45 et de 67 %, respectivement (**schéma 53**).⁶⁶

Schéma 53 : Synthèse de ligands hydroxyphosphines **XVIIa-b** à partir des précurseurs de départ **XVIa-b** à squelette phénylimidazole.

La coordination de **XVIIa** et **XVIIb** a été étudiée dans des complexes de palladium (II). Deux équivalents de OPS sont ainsi mis en présence de $Pd(cod)Cl_2$ ou de $PdBr_2$ conduisant soit à des complexes mono-nucléaires, soit à des complexes di-nucléaires. Deux

⁶⁶ D. Hu, C. Weng, et F. Hong, *Organometallics*, **2011**, *30*, 1139.

modes de coordinations sont alors observés, une coordination de l'atome de phosphore avec le centre métallique dans le cas des complexes mono-nucléaires **XVIII**, ou bien une double coordination par les atomes d'azote et de phosphore dans le cas des complexes di-nucléaires **XIX** (schéma 54).

Schéma 54 : Coordination de ligands OPS dans des complexes de palladium (II).

L'utilisation du ligand **XVIIa**, dans la réaction de couplage de Suzuki-Miyaura entre des bromures d'aryle et l'acide phénylboronique donne des résultats satisfaisants avec des rendements compris entre 67 et 98 % (**schéma 55**).

Schéma 55 : Réaction de couplage de type Suzuki-Miyaura entre des bromures d'aryles et l'acide phénylboronique.

2] Résultats et discussion

Afin d'accéder aux hydroxyphosphines cationiques, différentes approches complémentaires ont été envisagées, à partir du chlorohydrate d'imidazolium IMes, HCl, du 1-(1-phényl)-1*H*-imidazole et du bis(diisopropylamino)cyclopropénylidène (BAC).

1. <u>Synthèse d'hydroxyphosphines cationiques à partir du chlorohydrate</u> <u>d'imidazolium IMes, HCl</u>

A partir du carbène IMes obtenu par déprotonation du sel correspondant (IMes, HCl), l'addition d'un éq. de dichlorophénylphosphine ou d'un éq. de dichloroéthoxyphosphine dans Et_2O à basse température permet d'obtenir les composés **8a** et **8b** avec des rendements de 84 et de 88 %, respectivement (**schéma 56**).

Schéma 56 : Synthèse des chloro-imidazoliophosphines 8a et 8b.

La formation de la liaison C-P est confirmée en RMN ¹³C par la présence d'un doublet (**8a** $\delta = +144,1$ ppm, ¹ $J_{CP} = 84,3$ Hz ; **8b** $\delta = +142,8$ ppm, ¹ $J_{CP} = 95,6$ Hz). En RMN ³¹P, les adduits **8a** et **8b** résonnent sous la forme d'un singulet à + 142,6 et + 160,8 ppm, respectivement.

Ensuite, l'hydrolyse de **8a** et **8b** a été testée dans des conditions variées : milieu neutre (H₂O), acide (NH₄Cl aq.), basique (NaHCO₃). Aucune de ces conditions n'a permis d'aboutir aux produits visés. Seuls des produits de décomposition provenant essentiellement de la rupture de la liaison N₂C-P comme le sel [IMesH][Cl] ont été identifiés en RMN ³¹P et ¹H.

Compte tenu de ces résultats, une nouvelle voie de synthèse a été envisagée en s'inspirant de résultats récemment publiés.⁶⁴

- 2. <u>Synthèse d'hydroxyphosphines cationiques à partir du 1-(1-phényl)-1*H*-<u>imidazole</u></u>
- a) Synthèse des ligands

A partir du 1-(1-phényl)-1*H*-imidazole, l'addition d'un équivalent de *n*-BuLi dans le THF à basse température suivie de l'addition de dichlorophénylphosphine et du traitement du mélange réactionnel par une solution aqueuse (NH₄Cl) ne conduit pas à l'hydroxyphosphine neutre **10** désirée (**schéma 57**).

Schéma 57: Tentative d'obtention de l'hydroxyphosphine 10 à partir du 1-(1-phényl)-1*H*-imidazole.

Dans les mêmes conditions, l'addition de *tert*-butyldichlorophosphine suivie du traitement du mélange réactionnel par une solution aqueuse de NH_4Cl conduit à l'hydroxyphosphine neutre **XVIIa** avec un rendement de 45 % (**schéma 58**).

Schéma 58 : Synthèse de l'amidiniohydroxyphosphine **11** à partir du 1-(1-phényl)-1*H*-imidazole.

Le composé **XVII a** décrit par Hong, constitue donc un précurseur de choix de l'amidiniohydroxyphosphine **11**. ⁶⁷ Cette dernière est ainsi obtenue par méthylation de l'atome d'azote du noyau imidazole par un éq. de MeOTf avec un rendement de 98 %. Elle a pu être entièrement caractérisée par RMN multi-noyaux et par spectrométrie de masse. En RMN ³¹P, **11** résonne sous forme d'un singulet à $\delta = +25,9$ ppm. La présence de la liaison P-H est confirmée par RMN ³¹P par la présence d'un doublet avec une constante de couplage ¹*J*_{PH} = 482 Hz. La présence du groupement CH₃ est confirmée par un singulet à + 4,38 ppm en RMN ¹H. En RMN ¹³C, la liaison C-P est mise en évidence par un doublet à + 136,6 ppm et une constante de couplage *J*_{CP} = 70,5 Hz.

b) <u>Coordination des ligands hydroxyphosphines neutres et cationiques dans</u> <u>des complexes de Rh (I)</u>

Suite à la synthèse des ligands, l'évaluation de leurs propriétés coordinantes a été réalisée avec un complexe métallique de rhodium(I) tel que le dimère [Rh(cod)Cl]₂.

L'addition du complexe sur le ligand neutre de départ dans le CH₂Cl₂, permet d'obtenir le composé **12** avec un rendement de 82 %. En RMN ³¹P, la formation du complexe est indiquée par la présence d'un doublet de doublet à + 120,0 ppm avec deux constantes de couplage (${}^{1}J_{PRh} = 173,1$ Hz, ${}^{3}J_{PRh} = 5,0$ Hz) mettant en évidence la présence de deux atomes de rhodium (**schéma 59**).

⁶⁷ D. Hu, C Weng et F. Hong, *Organometallics*, **2011**, *30*, 1139.

Schéma 59 : Synthèse du complexe di-nucléaire 12 à partir du ligand neutre XVII a.

En RMN ¹⁰³Rh, deux signaux sont ainsi observés ($\delta_{Rh} = -7340$ et $\delta_{Rh} = -7776$ ppm), confirmant la formation d'un complexe di-nucléaire. Grâce à la caractérisation complète en RMN multi-noyaux en particulier par HMBC ¹H-¹⁵N, l'atome d'azote résonne sous forme de doublet avec une constante de couplage $J_{NRh} = 24,1$ Hz, ce qui permet de confirmer la coordination de l'atome d'azote sp² du noyau imidazole à l'atome de rhodium. Enfin, la spectrométrie de masse a permis de confirmer la formation de ce complexe di-nucléaire (m/z: 669,0 [M – 2HCl]⁺).

Dans les même conditions, l'amidiniohydroxyphosphine **11** a été mise en présence du complexe de rhodium [Rh(cod)Cl]₂ (**schéma 60**). Le complexe de rhodium **13** a ainsi été obtenu avec un rendement de 74 %. L'atome d'azote étant « protégé » par un groupement méthyle, seul l'atome de phosphore est ici coordiné au centre métallique. En RMN ³¹P, la présence d'une liaison P-Rh est confirmée par un doublet à + 122,9 ppm et une constante de couplage ${}^{1}J_{PRh} = 168,1$ Hz.

Schéma 60 : Synthèse du premier complexe métallique d'imidazoliohydroxyphosphine 13.

Malgré de nombreux essais de cristallisation, la structure cristalline de **13** n'a pas pu être déterminée par diffraction des rayons X. En solution, la rupture de la liaison C-P de l'hydroxyphosphine cationique **11** et de son complexe **13** est observée ($t_{1/2} = 10$ h), conduisant au sel d'imidazolium correspondant.

Du fait de leur faible stabilité, la synthèse d'hydroxyphosphines cationiques a été envisagée en utilisant un carbène plus donneur (BAC) afin d'accroître la stabilité du système désiré.

3. <u>Synthèse d'hydroxyphosphines cationiques à partir du sel de diamino-</u> cyclopropénium [BAC][HBF₄]

La déprotonation du sel [BAC][HBF₄] par le *tert*butylate de potassium suivie de l'ajout d'un éq. de dichlorophénylphosphine conduit au composé **15** avec un rendement de 37 % qui a pu être caractérisé par RMN multinoyaux (**schéma 61**).

Schéma 61 : Synthèse de l'adduit 15 à partir du sel [BAC][HBF₄] 14.

En RMN ³¹P, le déplacement chimique de **15** résonne à + 14,7 ppm avec une constante de couplage $J_{PH} = 560,4$ Hz. En RMN ¹³C, le carbone de la liaison C-P résonne à + 131,5 ppm sous la forme d'un doublet avec une constante de couplage $J_{CP} = 138,8$ Hz.

La structure de **15** a été résolue par COESY ¹H-¹H grâce à une corrélation entre le groupement *tert*butyloxy et les groupements isopropyles de la partie cyclopropénium. La formation du dérivé cationique **15** correspond formellement à l'addition de *tert*butanol sur l'hydroxyphosphine cationique désirée. Le réarrangement intramoléculaire pourrait s'expliquer par l'encombrement stérique faible du centre carbénium.

Malgré différentes tentatives de cristallisation, la structure de **15** n'a pas pu être déterminée par diffraction des rayons X. Un complexe de magnésium original **16** a été obtenu par cristallisation dans CH₂Cl₂: ce produit proviendrait du traitement de **15** par le sulfate de magnésium (MgSO₄). Ce composé atypique n'a pas pu être caractérisé par RMN multi-noyaux (**figure 2**), et son mécanisme de formation reste à élucider.

Figure 2 : Structure cristalline du complexe de magnésium 16.

Suite aux problèmes rencontrés avec la dichlorophénylphosphine, la réaction précédente (**schéma 61**) a été conduite en présence de dichloro-*tert*-butylphosphine. Ainsi, à partir du sel [BAC][HBF₄], l'ajout d'un éq. de base suivi d'un éq. de dichloro-*tert*-butylphosphine conduit à l'adduit **17** avec un rendement de 48 % (**schéma 62**).

Schéma 62 : Synthèse du composé 17 à partir du [BAC][HBF₄] 14.

D'après la caractérisation RMN multi-noyaux, la liaison C-P normalement attendue n'est pas formée. En RMN ¹³C, aucun doublet significatif d'une constante de couplage C-P, n'est en effet observé. En RMN ³¹P, le composé **17** se caractérise par un singulet à + 49,7 ppm avec une constante de couplage $J_{PH} = 532,7$ Hz. La spectrométrie de masse permet de confirmer la formation de **17** par l'obtention de la masse du produit initialement attendu avec un atome d'oxygène en plus ([M+H⁺] = 357,3 pour C₁₉H₃₈N₂O₂P ; [M+Na⁺] = 379,2 pour C₁₉H₃₈N₂O₂NaP). L'hypothèse de l'insertion de l'atome d'oxygène entre le carbone très électrophile du cyclopropénium et l'atome de phosphore suivie de l'oxydation du produit semble réaliste.

Il est donc possible d'accéder en série phényl-imidazole aux premiers exemples d'hydroxyphosphines cationiques, ainsi qu'à leurs complexes. Cependant, ces dérivés restent fragiles, notamment à cause de la possibilité de rupture de la liaison N_2 C-P. A l'inverse en série BAC, seuls deux dérivés provenant respectivement de l'addition de *tert*butanol ou d'un réarrangement intramoléculaire de l'hydroxyphosphine visées ont été obtenus.

C] Les chalcogénophosphéniums

La partie suivante porte sur la synthèse de carbéniochalcogénophosphéniums, et sur l'étude de la liaison $[R_2N_2C:\rightarrow R_2P=X]$ avec X = O, S, Se. A notre connaissance, aucun exemple de la bibliographie ne décrit l'isolation de chalcogénophosphénium en tant que tel. En effet, la polarisation de la liaison P=X augmente quand X se déplace vers le haut de la colonne des éléments du groupe 16 (O > S > Se). Ainsi la densité électronique est de plus en plus concentrée sur l'atome X et l'atome de phosphore devient alors de plus en plus électrophile.⁶⁸

Dans tous les exemples connus dans la bibliographie, les adduits de chalcogénophosphonium ont été appelées oxo-, thioxo- ou sélénoxo-phosphoniums, par référence à une structure de type $\sigma^3 \lambda^4$ phosphonium. Ils seront ici appelés adduits d'oxydes de phosphénium, ou plus généralement chalcogénure de phosphéniums par référence au caractère acide-base de Lewis.

1] Etude bibliographique

Un exemple de thioxophosphonium a été brièvement décrit par Maier et Wartenberg dans les années 60. Il a été obtenu par réaction de l'acide de Lewis AlCl₃ avec la trichlorothioxo-phosphine ($Cl_3P=S$).⁶⁹

Buford et *coll*. ont ensuite développé la synthèse de thioxo- et sélénoxophosphoniums en utilisant aussi le trichlorure d'aluminium à partir de l'amino-thioxo ou sélénoxophosphine I (schéma 63).⁷⁰ En solution, les complexes d'amino-thioxophosphines de type acide-base de Lewis II a-b n'ont pu être décrits, en série sélénium aucune formation de complexe n'a été observée. A l'état solide, aussi bien pour les thioxo- que pour les sélénoxophosphines

⁶⁹ a) E. W. Wartenberg,; J. Z. Goubeau, Anorg. Allg. Chem. **1964**, 329, 269; b) L. Maier, *Ibid.* **1966**, 343, 29.
 ⁷⁰ (a) N. Burford, R. E Spence, R. D. Rogers, J. Am. Chem. Soc. **1989**, 111, 5006. (b) N. Burford, R. E Spence,

⁶⁸ D. G, Gilheany. Chem. Rev. **1994**, 94, 1339.

R. D. Rogers, J. Chem. Soc., Dalton Trans. **1990**, 3611. (c) N. Burford, R. E. Spence, J. M. Whalen, R. D. Rogers, Organometallics **1990**, 9, 2854. (d) N. Burford, S. Mason, R. E.Spence, J. M. Whalen, J. Richardson, R. D Rogers, *Ibid.* **1992**, *11*, 2241. (e) , N. Burford, P. Losier, P. K. Bakshi, T. S Cameron, *Inorg. Chem.* **1994**, *33*, 5613.

utilisées, la formation de dimères hétérocycliques à quatre chaînons est observée (schéma 63).

Schéma 63 : Réaction du trichlorure d'aluminium sur les précurseurs chlorés Iab

Buford et *coll*. ont ensuite synthétisé le composé hétérocyclique **VI**, mais la nature de la liaison P-X n'a pas été discutée. Les auteurs ont pu caractériser par RMN, l'intermédiaire **V** provenant de la réaction entre le bis[*N*-triméthylsilyl)amino]chlorothioxophosphorane **IV** et AlCl₃ (**schéma 64**), démontrant alors que dans l'exemple précédent, l'hétérocyle dicationique **III** était bien issu de la dimérisation du composé thioxophosphonium **II**.

En 2007, les auteurs décrivent le composé **VII** obtenu par réaction du chlorodiméthylthioxophosphoryle avec la 4-(diméthylamino)pyridine (DMAP) (**schéma 65**). Ce cation **VII** peut être décrit comme un cation thioxophosphonium stabilisé par la DMAP. Par ajout de Me₃P, la substitution de la DMAP est observée et conduit à l'adduit **VIII** avec un rendement de 66 %.

Schéma 65: Echange du substituant DMAP par Me₃P.

Le seul exemple de chalcogénophosphénium qui se distingue par une caractérisation complète à l'état libre (sauf par cristallographie), est celui du cation sélénoxophosphonium **X** préparé en 1992 par Schmidpeter et *coll*. en utilisant le sélénium comme « oxydant » d'un

diylidophosphénium **IX** (schéma 66).⁷¹ Dans ce cas, l'atome de phosphore central n'est pas seulement accepteur mais aussi nucléophile,⁷² permettant ainsi la réaction avec le sélénium. Le composé de type bis-ylures de sélénoxophosphonium **X** a pu être obtenu avec un rendement de 53 %. La stabilité de ce composé **X** est dû au caractère fortement π -donneur des deux ylures conjugués conduisant à deux formes de résonance (**Xa** et **Xb**).

Schéma 66 : Préparation du bis-ylures de sélénoxophosphonium X.

Afin de « stabiliser » des chalcogénophosphéniums sans faire totalement disparaître leur caractère insaturé (acide de Lewis), il semblait possible d'utiliser les carbènes qui sont généralement connus pour stabiliser des espèces électrophiles. Le caractère datif de la liaison $R_2N_2C:\rightarrow PR'_2^+$ des amidiniophosphines ayant déjà été établi, il était également naturel d'étudier la nature exacte de la liaison C-P des composés phosphorés oxydés du type $[R_2C:\rightarrow P(=X)R'_2^+]$ (schéma 67).

Schéma 67 : Structures de Lewis des imidazoliophosphines (NHC-phosphéniums) de type A, et des chalcogénoimidazoliophosphines (NHC-chalcogénophosphéniums) de type B, correspondant à une stabilisation intermoléculaire des phosphéniums libres et chalcogénophosphéniums libres, respectivement.

⁷¹ (a) A. Schmidpeter, G. Jochem, K. Karaghiosoff, C. Robl, *Angew. Chem., Int. Ed. Engl.* **1992**, *31*, 1350 ; (b) G. Jochem, K. Karaghiosoff, S. Plank, S. Dick, A. Schmidpeter, *Chem. Ber.* **1995**, *128*, 1207.

⁷² M. Sanchez, M.R. Mazières, L. Lamande´, R. Wolf, *In Multiple Bonds and Low Coordination in Phosphorus Chemistry*, M. Regitz, O. J. Scherer, Eds.; Thieme: Stuttgart, Germany, **1990**, p 129.

- 2] <u>Résultats et discussion</u>
 - 1. Série monodente

Des voies de synthèses complémentaires ont été envisagées pour accéder aux chalcogénoimidazoliophosphines **21a-b** à partir du 1-phényl(*1H*)-imidazole **1a** (schéma 68).

L'addition d'un éq. de *n*-BuLi dans Et₂O, suivie par l'addition d'un éq. de chlorodiphénylphosphine, conduit à la monophosphine **18** (RMN ³¹P, δ = - 29,3 ppm) avec un rendement de 55 %. La structure cristalline de **18** a pu être déterminée par diffraction des rayons X (**figure 3**). L'ajout d'un éq. de MeOTf sur la phosphine neutre **18** permet la quaternisation de l'atome d'azote donnant ainsi l'imidazoliophosphine **19** (RMN ³¹P, δ = - 18,2 ppm) avec un rendement de 93 %. **19** a pu être cristallisé dans un mélange CH₂Cl₂/Et₂O, et la structure cristalline a été déterminée par diffraction des rayons X (**figure 2**). Le traitement de la monophosphine **18** avec de l'acide métachloroperbenzoïque (*m*-CPBA) dans CH₂Cl₂, ou avec S₈ dans du toluène permet d'obtenir les chalcogénophosphines **20a** et **20b** correspondantes avec un rendement de 82 % et 88 % respectivement.

Schéma 68 : Voies de synthèse des chalcogénoimidazoliophosphines 21a-b à partir du 1phényl(*1H*)-imidazole 1a et rupture de la liaison C-P.

Figure 3 : Représentation des structures cristallines de 18 et 19.

L'oxyde de phosphine **20a** peut être obtenue en « un seul pot » en ajoutant un éq. de *n*-BuLi suivi d'un éq. de chlorure d'acide diphénylphosphinique sur le phényl-imidazole **1a** de départ avec un rendement de 25 %. L'ajout d'un éq. de MeOTf sur les chalcogénophosphines **20a** et **20b** conduit aux chalcogénoimidazoliophosphines visées **21a** et **21b** avec des rendements respectifs de 94 % et de 96%.

Une autre voie de synthèse des cations **21a** et **21b** est également possible par ajout de l'agent oxydant (*m*-CPBA dans CH_2Cl_2 ou S₈ dans du toluène) sur l'amidiniophosphine **19**, obtenue par N-méthylation de la phosphine **18** par un éq. de MeOTf. Par cette voie, les chalcogénoimidazoliophosphines **21a** et **21b** sont isolées avec des rendements de 48 % et de 72 %, respectivement.

Les déplacements chimiques des chalcogénoimidazoliophosphines **21a** ($\delta = +$ 18,5 ppm) et **21b** ($\delta = +$ 30,8 ppm) sont similaires à ceux de leurs précurseurs respectifs **20a** ($\delta = +$ 16,1 ppm) et **20b** ($\delta = +$ 29,6 ppm). Leur structure ionique est en accord avec leur faible solubilité dans des solvants non polaires (hexane, pentane..). Les structures des composés **18**, **19**, **20a-b** et **21b** ont été finalement confirmées par diffraction des rayons X sur monocristal. (Figure 3 et 4, Tableau 4).

Figure 4 : Représentation de la structure cristalline des composés 20a (à gauche), 20b (au milieu), et 21b (à droite).

	18	19	20a	20b	21b	Ph ₃ P=S	Ph ₃ P=O
C(1)-P(1)	1,8307(10)	1,8346(14)	1,8066(10)	1,8110(12)	1,839(3)		
C(1)-N(1)	1,3234(14)	1,3433(18)	1,3279(13)	1,3222(16)	1,344(4)		
C(1)-N(2)	1,3690(16)	1,3500(18)	1,3698(14)	1,3725(16)	1,354(4)		
P(1)-S	-	-	-	1,9463(4)	1,9458(11)	1,94-1,95	
P(1)-O	-	-	1,4899(7)	-	-		1,48-1,49

Tableau 4 : Données structurales obtenues par diffraction des rayons X des composés **18**, **19**, **20a**, **20b**, **21b** et de Ph₃P=X (X=O, S).⁷³

D'un point de vue structural, la quaternisation du cycle imidazole induit l'augmentation de la longueur de la liaison C(1)-P(1), (**18 :** 1,8307(10), **19 :** 1,8346(14), **20b :** 1,8110(12) Å ; **21b :** 1,839(3) Å). Cette différence peut être interprétée par la nature dative de la liaison C-P dans les composés cationiques **19 et 21b**.

Autrement dit, les composés **19** et **21b** peuvent être décrits comme des adduits donneur-accepteur de type NHC-phosphénium et NHC-thioxophosphénium, respectivement. La dépolarisation attendue de la liaison $P^{2+}-X^-$ (X = O, S) est donc influencée par le caractère donneur du ligand NHC. De plus, les longueurs des liaisons mesurées sont similaires à celles rapportées pour les chalcogénophosphines de référence $Ph_3P=X$ (X = O, S).⁷⁴ Néanmoins, l'analogue oxo **21a** n'a pas pu être cristallisé. En solution, ce dernier se dégrade en donnant le N,N-méthyl(phényl)imidazolium **22** après la rupture de la liaison N₂C-P.

La fragilité de la liaison C-P des composés **21a-b** a ensuite été confirmée en les mettant en présence d'un faible nucléophile (ion chlorure). En additionnant le chlorure de tétra-éthylamonium [Et₄N,Cl] à température ambiante, la rupture de liaison C-P est en effet observée conduisant au cation imidazolium **22**. Récemment, la nature dative de la liaison C-P a été mise en évidence pour les imidazoliophosphines non-oxydés de type **19** dans les mêmes conditions et donc par analogie, la même conclusion peut s'appliquer ici aux

⁷³ Ces données peuvent être obtenues à partir du « Cambridge Crystallographic Data Centre » via www.ccdc.cam.ac.uk/data_request/cif.

⁷⁴ Ces données peuvent être obtenues à partir du « Cambridge Crystallographic Data Centre » via www.ccdc.cam.ac.uk/data_request/cif.

chalcogénophosphéniums [P(V)] **21a-b**.⁷⁵ La partie phosphorée a pu être identifiée par RMN ³¹P (δ = + 33,7 ppm) et par diffraction des rayons X. Elle correspond à l'acide diphénylphosphinique Ph₂P(=O)OH provenant de l'hydrolyse du précurseur chloré Ph₂P(=O)Cl.

Afin d'augmenter la stabilité des adduits chalcogénophosphéniums, un carbène plus donneur que l'imidazolylidène a été envisagé. Le bis(diisopropylamino)cyclopropénylidène (BAC) étant connu comme étant un carbène plus donneur,⁷⁶ la synthèse de la bis(diisopropylamino)cyclopropénio-diphénylphosphine **23** a été abordée. Pour cela, une procédure développée par Alcarazo et *coll*. a été utilisée (**schéma 69**).

L'ajout de *m*-CPBA dans CH_2Cl_2 , ou de S₈ dans du toluène, sur la phosphine cationique **23** conduit aux cyclopropéniochalcogénophosphines **24a** et **24b** avec des rendements de 79 % et 62 %, respectivement (**schéma 69**). Les déplacements chimiques observés en RMN ³¹P (**24a** $\delta = +14,0$, **24b** $\delta = +28,4$ ppm) sont caractéristiques d'oxydes ou thioxydes de phosphine et sont similaires à ceux des analogues **21a-b** en série imidazolio. La structure des composés **24a-b** a été confirmée par diffraction des rayons X sur monocristaux, et comparée à leur précurseur **23** (**Figure 5**).

Schéma 69 : Synthèse des chalcogénocyclopropéniophosphines 24a-b à partir du précurseur23 et rupture de la liaison C-P conduisant au sel de cyclopropénium 14.

⁷⁵ I. Abdellah, C. Lepetit, Y. Canac, C. Duhayon, R. Chauvin, *Chem. Eur. J.*, **2010**, *16*, 13095.

⁷⁶ a) V. Lavallo, Y. Canac, B. Donnadieu, W.W. Schoeller, G. Bertrand, *Science*, 2006, *312*, 722 ; b)W. W.
Schoeller, G. Frey, G. Bertrand, *Chem. Eur. J.* 2008, *14*, 4711 ; c) H. Bruns, M. Patil, J. Carreras, A. Vezquez, W. Thiel, R. Goddard, M. Alcarazo, *Angew. Chem.* 2010, 122, 3762 ; *Angew. Chem. Int. Ed.* 2010, *49*, 3680 ; d)
O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, *Angew. Chem.* 2009, 121, 5638 ; *Angew. Chem. Int. Ed.* 2009, *48*, 5530.

Figure 5 : Représentation de la structure cristalline des composés 23 (à gauche), 24a (au milieu), et 24b (à droite).

	C(1)-P(1)	C(1)-C(2)	C(2)-C(3)	C(2)-N(1)	P(1)-O(1)	P(1)-S(1)	C(1)- P(1)-O(1)	C(1)-P(1)- S(1)	C(2)-C(1)- P(1)
23	1,807(2)	1,373(3)	1,417(3)	1,309(3)	-				147,86(18)
24a	1,8016(9)	1,3812(13)	1,4196(13)	1,3058(12)	1,4843(7)		112,25(4)		150,66(7)
24b	1,807(3)	1,382(5)	1,418(4)	1,299(5)	-	1,9476(12)		113,71(12)	147,1(3)

Tableau 5 : Longueurs de liaison significatives des dérivés 23, 24a et 24b déterminées pardiffraction des rayons X.

Aucune différence significative des valeurs de la longueur de liaison C(1)-P(1) n'a été observée entre les dérivés P(V) **24a** (1,8016(9) Å) et **24b** (1,807(2) Å) et le précurseur P(III) **23** (1,807(2) Å) (**Tableau 5**). Cela confirme que les deux systèmes correspondent à des systèmes donneurs-accepteurs. De plus, un faible raccourcissement de la longueur de la liaison P(1)-O(1) observée entre l'oxyde de phosphine neutre **20a** (1,4899(7) Å) et l'oxyde de phosphine cationique **24a** (1,4843(7) Å) confirme une diminution de la charge négative de l'atome d'oxygène dans ce dernier. Ceci correspond à une dépolarisation de la liaison P⁺-O⁻ \leftrightarrow P=O, probablement induit par le caractère datif de la liaison C(1)-P(1) dans **24a**. Comme dans le cas de **21a-b** (schéma 68), la nature dative de la liaison C-P de **24a-b** a été mise en évidence expérimentalement par le déplacement du carbène (BAC) par un nucléophile tel que l'ion chlorure. L'addition de [Et₄N][Cl] sur le composé **24a** à 60°C conduit à la formation du sel de bis(diisopropylamino)cyclopropénium **14** après la rupture de la liaison C-P (schéma 69).

Afin de confirmer que **24a** et **24b** sont bien des systèmes donneur-accepteur, une réaction d'échange de carbène a été réalisée. L'addition du carbène BAC sur l'adduit NHC-oxophosphénium **21a** dans du THF à -78°C conduit ainsi au cation **24a** (schéma 70).

Schéma 70 : Réaction d'échange de ligand NHC-BAC à partir de l'oxophosphénium 21a.

Par RMN ³¹P à -20°C, un intermédiaire **25** est observé qui apparaît sous forme d'un singulet à + 25,9 ppm. Il résulterait de l'attaque nucléophile du carbène BAC sur l'atome de carbone électrophile de **21a**. Comme il l'a récemment été démontré avec des ligands chlorés en série non-oxydée, l'intermédiaire **25** donnerait le composé **24a** par une réaction d' α -élimination.⁷⁷ Notons que le carbène NHC libéré a été caractérisé sous sa forme protonée, imidazolium **22**.

Afin de généraliser ces résultats pour l'oxygène et le soufre, nous nous sommes intéressés à la version azotée correspondante à savoir les iminophosphéniums. Une réaction de Staudinger entre la phosphine neutre **18** et un éq. d'azoture de *p*-méthoxybenzyle dans CH₂Cl₂, conduit à l'iminophosphorane **26** avec un rendement de 62 %. En RMN ³¹P, le composé résonne sous la forme d'un singulet à + 22,4 ppm (**schéma 71**). En RMN ¹³C, la liaison C-P est caractérisée par un doublet à + 133,9 ppm avec une constante de couplage J_{CP} = 20,8 Hz.

Schéma 71 : Synthèse de l'iminophosphorane 26 à partir de la phosphine neutre 18.

La quaternisation de **26** a été ensuite envisagée par addition de MeOTf dans CH_2Cl_2 à basse température. Le composé visé n'a pas pu être obtenu, mais deux produits provenant de

⁷⁷ I. Abdellah, C. Lepetit, Y. Canac, C. Duhayon et R. Chauvin Chem. Eur. J., 2010, 16, 13095

la rupture de la liaison C-P ont été isolés avec un rendement de 72 %. Par caractérisation en RMN multi-noyaux, il a été possible de mettre en évidence la méthylation de deux sites. En effet, le groupement méthyle électrophile peut aussi bien réagir au niveau de l'atome d'azote du noyau imidazole qu'au niveau de l'atome de phosphore. La réaction forme donc deux produits cationiques, l'imidazolium **23** et le phosphonium **27** ($\delta = +50.9$ ppm) (schéma 72).

2. Etude théorique de la série monodente

La nature de la liaison C-P(X)Ph₂ a été étudiée par calculs DFT par le Dr Christine Lepetit. La différence des énergies de dissociation homolytique et hétérolytique de Gibbs Δ (ΔG) a été calculée à 298,15 K dans l'acétonitrile par la méthode PCM au niveau B3PW91/6-31G** (**Tableau 6**). Le caractère datif de la liaison X…P varie entre le cas purement covalent (X-P) et le cas ionique (X⁻P⁺), et dépend donc du signe et de l'amplitude de $\Delta(\Delta G) = \Delta G_{homo}(X-PR_2 \rightarrow X^++PR_2) - \Delta G_{hétéro}(X-PR_2 \rightarrow X^++PR_2).$

Donneur	Accepteur	$\Delta G_{ m homo}{}^{ m a)}$	$\Delta G_{\rm hetero}{}^{\rm b)}$	$\Delta(\Delta G)^{c)}$	Différence d'énergie ^{d)}
	$^{+}PPh_{2}$	62,7	62,5	0,2	-
BAC	$^{+}P(S)Ph_{2}$	58,6	55,4	3,2	3,0
	$^{+}P(O)Ph_{2}$	69,7	61,9	7,9	4,7
	⁺ PPh ₂	65,8	57,4	8,4	-
NHC	$^{+}P(S)Ph_{2}$	60,7	49,3	11,4	3,0
	$^{+}P(O)Ph_{2}$	71,1	55,0	16,1	4,7

Tableau 6: Variation quantitative du caractère donneur des liaisons C-P pour les séries carbène (BAC ou NHC) \rightarrow (chalcogéno)phosphénium. a) Energie de dissociation homolytique de

Gibbs à 298,15 K en kcal/mol. b) Energie de dissociation hétérolytique de Gibbs à 298,15 K en kcal/mol. c) $\Delta(\Delta G) = \Delta G_{\text{homo}} - \Delta G_{\text{hétéro}}$ calculé au niveau PC M-(U)B3PW91/6-31G** dans un continuum acétronitrile (méthode PCM, $\varepsilon = 35.688$). d) Difference des valeurs $\Delta(\Delta G)$ avec l'entrée supérieure.

Pour les systèmes de type imidazolylidène-phosphénium, la valeur de $\Delta(\Delta G)$ trouvée positive varie de 8,4 à 16,1 kcal/mol dans l'ordre suivant : ⁺PPh₂ < ⁺P(S)Ph₂< ⁺P(O)Ph₂. Dans le cas des systèmes BAC-phosphénium, la même tendance est obtenue avec une préférence pour le mode de dissociation hétérolytique $\Delta(\Delta G)$ variant de 0,2 à 7,9 kcal/mol pour ⁺PPh₂ à ⁺P(O)Ph₂. Ceci est cohérent avec la plus faible stabilité (affinité protonique plus grande) des carbènes BACs par rapport aux carbènes NHCs. D'après les valeurs de $\Delta(\Delta G)$, la liaison C-P du système [BAC-PPh₂]⁺ est de nature strictement intermédiaire puisque les valeurs de ΔG_{homo} et $\Delta G_{hétéro}$ sont quasi-identiques. Cette information montre que le caractère datif de la liaison augmente dans l'ordre suivant: paire d'électrons libre < S < O, avec des écarts identiques de 3,0 et de 4,7 kcal/mol entre les séries NHCs et BACs. Les calculs montrent aussi que les thioxophosphéniums ⁺P(S)Ph₂ se dissocient plus facilement que les oxophosphéniums ⁺P(O)Ph₂ correspondant.

Dans les deux séries (NHC et BAC), les valeurs calculées confirment le caractère datif de la liaison $R_2C:\rightarrow P(X)Ph_2^+$. En d'autres termes, les chalcogénoimidazolio- et chalcogénocyclopropéniophosphines sont donc définitivement mieux décrites comme des adduits donneur-accepteur carbène \rightarrow chalcogénophosphénium.

Les carbéniophosphines oxydées (R_2C^+ -P(X)Ph₂, X=O, S) ont été isolées et caractérisées sous la forme d'adduits carbéniques stables. La nature dative de la liaison a été mise en évidence par le déplacement du carbène NHC par un faible nucléophile (ion chlorure) et par une réaction d'échange avec un carbène plus nucléophile (BAC). Elle a été également confirmée théoriquement par le calcul d'une dissociation préférentiellement hétérolytique (par rapport à une dissociation homolytique). D'une façon plus prononcée que pour leurs analogues P(III), les chalcogénocarbéniophosphines P(V) doivent être décrites comme des adduits carbène \rightarrow oxyde ou thioxyde de phosphénium. La paire libre de l'atome de phosphore des carbéniophosphines a déjà été démontrée suffisamment donneuse pour permettre une coordination sur un centre métallique. L'étude est ici généralisée à la coordination sur un centre acide de Lewis non métallique comme un atome du groupe 16 (O, S, Se) dans son état excité anti-hund.

3. Série bidente

La préparation des di-imidazoliophosphines est réalisée à partir du 1,2-di(Nimidazolyl)benzène 28. Ce composé, préalablement caractérisé par l'équipe de You⁷⁸, a été préparé par une réaction de couplage (réaction de type Ullmann⁷⁹) entre le 1,2dibromobenzène et le 1H-imidazole en présence de sel de cuivre et de K₂CO₃ dans le DMSO pendant 48 h à 110 °C. Le 1,2-di(N-imidazolyl)benzène 28 est ainsi obtenu avec un rendement de 65% (schéma 73).⁸⁰

Schéma 73 : Préparation du 1,2-di(N-imidazolyl)benzène 28.

La double déprotonation de 28 par 2 éq. de *n*-BuLi dans le THF, suivie de l'addition d'un éq. de dichlorophénylphosphine, conduit à la di-imidazolylphosphine cyclique 29 qui est obtenue avec un rendement de 49 % (schéma 74). La formation de 29 est confirmée par RMN ³¹P par le déplacement chimique à haut champ (δ_P = - 60,8 ppm), en accord avec une structure cyclique.

Schéma 74 : Synthèse de l'oxyde de la di-imidazolylphosphine cyclique 30.

L'addition d'un éq. d'acide méta-chloroperbenzoïque (m-CPBA) sur la phosphine cyclique 29 dans CH₂Cl₂ conduit à l'oxyde correspondant 30 avec un rendement de 57 %. En RMN ³¹P, **30** résonne sous la forme d'un singulet a - 0.7 ppm.

 ⁷⁸ S. Zhang; S. Yeng; J. Lan; S. Yang; J. You; *Chem. Commun.* 2008, 6170.
 ⁷⁹ F. Ullmann, J. Bielecki, *Chemische Berichte*, 1901, *34*, 2174.

⁸⁰ F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954.

En utilisant un éq. de MeOTf, l'oxyde de phosphine mono-cationique **31** a pu être caractérisé par RMN multi-noyaux. Cependant la réaction conduisant à plusieurs produits, le rendement de la réaction n'a pu être déterminé. En RMN ³¹P, **31** résonne sous la forme d'un singulet à + 0,1 ppm et la quaternisation de l'atome d'azote est confirmée par la présence d'un singulet à + 4,44 ppm en RMN ¹H.

Schéma 75 : Tentatives de synthèse de l'oxyde de phosphine dicationique 32.

Malgré différentes tentatives d'addition de 2 éq. de MeOTf sur **30**, le dication **32** n'a pas pu être détecté. Cette absence de réactivité indique une faible nucléophilie des atomes d'azotes sp² des noyaux imidazoles. Une autre voie de synthèse a été alors imaginée. Elle vise le dication **33** par addition de 2 éq. de MeOTf sur le précurseur de départ **28**. Le sel de bisimidazolium **33**, est obtenu avec un rendement de 88 %. La double méthylation est confirmée en RMN ¹H par un singulet à + 3,75 ppm intégrant pour deux groupements méthyles. Cependant, l'addition d'un éq. de dichlorure de phénylphosphonyle (Cl₂P(=O)Ph) sur le dicarbène de **33** (formé in situ) n'a pas permis l'obtention du dication **32** (schéma 75).

Une stratégie alternative, pour la synthèse d'un oxyde de di-imidazolyl phosphine cyclique, a consisté à remplacer le substituant phényle porté par l'atome de phosphore par un substituant alkyle plus donneur.

A partir du 1,2-di(N-imidazolyl)benzène **28**, la phosphine cyclique **34** a été obtenue après addition de 2 éq. de *n*-BuLi et d'un éq. de dichloro-*tert*-butyl phosphine dans le THF avec un rendement de 21 % (**schéma 76**).

Schéma 77 : Synthèse des oxydes de phosphines en série *tert*-butyle.

La phosphine **34** a pu être entièrement caractérisée par RMN multi-noyaux. En RMN ³¹P, le signal observé est beaucoup moins blindé ($\delta = -19,7$ ppm) qu'en série phényle ($\delta = -60,8$ ppm). La structure exacte de **34** a été déterminée par diffraction des rayons X d'un monocristal obtenu dans un mélange chloroforme/pentane (**figure 6**).

Par traitement de la phosphine **34** avec 2 éq. de *m*-CPBA dans le THF, l'oxyde de phosphine **35** est obtenu avec un rendement de 94 %. En RMN ³¹P, le signal est déplacé de - 19,7 ppm pour **34** à +18,1 ppm pour **35**. La structure cristalline de **35** a été déterminée par diffraction des rayons X d'un monocristal obtenu dans un mélange chloroforme/pentane (**figure 6**).

L'ajout d'un éq. de MeOTf sur l'oxyde de phosphine neutre **35** permet la quaternisation de l'un des atomes d'azote donnant ainsi l'oxyde de phosphine monocationique **37** avec un rendement de 68 %. L'ajout de deux éq. de MeOTf sur l'oxyde de phosphine neutre **34** a permis d'accéder à l'oxyde de phosphine dicationique **36** avec un rendement de 89 %. En comparaison à la série P-phénylée, ce résultat suggère que l'effet donneur du substituant au phosphore se progage sur les atomes d'azotes en β . Ce résultat valide notre

approche synthétique d'introduire un groupement plus donneur au niveau de l'atome de phosphore.

Les oxydes de phosphines cationiques **36** et **37** ont été caractérisées par RMN multinoyaux. En RMN ³¹P, **36** et **37** résonnent sous forme de singulets à + 27,0 ppm et + 25,0 ppm, respectivement. En RMN ¹H, la quaternisation des atomes d'azote de **36** et **37** est révélée par un singulet à + 4,34 et + 4,31 ppm, respectivement.

Une autre voie de synthèse du dication **36** a aussi été envisagée. En partant de la phosphine dicationique **38**, obtenue par méthylation des deux atomes d'azote du précurseur **34**, l'ajout de deux éq. de *m*-CPBA dans de l'acétonitrile a conduit également à l'oxyde de phosphine **36** avec un rendement de 91 % (**schéma 78**).

Schéma 78 : Synthèse alternative de l'oxyde de phosphine dicationique 36 via le diimidazolium 38 (voir schéma 77).

La faible solubilité des oxydes de phosphines cationiques **37** et **38** dans des solvants non polaires confirme leur caractère ionique. La structure cristalline de **36** a pu être déterminée par diffraction des rayons X après recristallisation dans un mélange THF/Et₂O à – $20 \degree$ C (**Figure 6, Tableau 7**).

Figure 6 : Représentation des structures cristallines des phosphines 34 et 38 (en haut) et des oxydes de phosphines 35 et 36 (en bas).

	C(1)-P(1)	C(2)-P(1)	C(13)-P(1)	C(2)-N(1)	C(13)-N(4)	P(1)-O(1)
34	1,870(2)	1,8056(9)	1,8056(9)	1,322(1)	1,322(1)	
38	1,862(1)	1,830(6)	1,824(6)	1,335(7)	1,349(8)	
35	1,829(1)	1,8072(9)	1,803(1)	1,318(1)	1,323(1)	1.4849(7)
36	1.818(2)	1.826(2)	1.827(2)	1,339(3)	1,337(2)	1,477(2)

Tableau 7 : Longueurs en Å de liaisons représentatives de 34, 35, 36 et 38 déterminées pardiffraction des rayons X.

La phosphine dicationique **38** et l'oxyde de phosphine dicationique **36** voient leur longueur de liaison C1-P1 diminuer par rapport à leurs analogues neutres **34** et **35**. Les longueurs de liaisons P1-O1 des composés **35** et **36** sont du même ordre que celle de la chalcogénophosphine de référence Ph₃P=O (**tableau 4**). Dans un deuxième temps, la coordination des phosphines neutre et dicationique, **34** et **37**, a été étudiée. L'addition du précurseur [Rh(cod)Cl]₂ sur la phosphine dicationique **38**, ne conduit à aucune coordination de cette dernière. Ceci s'explique par la faible nucléophilie de l'atome de phosphore lié à deux fragments imidazolium (**schéma 79**).

Schéma 79 : Tentatives de complexation des phosphines 34 et 38 sur un centre de rhodium(I).

Cependant, l'ajout du complexe [Rh(cod)Cl]₂ sur la phosphine neutre **34** dans CH₂Cl₂ conduit au complexe **39** avec un rendement de 75 %. Le complexe **39** a été entièrement caractérisé par RMN multi-noyaux. En RMN ¹³C, les atomes de carbone quaternaire des noyaux imidazoles de **39** résonnent sous forme d'un doublet à 143,4 ppm ($J_{CP} = 88,1$ Hz), significatif de la formation d'une liaison C-P. En RMN ³¹P, **39** résonne sous la forme d'un doublet à + 14,5 ppm avec une constante de couplage ${}^{1}J_{PRh}$ de 151,9 Hz. La structure de **39** a été confirmée par diffraction des rayons X d'un monocristal cristallisé dans un mélange CH₂Cl₂/Et₂O (**figure 7**). Elle permet aussi d'observer la géométrie tétrahèdrique de l'atome de phosphore (C1-P1-C2 = 106,5° (2)°; C1-P1-C13 = 105,1° (2) ; C1-P1-Rh1 = 119,0° (2) ; C2-P1-C13 = 96,1° (2) ; C2-P1-Rh1 = 111,7° (2) ; C13-P1-Rh1 = 115,7° (2) angle en degré) et la coordination de l'atome de phosphore.

Figure 7 : Représentation de la structure cristalline du complexe de rhodium 39.

Afin d'étudier le rôle de l'espaceur rigidifiant 1,2-di(N-imidazolyl)benzène dans **34** et **38**, la synthèse d'analogues non pontés a été entreprise.

A partir du 1-(1-phényl)-1*H*-imidazole, l'addition d'un éq. de *n*-BuLi dans du THF à basse température, suivie de l'addition de 0,5 éq. Cl_2PtBu conduit à la phosphine **40** avec un rendement de 85 % (**schéma 80**) (à noter que cette même réaction conduit au composé **XVIIa** après un traitement par NH₄Cl (**schéma 58**)). En RMN ³¹P, **40** résonne sous la forme d'un singulet à - 45.8 ppm (δ = - 19,7 ppm pour l'analogue **34**).

Schéma 80 : Synthèse de la di-imidazolophosphine 40 et de son complexe de rhodium(I) 41.

La réaction de **40** avec le complexe de rhodium [Rh(cod)Cl]₂ conduit au complexe **41** où deux atomes d'azote des deux noyaux imidazoles sont coordinés au centre métallique. Ce complexe **41** a été caractérisé par RMN multi-noyaux. Par HMBC ¹H-¹⁵N, les signaux des noyaux azotes résonnent par un doublet qui montre une constante de couplage J_{N-Rh} =21,5 Hz. Notons qu'en RMN ³¹P, le déplacement chimique de l'atome de phosphore reste similaire à celui de son précurseur **40** (δ = - 44,5 ppm).

Le mode de coordination observé montre que la paire libre de l'atome de phosphore est moins disponible que celles des deux atomes d'azotes, certainement dû à l'encombrement stérique du substituant *t*-butyle. La coordination des ligands **34** et **40** avec le dimère de rhodium $[Rh(cod)Cl]_2$ a conduit à deux résultats distincts. En effet, dans le cas du complexe **39**, la présence de l'espaceur *ortho*-phénylène entre les deux motifs imidazoles favorise une coordination de l'atome de phosphore, alors que l'absence de ce motif dans le ligand **40**, induit la coordination des deux atomes d'azotes sur le métal (effet chélatant) pour former le complexe **41**.

4. Etude théorique de la série bidente

La nature de la liaison N₂C-P des di-amidiniophosphanes cycliques et oxydes correspondants a été considérée *via* un système modèle ouvert $[NHC-P(NHC)tBu)]^{2+}$ (schéma 81).

Schéma 81: Modes de dissociations possibles du système modèle ouvert $[NHC-P(NHC)R)]^{2+}$.

Dans ce système, la valeur $\Delta(\Delta G)$ de -22,2 kcal/mol indique en effet la préférence pour une rupture homolytique de la liaison C-P suggérant une contribution plus importante de la forme covalente (C-P). En version oxyde, la valeur de $\Delta(\Delta G)$ de -15,4 kcal/mol, montre aussi une préférence pour une dissociation homolytique.

Charge	Donneur	Accepteur	$\Delta G_{ m homo}$	$\Delta G_{ m h\acute{e}t\acute{e}ro}$	$\Delta(\Delta G)$
+2	NHC	²⁺ P(O)(NHC) ^t Bu	49,4	64,8	-15,4
	NHC	²⁺ P(NHC) ^t Bu	50,3	72,5	-22,2

Tableau 8 : Valeur de $\Delta(\Delta G)$ à partir d'un système modèle ouvert [NHC-P(NHC)*t*Bu)]²⁺

III] <u>Di-amidiniophosphanes</u>

Les di-amidiniophosphanes comportent formellement deux charges positives pour un atome de phosphore. Le motif de base utilisé est le 1,2-di(N-imidazolyl)benzène, qui permet d'introduire un groupement phosphoré facilement entre les deux noyaux imidazoles et qui possède deux atomes d'azote facilement accessible pour une quaternisation pour ainsi générer les deux charges positives.

A] Résultats et discussion

La préparation des di-amidiniophosphanes a été envisagée à partir du 1,2-di(Nimidazolyl)benzène **28**. Comme précédemment, après une double déprotonation de **28** par 2 éq. de *n*-BuLi dans le THF, et addition d'un éq. de dichlorophénylphosphine, la diimidazolophosphine cyclique **29** est obtenue avec un rendement de 49 % (**schéma 82**). En RMN ³¹P, elle résonne sous la forme d'un singulet à – 60,8 ppm. Cette valeur est en faveur d'une structure symétrique cyclique. La structure de **29** a été confirmée par diffraction des rayons X de monocristaux incolores obtenus par cristallisation dans une solution CH_2Cl_2/Et_2O à -20°C (**figure 8**).

L'addition de deux éq. de MeOTf sur la phosphine **29** dans CH_2Cl_2 conduit au dication **43** avec un rendement de 98 %. En utilisant seulement un éq. de MeOTf, le mono-cation **42** est isolé avec un rendement de 95 %.

Schéma 82: Synthèse des di-amidiniophosphines 42 et 43 à partir du 1,2-di(N-imidazolyl)benzène 28.

Les cations 42 et 43 ont été caractérisés par RMN multi-noyaux. En RMN ³¹P, ils présentent un déplacement chimique légèrement blindé par rapport au produit de départ (42 : $\delta = -68,5$ ppm (s), 43 : $\delta = -76,2$ ppm (s)). La structure de 43 a été confirmée par diffraction des rayons X de monocristaux obtenus dans une solution MeCN/Et₂O à -20° (figure 8). Dans

les deux cas, l'atome de phosphore présente une géométrie tétrahèdrique ($\Sigma^{\circ} = 300, 2^{\circ}$ pour **29** et à 295,5° pour **43**).

Figure 8 : Représentation des structures cristallines des phosphines 29 (à gauche) et 43 (à droite).

La synthèse de l'imidazoliophosphine **44** a été également envisagée, afin d'accéder à un analogue plus pauvre en électrons que l'imidazoliophosphine **43** (**schéma 82**). A partir du di-imidazolium **33**, l'ajout de deux éq. de Et₃N suivi d'un éq. d'éthyldichlorophosphite permet de conduire au composé souhaité **44** avec un rendement de 32 %. En RMN ³¹P, il résonne à + 31,4 ppm, se positionnant entre la di-amidiniophosphine **43** (δ = -76,2 ppm) et les imidazoliophosphonites acycliques **3ab** (δ = + 141 - 142 ppm), décrites précédemment.

La voltammétrie cyclique des phosphines **29**, **42** et **43** a été réalisée afin d'évaluer leur caractère donneur. Elles se caractérisent par une vague d'oxydation irréversible au potentiel électrochimique suivant : $E_p^{ox}(29) = +1,02 \text{ V}$, $E_p^{ox}(42) = +2,28 \text{ V}$, $E_p^{ox}(43)=+2,83 \text{ V/ECS}$. Ces données indiquent que le site d'oxydation, certainement le groupement PPh, est de plus en plus électro-déficient dans l'ordre $29 \rightarrow 42 \rightarrow 43$. Comme le potentiel d'oxydation des phosphines est reconnu comme une mesure du caractère donneur de l'atome de phosphore correspondant, la coordination de la di-imidazoliophosphine **43** avec un acide de Lewis semblait donc être un défi. En effet, quelles que soient les conditions utilisées (solvants, température, stœchiométrie...), le traitement du dication **43** par un complexe de Rh(I) n'indique aucune coordination de l'atome de phosphore. En RMN ³¹P, le déplacement chimique du produit de départ reste inchangé. Différents essais avec d'autre acides de Lewis (PdCl₂(PhCN)₂, CuI, CuBr₂, BH₃) ou encore avec des oxydants (S₈ ou H₂O₂) se sont révélés également être un échec. Ces résultats montrent donc que le ligand **43** est très pauvre en électron, et semble être en dessous de la limite de la coordination. Néanmoins, l'ajout du complexe de [Rh(cod)Cl]₂ sur le ligand mono-cationique imidazolo-imidazoliophosphine **42** dans CH_2Cl_2 à 40°C conduit après 24h à la formation de deux complexes de rhodium **45** et **46** avec un rendement global de 73 % et dans un rapport 50 :50 (**schéma 83**).

En effet par RMN ³¹P, le complexe **45** résonne sous la forme d'un doublet à $\delta = +15,8$ ppm, avec un constante de couplage ${}^{1}J_{PRh} = 166,1$ Hz, significatif de la formation d'une liaison P-Rh. Différemment, le complexe **46** apparaît sous forme d'un singulet très proche du produit de départ (**46** : $\delta = -69,1$ ppm (s), **42** : $\delta = -68,5$ ppm (s)), ne montrant aucune intéraction P-Rh. La structure exacte de **46** a été confirmée par diffraction des rayons X d'un monocristal obtenu dans le CH₂Cl₂ (**Figure 9**).

Schéma 83 : Addition du dimère [Rh(cod)Cl]₂ sur les phényl-phosphines 29, 42 et 43.

Figure 9 : Représentation de la structure cristalline du complexe de rhodium N-coordiné 46.

La structure du complexe **46** met en évidence la coordination de l'atome d'azote sp^2 avec l'atome de rhodium localisé au centre d'un environnement quasi-plan carré. La paire libre de l'atome de phosphore est dirigée vers le centre métallique avec une distance P...Rh de 3,43 Å. Cette distance est plus grande que la somme des rayons covalents correspondant (\approx 2,31 Å) mais inférieure à la somme de leurs rayons de Van der Waals (\approx 3,8 Å). Elle montre donc l'existence d'une interaction résiduelle entre l'atome de phosphore et l'atome de rhodium.

Comme pour les ligands **29** et **43**, l'atome de phosphore présente une géométrie pyramidale (Σ° : 300,2°, 295,5° et 295,5° pour **29**, **42**, et **46**, respectivement), avec le substituant phényle situé du même côté que le groupement *ortho*-phénylène.

La coordination de l'atome de phosphore avec le centre rhodium dans le complexe **45** montre que le doublet libre de l'atome de phosphore du ligand monocationique **42** possède un caractère suffisamment donneur pour créer cette interaction. Néanmoins, l'obtention du complexe **46** montre aussi la limite de ce caractère donneur envers le centre métallique Rh (I).

Pour confirmer les observations précédentes, la phosphine neutre **29** a été aussi mise en présence du dimère de Rh(I) dans CH₂Cl₂. A température ambiante, le complexe au rhodium **47** est obtenu avec un rendement de 88 %. En RMN ³¹P, un doublet à + 7,7 ppm est obversé montrant clairement que l'atome de phosphore est bien lié à l'atome de rhodium (¹*J*_{PRh} = 160,0 Hz) (**Schéma 83**). La structure du complexe **47** a pu être déterminée par diffraction des rayons X de mono-cristaux obtenus dans une solution de CH₂Cl₂/Et₂O à – 20 °C (**figure 10**). Aucune coordination de l'atome d'azote avec le centre métallique n'a été détectée, confirmant le plus fort caractère donneur de l'atome de phosphore du ligand **29** par rapport aux ligands cationiques **42** et **43**.

Figure 10 : Représentation de la structure cristalline du complexe de rhodium 47.

L'effet électro-donneur des di-imidazoliophosphanes ainsi que la nature de la liaison N_2C -P ont été envisagés dans un deuxième temps selon une approche théorique par le Dr Christine Lepetit.

B] Etude théorique des di-amidiniophosphanes

1] <u>Caractérisation de la liaison N₂C-P des di-amidiniophosphanes</u>

La nature de la liaison N₂C-P des di-amidiniophosphanes a été étudiée avec le modèle ionique $[NHC-P(NHC)Ph)]^{2+}$. Dans ce système, contrairement aux monoamidiniophosphines, le caractère datif de la liaison N₂C⁺-P n'était pas à priori garanti. La dissociation homolytique pourrait être favorisée à cause d'une relaxation électrostatique (**schéma 81, p : 64**). La valeur $\Delta(\Delta G)$ de – 13,7 kcal/mol (**tableau 2, p : 30**) indique en effet la préférence pour une rupture homolytique de la liaison C-P suggérant une contribution plus importante de la forme covalente (C-P) dans une description mésomère de la structure.

2] Propriétés electro-donneuses des di-amidiniophosphanes :

Les orbitales moléculaires frontières (OMF) des phényl-phosphanes **29-43** (schéma **82, p : 64**) et de l'éthyl-phosphinite **44** ont été calculées au niveau PCM-B3PW91/6-31G et sont représentées dans la **figure 11**.

De façon générale, le remplacement d'un substituant phényle par un groupement éthoxy a pour conséquence de diminuer l'énergie de la HO (localisée au niveau de la paire libre d'électrons de l'atome de phosphore) et de la BV (qui résulte du recouvrement de l'orbitale anti-liante π^* du NHC et de l'orbitale p du phosphénium).

Comme dans le cas des imidazoliophosphanes précédentes, ces résultats indiquent un caractère donneur plus faible du ligand 44 par rapport à 43. La même tendance est observée en série phénylée en partant du ligand neutre 29 jusqu'au ligand dicationique 43.

Figure 11 : Orbitales moléculaires frontières de 29–44 calculées au niveau PCM-B3PW91/6-31G** dans un continuum l'acétonitrile PCM ($\epsilon = 35.688$).

Le caractère donneur des différents ligands L a été ensuite évalué par la mesure des valeurs des fréquences d'élongation IR ($\tilde{\nu}_{CO}$) dans leur complexe de rhodium respectif du type : [RhCl(L)(CO)₂] (**Tableau 8**). D'après les valeurs obtenues, le caractère donneur décroît dans l'ordre suivant : **29a**> **29b**> **42**> **42a**> **43**> **44**. Par ailleurs, il apparaît clairement que l'introduction d'une charge positive a plus d'influence sur le caractère donneur que l'introduction d'un substituant éthoxy.

L ^{a)}	q	R	Rh–P (Å)	$E_{\rm diss}$ (kcal/mole)	$\tilde{v}_{\rm CO}^{\rm b)} (\rm cm^{-1})$
29	0	Ph	2,386	14,27	2053,6
29a	0	OEt	2,357	14,41	2056,9
42	+1	Ph	2,377	6,32	2082,7
42a	+1	OEt	2,344	6,75	2088,2
43	+2	Ph	2,358	-2,67	2102,2
44	+2	OEt	2,352	-4,52	2102,5

Tableau 8 : Caractéristiques des complexes [RhCl(L)(CO)₂] calculées au niveau PCM-B3PW91/6-31G**/LANL2DZ*(Rh) dans l'acétonitrile ($\varepsilon = 35,688$). a) Les analogues phosphinites sont anotés d'un suffixe a. b) Valeur moyenne des deux fréquences d'élongations IR \tilde{v}_{CO}

Ces résultats sont en accord avec des observations précédentes où il a été montré que le caractère donneur d'un imidazoliophosphane est équivalent à celui ayant deux ligands phosphite (et non pas phosphinite), à savoir que l'effet d'un substituant imidazolio au niveau de l'atome de phosphore est équivalent à celui de trois substituants alcoxy.⁸¹

En série [RhCl(L)(CO)₂] (**Tableau 8**), il est à noter que la première méthylation de l'atome d'azote est deux fois plus efficace pour diminuer la caractère donneur du ligand ($\Delta \tilde{v}_{CO} \approx 30 \text{ cm}^{-1}$ pour **29**→**42**) que la deuxième méthylation ($\Delta \tilde{v}_{CO} \approx 15 \text{ cm}^{-1}$ pour **42**→**43**). Ces résultats sont en parfait accord avec l'analyse des OMF (**figure 10**).

3] Coordination des di-amidiniophosphanes

Le caractère faiblement donneur des ligands envisagés (29, 40, 41 et 42) ne favorise pas la coordination au centre métallique (Rh (I)). Les énergies de dissociation E_{diss} diminuent et une dissociation spontanée est même prévue pour les ligands dicationiques (43 et 44) (**Tableau 8**). Ceci est parfaitement en accord avec les données expérimentales puisque le dication 43 ne permet aucune coordination à partir du dimère [Rh(cod)Cl]₂ alors que les ligands 29 et 42 conduisent aux complexes 47 et 45-46 correspondants (**Schéma 83**). A partir de la phosphine mono-cationique 42, le complexe P-coordinant 45 est obtenu avec un complexe N-coordinant 46 dans un rapport 50:50. Les OMF des ligands 29 et 42 sont similaires et ne peuvent donc pas différencier le mode de coordination (N-coordination ou Pcoordination). Dans les deux cas, les HO sont principalement localisées au niveau des paires libres de l'atome de phosphore, alors que les orbitales moléculaires des paires libres de

⁸¹ Y.Canac, N. Debono, L. Vendier, R. Chauvin, *Inorg. Chem.* 2009, 48, 5562.

l'atome d'azote sont plus basses en énergie. Les énergies des isomères **45** et **46** ont été calculées au niveau PCM3PW91/6-31G**/LANL2DZ* (Rh) dans CH_2Cl_2 , (avec un continuum ε =8.93) indiquant que le complexe N-coordiné **46** est plus stable que le complexe P-coordiné **45** de seulement 1,76 kcal.mol⁻¹. Ceci est en faveur d'un contrôle thermodynamique de la coordination du ligand au métal (**schéma 84**).

Schéma 84 : Stabilité relative des complexes isomères 45 et 46 calculée au niveau PCMB3PW91/ $6-31G^{**}/LANL2DZ^{*}(Rh)$ dans le dichlorométhane ($\varepsilon = 8,93$). Les énergies de Gibbs à 298,15 K sont données entre parenthèse.

4] <u>Conclusion</u>

Selon une approche théorique, des ligands pauvres en électrons dans une gamme plus large ont pu être classés en fonction des valeurs de fréquence IR $\tilde{\nu}_{CO}$ dans leurs complexes [RhCl(L)(CO)₂] (**Tableau 9**). La substitution d'un groupement phényle par un groupement imidazolio est donc plus efficace pour diminuer le caractère donneur du ligand que la substitution du groupement phényle par un groupement éthoxy.

L	P(OEt) ₃	P(OPh) ₃	-N P Ph Ph Ph	-N C P Ph OEt	N OÉt OEt	PF ₃	Me, Ph N N N N N N N N N N N N N	Me, Ph Me (⊕) V (⊕) N	Me OEt Me N P N N P (A A 44
$\tilde{v}_{ m co}$	2058,5	2060,4	2071,6	2072,7	2075,9	2077,9	2082,7	2102,2	2102,5

Tableau 9: Echelle des propriétés électro-donneuses de ligands L, basée sur la fréquence d'élongation IR \tilde{v}_{CO} (cm⁻¹) dans le complexe [RhCl(L)(CO)₂] correspondant (calculée au niveau PBEPBE/6-31G**/LANL2DZ*(Rh) en phase gazeuse).

Malgré une légère différence structurale due à la présence du pont *o*-phénylène entre les deux groupements imidazoles dans **42**, la comparaison de la valeur des fréquences d'élongation des complexes d'éthyl-imidazoliophénylphosphinite ($\tilde{v}_{CO} = 2072.7 \text{ cm}^{-1}$) et de **42** ($\tilde{v}_{CO} = 2082.7 \text{ cm}^{-1}$) montre que l'effet électro-attracteur du groupement imidazolyle est supérieur à celui du groupement éthoxy. L'échelle montre aussi que la phosphine **43** et le phosphinite **44** ($\tilde{v}_{CO} = 2102 \text{ cm}^{-1}$) sont les ligands potentiels les plus pauvres en électrons connus à ce jour.

Enfin, la phosphine monocationique **42** ($\tilde{\nu}_{co} = 2082.7 \text{ cm}^{-1}$) apparaît comme le ligand le plus pauvre retenant un effet donneur suffisant pour permettre une coordination de l'atome de phosphore avec le métal (Rh (I), complexe **45**).

Les propriétés de coordination des ligands « extrêmes » 42, 43, et 44 envers différents acides de Lewis méritent d'être approfondies.

IV]Bis-amidiniophosphanes conjuguées

Les bis-amidiniophosphines connues de la bibliographie présentent deux noyaux imidazoliums séparés l'un de l'autre par la présence d'un espaceur.⁸² En d'autre termes, les deux charges cationiques sont isolées l'une par rapport à l'autre. Cette partie vise à développer une méthodologie pour accéder à des bis-amidiniophosphines conjuguées voire jumelées par un atome d'azote.

A] Etude bibliographique

Les seuls exemples de bis-amidiniophosphines connus à ce jour ont été préparés dans l'équipe. Ils ont été synthétisés en série *ortho-*⁸² et *méta*⁸³-phénylène dans des conditions analogues à celles utilisées en série monodente (**schéma 85**) :

- abstraction des deux protons des noyaux imidazoles par une base et addition du groupement phosphinyle,
- ii) N-méthylation de l'atome d'azote de la bis(imidazolo)phosphine.

⁸² a) Y. Canac, N. Debono, L. Vendier, et R. Chauvin, *Inorg. Chem.*, 2009, 48, 5562; b) Y. Canac, N. Debono, C. Lepetit, C. Duhayon et R. Chauvin, *Inorg. Chem.*, 2011, 50, 10810.

⁸³ Publication soumise.

Schéma 85 : Synthèse en série ortho- et méta-phénylène de bis-amidiniophosphines.

Le traitement des deux diphosphines neutres I et III par 2 éq. de MeOTf permet d'obtenir leurs homologues II et IV avec des rendements de 95 % et 94 %, respectivement. En RMN ³¹P, la « *méta*-diphosphine » dicationique II résonne sous forme d'un singulet à – 21,0 ppm alors que l' « *ortho*-diphosphine » dicationique IV présente deux isomères qui résonnent à – 20,6 et – 21,5 ppm dans un rapport 70 : 30. En RMN ¹H, la présence d'un singulet, à + 3,52 ppm pour les deux isomères, confirme la présence du groupement CH₃ sur l'atome d'azote.

Ces bis-amidiniophosphines ont été utilisées pour la synthèse de complexes organométalliques en série palladium et rhodium. En effet, après addition d'un éq. de $[Rh(cod)_2Cl]_2$ sur les bis-amidiniophosphines II et IV, un bullage de CO permet d'obtenir les complexes V et VI avec des rendements de 92 et 72 %, respectivement. Le ligand IV a aussi permis d'obtenir un complexe analogue en série palladium avec un rendement de 92 % (schéma 86).

Ces complexes ont été caractérisés par RMN multi-noyaux. En RMN ³¹P, les complexes V et VI résonnent sous forme de doublet à + 18,7 et + 31,1 ppm avec des constantes de couplage ${}^{1}J_{PRh}$ de l'ordre de 135 Hz. Le complexe VII résonne sous forme d'un singulet à + 9,21 ppm.

Schéma 86 : Complexation des ligands dicationiques II et IV sur des centres Rh (I) et Pd (II).

D'après les structures cristallines des complexes V, VI et VII obtenues par diffraction des rayons X, le centre métallique présente une géométrie plan carrée avec un arrangement *trans* du ligand dicationique. Cette configuration *trans* est indiquée par les valeurs des angles P-M-P et X-M-Cl des complexes (**Tableau 10**). Elle peut s'expliquer principalement par la répulsion électrostatique qui s'exerce entre les deux charges cationiques portées par les extrémités amidiniophosphines.

Complexes Angles (en °)	V	VI	VII
P-M-P	176,8	163,8	165,7
X-M-Cl (avec X=CO ou Cl)	178,8	175,5	180

Tableau 10 : Valeur des angles en degré (°) P-M-P et CO-M-Cl des complexes V, VI et VII.

La formation de complexes à ligand bis(amidiniophosphines) à ponts phénylène ayant été réalisée, le prochain défi consistait à essayer de supprimer ce pont phénylène. Afin d'obtenir des bis-amidiniophosphines sans espaceur, quatre cibles ont été envisagées : les systèmes **A** et **B** avec un lien N-N, le système **C** avec un lien C-C et le système **D** qui possède un atome d'azote annélé (schéma 87).

Schéma 87 : Bis-amidiniophosphines sans espaceur envisagées.

B] <u>Résultats et discussion</u>

1] Système A

Jeong et *coll*. ont montré en 2008 que le couplage oxydant N-N entre deux noyaux imidazoles était possible en présence de Me_2SiCl_2 dans du THF.⁸⁴ De ce fait, la même réaction a été essayée à partir du 1-(1-phényl)-1*H*-imidazole **1a** (schéma **88**).

Schéma 88 : Stratégie de synthèse du bis(phényl-imidazolium) 48 .

Après différentes tentatives, ayant conduit à des mélanges de produits, le dication **48** n'a pu être mis en évidence.

⁸⁴ D. Jeong, W. Park, J. Jeong, D. Churchill, H. Lee, *Inorg. Chem. Commun.*, 2008, 11, 1170.

2] Système B

La synthèse du 4,4'-bis-1,2,4-triazole **49** a été réalisée à partir de l'azine du dihydrochlorure de N,N-diméthylformamide et du 4-amino-1,2,4-triazole en suivant les conditions décrites par Bartlett et Humphrey (**schéma 89**).⁸⁵

Schéma 89 : Synthèse du bis-triazole 49.

A partir du bis-triazole **49**, l'addition de 2 éq. de base puis de chlorodiphénylphosphine a conduit au produit **50** et à des produits secondaires qui n'ont pas pu être identifiés par RMN multi-noyaux (**schéma 90**).

Schéma 90 : Synthèse du composé 50 à partir du bis-triazole 49.

En RMN ³¹P, **50** résonne sous forme d'un singulet à - 32,9 ppm, respectivement.

Les adduits **50** et les produits secondaires n'ayant pas pu être séparés, la quaternisation par addition de MeOTf a été envisagée sur le mélange, mais seule une rupture de la liaison N-N a été observée. Afin de remédier à ce problème, une solution a été de se tourner vers le système C possédant un lien C-C plus robuste (**Schéma 87**).

3] Système C

Bertrand et *all* ont rapporté la synthèse de 1,1'-diaryl-1H,1'H-4,4'-bis-1,2,3-triazole (Ar = phényl, mésityl), qui sont des analogues au système C.⁸⁶ Ces bis-triazoles sont obtenus par réaction en un seul pot entre l'aniline correspondante et le 1,4 bis(triméthylsilyl)butadiyne (**schéma 91**).

⁸⁵ R. K. Bartlett, I. R. Humphrey, J. Chem. Soc. (C) **1967**, 1664.

⁸⁶ G. Guisado-Barrios, J. Bouffard, B. Donnadieu, et G. Bertrand *Organometallics* **2011**, *30*, 6017.

Schéma 91 : Synthèse des dérivés 1,1'-diaryl-1H,1'H-4,4'-bis(1,2,3-triazole) 51 à partir de l'aniline correspondante.

Ces bis-triazoles n'ont pas pu encore être exploités mais leur synthèse sera développée dans l'équipe prochainement.

4] Système D

Les triamino-bis-carbéniophosphines (TABCP) peuvent à priori jouer le rôle de nouveaux ligands pontants de métaux de transition. Ce travail a été réalisé par Mohammed Zaki et Mariam Raouchi. Le schéma rétro-synthétique envisagé pour accéder à la bisamidiniophosphine N-annélée **55**, comprend quatre étapes (**schéma 92**).

Schéma 92 : Schéma rétro-synthétique du ligand potentiel carbéniophosphine 55.

Le précurseur **52** est une tri-amine aliphatique mentionnée de longue date, mais dont la synthèse n'a été décrite que récemment. ⁸⁷

1. <u>1^{ère} voie de synthèse du 1,3,5-triaminopentane</u>

Selon une publication récente,⁸⁷ la préparation du 1,3,5-triaminopentane (TAP) **52** nécessite huit étapes de synthèse (**schéma 93**).

⁸⁷ M.Rachel Suissa, C. Romming, J. Dale, *Chem. Eur. J.* **2010**, 10.

Schéma 93 : Etapes de synthèse du 1,3,5-triaminopentane 52.

La première étape est la double addition de Mickael du malonate d'éthyle sur l'acrylonitrile conduisant au diester dinitrile **a**. L'hydrolyse de ce dernier en milieu acide permet d'obtenir, après décarboxylation, le triacide **b** correspondant. L'estérification de ce triacide en présence d'éthanol et d'acide sulfurique concentré conduit au triester **c**. Ces trois premières étapes ont pu être reproduites avec les rendements indiqués (**schéma 93**) par Mohammed Zaki. L'hydrazide **d** n'a cependant pas pu être obtenue. Ce manque de reproductibilité d'un résultat de la bibliographie peut être attribué à la nature des échantillons d'hydrazine utilisés. En effet, il était spécifié qu'il était nécessaire d'utiliser de l'hydrazine anhydre pour éviter l'hydrolyse du triester **c**. L'hydrazine anhydre n'étant plus commercialisée pour des raisons de dangérosité, l'alternative pouvait être d'utiliser le chlorhydrate d'hydrazine libre par addition d'une base adéquate (**schéma 94**). Des tests réalisés, en présence d'éthylate de sodium n'ont pas permis cependant d'obtenir le trihydrazide **d** visé.

Schéma 94: Protocole envisagé pour l'obtention de l'hydrazine anhydre à partir du sel correspondant.

Face aux problèmes rencontrés, une deuxième voie d'accès au TAP 52 a été envisagée.

2. 2^{ème}voie de synthèse du 1,3,5-triaminopentane

La synthèse du TAP **52** a été envisagée en trois étapes à partir du diméthyl-3oxoglutarate (DMOG) **53**, via le triol **54** correspondant (**schéma 95**).⁸⁸

a) Synthèse du « pentane-1, 3,5-triol » 54

Lors d'un premier essai réalisé par Mariam Raouchi, les fonctions esters et cétones du diméthyl-3-oxoglutarate **53** sont réduites par l'action de 2 éq. de LiAlH₄ dans le THF à reflux pendant 48 h. Le mélange est ensuite traité en milieu acide en vue de protoner les oxyles libres [O⁻], puis de les neutraliser en milieux basique. La purification du brut réactionnel par chromatographie sur colonne de gel de silice (éluant : méthanol /acétate d'éthyle), suivie d'une distillation au kugelrohr (four à boule) permet d'obtenir le triol **54** avec un rendement de 32 % (**schéma 95**).

Schéma 95 : Synthèse du triol 54 par réduction du diméthyl-3-oxoglutarate 53.

Par comparaison avec les données spectroscopiques de la bibliographie, la structure du produit **54** a été confirmée sans ambiguïté.⁸⁹

⁸⁸ T.Utech, J.Kohler, B. Wunsch, Eur.J. Med. Chem., 2011,46, 2157.

Cependant cette synthèse s'est par la suite révélée être difficilement reproductible. Ceci a été attribué à la qualité du LiAlH₄ utilisé. Malgré l'utilisation de quantités plus importantes de LiAlH₄ (jusqu'à 5 équivalents), la synthèse du triol n'a pu être reproduite avec de bon rendements, la réaction conduisant à des mélanges complexes de produits réduits difficiles à séparer.

b) Synthèse du pentane-1,3,5-triyl-tris(trifluorométhanesulfonate) 55

L'échantillon de triol **54** obtenu a été converti en tris-triflate **55** par addition d'anhydride trifluorométhanesulfonique en présence de pyridine dans le dichlorométhane. Le tris-triflate **55** a été obtenu avec un rendement de 44 % après 4 h d'agitation à 0°C. Il a été caractérisé par RMN ¹H et ¹³C et ses données spectroscopiques comparées avec celles décrites dans la bibliographie (**schéma 96**).⁶⁰

Schéma 96: Etape de synthèse du tris-triflate 55.

c) Essai de synthèse du TAP 52

Afin d'essayer d'accéder au TAP **52**, la substitution des fonctions triflates de **55** a été essayée par addition d'amidure de sodium (NaNH₂) (**schéma 97**).

Les premiers tests réalisés (3 éq de NaNH₂, CH₃CN, 17 h, TA) n'ont pas conduit au dérivé désiré, mais à des mélanges de produits non identifiés, certains pouvant être attribués à des produits d'élimination conséquence du caractère basique de NaNH₂.

Schéma 97 : Protocole envisagé pour la synthèse de la TPA 52.

Les difficultés rencontrées pour la synthèse du triol **54** ne nous ont pas permis de tester d'autres conditions pour l'obtention de la triamine à partir du tris-triflate **55**. Cette voie de synthèse reste cependant prometteuse dans son principe et mérite d'être étudiée par la suite. L'étape de substitution des groupements triflates de **55** par des groupements amino sera par

⁸⁹ M. Viscontini, C. Ebnother, *Helv. Chim. Acta*, **1951**, *34*, 116.

exemple envisagée avec un réactif moins basique que NaNH₂, à savoir l'ammoniac NH₃ luimême.

V] Conclusion

Dans ce chapitre, après avoir donné un aperçu bibliographique des amidiniophosphines, nous avons rapporté la préparation de nouveaux ligands phosphorés. La première partie décrit la méthodologie utilisée pour aboutir à des ligands à caractère extrêmement pauvre en électrons à partir de deux motifs de départ, le 1-phényl(*1H*)-imidazole et les sels d'imidazolium IMes,HCl ou IPr,HCl. Nous avons ainsi pu préparer des ligands amidiniophosphonites et montrer que ces derniers conservaient un caractère donneur suffisant pour la coordination à un centre métallique Rh (I).

La synthèse de nouveaux chalcogénophosphéniums en série monodente a ensuite été effectuée à partir du motif 1-phényl(*1H*)-imidazole et, en série bidente, à partir du 1,2-di(N-imidazolyl)benzène. En série monodente, on a montré la stabilisation du motif chalcogénophosphénium par un carbène (NHC ou BAC) et démontré le caractère datif de la liaison C-P. En série bidente cependant, les di-amidiniochalcogénophosphéniums s'avèrent plus favorable à une rupture homolytique, montrant que le caractère datif de la liaison C-P correspondant est négligeable.

La préparation de la première hydroxyphosphine cationique et son complexe de rhodium a été décrite. Contrairement aux chalcogénophosphéniums, le doublet de l'atome de phosphore est encore disponible pour former une liaison de coordination $P \rightarrow [M]$.

De nouvelles di-amidiniophosphines où l'introduction de deux noyaux imidazoliums permet de diminuer le caractère donneur de l'atome de phosphore ont aussi été synthétisées. Dans ce cas, la formation de complexes métalliques n'a pas été possible.

La synthèse de bis-amidiniophosphines sans espaceur reste un défi à relever. Les premiers résultats encourageants obtenus permettent d'envisager différentes voies d'accès. Ainsi, la synthèse du 1,3,5-triaminopentane continue d'être développée au sein de l'équipe afin d'aboutir à un bis-amidiniophosphine N-annélée.

PARTIE EXPERIMENTALE

To a solution of 1-(1-phenyl)-1*H*-imidazole **1a** (1.1 g, 7.64 mmol) in Et₂O (40 mL) cooled to -78° C was added BuLi (2.5 M in hexane, 3.1 mL, 7.64 mmol). The suspension was warmed to room temperature and stirred for 4 hours. After addition of diethyl chlorophosphite (1.2 mL, 7.64 mmol) at -78° C, the solution was

slowly warmed to room temperature and stirred for 2 hours. The organic layer was washed with brine. The organic layer was then extracted with additional Et_2O (2 x 20 mL), dried over MgSO₄ and concentrated under vacuum affording **2a** as a yellow oil (1.21 g, 60 %).

¹**H NMR (CD₃CN, 298 K):** δ = 7.56-7.44 (m, 5H, H_{ar}), 7.32 (brs, 1H, H_{ar}), 7.22 (brs, 1H, H_{ar}), 3.94-3.78 (m, 4H, CH₂), 1.12 (t, *J*_{HH} = 7.0 Hz, 6H, CH₃).

¹³C NMR (CD₃CN, **298** K): δ = 149.0 (d, J_{CP} = 28.9 Hz, C), 138.2 (C), 129.4 (d, J_{CP} = 2.5 Hz, CH_{ar}), 129.2 (CH_{ar}), 128.4 (CH_{ar}), 126.1 (d, J_{CP} = 3.1 Hz, CH_{ar}), 123.8 (CH_{ar}), 62.9 (d, J_{CP} = 11.1 Hz, CH₂), 16.2 (d, J_{CP} = 5.0 Hz, CH₃).

³¹**P NMR (CD₃CN, 298 K):** $\delta = +140.8$ ppm.

MS (ES): m/z: 265.1 [M + H]⁺;

HRMS (ES+): calcd for C₁₃H₁₈N₂O₂P 265.1106; found, 265.1113.

To a solution of 1-(1-phenyl)-(2-diphenylphosphino)-1*H*-imidazole **1b** (500 mg, 1.53 mmol) in Et₂O (40 mL) cooled to -78° C was added BuLi (2.5 M in hexane, 608 µL, 1.53 mmol). The suspension was warmed to room temperature and stirred for 4 hours. After addition of diethyl chlorophosphite (220 µL, 1.53 mmol) at -78° C, the

solution was slowly warmed to room temperature and stirred for 2 hours. The organic layer was washed with a saturated aqueous solution of NH_4Cl (3 x 20 mL). The organic layer was then extracted with additional Et_2O (60 mL), dried over MgSO₄ and concentrated under vacuum affording **2b** as an yellow oil (328 mg, 79 %).

¹**H NMR (CD₂Cl₂, 298 K):** δ = 7.52-7.32 (m, 10H, H_{ar}), 7.29-7.20 (m, 4H, H_{ar}) 7.14-7.09 (m, 2H, H_{ar}), 3.96-3.76 (m, 4H, CH₂), 1.22-1.08 (m, 6H, CH₃).

¹³C NMR (CD₂Cl₂, 298 K): δ = 149.3 (d, J_{CP} = 26.4 Hz, C), 142.2 (d, J_{CP} = 24.9 Hz, C), 136.7 (d, J_{CP} = 16.6 Hz, C), 136.2 (d, J_{CP} = 11.3 Hz, C), 129.5 (CH_{ar}), 129.1 (CH_{ar}), 128.4-129.0 (m, CH_{ar}), 124.5 (d, J_{CP} = 2.3 Hz, CH_{ar}), 63.3 (brd, J_{CP} = 10.6 Hz, CH₂), 62.8 (brd, J_{CP} = 6.8 Hz, CH₂), 16.7 (brm, CH₃).

³¹**P** NMR (CD₂Cl₂, 298 K): $\delta = 139.6$ (d, $J_{PP} = 35.7$ Hz), -18.3 (d, $J_{PP} = 35.7$ Hz).

MS (ES): m/z: 449.1 [M + H]⁺.

To a solution of 2a (130 mg, 0.49 mmol) in toluene (5 mL) at room temperature, was added methyl trifluoromethanesulfonate (48 µL, 0.49 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, and washing

with Et_2O (8 mL), **3a** was isolated as a yellow oil (205 mg, 98 %).

¹**H** NMR (CD₂Cl₂, **259** K): δ = 7.79 (brs, 1H, H_{ar}), 7.68-7.60 (m, 3H, H_{ar}), 7.56 (brs, 1H, H_{ar}), 7.50 (d, *J* = 10.0 Hz, 2H, H_{ar}), 4.19 (s, 3H, NCH₃), 4.03-3.97 (m, 2H, CH₂), 3.96-3.88 (m, 2H, CH₂), 1.26 (t, *J* = 5.0 Hz, 6H, CH₃).

¹³C NMR (CD₂Cl₂, 259 K): $\delta = 146.8$ (d, $J_{CP} = 67.9$ Hz, C), 134.8 (d, $J_{CP} = 1.3$ Hz, C), 131.2 (CH_{ar}), 130.1 (CH_{ar}), 126.7 (CH_{ar}), 126.3 (d, $J_{CP} = 3.7$ Hz, CH_{ar}), 124.6 (CH_{ar}), 120.8 (q, $J_{CF} = 320.8$ Hz, CF₃SO₃⁻), 66.4 (d, $J_{CP} = 20.1$ Hz, CH₂), 37.9 (NCH₃), 16.8 (d, $J_{CP} = 5.0$ Hz, CH₃).

³¹**P NMR (CD₂Cl₂, 259 K):** $\delta = +142.4$ ppm.

MS (ES): *m*/*z*: 279.1 [M]⁺.

To a solution of **2b** (180 mg, 0.40 mmol) in toluene (4 mL) at room temperature was added methyl trifluoromethanesulfonate (44 μ L, 0.40 mmol). The solution was then warmed to room temperature and stirred for 2 hours. After evaporation of the solvent under vacuum, and washing with Et₂O (8 mL), **3b** was

obtained as a yellow oil (238 mg, 96 %).

¹**H** NMR (CD₂Cl₂, **259** K): δ = 7.70-7.08 (m, 16H, H_{ar}), 4.17 (s, 3H, NCH₃), 4.09-4.05 (m, 2H, CH₂), 3.94-3.92 (m, 2H, CH₂), 1.36 (t, *J* = 5.0 Hz, 3H, CH₃), 1.23 (t, *J* = 5.0 Hz, 3H, CH₃).

¹³C NMR (CD₂Cl₂, 259 K): $\delta = 147.5$ (d, $J_{CP} = 65.4$ Hz, C), 137.9 (d, $J_{CP} = 22.6$ Hz, C), 137.2 (d, $J_{CP} = 8.8$ Hz, C), 136.2 (d, $J_{CP} = 15.0$ Hz, C), 136.1 (d, $J_{CP} = 21.4$ Hz, C), 134.4-134.1 (m, CH_{ar}), 133.8 (d, $J_{CP} = 20.1$ Hz, CH_{ar}), 133.4 (d, $J_{CP} = 8.8$ Hz, CH_{ar}), 133.2 (d, $J_{CP} =$ 7.5 Hz, CH_{ar}), 133.0 (d, $J_{CP} = 8.8$ Hz, CH_{ar}), 131.8 (CH_{ar}), 130.7 (CH_{ar}), 129.2 (d, $J_{CP} = 7.5$ Hz, CH_{ar}), 126.1 (CH_{ar}), 124.8 (CH_{ar}), 120.8 (q, $J_{CF} = 320.8$ Hz, CF₃SO₃⁻), 66.9 (dd, $J_{CP} =$ 20.1 and 2.5 Hz, CH₂), 66.0 (d, $J_{CP} = 17.6$ Hz, CH₂), 37.5 (NCH₃), 16.9 (d, $J_{CP} = 6.3$ Hz, CH₃), 16.8 (d, $J_{CP} = 6.3$ Hz, CH₃).

³¹**P NMR** (**CD**₂**Cl**₂, **259 K**): $\delta = +141.1$ (d, $J_{PP} = 65.8$ Hz), -17.4 (d, $J_{PP} = 65.8$ Hz).

To a solution of IMes (108 mg, 0.36 mmol) dissolved in Et₂O (6 mL) at -78° C, was added diethyl chlorophosphite (50.1 µL, 0.36 mmol). After stirring at -78° C for 15 min, and evaporation of the solvent, **5a** was obtained as a solid (115 mg, 70 %).

OR = OEt ¹H NMR (CD₂Cl₂, 259 K): δ = 8.03 (s, 2H, H_{ar}), 7.09 (s, 4H, H_{ar}), 3.59-3.51 (m, 2H, CH₂), 3.46-3.42 (m, 2H, CH₂), 2.38 (s, 6H, CH₃), 2.13 (s, 12H, CH₃), 0.92 (t, 6H, J = 5.0 Hz, CH₃).

¹³C NMR (CD₂Cl₂, 259 K): δ = 146.7 (d, J_{CP} = 55.4 Hz, C), 141.3 (C), 134.4 (C), 131.4 (C), 129.5 (CH_{ar}), 127.4 (CH_{ar}), 66.3 (d, J_{CP} = 25.2 Hz, CH₂), 21.1 (CH₃), 17.5 (CH₃), 16.3 (d, J_{CP} = 6.3 Hz, CH₃).

³¹**P NMR (CD₂Cl₂, 259 K):** $\delta = +149.9$ ppm.

MS (ES): *m/z*: 425.2.1 [M]⁺.

HRMS (ES+): calcd for C₂₅H₃₄N₂O₂P 425.2358; found, 425.2365.

5b. To a solution of IMes (160 mg, 0.53 mmol) dissolved in Et₂O (5 mL) at -78°C, was added 2-chloro-1,3,2-dioxaphospholane (47 µL, 0.53 mmol). After stirring at -78°C for 15 min, and evaporation of the solvent, 5b was obtained as a solid (188 mg, 83 %).

¹**H NMR (CD₂Cl₂, 259 K):** δ = 8.19 (s, 2H, H_{ar}), 7.14 (s, 4H, H_{ar}), 4.06-4.01 (m, 2H, CH₂), 3.30-3.26 (m, 2H, CH₂), 2.40 (s, 6H, CH₃), 2.13 (s, 12H, CH₃).

¹³C NMR (CD₂Cl₂, 259 K): $\delta = 148.6$ (d, $J_{CP} = 123.3$ Hz, C), 142.0 (C), 134.4 (C), 130.1 (C), 129.9 (CH_{ar}), 127.8 (CH_{ar}), 67.6 (d, $J_{CP} = 8.8$ Hz, CH₂), 21.1 (CH₃), 17.7 (CH₃).

³¹**P NMR (CD₂Cl₂, 259 K):** $\delta = +134.7$ ppm.

To a solution of IPr (127 mg, 0.33 mmol) dissolved in Et₂O (5 mL) $\begin{array}{c} Ar = N \bigoplus N - Ar \bigoplus P(OR)_2 \bigoplus C1 \\ After stirring at -78^{\circ}C \text{ for 15 min, and evaporation of the solvent, 5c} \\ Ar = 2,5 - iPr_2 - (C_6H_3) \end{array}$ $\begin{array}{c} at -78^{\circ}C, \text{ was added diethyl chlorophosphile} (+7, \mu L, -L) \\ After stirring at -78^{\circ}C \text{ for 15 min, and evaporation of the solvent, 5c} \\ \text{was isolated as a solid (160 mg, 89 \%).} \\ \hline = 270 \text{ K} \cdot s - 8.26 \text{ (s. 2H. Har), 7.61 (t, J_{HH} = 10.0)} \end{array}$

Hz, 2H, H_{ar}), 7.39 (d, $J_{\rm HH}$ = 10.0 Hz, 4H, H_{ar}), 3.46-3.38 (m, 2H, CH₂), 3.11-3.02 (m, 2H, CH₂), 2.38 (sept, $J_{\text{HH}} = 5.0$ Hz, 4H, CH), 1.28 (d, $J_{\text{HH}} = 5.0$ Hz, 12H, CH₃), 1.24 (d, $J_{\text{HH}} = 5.0$ Hz, 12H, CH₃), 0.80 (t, $J_{\rm HH}$ = 5.0 Hz, 6H, CH₃).

¹³C NMR (CD₂Cl₂, 259 K): δ = 148.0 (d, J_{CP} = 55.4 Hz, C), 144.6 (C), 131.7 (CH_{ar}), 131.0 (C), 128.5 (CH_{ar}), 124.6 (CH_{ar}), 66.2 (d, J_{CP} = 26.4 Hz, CH₂), 29.4 (CH), 25.2 (CH₃), 22.6 (d, $J_{\rm CP} = 2.5$ Hz, CH₃), 16.3 (d, $J_{\rm CP} = 6.3$ Hz, CH₃).

³¹P NMR (CD₂Cl₂, 259 K): $\delta = +156.6$ ppm.

MS (ES): m/z: 509.3 [M]⁺.

HRMS (ES+): calcd for C₃₁H₄₆N₂O₂P 509.3297; found, 509.3307.

To a solution of **5a** (115 mg, 0.25 mmol) in CH_2Cl_2 (5 mL) at – 78°C, was added [Rh(cod)(Cl)]₂ complex (61 mg, 0.12 mmol). The solution was stirred for 15 min and then 1 hour at room temperature. After evaporation of the solvent, a mixture of compounds **6** (6.72 mg, 7 %), **7** (23.0 mg, 24 %) and IMesHCl (66.2 mg, 69 %) was obtained. Rhodium complexes **6** and **7** were characterized from the reaction mixture.

¹**H NMR (CD₂Cl₂, 301 K):** δ = 7.94 (s, 2H, H_{ar}), 7.17 (s, 4H, H_{ar}), 5.61 (m, 4H, CH_{cod}), 3.99 (brs, 4H, CH₂), 2.46 (s, 6H, CH₃), 2.32

(s, 12H, CH₃), 2.13-2.23 (m, 10H, CH_{2cod}), 1.09 (m, 6H, CH₃).

¹³C NMR (CD₂Cl₂, **301 K**): δ = 142.9 (d, J_{CP} = 6.3 Hz, C), 141.3 (C), 135.3 (C), 132.1 (C), 129.7 (CH_{ar}), 128.3 (CH_{ar}), 116.2 (CH_{cod}), 68.2 (d, J_{CP} = 13.8 Hz, CH₂), 27.7 (CH_{2cod}), 20.9 (CH₃), 18.6 (CH₃), 15.5 (CH₃).

³¹**P** NMR (CD₂Cl₂, 301 K): $\delta = 121.2$ (d, $J_{PRh} = 241.0$ Hz).

¹⁰³**Rh NMR (CD₂Cl₂, 301 K):** $\delta = -7547$ ppm.

MS (ES): *m/z*: 671.2 [M]⁺.

7.

¹**H NMR (CD₂Cl₂, 301 K):** δ = 7.08 (s, 4H, H_{ar}), 7.02 (s, 2H, H_{ar}), 4.41 (m, 2H, CH_{cod}), 3.36 (m, 2H, CH_{cod}), 2.37 (s, 6H, CH₃), 2.16 (s, 12H, CH₃), 1.87-1.57 (m, 8H, CH_{2cod}).

¹³C NMR (CD₂Cl₂, 301 K): δ = 183.1 (d, *J* = 51.6 Hz, C), 141.3 (C), 135.3 (C), 129.4 (CH_{ar}), 123.8 (CH_{ar}), 95.6 (*J* = 7.5 Hz, CH_{cod}), 68.2 (d, *J* = 13.8 Hz, CH_{cod}), 32.7 (CH_{2cod}), 28.3 (CH_{2cod}), 20.9 (CH₃), 17.8 (CH₃).

¹⁰³Rh NMR (CD₂Cl₂, 301 K): $\delta = -7464$ ppm.

MS (ES): m/z: 515.3 $[M - C1]^+$.

The free carbene (120 mg, 0.39 mmol) was dissolved in Et_2O (5 mL), the ethyl phosphorodichloridite (55 µL, 0.39 mmol) was then added at -78°C. Finally after stirring at -78°C for 15 min, evaporation of the solvent afforded compound **8a** as a solid residue (150 mg, 84%).

¹**H NMR** (**CD**₂**Cl**₂, **259 K**): $\delta = 8.29$ (s, 2 H, H_{ar}), 7.10 (s, 4H, H_{ar}), 3.74 (m, 2H, CH₂), 2.40 (s, 6H, CH₃), 2.14 (s, 12H, CH₃), 0.92 (t, *J*_{HH} = 5.0 Hz, 3H, CH₃).

¹³C NMR (CD₂Cl₂, 259 K): $\delta = 144.1$ (d, $J_{CP} = 84.3$ Hz, C_{quat}), 142.0 (CH_{ar}), 134.5 (CH_{ar}), 130.4 (C_{quat}), 129.7 (CH_{ar}), 129.1 (CH_{ar}), 67.9 (d, $J_{CP} = 20.1$ Hz, CH₂), 21.1 (CH₃), 17.8 (CH₃), 15.5 (d, $J_{CP} = 1.3$ Hz, CH₃).

³¹**P** NMR (CD₂Cl₂, 259 K): $\delta = 142.6$ ppm.

The free carbène IMes (180 mg, 0.59 mmol) was dissolved in Et_2O (5 mL), the dichlorophenylphosphine (82µL, 0.60 mmol) was then added at -78°C. Finally after stirring at -78°C for 15 min, evaporation of the solvent afforded compound **8b** as a solid residue (251 mg, 88%).

¹**H** NMR (CD₂Cl₂, 259 K): $\delta = 8.20$ (s, 2H, H_{ar}), 7.47 (t, $J_{HH} = 5.0$ Hz, 1H, H_{ar}), 7.24 (t, $J_{HH} = 5.0$ Hz, 2H, H_{ar}), 7.17 (m, 2H, H_{ar}), 7.00 (s, 4H, H_{ar}), 2.39 (s, 3H, CH₃), 1.98 (s, 12H, CH₃).

¹³C NMR (CD₂Cl₂, **259** K): $\delta = 142.8$ (d, $J_{CP} = 95.6$ Hz, C_{quat}), 142.1 (CH_{ar}), 134.5 (CH_{ar}), 132.7 (CH_{ar}), 131.4 (d, $J_{CP} = 31.5$ Hz, C_{ar}), 130.3 (C_{quat}), 129.9 (CH_{ar}), 129.4 (2CH_{ar}), 129.0 (CH_{ar}), 124.9 (d, $J_{CP} = 25.2$ Hz, C_{quat}), 21.1 (CH₃), 17.8 (CH₃).

³¹**P NMR (CD₂Cl₂, 259 K):** $\delta = 160.8$ ppm.

To a solution of **XVIIa** (194 mg, 0.78 mmol) in CH_2Cl_2 (10 mL) at room temperature, was added methyl trifluoromethanesulfonate (77 µL, 0.70 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, and washing with Et_2O (8 mL), **11** was isolated as a yellow solid (316 mg, 98 %).

¹**H** NMR (CD₃CN, 298 K): $\delta = 8.01(s, 1H, H_{ar})$, 7.74 (s, 1H, H_{ar}), 7.8-7.6(m, 5H, H_{ar}), 4.38 (s, 3H, CH₃), 1.24-1.13 (m, 9H, CH₃).

¹³C NMR (CD₃CN, 298 K): δ =136.6 (d, J_{CP} = 70.5 Hz, C), 131.7 (CH_{ar}), 130.3 (CH_{ar}), 130.2 (CH_{ar}), 129.4 (CH_{ar}), 129.2 (CH_{ar}), 128.3 (d, J_{CP} = 3.5 Hz, CH_{ar}), 127.9 (d, J_{CP} = 1.8 Hz, C), 127.1 (CH_{ar}), 126.2 (CH_{ar}), 122.4 (CH_{ar}), 37.8 (CH₃), 34.8 (d, J_{CP} = 71.5 Hz, C), 22.1 (d, J_{CP} = 2.7 Hz, CH₃).

³¹**P** NMR (CD₃CN, **298** K): $\delta = 25.9$, ¹ $J_{PH} = 482$ Hz.

MS (ES): m/z: 264.1 [M + H]⁺.

HRMS (ES): calcd for C₁₄H₂₀N₂OP 263.1318; found, 263.1313.

To a solution of **XVIIa** (200 mg, 0.49 mmol) in CH_2Cl_2 (10 mL) at room temperature, was added [Rh(COD)(Cl)]₂ (293 mg, 0.49 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, **12** was isolated as an orange solid (327 mg, 74 %).

¹**H** NMR (CD₂Cl₂, 240 K): $\delta = 8.60$ (d, $J_{\text{HH}} = 7.5$ Hz, 1H, H_{ar}), 7.59-7.48 (m, 2H, H_{ar}), 7.33 (sbr, 1H, H_{ar}), 6.68 (d, $J_{\text{HH}} = 1.0$ Hz, 1H, H_{ar}), 5.52-5.45 (m, 1H, H_{ar}), 5.30-5.24 (m, 1H, H_{ar}), 4.39-4.33 (m, 2H, H_{ar}), 2.65-2.34 (m, 5H, H_{ar}), 2.40 (s, 3H, CH₂), 2.13-2.03 (m, 4H, H_{ar}), 1.88 (sbr, 2H, CH₂), 1.87 (sbr, 2H, CH₂).

¹³C NMR (CD₂Cl₂, 240 K): $\delta = 159.1$ (C), 129.9 (C), 129.2 (CH_{ar}), 125.6 (CH_{ar}), 125.5 (C), 124.5 (CH_{ar}), 107.5 (dd, $J_{CRh} = 5.2$ Hz, $J_{CP} = 13.7$ Hz, CH_{ar}), 105.3 (dd, $J_{CRh} = 5.9$ Hz, $J_{CP} = 12.8$ Hz, CH_{ar}), 82.9 (d, $J_{CRh} = 12.1$ Hz, CH_{ar}), 82.4 (d, $J_{CRh} = 12.3$ Hz, CH_{ar}), 76.2 (d, $J_{CRh} = 12.1$ Hz, CH_{ar}), 70.8 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 12.1$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{CRh} = 14.6$ Hz, CH_{ar}), 68.5 (d, $J_{CRh} = 14.5$ Hz, CH_{ar}), 70.2 (d, $J_{$

13.8 Hz, CH_{ar}), 38.7 (d, $J_{CP} = 22.6$ Hz, C), 33.4 (CH_{ar}), 33.1 (CH_{ar}), 31.4 (d, $J_{CRh} = 13.1$ Hz, CH_{ar}), 29.9 (d, $J_{CRh} = 12.9$ Hz, CH_{ar}), 28.8 (CH_{ar}), 28.3 (CH_{ar}), 27.9 (CH₃).

³¹**P** NMR (CD₂Cl₂, 240 K): $\delta = 120.0$ (dd, $J_{PRh2} = 173.1$ Hz, $J_{PRh1} = 5.0$ Hz.

¹⁰³**Rh NMR (CD₂Cl₂, 298 K):** $\delta_{Rh1} = -7340, \delta_{Rh2} = -7776.$

¹⁵N NMR (CD₂Cl₂, 240 K): δ = - 155 (d, J_{N1Rh1} = 24 Hz), - 191.2.

MS (ES): *m*/*z*: 669.0 [M – 2HCl]⁺.

HRMS (ES): calcd for C₂₉H₄₀N₂OPRh₂ 669.0974; found, 669.0988.

To a solution of **11** (72 mg, 0.18 mmol) in CH_2Cl_2 (10 mL) at room temperature, was added $[Rh(COD)(Cl)]_2$ (22 mg, 0.04 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, **13** was isolated as an orange solid (59 mg, 74 %).

¹³¹**H NMR (CD₂Cl₂, 298 K):** δ = 7.68-7.54 (m, 7H, H_{ar}), 7.31 (s, 1H, H_{ar}), 4.63 (s, 3H, CH₃), 4.24 (s, 4H, CH), 2.50 (sbr, 4H, CH₂), 1.79 (s, *J*_{HH} = 20.0 Hz, 4H, CH₂), 1.03 (d, *J*_{HP} = 20.0 Hz, 9H, CH₃).

¹³C NMR (CD₂Cl₂, 298 K): δ =146.4 (C), 142.5 (C), 126.6 (CH_{ar}), 125.8 (CH_{ar}), 78.6 (d, J_{CRh} = 13.8 Hz, CH), 41.1 (d, J_{CP} = 27.7 Hz, C), 40.4 (d, J_{CP} = 6.3 Hz, CH₃), 30.9 (CH₂), 25.8 (d, J_{CP} = 5.0 Hz, CH₃).

³¹**P** NMR (CD₂Cl₂, **298** K): $\delta = 122.9 J_{PRh} = 168.1$ Hz.

MS (ES): m/z: 473.1 [M + H]⁺.

HRMS (ES): calcd for C₂₂H₃₁N₂OPRh 473.1229; found, 473.1238.

To a solution of **14** (100 mg, 0.31 mmol) in THF (10 mL) cooled to -40° C was added *t*BuOK (35 mg, 0.31 mmol). The suspension was warmed to room temperature and stirred for 4 hours. After addition of diphenylphosphinic chloride (57 µL, 0.31 mmol) at -40° C, the solution was slowly warmed to room temperature and stirred for 2 hours. The organic layer was washed with an aqueous solution of

NH₄Cl. The organic layer was then extracted with additional ethyl acetate (2 x 20 mL), and dried over MgSO₄ affording **15** as a colorless oil (61 mg, 37 %).

¹**H NMR (CDCl₃, 298 K):** δ = 7.80-7.72 (m, 2H, H_{ar}), 7.73 (d, *J*_{HP} = 557.4 Hz, 1H , *P*H), 7,65 (td, *J*_{HH} = 7.50 Hz, *J*_{HP} = 2.00 Hz, 1H, H_{ar}), 7,56 (td, *J*_{HH} = 8.00 Hz, *J*_{HP} = 3.50 Hz, 2H, H_{ar}), 3.78 (sept, *J*_{HH} = 7.50 Hz, 4H, CH), 1.55 (s, 9H, CH₃), 1.26 (d, *J*_{HH} = 6.50 Hz, 24H, CH₃).

¹³C NMR (CDCl₃,, 298 K): $\delta = 132.8$ (d, $J_{CP} = 2.89$ Hz, CH₃), 131.5 (d, $J_{CP} = 138.8$ Hz, C), 131.6 (d, $J_{CP} = 2.77$ Hz, C), 130.6 (d, $J_{CP} = 11.8$ Hz, CH_{ar}), 128.8 (d, $J_{CP} = 13.8$ Hz, CH_{ar}), 83.2 (d, $J_{CP} = 8.05$ Hz, C), 29.5 (d, $J_{CP} = 4.78$ Hz, CH₃), 21.2 (CH₃).

³¹**P** NMR (CDCl₃, 298 K): $\delta = 14.7$. $J_{PH} = 560, 4$ Hz.

To a solution of **14** (100 mg, 0.31 mmol) in THF (10 mL) cooled to -40° C was added *t*BuOK (35 mg, 0.31 mmol). The suspension was warmed to room temperature and stirred for 4 hours. After addition of tert-butyldichlorophosphine (49 mg, 0.31 mmol) at -40° C, the solution was slowly warmed to room temperature and stirred for 2 hours. The organic layer was washed with an aqueous solution of NH₄Cl. The organic layer was then extracted with additional ethyl

acetate (2 x 20 mL), and dried over MgSO₄ affording **17** as a colorless oil (61 mg, 37 %).

¹**H NMR (CDCl₃, 298 K):** $\delta = 6.74$ (d, $J_{HP}= 525.3$ Hz, 1H), 4.16 (sept, $J_{HP}= 5.0$ Hz, 2H, CH), 3.87 (sept, $J_{HP}= 5.0$ Hz, 2H, CH), 1.30 (d, $J_{HH}= 10.0$ Hz, 24H, CH₃), 1.14 (d, $J_{HP}= 15.0$ Hz, 9H, CH₃).

¹³C NMR (CDCl₃,, 298 K): δ =132.2 (d, J_{CP} = 2.89 Hz, C), 93.2 (d, J_{CP} = 8.05 Hz, C), 57.9 (CH), 48.2 (CH), 30.9 (C), 22.4 (CH₃), 22.3 (CH₃), 20.6 (CH₃).

³¹**P** NMR (CDCl₃, 298 K): $\delta = 49.7$. $J_{\text{PH}} = 532.7$ Hz.

MS (ES): m/z: 357.2 [M + H]⁺.

HRMS (ES): calcd for C₁₉H₃₇N₂O₂P 357.2667; found, 357.2671

To a solution of 1-(1-phenyl)-1*H*-imidazole **1a** (2.80 g, 19.4 mmol) in Et₂O (60 mL) cooled to -78° C was added *n*-BuLi (2.5 M in hexane, 7.8 mL, 19.4 mmol). The suspension was warmed to room temperature and stirred for 4 hours. After addition of

chlorodiphenylphosphine (3.6 mL, 19.4 mmol) at -78° C, the solution was slowly warmed to room temperature and stirred for 3 hours. The organic layer was washed with brine. The organic layer was then extracted with additional Et₂O (2 x 20 mL), and dried over MgSO₄. After evaporation of the solvent, purification by flash chromatography on silica (ethyl acetate/pentane) afforded **2** as a yellow solid (3.4 g, 55 %). Recrystallization at -20° C from CH₂Cl₂/Et₂O gave **18** as colorless crystals.

¹**H NMR (CDCl₃, 25**°**C):** δ = 7.75-7.68 (m, 5H, H_{ar}), 7.46-7.22 (m, 12H, H_{ar}).

¹³C NMR (CDCl₃, 25°C): δ = 146.8 (d, J_{CP} = 5.1 Hz, C), 137.9 (C), 135.4 (d, J_{CP} = 0.8 Hz, C), 133.9 (d, J_{CP} = 20.7 Hz, CH_{ar}), 131.2 (CH_{ar}), 129.1 (CH_{ar}), 128.6 (CH_{ar}), 128.5 (d, J_{CP} = 7.7 Hz, CH_{ar}), 126.4 (d, J_{CP} = 3.7 Hz, CH_{ar}), 123.8 (CH_{ar}).

³¹**P NMR (CDCl₃, 25°C):** $\delta = -29.3$ ppm.

MS (ES): m/z: 329.1 [M + H]⁺.

HRMS (ES): calcd for C₂₁H₁₈N₂P 329.1208; found, 329.1192.

M.p. 126-127°C.

To a solution of **18** (300 mg, 0.91 mmol) in CH_2Cl_2 (18 mL) at room temperature, was added methyl trifluoromethanesulfonate (100 µL, 0.91 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, and washing with Et₂O (10 mL), **19** was isolated as a yellow solid (418 mg, 93 %).

¹**H** NMR (CDCl₃, 25°C): δ = 7.75-7.72 (m, 2H, H_{ar}), 7.56-7.39 (m, 9H, H_{ar}), 7.37-7.25 (m, 6H, H_{ar}), 3.50 (s, 3H, CH₃).

¹³**C NMR (CDCl₃, 25°C):** δ = 147.8 (d, J_{CP} = 56.6 Hz, C), 138.9 (d, J_{CP} = 1.5 Hz, C), 136.6 (d, J_{CP} = 20.9 Hz, CH_{ar}), 134.5 (d, J_{CP} = 11.2 Hz, CH_{ar}), 134.3 (CH_{ar}), 134.2 (CH_{ar}), 133.1 (d, J_{CP} = 7.7 Hz, CH_{ar}), 133.0 (CH_{ar}), 131.6 (d, J_{CP} = 7.0 Hz, C), 130.8 (CH_{ar}), 130.3 (d, J_{CP} = 2.4 Hz, CH_{ar}), 130.2 (CH_{ar}), 120.5 (q, J_{CF} = 320.0 Hz, CF₃SO₃⁻), 41.1 (d, J_{CP} = 4.5 Hz, CH₃).

³¹**P NMR (CDCl₃, 25°C):** $\delta = -18.2$ ppm.

MS (ES): *m/z*: 343.1 [M]⁺.

HRMS (ES): calcd for C₂₂H₂₀N₂P 343.1364; found, 343.1367.

To a solution of **19** (50 mg, 0.10 mmol) in CH_2Cl_2 (4 mL) at room temperature, was added methyl trifluoromethanesulfonate (88 µL, 0.80 mmol). The solution was then stirred for 2 days at 40°C. After evaporation of the solvent under vacum, and washing with Et₂O (8 mL), the product was isolated as a white

solid (49 mg, 74 %).

¹**H** NMR (CD₃CN, 298 K): $\delta = 8.03$ (t, J = 5 Hz, J = 5 Hz, 1H, H_{ar}), 7.94-7.88 (s, 6H, H_{ar}), 7.83 (t, J = 5 Hz, J = 5 Hz, 1H, H_{ar}), 7.78-7.72 (m, 4H, H_{ar}), 7.52-7.47 (m, 1H, H_{ar}), 7.35-7.32 (m, 4H, H_{ar}), 3.73 (s, 6H, CH₃), 2.96 (d, J = 15 Hz, 3H, CH₃).

¹³C NMR (CD₃CN, **298** K): $\delta = 137.2$ (d, $J_{CP} = 3.77$ Hz, $2CH_{ar}$), 133.8 (d, $J_{CP} = 12.6$ Hz, 4CH_{ar}), 133.5 (C), 132.5 (CH_{ar}), 131.9 (d, $J_{CP} = 3.77$ Hz, CH_{ar}), 131.39 (d, $J_{CP} = 15.1$ Hz, 4CH_{ar}), 130.9 (d, J = 2.52 Hz, CH_{ar}), 130.3 (2CH_{ar}), 127.1 (2CH_{ar}), 127.0 (d, $J_{CP} = 140.9$ Hz, C), 114.5 (d, $J_{CP} = 91.8$ Hz, 2C), 40.3 (CH₃), 9.8 (d, $J_{CP} = 57.9$ Hz, CH₃).

³¹**P** NMR (CD₃CN, 298 K): $\delta = 27.0$ ppm.

MS (ES): m/z: 507.1 [M + OTf]⁺;

HRMS (ES): calcd for C₂₄H₂₃N₂O₃F₃PS 507.1129; found, 507.1119.

Way a: To a solution of 18 (80 mg, 0.02 mmol) in CH_2Cl_2 (4 mL) at room temperature, was added *m*-CPBA (42 mg, 0.02 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, purification by flash chromatography on silica (ethyl acetate/pentane) afforded 20a as a white solid (68 mg, 82 %). Recrystallization at -20° C from CH₂Cl₂/Et₂O gave **20a** as colorless crystals.

Way b: To a solution of 1-(1-phenyl)-1H-imidazole 1 (1.0 g, 6.94 mmol) in Et₂O (60 mL) cooled to -78°C was added n-BuLi (2.5 M in hexane, 2.6 mL, 6.94 mmol). The suspension was warmed to room temperature and stirred for 4 hours. After addition of diphenylphosphinic chloride (1.32 mL, 6.94 mmol) at -78°C, the solution was slowly warmed to room temperature and stirred for 3 hours. The organic layer was washed with brine. The organic layer was then extracted with additional Et₂O (2 x 20 mL), and dried over MgSO₄. After evaporation of the solvent, purification by flash chromatography on silica (ethyl acetate/pentane) afforded 4a as a white solid (602 mg, 25 %).

¹**H NMR (CDCl₃, 25°C):** $\delta = 7.77-7.70$ (m, 5H, H_{ar}), 7.53-7.25 (m, 12H, H_{ar}).

¹³C NMR (CDCl₃, 25°C): $\delta = 147.5$ (d, $J_{CP} = 147.2$ Hz, C), 142.5 (C), 137.4 (d, $J_{CP} = 3.0$ Hz, CH_{ar}), 137.3 (d, $J_{CP} = 111.7$ Hz, C), 136.9 (d, $J_{CP} = 9.8$ Hz, CH_{ar}), 135.9 (d, $J_{CP} = 16.6$ Hz, CH_{ar}), 134.1 (CH_{ar}), 133.7 (d, $J_{CP} = 12.8$ Hz, CH_{ar}), 131.8 (CH_{ar}), 131.3 (d, $J_{CP} = 2.3$ Hz, CH_{ar}).

³¹**P** NMR (CDCl₃, 25°C): $\delta = +16.0$ ppm.

MS (ES): m/z: 345.1 [M + H]⁺.

HRMS (ES): calcd for C₂₁H₁₈N₂OP 345.1157; found, 345.1157.

M.p. 160-161°C.

To a solution of **18** (320 mg, 0.97 mmol) in toluene (10 mL) at room temperature was added elemental sulfur (500 mg, 1.95 mmol). The solution was then stirred for 2 hours at 110°C. After evaporation of the solvent, purification by flash chromatography on silica (CH₂Cl₂) afforded **20b** as a white solid (309 mg, 88 %).

Recrystallization at -20°C from CH₂Cl₂/Et₂O gave **20b** as colorless crystals.

¹**H NMR (CD₂Cl₂, 25**°**C):** δ =7.88-7.80 (m, 4H, H_{ar}), 7.53-7.40 (m, 7H, H_{ar}), 7.41-7.12 (m, 6H, H_{ar}).

¹³**C NMR (CD₂Cl₂, 25°C):** δ = 141.8 (d, J_{CP} = 130.9 Hz, C), 138.1 (C), 132.5 (d, J_{CP} = 11.0 Hz, CH_{ar}), 131.8 (d, J_{CP} = 3.09 Hz, CH_{ar}), 130.1 (d, J_{CP} = 16.2 Hz, CH_{ar}), 129.3 (CH_{ar}), 128.5 (CH_{ar}), 127.4 (CH_{ar}), 126.9 (d, J_{CP} = 1.96 Hz, CH_{ar}), 125.6 (CH_{ar}).

³¹**P** NMR (CD₂Cl₂, 25°C): $\delta = +29.6$ ppm.

MS (DCI-CH₄): *m*/*z*: 361.0 [M + H]⁺.

HRMS (DCI-CH₄): calcd for C₂₁H₁₈N₂PS 361.0928; found, 361.0939.

M.p. 205-206°C

<u>way a:</u> To a solution of **20a** (250 mg, 0.73 mmol) in CH_2Cl_2 (10 mL) at room temperature, was added methyl trifluoromethanesulfonate (80 μ L, 0.73 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, and washing with Et₂O (8 mL),

21a was isolated as a yellow solid (347 mg, 94 %).

<u>way b:</u> To a solution of **19** (60 mg, 0.12 mmol) in CH_2Cl_2 (6 mL) at room temperature, was added *m*-CPBA (42 mg, 0.24 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, and washing with Et₂O (8 mL), **21a** was isolated as a yellow solid (30 mg, 48 %).

¹**H NMR (CD₃CN, 25°C):** δ = 7.88 (s, 1H, H_{ar}), 7.70-7.45 (m, 12H, H_{ar}), 7.35-7.30 (m, 1H, H_{ar}), 7.17-7.08 (m, 3H, H_{ar}), 4.02 (s, 3H, CH₃).

¹³**C NMR (CD₃CN, 25°C):** δ = 139.0 (d, J_{CP} = 93.6 Hz, C), 134.6 (C), 134.1 (d, J_{CP} = 3.0 Hz, CH_{ar}), 131.9 (d, J_{CP} = 11.3 Hz, CH_{ar}), 130.9 (CH_{ar}), 129.5 (d, J_{CP} = 13.6 Hz, CH_{ar}), 129.4 (CH_{ar}), 128.0 (d, J_{CP} = 3.8 Hz, CH_{ar}), 127.9 (d, J_{CP} = 115.5 Hz, C), 127.9 (d, J_{CP} = 3.0 Hz, CH_{ar}), 126.8 (CH_{ar}), 120.5 (q, J_{CF} = 320.0 Hz, CF₃SO₃⁻), 38.7 (CH₃).

³¹**P** NMR (CD₃CN, 25°C): $\delta = +18.5$ ppm.

MS (ES): *m*/*z*: 359.1 [M]⁺.

HRMS (ES): calcd for C₂₂H₂₀N₂PO 359.1313; found, 359.1308.

<u>way a:</u> To a solution of **20b** (165 mg, 0.46 mmol) in CH_2Cl_2 (5 mL) at room temperature, was added methyl trifluoromethanesulfonate (50 µL, 0.46 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, and washing with Et₂O (10

mL), **21b** was isolated as a yellow solid (231 mg, 96 %).

<u>way b:</u> To a solution of **19** (80 mg, 0.49 mmol) in toluene (10 mL) at room temperature, was added elemental sulfur (42 mg, 0.49 mmol). The solution was then stirred for 2 hours at 110°C. After evaporation of the solvent under vacuum, and washing with Et_2O (8 mL), **21b** was isolated as a yellow solid (61 mg, 72 %).

¹**H NMR (CD₂Cl₂, 25**°**C):** δ =8.01-7.97 (m, 3H, H_{ar}), 7.92-7.82 (m, 2H, H_{ar}), 7.69-7.36 (m, 10H, H_{ar}), 7.29-7.11 (m, 2H, H_{ar}), 3.71 (s, 3H, CH₃).

¹³C NMR (CD₂Cl₂, 25°C): δ = 139.3 (d, J_{CP} = 75.5 Hz, C), 134.7 (C), 133.5 (d, J_{CP} = 3.2 Hz, CH_{ar}), 133.3 (d, J_{CP} = 2.9 Hz, CH_{ar}), 132.3 (d, J_{CP} = 11.8 Hz, CH_{ar}), 132.0 (d, J_{CP} = 11.9 Hz, CH_{ar}), 131.4 (d, J_{CP} = 10.9 Hz, CH_{ar}), 130.9 (CH_{ar}), 130.6 (CH_{ar}), 129.6 (CH_{ar}), 129.5 (d, J_{CP} = 13.7 Hz, CH_{ar}), 129.1 (d, J_{CP} = 13.4 Hz, CH_{ar}), 128.0 (d, J_{CP} = 3.3 Hz, CH_{ar}), 127.5 (d, J_{CP} = 91.4 Hz, C), 127.4 (d, J_{CP} = 3.3 Hz, CH_{ar}), 126.7 (CH_{ar}), 122.5 (CH_{ar}), 121.3 (CH_{ar}), 120.8 (q, J_{CF} = 320.1 Hz, CF₃SO₃⁻), 39.2 (CH₃).

³¹**P NMR (CD₂Cl₂, 25°C):** δ = +30.8 ppm.

MS (DCI-CH₄): *m*/*z*: 375.1 [M]⁺.

HRMS (DCI-CH₄): calcd for C₂₂H₂₀N₂PS 375.1093; found, 375.1085.

A mixture of tétraethylammonium chloride (21 mg, 0.13 mmol) and **21a** (67 mg, 0.13 mmol) was dissolved in CD_3CN (6.0 mL) and stirred at room temperature. According to NMR spectroscopy, **21a** was slowly and quantitatively converted to imidazolium salt **22**

which was characterized by comparison of the multinuclear NMR data with those of authentical sample prepared as described below.

Imidazolium salt **22** was prepared by addition of methyl trifluoromethanesulfonate (569 μ L, 0.35 mmol) to 1-(1-phenyl)-1*H*-imidazole **1** (500 mg, 0.35 mmol) in CH₂Cl₂ (5.0 mL) at room temperature. After evaporation of the solvent under vacuum, and washing with Et₂O (10.0 mL), **22** was isolated as a white solid (1.10 g, 96 %). Recrystallization in CH₂Cl₂/Pentane gave **22** as colorless crystals.

¹**H NMR (CD₃CN, 25°C):** δ = 8.98 (s, 1H, H_{ar}), 7.79 (s, 1H, H_{ar}), 7.64 (brs, 5H, H_{ar}), 7.58 (s, 1H, H_{ar}), 3.98 (s, CH₃).

¹³C NMR (CD₃CN, 25°C): δ = 135.4 (CH), 134.9 (C), 130.3 (CH_{ar}), 130.2 (CH_{ar}), 124.4 (CH_{ar}), 122.4 (CH_{ar}), 121.6 (CH_{ar}), 36.2 (CH₃).

MS (ES): *m*/*z*: 159.1 [M]⁺.

HRMS (ES): calcd for C₁₀H₁₁N₂ 159.0922; found, 159.0911.

M.p. 83-84°C

To a solution of **23** (220 mg, 0.43 mmol) in CH_2Cl_2 (10 mL) at room temperature, was added *m*-CPBA (74 mg, 0.43 mmol). The solution was then stirred for 2 hours at room temperature. After evaporation of the solvent under vacuum, recrystallization from CHCl₃/pentane afforded **24a** as colorless crystals (180 mg, 79 %). ¹**H NMR (CD₃CN, 25°C):** δ = 8.02-7.44 (m, 10H, H_{ar}), 4.15 (sept, *J*_{HH} = 6.9 Hz, 2H, CH), 3.64 (sept, *J*_{HH} = 6.9 Hz, 2H, CH), 1.36 (d, *J*_{HH} = 6.9 Hz, 12H, CH₃), 1.11 (d, *J*_{HH} = 6.9 Hz, 12H, CH₃).

¹³C NMR (CD₃CN, 25°C): δ = 137.9 (d, J_{CP} = 6.2 Hz, C), 133.9 (d, J_{CP} = 2.9 Hz, CH_{ar}), 132.9 (CH_{ar}), 131.7 (d, J_{CP} = 11.0 Hz, CH_{ar}), 130.3 (CH_{ar}), 129.7 (d, J_{CP} = 115.7 Hz, C), 129.5 (d, J_{CP} = 13.3 Hz, CH_{ar}), 129.3 (CH_{ar}), 98.5 (d, J_{CP} = 98.3 Hz, C), 54.2 (CH), 53.0 (CH), 20.3 (CH₃), 19.3 (CH₃).

³¹**P NMR (CD₃CN, 25**°**C):** δ = +15.2 ppm.

MS (ES): *m*/*z*: 437.2 [M]⁺.

HRMS (ES): calcd for C₂₇H₃₈N₂OP 437.2722; found, 437.2722.

М.р. 110-112°С

To a solution of **23** (57 mg, 0.17 mmol) in toluene (5.0 mL) was added elemental sulfur (43 mg, 0.17 mmol). The solution was then stirred for 3 hours at 50°C. After evaporation of the solvent, purification by flash chromatography on silica (CH_2Cl_2) afforded **24b** as a white solid (38 mg, 62 %). Recrystallization at room

temperature from CH_2Cl_2 /pentane gave 24b as colorless crystals .

¹**H** NMR (CD₃CN, 25°C): δ = 7.98-7.90 (m, 4H, H_{ar}), 7.77-7.63 (m, 6H, H_{ar}), 4.15 (sept, *J*_{HH} = 6.9 Hz, 2H, CH), 3.61 (sept, *J*_{HH} = 6.9 Hz, 2H, CH), 1.36 (d, *J*_{HH} = 6.9 Hz, 12H, CH₃), 1.00 (d, *J*_{HH} = 6.9 Hz, 12H, CH₃).

¹³**C NMR (CD₃CN, 25°C):** δ = 136.4 (d, J_{CP} = 6.7 Hz, C), 133.5 (d, J_{CP} = 3.2 Hz, CH_{ar}), 131.9 (d, J_{CP} = 11.6 Hz, CH_{ar}), 130.1 (d, J_{CP} = 93.5 Hz, C), 129.5 (d, J_{CP} = 13.6 Hz, CH_{ar}), 99.4 (d, J_{CP} = 73.4 Hz, C), 54.0 (CH), 53.5 (CH), 20.6 (CH₃), 19.8 (CH₃).

³¹**P** NMR (CD₃CN, 25°C): $\delta = +28.4$ ppm.

MS (ES): *m*/*z*: 453.2 [M]⁺.

HRMS (ES): calcd for C₂₇H₃₈N₂PS 453.2496; found, 453.2493.

Dec.p. 220°C.

A mixture of tetraethylammonium chloride (22 mg, 0.13 mmol) and **24a** (70 mg, 0.13 mmol) was dissolved in CD₃CN (6 mL) and stirred at 50°C. According to NMR spectroscopy, **24a** was slowly and quantitatively converted to cyclopropenium salt **14** which was characterized by comparison of the multinuclear NMR data with those of authentical sample prepared as described below.

Cyclopropenium salt **14** was prepared by addition of diisopropylamine (9.4 mL, 0.13 mol) at 0° C to a stirred solution of tetrachlorocyclopropene (2.7 mL, 0.022 mol) in CH₂Cl₂ (300 mL). After warming to room temperature and stirring for 6 hours, a pale yellow suspension was formed. NaBF₄ (2.36 g, 0.022 mmol) was added and the suspension stirred vigorously overnight. Triphenylphosphine (5.64 g, 0.021 mol) was added, followed immediately by deionized water (250 mL), and the suspension was stirred at room temperature for 8 hours. The organic layer was washed with deionized water (4 x 250 mL) to afford a yellow solution which was dried over MgSO₄. Volatiles were removed under vacuum. **14** was purified by two successive recrystallizations from refluxing THF.

¹**H** NMR (CD₃CN, 25°C): δ = 7.21 (s, 1H, H_{ar}), 4.01 (sept, *J*_{HH} = 6.8 Hz, 2H, CH), 3.92 (sept, *J*_{HH} = 6.8 Hz, 2H, CH), 1.34 (t, *J*_{HH} = 6.8 Hz, 24H, CH₃).

¹³C NMR (CD₃CN, 25°C): δ = 134.2 (C), 97.8 (CH), 57.5 (CH), 48.1 (CH), 19.9 (CH₃), 19.7 (CH₃).

MS (ES): *m*/*z*: 237.2 [M]⁺.

HRMS (ES): calcd for C₁₅H₂₉N₂ 237.2331; found, 237.2336.

M.p. 168-169°C.

A solution of *p*-methoxubenzyl azoture (44 mg, 0.34 mmol) in CH_2Cl_2 was added to a solution of **18** (110 mg, 0.34 mmol) in CH_2Cl_2 and stirred at 30°C overnight. After evaporation of the solvent, **26** is obtained as a colorless oil (96 mg, 62 %).

¹**H** NMR (CD₃CN, 25°C): $\delta = 8.03$ -7.91 (m, 4H, H_{ar}), 7.59-7.31 (m, 15H, H_{ar}), 6.92-6.86 (m, 2H, H_{ar}), 4.12-4.03 (m, 2H, CH₂), 3.80 (s, 3H, CH₃).

¹³C NMR (CD₃CN, 25°C): δ = 158.9 (C), 135.5 (CH_{ar}), 133.9 (d, J_{CP} = 20.8 Hz, CH_{ar}), 133.0 (d, J_{CP} = 128.1 Hz, C), 132.1 (d, J_{CP} = 9.4 Hz, C), 131.7 (d, J_{CP} = 2.7 Hz, CH_{ar}), 130.1 (CH_{ar}), 129.8 (CH_{ar}), 128.9 (CH_{ar}), 128.5 (d, J_{CP} = 12.4 Hz, CH_{ar}), 127.3 (CH_{ar}), 126.3 (d, J_{CP} = 3.8 Hz, CH_{ar}), 121.3 (CH_{ar}), 113.8 (CH_{ar}), 55.2 (CH₃), 43.9 (CH_{ar}).

³¹**P NMR (CD₃CN, 25**°**C)**: δ = +22.4 ppm.

To a solution of **26** (50 mg, 0.11 mmol) in CH_2Cl_2 (5 mL) at 0°C, was added methyl trifluoromethanesulfonate (12 μ L, 0.11 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, and washing with Et₂O (10 mL), **27** was isolated as a yellow solid (38 mg, 72

%).

¹**H NMR (CD₃CN, 25**°**C):** δ = 7.89 (s, 4H, H_{ar}), 7.84-7.80 (m, 2H, CH), 7.74 (s, NH), 7.69-7.65 (m, 4H, H_{ar}), 7.20 (d, *J*_{HH} = 7.5 Hz, 2H, CH), 6.87 (d, *J*_{HH} = 7.5 Hz, 2H, CH), 4.17 (dd, *J*_{HH} = 5.0 Hz, 2H, CH₂), 3.81 (s, OCH₃), 3.74 (d, *J*=15.0 Hz, P-CH₃).

¹³C NMR (CD₃CN, 25°C): δ = 159.6 (C), 135.5 (CH_{ar}), 132.7 (CH_{ar}), 130.0 (CH_{ar}), 129.6 (CH_{ar}), 120.0 (C), 114.1 (C and CH_{ar}), 55.2 (OCH₃), 54.7 (d, *J*_{CP} =6.3Hz, PCH₃), 44.9 (CH₂).

³¹**P NMR (CD₃CN, 25**°**C)**: δ = +50.9 ppm.

To a solution of 1.1'-(1,2-phenylene)bis(imidazole) 8 (0.5 g, 2.38 mmol) in THF (20 mL) cooled to -78° C was added BuLi (2.5 M in hexane, 1.9 mL, 4.76 mmol). The suspension was slowly warmed to -20° C, and dichlorophenylphosphine (322 µL, 2.38 mmol) was

added. Then the solution was warmed to room temperature and stirred for 2 hours. After evaporation of the solvent, purification by flash chromatography on alumina (ethyl acetate/methanol) afforded a white solid (368 mg, 49 %). Recrystallization at -20° C from CH₂Cl₂/Et₂O gave **29** as colorless crystals (m.p. 242-244°C).

¹**H** NMR (CDCl₃, 298 K): $\delta = 7.42$ (d, J = 0.8 Hz, 2H, H_{ar}), 7.34 (d, J = 1.0 Hz, 2H, H_{ar}), 7.20 (s, 4H, H_{ar}), 6.93-6.89 (m, 3H, H_{ar}), 6.79-6.74 (m, 2H, H_{ar}).

¹³C NMR (CDCl₃, 298 K): δ = 145.1 (C), 131.1 (d, J_{CP} = 8.3 Hz, C), 130.5 (CH_{ar}), 130.3 (CH_{ar}), 129.8 (C), 127.7 (CH_{ar}), 127.5 (CH_{ar}), 126.9 (CH_{ar}), 126.5 (d, J_{CP} = 4.5 Hz, CH_{ar}), 126.2 (CH_{ar}), 124.1 (CH_{ar}), 122.9 (d, J_{CP} = 2.52 Hz, CH_{ar}).

³¹**P NMR (CDCl₃, 298 K):** $\delta = -60.8$ ppm.

MS (DCI-CH₄): m/z: 317.1 [M + H]⁺.

HRMS (**DCI-CH**₄): calcd for C₁₈H₁₄N₄P 317.0956; found, 317.0956.

Anal. Calcd for C₁₈H₁₃N₄P: C, 68.35; H, 4.14; N, 17.71. Found: C, 66.93; H, 4.10; N, 17.23.

To a solution of **29** (200 mg, 0.63 mmol) in CH_2Cl_2 (20 mL) at room temperature, was added mCPBA (160 mg, 0.92 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacum, **30** was isolated as a white solid (368 mg, 57 %).

¹H NMR (CD₃CN, 298 K): δ = 8.04 (dd, J = 15.0 Hz, J = 10.0 Hz, 2H, H_{ar}), 7.80 (s, 1H, H_{ar}), 7.79-7.75 (m, 4H, H_{ar}), 7.70-7.65 (m, 4H,

Har), 7.32 (s, 2H, Har,).

¹³C NMR (CD₃CN, **298** K): δ = 145.2 (d, J_{CP} = 28.8 Hz, C), 134.2 (d, J_{CP} = 12.6 Hz, CH_{ar}), 134.0 (d, J_{CP} = 0.42 Hz, CH_{ar}), 131.1 (d, J_{CP} = 16.4 Hz, CH_{ar}), 129.9 (C), 128.2 (d, J_{CP} = 13.8 Hz, CH_{ar}), 126.9 (CH_{ar}), 126.1 (d, J_{CP} = 0.42 Hz, CH_{ar}). ³¹P NMR (CD₃CN, 298 K): $\delta = -0.68$ ppm.

MS (ES): m/z: 333.1 [M + H]⁺

HRMS (ES): calcd for C₁₈H₁₄N₄OP 333.0904; found, 333.0905.

To a solution of **30** (250 mg, 0.51 mmol) in CH_2Cl_2 (10 mL) at room temperature, was added methyl trifluoromethanesulfonate (55 µL, 0.51 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, and washing with Et₂O (8 mL), **31** was obtained with secondary products.

¹H NMR (CD₃CN, 298 K): $\delta = 8.01$ (s, 1H, H_{ar}), 7.98 (s, 1H, H_{ar}), 7.93 (s, 1H, H_{ar}), 7.63-7.40 (m, 4H, H_{ar}), 7.33-7.30 (m, 2H, H_{ar}), 4.44

(s, 3H, CH₃).

¹³C NMR (CD₃CN, **298** K): δ = 138.8 (sbr, C), 137.8 (sbr, CH_{ar}), 135.0 (CH_{ar}), 133.7 (CH_{ar}), 132.0 (C), 129.3 (d, J_{CP} = 15.0 Hz, CH_{ar}), 128.9 (d, J_{CP} = 3.77 Hz, CH_{ar}), 127.2 (CH_{ar}), 126.9 CH_{ar}), 37.5 (CH₃).

³¹**P** NMR (CD₃CN, 298 K): $\delta = 0.14$ ppm.

MS (ES): *m*/*z*: 347.1 [M - OTf]⁺.

HRMS (ES): calcd for C₁₉H₁₆N₄OP 347.1056; found, 347.1062.

Methyl trifluoromethanesulfonate (0.57 mL, 5.1 mmol), was added at -78 °C to a CH_2Cl_2 solution (20 mL) of **28** (0.53 g, 2.5 mmol). Then the suspension was warmed to room temperature and stirred for 12 h. After filtration, the solid residue was

washed with additional CH_2Cl_2 (40 mL) affording **33** (1.19 g, 88%) as a white microcrystalline solid (mp 163-165 °C).

¹**H** NMR (CD₃CN, 298 K): δ = 3.95 (s, 6H, CH₃), 7.46-7.55 (m, 4H, H_{ar}), 7.79-7.92 (m, 4H, H_{ar}), 8.89 (s, 2H, CH).

¹³**C NMR (CD₃CN, 25** °**C)**: δ = 36.5 (s, CH₃), 121.0 (q, J_{CF} = 320.8 Hz, CF₃SO₃ -), 123.3 (s, CH_{ar}), 124.8 (s, CH_{ar}), 128.5 (s, CH_{ar}), 129.9 (s, C_{ar}), 132.6 (s, CH_{ar}), 137.8 (s, CH).

MS(FAB+): *m*/*z*: 389 [M - CF₃SO₃ -]+

HRMS (**ES**+) calcd for C₁₅H₁₆N₄F₃SO₃, 389.0895; found, 389.0907.

Anal. Calcd for C₁₆H₁₆N₄F₆S₂O₆: C, 35.69; H, 3.00; N, 10.41. Found: C, 35.97; H, 2.66; N, 10.38.

To a solution of BIP (250 mg, 1.19 mmol) in THF (120 mL) cooled to -78° C was added BuLi (2.5 M in hexane, 952 µL, 2.38 mmol). The suspension was warmed to room temperature and stirred for 4 hours. After addition of dichloro-*t*-butylphosphine (376 µL, 1.19 mmol) at - 78°C, the solution was warmed to 60°C and stirred for 2 hours. The organic layer was washed with brine at 0°C. The organic layer was then extracted with additional ethyl acetate (2 x 20 mL) and dried over

MgSO₄. After evaporation of the solvent, the product **34** is obtained as a yellow solid (75 mg, 21 %). Recrystallization in chloroform/pentane afforded colorless crystals (mp: 244-246°C).

¹**H** NMR (CDCl₃, 298 K): δ =7.55-7.47 (m, 4H, H_{ar}), 7.32 (s, 2H, H_{ar}), 7.29 (s, 2H, H_{ar}), 1.79 (d, *J* = 15.0 Hz, 9H, CH₃).

¹³C NMR (CDCl₃, 298 K): $\delta = 148.1$ (d, $J_{CP} = 15.1$ Hz, C), 131.7 (CH_{ar}), 131.5 (CH_{ar}), 128.7 (CH_{ar}), 125.9 (CH_{ar}), 122.2 (CH_{ar}), 31.1 (d, $J_{CP} = 8.8$ Hz, C), 27.3 (d, $J_{CP} = 13.8$ Hz, CH₃).

³¹**P NMR (CDCl₃, 298 K):** $\delta = -19.7$ ppm.

MS (ES): m/z: 297.1 $[M + H]^+$.

HRMS (ES): calcd for C₁₆H₁₈N₄P 297.1274; found, 297.1269.

To a solution of **34** (140 mg, 0.48 mmol) in THF (10 mL) at room temperature, was added mCPBA (164 mg, 0.96 mmol). The solution was then stirred for 3 hours. After evaporation of the solvent under vacum, **35** was isolated as a white solid (138 mg, 94 %). Recrystallization in chloroform/pentane afforded colorless crystals.

¹H NMR (CDCl₃, 298 K): δ =7.55 (s, 4H, H_{ar}), 7.38 (t, *J* = 1.2 Hz, 2H, H_{ar}), 7.30 (t, *J* = 1.2 Hz, 2H, H_{ar}), 1.84 (d, *J* = 16.0 Hz, 9H, CH₃).

¹³**C NMR (CDCl₃, 298 K):** δ = 144.4 (d, J_{CP} = 135.8 Hz, C), 130.7 (d, J_{CP} = 20.2 Hz, CH_{ar}), 130.5 (C), 129.2 (CH_{ar}), 126.1 (CH_{ar}), 123.8 (d, J_{CP} = 5.2 Hz, CH_{ar}), 34.0 (d, J_{CP} = 78.5 Hz, C), 24.4 (CH₃).

³¹**P NMR (CDCl₃, 298 K):** δ = 18.1 ppm.

MS (DCI-CH₄): m/z: 313.1 [M + H]⁺.

HRMS (**DCI-CH**₄): calcd for C₁₆H₁₈N₄PO 313.1219; found, 313.1218.

way a : To a solution of **35** (140 mg, 0.48 mmol) in CH_2Cl_2 (5 mL) at room temperature, was added methyl trifluoromethanesulfonate (100 µL, 0.96 mmol). The solution was then stirred for 3 hours. After evaporation of the solvent under vacum, and washing with Et₂O (8 mL), **36** was isolated as a white solid (248 mg, 89 %). Recrystallization à -20°C in THF/Et₂O

afforded colorless crystals.

way b : To a solution of **38** (140 mg, 0.22 mmol), in CH_3CN (4 mL) at room temperature, was added mCPBA (80 mg, 0.44 mmol). The solution was then stirred for 5 hours. After

evaporation of the solvent under vacum, and washing with Et_2O (8 mL), **36** was isolated as a white solid (130 mg, 91%).

¹**H NMR (CD₃CN, 298 K):** δ =8.14 (t, *J* = 5 Hz, 2H, H_{ar}), 7.99 (s, 2H, H_{ar}), 7.98-7.95 (m, 2H, H_{ar}), 7.95-7.89 (m, 2H, H_{ar}), 4.31 (s, 6H, CH₃), 1.10 (d, *J* = 25.0 Hz, 9H, CH₃).

¹³C NMR (CD₃CN, **298** K): $\delta = 135.8$ (d, $J_{CP} = 88.1$ Hz, C), 133.4 (CH_{ar}), 130.9 (d, $J_{CP} = 3.7$ Hz, CH_{ar}), 128.7 (CH_{ar}), 128.3 (CH_{ar}), 128.0 (d, $J_{CP} = 3.7$ Hz, CH_{ar}), 40.1(d, $J_{CP} = 94.4$ Hz, C), 38.8 (N-CH₃), 21.3 (CH₃).

³¹**P** NMR (CD₃CN, 298 K): $\delta = 27.0$ ppm.

To a solution of **35** (140 mg, 0.48 mmol) in CH₂Cl₂ (4 mL) at room temperature, was added methyl trifluoromethanesulfonate (50 μ L, 0.48 mmol). The solution was then stirred for 3 hours. After evaporation of the solvent under vacum, and washing with Et₂O (8 mL), **37** was isolated as a white solid (142 mg, 68 %).

¹**H** NMR (CD₃CN, 298 K): $\delta = 8.01$ (pseudo-t, J = 1.5 Hz, 1H, H_{ar}), 7.93-7.88 (m, 1H, H_{ar}), 7.85-7.81 (m, 3H, H_{ar}), 7.79-7.75 (m, 2H, H_{ar}), 7.58 (s, 1H, H_{ar}), 4.34 (s, 3H, CH₃), 1.0 (d, J = 20.0 Hz, 9H, CH₃).

¹³C NMR (CD₃CN, **298** K): $\delta = 139.7$ (d, $J_{CP} = 140.5$ Hz, C), 139.1 (C), 133.5 (d, $J_{CP} = 3.40$ Hz, CH_{ar}), 132.5 (CH_{ar}), 129.5 (CH_{ar}), 127.4 (d, $J_{CP} = 2.90$ Hz, CH_{ar}), 126.7 (d, $J_{CP} = 2.26$ Hz, CH_{ar}), 38.3 (N-CH₃), 37.6 (d, $J_{CP} = 79.4$ Hz, C), 21.9 (CH₃).

³¹P NMR (CD₃CN, 298 K): $\delta = 25.0$ ppm.

MS (ES): *m*/*z*: 347.1 [M-OTf]⁺.

HRMS (ES): calcd for C₁₉H₁₆N₄OP 347.1056; found, 347.1062.

To a solution of **34** (400 mg, 1.35 mmol) in CH_2Cl_2 (10 mL) at room temperature, was added methyl trifluoromethanesulfonate (295 µL, 2.70 mmol). The solution was then stirred for 3 hours. After evaporation of the solvent under vacum, and washing with Et₂O (10 mL), **38** was isolated as a white solid (450 mg, 54 %). Recrystallization à -20°C in THF/Et₂O afforded colorless crystals.

¹H NMR (CDCl₃, 298 K): δ =8.11 (sbr, 2H, H_{ar}), 7.97 (sbr, 2H, H_{ar}), 7.92 (sbr, 4H, H_{ar}),
4.17 (s, 6H, CH₃), 1.02 (d, J = 18.6 Hz, 9H, CH₃).

¹³C NMR (CDCl₃, 298 K): $\delta = 141.2$ (d, $J_{CP} = 38.1$ Hz, C), 132.5 (CH_{ar}), 128.9 (CH_{ar}), 128.3 (CH_{ar}), 127.6 (CH_{ar}), 38.5 (d, $J_{CP} = 15.2$ Hz, C), 37.9 (N-CH₃), 27.4 (d, $J_{CP} = 17.6$ Hz, CH₃).

³¹**P NMR (CDCl₃, 298 K):** $\delta = -48.6$ ppm.

To a solution of **34** (200 mg, 0.68 mmol) in CH_2Cl_2 (10 mL) at room temperature, was added [Rh(COD)(Cl)]₂ (223 µL, 0.68 mmol). The solution was then stirred for 2 hours. After evaporation of the solvent under vacuum, **39** was isolated as an orange solid (290 mg, 75 %). Recrystallization à -20°C in THF/Et₂O afforded orange crystals.

¹**H** NMR (CD₃CN, 298 K): $\delta = 7,77-7,65$ (m, 4H, H_{ar}), 7.52 (sbr, 2H, H_{ar}), 7.43 (s, 1H, H_{ar}), 7.24 (s, 1H, H_{ar}), 7.23 (s, 1H, H_{ar}), 5.04 (s, 1H, H_{ar}), 4.97 (s, 1H, H_{ar}), 3.59 (s, 1H, H_{ar}), 2.00 (s, 1H, H_{ar}), 1.95-1.91 (m, 2H, H_{ar}), 1.88 (d, $J_{HP} = 15.0$ Hz, 9H H_{ar}), 1.65-1.59 (m, 3H, H_{ar}), 1.50-1.47 (m, 1H, H_{ar}).

¹³C NMR (CD₃CN, **298** K): δ = 143.4 (d, J_{CP} = 88.1 Hz, C), 142.2 (CH_{ar}), 131.4 (C), 131.2 (C), 130.9 (d, J_{CP} = 3.7 Hz, CH_{ar}), 130.4 (d, J_{CP} = 3.7 Hz, CH_{ar}), 129.5 (CH_{ar}), 129.1 (CH_{ar}), 127.2, 125.5, 123.8, 123.6, 106.7, 105.1, 72.5 (d, J_{CP} = 13.8 Hz, CH_{ar}), 70.3 (d, J_{CP} = 13.8 Hz, CH_{ar}), 37.3 (d, J_{CP} = 21.4 Hz, CH_{ar}), 35.2 (C), 29.5 (C), 26.3 (CH₃), 24.8 (CH₃).

³¹**P** NMR (CD₃CN, 298 K): $\delta = 14.5$ (d, $J_{PRh} = 151.9$ Hz).

Into a N₂-flushed 100 mL round-bottomed flask were placed **1a** (150 mg, 1.04 mmol) and 10 mL of THF. The solution was cooled to -78 $^{\circ}$ C before n-BuLi (41 µL, 1.04 mmol, 2.5 M in hexane) was added. The suspension was slowly warmed to 0°C and stirred for another 30 min. Subsequently, the solution was slowly transferred to another flask, which contained tert-butyldichlorophosphine (164 mg, 1.04

mmol) in 10 mL of THF at 0 °C. After evaporation of the solvent under vacuum, **40** was isolated as a yellow solid (331 mg, 85 %).

¹**H NMR (CD₃CN, 298 K):** δ = 7.57-7.45 (m, 10H, H_{ar}), 7.43-7.37 (m, 4H, H_{ar}), 0.78 (d, J_{HP} = 14.7 Hz, 9H, CH₃).

¹³C NMR (CD₃CN, **298** K): $\delta = 143.8$ (d, $J_{CP} = 10.2$ Hz, C), 137.7 (d, $J_{CP} = 2.6$ Hz, C), 137.2 (C), 136.3 (CH_{ar}), 130.9 (CH_{ar}), 129.8 (CH_{ar}), 129.6 (CH_{ar}), 129.1 (CH_{ar}), 127.6 (d, $J_{CP} = 3.8$ Hz, CH_{ar}), 127.4 (CH_{ar}), 124.9 (d, $J_{CP} = 1.43$ Hz, CH_{ar}), 121.2 (CH_{ar}), 118.3 (CH_{ar}), 34.3 (d, $J_{CP} = 8.6$ Hz, C), 27.3 (d, $J_{CP} = 15.8$ Hz, CH₃).

³¹P NMR (CD₃CN, 298 K): $\delta = -45.8$.

MS (ES): m/z: 375.1 [M + H]⁺.

HRMS (ES): calcd for C₂₂H₂₄N₄P 375.1739; found, 375.1743.

Into a N₂-flushed 100 mL round-bottomed flask were placed **XX** (340 mg, 1.04 mmol) and 10 mL of THF. The solution was cooled to -78 °C before n-BuLi (41 μ L, 1.04 mmol, 2.5 M in hexane) was added. The suspension was slowly warmed to 0°C and stirred for another 30 min. Subsequently, the solution was slowly transferred to another flask, which contained 1.0 mmol of tert-butyldichlorophosphine (164 mg, 1.04 mmol) in 10 mL of

THF at 0 °C. The reaction mixture was heated gradually from 0 to 60 °C and stirred for another 2 h. After filtration under argon and evaporation of the solvent under vacuum, **XX** was isolated as a yellow solid (660 mg, 87 %).

¹**H NMR (CD₃CN, 298 K):** δ = 4.28 (s, 2H, CH), 4.15 (s, 2H, CH), 1.50 (d, *J*_{HP} = 15.0 Hz, 9H, CH₃), 1.46-1.40 (m, 12H, CH₃), 1.39-1.30 (m, 12H, CH₃).

¹³C NMR (CD₃CN, **298** K): δ =140.1 (C-N), 98.0 (d, J_{CP} = 72.9 Hz, C), 34.9 (d, J_{CP} = 13.8 Hz, C-*t*Bu), 28.3 (d, J_{CP} = 15.1 Hz, CH₃), 31.0 (CH₃), 21.0 (CH), 20.9 (CH₃), 20.8 (CH₃), 20.6 (CH₃).

³¹P NMR (CD₃CN, 298 K): δ = -16.3.

MS (ES): m/z: 646.5 $[M + H]^+$.

HRMS (ES): calcd for C₃₄H₆₅ BN₄F₄P 646.5012; found, 646.5018.

To a solution of **40** (150 mg, 0.40 mmol) in CH_2Cl_2 (8 mL) at room temperature, was added [Rh(COD)(Cl)]₂ (98 mg, 0.20 mmol). The solution was then stirred for 4 hours. After evaporation of the solvent under vacuum, **41** was isolated as an orange solid (169 mg, 72 %).

¹**H** NMR (CD₃CN, 233 K): δ = 7.58 (s, 2H, H_{imi}), 7.54 (sbr, 6H, H_{ar}), 7.43 (sbr, 4H, H_{ar}), 7.37 (s, 2H, H_{imi}), 4.63 (s, 2H, CH), 4.22 (s, 2H, CH), 2.40 (s, 4H, CH₂), 1.94 (s, 4H, CH₂), 1.17 (d, J_{HP} = 10.0 Hz, 9H, CH₃).

¹³C NMR (CD₃CN, 233 K): δ =142.1 (d, J_{CP} = 13.8 Hz, C), 137.2 (d, J_{CP} = 2.5 Hz, C), 130.1 (CH_{ar}), 129.9 (CH_{ar}), 129.4 (CH_{ar}), 127.9 (d, J_{CP} = 2.5 Hz, C), 126.8 (CH_{ar}), 83.9 (d, J_{CRh} = 12.6 Hz, C), 81.8 (d, J_{CRh} = 11.3 Hz, C), 34.2 (d, J_{CP} = 12.6 Hz, C), 28.3 (d, J_{CP} = 15.1 Hz, CH₃).

³¹P NMR (CD₃CN, 233 K): $\delta = -44.5$.

MS (ES): m/z: 585.1 [M + H]⁺.

HRMS (ES): calcd for C₃₀H₃₅N₄PRh 585.1654; found, 585.1665.

To a solution of **29** (0.40 g, 1.02 mmol) in CH_2Cl_2 (20 mL) at – 78°C, was added methyl trifluoromethanesulfonate (112 µL, 1.02 mmol). The solution was then stirred for 2 hours at room temperature. After evaporation of the solvent, and washing with Et_2O (30 mL), **42** was isolated as a white solid (464 mg, 95 %).

¹H NMR (CD₃CN, 301 K): $\delta = 7.97$ (d, J = 5.0 Hz, 1H, H_{ar}), 7.87 (t, J = 5.0 Hz, 1H, H_{ar}), 7.83 (d, J = 5.0 Hz, 1H, H_{ar}), 7.50-7.47 (m, 3H, H_{ar}), 7.42-7.35 (m, 2H, H_{ar}), 7.12-7.03 (m, 3H, H_{ar}), 6.91 (t, J = 5.0 Hz, 2H, H_{ar}), 4.29 (s, 3H, NCH₃).

¹³C NMR (CD₃CN, 301 K): $\delta = 144.6$ (d, $J_{CP} = 39.0$ Hz, C), 141.3 (d, $J_{CP} = 11.3$ Hz, C), 132.8 (d, $J_{CP} = 17.6$ Hz, CH_{ar}), 131.4 (CH_{ar}), 129.7 (d, $J_{CP} = 15.1$ Hz, CH_{ar}), 129.4 (CH_{ar}), 129.2 (CH_{ar}), 128.8 (d, $J_{CP} = 6.3$ Hz, CH_{ar}), 128.4 (d, $J_{CP} = 5.0$ Hz, C), 127.3 (CH_{ar}), 126.9 (d, $J_{CP} = 2.5$ Hz, CH_{ar}), 126.6 (d, $J_{CP} = 3.8$ Hz, C) 126.5 (CH_{ar}), 126.4 (d, $J_{CP} = 1.3$ Hz, CH_{ar}), 126.3 (CH_{ar}), 125.8 (d, $J_{CP} = 2.5$ Hz, C), 120.8 (q, $J_{CF} = 320.8$ Hz, CF₃SO₃⁻), 37.7 (d, $J_{CP} = 16.4$ Hz, CH₃).

³¹**P NMR (CD₃CN, 301 K):** $\delta = -68.5$ ppm.

MS (DCI-CH₄): *m*/*z*: 331.1 [M]⁺;

HRMS (**DCI-CH**₄): calcd for C₁₉H₁₆N₄P 331.1113; found, 331.1112.

Anal. Calcd for C₂₀H₁₆F₃N₄O₃PS: C, 50.00; H, 3.36; N, 11.66. Found: C, 49.60; H, 3.43; N, 11.24.

To a solution of **29** (0.30 g, 0.77 mmol) in CH_2Cl_2 (20 mL) at – 78°C, was added methyl trifluoromethanesulfonate (167 µL, 1.53 mmol). The solution was then stirred for 2 hours at room temperature. After filtration, the solid residue was washed with additionnal CH_2Cl_2 (30 ml) affording a white microcrystalline solid (482 mg, 98 %). Recrystallization at $-20^{\circ}C$ from

CH₃CN/Et₂O afforded **43** as colorless crystals.

¹**H** NMR (CD₃CN, 301 K): $\delta = 8.05$ (d, J = 5.0 Hz, 2H, H_{ar}), 7.96 (t, J = 5.0 Hz, 2H, H_{ar}), 7.60 (s, 4H, H_{ar}), 7.22-7.19 (m, 1H, H_{ar}), 7.13-7.08 (m, 4H, H_{ar}), 4.33 (s, 6H, NCH₃).

¹³C NMR (CD₃CN, 301 K): δ = 141.0 (d, J_{CP} = 32.7 Hz, C), 132.0 (CH_{ar}), 130.7 (d, J_{CP} = 16.4 Hz, CH_{ar}), 130.6 (CH_{ar}), 129.0 (CH_{ar}), 128.9 (C), 128.5 (CH_{ar}), 127.3 (CH_{ar}), 126.8 (CH_{ar}), 120.9 (q, J_{CF} = 320.8 Hz, CF₃SO₃⁻), 120.8 (C), 38.2 (d, J_{CP} = 15.0 Hz, CH₃).

³¹**P** NMR (CD₃CN, **301** K): $\delta = -76.21$ ppm.

MS (ES): *m*/*z*: 495.1 [M – OTf]⁺;

HRMS (ES+): calcd for C₂₁H₁₉N₄O₃F₃PS 495.0868; found, 495.0883.

Anal. Calcd for C₂₂H₁₉F₆N₄O₆PS₂: C, 41.00; H, 2.97; N, 8.69. Found: C, 40.83; H, 3.05; N, 9.14.

M.p. 238-240°C.

To a solution of **33** (0.20 mg, 0.38 mmol) in CH_2Cl_2 (5 mL) at – 78°C, were added ethyl dichloro phosphite (42 µL, 0.38 mmol) and triethylamine (104 µL, 0.74 mmol). The solution was warmed to room temperature and stirred for 2 hours. After evaporation of the solvent under vacuum, **44** was isolated as a yellow oil (72 mg, 32 %).

¹**H** NMR (CD₂Cl₂, 265 K): $\delta = 8.18$ (s, 2H, H_{ar}), 7.90 (s, 2H, H_{ar}), 7.86 (brs, 2H, H_{ar}), 7.80 (brs, 2H, H_{ar}), 4.29 (s, 6H, NCH₃), 3.95-392 (m, 2H, CH₂), 0.76 (t, J = 5.0 Hz, 3H, CH₃).

¹³C NMR (CD₂Cl₂, 265 K): $\delta = 145.4$ (d, $J_{CP} = 37.7$ Hz, C), 131.8 (CH_{ar}), 128.6 (C), 127.5 (CH_{ar}), 126.4 (CH_{ar}), 125.8 (CH_{ar}), 120.6 (q, $J_{CF} = 320.8$ Hz, CF₃SO₃⁻), 69.8 (d, $J_{CP} = 21.4$ Hz, CH₂), 38.2 (d, $J_{CP} = 13.8$ Hz, NCH₃), 16.0 (CH₃).

³¹**P** NMR (CD₂Cl₂, 265 K): $\delta = +31.4$ ppm.

MS (ES): m/z: 463.1 [M – OTf]⁺.

HRMS (**ES**+): calcd for C₁₇H₁₉N₄O₄F₃PS 463.0817; found, 463.0811.

To a solution of **42** (140 mg, 0.29 mmol) in CH_2Cl_2 (5 mL) at room temperature, was added [RhCl(cod)]₂ complex (129 mg, 0.26 mmol). The suspension was then stirred at 40°C for 24 hours. After evaporation of the solvent, a 50/50 mixture of rhodium complexes **45** and **46** was obtained (155 mg, 73 %). Recrystallization of the mixture at room temperature from CH_2Cl_2 afforded complex **46** as yellow mono-crystals. Rhodium complexes **45** and **46** were fully characterized from the reaction mixture.

45.

¹**H NMR (CD₂Cl₂, 301 K):** $\delta = 9.10$ (m, 1H, H_{ar}), 8.43 (m, 1H, H_{ar}), 7.94 (m, 1H, H_{ar}), 7.91 (m, 1H, H_{ar}), 7.87 (m, 1H, H_{ar}), 7.85 (s, 1H, H_{ar}), 7.76 (s, 1H, H_{ar}), 7.70 (s, 1H, H_{ar}),

7.55 (s, 1H, H_{ar}), 7.49 (s, 1H, H_{ar}), 7.44 (s, 1H, H_{ar}), 7.43 (s, 1H, H_{ar}), 7.39 (s, 1H, H_{ar}), 5.60 (brs, 1H, CH_{cod}), 5.40 (brs, 1H, CH_{cod}), 4.28 (brs, 2H, CH_{cod}), 3.22 (s, 3H, NCH₃), 2.60-2.40 (m, 2H, CH_{2cod}), 2.20-1.94 (m, 3H, CH_{2cod}), 1.83 (m, 2H, CH_{2cod}), 1.33 (s, 1H, CH_{2cod}).

¹³C NMR (CD₂Cl₂, 301 K): $\delta = 145.0$ (d, $J_{CP} = 26.4$ Hz, C), 141.8 (d, $J_{CP} = 35.2$ Hz, C), 138.1 (d, $J_{CP} = 74.2$ Hz, C), 136.6 (CH_{ar}), 135.3 (d, $J_{CP} = 2.5$ Hz, CH_{ar}), 133.2 (d, $J_{CP} = 10.1$ Hz, CH_{ar}), 131.8 (CH_{ar}), 130.4 (CH_{ar}), 130.3 (CH_{ar}), 130.1 (CH_{ar}), 129.5 (CH_{ar}), 128.5 (CH_{ar}), 125.7 (CH_{ar}), 125.3 (CH_{ar}), 125.2 (CH_{ar}), 120.0 (CH_{ar}), 119.0 (d, $J_{CP} = 10.1$ Hz, CH_{ar}), 111.9 (brs, CH_{cod}), 111.4 (brs, CH_{cod}), 78.6 (brs, CH_{cod}), 38.4 (CH₃), 30.9 (CH_{2cod}), 27.2 (CH_{2cod}), 26.8 (CH_{2cod}). ³¹**P** NMR (CD₂Cl₂, 301 K): $\delta = +15.8$ ppm (d, $J_{PRh} = 166.1$ Hz).

¹⁰³**Rh NMR (CD₂Cl₂, 301 K):** $\delta = -8100$ ppm.

MS(DCI-CH₄): *m*/*z*: 576.1 [M]⁺.

46.

¹**H** NMR (CD₂Cl₂, 301 K): $\delta = 8.00-7.80$ (m, 5H, H_{ar}), 7.80-7.60 (m, 2H, H_{ar}), 7.6-7.3 (m, 5H, H_{ar}), 5.60 (brs, 1H, CH_{cod}), 5.40 (brs, 1H, CH_{cod}), 4.28 (brs, 2H, CH_{cod}), 3.22 (s, 3H, NCH₃), 2.60-2.40 (m, 2H, CH_{2cod}), 2.20-1.94 (m, 3H, CH_{2cod}), 1.83 (m, 2H, CH_{2cod}), 1.33 (s, 1H, CH_{2cod}).

¹³C NMR (CD₂Cl₂, 301 K): δ = 132.3 (brs, CH_{ar}), 131.0 (CH_{ar}), 130.0-129.3 (m, CH_{ar}), 129.1 (brs, CH_{ar}), 128.6 (brs, CH_{ar}), 128.0 (brs, CH_{ar}), 125.4 (brs, CH_{ar}), 119.6 (brs, CH_{ar}), 38.7 (brs, CH₃).

³¹**P** NMR (CD₂Cl₂, 301 K): $\delta = -69.2$ ppm (sbr).

¹⁰³Rh NMR (CD₂Cl₂, 301 K): $\delta = -7280$ ppm.

MS(DCI-CH₄): *m*/*z*: 576.1 [M]⁺.

To a solution of **29** (140 mg, 0.44 mmol) in CH_2Cl_2 (6 mL) at room temperature was added [RhCl(cod)]₂ (109 mg, 0.22 mmol). The suspension was then stirred for 2 hours. After evaporation of the solvent, the rhodium complex **47** (218 mg, 88 %) was isolated as a yellow solid. Recrystallization at room temperature from CH_2Cl_2/Et_2O mixture afforded yellow crystals.

¹H NMR (CD₂Cl₂, 193 K): $\delta = 8.39-8.36$ (m, 2H, H_{ar}), 7.80-7.55 (m, 9H, H_{ar}), 7.19 (s, 1H, H_{ar}), 7.18 (s, 1H, H_{ar}), 5.26 (brs, 1H, CH_{cod}), 5.18 (brs, 1H, CH_{cod}), 3.47 (brs, 1H, CH_{cod}), 2.01 (brs, 1H, CH_{cod}), 2.60-1.60 (m, 8H, CH_{2cod}).

¹³C NMR (CD₂Cl₂, 193 K): $\delta = 144.1$ (d, $J_{CP} = 80.0$ Hz, C), 142.8 (d, $J_{CP} = 68.5$ Hz, C), 138.6 (d, $J_{CP} = 15.7$ Hz, CH_{ar}), 133.4 (CH_{ar}), 131.5 (d, $J_{CP} = 9.3$ Hz, CH_{ar}), 131.3 (C_{ar}), 131.2 (d, $J_{CP} = 10.3$ Hz, CH_{ar}), 131.0 (C_{ar}), 130.0 (CH_{ar}), 129.6 (CH_{ar}), 128.8 (d, $J_{CP} = 12.1$ Hz, CH_{ar}), 127.2 (CH_{ar}), 125.6 (CH_{ar}), 124.8 (CH_{ar}), 124.7 (CH_{ar}), 123.1 (d, $J_{CP} = 56.9$ Hz, C), 109.1 (d, $J_{CP} = 11.2$ Hz, CH_{cod}), 107.8 (d, J = 11.2 Hz, CH_{cod}), 71.7 (d, J = 12.1 Hz, CH_{cod}), 71.4 (d, J = 11.2 Hz, CH_{cod}), 35.9 (CH_{2cod}), 30.4 (CH_{2cod}), 29.4 (CH_{2cod}), 26.4 (CH_{2cod}).

³¹**P** NMR (CD₂Cl₂, 301 K): $\delta = +7.7$ ppm (d, $J_{PRh} = 160.0$ Hz).

¹⁰³**Rh NMR (CD₂Cl, 301 K):** $\delta = -7993$ ppm.

MS (ES): m/z: 527.1 [M – Cl]⁺.

HRMS (ES+): calcd for C₂₆H₂₅N₄PRh 527.0872; found, 527.0874.

Anal. Calcd for C₂₆H₂₅ClN₄PRh.(0.8 CH₂Cl₂): C, 50.77; H, 4.19; N, 9.47. Found: C, 50.64; H, 4.37; N, 9.39.

Dec.p. 218-219°C

To a solution of 4-4'-bis-1,2,4-triazole (500 mg, 3.67 mmol) in Et₂O (60 mL) cooled to -78° C was added *n*-BuLi (2.5 M in hexane, 2.9 mL, 3.67 mmol). The suspension was warmed to room temperature and stirred for 4 hours. After addition of diphenylphosphinic chloride (1.35 mL, 7.34 mmol) at -78° C, the solution was slowly warmed to room temperature and stirred for 3 hours. The organic layer was washed with brine. The organic layer was then extracted with additional Et₂O (2 x 20 mL), and dried over MgSO₄ affording **50** as a yellow oil (602 mg, 25 %).

49.¹**H** NMR (CDCl₃, 25°C): δ = 7.63 (td, $J_{\text{HH}} = J_{\text{HP}} = 10.0$ Hz, 4H, H_{ar}), 7.42-7.47 (m, 6H, H_{ar}).

¹³C NMR (CDCl₃, 25°C): δ = 133.3 (d, J_{HP} = 21.4 Hz, CH_{ar}), 130.7 (CH_{ar}), 129.9 (d, J_{HP} = 5.0 Hz, C), 129.3 (d, J_{HP} = 7.5 Hz, CH_{ar}), 121.1 (d, J_{HP} = 66.7 Hz, C).

³¹**P NMR (CDCl₃, 25**°**C):** δ = -32.9 ppm.

To a solution of **54** (270 mg, 2,25mmol) in pyridine (0,4 ml) was added dropwise a solution of OTf_2 anhydre (1,03 ml, 6,14 mmol) in CH_2Cl_2 (11 ml) à 0°C pendant 4 h. The residue was then washed with H_2O and dried with Na₂SO₄. After evaporation of the solvent **55** was obtained as an orange solid ((510 mg, 44 %).

RMN ¹**H** (**CD**₃**COCD**₃, **298 K**): δ (ppm) = 2,42 (dt, J_{HH} = 6,0/5,8 Hz, 4H, C₂-H₂), 4,63-4,74(m, 4H, C₁-H₂), 5,29 (q, J_{HH} = 5,8Hz, 1H, C₃-H).

RMN ¹³**C (CD₃COCD₃, 298K):** δ (ppm) =34,5 (C₂), 71,0 (C₁), 81,7 (C₃).

MS (**DCI/NH**₃): $m/z = 534 [M+NH_4]^+$.

CHAPITRE II : LIGANDS CARBONES RICHES EN ELECTRONS : YLURES ET DI-YLURES DE PHOSPHONIUM CONTRAINTS ET/OU CHIRAUX.

I] Eta	t de l'art sur les ylures de phosphonium1	137
A] (Généralité sur les ylures de phosphonium1	137
1]	Définition et structure	137
2]	Historique	138
3]	Ylures de phosphonium stabilisés, semi-stabilisés et non-stabilisés	139
4]	Voies de synthèse des ylures	140
5]	Ylures en chimie organométallique	141
B] I	Bis-ylures de diphosphonium	143
1]	Exemples	143
2]	Résultats antérieurs de l'équipe en série cyclique	147
1	Bis-ylures non stabilisés fusionnés en tête-à-tête : les carbodiphosphoranes Bis-ylures non stabilisés fusionnés en tête-à-tête : les carbodiphosphoranes	147
2	2. β-Bis-ylures non stabilisés fusionnés tête-à-tête :	148
3	3. α-Bis-ylures non stabilisés fusionnés en tête-à-tête :	148
II] Rés	sultats et Discussion	149
A] I	es bis-ylures à pont dppb en série acyclique	149
1]	Diphosphoniums à pont ortho-phénylène (o-dppb)	149
1	Diphosphoniums en série $(Ph_2P^+Me)_2$	149
2	2. Diphosphoniums en séries $(Ph_2P^+Et)_2$ et $(Ph_2P^+RR^2)$ avec $R = Me$ et $R^2 = Et \dots R^2$	150
2]	Diphosphonium en série <i>méta</i> -phénylène (Ph ₂ P ⁺ Me) ₂	154
3]	Conclusion	156
B] I	Les ylures de phosphonium chiraux	157
1]	Rappels bibliographiques	157
1	. Vers la synthèse d'un diphosphonium avec un espaceur porteur de la chiralité	157
2 c	2. Vers la synthèse d'un diphosphonium où la chiralité est portée sur l'atome carbone	de 159
2]	Résultats	160
1	Vers la synthèse d'un diphosphonium porteur d'un atome de phosphore chiral	160
III] C	Conclusion	163
Partie expérimentale		
Les ylures de phosphonium présentent de nombreuses applications en chimie organique, en particulier pour l'élaboration stéréosélective de doubles liaisons C=C (réaction d'oléfination de Wittig) rencontrées dans des produits d'origine naturelle. Cette perspective a donc suscité beaucoup d'études concernant la synthèse de ces ylures, leur structure et leurs propriétés.¹ Par ailleurs, depuis quelques décennies, les ylures de phosphonium ont été utilisés en chimie de coordination des métaux de transition.² Dans les complexes métalliques correspondant, les ylures agissent comme des ligands riches en électrons. La chimie de coordination des phosphonium avec les métaux de transition est désormais bien établie,³ aussi bien en version monodente que bidente, et plusieurs applications en catalyse ont été rapportées.⁴

Dans ce chapitre, la chimie de coordination de bis-ylures de diphosphonium cycliques et acycliques sera envisagée.

I] Etat de l'art sur les ylures de phosphonium

A] Généralité sur les ylures de phosphonium

1] <u>Définition et structure</u>

Les ligands neutres liés au métal par un atome de carbone hybridé sp³ sont essentiellement représentés par les ylures d'oniums (phosphonium⁵, sulfonium⁶, ou ammonium/iminium⁷).

Les ylures de phosphonium sont des composés généralement stables, mais restant cependant réactifs vis-à-vis d'électrophiles (H⁺, carbonyles,...). Ils peuvent être représentés par deux structures de Lewis limites, appelées forme *ylure* et forme *ylène* (**schéma 1**).⁸ La forme ylène est pentavalente au niveau du phosphore et implique l'intervention des orbitales 3d du phosphore. Elle rend compte de la multiplicité de la liaison P=C et de la géométrie de ces molécules où le carbone reste peu pyramidalisé. La forme ylure présente un carbanion en position α du groupement phosphonium. La longueur de la liaison P-C, comprise entre 1,61 et 1,73 Å, est plutôt assimilée à celle d'une double liaison. De plus, l'atome de carbone est

¹ E.P. Urriolabeitia, Top. Organomet. Chem., 2010, 30, 15.

² D. Schneider, A. Schier, H. Schmidbaur, *Dalton Trans.*, 2004, 1995.

³ L. R. Falvello et al., *Inorg. Chimica Acta*, **2003**, *347*, 75.

⁴ a) F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie, *J. Am. Chem. Soc.* **1961**, *83*, 3539; b) W. C, Kaska, D. K. Mitchell, R. F. Reichelderfer, *J. Organomet. Chem.* **1973**, *47*, 391; c) H. Schmidbaur, O. Gasser, *J. Am. Chem. Soc.* **1975**, *97*, 6281; d) H. Schmidbaur, P. Nustein, *Organometallics* **1985**, *4*, 345.

⁵ A. Spannenberg et al. *Organometallics*, **2000**, *19*, 3991.

⁶ E. Serrano et al., J. of Mol. Structure, **2008**, 890, 57.

⁷ E. Serrano et al., *Organometallics*, **2006**, *25*, 4653.

⁸ a) D.G. Gilheany, in *The chemistry of organophosphorous compounds*, vol. 1 (Ed : F. R. Hartley), John Wiley and sons Ltd, Chichester **1990**, pp 13 ; (b) D. G. Gilheany, *Chem. Rev.*, **1994**, *94*, 1339

quasiment plan, les liaisons aux substituants du phosphore formant un angle faible $(0-20^{\circ})$ avec la liaison P=C.

Schéma 1: Description mésomère des ylures de phosphonium.

La stabilité des ylures de phosphoniums peut être, en partie, attribuée à la résonance entre ces deux structures. Cependant, les études spectroscopiques RMN (¹H, ¹³C et ³¹P) sont plus en accord avec la structure dipolaire de l'ylure et ne suggèrent qu'une contribution mineure de la forme ylène.⁹ Les calculs théoriques confirment également ce point de vue.¹⁰ En résumé, la liaison P⁼⁼C est une « liaison double fortement polarisée ».

2] <u>Historique</u>

Le premier ylure de phosphonium a été synthétisé en 1919 par Staudinger.¹¹ Il a aussi décrit sa réactivité vis-à-vis des isocyanates tels que **I** conduisant à l'imino-cétène **II**. (schéma 2).

$$Ph_{3}P=CPh_{2} + N=C=O \xrightarrow{Ph_{1}} N=C=CPh_{2}$$

$$I \xrightarrow{-Ph_{3}PO} II$$

Schéma 2 : Réactivité d'un ylure de phosphonium avec un isocyanate.

Dans les années 40, Wittig s'intéresse à la synthèse de molécules à phosphore pentavalent. Il envisageait de synthétiser le tétraphényl-méthyl phosphorane **IV** par action du phényllithium sur le sel de triphénylméthylphosphonium **III** (schéma 3). Mais le produit attendu n'est pas obtenu. Au lieu de cela, un ylure de phosphonium **V** est généré qui après piégeage avec la benzophénone, permet d'obtenir l'alcène **VI** et l'oxyde de triphénylphosphine **VII**. Il vient alors de réaliser pour la première fois une réaction appelée aujourd'hui « oléfination de Wittig ».

⁹H.Schmidbaur, et coll., *Chem. Ber.* **1989**, *106*, 1251.

¹⁰ A. Streitwieser et coll., J. Am. Chem. Soc., **1987**, 109, 4184

¹¹ H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635.

Schéma 3: Formation de l'ylure de phosphonium V et réaction avec la benzophénone donnant l'alcène VI.

La réaction de Wittig fait partie des réactions les plus utilisées et joue un rôle clef dans la synthèse totale de composés à activité biologique et pharmaceutique (comme celles des leucotriènes, ¹² des prostaglandines¹³ et des stéroïdes¹⁴) mais aussi dans un procédé industriel de BASF pour la synthèse de la vitamine A¹⁵ (schéma 4). En 1979, Wittig sera récompensé par le prix Nobel de Chimie pour l'ensemble de ses travaux.

Schéma 4 : Réaction de Wittig et applications en synthèse.

3] Ylures de phosphonium stabilisés, semi-stabilisés et non-stabilisés

Les vlures, qui sont des espèces nucléophiles, peuvent être classés en trois catégories : non-stabilisés, semi-stabilisés, et stabilisés (schéma 5). En effet, suivant la nature des substituants, la charge négative portée par l'atome de carbone peut être plus ou moins délocalisée.

 ¹² R.H. Green, P. F. Lambeth, *Tetrahedron*, **1985**, *39*, 1687
 ¹³ (a) E. J. Corey, T. K. Shaaf, *J. Am. Chem. Soc.*, **1970**, *92*, 395; (b) H. Pommer, *Ang. Chem.* **1977**, *89*, 437; (c) S. W. Huang, M. Adiyaman, S. R. Khanapure, Tet. Lett, 1996, 37, 779

¹⁴ (a) A. I. A. Broess, M. B. Gooen, H. Hamersma, Tet. Lett., **1994**, 35, 235 ; (b) H. Gao, X. Su, L. Huang, Z. Li, Synth. Comm., 1997, 27, 1981

⁽a) G. Wittig, H. Pommer, Ger. Patent 32741 IVB/120, 1954 ; (b)H. Pommer, P. C. Thieme, Top. In. Cur. Chem, 1983, 109, 165-188; (c) H. Ernst, Carotenoïds, 1996, 49, 369

Schéma 5: Classification des ylures de phosphonium.

Par exemple, les groupements oxycarbonyle, céto ou cyano attracteurs sont en mesure de délocaliser la charge négative significativement. Dans ce cas, les ylures sont stables à l'air et à l'humidité ; on parle alors d'ylures stabilisés. Dans le cas opposé des ylures nonstabilisés, les substituants de l'atome de carbone sont soit des atomes d'hydrogène soit des groupements alkyles, et la charge négative reste alors localisée sur l'atome de carbone rendant l'ylure très nucléophile. Ces ylures non stabilisés sont donc instables à l'air et à l'humidité. Le cas intermédiaire est celui des ylures semi-stabilisés à substituants aryles, allyles ou vinyles.

4] Voies de synthèse des ylures

Il existe plusieurs voies d'accès aux ylures (**schéma 6**).¹⁶ La première méthode, la plus utilisée, procède en deux étapes. Elle correspond à l'attaque nucléophile d'un halogénure d'alkyle par un phosphane entrainant la formation d'un sel de phosphonium suivie d'une déprotonation (méthode **a**).¹⁷

Schéma 6 : Différentes voies d'accès aux ylures de phosphoniums.

La réaction de désilylation d'un sel d'onium α -silylé (méthode **b**) est une méthode alternative à la réaction de déprotonation où le groupement silyle joue son rôle de « superprotons » (l'agent de désilylation le plus efficace étant l'anion fluorure). L'attaque

¹⁶ E. P. Urriolabeitia, *Top Organomet Chem*, **2010**, *30*, 15.

¹⁷ a) D. Eners, O. Niemeier, A. Henseler, *Chem. Rev.* **2007**, *107*, 5606; b) N. Marion, S. Diez-Gonzàlez, S. P. Nolan, *Angew. Chem. Int. Ed*, **2007**, *46*, 2988; c) J. S. Johnson, *Opinion Drug. Discov. Develop.* **2007**, *10*, 691.

nucléophile du réactif de Schwiezer¹⁸ $[Cu(NH_3)_4(H_2O)_2][(OH)_2]$ sur un sel de vinylphosphonium conduit également à des ylures (méthode **c**).¹⁹

La réaction entre un carbène et un nucléophile (: NR_3 , : PR_3 , : AsR_3 , : SR_2) permet aussi d'obtenir des ylures. Le carbène est généralement stabilisé sous une forme diazoïque, et cette méthode s'applique notamment aux ylures de sulfonium, qui sont dès lors considérés comme des agents de transfert de carbènes vis-à-vis de phosphanes par exemple, pour donner des ylures de phosphoniums (méthode **d**).²⁰

Enfin, une autre méthode de synthèse d'ylures met en jeu la réaction de nucléophiles variés (phosphines, amines, sulfures...) avec une large variété de substrats insaturés (alcènes, alcynes) (méthode \mathbf{e}).²¹

5] <u>Ylures en chimie organométallique</u>

Tous comme les NHC (N-heterocyclic carbenes), les ylures de phosphonium sont utilisés comme ligands σ -donneurs vis-à-vis de la plupart des métaux. Différents types de coordination sont connus (schéma 7).

Schéma 7 : Différents types connus de coordination des ylures à des centres métalliques de transition.

¹⁸ E. Schwiezer, Journal für Praktische Chemie, 1857, 72, 109.

¹⁹ a) AW. Johnson, *Ylides and imines of phosphorus*, **1993**, Wiley, New York, USA; b) EJ. Coyne, DG. Gilheany, *Organic functional group transformation*, **1995**, Vol 3, Chap 3,13. Pergamon, Oxford, UK; c) OI. Kolodiazhnyi, *Phosphorus ylides*, **1999**, Wiley, Weinheim, Germany; d) OI. Kolodiazhnyi, **1996**, *Tetrahedron 52*, 1855.

²⁰ Padwa A, Hornbuckle SF, *Chem Rev*, **1999**, *91*, 263, b) Whittingham WG, *Comprehensive organic functional group transformations*, **1995**, *3*, Pergamon, Oxford, UK.

²¹ a) G. C. Vougioukalakis, R. H. Grubbs, *Chem. Rev.* **2010**, *110*, 1746.

En 1969, Arnup et Baird ont synthétisé le premier complexe d'ylure de phosphonium,²² mais l'importance de tels complexes s'est surtout développée avec les travaux de Schmidbaur.²³ Dès 1982, des complexes cycliques de Mn(II), Co(II) et de Fe(II) possédant un ligand anionique de type tris-ylure **VIII** sont décrits (**schéma 8**).²⁴

Schéma 8: Synthèse de complexe de tris-ylure de phosphonium.

Dans les années 80, Vicente et *coll*. ont publié pour la première fois la structure cristalline d'un complexe dinucléaire d'argent à ligand bis-ylure (tail-to-tail) **IX** (schéma 9).²⁵

Schéma 9: Synthèse du complexe argenté de bis-ylure.

Puis en 2000, Spannenberg et *coll*. ont décrit un complexe de Pd(II) de bis-ylure stabilisé en version cyclique X.²⁶ La coordination du métal implique deux centres carbonés stéréogènes (schéma 10).

Schéma 10: Synthèse d'un complexe cyclique de bis-ylure de phophonium X.

Un autre exemple de complexe de bis-ylure cyclique isolé sous la forme de deux régioisomères a été décrit par Navarro et *coll*. en 2003 (**schéma 11**).²⁷

Wagner, Organometallics, 1982, 1, 1266

²² P.A Arnup, M. C. Baird, Inorg. Nucl. Chem. Lett., 1969, 5, 65.

²³ H. Schmidbaur, Angew. Chem. Int. Ed., **1983**, 22, 907.

²⁴ H. Schmidbaur, T. Costa, B. Milewski-Marhla, F. H. Köhler, Y. –H. Tsay, C. Krüger, J. Abart, F. E.

²⁵ Vicente et al. *organometallics*, **1989**, *8*, 767.

²⁶ A. Spannenberg, W. Baumann, U. Rosenthal, *Organometallics*, **2000**, *19*, 3991.

Schéma 11 : Synthèse de complexes cycliques régioisomères de bis-ylure stabilisé.

En 2006, Urriolabeitia et *coll*. synthétisent un bis-ylure mixte P-N et décrivent sa coordination avec un centre métallique de palladium (**schéma 12**).²⁸

Schéma 12 : Coordination d'un bis-ylure P-N avec le centre métallique Pd.

Les exemples suivants illustrent l'importance des bis-ylures de diphosphonium en synthèse organométallique.

B] Bis-ylures de diphosphonium

1] Exemples

Les bis-ylures de diphosphonium peuvent présenter différentes topologies. On distingue en effet trois types de bis-ylures : les ω -bis-ylures, les α -bis-ylures, et les bis-ylures fusionnés, classés eux même en trois sous classes appelées : « head-to-head » (tête-à-tête), « tail–to-tail » (queue-à-queue), « head-to-tail » (tête-à-queue) (**schéma 13**). Le carbanion est ici défini comme étant la tête, et le phosphonium comme étant la queue.

²⁷ L. R. Falvello, M. E. Margalejo, R. Navarro, E. P. Urriobeitia, *Inorg. Chimica Acta* **2003**, *347*, 75.

²⁸ P.Urriolabeitia et al. Organometallics, **2006**, 25, 4653.

Schéma 13 : Typologie topologique des bis-ylures de diphosphonium cycliques et acycliques.

Parmi les ω -bis-ylures, la forme Ω_1 est représentée par les β -bis-ylures comportant un groupement X de type CO, PR, PR^{2+, 29} De nombreux ω -bis-ylures queue-à-queue de type Ω_2 (X : (CH₂)_n, RPPR,...) sont aussi connus de la littérature,³⁰ incluant des représentants β (X = RP).

Les carbodiphosphoranes sont des bis-ylures fusionnés tête-à-tête de type $\mathbf{F_1}^{31}$ Ils contiennent deux motifs ylures cumulés sur un atome de carbone central divalent portant deux charges négatives stabilisées par les deux substituants phosphonium adjacents, ce qui confère à la structure une forme coudée et un caractère très nucléophile. Les carbodiphosphoranes

²⁹ (a) J. Vicente, M. T. Chicote, I. Saura-Llamas, P. G. Jones, K. Meyer-Bäse, C. F. Erdbrügger, *Organometallics.* **1988**, 7, 997; (b) A. Schmidpeter, G. Jochem, C. Klinger, C. Robl, H. Nöth, *J. Organomet. Chem.* **1997**, 529, 87; (c) L. R. Falvello, S. Fernández, R. Navarro, A. Rueda, E. P. Urriolabeitia, *Organometallics.* **1998**, 17, 5887; (d) S. Fernández, R. Navarro, E. P. Urriolabeitia, *J. Organomet. Chem.* **2000**, 602, 151; (e) E. Serrano, C. Vallés, J. J. Carbó, A. Lledós, T. Soler, R. Navarro, E. P. Urriolabeitia, *Organometallics;* **2006**, 25, 4653; (f) E. Serrano, R. Navarro, T. Soler, J. J. Carbó, A. Lledós, R. Navarro, E. P. Urriolabeitia, *Inorg. Chem.* **2009**, 48, 6823.

³⁰ (a) A. Spannenberg, W. Baumann, U. Rosenthal, *Organometallics.* **2000**, 19, 3991; (b) L. R. Falvello, M. E. Margalejo, R. Navarro, E. P. Urriolabeitia, *Inorg. Chim. Acta*, **2003**, 347, 75; (c) H. H. Karsch, E. Witt, A. Schneider, E. Herdtweck, M. Heckel, *Angew. Chem. Int. Ed.*, **1995**, 34, 557.

³¹(a) W. Petz, G. Frenking, *Top. Organomet. Chem.* R. Chauvin, Y. Canac, Eds, Springer, **2010**, 30, chap. 3. p:
49; (b) R. Tonner, F. Öxler, B. Neumüller, W. Petz, G. Frenking, *Angew. Chem. Int. Ed.* **2006**, 45, 8038; (c) R. Tonner, G. Frenking, *Angew. Chem. Int. Ed.* **2007**, 46, 8695; (d) R. Tonner, G. Frenking, *Chem. Eur. J.* **2008**, 14, 3260; (e) S. Marrot, T. Kato, H. Gornitzka, A. Baceiredo, *Angew. Chem. Int. Ed.* **2006**, 45, 2598.

peuvent être considérés sous leur forme neutre de type yldiure I_0 où l'un des substituants de l'atome de carbone est un groupement phosphonium. Les carbodiphosphoranes sont généralement obtenus par double déprotonation de leurs précurseurs α -diphosphoniums. Deux exemples représentatifs sont donnés dans le schéma 14 suivant. Dans le deuxième cas conduisant à XII, un mécanisme de réarrangement a été proposé (schéma 15): un premier groupement méthyle serait tout d'abord déprotoné par un éq. de Et₃P=CHMe, puis une attaque nucléophile de l'ylure formé sur le centre phosphonium adjacent conduirait à un cation diphosphaallylique, ce dernier donnant enfin le carbodiphosphorane disymétrique XII par l'action du deuxième éq. de Et₃P=CHMe.

Schéma 14: Synthèse de carbodiphosphoranes par déprotonation.

Schéma 15: Mécanisme proposé pour le réarrangement conduisant à XII.

En 2006, Baceiredo *et coll*. ont synthétisé des carbodiphosphoranes cycliques et démontré que ces derniers étaient effectivement des ligands fortement σ -donneurs (**schéma 16**), ³² notamment vis-à-vis d'un fragment Rh (I).

³² S. Marrot et al., Angew. Chem. Int. Ed., **2006**, 45 2598.

Schéma 16: Synthèse et complexation d'un carbodiphosphorane cyclique.

Dans la sous classe queue-à-queue, la forme F_2 (schéma 13) a été décrite par Appel et *coll*. en 1982 en invoquant la forme (σ^3 , λ^5)-bis(méthylène)phosphorane. La version ionique de F_2 correspond à la forme I_2 , qui est un diylure agissant également comme ligand de métaux de transition.³³ La forme F_3 tête à queue, avec $X = sp^3$ -C ou P, est un bis-ylure formel, c'est-àdire une forme β -zwitterionique où le caractère ylure n'est plus appparent.

Dans la série α -bis-ylures, les formes tête-à-tête A_1 et queue-à-queue A_2 présentent une répulsion électrostatique C⁻/C⁻ et P⁺/P⁺, respectivement. A_1 peut se comporter comme un agent de transfert de carbène lorsqu'il est coordiné : la rupture de la liaison P=C donne un ylidocarbène et un groupement phosphinyl pouvant se coordiner au métal.³⁴ La forme queueà-queue A_2 a été décrite par Karsch et *coll*.en 1988.³⁵ Dans ces espèces, la répulsion entre les deux charges cationiques adjacentes et l'encombrement stérique des substituants induisent une augmentation de la distance P⁺---P⁺ (2,278 Å), qui devient alors plus longue qu'une liaison neutre P-P (2,189 Å) où l'atome de phosphore est pentavalent. Le seul exemple de la forme A_3 (tête-à-queue) est celui décrit en 1980 par Schmidbaur et *coll*. à savoir un α -bisylure présentant une alternance de trois charges (**schéma 8**).³⁶

A la différence des bis-ylures de diphosphonium acycliques, les versions cycliques ont été peu étudiées à ce jour. L'équipe s'est alors intéressée à la préparation de versions

³³ (a) G. Wittig, M. Rieber, Justus Liebigs Ann. Chem. **1949**, 562, 177; (b) R. A. Grey, L. R. Anderson, *Inorg. Chem.* **1977**, 16, 3187; (c) H. J. Cristau, Chem. Rev. **1994**, 94, 1299; (d) M. Taillefer, H. J. Cristau, Top. Curr. Chem. **2003**, 229, 41.

³⁴ (a) M. A. Shaw, J. C. Tebby, R. S. Ward, D. H. Williams, *J. Chem. Soc.* (C). **1967**, 2442; (b) M. A. Shaw, J. C. Tebby, *J. Chem. Soc.* (C). **1970**, 5; (c) J. C. Tebby, I. F. Wilson, D. Vaughan Griffiths, *J. Chem. Soc. Perkin I*, **1979**, 2133; (d) L. R. Falvello, R. Lusar, M. E. Margalejo, R. Navarro, E. P. Urriolabeitia, *Organometallics*. **2003**, 22, 1132.

³⁵(a) H. H. Karsch, B. Deubelly, G. Müller, *J. Chem. Soc.*, *Chem. Commun.*, **1988**, 517; (b) H. H. Karsch, E. Witt, *J. Organomet. Chem.* **1997**, 529, 151.

³⁶H. Schmidbaur, U. Deschler, B. Zimmer-Gasser, D. Neugebauer, U. Schubert, *Chem. Ber.* **1980**, 113, 902.

cycliques de bis-ylures de diphosphonium. Cette synthèse est fondée sur l'*o*-bis(diphénylphosphino) benzène **1** comme synthon de départ (**schéma 17**).³⁷

Schéma 17 : Différents bis-ylures cycliques accessibles à partir de l'o-dppb 1.

2] Résultats antérieurs de l'équipe en série cyclique

1. <u>Bis-ylures non stabilisés fusionnés en tête-à-tête : les carbodiphosphoranes</u>

En accord avec les résultats obtenus en 1983 par Schmidbaur *et coll.* ³⁸, le diphosphonium **XIII** a été obtenu avec un rendement de 96 % par réaction de l'*o*-dppb **1** avec le diiodométhane dans du THF en deux jours. La caractérisation par diffraction des rayons X indique une faible distance trans-annulaire $P^+...P^+$ (2,83Å *vs* 2 r VdW(P) = 3,7 Å), ce qui entraine une forte contrainte électrostatique. L'ajout de deux éq. de base (Et₃P=CHCH₃), conduit à la formation du carbodiphosphorane correspondant **XVI** (**schéma 18**).³⁷

Schéma 18: Déprotonation du diphosphonium cyclique XVI.

³⁷ M. Abdalilah et al., *Dalton trans.*, **2009**, *40*, 8493.

³⁸ G. A. Bowmaker, R. Herr, H. Schmidbaur, *Chem. Ber.*, **1983**, 116, 3567.

En raison de son instabilité à température ambiante résultant des contraintes stériques et électroniques, ce carbodiphosphorane a été caractérisé en RMN ¹H et ³¹P à -30°C, uniquement.

2. <u>β-Bis-ylures non stabilisés fusionnés tête-à-tête :</u>

Afin de diminuer les contraintes stériques et électroniques, le nombre d'atomes de carbone de la chaine aliphatique a été augmenté. L'ajout de deux éq. de *n*-BuLi sur le diphosphonium **XIV** à -78°C conduit au β -bis ylure tête-à-tête **XVII** qui présente un temps de demi-vie d'environ 45 min à température ambiante. La complexation du diphosphonium **XIV** sur un centre rhodium (I) permet d'obtenir le complexe **XVIII** et confirme que le bis-ylure **XVII** se comporte comme un ligand fortement donneur (**schéma 19**).³⁷

Schéma 19 : Synthèse et complexation du bis-ylure cyclique XVII.

3. <u>α-Bis-ylures non stabilisés fusionnés en tête-à-tête :</u>

L' α -bis-ylure **XIX** a été envisagé à partir du diphosphonium correspondant **XV** qui ne possède que deux atomes de carbone entre les deux atomes de phosphore. Cependant, l'addition de deux éq. de base n'a pas permis l'obtention de l' α -bis-ylure **XIX** ; au lieu de cela, l'*o*-dppb **1** et l'acétylène sont libérés (**schéma 20**).³⁷

Schéma 20: Déprotonation du diphosphonium cyclique XV suivie de son réarrangement.

A la suite à ces résultats en série cyclique, et afin d'accéder à des structures moins contraintes, nous nous sommes intéressés à la version acyclique de ces diphosphoniums à partir du même synthon de départ, l'*o*-dppb **1**.

II] <u>Résultats et Discussion</u>

A] Les bis-ylures à pont dppb en série acyclique

- 1] Diphosphoniums à pont ortho-phénylène (o-dppb)
 - 1. <u>Diphosphoniums en série $(Ph_2P^+Me)_2$ </u>

L'ajout d'un excès de trifluorométhanesulfonate de méthyle (MeOTf) sur l'*o*-dppb **1** dans le 1,1',2,2'-tétrachloroéthane (TCE), conduit au diphosphonium **XXI** avec un rendement de 31 % (**schéma 21**).³⁷ La symétrie du diphosphonium est indiquée en RMN ³¹P par la présence d'un signal unique à $\delta = +33,0$ ppm.

Schéma 21 : Synthèse du diphosphonium XXI.

La structure du diphosphonium diméthylé **XXI** a été déterminée par diffraction des rayons X de monocristaux obtenus dans l'acétone (**figure 1**).

Figure 1 : Représentation de la structure cristalline du diphosphonium diméthylé XXI.

Cette structure cristalline met en évidence les contraintes stériques et électrostatiques du diphosphonium **XXI**. Au niveau de l'*ortho*-phénylène, l'angle de torsion P_1 - C_1 - C_2 - P_2 est

de 8,6°, et la distance P^+CH_3 --- H_3CP^+ de 3,86 Å, ce qui indique un fort contact entre les sphères de Van der Waals des atomes d'hydrogène.

La formation du bis-ylure à partir du diphosphonium **XXI** a été envisagée par l'addition de deux éq. de base à basse température. Le suivi de la réaction à basse température dans le THF-*d8* a montré la formation de l'ylidophosphorane cyclique à cinq chaînons **XXIII** sous la forme de deux stéréo-isomères (95/5) (**schéma 22**). Ce dernier résulte de l'attaque nucléophile du monoylure sur le centre de phosphonium voisin électrophile. La présence de ces deux stéréo-isomères s'explique par une géométrie bipyramidale à base triangulaire autour de l'atome de phosphore penta-coordiné, le substituant méthyle pouvant être soit en position axiale, soit en position équatoriale. L'ylidophosphorane **XXIII** se caractérise en RMN ³¹P par un système AX ($\delta = -2.2$ ppm et - 100.0 ppm, $J_{PP} = 60,8$ Hz) caractéristique d'une séquence P^{IV}CP^V.

Schéma 22: Synthèse du carbodiphosphorane XXIV via un ylidophosphorane cyclique XXIII.

Le groupement CH de type ylure apparaît en RMN ¹H et ¹³C sous forme de doublets de doublets à $\delta_{\rm H}$ = + 0,64 ppm ($J_{\rm HP+}$ = 22,3 Hz, $J_{\rm HP(v)}$ = 13,4 Hz) et $\delta_{\rm C}$ = +15,1 ppm, ($J_{\rm CP+}$ = 112,7 Hz, $J_{\rm CP(v)}$ = 163,6 Hz), respectivement. En remontant à température ambiante, l'ylidophosphorane **XXV** se réarrange finalement en carbodiphosphorane **XXIV**.³⁹

2. Diphosphoniums en séries $(Ph_2P^+Et)_2$ et $(Ph_2P^+RR^2)$ avec R = Me et $R^2 = Et$

La réaction de l'o-dppb **1** avec un éq. de trifluorométhanesulfonate d'éthyle (EtOTf) dans le 1,1',2,2'-tétrachloroéthane (TCE) à 110°C pendant 12 h permet l'obtention du

³⁹ G. A. Bowmaker, R. Herr, H. Schmidbaur, Chem. Ber., 1983, 116, 3567

phosphonium **2** avec un rendement de 86 %.⁴⁰ Une seconde alkylation de ce monocation **1** avec un eq. de MeOTf dans le TCE à 110 °C pendant 24 h permet l'isolement du diphosphonium mixte **3** avec un rendement de 31 % (**schéma 23**). L'analogue diéthylé **4** a été obtenu avec un rendement de 46 % dans des conditions plus drastiques puisque la deuxième éthylation n'a été possible qu'en présence d'un excès de EtOTf (7 éq.) dans le TCE à 110 °C pendant 72 h (**schéma 23**).

Schéma 23 : Synthèse des diphosphoniums mixtes éthylé-méthylé 3 et diéthylé 4.

Les déplacements chimiques observés sont caractéristiques de diphosphoniums [$3:\delta$ = + 26,3 ppm, d ; + 29,7, d ; J_{PP} = 6,1 Hz ; $4:\delta$ = + 30,6 ppm, s]. Leurs structures ont été confirmées par diffraction des rayons X sur des monocristaux (**figure 2**).

Figure 2 : Représentations des structures cristallines des diphosphoniums 3 (à gauche) et 4 (à droite).

L'encombrement stérique est révélé par la valeur de l'angle de torsion $P_{1}^{+}-C_{1}-C_{2}-P_{2}^{+}$ au niveau du pont *o*-phénylène. En effet, on observe que cette torsion varie en fonction des substituants des atomes de phosphore. Plus l'encombrement stérique est important et plus l'angle de torsion augmente (**XXI** : 2,5°; **3** : 6,4°; **4** : 13,4°). Ces valeurs peuvent être

⁴⁰ R. Zurawinski et al., *Tetrahedron-Asymmetry*, **2010**, *21*, 1777.

expliquées par les répulsions stériques et électrostatiques qui s'exercent entre les deux fragments phosphoniums. L'introduction du second substituant éthyle induit en effet une augmentation de la distance *trans*-annulaire $P^+...P^+(3,73 \text{ Å pour 4}, vs 3,66 \text{ Å pour 3})$.

La déprotonation du diphosphonium **3** par deux eq. de *n*- BuLi dans le THF à -78°C, n'a pas permis pas d'obtenir le bis-ylure acyclique de type **5**. Au lieu de cela, comme dans le cas de l'analogue diméthylé **XXI** (**schéma 22**), l'ylidophosphoranes **6a**, analogue de **XXIII**, est généré, résultant de l'attaque nucléophile du monoylure sur le phosphonium vicinal. Deux stéréo-isomères sont observés dans un rapport 95:5. Comme dans le cas du diphosphonium diméthylé **XXI**, la présence de ces deux stéréo-isomères s'explique par la géométrie bipyramidale à base triangulaire autour de l'atome de phosphore penta-coordiné.

Notons que l'étape initiale de déprotonation s'effectue donc au niveau du substituant alkyle le plus acide, à savoir le groupement P^+ -CH₃ (schéma 24).

Schéma 24 : Voie de synthèse des ylures de bis-phosphonium 7a et 7b.

L'intermédiaire **6a** a été caractérisé par RMN ³¹P à basse température ($\delta p = -1, 6$ et - 89,8 ppm, $J_{PP} = 57,6$ Hz pour l'isomère majoritaire). En RMN ¹H et ¹³C, le groupement CHP₂ résonne sous la forme de doublets de doublets à $\delta_H = +0,43$ ppm ($J_{HPIV} = 20,0, J_{HPV} = 15,0$ Hz) et à $\delta_H = +13,1$ ppm (dd, $J_{CPIV} = 113,0, J_{CPV} = 167,0$ Hz), respectivement.

Cet intermédiaire **6a** se réarrange en ylure de bis-phosphonium **7a** avec un rendement de 62 %, après protonation (**schéma 25**).⁴¹ Ce dernier résonne en RMN ³¹P sous la forme d'un système AX à $\delta_P = +19,3$ ppm, (d, (PPh₃)) et $\delta_P = +24,2$ ppm (d, (PPh₂Et)), avec une

⁴¹ H. Schmidbaur, *Chem. Ber.*, **1970**, 110, 3501.

constante de couplage $J_{PP} = 24,3$ Hz. Le groupement P₂CH est mis en évidence par RMN ¹H sous forme d'un triplet ($\delta_H = +2,05$ ppm, t, $J_{HPPh3} = J_{HPPh2Et} = 5,0$ Hz) et en RMN ¹³C sous forme d'un doublet de doublets ($\delta_C = -6,3$ ppm, dd, $J_{CPPh3} = 122,0, J_{CPh2Et} = 124,6$ Hz).

Schéma 25: Mécanisme proposé pour la formation d'ylures de bis-phosphoniums.

La formation de **7a** résulterait de la protonation de l'intermédaire bis-ylure **6'a**, qui a été caractérisé à -30°C par RMN ³¹P ($\delta_P = +40,2$ ppm, d, (Ph₂P⁺C₂) ; +31,9 ppm, d, (Ph₃P⁺C), $J_{PP} = 51,6$ Hz ;) et par RMN ¹³C ($\delta_{CH} = +5,6$ ppm (brs), et +13,7 ppm (m)). Ce bis-ylure serait formé par rupture de la liaison phénylène–P(IV) d'un intermédiaire de type phénylure de phosphonium (schéma 25).

Un unique substituant éthyle n'était donc pas suffisant pour empêcher le réarrangement intramoléculaire en ylidophosphorane **6a**, l'analogue diéthylé de **3** a été envisagé. La déprotonation a été réalisée à partir du diphosphonium **4** dans les mêmes conditions que précédemment. Malgré la présence d'un substituant plus volumineux sur les deux atomes de phosphore, la formation de l'ylidophosphorane cyclique **6b** est encore observée. Ceci est confirmé par le déplacement chimique RMN ³¹P ($\delta p = +10,1$ et -88,3 ppm ; $J_{PP} = 94,2$ Hz). Le groupement C-CH₃ est aussi confirmée par RMN ¹H et ¹³C par des doublets de doublets à $\delta_{CCH3} = +5,7$ ppm ($J_{CP(IV)} = 120,0, J_{CP(V)} = 172,0$ Hz) et à $\delta_{CCH3} =+12,6$ ppm, ($J_{CP(IV)} = J_{CP(V)} = 13,8$ Hz), respectivement. Un seul stéréo-isomère de **6b** est ici observé, ce qui est probablement dû à l'encombrement stérique plus important des substituants éthyles.

Par suivi RMN ³¹P à basse température (de -60°C à 25°C), l'évolution de l'intermédiaire cyclique **6b** en ylure de bis-phosphonium **6'b** est observé. Ce dernier résonne sous la forme d'un système AX à $\delta_P = +25,4$ ppm, (PPh₃), et à $\delta_P = +28,8$ ppm, (PPh₂Et), avec une constante de couplage $J_{PP} = 53,7$ Hz. Comme en série mixte, l'intermédiaire **6'b** évoluerait vers le bis-phosphonium **7b** après protonation. Le produit final **7b**, obtenu avec un rendement de 82 %, a été totalement caractérisé en RMN ¹H et ¹³C ($\delta_{CCH3} = +1,83$ ppm, t,

 $J_{\text{HPPh3}} = J_{\text{HPPh2Et}} = 15,0 \text{ Hz}$; $\delta_{\text{CCH3}} = -2,0 \text{ ppm}$, brs). La structure cristalline de **7b** a pu être déterminée par diffraction des rayons X sur monocristal (**Figure 3**).

Figure 3 : Représentation de la structure cristalline de l'ylure de bis-phosphonium 7b.

Les longueurs de liaisons C1-P1(1,7230(14) Å) et C1-P2 (1,7135(14) Å) sont quasiidentiques, ce qui révèle la résonnance entre la liaison simple C-P (ca. 1,80–1,85 Å) et la liaison double C=P (ca. 1,60–1,65 Å)

Suite à ces résultats en série *ortho*-phénylène, qui ne permettent pas d'observer le bisylure de diphosphonium, l'éloignement des deux groupements phosphoniums a été envisagé en série *méta*-phénylène.

2] <u>Diphosphonium en série *méta*-phénylène (Ph₂P⁺Me)₂</u>

Le 1,3-bis (diphénylphosphino) benzène **8** a tout d'abord été préparé par le mode opératoire décrit par James *et al.*⁴² L'addition de deux éq. de MeOTf dans le CH_2Cl_2 conduit au *m*-phénylène diphosphonium **9** visé avec un rendement de 86 % (schéma 26).

Schéma 26 : Synthèse d'un complexe de rhodium dicarbonyle à ligand bis-ylure 11 à partir du *m*-dppb 8.

Le déplacement chimique unique observé en RMN ³¹P (δ = + 22,5 ppm, s) confirme la symétrie de la structure du diphosphonium **9**. Après obtention de monocristaux dans un

⁴² P. W. Miller, M. Nieuwenhuyzen, J. P. H. Charmant, S. L. James, *Inorg. Chem.* 2008, 47, 8367.

mélange CH₂Cl₂/pentane à -20°C, la structure de **9** a été confirmée par diffraction des rayons X (**figure 4**).

Figure 4: Représentation de la structure cristalline du diphosphonium 9 en série métaphénylène.

Contrairement à ce qui a été observé en série *ortho*-phénylène, les valeurs des angles au niveau du pont *méta*-phénylène (P₂-C₅-C₄ = 120,25° et P₁-C₃-C₄ = 121,48°) sont très proches des valeurs VSEPR idéales, l'angle de torsion P₁-C₃-C₄-C₅-P₂ n'étant que de 0,9°. Comme attendu, la distance P⁺---P⁺ (5,55 Å) est beaucoup plus importante qu'en série *ortho*, et supérieure à la somme des rayons de Van der Waals des atomes de phosphore (3,60 Å).

La déprotonation du *m*-phénylène diphosphonium **9** a été envisagée en prévoyant que le réarrangement observé en série *ortho*- phénylène ne pourrait avoir lieu à cause de l'éloignement des deux centres phosphoniums. Après addition de deux éq. de *n*-BuLi dans le THF- d_8 , le bis-ylure acyclique **10** a été caractérisé à basse température (**schéma 26**). Ce résultat confirme que les substituants CH_3 portés par les atomes de phosphores sont plus acides que l'atome d'hydrogène central du pont *m*-phénylène. La nature et la symétrie du bis-ylure **10** sont indiquées en RMN ³¹P par la présence d'un singulet à + 19,6 ppm. Les groupements méthylènes résonnent en RMN ¹H sous forme d'un doublet à $\delta_{\rm H} = + 0,1$ ppm avec une constante de couplage $J_{\rm HP} = 7,5$ Hz, et en RMN ¹³C sous forme d'un doublet à $\delta_{\rm C} = -5,9$ ppm avec une constante de couplage $J_{\rm CP}= 98,1$ Hz. A température ambiante, le bis-ylure **10** en solution dans le THF-d8 se dégrade en produits qui n'ont pas pu être identifiés.

Le comportement du bis-ylure **10**, vis-à-vis d'un centre métallique de Rh(I) a été étudié. Une réaction de complexation a ainsi été réalisée en un seul pot : après ajout de 2 éq. de *n*-BuLi ; puis du dimère [Rh(cod)Cl]₂ en solution dans le THF, un bullage CO dans la solution a conduit au complexe de bis-ylure **11** avec un rendement global de 60 %. En RMN ³¹P, un singulet ($\delta_P = +35,6$ ppm) montre que la structure du complexe **11** est symétrique. Le fragment CH₂-Rh est mis en évidence en RMN ¹³C par un doublet de doublet à $\delta_{CH2} = +1,2$ ppm avec les constantes de couplages $J_{CP} = 40,3$ Hz et $J_{CRh} = 21,5$ Hz.

La symétrie de **11** est confirmée par la présence d'un signal unique pour les deux groupements CO (δ_{CO} = +186,3, d, J_{CRh} = 20,3 Hz). La structure de ce complexe a été confirmée par spectrométrie de masse (ESI m/z = 633,1 [M]⁺).

Les fréquences d'élongation IR des ligands CO de **11** dans CH_2Cl_2 ont été observées à $\tilde{v}_{CO} = 1983$, 2053 cm⁻¹. Ces valeurs sont très proches de celles obtenues pour le complexe de rhodium *ortho*-disubstitué ($\tilde{v}_{CO} = 1984$, 2051 cm⁻¹). Elles confirment que le bis-ylure de diphosphonium **8** est un ligand très riche en électrons. La nature du pont phénylène (*ortho* ou *méta*) n'a donc pas d'influence sur les propriétés électroniques.⁴³ En RMN ¹⁰³Rh, **11** résonne à champ plus fort ($\delta = +477$ ppm) qu'en série *ortho*-phénylène ($\delta = +983$ ppm).

Le complexe **11** présente cependant un temps de demi-vie limité à température ambiante (≈ 5 h) et se décompose en un solide noir sous atmosphère inerte. Ce comportement peut s'expliquer par la forme zwitèrionique faisant intervenir un centre rhodate Rh⁻, à priori peu stable (**schéma 26**).

3] <u>Conclusion</u>

La synthèse et la caractérisation de bis-ylures de diphosphonium acycliques ont été systématiquement étudiées à partir de leurs précurseurs dicationiques respectifs en série *ortho-* et *méta-* phénylène.

En série *ortho*-phénylène, la formation de bis-ylures n'a pu être observée. La réaction conduit à un intermédiaire à cinq chainons du type ylidophosphorane, résultant de la réactivité intramoléculaire du mono-ylure formé initialement. Le réarrangement de l'ylidophosphorane par rupture de la liaison P(V)-phénylène conduit ensuite à des bis-ylures de phosphonium acycliques inédits.

En série *méta*-phénylène, les deux centres phosphoniums sont plus éloignés, ce qui diminue les contraintes stériques et électroniques et favorise la formation du bis-ylure acyclique qui a pu être entièrement caractérisé. Par addition d'un précurseur de rhodium (I), la synthèse d'un complexe de bis-ylure s'est révélée possible, confirmant au passage le caractère fortement donneur des ligands bis-ylures.

⁴³ Y. Canac, C. Maaliki, I. Abdellah, R. Chauvin, *New. J. Chem.* **2012**, *36*, 17.

Le prochain défi est de synthétiser des analogues de ces ylures de diphosphonium qui seraient de configuration beaucoup plus stable à conditions ambiantes.

La première stratégie serait d'introduire des groupements encore plus encombrants (comme des substituants isopropyles) sur le centre P⁺. Néanmoins, des conditions encore plus drastiques (par rapport à celles utilisées pour obtenir le diphosphonium **4**) seraient nécessaires pour synthétiser l'analogue diisopropyle.

La seconde stratégie serait d'introduire un groupe primaire CH_2R qui permettrait de renforcer l'effet de π - π stacking surtout avec des groupements phényles (R = Ph) (Cette voie est déjà en cours de développement).

B] Les ylures de phosphonium chiraux

- 1] Rappels Bibliographiques
 - 1. <u>Vers la synthèse d'un diphosphonium avec un espaceur porteur de la chiralité</u>

La chimie de coordination des diphosphines chirales a beaucoup été étudiée avec les métaux de transitions du groupe 9 et 10, en particulier du fait de leur réputation en catalyse asymétrique. Dans ce contexte, l'équipe s'est intéressée plus particulièrement à la chimie de coordination d'un ligand chélatant de type phosphine-ylure de phosphonium, l'ylure de « BINAPIUM ». Les premiers résultats ont été obtenus en 2000.⁴⁴

Cependant, dans un premier temps, un ligand modèle simple avait été étudié sur la base du squelette de l'*o*-1,2-bis(diphenylphosphino)benzène **1**. Le méthylphosphonium **XX** a été obtenu par méthylation d'un des atomes de phosphores de **1**. Après déprotonation par une base forte (*n*-BuLi), l'ajout du complexe [Rh(cod)Cl]₂ a permis d'obtenir le complexe **XXV** de façon quantitative. En RMN ³¹P, **XXV** résonne sous forme de doublets de doublets (δ = 28,7 ppm (dd, ²*J*_{PRh} = 5,0 Hz, *J*_{P+P} = 26,0 Hz), 33.9 ppm (dd, ¹*J*_{PRh} = 163,0 Hz, *J*_{P+P} = 26,0 Hz) (schéma 27).

⁴⁴ L. Viau et al., *Organometallics* **2001**, *20*, 808.

Schéma 27 : Préparation du complexe de rhodium phosphine-ylure de phosphonium XXV.

Le modèle simple à partir l'*o*-dppb étant validé, le complexe de rhodium à ligand ylure de BINAPIUM **XXVIII** a été obtenu de façon similaire (**Schéma 28**). En RMN ³¹P, les déplacements chimiques et les constantes de couplages confirment la coordination au rhodium du groupement CH₂ de l'ylure (δ = + 25,7 ppm (dd, ¹J_{PRh} = 155,0 Hz, ³J_{P+P} = 5,3 Hz), + 34,2 ppm (dd, ²J_{PRh} = ³J_{P+P} = 5,2 Hz)).

Schéma 28 : Synthèse du complexe d'ylure du méthylbinapium XXVIII.

La formation de ce complexe **XXVIII** induit la formation d'un métalacycle à 8 chaînons présentant une flexibilité conformationelle importante, où la configuration R/S du ligand contrôle bien la configuration λ/δ du sous-métalacycle à sept chaînons mais ne contrôle pas la configuration M/P de l'axe hélicoïdal P–Rh–CH₂–P⁺ impliquant l'atome de rhodium⁴⁵.

En parallèle à ces travaux, l'équipe de T. Ohta, a publié des complexes de phosphine ylure de phosphonium chiraux, nommé Yliphos, possédant un squelette binapthyle en série palladium. En les utilisant dans la réaction de Tsuji-Trost, des excès énantiomériques de l'ordre de 90% ont pu être obtenus (**schéma 29**).⁴⁶

Schéma 29: Réaction de Tsuji Trost avec le ligand (S)-CN-TolYliphos.

⁴⁵C. Canal, C. Lepetit, M. Soleilhavoup, R. Chauvin Afinidad, **2004**, *61*, 298.

⁴⁶ T.Ohta, *Tetrahedron : Asymmetric*, **2003**, *14*, 537.

2. <u>Vers la synthèse d'un diphosphonium où la chiralité est portée sur l'atome</u> <u>de carbone.</u>

En 2010, la synthèse de complexes de ligands ylures portant un atome de soufre asymétrique (sur le carbone de l'ylure lui-même) a été envisagée dans le but d'intégrer un élément de chiralité au contact du centre métallique (**Schéma 30**).⁴⁷

Schéma 30 : Formation d'un complexe d'ylure XXXI avec un atome de carbone chirale.

Deux autres voies de synthèse ont été utilisées, soit par alkylation de l'atome de carbone (**Schéma 31**), soit par α -sulfination d'un précurseur alkylphosphonium (**Schéma 32**).

Schéma 31 : Préparation d'un phosphino-(α -sulfinyléthyl)phosphonium XXXII.

Schéma 32 : Préparation d'un complexe racémique de l'α-sulfinyléthylphosphonium XXXII.

Ce type de complexe final a aussi été obtenu en version Pd(II) à partir du précurseur PdCl₂(MeCN)₂. Ces études ont permis de démontrer que les complexes de métaux de

⁴⁷ R. Zurawinski et al., *Tetrahedron: Asymmetry*, **2010**, *21* 1777.

transition (Rh(I) et Pd(II)) à ligand ylure C-stéréogène sont configurationellement stables. La configuration du centre asymétrique est en effet totalement contrôlée par le substituant sulfinyle. Ces complexes présentent une activité dans la réaction d'hydrogénation de l'acide (Z)- α -acétamidinocinnamique, mais l'excès énantiomérique reste faible à ce jour (ee ≤ 5 %).⁴⁸

2] <u>Résultats</u>

1. <u>Vers la synthèse d'un diphosphonium porteur d'un atome de phosphore</u> <u>chiral</u>

Dans la continuité des études précédentes, un nouveau défi était celui de la synthèse de complexes « portant la chiralité » sur le centre phosphonium. En collaboration avec l'équipe du Pr. S. Jugé, la synthèse d'un complexe de rhodium a été envisagée à partir du ligand énantiomériquement pur **XXXV**.

Pour des raisons de solubilité, la première étape a consisté en un échange d'anion (**Schéma 33**). Sous atmosphère inerte, une solution aqueuse de NaOTf est additionnée sur le phosphonium à température ambiante. Après son extraction le diphosphonium.OTf **12** est obtenu avec un rendement de 80%. En RMN ³¹P, **12** résonne sous forme de deux doublets à 20,6 et -24,1 ppm, pour les atomes de phosphores $P^{(III)}$ et Ar₃PMe⁺, respectivement, avec une constante de couplage $J_{HP} = 25,3$ Hz.

Schéma 33 : Echange de l'anion iodure par un anion triflate.

La synthèse du complexe à ligand phosphine - ylure de phosphonium a alors été envisagée selon les conditions mises au point précédemment.

Plusieurs essais de déprotonation ont tout d'abord été réalisés en utilisant le n-BuLi comme base, mais après addition de [Rh(cod)₂][OTf], aucune réaction ne se produit. Le composé de départ **12** est récupéré après chromatographie sur alumine. Suite à ces premiers essais, une autre base a été essayée: le bis(triméthylsilyl)amidure de potassium (KHMDS).

⁴⁸ R ; Zurawinski, B. Donnadieu, M. Mikolajczyk, R. Chauvin, *Organometallics*, **2003**, 22, 4810.

Dans ces conditions, un nouveau composé **13** a été obtenu sous forme d'un mélange de deux diastéréo-isomères avec un rendement de 60 %. Une analyse RMN ³¹P à haute température a été réalisée afin d'observer si un phénomène dynamique était présent entre les deux espèces, mais les signaux des deux isomères restent inchangés.

Par spectroscopie de masse et par caractérisation en RMN multi-noyaux, un complexe de rhodium à ligand phosphine – oxyde de phosphine a pu être mis en évidence (**Schéma 34**). En RMN ³¹P, **13** résonne sous forme d'un doublet à 47,5 pour l'atome de phosphore oxydé $(P^{(V)})$ ($J_{PP} = 24,3$ Hz) et d'un doublet dédoublé à 17,6 ppm attribué aux déplacements chimiques de l'atome de phosphore P^(III) ($J_{PP} = 24,3$ Hz, $J_{PRh} = 131,6$ Hz).

Schéma 34: Synthèse du complexe de rhodium 13 à ligand phosphine - oxyde de phosphine.

Afin d'aboutir à ce résultat, il faut noter que lors de la réaction il y a élimination du substituant anisole sur l'atome de phosphore de type phosphonium P^+ . Le mécanisme proposé pour expliquer la formation de **13** est représenté ci-dessous. La présence du groupement méthoxy en position *ortho* du noyau phényle pourrait expliquer le processus d'élimination (**Schéma 35**).

Schéma 35 : Mécanisme proposé pour expliquer l'élimination du substituant anisole.

Afin de valider ce mécanisme, la réaction a été réalisée à partir d'un modèle plus simple **14**, possédant un seul atome de phosphore. Les conditions de réaction sont exactement les mêmes que celles utilisées précédemment (base KHMDS suivi de l'ajout du complexe du rhodium). La RMN ³¹P du mélange réactionnel, indique après 3h d'agitation à température ambiante, la présence de deux pics à + 28 ppm et + 20 ppm, respectivement. Après purification et caractérisation par RMN ³¹P, les deux produits obtenus correspondent aux produits d'oxydation **15** et **16 (schéma 36)**, **15** étant le composé majoritaire.

Schéma 36 : Réaction à partir d'un modèle simple 14.

Cette réaction semble donc confirmer les résultats précédents à savoir l'élimination du groupement anisole en présence d'une base.

Afin de savoir si le complexe de rhodium intervenait dans ce processus, la même réaction a été réalisée en l'absence de métal. Dans ce cas, nous observons la formation de la phosphine non méthylée **17** (31 P RMN : - 16 ppm) et l'oxyde de phosphine **15** (31 P RMN : + 28 ppm) (**Schéma 37**).

Schéma 37 : Réaction en l'absence du complexe de rhodium

A ce stade, la formation de la phosphine **17**, résultant formellement d'une réaction de « déméthylation », reste encore inexpliquée. Par contre, l'oxyde de phosphine **15** est de nouveau obtenu par élimination du fragment anisole.

Suite à ces résultats la synthèse d'un complexe d'ylure de phosphonium où la chiralité est portée par l'atome de phosphore semble ne pas être aussi facile que prévu. La synthèse d'un nouveau complexe de rhodium à ligand phosphine – oxyde de phosphine a pu être cependant obtenu et entièrement caractérisé.

Différents diphosphoniums seront envisagés pour la suite de ces travaux. En effet, les diphosphoniums **18** et **19**, sans groupement anisole en position *ortho*, synthétisés par l'équipe du Pr. S. Jugé seront prochainement testés dans les mêmes conditions (**schéma 38**).

Schéma 38 : Nouveaux diphosphoniums envisagés ; préparé par l'équipe du Pr S. Jugé.

III] <u>Conclusion</u>

La synthèse de nouveaux ligands riches en électrons tel que des bis-ylures de diphosphonium a été réalisée à partir des motifs *ortho*- et *méta*-phénylène. L'obtention de bisylure de diphosphonium n'a pas été possible en série *ortho*-phénylène à cause des contraintes stériques et électroniques des diphosphoniums précurseurs. Au lieu de cela, un ylure de bisphosphonium provenant du réarrangement d'un intermédiaire ylidophosphorane cyclique a été mis en évidence et caractérisé. Cependant, en série *méta*-phénylène, le bis-ylure désiré a été synthétisé et caractérisé et la formation d'un complexe de rhodium (I) a été obtenu.

De nouveaux ylures de phosphoniums chiraux ont également été envisagés en série Pchirogénique. Ces résultats préliminaires permettent d'ouvrir de nouvelles perspectives qui sont en cours de réalisation avec l'équipe du Pr S. Jugé. La synthèse de nouveaux complexes d'ylures chiraux avec un atome de phosphore chirogénique reste encore à ce jour un défi à relever. PARTIE EXPERIMENTALE

To a solution of **1** (2.0 g, 4.48 mmol) in TCE (12.0 mL) was added ethyltrifluoromethanesulfonate (574 μ L, 4.48 mmol), and the solution was then stirred for 12 h at 110°C. After evaporation of the solvent, the solid residue was washed with Et₂O (30.0 mL), affording **2** as a

white powder (2.41 g, 86%).

¹**H** NMR (CD₃CN, 25°C): δ = 7.85–7.50 (m, 14H, H_{ar}), 7.42–7.22 (m, 6H, H_{ar}), 6.99–6.90 (t, $J_{\text{HH}} = J_{\text{HP}+} = 6.9$ Hz, 4H, H_{ar}), 3.57 (dq, $J_{\text{HH}} = 7.5$ Hz, $J_{\text{HP}+} = 12.9$ Hz, 2H, CH₂), 1.37 (dt, $J_{\text{HH}} = 7.5$ Hz, $J_{\text{HP}+} = 20.4$ Hz, 3H, CH₃) ppm.

¹³C NMR (CD₃CN, 25°C): $\delta = 142.8$ (dd, $J_{CP+} = 14.9$ Hz, $J_{CP} = 14.9$ Hz, C), 139.2 (d, $J_{CP+} = 11.3$ Hz, CH_{ar}), 136.5 (pseudo-t, $J_{CP+} = J_{CP} = 11.8$ Hz, C), 135.1 (d, $J_{CP+} = 2.8$ Hz, CH_{ar}), 134.5 (d, $J_{CP+} = 2.9$ Hz, CH_{ar}), 133.3 (dd, $J_{CP+} = 9.6$ Hz, $J_{CP} = 1.9$ Hz, CH_{ar}), 133.0 (d, $J_{CP} = 19.1$ Hz, CH_{ar}), 131.6 (d, $J_{CP} = 9.9$ Hz, CH_{ar}), 131.3 (d, $J_{CP+} = 12.4$ Hz, CH_{ar}), 130.1 (d, $J_{CP+} = 12.6$ Hz, CH_{ar}), 129.5 (CH_{ar}), 128.8 (d, $J_{CP} = 7.2$ Hz, CH_{ar}), 125.3 (dd, $J_{CP+} = 87.1$ Hz, $J_{CP} = 35.6$ Hz, C), 120.7 (q, $J_{CF} = 320.0$ Hz, CF₃SO₃), 119.6 (dd, $J_{CP+} = 86.3$ Hz, $J_{CP} = 2.6$ Hz, C), 19.1 (dd, $J_{CP+} = 53.2$ Hz, $J_{CP} = 15.0$ Hz, CH₂), 7.3 (dd, $J_{CP+} = 5.1$ Hz, $J_{CP} = 1.1$ Hz, CH₃) ppm.

³¹**P** NMR (CD₃CN, 25°C): $\delta = +26.66$ (d, $J_{PP} = 23.1$ Hz, P⁺), -15.28 (d, $J_{PP} = 23.1$ Hz, P).

MS (ES+): m/z: 475.2 $[M]^+$.

HRMS (ES+) calc. for C₃₂H₂₉P₂: 475.1744; found 475.1740 [M]⁺.

M.p. 68-69°C.

To a solution of **2** (0.70 g, 1.12 mmol) in TCE (12.0 mL), was added methyltrifluoromethanesulfonate (246 μ L, 2.24 mmol), and the solution was then stirred for 24 h at 110°C. After evaporation of the solvent, an oily residue was isolated. Successive washing with

toluene (2 X 30 mL), and Et₂O (2 X 30 mL), followed by recrystallization at -20° C from THF/Et₂O afforded **3** as colorless crystals (270 mg, 31%).

¹**H** NMR (CD₃CN, 25°C): $\delta = 8.27-8.33$ (m, 1H, H_{ar}), 8.18-8.22 (m, 1H, H_{ar}), 8.06-8.14 (m, 1H, H_{ar}), 7.82-7.95 (m, 5H, H_{ar}), 7.55-7.69 (m, 12H, H_{ar}), 7.38-7.42 (m, 4H, H_{ar}), 2.94-3.00

(m, 2H, CH₂P), 2.38 (d, J_{HP} = 13.2 Hz, 3H, CH₃P), 1.12 (td, J_{HH} = 7.4 and J_{HP} = 20.6 Hz, 3H, CH₃).

¹³C NMR (CD₃CN, 25°C): $\delta = 142.8$ (dd, $J_{CP} = 11.5$ and 11.6 Hz, CH_{ar}), 142.2 (pseudo-t, $J_{CP} = 10.6$ Hz, CH_{ar}), 141.5 (pseudo-t, $J_{CP} = 10.0$ Hz, CH_{ar}), 136.0 (d, $J_{CP} = 2.7$ Hz, CH_{ar}), 135.7 (d, $J_{CP} = 3.1$ Hz, CH_{ar}), 135.6-136.0 (m, CH_{ar}), 134.0 (d, $J_{CP} = 10.0$ Hz, CH_{ar}), 133.4-133.6 (m, CH_{ar}), 133.2 (d, $J_{CP} = 10.8$ Hz, CH_{ar}), 130.8 (d, $J_{CP} = 12.7$ Hz, CH_{ar}), 130.6 (d, $J_{CP} = 13.3$, CH_{ar}), 124.0 (dd, $J_{CP} = 7.9$ and 83.3 Hz, C_{ar}), 122.7 (dd, $J_{CP} = 8.7$ and 82.0 Hz, C_{ar}), 120.7 (q, $J_{CF} = 320.0$ Hz, CF₃SO₃), 118.9 (d, $J_{CP} = 89.3$ Hz, C_{ar}), 116.7 (d, $J_{CP} = 83.9$ Hz, C_{ar}), 20.5 (d, $J_{CP} = 51.7$ Hz, CH₂), 11.6 (d, $J_{CP} = 55.9$ Hz, CH₃), 7.0 (d, $J_{CP} = 5.5$ Hz, CH₃).

³¹**P** NMR (CD₃CN, 25°C): $\delta = +26.3$ (d, $J_{PP} = 6.1$ Hz), +29.7 (d, $J_{PP} = 6.1$ Hz).

MS (ES+): m/z: 639.1 [M – OTf]⁺.

HRMS (**ES**+) calc. for C₃₄H₃₂O₃F₃P₂S: 639.1499; found 639.1493 [M – OTf]⁺.

M.p. 126–127°C.

To a solution of **2** (1.30 g, 2.08 mmol) in TCE (12.0 mL), was added ethyltrifluoromethanesulfonate (1.90 mL, 14.5 mmol), and the solution was then stirred for 3 days at 110°C. After evaporation of the solvent, an oily residue was obtained. Successive washing with toluene (2 X 30 mL), and Et₂O (2 X 30 mL), followed by

recrystallization at -20°C from THF/Et₂O gave **4** as colorless crystals (770 mg, 46%).

¹**H** NMR (CD₃CN, 25°C): δ = 8.20-8.26 (m, 4H, H_{ar}), 7.83-7.86 (m, 4H, H_{ar}), 7.50-7.69 (m, 16H, H_{ar}), 2.73-2.80 (m, 4H, CH₂), 1.05-1.10 (m, 6H, CH₃).

¹³C NMR (CD₃CN, 25°C): δ = 141.8 (pseudo-t, J_{CP} = 10.0 Hz, CH_{ar}), 135.7 (CH_{ar}), 133.1 (d, J_{CP} = 18.5 Hz, CH_{ar}), 130.3 (d, J_{CP} = 12.5 Hz, CH_{ar}), 129.0 (d, J_{CP} = 7.7 Hz, CH_{ar}), 123.4 (dd, J_{CP} = 8.2 and 81.8 Hz, C_{ar}), 120.7 (q, J_{CF} = 320.5 Hz, CF₃SO₃), 117.1 (d, J_{CP} = 84.9 Hz, C_{ar}), 19.7 (d, J_{CP} = 50.2 Hz, CH₂), 7.2 (d, J_{CP} = 4.5 Hz, CH₃).

³¹**P** NMR (CD₃CN, 25°C): $\delta = +30.6$ ppm.

MS (ES+): m/z: 653.1 $[M - OTf]^+$.

HRMS (ES+) calc. For $C_{35}H_{34}O_3F_3P_2S$: 653.1656; found 653.1670 $[M - OTf]^+$.

M.p. 107-108°C.

To a solution of **3** (60 mg, 0.08 mmol) in THF- d_8 (2.0 mL) cooled to -78° C was added BuLi (2.5 M in hexane, 61 µL, 0.16 mmol). Monitoring the reaction by low temperature NMR allowed the characterization of **6a** as a mixture of stereoisomers (95/5). According to NMR spectroscopy, **6a** was slowly converted to **7a**. After evaporation of the solvent, **7a** was obtained as a white solid (31 mg, 62%).

6a. Major isomer (95%):

¹**H NMR (THF-***d*₈, -30°C): δ = 7.92-7.80 (m, 4H, H_{ar}), 7.67-7.62 (m, 1H, H_{ar}), 7.62-7.50 (m, 6H, H_{ar}), 7.42-7.36 (m, 1H, H_{ar}), 7.36-7.26 (m, 1H, H_{ar}), 7.26-7.17 (m, 1H, H_{ar}), 7.17-7.05 (m, 3H, H_{ar}), 7.02-6.88 (m, 4H, H_{ar}), 6.88-6.81 (m, 3H, H_{ar}), 2.72-2.83 (m, 2H, CH₂), 1.19-1.14 (m, 3H, CH₃), 0.43 (dd, 1H, *J*_{HP} = 15.0 Hz, *J*_{HP+} = 20.0 Hz, CH).

¹³C NMR (THF-*d*₈, -30°C): $\delta = 173.7$ (dd, $J_{CP} = 23.4$ Hz, $J_{CP} = 12.6$ Hz, C), 169.3 (dd, $J_{CP} = 17.9$ Hz, $J_{CP} = 17.9$ Hz, C), 144.0 (d, $J_{CP} = 128.3$ Hz, C), 132.2 (d, $J_{CP} = 10.1$ Hz, 4 CH_{ar}), 131.3 (2 CH_{ar}), 131.2 (2 CH_{ar}), 131.1 (CH_{ar}), 130.5 (CH_{ar}), 130.1 (CH_{ar}), 129.7 (d, $J_{CP} = 5.0$ Hz, 2 CH_{ar}), 128.6 (d, $J_{CP} = 11.7$ Hz, CH_{ar}), 128.5 (d, $J_{CP} = 11.7$ Hz, CH_{ar}), 127.7 (d, $J_{CP} = 8.8$ Hz, CH_{ar}), 127.0 (d, $J_{CP} = 15.1$ Hz, CH_{ar}), 126.8 (d, $J_{CP} = 15.1$ Hz, CH_{ar}), 126.5 (CH_{ar}), 126.1 (d, $J_{CP} = 5.0$ Hz, 2 CH_{ar}), 125.1 (d, $J_{CP} = 37.7$ Hz, C), 123.8 (CH_{ar}), 120.7 (q, $J_{CF} = 320.1$ Hz, CF₃SO₃), 27.2 (d, $J_{CP} = 103.2$ Hz, CH₂), 13.1 (dd, $J_{CP+} = 113.0$ Hz, $J_{CP} = 167.0$ Hz, CH), 8.9 (d, $J_{CP} = 5.0$ Hz, CH₃).

³¹**P NMR (THF-***d*₈, -30°**C**): $\delta = -89.8$ (d, $J_{PP} = 57.6$ Hz, P), -1.6 (d, $J_{PP} = 57.6$ Hz, P⁺).

6a Minor isomer (5%):

³¹**P NMR (THF-***d*₈, -30°**C**): $\delta = -83.4$ (d, $J_{PP} = 54.7$ Hz, P), +1.6 (d, $J_{PP} = 54.7$ Hz, P⁺).

7a.

¹**H** NMR (CD₂Cl₂, 25°C): $\delta = 7.70$ (d, $J_{\text{HH}} = 15.0$ Hz, 10H, H_{ar}), 7.67-7.61 (m, 3H, H_{ar}), 7.57-7.48 (m, 8H, H_{ar}), 7.44 (td, $J_{\text{HH}} = 5.0$ Hz, $J_{\text{HH}} = 10.0$ Hz, 4H, H_{ar}), 2.48-2.42 (m, 2H, CH₂), 2.05 (t, $J_{\text{HPPh3}} = J_{\text{HPPh2Et}} = 5.0$ Hz, 1H, CH), 1.13-1.08 (m, 3H, CH₃).

¹³C NMR (CD₂Cl₂, 25°C): δ = 133.1 (d, J_{CP} = 10.1 Hz, 6 CH_{ar}), 132.8 (d, J_{CP} = 2.5 Hz, 3 CH_{ar}), 132.4 (d, J_{CP} = 10.1 Hz, 4 CH_{ar}), 132.3 (d, J_{CP} = 2.5 Hz, 2 CH_{ar}), 129.2 (d, J_{CP} = 12.6 Hz, CH_{ar}), 120.0 (d, J_{CP} = 12.6 Hz, CH_{ar}), 127.1 (d, J_{CP} = 94.4 Hz, 2 C), 127.0 (d, J_{CP} = 94.4 Hz, 3 C), 121.0 (q, J_{CF} = 320.2 Hz, CF₃SO₃), 20.9 (d, J_{CP} = 61.6 Hz, CH₂), 5.6 (d, J_{CP} = 3.7 Hz, CH₃), -6.3 (dd, J_{CPPh3} = 122.0 Hz, $J_{CPPh2Et}$ = 124.6 Hz, C).

³¹**P** NMR (CD₂Cl₂, 25°C): δ = +24.2 (d, J_{PP} = 24.3 Hz, PPh₂Et), +19.3 (d, J_{PP} = 24.3 Hz, PPh₃).

MS (ES+): m/z: 489.2 [M – OTf]⁺.

HRMS (**ES**+): calcd for C₃₃H₃₁P₂ 489.1901; found, 489.1901 [M – OTf]⁺.

M.p. > 250° C.

To a solution of **4** (160 mg, 0.20 mmol) in THF- d_8 (5 mL) cooled to -78° C was added BuLi (2.5 M in hexane, 160 µL, 0.40 mmol). Monitoring the reaction by low temperature NMR allowed the characterization of **6b**. According to NMR spectroscopy, **6b** was then slowly converted to **7b**. After evaporation of the solvent, **7b** was obtained as a yellow oil (107 mg, 82%). Recrystallization at room temperature in CH₂Cl₂ gave **7b** as colorless crystals.

6b.

¹**H** NMR (THF-*d*₈, -30°C): δ = 7.84 (dd, $J_{\text{HP}} = J_{\text{HH}} = 10.0$ Hz, 2H, H_{ar}), 7.80-7.74 (m, 2H, H_{ar}), 7.65-7.49 (m, 9H, H_{ar}) 7.38-7.35 (m, 1H, H_{ar}), 7.31-7.27 (m, 1H, H_{ar}), 7.21 (t, $J_{\text{HH}} = 10.0$ Hz, 1H, H_{ar}), 7.15-7.05 (m, 4H, H_{ar}), 6.90 (t, $J_{\text{HH}} = 10.0$ Hz, 1H, H_{ar}), 6.81-6.76 (m, 2H, H_{ar}),

6.23 (dd, $J_{\text{HP}} = J_{\text{HH}} = 5.0$ Hz, 1H, H_{ar}), 2.98-2.90 (m, 2H, CH₂), 1.22-1.08 (m, 3H, CH₃), 0.87 (brs, 3H, CH₃).

¹³C NMR (THF- d_8 , -30°C): $\delta = 174.2$ (dd, $J_{CP} = 28.9$ Hz, $J_{CP} = 13.8$ Hz, C), 163.2 (d, $J_{CP} = 12.6$ Hz, C), 145.1 (d, $J_{CP} = 125.8$ Hz, C), 133.08 (d, $J_{CP} = 3.8$ Hz, CH_{ar}), 132.76 (d, $J_{CP} = 2.5$ Hz, 2 CH_{ar}), 132.7 (d, $J_{CP} = 3.8$ Hz, 2 CH_{ar}), 131.6 (d, $J_{CP} = 2.5$ Hz, CH_{ar}), 131.2-131.4 (3 CH_{ar}), 130.5 (d, $J_{CP} = 8.8$ Hz, CH_{ar}), 130.1 (CH_{ar}), 129.1 (CH_{ar}), 129.0 (d, $J_{CP} = 10.1$ Hz, CH_{ar}), 128.7 (d, $J_{CP} = 11.3$ Hz, CH_{ar}), 128.6 (d, $J_{CP} = 11.3$ Hz, CH_{ar}), 127.0 (d, $J_{CP} = 10.1$ Hz, CH_{ar}), 126.7 (d, $J_{CP} = 12.6$ Hz, 2 CH_{ar}), 126.3 (CH_{ar}), 126.0 (d, $J_{CP} = 3.8$ Hz, CH_{ar}), 125.9 (d, $J_{CP} = 3.8$ Hz, CH_{ar}), 124.2 (CH_{ar}), 120.7 (q, $J_{CF} = 320$ Hz, CF₃SO₃), 29.0 (d, $J_{CP} = 74.2$ Hz, CH₂), 12.6 (t, $J_{CP} = J_{CP+} = 13.8$ Hz, CH₃), 9.5 (d, $J_{CP} = 6.3$ Hz, CH₃), 5.7 (dd, $J_{CP+} = 120.0$ Hz, $J_{CP} = 172.0$ Hz, C).

³¹**P** NMR (THF-*d*₈, -30°C): $\delta = +10.1$ (d, $J_{PP} = 94.2$ Hz, P⁺), -88.3 (d, $J_{PP} = 94.2$ Hz, P).

7b.

¹**H** NMR (CD₂Cl₂, 25°C): δ = 7.72-7.62 (m, 5H, H_{ar}) 7.60-7.50 (m, 20H, H_{ar}), 2.09-2.00 (m, 2H, CH₂), 1.83 (t, *J*_{HPPh3} = *J*_{HPPh2Et} = 15.0 Hz, 3H, CH₃), 1.07 (td, *J*_{HH} = 5.0 Hz, *J*_{HP} = 20.0 Hz, 3H, CH₃).

¹³C NMR (CD₂Cl₂, 25°C): $\delta = 134.1$ (d, $J_{CP} = 10.1$ Hz, CH_{ar}), 133.7 (d, $J_{CP} = 8.8$ Hz, CH_{ar}), 133.4 (d, $J_{CP} = 3.8$ Hz, CH_{ar}), 133.0 (d, $J_{CP} = 2.5$ Hz, CH_{ar}), 132.4 (d, $J_{CP} = 8.8$ Hz, CH_{ar}), 131.0 (d, $J_{CP} = 12.6$ Hz, CH_{ar}), 129.5 (d, $J_{CP} = 13.8$ Hz, CH_{ar}), 129.4 (d, $J_{CP} = 13.8$ Hz, CH_{ar}), 120.7 (q, $J_{CF} = 320.4$ Hz, CF₃SO₃), 20.7 (d, $J_{CP} = 60.4$ Hz, CH₂), 15.6 (t, $J_{CP} = 3.8$ Hz, CH₃), 7.4 (d, $J_{CP} = 5.0$ Hz, CH₃), -2.0 (brs, C).

³¹**P** NMR (CD₂Cl₂, 25°C): δ = +28.83 (d, J_{PP} = 53.7 Hz, PPh₂Et), +25.39 (d, J_{PP} = 53.7 Hz, PPh₃).

MS (ES+): m/z: 503.2 $[M]^+$.

HRMS (**ES**+) calc. for C₃₄H₃₃P₂: 503.2071; found 503.2057 [M]⁺.

To a solution of **8** (2.98 g, 6.59 mmol) in CH_2Cl_2 (75.0 mL) at $-50^{\circ}C$ was added methyltrifluoromethanesulfonate (1.60 mL, 14.50 mmol). The suspension was then warmed to room temperature and stirred for 2 h. After evaporation of the solvent, the crude residue was washed with Et_2O (30 mL) affording **9** as a white solid (4.33 g, 86%). Recrystallization at $-20^{\circ}C$ from CH_2Cl_2 /Pentane gave **9** as colorless

crystals.

¹**H NMR (CDCl₃, 25°C):** δ = 7.94-7.90 (m, 2H, H_{ar}) 7.89-7.85 (m, 1H, H_{ar}), 7.84-7.80 (m, 8H, H_{ar}), 7.77-7.72 (m, 4H, H_{ar}), 7.68-7.62 (m, 9H, H_{ar}), 2.95 (d, *J*_{HH} = 13.8 Hz, 6H, CH₃).

¹³C NMR (CDCl₃, 25°C): δ = 139.3 (pseudo-t, J_{CP} = 12.2 Hz, J_{CP} = 12.5 Hz, CH_{ar}), 138.3 (dd, J_{CP} = 3.9 Hz, J_{CP} = 11.5 Hz, CH_{ar}), 135.2 (4 CH_{ar}), 133.6 (d, J_{CP} = 11.4 Hz, CH_{ar}), 131.2 (t, J_{CP} = 12.4 Hz, CH_{ar}), 130.4 (d, J_{CP} = 13.7 Hz, 8 CH_{ar}), 122.9 (dd, J_{CP} = 13.2 Hz, J_{CP} = 89.9 Hz, 2 C), 120.6 (q, J_{CF} = 320.2 Hz, CF₃SO₃), 118.0 (d, J_{CP} = 89.0 Hz, 4 C), 8.66 (d, J_{CP} = 57.7 Hz, 2 CH₃).

³¹**P NMR (CDCl₃, 25°C):** δ = +22.5 ppm.

MS (ES+): m/z: 625.1 [M – OTf]⁺.

HRMS (ES+): calcd for C₃₃H₃₀O₃F₃P₂S: 625.1370; found, 625.1343 [M – OTf]⁺.

M.p. 160–163°C.

*n*BuLi (2.5 M in hexane, 0.44 mmol, 180 μ L) was added to a solution of **9** (170 mg, 0.22 mmol) in THF-*d*₈ (4.0 mL) at -78°C. Monitoring the reaction by low temperature NMR allowed the characterization of bis-ylide **10**.

¹**H NMR (THF-***d*₈, -60°C): δ = 7.89 (s, 1H, H_{ar}) 7.85 (d, *J*_{HH} = 10.0 Hz, 2H, H_{ar}), 7.63 (d, *J*_{HH} = 10.0 Hz, 8H, H_{ar}), 7.57 (t, *J*_{HH} = 10.0 Hz, 1H, H_{ar}), 7.52 (t, *J*_{HH} = 10.0 Hz, 4H, H_{ar}), 7.44 (t, *J*_{HH} = 10.0 Hz, 8H, H_{ar}), 0.09 (d, *J*_{HP} = 7.5 Hz, 4H, CH₂).
¹³**C NMR (THF-***d***₈, -60°C):** δ = 135.4 (d, J_{CP} = 20.3 Hz, 2 CH_{ar}), 135.1 (dd, J_{CP} = 79.1 Hz, J_{CP} = 9.56 Hz, 2 C), 134.0 (d, J_{CP} = 10.2 Hz, J_{CP} = 2.4 Hz, 2 CH_{ar}), 133.4 (d, J_{CP} = 86.8 Hz, 4 C), 132.0 (d, J_{CP} = 10.1 Hz, 8 CH_{ar}), 130.9 (4 CH_{ar}), 128.3 (d, J_{CP} = 11.3 Hz, 8 CH_{ar}), 128.2 (C), -5.9 (d, J_{PC} = 98.1 Hz, CH₂).

³¹**P NMR (THF-***d*₈, -60°**C**): δ = +19.6 ppm.

To a solution of **10** (104 mg, 0.22 mmol) in THF (3.0 mL), was added a solution of $[Rh(cod)_2^+][OTf]$ (67 mg, 0.13 mmol) in THF at $-70^{\circ}C$, and the suspension was then stirred for 20 min. After warming up to $-30^{\circ}C$, carbon monoxide was bubbled (10 min). After filtration, the solvent was evaporated under vacuum. The remaining residue was washed with pentane (5.0 mL) and then

extracted with CH₂Cl₂ (5.0 mL) at 0°C affording **11** as an orange solid (83 mg, 60%).

¹**H NMR** (**CD**₂**Cl**₂, -10°**C**): δ = 7.75-7.39 (m, 24H, H_{ar}), 1.96 (brd, J_{HP} = 10.0 Hz, 4H, CH₂).

¹³**C NMR (CD₂Cl₂, -10°C):** δ = 186.3 (d, J_{CRh} = 20.3 Hz, CO), 139.9 (brs, C), 139.1 (brs, C), 135.3 (CH_{ar}), 133.6 (CH_{ar}), 133.5-133.0 (m, CH_{ar}), 130.6-130.3 (m, CH_{ar}), 129.4 (d, J_{CP} = 12.6 Hz, CH_{ar}), 128.7 (d, J_{CP} = 12.6 Hz, CH_{ar}), 128.6 (CH_{ar}), 120.2 (q, J_{CF} = 320.1 Hz, CF₃SO₃), 1.2 (dd, J_{CP} = 40.3 Hz, J_{CRh} = 21.5 Hz, CH₂).

³¹**P** NMR (CD₂Cl₂, -10° C): $\delta = +35.6$ ppm (brs).

¹⁰³**Rh NMR (CD₂Cl₂, -10°C):** δ = +477 ppm.

MS (ES+): m/z: 633.1 [M]⁺.

IR (**CH₂Cl₂**): 2053 (CO), 1983 (CO) cm⁻¹.

To a solution of **XXXV** (0.42 mg, 0.65 mol) in CH_2Cl_2 (12 mL) was added an aqueous solution of NaOTf (1.0 g, 5.83 mol in H₂O (12 mL)) at room temperature and stirred for 10 min. Organic layer was washed with H₂O (5 mL) then dried on MgSO₄. After evaporation of solvent, **12** was obtained as a white powder (350 mg, 80%).

¹**H NMR (CDCl₃, 298 K):** $\delta = 7.44$ (m, 15 H, H_{ar}), 6.83 (m, 6 H, H_{ar}),

6.41 (m, 1H, H_{ar}), 3.66 (s, 3 H, H_{o-CH3}), 3.53 (s, 3 H, H_{o-CH3}), 3.17 (d, 3 H, ${}^{2}J_{PH} = 13.8$ Hz, H_{CH3}).

³¹**P** NMR (CDCl₃, 298 K): $\delta = 20.6$ ppm (d, ${}^{3}J_{PP} = 25.3$ Hz), -24.1 ppm (d, ${}^{3}J_{PP} = 25.5$ Hz).

MS (ES): m/z: 521.5[M]⁺.

To a solution of **12** (200 mg, 0.30 mol) in THF (10 mL) was added a solution of KHMDS (59.3 mg, 0.30 mol) THF (6 mL) at – 40°C and stirred for 90 min. Then a solution of $[Rh(cod)_2]$ [(OTf)] (139 mg, 0.30 mol) in THF (4 mL) was added and stirred at room temperature during 2h. After evaporation of the solvent, the solid residue was triturated with Et₂O (5 mL) and **13** was obtained as an yellow powder (142 mg, 60%).

MS (IS): m/z: 641 [M + H]⁺.

Diast. A:

¹**H NMR** (**CD**₃**CN**, **240 K**): δ = 7.84-7.35 (m, 9H, H_{ar}), 7.34-7.20 (m, 5H, H_{ar}), 7.20-7.10 (m, 3H, H_{ar}), 6.94 (t, *J*_{HH} = 5.0 Hz, 1 H, H_{ar}), 6.54 (m, 1 H, H_{ar}), 5.46-5.37 (m, 1 H, H_{cod}), 5.29-5.21 (m, 1 H, H_{cod}), 3.10-3.00 (m, 1 H, H_{cod}), 2.74-2.65 (m, 2 H, H_{cod}), 2.62-2.36 (m, 3 H, H_{cod}), 2.32-2.28 (m, 1 H, H_{CH2}), 2.25 (d, ¹*J*_{HP} = 15.0 Hz, 3 H, H_{CH3P}), 2.12-2.10 (m, 1 H, H_{cod}), 2.03-2.05 (m, 1 H, H_{cod}), 1.92-1.88 (m, 1 H, H_{cod}).

¹³C NMR (CD₃CN, 240 K): $\delta = 159.9$ (d, ² $J_{CP} = 5.0$ Hz, C_{quat}), 135.9 (sbr, 2C_{ar}), 134.2 (d, ² $J_{CP} = 5.0$ Hz, C_{ar}), 134.1-133.8 (m, 2C_{ar}), 133.7 (C_{ar}), 133.4 (C_{ar}), 133.3 (C_{ar}), 131.6 (C_{ar}), 130.7 (d, ³ $J_{CP} = 13.8$ Hz, ⁴ $J_{CP} = 1.3$ Hz, C_{ar}), 130.2 (d, ² $J_{CP} = 10.1$ Hz, C_{ar}), 129.7 (d, ¹ $J_{CP} = 105.7$ Hz, C_{quat}), 129.2 (d, ³ $J_{CP} = 10.6$ Hz, 2C_{ar}), 128.9 (d, ³ $J_{CP} = 12.6$ Hz, 2C_{ar}), 121.3 (d, ³ $J_{CP} = 8.8$ Hz, C_{ar}), 113.8 (d, ¹ $J_{CP} = 47.8$ Hz, C_{quat}), 111.8 (d, ³ $J_{CP} = 5.03$ Hz, C_{ar}), 107.8-107.1 (m, 2C_{cod}), 72.3 (d, $J_{CP} = 15.1$ Hz, C_{cod}), 69.8 (d, $J_{CP} = 13.8$ Hz, C_{cod}), 55.8 (C_{CH3}), 33.3 (C_{cod}), 31.5 (C_{cod}), 28.1 (C_{cod}), 27.3 (C_{cod}) 16.6 (d, ¹ $J_{CP} = 78.0$ Hz, C_{CH3}).

³¹**P** NMR (CD₃CN, 240 K): $\delta = +47.5$ (d, ${}^{3}J_{PP} = 24.3$ Hz), +17.6 (dd, ${}^{3}J_{PP} = 24.3$ Hz, ${}^{1}J_{PRh} = 131.6$ Hz).

¹⁰³**Rh NMR (CD₃CN, 240 K)**: δ = -8887 ppm.

Diast. B.

¹**H NMR** (**CD**₃**CN**, **240 K**): $\delta = 8.12$ (dd, ${}^{3}J_{HH} = 10.0$ Hz, ${}^{2}J_{HP} = 15.0$ Hz, 1H, H_{ar}), 7.82-7.35 (m, 12H, H_{ar}), 7.20-7.10 (m, 1H, H_{ar}), 6.99 (t, $J_{HH} = 5.0$ Hz, 1 H, H_{ar}), 6.75 (m, 1 H, H_{ar}), 5.18-5.11 (m, 1 H, H_{cod}), 4.29-4.21 (m, 1 H, H_{cod}), 3.10-3.00 (m, 1 H, H_{cod}), 3.00-2.99 (m, 1 H, H_{cod}), 2.62-2.36 (m, 2 H, H_{cod}), 2.18-2.12 (m, 1 H, H_{cod}), 2.14 (d, ${}^{1}J_{HP} = 15.0$ Hz, 3 H, H_{CH3P}), 2.03-1.80 (m, 3 H, H_{cod}).

¹³**C NMR** (**CD**₃**CN**, **240 K**): $\delta = 159.6$ (d, ${}^{2}J_{CP} = 5.0$ Hz, C_{quat}), 134.3 (d, ${}^{2}J_{CP} = 5.0$ Hz, C_{ar}), 134.0 - 133.7 (m, 3 C_{ar}), 133.1 (2 C_{ar}), 132.9 (d, ${}^{2}J_{CP} = 6.3$ Hz, 2 C_{ar}), 131.5 (d, ${}^{2}J_{CP} = 11.3$ Hz, C_{ar}), 131.1 (d, ${}^{3}J_{CP} = 17.6$ Hz, C_{ar}), 131.0 (d, ${}^{2}J_{CP} = 10.1$ Hz, C_{ar}), 129.6-129.4 (m, 3 C_{ar}), 121.4 (d, ${}^{3}J_{CP} = 8.80$ Hz, C_{ar}), 114.1 (d, ${}^{1}J_{CP} = 47.8$ Hz, C_{quat}), 111.8 (d, ${}^{3}J_{CP} = 5.03$ Hz, C_{ar}), 107.8-107.1 (m, 2 C_{cod}), 72.9 (d, $J_{CP} = 15.1$ Hz, C_{cod}), 69.9 (d, $J_{CP} = 13.8$ Hz, C_{cod}), 55.8 (C_{CH3}), 32.5 (C_{cod}), 31.7 (C_{cod}), 27.7 (C_{cod}), 27.3 (C_{cod}), 12.8 (d, ${}^{1}J_{CP} = 78.0$ Hz, C_{CH3}).

³¹**P** NMR (CD₃CN, 240 K): $\delta = +50.1$ (d, ${}^{3}J_{PP} = 16.2$ Hz), +18.3 (dd, ${}^{3}J_{PP} = 16.2$ Hz, ${}^{1}J_{PRh} = 133.7$ Hz).

¹⁰³**Rh NMR (CD₃CN, 240 K)**: δ = -8157 ppm.

CHAPITRE III :

LIGANDS HYBRIDES PHOSPHO-CARBONES PAUVRE-RICHE EN ELECTRONS

I]	Introduction				
II]	Résultats et discussions				
А] Sys	tème extrême NHC-amidiniophosphine			
	1] \$	Synthèse du ligand imidazolium-amidiniophosphine.			
	1.	Synthèse de la monophosphine 2			
	2.	Synthèse du dication imidazolium-imidazoliophosphine 3			
	3.	Synthèse du monocation imidazolium-imidazolophosphine 4			
	4.	Structures cristallines des monophosphines 2, 3 et 4			
	2] \$	Synthèse de complexes à ligand « riche-pauvre »			
	1.	Pré-compléxation de l'amidiniophosphine			
	2.	Synthèse du complexe « riche-pauvre » monocationique 9			
	3.	Synthèse du complexe neutre de référence 10			
III]	Per	spectives et conclusion			
А] Ve	s un système NHC-ylure de phosphonium « appauvri »			
В] Vers un système ylure de phosphonium-amidiniophosphine				
Part	Partie expérimentale				

I] Introduction

Les ligands carbènes N-hétérocycliques (NHCs) sont maintenant bien connus de la littérature.¹ Ils ont montré leur fort potentiel dans les réactions catalytiques nécessitant des centres métalliques riches en électrons (où l'addition oxydante est l'étape limitante du cycle catalytique). Leur caractère σ -donneur est dû à la présence du noyau imidazole N-N'disubstitué, source d'électrons π . En parallèle à ces ligands riches en électrons, la synthèse de ligands pauvres en électrons a été développée de façon plus anecdotique. Il faut noter la synthèse des ligands phosphites (**chapitre 1**) et de ligands bis-hétéroaryles, tel que le 2,2'-bis(diphenylphosphino)-1,1'-bisbenzimidazole connu sous le nom de BIMIP réalisée par Sannicolo et *coll*.² Ce ligand a été décrit comme étant un ligand pauvre en électrons dû à la présence de deux cycles benzimidazoles. Cependant, en catalyse, un ligand à caractère uniquement riche ou pauvre en électrons est rarement suffisant puisque le centre métallique doit satisfaire différents critères pour obtenir l'activité et la sélectivité durant toutes les étapes du cycle catalytique.³ Dans cette optique, notre équipe s'est intéressée à synthétiser des systèmes hybrides « riche-pauvre ».

Un système hybride développé dans l'équipe correspond au ligand de symétrie- C_1 , BIMINAP. Ce ligand est composé structuralement du motif benzimidazole venant de la BIMIP et du motif naphtalène venant de la BINAP⁴ (BINAP et BIMIP, étant des ligands de symétrie C_2). Après quaternisation de l'atome d'azote, il donne accès à la BIMIONAP (schéma 1) où un motif amidiniophosphine est alors présent, accentuant le caractère pauvre en électrons du ligand.

¹ W. A. Herrmann and C. Kocher, Angen. Chem. Int. Ed. 1997, 36, 2162.

² T. Benincori, E. Brenna, F. Sannicolo, L. Trimarco, P. Antognazza, E. Cesarotti, F. Demartin, T. Pilati, G. Zotti, J. Organomet. Chem. **1997**, *529*, 445.

 ³ a) M. Scholl, T. M. Trnka, J. P. Morgan, R. H. Grubbs, *Tetrahedron Lett.* 1999, 40, 2247; b) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, *Org. Lett.* 1999, 1, 953; c) H. Takahashi, T. Morimoto, K. Achiwa, *Chem. Lett.* 1987, 855; d) N. Sakai, S. Mano, K. Nozaki, H. Takaya, *J. Am. Chem. Soc.* 1993, 115, 7033.
 ⁴ N. Debono, Y. Canac, C. Duhayon, R. Chauvin, *Eur. J. Inorg.Chem.* 2008, 2991.

Schéma 1: Hybridation de la BINAP et de la BIMIP et quaternisation pour donner respectivement la BIMINAP et la BIMIONAP.

Un deuxième exemple de système hybride a été développé à partir du 1,2-di(Nimidazolyl)benzène. L'introduction de deux groupements phosphino en position C1 sur les deux noyaux imidazoles conduit à la synthèse de la bis(imidazolo)phosphine **I**. Cette diphosphine a permis d'accéder à des complexes chélatants en série rhodium et palladium (**schéma 2**).^{5 6} La quaternisation d'un des atomes d'azote de la diphosphine **I** donne accès à la diphosphine mono-cationique **II**. Dans ce cas, la complexation avec le palladium permet la synthèse d'un complexe à ligand hybride **III** possédant une extrémité imidazoliophosphine et une extrémité imidazolophosphine (**schéma 2**).

Schéma 2 : Préparation de complexes de palladium avec des ligands neutres et cationiques.

⁵ Y. Canac, N. Debono, C. Lepetit, C. Duhayon, R. Chauvin, *Inorg. Chem.* 2011, 50, 10810.

⁶ Y. Canac, N. Debono, L. Vendier, R. Chauvin, *Inorg. Chem.* **2009**, *48*, 5562.

Le complexe **III** est obtenu avec un rendement de 91 % et a pu être caractérisé par RMN multi-noyaux et par diffraction des rayons X. En RMN ³¹P, il résonne sous la forme de deux singulets à + 4,1 et + 10,6 ppm. L'absence de la constante de couplage J_{PP} ainsi que la valeur des angles P-Pd-P (97,2°) et Cl-Pd-Cl (88,5°) indiquent la coordination *cis* du ligand **II**.

Dans le but, de poursuivre la synthèse de systèmes hybrides, la préparation de ligands à extrémité « riche-pauvre » de type NHC-amidiniophosphine (**Schéma 3**), de type ylureamidiniophosphine (**Schéma 4**) et de leurs complexes ont été envisagées. Dans ces deux cas, le caractère extrême «riches-pauvre» serait accentué par rapport aux systèmes déjà décrits.

Schéma 3 : Ligands et complexes cibles de type NHC-amidiniophosphine.

Schéma 4 : Ligands et complexes cibles de type Ylure-amidiniophosphine.

II] Résultats et discussions

- A] Système extrême NHC-amidiniophosphine
 - 1] Synthèse du ligand imidazolium-amidiniophosphine.
 - 1. Synthèse de la monophosphine 2

A partir du 1,2-di(N-imidazolyl)benzène **1**, l'introduction d'un seul groupement diphénylphosphine sur l'un des noyaux imidazoles est réalisée en présence d'un éq. de chlorodiphénylphosphine et d'une base forte avec un rendement de 38 % (**Schéma 5**).

Schéma 5 : Préparation de la mono-phosphine 2 à partir de 1.

2. Synthèse du dication imidazolium-imidazoliophosphine 3

A partir de la monophosphine **2**, la quaternisation des deux atomes d'azote a été réalisée par l'addition de 2 éq. de MeOTf dans du CH_2Cl_2 . La monophosphine dicationique **3** a été ainsi obtenue avec un rendement de 70 % (**Schéma 6**).

Schéma 6 : Préparation de la phosphine dicationique 3.

Par spectroscopie RMN³¹P, un déblindage du déplacement chimique est observé lors de la méthylation (δ_P : - 30,6 ppm pour la monophosphine **2** et - 22,6 ppm pour la monophosphine dicationique **3**).

3. Synthèse du monocation imidazolium-imidazolophosphine 4

La régio-sélectivité de la réaction de mono-quaternisation a aussi été étudiée. L'addition d'un seul éq. de MeOTf dans le CH_2Cl_2 conduit au composé monocationique 4 où le noyau imidazole non P-substitué a été préférentiellement quaternisé (**Schéma 7**).

Schéma 7 : Préparation de la phosphine monocationique 4.

En RMN ³¹P, la monophosphine cationique **4** résonne sous la forme d'un singulet à -33,8 ppm montrant alors un blindage du déplacement chimique lors de la réaction de monométhylation (δ_P : -30,6 ppm pour la monophosphine **2**).

4. Structures cristallines des monophosphines 2, 3 et 4

Les structures à l'état solide des ligands neutre 2 et cationiques 3 et 4 ont pu être confirmées par diffraction des rayons-X (Figure 1). Dans le cas des systèmes cationiques 3 et

4, des interactions de type π -stacking sont observées entre un noyau phényle porté par l'atome de phosphore et le cycle imidazolium.

Figure 1 : Représentation des structures cristallines déterminées par diffraction des rayons X de 2, 3 et 4 (de gauche à droite).

Liaison Produit	C1-P1	N1-C1	N2-C1	N3-C10	N4-C10
2	1,8234(9)	1,325(1)	1,373(1)	1,361(2)	1,312(2)
3	1,822(1)	1,318(2)	1,379(2)	1,339(2)	1,325(2)
4	1,831(2)	1,347(3)	1,354(3)	1,338(3)	1,318(3)

Tableau 1 : Longueurs(Å) de liaisons représentatives de 2, 3 et 4.

D'après les données cristallographiques, l'ensemble des longueurs de liaison C1-P1 sont du même ordre de grandeur dans les trois systèmes.

Lors de tentatives de cristallisation de la monophosphine dicationique **3**, la rupture de la liaison C-P du fragment amidiniophosphine a été constatée, en accord avec des observations récentes.⁷ Le carbène formé peut réagir avec le noyau imidazolium voisin conduisant ainsi au dication **5** qui a pu être entièrement caractérisé. La structure exacte de **5** a été déterminée par diffraction des rayons X sur monocristal (**Figure 2**).

⁷ I. Abdellah, M. Boggio-Pasqua, Y. Canac, C. Lepetit, C. Duhayon, and R. Chauvin, *Chem. Eur. J.*, **2011**, *17*, 5110 ; I. Abdellah, C. Lepetit, Y. Canac, C. Duhayon, and R. Chauvin, *Chem. Eur. J.*, **2010**, *44*, 13095.

Figure 2: Struture du bis-imidazolium 5 obtenu par dégradation de 3.

D'après les données obtenues par diffraction des rayons X, la structure du composé 5 est quasi plane (angle dihèdre N12C11C1N2 de 4,77°), ce qui s'explique par la présence d'un système π étendu. Ce système π participe à la stabilisation, malgré la répulsion des deux charges cationiques voisines.⁸

Afin de comprendre la formation du composé 5, une voie de synthèse a été envisagée à partir de l'imidazolium-imidazoliophosphine 3. En présence d'un équivalent d'une base (Et_3N) dans l'acétonitrile à 0°C, la formation d'un mélange de deux composés a pu être mise en évidence dans un rapport 45/55. Ils correspondent respectivement aux deux bis-imidazoliums 5 et 6 (Schéma 8).

Schéma 8 : Synthèse des bis-imidazoliums 5 et 6 à partir de 3.

En spectroscopie RMN ³¹P, la réaction se traduit par la disparition du signal initial à -22,6 ppm de **3**. La présence d'un signal en RMN ¹H caractéristique ($\delta_H = + 8,81$ ppm) montre bien la présence du groupement C-*H* du noyau imidazolium du dication **6**. Ce dication **6** proviendrait de la protonation par le solvant (CH₃CN) d'un bis-carbène obtenu après rupture de la liaison P-C et déprotonation de la fonction CH. Notons que dans les deux cas, une double oxydation est cependant nécessaire pour former les dications **5** et **6**, si l'on envisage le passage par un bis-carbène.

⁸ P. S. Athey and G. E. Kiefer, J. Org. Chem., 2002, 67, 408.

En comparaison avec la structure plane du dication **5** (**Figure 2**), la structure du bisimidazolium **6** obtenue par diffraction des rayons X présente un angle de torsion entre les deux groupements imidazoliums plus important (46,62° pour le noyau N4-C12-N3 et de 56,93° pour le noyau N2-C1-N1). Cette torsion peut s'expliquer par la répulsion des charges cationiques qui ne sont pas maintenues ici par le lien C-C (**Figure 3**).

Figure 3 : Représentation de la structure cristalline du bis-imidazolium 6.

2] Synthèse de complexes à ligand « riche-pauvre »

1. Pré-compléxation de l'amidiniophosphine

L'addition stœchiométrique du complexe de palladium(II) $PdCl_2(PhCN)_2$ sur la monophosphine dicationique **3** dans l'acétonitrile conduit au complexe **7** avec un rendement de 80 % (**Schéma 9**).

Schéma 9 : Synthèse du complexe dicationique 7 à partir de la phosphine dicationique 3.

La coordination de l'atome de phosphore par le centre métallique est observée en RMN ³¹P par un fort déblindage du signal (δ_P : - 22,6 ppm pour le ligand **3** et + 25,7 ppm pour le complexe **7**).

De façon similaire, l'addition d'une quantité stœchiométrique de $PdCl_2(CH_3CN)_2$ sur le ligand monocationique 4 en solution dans CH_2Cl_2 a permis d'isoler le complexe 8 avec un rendement de 30 % (Schéma 10).

Schéma 10 : Synthèse du complexe 8 à partir de la phosphine monocationique 4.

Un fort déblindage du signal (δ_P : - 33,8 ppm pour le ligand **4** et + 10,2 ppm pour le complexe **8**) en RMN ³¹P montre également ici la coordination de l'atome de phosphore au métal (Pd).

2. Synthèse du complexe « riche-pauvre » monocationique 9

Afin d'accéder au complexe de palladium à ligand NHC-amidiniophosphine, le complexe dicationique **7** est mis en présence d'une base (*t*-BuOK) dans l'acétonitrile à 0°C pendant 2h. Le complexe **9** est ainsi isolé avec un rendement de 70 % (**Schéma 11**).

Schéma 11: Synthèse du complexe « riche-pauvre » monocationique 9 à ligand NHCamidiniophosphine.

Par spectroscopie RMN ³¹P, un léger blindage du signal est observé (δ_P : + 25,7 ppm pour le complexe **7** et + 21,8 ppm pour le complexe **9**). De plus, en RMN ¹H, la disparition de l'atome d'hydrogène ($\delta_H = 9,01$ ppm) du noyau imidazolium du précurseur **7** est mis en évidence, permettant ainsi de confirmer la formation de la liaison carbone-métal.

Malgré de nombreuses tentatives de cristallisation, la structure exacte de ce complexe n'a pas pu être déterminée par diffraction des rayons X. Ce complexe **9** représente un des premiers exemples de complexe à ligand hybride « riche-pauvre » avec deux extrémités aussi électroniquement distinctes.

3. Synthèse du complexe neutre de référence 10

Le complexe neutre de référence a été obtenu par trois voies de synthèse distinctes (**schéma 12**). La première méthode (voie A), commence par la pré-coordination de **4** avec le

complexe métallique $Cl_2Pd(CH_3CN)_2$, suivie de la déprotonation de la fonction imidazolium de l'intermédiaire **8** en présence d'une base (Et₃N), permettant la coordination du centre carbénique sur le centre métallique (Pd (II)).

Schéma 12 : Voie de synthèse du complexe de palladium neutre 10.

La seconde stratégie, (voie B) est une réaction « one pot » à partir du ligand **4** et de $PdCl_2(CH_3CN)_2$ en présence d'une base forte (*t*-BuOK) dans du dichlorométhane. Elle conduit au complexe neutre **10** avec un rendement global de 18 %.

Enfin la troisième méthode, (voie C) est réalisée à partir du complexe de palladium **III** (**schéma 13**). L'ajout d'un nucléophile (Cl⁻) induit la rupture de la liaison C-P de l'extrémité amidiniophosphine conduisant à un NHC intermédiaire qui se lie au métal avec élimination de ClPPh₂. Ce mécanisme a déjà été observé à partir du complexe de palladium de la BIMIONAP.⁹

Schéma 13 : Synthèse du complexe 10 par attaque nucléophile de l'ion chlorure.

Par spectroscopie RMN³¹P, un léger déblindage du signal est observé par rapport au composé intermédiare **8** (δ_P : + 10,2 ppm pour **8** et + 11,2 ppm pour le complexe **10**). Par contre, une variation de 10 ppm est observée par rapport au complexe analogue monocationique **9** (δ_P : + 21,8 ppm pour le complexe monocationique **9** et + 11,2 ppm pour le

⁹ I. Abdellah, C. Lepetit, Y. Canac, C. Duhayon and R. Chauvin, *Chem. Eur. J.*, 2010, 16, 13065.

complexe neutre **10**). Cette variation s'explique par l'absence de quaternisation de l'atome d'azote.

La structure cristalline du complexe de palladium **10** a été confirmée par diffraction des rayons X après l'obtention de mono-cristaux dans CH_2Cl_2 à -20°C (**figure 4**). Notons la géométrie plan-carrée autour de l'atome de palladium (P1-Pd1-C10 = 92,7° et Cl1-Pd1-Cl2 = 92,4°). Les extrémités carbénique et imidazolophosphine se chélatent au métal de façon *cis*.

Figure 4 : Représentation de la structure cristalline du complexe de palladium neutre 10.

Afin de savoir si la formation du complexe méthylé **9** était possible à partir du complexe neutre **10**, une réaction de méthylation avec le MeOTf a été envisagée (**schéma 14**).

Schéma 14 : Tentatives de synthèse du complexe 9 à partir du complexe 10.

La réaction de méthylation du complexe neutre **10** n'a pas conduit au complexe **9**. Ceci est certainement dû à la faible nucléophilie de l'atome d'azote du fait de la complexation de l'atome de phosphore avec le centre métallique. Une tentative similaire, avec le complexe monocationique **8** pour former le complexe dicationique **7** n'a pas non plus abouti.

La synthèse et la caractérisation de deux complexes de Pd (II) à ligand hybride « richepauvre » ont été réalisées : à savoir, un complexe neutre à ligand NHC-imidazolophosphine **10** et un complexe cationique à ligand NHC-imidazoliophosphine **9**. L'étude de ces complexes « riche-pauvre » mérite d'être poursuivie aussi bien pour optimiser leur synthèse que pour s'intéresser à leurs propriétés catalytiques. Ces résultats ouvrent des perspectives intéressantes aussi bien en chimie de coordination qu'en catalyse.

III] <u>Perspectives et conclusion</u>

A] Vers un système NHC-ylure de phosphonium « appauvri »

A partir de la monophosphine neutre 2, une réaction de triméthylation a été envisagée afin d'accéder au trication 11. L'addition de 4 équivalents de MeOTf sur la monophosphine 2 en solution dans le CH_2Cl_2 a permis d'isoler la phosphine tricationique 11 attendue avec un rendement de 30 % (schéma 15).

Schéma 15 : Synthèse de la phosphine tricationique 11 à partir de la monophosphine 2.

Ce trication de type imidazolium-ylure de phosphonium « appauvri » **11** a été isolé et caractérisé par spectroscopie RMN multi-noyaux. La spectroscopie RMN ³¹P indique la présence d'un singulet à $\delta_P = +17,0$ ppm caractéristique d'une fonction phosphonium. La synthèse du trication **11** ouvre la voie vers de nouveaux complexes à ligand NHC-ylure de phosphonium **12** (schéma 16).

Schéma 16 : Complexe cationique à ligand NHC-ylure de phosphonium « appauvri » 12 envisagé à partir de 11.

L'enjeu sera d'étudier la chimie de coordination de son ylure qui pourra être formé par l'addition d'une base appropriée. Ainsi, l'obtention du complexe di-cationique (**schéma 16**) à ligand chélatant de type NHC-ylure de phosphonium cationique constitue un défi à relever.

B] Vers un système ylure de phosphonium-amidiniophosphine

Suite à des travaux de recherche initiés par le Dr Ibrahim Abdellah, la synthèse d'un système hybride de type ylure de phosphonium-amidiniophosphine a été envisagé à partir de la diphosphine cationique BIMIONAP.⁴ Après l'addition d'un éq. de MeOTf, la phosphine dicationique **13** a ainsi été obtenue avec un rendement de 96 % (**schéma 18**).

Schéma 18 : Synthèse de la diphosphine dicationique 13 à partir de la BIMIONAP.

La diphosphine dicationique **13** a pu être entièrement caractérisée par RMN multinoyaux et par diffraction des rayons X sur monocristaux obtenus dans un mélange CH₃CN/Et₂O (**Figure 5**). En RMN ³¹P, **13** résonne sous la forme de deux singulets à + 20,8 ppm (P⁺Ph₃Me) et - 12,1 ppm (PPh₂Im⁺).

Figure 5 : Représentation de la structure cristalline de la diphosphine dicationique 13.

Afin d'obtenir le système hybride souhaité, différentes conditions expérimentales ont été testées. Deux stratégies ont été envisagées : une pré-complexation de **13** suivie d'une réaction de déprotonation (**tableau 2**) ou alors une réaction en un seul pot (**tableau 3**).

Complexe	PdCl ₂ (CH ₃ CN) ₂		[Rh(COD)Cl] ₂		[Rh(COD) ₂ (OTf)]			
Température	TA	50°C	TA	TA	50°C	TA	TA	50°C
Solvant	CH ₃ CN	CH ₃ CN	CH_2Cl_2	CH ₃ CN	CH ₃ CN	CH_2Cl_2	CH ₃ CN	CH ₃ CN
Résultat	Dégradation							

Tableau 2 : Différents essais de pré-complexation du ligand 13.

Complexe	PdC				
Température	0°C->TA	-78°C/TA	0°C/TA		
Condition	tBuOK/CH ₃ CN	n-BuLi/THF	KHMDS/THF		
Résultat	Dégradation				

Tableau 3 : Différents essais de synthèse du système ylure-amidiniophosphine à partir duligand 13.

Cependant, les différents essais indiqués ci-dessus n'ont pas conduit au système ylureamidiniophosphine désiré, mais uniquement à des produits de dégradation qui n'ont pas été identifiés.

Dans un deuxième temps, la suite des essais a été réalisée à partir du motif 1-(1phényl)-1*H*-imidazole pour des facilités de synthèse du précurseur.

La synthèse de la diphosphine **14** a été réalisée par l'addition de 2 éq. de *n*BuLi suivi de l'ajout de 2 éq. de chlorodiphénylphosphine dans le THF. Elle est obtenue avec un rendement de 40 % (**schéma 19**). En RMN ³¹P, la présence des deux groupements phosphorés est observée par la présence de deux doublets, à – 18,0 ppm (PPh₃) et à – 30,3 ppm (PPh₂Im) avec une constante de couplage J_{PP} de 24,3 Hz.

Schéma 19 : Synthèse de la diphosphine dicationique 16 à partir du phényl imidazole.

L'addition d'un éq. de MeOTf dans CH_2Cl_2 conduit à la formation de la phosphine monocationique **15** avec un rendement de 96 %. En RMN ³¹P, les déplacements chimiques des atomes de phosphore sont du même ordre et présentent deux doublets [– 19,7 (PPh₃) et à – 22,6 (PPh₂Im⁺) ; d, $J_{PP} = 27,9$ Hz]. L'ajout d'un second éq. de MeOTf conduit à la phosphine **16** qui résonne sous la forme de deux singulets à + 21,0 ppm (MePPh₃⁺), et à -19,4 ppm (PPh₂Im⁺). En RMN ¹H, les deux groupements méthyles sont confirmés par un singulet à + 3,26 ppm pour le groupement N-CH₃, et par un doublet à + 2,67 ppm pour le groupement P-CH₃ avec une constante de couplage $J_{\text{HP}} = 15,0$ Hz.

La complexation de la diphosphine dicationique à motif phényl-imidazole a été ensuite envisagée en séries rhodium et palladium. Ces premiers essais réalisés avec des complexes métalliques « chlorés » [Rh(COD)Cl]₂, [Pd(allyl)Cl]₂, et PdCl₂(CH₃CN)₂ ont conduit uniquement au dication **17** provenant de la rupture de la liaison C-P du fragment amidiniophosphine (**schéma 20**). A ce niveau là, nous avons donc suspecté le rôle du chlorure dans la dégradation de la phosphine dicationique **16**, comme déjà observé auparavant.¹⁰

Schéma 20 : Mécanisme de rupture de la liaison C-P en présence d'ion chlorure.

L'échange du ligand chlorure par un ligand triflate a donc été entrepris à partir du complexe [Pd(allyl)Cl]₂ (schéma 21).¹¹

$$[Pd(allyl)(Cl)]_2 \xrightarrow{CH_2Cl_2/CH_3CN} [Pd(allyl)(CH_3CN)_2] [OTf]$$

Schéma 21 : Echange du ligand chlorure du [Pd(allyl)Cl]₂ par addition d'un sel d'argent.

La pré-complexation de la diphosphine dicationique **16** avec le complexe de palladium cationique a permis d'obtenir ainsi le complexe **18** avec un rendement de 68 % (**schéma 22**).

Schéma 22 : Synthèse du complexe 18 à partir de la diphosphine 16.

¹⁰I. Abdellah, M. Boggio-Pasqua, Y. Canac, C. Lepetit, C. Duhayon, and R. Chauvin, *Chem. Eur. J.*, **2011**, *17*, 5110.

¹¹L. A. Evans, N. Fey, J. N. Harvey, D. Hose, G. C. Lloyd-Jones, P.Murray, A. G. Orpen, R. Osborne, G. J. J. Owen-Smith, M. Purdie, *J.Am. Chem. Soc.* **2008**, *130*, 14471.

Le complexe **18** a pu être caractérisé par RMN multi-noyaux. En RMN ³¹P, un signal unique est observé à + 20,9 ppm indiquant que les deux atomes de phosphore ont donc un déplacement chimique similaire. En RMN ¹H, le groupement N-CH₃ résonne sous forme de singulet à 3.26 ppm et le groupement P-CH₃ sous forme de doublet à 2.65 ppm avec une constante de couplage J_{HP} de 15.0 Hz. En ROESY, une corrélation entre le ligand allylique et le substituant CH₃ de l'atome de phosphore a pu être mise en évidence, permettant de confirmer la structure du complexe **18**.

Ensuite, la déprotonation du substituant CH₃ du groupement phosphonium a été envisagée par différentes bases (BuLi, NaH 60%, Et₃N, KHMDS). Ces différentes tentatives n'ont cependant pas permis l'obtention du produit souhaité. En RMN ³¹P, la présence de plusieurs signaux indique la dégradation du complexe **18** qui proviendrait « à priori » de la rupture de la liaison C-P du fragment amidiniophosphine. Dans ce cas précis, la base jouerait ainsi le rôle de nucléophile conduisant au clivage du lien C-P. Une possibilité serait peut être d'utiliser une base très encombrée afin d'éviter l'approche de cette dernière de la liaison C-P. Une autre perspective serait de modifier la partie carbénique et notamment d'introduire un carbène plus donneur de type CAAC ou BAC.

Ce travail ouvre cependant de nouvelles perspectives vers la synthèse d'un système hybride ylure de phosphonium-amidiniophosphine. La préparation d'un pré-ligand a été mise au point mais l'étape limitante reste à ce jour la formation de l'ylure de phosphonium sans provoquer la rupture de la liaison C-P du fragment amidiniophosphine. PARTIE EXPERIMENTALE

To a solution of **1** (500 mg, 2.4 mmol) in THF (60 mL) cooled to - 78°C was added n-BuLi (2.5 M in hexane, 980 µl, 2.4 mmol). The suspension was warmed to room temperature and stirred for 3 hours. After addition of chlorodiphenylphosphine (174 µl, 2.6 mmol) at -

40°C, the solution was slowly warmed to room temperature and stirred overnight. After evaporation of the solvent, purification by flash chromatography on silica (methylene chloride/ethyl acetate) afforded **2** as a yellow solid (0.12 g, 38 %). Recrystallization at -20°C from CH₂Cl₂/Et₂O gave **2** as colorless crystals.

¹**H** NMR (CDCl₃, 298 K): $\delta = 8.85$ (s, 1H, H_{Ar}), 7.58-7.31 (m, 10H, H_{ar}), 7.23-7.13 (m, 2H, H_{ar}), 7.06-7.00 (m, 2H, H_{ar}), 6.98-6.92 (m, 2H, H_{ar}), 6.69-6.63 (m, 2H, H_{ar}).

¹³C NMR (CDCl₃, 298 K): $\delta = 147.7$ (d, $J_{CP} = 7.69$ Hz, C), 136.7 (CH), 134.1 (C), 133.7 (d, $J_{CP} = 20.6$ Hz, CH_{ar}), 132.4 (CH_{ar}), 131.9 (d, $J_{CP} = 1.43$ Hz, C), 130.6 (CH_{ar}), 130.1 (CH_{ar}), 129.9 (d, $J_{CP} = 3.39$ Hz, CH_{ar}), 129.2 (CH_{ar}), 128.6 (CH_{ar}), 128.5 (d, $J_{CP} = 7.62$ Hz, CH_{ar}), 126.2 (CH_{ar}), 123.6 (CH_{ar}), 119.1 (CH_{ar}).

³¹**P NMR (CDCl₃, 298 K):** δ = -30.6 ppm.

MS (ES): m/z: 395.1 [M + H]+.

HRMS (ES): calcd for C₂₄H₂₀N₄P 395.1426; found, 395.1427.

To a solution of **2** (100 mg, 0.25 mmol) in CH₂Cl₂ (6 mL) at room temperature, was added methyl trifluoromethanesulfonate (56 μ L, 0.50 mmol). The solution was then stirred for 3 hours. After evaporation of the solvent under vacuum, and washing with Et₂O (2*5 mL), **3** was isolated as a white solid (130 mg, 70 %).

Recrystallization at -20°C from THF/Et₂O gave **3** as colorless crystals.

¹**H** NMR (CD₃CN, **298** K): $\delta = 8.62$ (s, 1H, H_{ar}), 7.93-7.69 (m, 5H, H_{ar}), 7.64-7.40 (m, 8H, H_{ar}), 7.29-7.13 (m, 5H, H_{ar}), 3.79 (s, 3H, CH₃), 3.39 (s, 3H, CH₃).

¹³C NMR (CD₃CN, 298 K): $\delta = 145.2$ (d, $J_{CP} = 56.8$ Hz, C), 136.9 (CH), 133.5 (CH_{ar}), 133.4 (d, $J_{CP} = 21.1$ Hz, CH_{ar}), 132.9 (d, $J_{CP} = 20.5$ Hz, CH_{ar}), 132.5 (CH_{ar}), 131.3 (CH_{ar}), 131.2 (CH_{ar}), 130.7 (d, $J_{CP} = 2.1$ Hz, CH_{ar}), 130.3(d, $J_{CP} = 6.7$ Hz, C), 130.0 (d, $J_{CP} = 7.5$ Hz, CH_{ar}), 129.8 (d, $J_{CP} = 7.9$ Hz, CH_{ar}), 129.3 (d, $J_{CP} = 2.0$ Hz, CH_{ar}), 129.0 (d, $J_{CP} = 6.7$ Hz, C), 128.4 (CH_{ar}), 127.4 (CH_{ar}), 127.3 (d, $J_{CP} = 6.7$ Hz, C), 126.5 (d, $J_{CP} = 5.6$ Hz, CH_{ar}), 125.0 (CH_{ar}), 123.2 (CH_{ar}), 38.0 (CH₃), 36.5 (CH₃).

³¹**P** NMR (CD₃CN, **298** K): δ = -22.6 ppm.

MS (ES): m/z: 573.1 $[M + OTf]^+$.

HRMS (ES+) calcd for C₂₇H₂₅N₄PF₃SO₃ 573.1337; found, 573.1340.

M.p. 156-157°C.

To a solution of **2** (100 mg, 0.25 mmol) in CH₂Cl₂ (6 mL) at room temperature, was added methyl trifluoromethanesulfonate (28 μ L, 0.25 mmol). The solution was then stirred for 3 hours. After evaporation of the solvent under vacuum, and washing with Et₂O (2*5 mL), **4** was isolated as a white solid (120 mg, 84 %). Recrystallization at -20°C from THF/Et₂O gave **4** as colorless

crystals.

¹**H** NMR (CD₃CN, 298 K): $\delta = 8.57$ (s, 1H, H_{ar}), 7.83-7.69 (m, 3H, H_{ar}), 7.54-7.50 (m, 2H, H_{ar}), 7.47-7.27 (m, 11H, H_{ar}), 7.18-7.16 (m, 1H, H_{ar}), 7.03-7.01 (m, 1H, H_{ar}), 3.61 (s, 3H, CH₃).

¹³C NMR (CD₃CN, 298 K): δ = 146.6 (d, *J*_{CP} = 4.67 Hz, C), 136.6 (CH), 133.4 (dbr, *J*_{CP} = 17.6 Hz, C), 132.4 (sbr, C), 132.2 (d, *J*_{CP} = 1.66 Hz, CH_{ar}), 131.8 (CH_{ar}), 131.5 (sbr, C), 130.4

(d, $J_{CP} = 1.81$ Hz, CH_{ar}), 129.5 (CH_{ar}), 128.6 (d, $J_{CP} = 7.85$ Hz, CH_{ar}), 126.8 (CH_{ar}), 125.2 (CH_{ar}), 124.1 (CH_{ar}), 122.6 (CH_{ar}), 36.2 (CH₃).

³¹**P NMR (CD₃CN, 298 K):** δ = -33.8 ppm.

MS (ES): m/z: 409.1 $[M + H]^+$.

HRMS (ES) calcd for C₂₅H₂₂N₄P 409.1582; found, 409.1580.

A mixture of $PdCl_2(C_7H_8)_2$ (106 mg, 0.28 mmol) and dication **3** (200 mg, 0.28 mmol) was dissolved in CH₃CN (5 mL) and stirred at room temperature for 2 h. After evaporation of the solvent, the crude residue is washed with Et₂O affording **7** as an orange solid (200 mg, 80%).

¹**H** NMR (CD₃CN, 298 K): $\delta = 9.01$ (s, 1H, H_{ar}), 8.18 (dd, $J_{HP} = 15.0$ Hz, $J_{HH} = 5.0$ Hz, 2H, H_{ar}), 7.91 (s, 1H, H_{ar}), 7.82 (s, 1H, H_{ar}), 7.79-7.67 (m, 4H, H_{ar}), 7.65 (td, $J_{HP} = 10.0$ Hz, $J_{HH} = 5.0$ Hz, 2H, H_{ar}), 7.61-7.51 (m, 5H, H_{ar}), 7.50 (s, 1H, H_{ar}), 7.42-7.35 (m, 2H, H_{ar}), 3.98 (s, 3H, CH₃), 3.64 (s, 3H, CH₃)

.¹³C NMR (CD₃CN, 298 K): $\delta = 138.6$ (d, $J_{CP} = 44.3$ Hz, C), 137.5 (CH_{ar}), 136.6 (d, $J_{CP} = 12.6$ Hz, CH_{ar}), 135.7 (d, $J_{CP} = 12.6$ Hz, CH_{ar}), 134.5 (CH_{ar}), 134.2 (CH_{ar}), 133.6 (CH_{ar}), 133.1 (CH_{ar}), 132.7 (CH_{ar}), 132.2 (CH_{ar}), 130.8 (CH_{ar}), 130.0 (d, ³ $J_{CP} = 12.6$ Hz, CH_{ar}), 129.7 (d, ³ $J_{CP} = 12.6$ Hz, CH_{ar}), 129.3 (CH_{ar}), 129.0 (CH_{ar}), 128.7 (CH_{ar}), 128.4 (CH_{ar}), 124.9 (CH_{ar}), 123.9 (CH_{ar}), 121.3 (C), 120.3 (C), 40.3 (CH₃), 36.5 (CH₃).

³¹**P NMR (CD₃CN, 298 K):** $\delta = 25.7$ ppm.

A mixture of $PdCl_2(CH_3CN)$ (93 mg, 0.36 mmol) and monocation **4** (200 mg, 0.36 mmol) was dissolved in CH_2Cl_2 (15 mL) and stirred at room temperature for 2 h. After evaporation of the solvent, the crude residue is washed with Et_2O affording **8** as an orange solid (160 mg, 30 %).

¹H RMN (CD₃CN, 298 K): $\delta = 8.51$ (s, 1H, H), 7.81-7.74 (m, 1H, H_{ar}), 7.72-7.65 (m, 2H, H_{ar}), 7.52-7.48 (m, 2H, H_{ar}), 7.44-7.22 (m, 11H, H_{ar}), 7.16-7.12 (t, *J_{HH}* = 1.2 Hz, 1H_{ar}), 6.10-6.98 (t, *J_{HH}* = 1.2 Hz, 1H, H_{ar}), 3.58 (s, 3H, CH₃)

¹³C RMN (CD₃CN, 298 K): $\delta = 146.6$ (d, $J_{CP} = 4.7$ Hz, C), 136.6 (CH), 133.4 (sbr, $J_{CP} = 17.6$ Hz, C), 132.4 (sbr, CH_{ar}), 132.2 (d, $J_{CP} = 1.7$ Hz, CH_{ar}), 131.8 (CH_{ar}), 131.5 (sbr, CH_{ar}), 130.4 (d, $J_{CP} = 1.8$ Hz, CH_{ar}), 129.5 (C), 128.6 (d, $J_{CP} = 7.9$ Hz, CH_{ar}), 126.8 (CH_{ar}), 125.2 (CH_{ar}), 124.1 (CH_{ar}), 122.6 (CH_{ar}), 36.2 (CH₃)

³¹P RMN (CD₃CN, 298 K): $\delta = -33.8$

To a solution of **8** (200 mg, 0.28 mmol) in CH_2Cl_2 (15 mL) at 0°C, Et_3N (35 μ L, 0.30 mmol) was added and the solution is stirred overnight. After evaporation of the solvent, purification by flash chromatography on silica (methylene chloride/ethyl acetate) afforded **10** as an orange solid (31.6 mg, 18 %). Recrystallization at -20°C in a

mixture of CH₂Cl₂ gave the 10 as orange crystals.

¹**H NMR (DMSO, 298 K):** $\delta = 7.79-7.65$ (m, 4H, H_{ar}), 7.60-7.50 (m, 5H, H_{ar}), 7.49-7.40 (m, 4H, H_{ar}), 7.38-7.33 (m, 3H, H_{ar}), 7.11 (s, 1H, H_{ar}), 6.44 (dd, $J_{HP} = 10.0$ Hz, $J_{HH} = 5.0$ Hz, 1H, H_{ar}), 3.98 (s, 3H, CH₃).

¹³**C NMR (DMSO, 298 K):** $\delta = 163.2$ (C), 141.5 (d, $J_{CP} = 85.5$ Hz, C), 136.3 (C), 136.1 (d, $J_{CP} = 12.6$ Hz, C), 134.1 (d, $J_{CP} = 12.6$ Hz, CH_{ar}), 133.9 (C), 132.4 (d, $J_{CP} = 2.52$ Hz, CH_{ar}), 131.7 (CH_{ar}), 131.6 (CH_{ar}), 131.5 (d, $J_{CP} = 2.52$ Hz, CH_{ar}), 130.9 (d, $J_{CP} = 11.3$ Hz, CH_{ar}),

129.6 (CH_{ar}), 128.9 (d, $J_{CP} = 12.6$ Hz, CH_{ar}), 128.7 (d, $J_{CP} = 12.6$ Hz, CH_{ar}), 128.2 (CH_{ar}), 127.5 (d, $J_{CP} = 61.6$ Hz, C), 127.3 (CH_{ar}), 126.6 (d, $J_{CP} = 57.9$ Hz, C), 124.6 (CH_{ar}), 124.4 (CH_{ar}), 38.1 (CH₃).

³¹**P** NMR (DMSO, 298 K): $\delta = 11.2$ ppm.

MS (ES): m/z: 590 [M - Cl]⁺.

HRMS (ES+) calcd for C₂₇H₂₄N₄PClPd 590.0493; found, 590.0465.

To a solution of **7** (200 mg, 0.27 mmol) in CH₃CN (5 mL) at 0°C, *t*-BuOK (28 mg, 0.31 mmol) was added and the solution is stirred during 2h. After evaporation of the solvent, washing with Et₂O afforded **9** as an orange solid (140 mg, 70 %).

¹**H NMR (CD₃CN, 298 K):** $\delta = 7.88$ (dd, $J_{HP} = 15.0$ Hz, $J_{HH} = 10$ Hz, 4H, H_{ar}), 7.81-7.68 (m, 4H, H_{ar}), 7.62-7.45 (m, 8H, H_{ar}), 7.34 (d,

 $J_{\rm HH} = 5.0$ Hz, 1H, H_{ar}), 7.29 (d, $J_{\rm CP} = 5.0$ Hz, 1H, H_{ar}), 4.18 (s, 3H, CH₃), 3.12 (s, 3H, CH₃).

¹³**C NMR (CD₃CN, 298 K):** $\delta = 160.1$ (C), 140.6 (d, $J_{CP} = 37.7$ Hz, C), 137.1 (d, $J_{CP} = 12.6$ Hz, C), 134.3 (d, $J_{CP} = 2.5$ Hz, CH_{ar}), 133.8 (d, $J_{CP} = 2.5$ Hz, CH_{ar}), 129.8 (CH_{ar}), 129.6 (d, $J_{CP} = 12.6$ Hz, CH_{ar}), 127.0 (CH_{ar}), 125.5 (CH_{ar}), 123.5 (CH_{ar}), 123.0 (d, $J_{CP} = 60.0$ Hz, C), 122.9 (d, $J_{CP} = 58.0$ Hz, C), 39.3 (CH₃), 38.4 (CH₃).

³¹**P** NMR (CD₃CN, 298 K): $\delta = 21.8$ ppm.

MS (ES): m/z: 601.0 $[M + OTf]^+$.

HRMS (ES+) calcd for C₂₆H₂₄N₄PCl₂Pd 601.0145; found, 601.0165.

5.

To a solution of **3** (330 mg, 0.61 mmol) in CH₃CN (10 mL) was added Et_3N (172 µl, 1.30 mmol) à 0°C. After stirring the solution during 3 hours, the solvant is removed under vaccum. After washing with Et_2O (2*5 mL) then with THF (2*5 mL), a white solid is obtained (230 mg, 95 %) composed of a mixture of two compounds in a ration (55/45) corresponding to the bis imidazolium salt **5** and **6**. Recrystallization at - 20°C in a mixture of CH₃CN/Et₂O gave the bis-carbene **5** as colorless crystals.

¹H NMR (CD₃CN, 298 K): $\delta = 8.92$ (s, 2H, H_{ar}), 8.58-8.51 (m, 2H, H_{ar}), 8.25 (s, 2H, H_{ar}), 8.11-8.04 (m, 2H, H_{ar}), 4.59 (s, 6H, CH₃).

¹³C NMR (CD₃CN, 298 K): $\delta = 131.6$ (CH_{ar}), 130.7 (C), 118.35 (CH_{ar}), 118.0 (CH_{ar}), 41.6 (CH₃).

6.

¹**H NMR (CD₃CN, 298 K):** $\delta = 8.81$ (s, 2H, CH), 7.93-7.87 (m, 2H, H_{ar}), 7.81-7.74 (m, 2H, H_{ar}), 7.51 (s, 2H, H_{ar}), 7.43 (s, 2H, H_{ar}), 3.94 (s, 6H, CH₃)

¹³C NMR (CD₃CN, 298 K): $\delta = 137.5$ (s, CH), 132.7 (s, CH_{ar}), 130.0 (s, C_{ar}), 128.5 (s, CH_{ar}), 124.8 (s, CH_{ar}), 123.3 (s, CH_{ar}), 36.5 (s, CH₃).

To a solution of **2** (55 mg, 0.14 mmol) in CH₂Cl₂ (4 mL) at room temperature, was added methyl trifluoromethanesulfonate (61 μ L, 0.56 mmol). The solution was then stirred for 2 days at 40°C. After evaporation of the solvent under vacum, and washing with Et₂O (8 mL) and toluene (8 mL), **11** was isolated as a yellow oil (45 mg, 36

¹**H** NMR (CD₃CN, 298 K): $\delta = 8.68$ (s, 1H, H_{ar}), 8.34 (t, J = 5 Hz, 1H, H_{ar}), 8.34 (t, J = 5 Hz, 1H, H_{ar}), 7.98-7.96 (m, 2H, H_{ar}), 7.77-7.73 (m, 6H, H_{ar}), 7.60-7.55 (m, 3H, H_{ar}), 7.55-7.48 (m, 3H, H_{ar}), 3.95 (s, 3H, CH₃), 3.90 (s, 3H, CH₃), 3.02 (d, J = 15 Hz, 3H, CH₃).

¹³C NMR (CD₃CN, 298 K):δ =137.7 (CH_{ar}), 137.6 (CH_{ar}), 137.1 (CH_{ar}), 134.8 (CH_{ar}), 134.2 (d, J_{CP} = 12.6 Hz, 2CH_{ar}), 133.7 (d, J_{CP} = 12.6 Hz, 2CH_{ar}), 133.0 (CH_{ar}), 132.9 (d, J_{CP} = 5.03 Hz, CH_{ar}), 132.5 (d, J_{CP} = 3.77 Hz, CH_{ar}), 131.4 (4CH_{ar}), 131.0 (CH_{ar}), 129.5 (CH_{ar}), 127.9 (d, J_{CP} = 25.2 Hz, C) 125.5 (CH_{ar}), 123.7 (CH_{ar}), 113.6 (C), 113.0(C), 40.7 (CH₃), 36.8 (CH₃), 10.7 (d, J_{CP} = 27.7 Hz, CH₃).

³¹**P NMR (CD₃CN, 298 K):** δ = 17.1 ppm.

To a solution of 1-phenylimidazole (1.0 g, 6.94 mmol) in Et_2O (110 mL) cooled to -78°C was added BuLi (2.5 M in hexane, 5.82 mL, 14.56 mmol). The suspension was warmed to room temperature and stirred for 4 hours. After addition of chlorodiphenylphosphane (2.69 mL, 14.56 mmol) at -78°C, the solution was slowly warmed to room

temperature and stirred for 2 hours. The organic layer was washed with a saturated aqueous solution of NH₄Cl (3 x 20 mL). The organic layer was then extracted with additional Et₂O (60 mL), dried over MgSO₄ and concentrated under vacuum. Purification by chromatography on silica gel (pentane/ethyl acetate; 8/2) gave **14** as a white solid (1.5 g, 40%). Recrystallization at -20°C from CH₂Cl₂/Et₂O gave white crystals.

¹**H NMR** (**CDCl**₃, **298 K**): δ = 7.60-7.52 (m, 4H, H_{ar}), 7.44-7.23 (m, 20H, H_{ar}), 7.15-7.12 (m, 1H, CH_{ar}), 6.93-6.91 (m, 1H, H_{imidazol}) ppm.

¹³**C NMR** (**CDCl**₃, **298 K**): δ 147.5 (d, J_{CPb} = 3.9 Hz, C), 142.1 (d, J_{CPb} = 24.8 Hz, C), 137.2 (d, J_{CPa} = 17.2 Hz, C), 136.4-136.1 (m, C), 134.8 (s, CH), 134.2 (dd, J_{CPa} = 20.9 Hz, J_{CPb} = 21.0 Hz, CH), 133.6 (dd, J_{CPa} = 19.6 Hz, J_{CPb} = 19.1 Hz, CH), 131.0 (s, CH), 129.6 (s, CH), 129.5 (s, CH), 129.2 (s, CH), 129.0 (s, CH), 128.8-128.5 (m, CH), 128.2 (d, J_{CPb} = 6.4 Hz, CH), 124.9 (s, CH_{imidazol}) ppm.

³¹**P** NMR (CDCl₃, **298** K): δ = -18.02 (d, J_{PP} = 24.3 Hz, Pa), -30.31 (d, J_{PP} = 24.3 Hz, Pb) ppm.

MS (ES+): $m/z : 513 [MH^+]$.

HRMS (ES+): calcd for C₃₃H₂₇N₂P₂ 513.1650; found, 513.1666.

Elemental analysis: Calcd for C₃₃H₂₆N₂P₂, 0.4 H₂O (519.72): calcd. C 76.19, H 5.15, N, 5.38; found C 76.23, H 5.13, N 5.40.

m.p. 172-174°C.

To a solution of **14** (1 g, 1.95 mmol) in CH_2Cl_2 (40 mL) cooled to -78°C, was added methyl trifluoromethanesulfonate (0.213 mL, 1.95 mmol). The solution was then warmed to room temperature and stirred for 12 hours. After concentration under vacuum, the residue was washed with Et₂O (40 mL) affording **15** as a white solid (0.59 g,

96%). Recrystallization at -20°C from CH₃CN/Et₂O gave white crystals.

¹**H** NMR (CD₃CN, 298 K): δ = 7.59-7.50 (m, 7H, H_{ar}), 7.48-7.43 (m, 5H, H_{ar}), 7.41-7.38 (m, 7H, CH_{ar}), 7.33-7.28 (m, 4H, CH_{ar}), 7.19-7.17 (m, 3H, CH_{ar}), 3.40 (s, 3H, CH₃) ppm.

¹³C NMR (CD₃CN, 298 K): δ 145.4 (d, J_{CPb} = 53.7 Hz, C), 139.35 (dd, J_{CPa} = 27.0 Hz, J_{CPb} = 2.4 Hz, C), 135.9 (dd, J_{CPa} = 18.6 Hz, J_{CPb} = 1.3 Hz, C), 135.1 (d, J_{CP} = 1.5 Hz, CH), 134.4 (d, J_{CPa} = 8.6 Hz, C), 134.0 (d, J_{CPa} = 8.5 Hz, C), 133.9 (d, J_{CPa} = 21.2 Hz, CH), 133.6 (d, J_{CP} = 19.9 Hz, CH), 133.4 (d, J_{CP} = 38.3 Hz, CH), 132.6 (dd, J_{CPa} = 19.3 Hz, J_{CPb} = 23.1 Hz, CH), 131.8 (s, CH), 130.7 (s, CH), 130.6 (s, CH), 129.9 (s, CH), 129.7 (d, JCP = 7.0 Hz, CH), 129.6 (s, CH), 129.1 (d, J_{CPa} = 7.0 Hz, CH), 128.9 (d, J_{CPa} = 6.9 Hz, CH), 128.7 (d, J_{CP} = 2.8 Hz, CH), 128.3 (d, J_{CPb} = 8.1 Hz, C), 127.8 (dd, J_{CPa} = 1.8 Hz, J_{CPb} = 9.7 Hz, C), 127.4 (d, J_{CPa} = 2.1 Hz, CH) 121.2 (q, J_{CF} = 322.5, CF3SO3 -), 37.9 (s, CH₃). ppm.

³¹**P** NMR (CD₃CN, 298 K): δ = -19.65 (d, J_{PP} = 27.9 Hz, Pa), -22.57 (d, J_{PP} = 27.9 Hz, Pb) ppm.

MS (ES+): m/z : 527 [M+].

HRMS (ES+): calcd for C₃₄H₂₉N₂P₂ 527.1806; found, 527.1802.

Elemental analysis: Calcd for C₃₅H₂₉N₂O₃P₂S, (676.62): calcd. C 62.13, H 4.32, N, 4.74; found C 61.69, H 4.26, N 4.12.

m.p. 172-174°C

To a solution of **15** (0.3 g, 0.44 mmol) in CH₂Cl₂ (40 mL) cooled to - 78°C, was added methyl trifluoromethanesulfonate (51 μ L, 0.44 mmol). The solution was then warmed to room temperature and stirred for 12 hours. After concentration under vacuum, the residue was washed with Et₂O (40 mL) affording **16** as a white solid (314 mg,

85 %).

¹**H NMR** (**CD**₃**CN**, **298 K**): δ =7.93 (td, *J*_{HP1} = 2.5 Hz, *J*_{HH} = 7.5 Hz, 1H, H_{ar}), 7.90-7.81 (m, 2H, H_{ar}), 7.80-7.73 (m, 4H, H_{ar}), 7.72-7.59 (m, 7H, H_{ar}), 7.57 (td, *J*_{HP2} = 5.0 Hz, *J*_{HH} = 10.0 Hz, 1H, H_{ar}), 7.52 (td, *J*_{HP2} = 5.0 Hz, *J*_{HH} = 10.0 Hz, 2H, H_{ar}), 7.47 (td, *J*_{HP2} = 5.0 Hz, *J*_{HH} = 10.0 Hz, 2H, H_{ar}), 7.45-7.43 (m, 1H, H_{ar}), 7.42-7.40 (m, 1H, H_{ar}), 7.33-7.29 (m, 1H, H_{ar}), 3.26 (s, 3H, CH₃), 2.67 (d, *J*_{HP1} = 15.0 Hz, 3H, CH₃).

¹³C NMR (CD₃CN, 298 K): δ = 146.4 (C), 137.9 (CH_{ar}), 136.5 (d, J_{CP1} = 2.52 Hz, CH_{ar}), 136.0 (d, J_{CP1} = 3.77 Hz, CH_{ar}), 135.9 (d, J_{CP1} = 2.52 Hz, CH_{ar}), 134.7 (d, J_{CP2} = 22.6 Hz, CH_{ar}), 133.6 (d, J_{CP1} = 11.1 Hz, CH_{ar}), 133.5 (d, J_{CP1} = 11.1 Hz, CH_{ar}), 133.3 (d, J_{CP1} = 11.1 Hz, CH_{ar}), 132.9 (d, J_{CP1} = 12.6 Hz, CH_{ar}), 131.8 (CH_{ar}), 131.5 (CH_{ar}), 130.5 (d, J_{CP1} = 11.3 Hz, CH_{ar}), 130.4 (d, J_{CP1} = 10.1 Hz, CH_{ar}), 130.0 (d, J_{CP2} = 10.1 Hz, CH_{ar}), 129.9 (d, J_{CP2} = 3.77 Hz, CH_{ar}), 128.7 (CH_{ar}), 127.2 (CH_{ar}), 126.9 (d, J_{CP2} = 5.03 Hz, C), 126.4 (d, J_{CP2} = 5.03 Hz, C), 118.8 (C), 117.6 (C), 117.1 (C), 38.2 (CH₃), 10.1 (d, J_{CP1} = 57.9 Hz, CH₃).

³¹P NMR (CD₃CN, 298 K): δ = 21.0 (s, P1); -19.4 (s, P2) ppm.
MS (ES): *m/z*: 691.1 [M + OTf]⁺
HRMS (ES): calcd for C₃₆H₃₂N₂O₃F₃P₂S 691.1561; found, 691.1555.

A mixture of $[Pd(allyl)(CH_3CN)_2]$ [OTf] (64 mg, 0.17 mmol) and dication **16** (143 mg, 0.17 mmol) was dissolved in CH₂Cl₂ (15 mL) and stirred at room temperature for 2 h. After evaporation of the solvent, the crude residue is washed with Et₂O affording **18** as an orange solid (133 mg, 68 %).

¹**H NMR** (**CD**₃**CN**, **298 K**): δ =7.95 (td, *J*_{HP1} = 2.5 Hz, *J*_{HH} = 7.5 Hz, 1H, H_{ar}), 7.87 (td, *J*_{HP1} = 2.5 Hz, *J*_{HH} = 7.5 Hz, 1H, H_{ar}), 7.82-7.70 (m, 6H, H_{ar}), 7.70-7.66 (m, 2H, H_{ar}), 7.66-7.56 (m, 6H, H_{ar}), 7.56-7.49 (m, 4H, H_{ar}), 7.41 (td, *J*_{HP2} = *J*_{HH} = 10.0 Hz, 2H, H_{ar}), 7.34-7.25 (m, 4H, H_{ar}), 5.90 (quint, 1H, CH_{allyl}), 4.47 (sbr, 2H, CH_{2allyl}), 3.50-3.44 (m, 5H, CH₃N+CH₂allyl), 3.26 (s, 3H, CH₃), 2.65 (d, *J*_{HP1} = 15.0 Hz, 3H, CH₃).

¹³C NMR (CD₃CN, 298 K): δ = 144.1 (C), 136.9 (d, J_{CP1} = 10.0 Hz, CH_{ar}), 136.0 (d, J_{CP1} = 10.0 Hz, CH_{ar}), 135.9 (d, J_{CP1} = 10.0 Hz, CH_{ar}), 134.6 (d, J_{CP2} = 20.1 Hz, CH_{ar}), 134.2 (d, J_{CP1} = 18.9 Hz, CH_{ar}), 133.6 (d, J_{CP1} = 11.3 Hz, CH_{ar}), 133.4 (d, J_{CP1} = 11.3 Hz, CH_{ar}), 133.3 (d, J_{CP1} = 10.0 Hz, CH_{ar}), 132.9 (d, J_{CP1} = 11.3 Hz, CH_{ar}), 132.4 (CH_{ar}), 132.3 (CH_{ar}), 130.7 (d, J_{CP1} = 13.8 Hz, CH_{ar}), 130.5 (d, J_{CP1} = 12.5 Hz, CH_{ar}), 130.2 (d, J_{CP2} = 10.1 Hz, CH_{ar}), 130.1 (d, J_{CP2} = 10.1 Hz, CH_{ar}), 129.3 (CH_{ar}), 127.7 (CH_{ar}), 125.6 (C), 125.0 (C), 120.4(C), 118.4 (C), 117.7 (C), 116.9 (C), 38.2 (CH₃), 9.4 (d, J_{CP1} = 56.6 Hz, CH₃).

³¹**P** NMR (CD₃CN, 298 K): $\delta = 20.9$ (s, P1); 20.9 (s, P2) ppm.
Sous-produit obtenu sous la forme d'un solide :

¹**H** NMR (CDCl₃, **298** K): $\delta = 7.95-7.88$ (m, 1H, H), 7.78-7.70 (m, 3H, H_{ar}), 7.65-7.42 (m, 6H, H_{ar}), 7.33-7.26 (m, 3H, H_{ar}), 7.13 (s, 1H, H_{ar}), 7.02-6.97 (m, 1H, H_{ar}), 6.95-6.88 (m, 2H, H_{ar}), 6.76 (s, 2H, H_{ar})

¹³C NMR (CDCl₃, 298 K): $\delta = 137.1$ (C), 136.7 (C), 132.3 (CH_{ar}), 131.6 (CH_{ar}), 131.4 (CH_{ar}), 130.7 (CH_{ar}), 129.6 (CH_{ar}), 128.5 (CH_{ar}), 127.1 (C), 126.5 (C), 125.4 (d, $J_{CP} = 12.0$ Hz, C), 119.9 (C), 119.4 (C)

³¹P NMR (CDCl₃, 298 K): δ = 16.6

MS (ES+) : $m/z = 411 [M+H]^+$

HRMS (ES+) calculé pour C₂₇H₂₄N₅PClPd 411.1375; trouvé, 411.1375.

M.p. = 220-225°C

¹**H NMR (CD₃CN, 298 K):** $\delta = 9.10$ (s, 1H, H), 8.25 (dd, ${}^{3}J_{HP} = 12.5$ Hz, $J_{HH} = 7.5$ Hz, 2H, H_{ar}), 7.86-7.74 (m, 4H, H_{ar}), 7.72-7.70 (m, 1H, H_{ar}), 7.58 (dt, , $J_{HH} = 1.0$ Hz, $J_{HH} = 8.0$ Hz, 1H, H_{ar}), 7.50-7.41 (m, 4H, H_{ar}), 7.35-7.22 (m, 4H, H_{ar}), 4.03 (s, 3H, CH₃), 3.62 (s, 3H,

CH₃).

¹³C NMR (CD₃CN, 298 K): $\delta = 140.9$ (C), 137.4 (CH), 136.6 (d, $J_{CP} = 12.1$ Hz, 4 CH_{ar}), 135.9 (d, $J_{CP} = 13.3$ Hz, CH_{ar}), 133.8 (2 CH_{ar}), 133.4 (CH_{ar}), 132.7 (CH_{ar}), 130.9 (CH_{ar}), 129.8 (d, ${}^{2}J_{CP} = 12.0$ Hz, 4 CH_{ar}), 128.6 (CH_{ar}), 128.3 (CH_{ar}), 127.6 (CH_{ar}), 124.8 (CH_{ar}), 123.8 (CH_{ar}), 122.5 (C), 122.3 (C), 40.3 (d, ${}^{3}J_{CP} = 2.9$ Hz, CH₃), 36.8 (CH₃).

³¹**P** NMR (CD₃CN, 298 K): $\delta = 24.7$.

CONCLUSION GENERALE

La variation sur le double thème des ligands phosphines et diaminocarbènes en chimie de coordination a été conduite pour des ligands « très pauvres » de type amidiniophosphine **A** et « très riches » de type ylure de phosphonium **B**. Les caractères opposés et complémentaires de ces deux types de ligands sont illustrés en considérant que le type **B** (P^+ - C^- :) est la version « inverse » du type **A** (C^+ -P:) (**Schéma 1**).

Schéma 1 : Illustration du caractère « ylure inversé » du motif amidiniophosphine.

Dans le premier chapitre, quatre nouveaux types de ligands potentiels pauvres en électrons ont été présentés : les amidiniophosphonites, les di-amidiniophosphines, les amidiniohydroxyphosphines et les chalcogénophosphéniums. Le caractère donneur des amidiniophosphonites (à deux substituants alcoxy sur l'atome de phosphore) a été démontré suffisant pour permettre la P-coordination d'un centre métallique de rhodium (I). A l'opposé, les di-amidiniophosphines (à deux substituants « imidazolio » sur l'atome de phosphore) se sont avérées non coordinantes vis-à-vis de centre métallique de rhodium (I). La première amidiniohydroxyphosphine a été préparée à partir du 1-phényl(*1H*)-imidazole, et un complexe de rhodium de ce ligand a pu être obtenu. Enfin, des chalcogénophosphéniums ont été stabilisés par des ligands NHC et BAC. Le caractère datif de la liaison R_2C : $\rightarrow P(X)Ph_2^+$ a en effet été confirmée par des méthodes expérimentales et théoriques complémentaires.

Dans le second chapitre, a été présentée la synthèse de ligands « riches » de type ylures de phosphonium et plus précisément, de bis-ylures de diphosphonium. Leur préparation à partir des motifs 1,2- ou 1,3-diphénylphosphinobenzène et leur coordination à un centre métallique (rhodium I) ont été étudiées. En série *ortho*-phénylène, la génération du bis-ylure

s'est avérée impossible du fait d'une compétition avec un réarrangement intramoléculaire conduisant alors à un ylure de bis-phosphonium. En série *méta*-phénylène, la synthèse de bisylures de diphosphonium et leur coordination ont pu être réalisées. De nouveaux ylures de phosphoniums chiraux ont été également envisagés.

Dans le troisième chapitre, des systèmes hybrides à extrémités électroniquement opposées présentant les propriétés des ligands riches (NHC) et pauvres (amidiniophosphines) ont été décrits. Malgré différentes tentatives, le système hybride ylure de phosphoniumamidiniophosphine a échappé à nos observations mais demeure à ce jour un défi.

ANNEXES

Chapitre I :

A] Composé 16 140212

Maille :

$a = 13.1152(7) \text{ Å } \alpha =$	90°		
$b = 13.1152(7) \text{ Å } \beta =$	90°		
$c = 68.634(3) \text{ Å} \gamma =$	120°		
Volume	10224.0(9) Å ³	Crystal Class	trigonal
Space group	R -3 c	Z =	6
Formula	$C_{72}H_{60}B_2F_2Mg_1O_{12}P_6$	M_r	1387.03
Cell determined from	6192 reflections	Cell θ range =	= 4 - 63°
Temperature	180K		
Shape	block		
Colour	colorless	Size	$0.15\times0.20\times0.25~mm$
D _x	1.35	F000	4308.000
μ	2.120 mm ⁻¹		
Absorption correction	multi-scan		
T_{min}	0.64	T _{max}	0.73

B] Data Collection

Diffractometer	multi-scan
Scan type	ϕ and ω scans
Reflections measured	21352
Independent reflections	1805
Rint	0.0300
θ_{max}	62.8169
h =	$-14 \rightarrow 15$
k =	$-14 \rightarrow 14$
1 =	$-75 \rightarrow 78$

C] Refinement

 $\Delta \rho_{min} = -0.26 \ e \ \mathring{A}^{\text{-3}}$

$\Delta \rho_{max} =$	0.29 e Å ⁻³
Reflections used	1646
Cutoff: I >	3.00 _σ (I)
Parameters refined	144
S =	0.93
R-factor	0.034
weighted R-factor	0.045
$\Delta\!/\sigma_{max}$	0.0034
Refinement on	F
w =	w' \times [1 - (ΔF_{obs} / 6 $\times \Delta F_{est}$) ²] ²
$\mathbf{w}' =$	$\begin{split} & [P_0T_0'(x)+P_1T_1'(x)+P_{n-1}T_{n-1}'(x)]^{-1}, \\ & \text{where } P_i \text{ are the coefficients of a Chebychev series in } t_i(x), \text{ and } x=F_{cale}/F_{calcmax}. \end{split}$
$P_0 - P_{n-1} =$	6.58 5.38 5.00 1.43

D] Distances

C1	C2	1.375(3)Å	C1	C6	1.381(3)Å
C1	P1	1.7928(16)Å	C2	C3	1.391(3)Å
C2	H21	0.968Å	C3	C4	1.362(4)Å
C3	H31	0.973Å	C4	C5	1.357(4)Å
C4	H41	0.953Å	C5	C6	1.384(3)Å
C5	H51	0.935Å	C6	H61	0.936Å
C7	C8	1.378(3)Å	C7	C12	1.388(3)Å
C7	P1	1.7973(17)Å	C8	C9	1.401(3)Å
C8	H81	0.972Å	C9	C10	1.376(4)Å
C9	H91	0.973Å	C10	C11	1.363(4)Å
C10	H101	0.976Å	C11	C12	1.384(3)Å
C11	H111	0.960Å	C12	H121	0.935Å
P1	01	1.4799(12)Å	P1	O2	1.5531(11)Å
01	Mg1	2.0595(11)Å	02	B1	1.4748(15)Å
F1	B1	1.370(4)Å			

E] Angles

C2	C1	C6	118.46(18)°	C2	C1	P1	119.06(14)°
C6	C1	P1	122.45(15)°	C1	C2	C3	120.6(2)°
C1	C2	H21	119.430°	C3	C2	H21	119.931°
C2	C3	C4	120.0(2)°	C2	C3	H31	118.453°
C4	C3	H31	121.516°	C3	C4	C5	119.9(2)°
C3	C4	H41	120.555°	C5	C4	H41	119.563°
C4	C5	C6	120.7(2)°	C4	C5	H51	119.378°
C6	C5	H51	119.940°	C1	C6	C5	120.3(2)°
C1	C6	H61	118.729°	C5	C6	H61	120.963°
C8	C7	C12	119.52(17)°	C8	C7	P1	119.22(14)°
C12	C7	P1	121.10(14)°	C7	C8	C9	119.5(2)°
C7	C8	H81	119.551°	C9	C8	H81	120.927°
C8	C9	C10	119.9(2)°	C8	C9	H91	120.068°

C10	C9	H91	119.988°	C9	C10	C11	120.6(2)°
C9	C10	H101	120.587°	C11	C10	H101	118.828°
C10	C11	C12	119.9(2)°	C10	C11	H111	119.906°
C12	C11	H111	120.236°	C7	C12	C11	120.5(2)°
C7	C12	H121	117.752°	C11	C12	H121	121.734°
C1	P1	C7	108.56(8)°	C1	P1	01	110.09(7)°
C7	P1	01	110.52(7)°	C1	P1	02	103.70(7)°
C7	P1	O2	106.58(7)°	01	P1	O2	116.92(6)°
P1	01	Mg1	145.55(7)°	P1	02	B1	132.76(12)°
02	B1	O2 14_655	110.65(12)°	02	B1	O2 31_665	110.65(12)°
O2 14_655	B1	O2 31_665	110.65(12)°	02	B1	F1	108.27(12)°
O2 14_655	B1	F1	108.27(12)°	O2 31_665	B1	F1	108.27(12)°
01	Mg1	01 10_655	178.09(6)°	01	Mg1	O1 14_655	90.51(4)°
O1 10_655	Mg1	01 14_655	88.15(6)°	01	Mg1	O1 22_545	88.15(6)°
O1 10_655	Mg1	01 22_545	90.51(4)°	01 14_655	Mg1	O1 22_545	90.86(6)°
01	Mg1	O1 27_555	90.86(6)°	01 10_655	Mg1	O1 27_555	90.51(4)°
01 14_655	Mg1	01 27_555	178.09(6)°	01 22_545	Mg1	O1 27_555	90.51(4)°
01	Mg1	01 31_665	90.51(4)°	01 10_655	Mg1	O1 31_665	90.86(6)°
01 14_655	Mg1	O1 31_665	90.51(4)°	01 22_545	Mg1	O1 31_665	178.09(6)°
01 27_555	Mg1	O1 31_665	88.15(6)°				

A] Composé 18 180311

Maille :

$$\begin{split} a &= 12.62782(12) \ \mathring{A} \ \alpha = 90^{\circ} \\ b &= 9.78055(7) \ \mathring{A} \quad \beta = 108.8207(11)^{\circ} \\ c &= 14.23772(14) \ \mathring{A} \ \gamma = 90^{\circ} \end{split}$$

Volume	1664.44(3) Å ³
Space group	P 2 ₁ /c
Formula	$C_{21}H_{17}N_2P_1$
Cell determined from	15797 reflections
Temperature	180K
Shape	block
Colour	colorless
D _x	1.31
μ	1.472 mm ⁻¹
Absorption correction	multi-scan

Z = 4 M_r 328.35

Cell θ range = 3 - 60°

Size

F000

 $\begin{array}{c} 0.15\times0.15\times0.20 \text{ mm} \\ 688.000 \end{array}$

Annexes

Γ _{min}	0.72	T _{max}	0.80
B] Data Co	ollection		
Diffractometer	GEMINI		
Scan type	ϕ and ω scans		
Reflections measu	red 19348		
Independent reflec	tions 2466		
Rint	0.0000		
Ə max	60.0664		
h =	$-14 \rightarrow 14$		
k =	$-11 \rightarrow 10$		
l =	$-15 \rightarrow 15$		
C] Refiner	nent		
$\Delta \rho_{\rm min} =$	-0.25 e Å ⁻³		
$\Delta \rho_{\rm max} =$	0.26 e Å ⁻³		
Reflections used	2336		
Cutoff: I >	3.00o(I)		
Parameters refined	218		
S =	1.01		
R-factor	0.027		
weighted R-factor	0.040		
Δ/σ_{max}	0.0012		
Refinement on	F		
w =	$w' \times [1$ - $(\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$		
	$[P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)$] ⁻¹ ,	
w' =	where P_i are the coefficients of a C	hebychev serie	s in $t_i(x)$, and $x =$
D. D. –	$\Gamma_{calc}/\Gamma_{calcmax}$.		
$r_0 - r_{n-1} =$	12.2 13.0 11.2 4.30		

D] Distances

C1	P1	1.8307(10)Å	C1	N2	1.3740(13)Å
C1	N1	1.3234(14)Å	C2	C3	1.3547(17)Å
C2	N1	1.3690(16)Å	C2	H21	0.974Å
C3	N2	1.3755(14)Å	C3	H31	0.972Å
C4	C5	1.3834(14)Å	C4	C9	1.3810(14)Å
C4	N2	1.4373(14)Å	C5	C6	1.3867(15)Å
C5	H51	0.976Å	C6	C7	1.3810(17)Å
C6	H61	0.970Å	C7	C8	1.3788(17)Å
C7	H71	0.957Å	C8	C9	1.3834(15)Å

C8	H81	0.975Å	C)	H91	0.985Å
C10	C11	1.3870(15)Å	C	10	C15	1.3888(14)Å
C10	P1	1.8400(10)Å	C	11	C12	1.3871(15)Å
C11	H111	0.966Å	C	12	C13	1.3796(16)Å
C12	H121	0.974Å	C	13	C14	1.3819(16)Å
C13	H131	0.971Å	C	14	C15	1.3850(15)Å
C14	H141	0.978Å	C	15	H151	0.988Å
C16	C17	1.3924(14)Å	C	16	C21	1.3962(15)Å
C16	P1	1.8347(9)Å	C	17	C18	1.3862(15)Å
C17	H171	0.977Å	C	18	C19	1.3875(16)Å
C18	H181	0.977Å	C	19	C20	1.3803(16)Å
C19	H191	0.968Å	C	20	C21	1.3837(15)Å
C20	H201	0.967Å	C	21	H211	0.974Å

E] Angles

P1	C1	N2	121.94(8)°	P1	C1	N1	127.13(8)°
N2	C1	N1	110.86(9)°	C3	C2	N1	110.92(10)°
C3	C2	H21	125.221°	N1	C2	H21	123.863°
C2	C3	N2	105.93(10)°	C2	C3	H31	129.099°
N2	C3	H31	124.973°	C5	C4	C9	120.76(10)°
C5	C4	N2	120.06(9)°	C9	C4	N2	119.11(9)°
C4	C5	C6	119.26(10)°	C4	C5	H51	120.942°
C6	C5	H51	119.793°	C5	C6	C7	119.96(10)°
C5	C6	H61	119.902°	C7	C6	H61	120.140°
C6	C7	C8	120.52(10)°	C6	C7	H71	120.157°
C8	C7	H71	119.320°	C7	C8	C9	119.80(10)°
C7	C8	H81	119.842°	C9	C8	H81	120.336°
C4	C9	C8	119.68(10)°	C4	C9	H91	118.606°
C8	C9	H91	121.711°	C11	C10	C15	118.75(9)°
C11	C10	P1	116.77(7)°	C15	C10	P1	124.47(8)°
C10	C11	C12	120.69(10)°	C10	C11	H111	118.972°
C12	C11	H111	120.334°	C11	C12	C13	120.14(10)°
C11	C12	H121	119.344°	C13	C12	H121	120.514°
C12	C13	C14	119.58(10)°	C12	C13	H131	120.884°
C14	C13	H131	119.532°	C13	C14	C15	120.37(10)°
C13	C14	H141	119.344°	C15	C14	H141	120.284°
C10	C15	C14	120.46(10)°	C10	C15	H151	120.138°
C14	C15	H151	119.395°	C17	C16	C21	118.97(9)°

C17	C16	P1	124.10(8)°	C21	C16	P1	116.83(7)°
C16	C17	C18	120.36(9)°	C16	C17	H171	119.630°
C18	C17	H171	119.994°	C17	C18	C19	120.05(9)°
C17	C18	H181	118.593°	C19	C18	H181	121.329°
C18	C19	C20	119.92(10)°	C18	C19	H191	121.449°
C20	C19	H191	118.630°	C19	C20	C21	120.26(10)°
C19	C20	H201	119.762°	C21	C20	H201	119.976°
C16	C21	C20	120.35(9)°	C16	C21	H211	119.829°
C20	C21	H211	119.811°	C1	P1	C10	98.13(4)°
C1	P1	C16	102.20(4)°	C10	P1	C16	101.71(4)°
C1	N2	C3	106.77(9)°	C1	N2	C4	128.70(9)°
C3	N2	C4	124.48(9)°	C1	N1	C2	105.53(9)°

A] Composé 19 – 200911

Maille :

 $a = 6.79816(10) \text{ Å} \quad \alpha = 90^{\circ}$ $b = 14.20863(19) \text{ Å } \beta = 90.5547(14)^{\circ}$ $c = 23.8075(3) \text{ Å} \quad \gamma = 90^{\circ}$

Z =

 $M_{\rm r}$

Volume	2299.52(6) Å ³
Space group	P 2 ₁ /c
Formula	$C_{23}H_{20}F_3N_2O_3P_1S_1$
Cell determined from	11486 reflections
Temperature	100K
Shape	stick
Colour	colorless
D _x	1.42
μ	2.380 mm ⁻¹
Absorption correction	multi-scan
T_{min}	0.40

B] Data Collection Diffractometer multi-scan

Scan type ϕ and ω scans Reflections measured 16801 Independent reflections 3444 Rint 0.0242 θ_{max} 60.6437 $-7 \rightarrow 7$ h =k = $-16 \rightarrow 16$

Size $0.10 \times 0.15 \times 0.35 \text{ mm}$ F000 1016.000

4

492.46

 T_{max} 0.79

Cell θ range = 3 - 61°

 $l = -26 \rightarrow 26$

C] Refinement

-0.34 e Å⁻³ $\Delta\rho_{min} =$ 0.28 e Å⁻³ $\Delta \rho_{max} =$ Reflections used 3278 Cutoff: I > 3.00o(I) Parameters refined 298 S = 0.95 0.029 R-factor weighted R-factor 0.032 0.0017 Δ / σ_{max} Refinement on F $w' \times [1$ - $(\Delta F_{obs} \, / \, 6 \times \Delta F_{est})^2]^2$ $\mathbf{w} =$
$$\begin{split} & [P_0T_0'(x)+P_1T_1'(x)+...P_{n-1}T_{n-1}'(x)]^{-1},\\ & \text{where } P_i \text{ are the coefficients of a Chebychev series in } t_i(x), \text{ and } x=F_{calc}/F_{calcmax}. \end{split}$$
w' = 5.60 0.510 3.41 $P_0 - P_{n-1} =$

D] Distances

C1	N1	1.3433(18)Å	C1	N2	1.3500(18)Å
C1	P1	1.8346(14)Å	C2	C3	1.353(2)Å
C2	N1	1.3751(19)Å	C2	H21	0.959Å
C3	N2	1.3752(18)Å	C3	H31	0.962Å
C4	N1	1.4699(19)Å	C4	H41	0.993Å
C4	H42	0.977Å	C4	H43	0.955Å
C5	C6	1.378(2)Å	C5	C10	1.387(2)Å
C5	N2	1.4413(18)Å	C6	C7	1.389(2)Å
C6	H61	0.970Å	C7	C8	1.386(2)Å
C7	H71	0.963Å	C8	C9	1.385(2)Å
C8	H81	0.974Å	C9	C10	1.387(2)Å
C9	H91	0.990Å	C10	H101	0.987Å
C11	C12	1.395(2)Å	C11	C16	1.394(2)Å
C11	P1	1.8317(14)Å	C12	C13	1.385(2)Å
C12	H121	0.978Å	C13	C14	1.387(2)Å
C13	H131	0.964Å	C14	C15	1.379(3)Å
C14	H141	0.969Å	C15	C16	1.392(2)Å
C15	H151	0.989Å	C16	H161	0.998Å
C17	C18	1.396(2)Å	C17	C22	1.395(2)Å
C17	P1	1.8273(15)Å	C18	C19	1.390(2)Å
C18	H181	0.978Å	C19	C20	1.387(2)Å
C19	H191	0.972Å	C20	C21	1.383(2)Å
C20	H201	0.985Å	C21	C22	1.389(2)Å
C21	H211	0.980Å	C22	H221	0.977Å
C23	S1	1.8250(16)Å	C23	F1	1.3394(18)Å
C23	F2	1.3295(19)Å	C23	F3	1.3379(19)Å

Annexes

01	S1	1.4366(11)Å	(02	S1	1.4418(11)Å
03	S1	1.4432(11)Å				

E]	Angles
----	--------

N1	C1	N2	106.33(11)°	N1	C1	P1	133.50(11)°
N2	C1	P1	119.93(10)°	C3	C2	N1	107.22(12)°
C3	C2	H21	129.236°	N1	C2	H21	123.533°
C2	C3	N2	106.71(12)°	C2	C3	H31	129.193°
N2	C3	H31	124.100°	N1	C4	H41	108.890°
N1	C4	H42	109.559°	H41	C4	H42	109.134°
N1	C4	H43	109.354°	H41	C4	H43	109.673°
H42	C4	H43	110.210°	C6	C5	C10	122.31(13)°
C6	C5	N2	118.70(12)°	C10	C5	N2	118.98(13)°
C5	C6	C7	118.43(14)°	C5	C6	H61	120.660°
C7	C6	H61	120.908°	C6	C7	C8	120.14(14)°
C6	C7	H71	119.805°	C8	C7	H71	120.050°
C7	C8	C9	120.58(14)°	C7	C8	H81	119.443°
C9	C8	H81	119.979°	C8	C9	C10	119.88(14)°
C8	C9	H91	120.627°	C10	C9	H91	119.488°
C5	C10	C9	118.63(14)°	C5	C10	H101	119.816°
C9	C10	H101	121.552°	C12	C11	C16	119.37(14)°
C12	C11	P1	116.44(11)°	C16	C11	P1	123.74(11)°
C11	C12	C13	120.27(15)°	C11	C12	H121	119.791°
C13	C12	H121	119.930°	C12	C13	C14	120.16(16)°
C12	C13	H131	120.251°	C14	C13	H131	119.589°
C13	C14	C15	119.89(15)°	C13	C14	H141	118.557°
C15	C14	H141	121.550°	C14	C15	C16	120.47(15)°
C14	C15	H151	119.902°	C16	C15	H151	119.620°
C11	C16	C15	119.81(14)°	C11	C16	H161	119.489°
C15	C16	H161	120.680°	C18	C17	C22	119.11(14)°
C18	C17	P1	125.82(11)°	C22	C17	P1	115.06(11)°
C17	C18	C19	119.84(14)°	C17	C18	H181	120.123°
C19	C18	H181	120.040°	C18	C19	C20	120.60(15)°
C18	C19	H191	119.026°	C20	C19	H191	120.366°
C19	C20	C21	119.78(14)°	C19	C20	H201	119.410°
C21	C20	H201	120.809°	C20	C21	C22	119.96(14)°
C20	C21	H211	120.901°	C22	C21	H211	119.132°
C17	C22	C21	120.64(14)°	C17	C22	H221	119.545°
C21	C22	H221	119.817°	S 1	C23	F1	112.22(11)°
S1	C23	F2	111.53(11)°	F1	C23	F2	107.40(12)°
S 1	C23	F3	110.90(10)°	F1	C23	F3	107.22(13)°
F2	C23	F3	107.32(13)°	C1	N1	C2	109.82(12)°
C1	N1	C4	127.24(12)°	C2	N1	C4	122.91(12)°

C1	N2	C3	109.92(12)°	C1	N2	C5	124.43(11)°
C3	N2	C5	125.53(12)°	C1	P1	C11	102.99(6)°
C1	P1	C17	102.47(6)°	C1	l P1	C17	103.82(6)°
C23	S 1	01	102.93(7)°	C2.	3 S1	02	101.88(7)°
01	S 1	02	115.87(6)°	C2.	3 S1	03	103.27(7)°
01	S1	03	115.46(7)°	02	S 1	03	114.61(6)°

Ø

d

A] Composé 20a 070211

Maille : $a = 15.69713(13) \text{ Å} \alpha = 90^{\circ}$ $b = 13.42347(11) \text{ Å } \beta = 90^{\circ}$ $c = 16.36596(12) \text{ Å } \gamma = 90^{\circ}$ 3448.47(5) Å³ Cryst Orthorhomb Class ic Volume Space group P b c a = 8 $\begin{array}{ccc} C_{21}\,H_{17} & M_r & 344.35 \\ N_2\,O_1\,P_1 & M_r & 344.35 \end{array}$ Formula Cell 45959 Cell θ determined reflection range 3 - 29° from S = Temperatu 180K re Shape block colorless Size $\begin{array}{c} 0.15 \times 0.15 \\ \times 0.25 \ mm \end{array}$ Colour D_x 1.33 F000 1440.000 0.170 μ mm⁻¹ Absorption multicorrection scan 0.91 T_{max} 0.97 T_{min}

B] Data Collection

Diffractometer	GEMINI
Scan type	ϕ and ω scans
Reflections measured	100539
Independent reflections	4593
Rint	0.0333
θ_{max}	29.3623
h =	$-21 \rightarrow 21$
k =	$-18 \rightarrow 17$
1 =	$-22 \rightarrow 22$

	NI	P	<u></u>
A	PT	1	0
J		Ea	
D.		2	Z

Annexes

C] <u>Refin</u>	ement
$\Delta \rho_{min} =$	-0.29 e Å ⁻³
$\Delta \rho_{max} =$	0.35 e Å ⁻³
Reflections used	3838
Cutoff: I >	3.00σ(I)
Parameters refined	226
S =	1.06
R-factor	0.033
weighted R-factor	0.041
Δ/σ_{max}	0.0010
Refinement on	F
w =	$w' \times [1 - (\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$
w' =	$\label{eq:product} \begin{split} & [P_0T_0'(x)+P_1T_1'(x)+P_{n-1}T_{n-1}'(x)]^{-1},\\ & \text{where }P_i \text{ are the coefficients of a Chebychev series in }t_i(x), \text{ and } x=F_{cal}/F_{calcmax}. \end{split}$
$P_0 - P_{n-1} =$	7.05 0.417 5.29

D] Distances

N1	C1	1.3279(13)Å	N1	C2	1.3698(14)Å
N2	C1	1.3739(12)Å	N2	C3	1.3739(13)Å
N2	C4	1.4352(13)Å	C1	P1	1.8066(10)Å
C2	C3	1.3632(15)Å	C2	H21	0.959Å
C3	H31	0.945Å	C4	C5	1.3833(15)Å
C4	C9	1.3868(15)Å	C5	C6	1.3928(15)Å
C5	H51	0.976Å	C6	C7	1.3788(19)Å
C6	H61	0.960Å	C7	C8	1.388(2)Å
C7	H71	0.949Å	C8	C9	1.3913(16)Å
C8	H81	0.948Å	C9	H91	0.955Å
C10	C11	1.3981(14)Å	C10	C15	1.3941(14)Å
C10	P1	1.7979(10)Å	C11	C12	1.3892(16)Å
C11	H111	0.959Å	C12	C13	1.3835(17)Å
C12	H121	0.959Å	C13	C14	1.3864(18)Å
C13	H131	0.956Å	C14	C15	1.3915(16)Å
C14	H141	0.952Å	C15	H151	0.954Å
C16	C17	1.3930(15)Å	C16	C21	1.3895(15)Å
C16	P1	1.8043(10)Å	C17	C18	1.3936(17)Å
C17	H171	0.955Å	C18	C19	1.3801(19)Å
C18	H181	0.966Å	C19	C20	1.3784(17)Å
C19	H191	0.943Å	C20	C21	1.3904(15)Å
C20	H201	0.971Å	C21	H211	0.939Å
P1	01	1.4899(7)Å			

E] Angles

C1	N1	C2	105.34(9)°	C1	N2	C3	106.97(8)°
C1	N2	C4	128.82(8)°	C3	N2	C4	124.14(8)°
N1	C1	N2	110.98(9)°	N1	C1	P1	121.14(7)°

N2	C1	P1	127.72(7)°	N1	C2	C3	110.95(9)°
N1	C2	H21	123.730°	C3	C2	H21	125.323°
N2	C3	C2	105.76(9)°	N2	C3	H31	122.670°
C2	C3	H31	131.565°	N2	C4	C5	119.63(9)°
N2	C4	C9	119.10(10)°	C5	C4	C9	121.23(10)°
C4	C5	C6	119.16(11)°	C4	C5	H51	119.248°
C6	C5	H51	121.592°	C5	C6	C7	120.26(11)°
C5	C6	H61	120.639°	C7	C6	H61	119.098°
C6	C7	C8	120.16(11)°	C6	C7	H71	119.250°
C8	C7	H71	120.590°	C7	C8	C9	120.21(11)°
C7	C8	H81	120.930°	C9	C8	H81	118.864°
C4	C9	C8	118.98(11)°	C4	C9	H91	119.876°
C8	C9	H91	121.144°	C11	C10	C15	119.52(10)°
C11	C10	P1	117.24(8)°	C15	C10	P1	123.23(8)°
C10	C11	C12	119.97(10)°	C10	C11	H111	119.321°
C12	C11	H111	120.697°	C11	C12	C13	120.25(11)°
C11	C12	H121	119.944°	C13	C12	H121	119.799°
C12	C13	C14	120.10(11)°	C12	C13	H131	119.233°
C14	C13	H131	120.663°	C13	C14	C15	120.14(10)°
C13	C14	H141	120.387°	C15	C14	H141	119.470°
C10	C15	C14	120.00(10)°	C10	C15	H151	119.884°
C14	C15	H151	120.111°	C17	C16	C21	119.48(10)°
C17	C16	P1	123.12(8)°	C21	C16	P1	117.39(8)°
C16	C17	C18	119.71(11)°	C16	C17	H171	120.488°
C18	C17	H171	119.803°	C17	C18	C19	120.27(11)°
C17	C18	H181	120.002°	C19	C18	H181	119.729°
C18	C19	C20	120.28(11)°	C18	C19	H191	119.572°
C20	C19	H191	120.145°	C19	C20	C21	119.90(11)°
C19	C20	H201	120.135°	C21	C20	H201	119.967°
C16	C21	C20	120.35(10)°	C16	C21	H211	119.839°
C20	C21	H211	119.808°	C1	P1	C10	107.40(5)°
C1	P1	C16	102.30(5)°	C10	P1	C16	107.61(5)°
C1	P1	01	113.50(5)°	C10	P1	01	112.84(4)°
C16	P1	01	112.47(5)°				

A] Composé 20b 070311

 $\begin{array}{l} \underline{Maille:}\\ a=12.55599(13) \ \mathring{A} \ \alpha=90^{\circ}\\ b=9.45061(9) \ \mathring{A} \ \beta=107.4520(12)^{\circ}\\ c=15.61721(16) \ \mathring{A} \ \gamma=90^{\circ} \end{array}$

Volume	1767.86(3) Å ³	Crystal Class	monoclinic
Space group	P 2 ₁ /c	$\mathbf{Z} =$	4
Formula	$C_{21}H_{17}N_2P_1S_1$	M_r	360.42
Cell determined from	m 9693 reflections	Cell θ range =	= 4 - 61°
Temperature	180K		
Shape	block		
Colour	colorless	Size	$0.15\times0.25\times0.25~mm$
D _x	1.35	F000	752.000
μ	2.510 mm ⁻¹		
Absorption correction	on multi-scan		
T_{min}	0.51	T _{max}	0.69
B] Data C	Collection		
Diffractometer	GEMINI		
Scan type	ϕ and ω scans		
Reflections measure	ed 10782		
Independent reflecti	ons 2666		
Rint	0.0000		
θ_{max}	60.6604		
h =	$-14 \rightarrow 14$		
k =	$-10 \rightarrow 8$		
1 =	$-17 \rightarrow 17$		
C] <u>Refine</u>	ment		
$\Delta \rho_{min} =$	-0.21 e Å ⁻³		
$\Delta \rho_{max} =$	0.30 e Å ⁻³		
Reflections used	2570		
Cutoff: I >	3.00o(I)		
Parameters refined	227		
S =	1.03		
R-factor	0.026		
weighted R-factor	0.032		
Δ/σ_{max}	0.0009		
Refinement on	F		
w =	w' × $[1 - (\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$		
w' =	$P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)$ where P_i are the coefficients of a	x)] ⁻¹ , Chebychev ser	ties in $t_i(x)$, and $x = F_{calc}/F_{calcmax}$.
$P_0 - P_{n-1} =$	5.59 2.80 4.89 1.16		

D] Distances

C1	P1	1.8110(12)Å	C1	N2	1.3725(16)Å
C1	N1	1.3222(16)Å	C2	C3	1.355(2)Å
C2	N1	1.3704(18)Å	C2	H21	0.950Å
C3	N2	1.3729(17)Å	C3	H31	0.950Å
C4	C5	1.3830(18)Å	C4	C9	1.3830(19)Å
C4	N2	1.4379(16)Å	C5	C6	1.3865(19)Å
C5	H51	0.950Å	C6	C7	1.382(2)Å

Annexes

C6	H61	0.950Å	C7	C8	1.385(2)Å
C7	H71	0.950Å	C8	C9	1.385(2)Å
C8	H81	0.950Å	C9	H91	0.950Å
C10	C11	1.3907(18)Å	C10	C15	1.3914(18)Å
C10	P1	1.8173(12)Å	C11	C12	1.3840(19)Å
C11	H111	0.950Å	C12	C13	1.388(2)Å
C12	H121	0.950Å	C13	C14	1.383(2)Å
C13	H131	0.950Å	C14	C15	1.3858(19)Å
C14	H141	0.950Å	C15	H151	0.950Å
C16	C17	1.3814(19)Å	C16	C21	1.3932(19)Å
C16	P1	1.8203(12)Å	C17	C18	1.388(2)Å
C17	H171	0.950Å	C18	C19	1.374(2)Å
C18	H181	0.950Å	C19	C20	1.382(2)Å
C19	H191	0.950Å	C20	C21	1.382(2)Å
C20	H201	0.950Å	C21	H211	0.950Å
P1	S1	1.9463(4)Å			

E] Angles

P1	C1	N2	124.91(9)°	P1	C1	N1	123.28(10)°
N2	C1	N1	111.47(11)°	C3	C2	N1	110.68(11)°
C3	C2	H21	124.919°	N1	C2	H21	124.397°
C2	C3	N2	106.42(11)°	C2	C3	H31	127.161°
N2	C3	H31	126.419°	C5	C4	C9	121.28(12)°
C5	C4	N2	120.11(11)°	C9	C4	N2	118.60(11)°
C4	C5	C6	118.97(12)°	C4	C5	H51	119.994°
C6	C5	H51	121.036°	C5	C6	C7	120.34(13)°
C5	C6	H61	119.735°	C7	C6	H61	119.925°
C6	C7	C8	120.07(12)°	C6	C7	H71	119.931°
C8	C7	H71	119.998°	C7	C8	C9	120.17(13)°
C7	C8	H81	119.894°	C9	C8	H81	119.934°
C4	C9	C8	119.16(13)°	C4	C9	H91	119.981°
C8	C9	H91	120.859°	C11	C10	C15	119.76(11)°
C11	C10	P1	121.29(9)°	C15	C10	P1	118.84(9)°
C10	C11	C12	120.02(12)°	C10	C11	H111	119.745°
C12	C11	H111	120.234°	C11	C12	C13	120.09(12)°
C11	C12	H121	119.980°	C13	C12	H121	119.929°
C12	C13	C14	119.93(12)°	C12	C13	H131	120.251°
C14	C13	H131	119.813°	C13	C14	C15	120.27(12)°
C13	C14	H141	119.919°	C15	C14	H141	119.808°
C10	C15	C14	119.85(12)°	C10	C15	H151	119.959°
C14	C15	H151	120.191°	C17	C16	C21	119.50(12)°
C17	C16	P1	118.40(10)°	C21	C16	P1	122.06(10)°
C16	C17	C18	120.09(13)°	C16	C17	H171	119.769°

229

Annexes

C18	C17	H171	120.133°	C17	C18	C19	120.31(14)°
C17	C18	H181	119.935°	C19	C18	H181	119.744°
C18	C19	C20	119.90(13)°	C18	C19	H191	120.028°
C20	C19	H191	120.067°	C19	C20	C21	120.25(14)°
C19	C20	H201	119.876°	C21	C20	H201	119.874°
C16	C21	C20	119.93(13)°	C16	C21	H211	119.771°
C20	C21	H211	120.299°	C1	P1	C10	106.22(5)°
C1	P1	C16	103.11(6)°	C10	P1	C16	104.86(5)°
C1	P1	S1	114.01(4)°	C10	P1	S1	114.41(4)°
C16	P1	S1	113.16(4)°	C1	N2	C3	106.22(10)°
C1	N2	C4	128.98(10)°	C3	N2	C4	124.81(10)°
C1	N1	C2	105.21(11)°				

A] Composé 21b 010212

<u>Maille</u>: a = 10.2649(3) Å α = 81.178(2)°

b = 12.1611	$b = 12.1611(4) \text{ Å } \beta = 71.935(2)^{\circ}$							
c = 12.7816	(4) Å $\gamma = 7$	2.878	(2)°					
Volume	1446.29(8) Å ³		Crystal Class	^I Triclinic				
Space group	P -1		Z =	2				
Formula	$\begin{array}{c} C_{22}H_{26}F_{0}\\ N_{5}O_{7}P_{1}\\ S_{2} \end{array}$	5	$M_{\rm r}$	681.57				
Cell determined from	6698 reflection	s	Cell θ range =	3 - 28°				
Temperature	e 120K							
Shape	planar							
Colour	colourless	8	Size	0.03 × 0.05 × 0.20 mm				
D _x	1.56		F000	700.000				
μ	0.329 mm	ī						
Absorption correction	multi-scar	n						
T_{min}	0.89		T _{max}	0.99				
B]	Data Coll	ection						
Diffractome	ter	multi	-scan					
Scan type		ϕ and ω scans						
Reflections 1	neasured	26900						

Independent reflect	ctions 7263
Rint	0.0382
θ_{max}	29.9836
h =	$-14 \rightarrow 14$
k =	$-17 \rightarrow 16$
1 =	$-16 \rightarrow 17$
C] <u>Refin</u>	nement
$\Delta \rho_{min} =$	-0.38 e Å ⁻³
$\Delta \rho_{max} =$	0.34 e Å ⁻³
Reflections used	4746

Cutoff: I > 3.00 σ (I) Parameters refined 388

S = 1.12

R-factor 0.036

weighted R-factor 0.038

 Δ/σ_{max} 0.0004

Refinement on F

Kermement on	1'
$\mathbf{w} =$	$w' imes [1 - (\Delta F_{obs} / 6 imes \Delta F_{est})^2]^2$
w' =	$\begin{split} & [P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1}, \\ & \text{where } P_i \text{ are the coefficients of a Chebychev series in } t_i(x), \text{ and } x = F_{calc'} F_{calcmax}. \end{split}$
$P_0 - P_{n-1} =$	0.775 -0.357E-01 0.334

D] Distances

C1	C14	1.530(3)Å	C1	C15	1.545(3)Å
C1	C16	1.537(3)Å	C1	P1	1.818(2)Å
C2	N1	1.339(3)Å	C2	N2	1.351(2)Å
C2	P1	1.8260(19)Å	C3	C4	1.346(3)Å
C3	N1	1.374(3)Å	C3	H31	0.950Å
C4	N2	1.378(2)Å	C4	H41	0.949Å
C5	C6	1.393(3)Å	C5	C10	1.394(3)Å
C5	N2	1.431(3)Å	C6	C7	1.385(3)Å
C6	H61	0.945Å	C7	C8	1.390(3)Å
C7	H71	0.942Å	C8	C9	1.389(3)Å
C8	H81	0.954Å	C9	C10	1.389(3)Å
C9	H91	0.951Å	C10	N3	1.433(2)Å
C11	C12	1.349(3)Å	C11	N3	1.375(2)Å
C11	H111	0.943Å	C12	N4	1.373(3)Å
C12	H121	0.945Å	C13	N3	1.357(2)Å
C13	N4	1.337(2)Å	C13	P1	1.8274(19)Å
C14	H141	0.974Å	C14	H142	0.979Å
C14	H143	0.977Å	C15	H151	0.980Å
C15	H152	0.959Å	C15	H153	0.981Å
C16	H162	0.980Å	C16	H161	0.969Å
C16	H163	0.971Å	C17	N1	1.479(3)Å
C17	H172	0.942Å	C17	H171	0.949Å

C17	H173	0.957Å	C	C18	N4	1.476(3)Å
C18	H182	0.977Å	C	C18	H181	0.978Å
C18	H183	0.962Å	0	C19	S1	1.823(3)Å
C19	F1	1.332(3)Å	C	C19	F2	1.329(3)Å
C19	F3	1.338(3)Å	C	220	S2	1.830(2)Å
C20	F4	1.329(2)Å	C	220	F5	1.325(3)Å
C20	F6	1.331(3)Å	0	221	C22	1.451(4)Å
C21	H212	0.969Å	0	221	H211	0.969Å
C21	H213	0.965Å	C	C22	N5	1.142(4)Å
01	P1	1.4768(15)Å	0	02	S1	1.4406(15)Å
03	S1	1.4401(16)Å	0	04	S1	1.4490(16)Å
05	S2	1.4425(17)Å	0	06	S2	1.4362(19)Å

E] Angles

07 S2 1.4451(17)Å

_

C14	C1	C15	109.71(18)°	C14	C1	C16	110.97(18)°
C15	C1	C16	110.61(17)°	C14	C1	P1	115.02(14)°
C15	C1	P1	103.76(14)°	C16	C1	P1	106.52(15)°
N1	C2	N2	107.31(16)°	N1	C2	P1	125.02(15)°
N2	C2	P1	126.76(15)°	C4	C3	N1	107.50(18)°
C4	C3	H31	128.175°	N1	C3	H31	124.326°
C3	C4	N2	107.19(18)°	C3	C4	H41	127.947°
N2	C4	H41	124.852°	C6	C5	C10	120.42(19)°
C6	C5	N2	116.83(17)°	C10	C5	N2	122.74(17)°
C5	C6	C7	119.60(19)°	C5	C6	H61	119.995°
C7	C6	H61	120.407°	C6	C7	C8	119.9(2)°
C6	C7	H71	119.083°	C8	C7	H71	120.977°
C7	C8	C9	120.6(2)°	C7	C8	H81	119.507°
C9	C8	H81	119.847°	C8	C9	C10	119.60(19)°
C8	C9	H91	120.572°	C10	C9	H91	119.830°
C5	C10	C9	119.71(18)°	C5	C10	N3	122.64(18)°
C9	C10	N3	117.65(17)°	C12	C11	N3	106.91(17)°
C12	C11	H111	129.306°	N3	C11	H111	123.778°
C11	C12	N4	107.72(17)°	C11	C12	H121	128.008°
N4	C12	H121	124.267°	N3	C13	N4	107.07(16)°
N3	C13	P1	127.74(14)°	N4	C13	P1	124.49(15)°
C1	C14	H141	110.211°	C1	C14	H142	109.332°
H141	C14	H142	108.723°	C1	C14	H143	109.914°
H141	C14	H143	110.186°	H142	C14	H143	108.437°
C1	C15	H151	109.999°	C1	C15	H152	107.967°
H151	C15	H152	109.688°	C1	C15	H153	109.811°
H151	C15	H153	109.797°	H152	C15	H153	109.552°
C1	C16	H162	109.190°	C1	C16	H161	107.188°

H162	C16	H161	109.653°	C1	C16	H163	110.433°
H162	C16	H163	109.819°	H161	C16	H163	110.509°
N1	C17	H172	108.848°	N1	C17	H171	108.060°
H172	C17	H171	111.373°	N1	C17	H173	108.329°
H172	C17	H173	110.461°	H171	C17	H173	109.684°
N4	C18	H182	110.044°	N4	C18	H181	108.824°
H182	C18	H181	109.791°	N4	C18	H183	108.966°
H182	C18	H183	110.020°	H181	C18	H183	109.170°
S1	C19	F1	111.51(17)°	S1	C19	F2	111.67(16)°
F1	C19	F2	108.0(2)°	S1	C19	F3	110.49(16)°
F1	C19	F3	107.15(19)°	F2	C19	F3	107.83(19)°
S2	C20	F4	111.14(16)°	S2	C20	F5	111.86(15)°
F4	C20	F5	107.77(19)°	S2	C20	F6	112.17(16)°
F4	C20	F6	106.46(19)°	F5	C20	F6	107.1(2)°
C22	C21	H212	108.984°	C22	C21	H211	108.696°
H212	C21	H211	109.355°	C22	C21	H213	109.918°
H212	C21	H213	109.891°	H211	C21	H213	109.971°
C21	C22	N5	178.9(3)°	C2	N1	C3	109.20(17)°
C2	N1	C17	127.64(17)°	C3	N1	C17	123.03(18)°
C2	N2	C4	108.80(17)°	C2	N2	C5	127.13(16)°
C4	N2	C5	123.48(17)°	C10	N3	C11	122.85(16)°
C10	N3	C13	127.66(16)°	C11	N3	C13	109.02(16)°
C12	N4	C13	109.27(16)°	C12	N4	C18	123.00(17)°
C13	N4	C18	127.71(17)°	C1	P1	C2	111.36(9)°
C1	P1	C13	112.18(9)°	C2	P1	C13	98.58(8)°
C1	P1	01	114.50(9)°	C2	P1	01	109.00(9)°
C13	P1	01	110.05(9)°	C19	S 1	02	104.16(11)°
C19	S1	O3	103.26(10)°	O2	S 1	O3	115.55(10)°
C19	S1	04	103.13(10)°	O2	S 1	04	114.22(10)°
03	S1	04	114.36(10)°	C20	S2	05	102.70(10)°
C20	S2	06	103.46(12)°	05	S2	06	115.50(11)°
C20	S 2	07	102.76(10)°	05	S2	07	115.03(11)°
06	S2	07	114.81(12)°				

A] Composé 24a 190312

Maille :

 $a = 14.9809(2) \text{ Å} \alpha = 90^{\circ}$ $b = 16.8997(2) \text{ Å } \beta = 90^{\circ}$ $c = 21.9870(3) \text{ Å } \gamma = 90^{\circ}$ Volume

Space group	Pbca	Z =	8
Formula	$C_{27} H_{38} B_1 \\ F_4 N_2 O_1 P_1$	$M_{\rm r}$	524.39
Cell determined from	17267 reflections	Cell θ range =	3 - 72°
Temperatur e	100K		
Shape	block		
Colour	colorless	Size	$\begin{array}{l} 0.20\times0.20\\ \times\ 0.25\ mm\end{array}$
D _x	1.25	F000	2224.000
μ	1.296 mm ⁻¹		
Absorption correction	multi-scan		
T_{min}	0.77	T_{max}	0.77
BI	Data Coller	tion	
D.C.	Data Conce	1	
Diffractome	ter i	num-sc	an
Deflections		$p and \omega$	scalls
Indonondon	measured 2	28409	
Dint		0171	
A		71 6516	
b –		$18 \rightarrow 1$	8
n – k –		$20 \rightarrow 1$	6
к — 1 —		$20 \rightarrow 1$	7
1 -	-	$20 \rightarrow 2$	1
C]	Refinement	_	
$\Delta\rho_{min} =$	-0.40	e Å ⁻³	
$\Delta\rho_{max} =$	0.37	e Å ⁻³	
Reflections	used 5135		
Cutoff: I >	3.000	5(I)	
Parameters	refined 325		
S =	1.06		
R-factor	0.031		
weighted R-	-factor 0.039)	
Δ/σ_{max}	0.002	21	
Refinement	on F		
w =	$\mathbf{w'} imes$	[1 - (ΔF	r_{obs} / 6 × ΔF_{est}) ²] ²
w' =	[P ₀ T ₀ where	f'(x) + P e P _i are	${}_{1}T_{1}'(x) +P_{n-1}T_{n-1}'(x)$] ⁻¹ , the coefficients of a Chebychev series in $t_i(x)$, and $x = F_{cale}/F_{calcmax}$.
$P_0 - P_{n-1} =$	6.68	3.57 5.1	7 0.850

D] Distances

C1	C2	1.3812(13)Å	C1 C3	1.3848(13)Å
C1	P1	1.8016(9)Å	C2 C3	1.4196(13)Å
C2	N1	1.3058(12)Å	C3 N2	1.3057(12)Å

$\begin{array}{ccc} 5566.48(13 & Crysta \ Orthorhombi \\) \ \mathring{A}^3 & 1 \ Class \ c \end{array}$

Annexes

Annexes	
---------	--

C4	C5	1.5237(13)Å	C4	C6	1.5221(13)Å
C4	N2	1.4893(11)Å	C4	H41	1.022Å
C5	H53	1.004Å	C5	H51	0.992Å
C5	H52	1.001Å	C6	H61	0.991Å
C6	H63	0.990Å	C6	H62	1.005Å
C7	C8	1.5213(13)Å	C7	C9	1.5205(14)Å
C7	N2	1.4971(11)Å	C7	H71	1.010Å
C8	H81	0.989Å	C8	H82	0.996Å
C8	H83	0.975Å	C9	H92	0.996Å
C9	H93	1.000Å	C9	H91	0.979Å
C10	C11	1.5246(13)Å	C10	C12	1.5210(15)Å
C10	N1	1.4909(11)Å	C10	H101	1.029Å
C11	H112	0.982Å	C11	H113	0.982Å
C11	H111	0.993Å	C12	H121	1.000Å
C12	H122	0.969Å	C12	H123	0.999Å
C13	C14	1.5207(15)Å	C13	C15	1.5235(14)Å
C13	N1	1.4920(11)Å	C13	H131	1.026Å
C14	H142	0.990Å	C14	H141	1.005Å
C14	H143	0.982Å	C15	H152	1.003Å
C15	H153	1.007Å	C15	H151	0.987Å
C16	C17	1.3952(13)Å	C16	C21	1.3971(13)Å
C16	P1	1.7980(10)Å	C17	C18	1.3905(15)Å
C17	H171	0.973Å	C18	C19	1.3863(17)Å
C18	H181	0.981Å	C19	C20	1.3881(16)Å
C19	H191	0.978Å	C20	C21	1.3895(14)Å
C20	H201	0.977Å	C21	H211	0.985Å
C22	C23	1.3983(13)Å	C22	C27	1.3899(13)Å
C22	P1	1.7955(9)Å	C23	C24	1.3892(13)Å
C23	H231	0.978Å	C24	C25	1.3824(15)Å
C24	H241	0.971Å	C25	C26	1.3876(16)Å
C25	H251	0.977Å	C26	C27	1.3920(14)Å
C26	H261	0.984Å	C27	H271	0.986Å
P1	01	1.4843(7)Å	F1	B1	1.3824(13)Å
F2	B1	1.3956(13)Å	F3	B1	1.3988(12)Å
F4	B1	1.3773(12)Å			

E] Angles

C2	C1	C3	61.76(6)°	C2	C1	P1	150.66(7)°
C3	C1	P1	147.11(7)°	C1	C2	C3	59.25(6)°
C1	C2	N1	146.51(9)°	C3	C2	N1	154.17(9)°
C1	C3	C2	59.00(6)°	C1	C3	N2	149.44(9)°
C2	C3	N2	151.46(9)°	C5	C4	C6	111.59(8)°
C5	C4	N2	111.40(8)°	C6	C4	N2	110.02(8)°

C5	C4	H41	107.854°	C6	C4	H41	110.173°
N2	C4	H41	105.612°	C4	C5	H53	109.686°
C4	C5	H51	108.057°	H53	C5	H51	109.913°
C4	C5	H52	109.301°	H53	C5	H52	110.111°
H51	C5	H52	109.739°	C4	C6	H61	109.598°
C4	C6	H63	109.801°	H61	C6	H63	109.634°
C4	C6	H62	108.848°	H61	C6	H62	109.437°
H63	C6	H62	109.506°	C8	C7	C9	113.38(8)°
C8	C7	N2	111.11(8)°	C9	C7	N2	111.43(8)°
C8	C7	H71	108.332°	C9	C7	H71	107.146°
N2	C7	H71	104.971°	C7	C8	H81	109.048°
C7	C8	H82	110.703°	H81	C8	H82	110.096°
C7	C8	H83	107.176°	H81	C8	H83	109.843°
H82	C8	H83	109.924°	C7	C9	H92	109.393°
C7	C9	H93	111.513°	H92	C9	H93	110.574°
C7	C9	H91	107.067°	H92	C9	H91	109.322°
H93	C9	H91	108.886°	C11	C10	C12	114.91(8)°
C11	C10	N1	111.50(8)°	C12	C10	N1	111.16(8)°
C11	C10	H101	106.817°	C12	C10	H101	107.327°
N1	C10	H101	104.380°	C10	C11	H112	111.408°
C10	C11	H113	108.491°	H112	C11	H113	108.774°
C10	C11	H111	110.279°	H112	C11	H111	109.734°
H113	C11	H111	108.072°	C10	C12	H121	110.753°
C10	C12	H122	107.538°	H121	C12	H122	108.597°
C10	C12	H123	111.378°	H121	C12	H123	109.798°
H122	C12	H123	108.686°	C14	C13	C15	112.85(9)°
C14	C13	N1	111.24(8)°	C15	C13	N1	110.36(8)°
C14	C13	H131	107.560°	C15	C13	H131	109.105°
N1	C13	H131	105.395°	C13	C14	H142	108.621°
C13	C14	H141	108.947°	H142	C14	H141	110.205°
C13	C14	H143	107.840°	H142	C14	H143	111.400°
H141	C14	H143	109.758°	C13	C15	H152	111.202°
C13	C15	H153	110.872°	H152	C15	H153	109.082°
C13	C15	H151	109.058°	H152	C15	H151	107.944°
H153	C15	H151	108.600°	C17	C16	C21	120.05(9)°
C17	C16	P1	116.30(7)°	C21	C16	P1	123.45(7)°
C16	C17	C18	119.81(10)°	C16	C17	H171	118.717°
C18	C17	H171	121.472°	C17	C18	C19	119.87(10)°
C17	C18	H181	120.573°	C19	C18	H181	119.558°
C18	C19	C20	120.63(9)°	C18	C19	H191	120.093°
C20	C19	H191	119.280°	C19	C20	C21	119.85(10)°
C19	C20	H201	119.325°	C21	C20	H201	120.823°
C16	C21	C20	119.79(9)°	C16	C21	H211	118.514°
							-

C20	C21	H211	121.679°	C23	C22	C27	120.25(8)°
C23	C22	P1	122.37(7)°	C27	C22	P1	117.38(7)°
C22	C23	C24	119.23(9)°	C22	C23	H231	120.239°
C24	C23	H231	120.524°	C23	C24	C25	120.47(9)°
C23	C24	H241	118.568°	C25	C24	H241	120.960°
C24	C25	C26	120.40(9)°	C24	C25	H251	119.780°
C26	C25	H251	119.810°	C25	C26	C27	119.70(9)°
C25	C26	H261	119.501°	C27	C26	H261	120.784°
C22	C27	C26	119.94(9)°	C22	C27	H271	118.732°
C26	C27	H271	121.322°	C1	P1	C16	107.06(4)°
C1	P1	C22	104.41(4)°	C16	P1	C22	106.45(4)°
C1	P1	01	112.25(4)°	C16	P1	01	112.63(4)°
C22	P1	01	113.45(4)°	C2	N1	C10	124.16(8)°
C2	N1	C13	118.10(7)°	C10	N1	C13	117.74(7)°
C3	N2	C4	121.33(8)°	C3	N2	C7	121.17(7)°
C4	N2	C7	117.35(7)°	F1	B1	F2	109.24(9)°
F1	B1	F3	109.31(9)°	F2	B1	F3	109.27(8)°
F1	B1	F4	110.75(9)°	F2	B1	F4	109.03(8)°
F3	B1	F4	109.23(9)°				

A] Composé 24b 090512

Maille :

Volume	2835.62(7) Å ³
Space group	P 2 ₁ /c
Formula	$C_{27}H_{38}B_1F_4N_2P_1S_1$
Cell determined from	13564 reflections
Temperature	100K
Shape	cube
Colour	colorless
D _x	1.27
μ	0.216 mm ⁻¹
Absorption correction	multi-scan
T_{min}	0.88

 $M_r = 540.45$ Cell θ range = 3 - 29°

T_{max} 0.96

B] <u>Data</u>	Collection
Diffractometer	multi-scan
Scan type	ϕ and ω scans
Reflections measured	red 61404
Independent reflec	tions 7279
Rint	0.047
θ_{max}	29.4075
h =	$-14 \rightarrow 14$
k =	$-22 \rightarrow 22$
1 =	$-22 \rightarrow 23$
C] <u>Refin</u>	ement
$\Delta\rho_{min} =$	-0.85 e Å ⁻³
$\Delta\rho_{max} =$	1.59 e Å ⁻³
Reflections used	5276
Cutoff: I >	3.00σ(I)
Parameters refined	325
S =	1.16
R-factor	0.088
weighted R-factor	0.107
Λ/σ	0.0003

weighted R-factor	0.107
$\Delta\!/\!\sigma_{max}$	0.0003
Refinement on	F
w =	$w' \times [1$ - $(\Delta F_{obs} \slash 6 \times \Delta F_{est})^2]^2$
w' =	$[P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1},$ where P_i are the coefficients of a Chebychev series in $t_i(x)$, and $x = F_{cale/}F_{calcmax}$.

 $P_0 - P_{n-1} = 17.2 \ 12.4 \ 12.9 \ 6.23$

D] Distances

C1	C2	1.382(5)Å	C1	C3	1.388(4)Å
C1	P1	1.807(3)Å	C2	C3	1.418(4)Å
C2	N1	1.299(5)Å	C3	N2	1.301(4)Å
C4	C5	1.370(9)Å	C4	C6	1.487(8)Å
C4	N2	1.468(6)Å	C4	H41	0.986Å
C5	H51	0.959Å	C5	H53	0.952Å
C5	H52	0.972Å	C6	H61	0.954Å
C6	H62	0.953Å	C6	H63	0.960Å
C7	C8	1.416(7)Å	C7	C9	1.419(7)Å
C7	N2	1.482(6)Å	C7	H71	0.974Å
C8	H81	0.951Å	C8	H82	0.953Å
C8	H83	0.959Å	C9	H91	0.954Å
C9	H92	0.946Å	C9	H93	0.949Å
C10	C11	1.508(9)Å	C10	C12	1.460(9)Å
C10	N1	1.540(6)Å	C10	H101	1.000Å
C11	H113	0.964Å	C11	H111	0.964Å
C11	H112	0.967Å	C12	H121	0.960Å
C12	H123	0.960Å	C12	H122	0.967Å

C3	C1	P1	151.3(3)°	C1	C2	C3	59.4(2)°
C1	C2	N1	151.9(4)°	C3	C2	N1	148.7(3)°
C1	C3	C2	59.0(2)°	C1	C3	N2	149.2(3)°
C2	C3	N2	151.8(3)°	C5	C4	C6	124.8(6)°
C5	C4	N2	117.3(5)°	C6	C4	N2	113.5(5)°
C5	C4	H41	99.296°	C6	C4	H41	95.736°
N2	C4	H41	95.997°	C4	C5	H51	111.259°
C4	C5	H53	113.265°	H51	C5	H53	110.279°
C4	C5	H52	103.548°	H51	C5	H52	109.056°
H53	C5	H52	109.152°	C4	C6	H61	108.575°
C4	C6	H62	108.438°	H61	C6	H62	109.840°
C4	C6	H63	109.507°	H61	C6	H63	110.880°
H62	C6	H63	109.556°	C8	C7	C9	126.6(5)°
C8	C7	N2	116.3(4)°	C9	C7	N2	115.6(4)°
C8	C7	H71	94.208°	C9	C7	H71	93.422°
N2	C7	H71	94.728°	C7	C8	H81	110.610°
C7	C8	H82	106.584°	H81	C8	H82	108.627°
C7	C8	H83	110.634°	H81	C8	H83	111.213°
H82	C8	H83	109.029°	C7	C9	H91	111.061°
C7	C9	H92	109.852°	H91	C9	H92	110.953°

C2

C1 P1

147.1(3)°

C13	C14	1.507(7)Å	(C13	C15	1.497(7)Å
C13	N1	1.459(5)Å	(C13	H131	1.004Å
C14	H141	0.967Å	(C14	H142	0.964Å
C14	H143	0.959Å	(C15	H153	0.969Å
C15	H152	0.967Å	(C15	H151	0.982Å
C16	C17	1.393(4)Å	(C16	C21	1.403(4)Å
C16	P1	1.806(3)Å	(C17	C18	1.395(5)Å
C17	H171	0.930Å	(C18	C19	1.386(6)Å
C18	H181	0.921Å	(C19	C20	1.375(6)Å
C19	H191	0.930Å	(C20	C21	1.387(5)Å
C20	H201	0.926Å	(C21	H211	0.928Å
C22	C23	1.399(5)Å	(C22	C27	1.395(5)Å
C22	P1	1.807(3)Å	(C23	C24	1.380(6)Å
C23	H231	0.929Å	0	C24	C25	1.391(7)Å
C24	H241	0.922Å	(C25	C26	1.380(6)Å
C25	H251	0.927Å	(C26	C27	1.387(5)Å
C26	H261	0.926Å	(C27	H271	0.929Å
P1	S1	1.9476(12)Å	H	F1	B1	1.372(7)Å
F2	B1	1.314(6)Å	I	-3	B1	1.370(6)Å
F4	B1	1.368(7)Å				

E] Angles

C1 C3 61.6(2)°

C2

C7	C9	H93	107.330°	H91	C9	H93	108.949°
H92	C9	H93	108.589°	C11	C10	C12	117.7(5)°
C11	C10	N1	109.2(5)°	C12	C10	N1	111.9(5)°
C11	C10	H101	105.878°	C12	C10	H101	106.114°
N1	C10	H101	105.139°	C10	C11	H113	105.412°
C10	C11	H111	110.344°	H113	C11	H111	110.593°
C10	C11	H112	110.253°	H113	C11	H112	109.172°
H111	C11	H112	110.923°	C10	C12	H121	109.567°
C10	C12	H123	108.343°	H121	C12	H123	109.766°
C10	C12	H122	109.999°	H121	C12	H122	109.363°
H123	C12	H122	109.787°	C14	C13	C15	114.4(4)°
C14	C13	N1	112.2(4)°	C15	C13	N1	111.8(4)°
C14	C13	H131	106.554°	C15	C13	H131	106.149°
N1	C13	H131	104.935°	C13	C14	H141	110.685°
C13	C14	H142	107.913°	H141	C14	H142	109.629°
C13	C14	H143	109.805°	H141	C14	H143	109.791°
H142	C14	H143	108.978°	C13	C15	H153	109.135°
C13	C15	H152	107.174°	H153	C15	H152	107.535°
C13	C15	H151	109.474°	H153	C15	H151	111.978°
H152	C15	H151	111.397°	C17	C16	C21	119.9(3)°
C17	C16	P1	123.3(2)°	C21	C16	P1	116.7(3)°
C16	C17	C18	119.2(3)°	C16	C17	H171	120.542°
C18	C17	H171	120.206°	C17	C18	C19	120.2(3)°
C17	C18	H181	119.202°	C19	C18	H181	120.601°
C18	C19	C20	120.8(3)°	C18	C19	H191	119.226°
C20	C19	H191	119.990°	C19	C20	C21	119.8(3)°
C19	C20	H201	120.609°	C21	C20	H201	119.587°
C16	C21	C20	120.1(3)°	C16	C21	H211	119.634°
C20	C21	H211	120.302°	C23	C22	C27	119.8(3)°
C23	C22	P1	118.3(3)°	C27	C22	P1	121.9(3)°
C22	C23	C24	119.8(4)°	C22	C23	H231	119.667°
C24	C23	H231	120.538°	C23	C24	C25	120.3(4)°
C23	C24	H241	120.051°	C25	C24	H241	119.670°
C24	C25	C26	120.0(4)°	C24	C25	H251	120.608°
C26	C25	H251	119.344°	C25	C26	C27	120.3(4)°
C25	C26	H261	120.051°	C27	C26	H261	119.625°
C22	C27	C26	119.8(3)°	C22	C27	H271	119.919°
C26	C27	H271	120.313°	C1	P1	C16	104.70(14)°
C1	P1	C22	104.94(15)°	C16	P1	C22	105.68(16)°
C1	P1	S1	113.71(12)°	C16	P1	S1	113.47(11)°
C22	P1	S1	113.46(11)°	C2	N1	C10	120.0(4)°
C2	N1	C13	122.5(4)°	C10	N1	C13	117.5(4)°
C3	N2	C4	123.5(4)°	C3	N2	C7	119.4(4)°

240

Annexes

C4	N2	C7	116.9(5)°	F1	B1	F2	107.1(5)°
F1	B1	F3	112.1(5)°	F2	B1	F3	109.7(5)°
F1	B1	F4	107.4(5)°	F2	B1	F4	111.9(6)°
F3	B1	F4	108.7(4)°				

A] Composé 29 1000510

$a = 12.9720(5) \text{ Å} \alpha = 90^{\circ}$
$b = 12.0665(4) \text{ Å } \beta = 107.309(4)^{\circ}$
$c = 10.0953(4) \text{ Å } \gamma = 90^{\circ}$

Volume	1508.62(10) A ³
Space group	C 1 c 1
Formula	$C_{18}H_{13}N_4P_1$
Cell determined from	6573 reflections
Temperature	180K
Shape	block
Colour	colorless
D _x	1.39
μ	0.187 mm ⁻¹
Absorption correction	multi-scan
T _{min}	0.96

B] Data Collection

XCALIBUR Diffractometer Scan type ϕ and ω scans Reflections measured 7963 Independent reflections 3888 Rint 0.0174 θ_{max} 32.0109

Crystal Class	Monoclini
Z =	4
$M_{\rm r}$	316.30
Cell θ range =	: 3 - 32°

Size $0.15 \times 0.20 \times 0.25 \text{ mm}$ F000 656.000

0.97

 T_{max}

h =	$-18 \rightarrow 19$		
k =	$-17 \rightarrow 16$		
1 =	$-13 \rightarrow 15$		
C] <u>Refine</u>	ment		
$\Delta \rho_{min} =$	-0.17 e Å ⁻³		
$\Delta \rho_{max} =$	0.22 e Å ⁻³		
Reflections used	3557		
Cutoff: I >	3.00σ(I)		
Parameters refined	209		
S =	1.08		
R-factor	0.027		
weighted R-factor	: 0.031		
Δ/σ_{max}	0.0007		

Refinement on	F
w =	$w' \times [1 - (\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$
	$[P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1},$
$\mathbf{w}' =$	where P_i are the coefficients of a Chebychev series in $t_i(x)$, and $x =$
	$F_{calc}/F_{calcmax}$.
$P_0 - P_{n-1} =$	6.03 -1.43 4.26

D] Distances

Flack parameter 0.03(6)

N1	C1	1.3229(16)Å	N1	C3	1.3761(17)Å
N2	C1	1.3818(14)Å	N2	C2	1.3771(16)Å
N2	C4	1.4163(16)Å	N3	C9	1.4211(13)Å
N3	C10	1.3729(15)Å	N3	C11	1.3797(14)Å
N4	C10	1.3234(14)Å	N4	C12	1.3729(18)Å
C1	P1	1.8084(12)Å	C2	C3	1.357(2)Å
C2	H21	0.963Å	C3	H31	0.969Å
C4	C5	1.3963(15)Å	C4	C9	1.3944(15)Å
C5	C6	1.380(2)Å	C5	H51	0.969Å
C6	C7	1.386(2)Å	C6	H61	0.956Å
C7	C8	1.3854(17)Å	C7	H71	0.962Å
C8	C9	1.3893(17)Å	C8	H81	0.948Å
C10	P1	1.8078(12)Å	C11	C12	1.3593(18)Å
C11	H111	0.975Å	C12	H121	0.959Å
C13	C14	1.3948(17)Å	C13	C18	1.3855(19)Å
C13	P1	1.8279(12)Å	C14	C15	1.388(2)Å

C14	H14	1 0.97	5Å		C15	C16	1.37	7(3)Å	_
C15	H15	1 0.98	0Å		C16	C17	1.38	34(2)Å	
C16	H16	1 0.96	8Å		C17	C18	1.30))(2)Å	
C17	H17	1 0.96	6Å		C18	H181	0.97	7Å	_
1									
	E]	Angl	<u>es</u>						
C1	N1	C3	105.49(11)°		C1	N2	C2	106.55(10)°
C1	N2	C4	128.22(10)°		C2	N2	C4	124.99(10)°
C9	N3	C10	128.05(9)	>		C9	N3	C11	124.35(10)°
C10	N3	C11	107.16(9)	>		C10	N4	C12	105.68(10)°
N1	C1	N2	111.00(10)°		N1	C1	P1	123.39(9)°
N2	C1	P1	125.50(9)			N2	C2	C3	106.16(11)°
N2	C2	H21	124.634°			C3	C2	H21	129.202°
N1	C3	C2	110.81(12)°		N1	C3	H31	123.686°
C2	C3	H31	125.507°			N2	C4	C5	119.04(11)°
N2	C4	C9	122.23(10)°		C5	C4	C9	118.72(11)°
C4	C5	C6	120.53(12)°		C4	C5	H51	119.401°
C6	C5	H51	120.058°			C5	C6	C7	120.71(12)°
C5	C6	H61	118.740°			C7	C6	H61	120.551°
C6	C7	C8	119.17(13)°		C6	C7	H71	119.431°
C8	C7	H71	121.394°			C7	C8	C9	120.56(12)°
C7	C8	H81	121.425°			C9	C8	H81	118.002°
N3	C9	C4	122.03(11)°		N3	C9	C8	117.66(10)°
C4	C9	C8	120.30(10)°		N3	C10	N4	110.73(10)°
N3	C10	P1	125.37(8)	>		N4	C10	P1	123.51(9)°
N3	C11	C12	105.54(11)°		N3	C11	H111	123.033°
C12	C11	H111	131.429°			N4	C12	C11	110.88(10)°
N4	C12	H121	124.143°			C11	C12	H121	124.980°
C14	C13	C18	118.98(12)°		C14	C13	P1	118.27(10)°
C18	C13	P1	122.45(9)	>		C13	C14	C15	120.12(14)°
C13	C14	H141	120.422°			C15	C14	H141	119.446°
C14	C15	C16	120.49(14)°		C14	C15	H151	119.950°
C16	C15	H151	119.533°			C15	C16	C17	119.81(13)°
C15	C16	H161	121.798°			C17	C16	H161	118.389°
C16	C17	C18	119.98(14)°		C16	C17	H171	120.094°
C18	C17	H171	119.912°			C13	C18	C17	120.61(12)°
C13	C18	H181	119.471°			C17	C18	H181	119.908°
C1	P1	C10	95.75(5)°			C1	P1	C13	101.02(5)°

C10 P1 C13 103.40(6)°

A] Composé 34 121211

3 6 111	
Maille	•
wante	•

a = 11.3573(2) Å α = 90° b = 12.6287(3) Å β = 90°

 $c=\,10.6515(2)~{\rm \AA}~\gamma=\,90^\circ$

Volume	1527.73(5) Å ³
Space group	Pnma
Formula	$C_{16} H_{17} N_4 P_1$
Cell determined from	21993 reflections
Temperature	180K
Shape	block
Colour	colorless
D _x	1.29
μ	0.179 mm ⁻¹
Absorption correction	multi-scan
T _{min}	0.82

B] Data Collection

Reflections measured 29596 Independent reflections 1942

C] Refinement

multi-scan

0.0260

 $\begin{array}{c} 28.4704 \\ \textbf{-15} \rightarrow \textbf{15} \end{array}$

 $-16 \rightarrow 16$

 $-13 \rightarrow 13$

-0.26 e Å⁻³

0.59 e Å⁻³

3.00σ(I)

1762

1.00 0.032

 ϕ and ω scans

Diffractometer

Scan type

Rint

 θ_{max}

h =

k =

1 =

 $\Delta\rho_{min} =$

 $\Delta \rho_{max} =$ Reflections used

Cutoff: I >

R-factor

S =

Parameters refined 101

weighted R-factor 0.042

Size 0.20 × 0.20 × 0.30 mm F000 624.000

0.96

 T_{max}

$\Delta\!/\sigma_{max}$	0.0010
Refinement on	F
w =	$w' \times [1$ - $(\Delta F_{obs} \slash 6 \times \Delta F_{est})^2]^2$
w' =	$\begin{split} & [P_0T_0'(x)+P_1T_1'(x)+P_{n-1}T_{n-1}'(x)]^{-1}, \\ & \text{where } P_i \text{ are the coefficients of a Chebychev series in } t_i(x), \text{ and } x=F_{calc}/F_{calcmax}. \end{split}$
$P_0 - P_{n-1} =$	11.3 8.83 9.11 4.25

D] Distances

		0		_		0
C1	C8	1.511(2)Å	C	21	C9	1.5274(15)Å
C1	C9 3_555	1.5274(15)Å	C	21	P1	1.8696(15)Å
C2	P1	1.8055(9)Å	C	22	N1	1.3215(12)Å
C2	N2	1.3838(11)Å	C	23	C4	1.3555(14)Å
C3	N1	1.3707(13)Å	C	23	H31	0.952Å
C4	N2	1.3786(12)Å	C	24	H41	0.944Å
C5	C5 3_555	1.3941(16)Å	C	25	C6	1.3931(12)Å
C5	N2	1.4192(11)Å	C	26	C7	1.3798(13)Å
C6	H61	0.933Å	C	27	C7 3_555	1.382(2)Å
C7	H71	0.950Å	C	28	H81	0.930Å
C8	H81 3_555	0.930Å	C	28	H82	0.930Å
C9	H92	0.984Å	C	29	H93	0.977Å
C9	H91	0.968Å				

E] Angles

C8	C1	C9	110.01(10)°	C8	C1	C9 3_555	110.01(10)°
C9	C1	C9 3_555	108.87(16)°	C8	C1	P1	118.08(11)°
C9	C1	P1	104.71(8)°	C9 3_555	C1	P1	104.71(8)°
P1	C2	N1	119.20(7)°	P1	C2	N2	130.16(7)°
N1	C2	N2	110.30(8)°	C4	C3	N1	110.77(9)°
C4	C3	H31	126.908°	N1	C3	H31	122.305°
C3	C4	N2	105.93(8)°	C3	C4	H41	130.545°
N2	C4	H41	123.525°	C5 3_555	C5	C6	119.12(5)°
C5 3_555	C5	N2	123.71(5)°	C6	C5	N2	117.17(8)°
C5	C6	C7	121.15(9)°	C5	C6	H61	119.825°
C7	C6	H61	119.021°	C6	C7	C7 3_555	119.72(6)°
C6	C7	H71	120.588°	C7 3_555	C7	H71	119.696°
C1	C8	H81	109.481°	C1	C8	H81 3_555	109.481°
H81	C8	H81 3_555	109.375°	C1	C8	H82	109.477°
H81	C8	H82	109.506°	H81 3_555	C8	H82	109.506°
C1	C9	H92	108.903°	C1	C9	H93	110.823°
H92	C9	H93	106.968°	C1	C9	H91	108.181°
H92	C9	H91	111.226°	H93	C9	H91	110.741°
C1	P1	C2	107.11(4)°	C1	P1	C2 3_555	107.11(4)°
C2	P1	C2 3_555	99.43(6)°	C2	N1	C3	106.13(8)°
C2	N2	C4	106.87(7)°	C2	N2	C5	129.69(8)°

C4 N2 C5 122.52(8)°

A] Composé 35 090112

Maille :

 $\begin{array}{c} a = 15.4580(3) ~ \mathring{A} ~ \alpha = 90^{\circ} \\ b = 9.54826(16) ~ \mathring{A} ~ \beta = 90^{\circ} \\ c = 20.4320(4) ~ \mathring{A} ~ \gamma = 90^{\circ} \end{array}$

Volume	3015.70(9) Å ³
Space group	P b c a
Formula	$C_{16}H_{17}N_4O_1P_1$
Cell determined from	9972 reflections
Temperature	100K
Shape	block
Colour	colorless
D _x	1.38
μ	1.678 mm ⁻¹
Absorption correction	multi-scan
T_{min}	0.59
B] Data Co	llection

Diffractometer multi-scan Scan type ϕ and ω scans Reflections measured 12506 Independent reflections 2365 Rint 0.0162 61.9872 θ_{max} $-17 \rightarrow 17$ h = $\mathbf{k} =$ $\text{-}10 \rightarrow 10$ 1 = $-23 \rightarrow 23$

C] Refinement

$\Delta \rho_{\min} =$	-0.35 e Å ⁻³
$\Delta \rho_{max} =$	0.36 e Å ⁻³
Reflections used	2311
Cutoff: I >	3.00o(I)
Parameters refined	200
S =	0.96
R-factor	0.030
weighted R-factor	0.043
Δ/σ_{max}	0.0014
Refinement on	F
w =	$w' \times [1$ - $(\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$

 $\begin{array}{ll} Crystal Class & Orthorhombic \\ Z=& 8 \\ M_r & 312.31 \\ Cell \, \theta \ range=4 - 62^\circ \end{array}$

Size 0.20 × 0.30 × 0.30 mm F000 1312.000

T_{max} 0.71

w' =	$[P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1}$, where P_i are the coefficients of a Chebychev series in $t_i(x)$, and $x = F_{calc}/F_{calcmax}$.
------	---

	where Γ_1 are the coefficients of a checkychev series in $q(x)$
$P_0 - P_{n-1} =$	14.3 11.5 13.0 4.59

D] Distances

C1	C14	1.5307(15)Å	C1	C15	1.5333(14)Å
C1	C16	1.5431(14)Å	C1	P1	1.8289(10)Å
C2	N1	1.3178(13)Å	C2	N2	1.3754(13)Å
C2	P1	1.8071(9)Å	C3	C4	1.3583(15)Å
C3	N1	1.3788(13)Å	C3	H31	0.972Å
C4	N2	1.3823(13)Å	C4	H41	0.955Å
C5	C6	1.3941(14)Å	C5	C10	1.4007(14)Å
C5	N2	1.4302(13)Å	C6	C7	1.3803(15)Å
C6	H61	0.964Å	C7	C8	1.3888(16)Å
C7	H71	0.981Å	C8	C9	1.3793(15)Å
C8	H81	0.973Å	C9	C10	1.3959(14)Å
C9	H91	0.956Å	C10	N3	1.4290(13)Å
C11	C12	1.3526(16)Å	C11	N3	1.3839(14)Å
C11	H111	0.965Å	C12	N4	1.3768(14)Å
C12	H121	0.970Å	C13	N3	1.3811(14)Å
C13	N4	1.3229(13)Å	C13	P1	1.8033(11)Å
C14	H141	1.026Å	C14	H142	0.993Å
C14	H143	0.982Å	C15	H151	0.985Å
C15	H152	0.990Å	C15	H153	0.977Å
C16	H161	0.984Å	C16	H162	0.977Å
C16	H163	0.998Å	01	P1	1.4848(7)Å

E] Angles

-				 			
C14	C1	C15	110.02(9)°	C14	C1	C16	108.95(8)°
C15	C1	C16	110.94(8)°	C14	C1	P1	107.11(7)°
C15	C1	P1	112.54(7)°	C16	C1	P1	107.12(7)°
N1	C2	N2	111.73(8)°	N1	C2	P1	127.47(7)°
N2	C2	P1	120.79(7)°	C4	C3	N1	110.75(8)°
C4	C3	H31	125.837°	N1	C3	H31	123.403°
C3	C4	N2	106.06(8)°	C3	C4	H41	128.885°
N2	C4	H41	125.047°	C6	C5	C10	119.26(9)°
C6	C5	N2	116.66(9)°	C10	C5	N2	124.02(9)°
C5	C6	C7	121.32(9)°	C5	C6	H61	119.162°
C7	C6	H61	119.512°	C6	C7	C8	119.13(9)°
C6	C7	H71	119.882°	C8	C7	H71	120.991°
C7	C8	C9	120.40(9)°	C7	C8	H81	120.105°
C9	C8	H81	119.455°	C8	C9	C10	120.81(9)°
C8	C9	H91	120.299°	C10	C9	H91	118.885°
C5	C10	C9	118.97(9)°	C5	C10	N3	123.59(9)°

247

00	010	NO	117.26(0)0	010	011	NO	106 62(0)0
09	C10	N3	117.36(8)°	CI2	СП	N3	106.63(9)°
C12	C11	H111	129.362°	N3	C11	H111	124.002°
C11	C12	N4	110.81(9)°	C11	C12	H121	125.150°
N4	C12	H121	123.924°	N3	C13	N4	111.71(9)°
N3	C13	P1	121.75(8)°	N4	C13	P1	126.36(8)°
C1	C14	H141	111.344°	C1	C14	H142	108.305°
H141	C14	H142	108.795°	C1	C14	H143	109.397°
H141	C14	H143	110.689°	H142	C14	H143	108.223°
C1	C15	H151	108.202°	C1	C15	H152	105.618°
H151	C15	H152	110.293°	C1	C15	H153	110.828°
H151	C15	H153	112.457°	H152	C15	H153	109.219°
C1	C16	H161	108.931°	C1	C16	H162	106.517°
H161	C16	H162	110.086°	C1	C16	H163	110.494°
H161	C16	H163	111.723°	H162	C16	H163	108.957°
C2	N1	C3	105.22(8)°	C2	N2	C4	106.24(8)°
C2	N2	C5	130.09(8)°	C4	N2	C5	123.40(8)°
C10	N3	C11	124.32(9)°	C10	N3	C13	129.87(9)°
C11	N3	C13	105.68(9)°	C12	N4	C13	105.17(9)°
C1	P1	C2	108.34(5)°	C1	P1	C13	108.07(5)°
C2	P1	C13	98.70(4)°	C1	P1	01	115.27(4)°
C2	P1	01	112.84(4)°	C13	P1	01	112.26(4)°

A] Composé 36 Carine010212

Maille :

 $a = 10.2649(3) \text{ Å} \alpha = 81.178(2)^{\circ}$ $b = 12.1611(4) \text{ Å } \beta = 71.935(2)^{\circ}$ $c = 12.7816(4) \text{ Å } \gamma = 72.878(2)^{\circ}$

Volume	1446.29(8) Å ³	Crystal Class	Triclinic
Space group	P -1	$\mathbf{Z} =$	2
Formula	$C_{22}H_{26}F_6N_5O_7P_1S_2$	M_r	681.57
Cell determined from	6698 reflections	Cell θ range =	3 - 28°
Temperature	120K		
Shape	planar		
Colour	colourless	Size	$0.03 \times 0.05 \times 0.20 \text{ mm}$
D _x	1.56	F000	700.000
μ	0.329 mm ⁻¹		
Absorption correction	multi-scan		
T _{min}	0.89	T _{max}	0.99

Annexes

B] Data	Collection
Diffractometer	multi-scan
Scan type	ϕ and ω scans
Reflections measured	red 26900
Independent reflec	tions 7263
Rint	0.0382
θ_{max}	29.9836
h =	$-14 \rightarrow 14$
$\mathbf{k} =$	$-17 \rightarrow 16$
1 =	$-16 \rightarrow 17$
C] <u>Refin</u>	ement
$\Delta \rho_{min} =$	-0.38 e Å ⁻³
$\Delta \rho_{max} =$	0.34 e Å ⁻³
Reflections used	4746
Cutoff: I >	3.00σ(Ι)
Parameters refined	388
S =	1.12
R-factor	0.036
weighted R-factor	0.038
Δ/σ_{max}	0.0004
Refinement on	F
w =	$w' \times [1 - (\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$
$\mathbf{w}' =$	$[P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1}$, where P_i are the coefficients of a Chebychev series in $t_i(x)$, and $x = F_{cale}/F_{calcmax}$.
$P_0 - P_{n-1} =$	0.775 -0.357E-01 0.334

D] Distances

C1	C14	1.530(3)Å	C1	C15	1.545(3)Å
C1	C16	1.537(3)Å	C1	P1	1.818(2)Å
C2	N1	1.339(3)Å	C2	N2	1.351(2)Å
C2	P1	1.8260(19)Å	C3	C4	1.346(3)Å
C3	N1	1.374(3)Å	C3	H31	0.950Å
C4	N2	1.378(2)Å	C4	H41	0.949Å
C5	C6	1.393(3)Å	C5	C10	1.394(3)Å
C5	N2	1.431(3)Å	C6	C7	1.385(3)Å
C6	H61	0.945Å	C7	C8	1.390(3)Å
C7	H71	0.942Å	C8	C9	1.389(3)Å
C8	H81	0.954Å	C9	C10	1.389(3)Å
C9	H91	0.951Å	C10	N3	1.433(2)Å
C11	C12	1.349(3)Å	C11	N3	1.375(2)Å
C11	H111	0.943Å	C12	N4	1.373(3)Å
C12	H121	0.945Å	C13	N3	1.357(2)Å
C13	N4	1.337(2)Å	C13	P1	1.8274(19)Å
C14	H141	0.974Å	C14	H142	0.979Å
C14	H143	0.977Å	C15	H151	0.980Å

Annexes

C15	H152	0.959Å	C15	H153	0.981Å
C16	H162	0.980Å	C16	H161	0.969Å
C16	H163	0.971Å	C17	N1	1.479(3)Å
C17	H172	0.942Å	C17	H171	0.949Å
C17	H173	0.957Å	C18	N4	1.476(3)Å
C18	H182	0.977Å	C18	H181	0.978Å
C18	H183	0.962Å	C19	S1	1.823(3)Å
C19	F1	1.332(3)Å	C19	F2	1.329(3)Å
C19	F3	1.338(3)Å	C20	S2	1.830(2)Å
C20	F4	1.329(2)Å	C20	F5	1.325(3)Å
C20	F6	1.331(3)Å	C21	C22	1.451(4)Å
C21	H212	0.969Å	C21	H211	0.969Å
C21	H213	0.965Å	C22	N5	1.142(4)Å
01	P1	1.4768(15)Å	02	S1	1.4406(15)Å
O3	S1	1.4401(16)Å	04	S1	1.4490(16)Å
05	S2	1.4425(17)Å	06	S2	1.4362(19)Å
07	S2	1.4451(17)Å			

E] Angles

C14	C1	C15	109.71(18)°	C14	C1	C16	110.97(18)°
C15	C1	C16	110.61(17)°	C14	C1	P1	115.02(14)°
C15	C1	P1	103.76(14)°	C16	C1	P1	106.52(15)°
N1	C2	N2	107.31(16)°	N1	C2	P1	125.02(15)°
N2	C2	P1	126.76(15)°	C4	C3	N1	107.50(18)°
C4	C3	H31	128.175°	N1	C3	H31	124.326°
C3	C4	N2	107.19(18)°	C3	C4	H41	127.947°
N2	C4	H41	124.852°	C6	C5	C10	120.42(19)°
C6	C5	N2	116.83(17)°	C10	C5	N2	122.74(17)°
C5	C6	C7	119.60(19)°	C5	C6	H61	119.995°
C7	C6	H61	120.407°	C6	C7	C8	119.9(2)°
C6	C7	H71	119.083°	C8	C7	H71	120.977°
C7	C8	C9	120.6(2)°	C7	C8	H81	119.507°
C9	C8	H81	119.847°	C8	C9	C10	119.60(19)°
C8	C9	H91	120.572°	C10	C9	H91	119.830°
C5	C10	C9	119.71(18)°	C5	C10	N3	122.64(18)°
C9	C10	N3	117.65(17)°	C12	C11	N3	106.91(17)°
C12	C11	H111	129.306°	N3	C11	H111	123.778°
C11	C12	N4	107.72(17)°	C11	C12	H121	128.008°
N4	C12	H121	124.267°	N3	C13	N4	107.07(16)°
N3	C13	P1	127.74(14)°	N4	C13	P1	124.49(15)°
C1	C14	H141	110.211°	C1	C14	H142	109.332°
H141	C14	H142	108.723°	C1	C14	H143	109.914°
H141	C14	H143	110.186°	H142	C14	H143	108.437°

C1	C15	H151	109.999°	C1	C15	H152	107.967°
H151	C15	H152	109.688°	C1	C15	H153	109.811°
H151	C15	H153	109.797°	H152	C15	H153	109.552°
C1	C16	H162	109.190°	C1	C16	H161	107.188°
H162	C16	H161	109.653°	C1	C16	H163	110.433°
H162	C16	H163	109.819°	H161	C16	H163	110.509°
N1	C17	H172	108.848°	N1	C17	H171	108.060°
H172	C17	H171	111.373°	N1	C17	H173	108.329°
H172	C17	H173	110.461°	H171	C17	H173	109.684°
N4	C18	H182	110.044°	N4	C18	H181	108.824°
H182	C18	H181	109.791°	N4	C18	H183	108.966°
H182	C18	H183	110.020°	H181	C18	H183	109.170°
S1	C19	F1	111.51(17)°	S1	C19	F2	111.67(16)°
F1	C19	F2	108.0(2)°	S1	C19	F3	110.49(16)°
F1	C19	F3	107.15(19)°	F2	C19	F3	107.83(19)°
S2	C20	F4	111.14(16)°	S2	C20	F5	111.86(15)°
F4	C20	F5	107.77(19)°	S2	C20	F6	112.17(16)°
F4	C20	F6	106.46(19)°	F5	C20	F6	107.1(2)°
C22	C21	H212	108.984°	C22	C21	H211	108.696°
H212	C21	H211	109.355°	C22	C21	H213	109.918°
H212	C21	H213	109.891°	H211	C21	H213	109.971°
C21	C22	N5	178.9(3)°	C2	N1	C3	109.20(17)°
C2	N1	C17	127.64(17)°	C3	N1	C17	123.03(18)°
C2	N2	C4	108.80(17)°	C2	N2	C5	127.13(16)°
C4	N2	C5	123.48(17)°	C10	N3	C11	122.85(16)°
C10	N3	C13	127.66(16)°	C11	N3	C13	109.02(16)°
C12	N4	C13	109.27(16)°	C12	N4	C18	123.00(17)°
C13	N4	C18	127.71(17)°	C1	P1	C2	111.36(9)°
C1	P1	C13	112.18(9)°	C2	P1	C13	98.58(8)°
C1	P1	01	114.50(9)°	C2	P1	01	109.00(9)°
C13	P1	01	110.05(9)°	C19	S1	02	104.16(11)°
C19	S1	03	103.26(10)°	02	S1	O3	115.55(10)°
C19	S1	04	103.13(10)°	02	S1	04	114.22(10)°
03	S1	04	114.36(10)°	C20	S 2	05	102.70(10)°
C20	S2	06	103.46(12)°	05	S2	06	115.50(11)°
C20	S2	07	102.76(10)°	05	S2	07	115.03(11)°
06	S2	07	114.81(12)°				

A] Composé 38 250712

Maille :

Annexes

a = 8	.7562	(6) Å $\alpha = 9$	0°					
b = 2	5.453	$(2) \text{ Å} \beta = 9$	7.676(7)	>				
c = 1	1.928	$7(9) \text{ Å } \gamma = 9$	0°					
Volu	me	2	634.8(3)	Å3			Crystal Class	Monoclinic
Space	e grou	p P	1 2 ₁ /n 1				$\mathbf{Z} =$	4
Form	ula	C	$C_{20} H_{23} F_{6}$, N ₄ ($D_6 P_1 S$	2	M _r	624.52
Cell o	determ	nined from 5	448 refle	ection	IS		Cell θ range =	4 - 61°
Temp	peratu	re 1	80K					
Shape	e	р	lanar					
Colou	ur	с	olorless				Size	$0.02\times0.10\times0.30~mm$
D_x		1	.57				F000	1280.000
μ		3	.209 mm	1 ⁻¹				
Abso	rption	correction n	nulti-sca	1				
$T_{min} \\$		0	.57				T _{max}	0.94
	B	Data Colle	ction					
Diffra	actom	eter	multi-sc	an				
Scan	type		φ and ω	scan	s			
Refle	ctions	measured	20868					
Indep	bender	nt reflections	4004					
Rint			0.0648					
θ_{max}			61.2364					
h =			-9 → 9					
k =			$-28 \rightarrow 2$	8				
1 =			$-13 \rightarrow 1$	1				
	CI	Refinemer	at .					
40		1 1	<u>ار</u> مام ⁸⁻³					
Δp _{min}	_	-1.1	۵Å ⁻³					
	c -	1.27	1					
Cutof	ff· I >	3.00	ഹ					
Paran	neters	refined 352	0(1)					
S =	neters	1 00						
R-fac	tor	0.08	6					
weigt	hted R	-factor 0.08	5					
Δ/σ_{m}		0.00	35					
Refin	iemen	ton F						
w =		1						
	D	Distances						
F1	C19	1 311(11)Å		F2	C19	1 288(11)Å		
F3	C19	1.511(11)A		F4	C20	1.200(11)/X		
F5	C20	1 326(8)Å		F6	C20	1 327(8)Å		
01	S1	1 310(8)Å		$\frac{10}{02}$	S1	1.327(0)/1 1.410(11)Å		
03	S1	1 366(6)Å		04	S2	1 433(5)Å		
05	\$2	1 434(5) Å		06	\$2	1 436(5)Å		
C^1	52 C14	1.520(0)Å		C1	C15	1.450(5)A		
	C14	1.337(9)A			015	1.515(9)A		

C1	C16	1.548(9)Å	C1	P1	1.862(7)Å
C2	N1	1.334(8)Å	C2	N2	1.357(7)Å
C2	P1	1.830(6)Å	C3	C4	1.329(9)Å
C3	N1	1.353(8)Å	C3	H31	0.936Å
C4	N2	1.379(8)Å	C4	H41	0.928Å
C5	C6	1.396(9)Å	C5	C10	1.385(10)Å
C5	N2	1.425(8)Å	C6	C7	1.391(11)Å
C6	H61	0.940Å	C7	C8	1.356(13)Å
C7	H71	0.930Å	C8	C9	1.375(12)Å
C8	H81	0.932Å	C9	C10	1.384(9)Å
C9	H91	0.935Å	C10	N3	1.431(9)Å
C11	C12	1.343(12)Å	C11	N3	1.382(9)Å
C11	H111	0.928Å	C12	N4	1.360(10)Å
C12	H121	0.930Å	C13	N3	1.341(8)Å
C13	N4	1.349(8)Å	C13	P1	1.825(6)Å
C14	H143	0.955Å	C14	H142	0.958Å
C14	H141	0.960Å	C15	H151	0.958Å
C15	H152	0.958Å	C15	H153	0.965Å
C16	H163	0.957Å	C16	H162	0.955Å
C16	H161	0.959Å	C17	N1	1.477(8)Å
C17	H173	0.959Å	C17	H172	0.961Å
C17	H171	0.965Å	C18	N4	1.458(10)Å
C18	H181	0.963Å	C18	H182	0.956Å
C18	H183	0.954Å	C19	S1	1.811(10)Å
C20	S2	1.818(7)Å			
	E]	Angles			

	-						
C14	C1	C15	110.2(6)°	C14	C1	C16	109.6(5)°
C15	C1	C16	111.6(5)°	C14	C1	P1	103.6(4)°
C15	C1	P1	118.7(4)°	C16	C1	P1	102.6(5)°
N1	C2	N2	106.4(5)°	N1	C2	P1	121.8(4)°
N2	C2	P1	130.9(5)°	C4	C3	N1	108.4(6)°
C4	C3	H31	126.607°	N1	C3	H31	125.039°
C3	C4	N2	106.8(6)°	C3	C4	H41	126.479°
N2	C4	H41	126.680°	C6	C5	C10	120.5(6)°
C6	C5	N2	117.3(6)°	C10	C5	N2	122.1(6)°
C5	C6	C7	118.3(8)°	C5	C6	H61	120.629°
C7	C6	H61	121.068°	C6	C7	C8	121.1(8)°
C6	C7	H71	119.025°	C8	C7	H71	119.911°
C7	C8	C9	120.6(7)°	C7	C8	H81	118.970°
C9	C8	H81	120.443°	C8	C9	C10	120.1(8)°
C8	C9	H91	119.391°	C10	C9	H91	120.533°
C5	C10	C9	119.4(7)°	C5	C10	N3	122.8(6)°

C9	C10	N3	117.7(7)°	C12	C11	N3	106.5(7)°
C12	C11	H111	127.707°	N3	C11	H111	125.766°
C11	C12	N4	108.2(7)°	C11	C12	H121	125.849°
N4	C12	H121	125.930°	N3	C13	N4	106.9(6)°
N3	C13	P1	131.7(5)°	N4	C13	P1	120.2(5)°
C1	C14	H143	108.579°	C1	C14	H142	109.531°
H143	C14	H142	110.256°	C1	C14	H141	109.385°
H143	C14	H141	109.679°	H142	C14	H141	109.393°
C1	C15	H151	110.447°	C1	C15	H152	110.670°
H151	C15	H152	108.879°	C1	C15	H153	108.711°
H151	C15	H153	109.149°	H152	C15	H153	108.955°
C1	C16	H163	109.251°	C1	C16	H162	108.409°
H163	C16	H162	110.080°	C1	C16	H161	109.037°
H163	C16	H161	110.648°	H162	C16	H161	109.374°
N1	C17	H173	109.660°	N1	C17	H172	109.989°
H173	C17	H172	109.880°	N1	C17	H171	107.398°
H173	C17	H171	110.194°	H172	C17	H171	109.686°
N4	C18	H181	107.159°	N4	C18	H182	109.299°
H181	C18	H182	110.074°	N4	C18	H183	109.228°
H181	C18	H183	110.469°	H182	C18	H183	110.539°
F1	C19	F2	96.9(10)°	F1	C19	F3	109.9(8)°
F2	C19	F3	107.8(9)°	F1	C19	S1	114.0(7)°
F2	C19	S1	112.2(6)°	F3	C19	S1	114.6(8)°
F4	C20	F5	108.1(6)°	F4	C20	F6	107.2(5)°
F5	C20	F6	107.8(6)°	F4	C20	S2	111.3(5)°
F5	C20	S 2	110.6(5)°	F6	C20	S2	111.6(5)°
C2	N1	C3	109.8(5)°	C2	N1	C17	126.2(5)°
C3	N1	C17	124.0(6)°	C2	N2	C4	108.6(5)°
C2	N2	C5	126.8(5)°	C4	N2	C5	124.2(5)°
C10	N3	C11	123.4(6)°	C10	N3	C13	126.5(5)°
C11	N3	C13	109.3(6)°	C12	N4	C13	109.1(7)°
C12	N4	C18	124.6(7)°	C13	N4	C18	126.1(6)°
C1	P1	C2	109.1(3)°	C1	P1	C13	108.7(3)°
C2	P1	C13	95.5(3)°	04	S2	05	115.4(3)°
O4	S2	06	113.8(3)°	O5	S2	06	115.3(3)°
O4	S 2	C20	104.4(3)°	05	S2	C20	102.9(3)°
O6	S2	C20	102.8(3)°	01	S1	02	112.4(11)°
01	S1	O3	121.2(9)°	02	S1	O3	112.3(6)°
01	S1	C19	101.5(5)°	02	S1	C19	100.4(8)°
O3	S1	C19	105.8(4)°				

_

A] Composé 39 160712

Annexes

Maille : $a = 10.9294(3) \text{ Å} \alpha = 90^{\circ}$ $b = 9.3967(3) \text{ Å} \quad \beta = 100.084(3)^{\circ}$ $c = 26.8786(7) \text{ Å } \gamma = 90^{\circ}$

Volume	2717.79(14) Å ³
Space group	P 1 2 ₁ /n 1
Formula	C28 H39 Cl1 N4 O1 P1 Rh1
Cell determined from	5765 reflections
Temperature	100K
Shape	planar
Colour	yellow
D _x	1.51
μ	6.764 mm ⁻¹
Absorption correction	multi-scan
T _{min}	0.34

B] Data Collection

Diffractometer multi-scan Scan type ϕ and ω scans Reflections measured 20185 Independent reflections 4152 Rint 0.1002 θ_{max} 61.1001 h = $-12 \rightarrow 12$ $\mathbf{k} =$ $\text{-}10 \rightarrow 10$ 1 = $-29 \rightarrow 30$

C] Refinement

-1.12 e Å⁻³ $\Delta \rho_{min} =$ $\Delta\rho_{max} =$ 1.73 e Å⁻³ Reflections used 2992 Cutoff: I > 3.00o(I) Parameters refined 319 S = 1.12 R-factor 0.042 weighted R-factor 0.049 0.0016 Δ/σ_{max} Refinement on F w = $w' \times [1$ - $(\Delta F_{obs} \,/\, 6 \times \Delta F_{est})^2]^2$
$$\begin{split} & [P_0T_0(x)+P_1T_1'(x)+...P_{n-1}T_{n-1}'(x)]^{-1}, \\ & \text{where } P_i \text{ are the coefficients of a Chebychev series in } t_i(x), \text{ and } x=F_{calc}/F_{calcmax}. \end{split}$$
w' =10.3 -7.38 6.76 $P_0 - P_{n-1} =$

Crystal Class	Monoclinic
Z =	4
Mr	616.98
Cell θ range =	3 - 61°
Size F000	$0.05 \times 0.10 \times 0.30 \text{ mm}$ 1280.000
Γ _{max}	0.71

	D]	Distances			
N1	C2	1.328(7)Å	N1	C3	1.378(7)Å
N2	C2	1.365(7)Å	N2	C4	1.387(7)Å
N2	C5	1.439(7)Å	N3	C10	1.428(7)Å
N3	C11	1.368(7)Å	N3	C13	1.386(7)Å
N4	C12	1.383(7)Å	N4	C13	1.314(7)Å
C1	C14	1.533(7)Å	C1	C15	1.528(8)Å
C1	C16	1.537(8)Å	C1	P1	1.873(5)Å
C2	P1	1.812(5)Å	C3	C4	1.343(8)Å
C3	H31	0.927Å	C4	H41	0.928Å
C5	C6	1.396(8)Å	C5	C10	1.401(8)Å
C6	C7	1.384(8)Å	C6	H61	0.934Å
C7	C8	1.386(8)Å	C7	H71	0.931Å
C8	C9	1.378(8)Å	C8	H81	0.935Å
C9	C10	1.388(8)Å	C9	H91	0.929Å
C11	C12	1.351(8)Å	C11	H111	0.932Å
C12	H121	0.932Å	C13	P1	1.818(6)Å
C14	H141	0.959Å	C14	H142	0.960Å
C14	H143	0.957Å	C15	H153	0.957Å
C15	H152	0.962Å	C15	H151	0.962Å
C16	H161	0.958Å	C16	H162	0.958Å
C16	H163	0.957Å	C17	C18	1.526(7)Å
C17	C24	1.362(8)Å	C17	Rh1	2.229(5)Å
C17	H171	0.976Å	C18	C19	1.536(8)Å
C18	H181	0.972Å	C18	H182	0.968Å
C19	C20	1.520(7)Å	C19	H191	0.974Å
C19	H192	0.969Å	C20	C21	1.374(8)Å
C20	Rh1	2.122(5)Å	C20	H201	0.971Å
C21	C22	1.527(8)Å	C21	Rh1	2.136(5)Å
C21	H211	0.983Å	C22	C23	1.532(8)Å
C22	H221	0.974Å	C22	H222	0.972Å
C23	C24	1.499(8)Å	C23	H231	0.973Å
C23	H232	0.972Å	C24	Rh1	2.192(5)Å
C24	H241	0.975Å	C25	C26	1.532(8)Å
C25	H251	0.962Å	C25	H252	0.959Å
C25	H253	0.960Å	C26	01	1.414(7)Å
C26	H261	0.972Å	C26	H262	0.973Å
C27	C28	1.523(9)Å	C27	01	1.425(7)Å
C27	H271	0.971Å	C27	H272	0.975Å
C28	H281	0.959Å	C28	H282	0.952Å
C28	H283	0.957Å	Rh1	Cl1	2.3691(13)Å
Rh1	P1	2.2905(14)Å			

Annexes

Annex	es
-------	----

	E]	<u>Angl</u>	es				
C2	N1	C3	104.6(4)°	C2	N2	C4	106.7(4)°
C2	N2	C5	129.0(4)°	C4	N2	C5	124.1(4)°
C10	N3	C11	124.1(5)°	C10	N3	C13	128.8(4)°
C11	N3	C13	106.6(4)°	C12	N4	C13	104.9(4)°
C14	C1	C15	110.4(5)°	C14	C1	C16	109.1(5)°
C15	C1	C16	109.0(5)°	C14	C1	P1	107.2(4)°
C15	C1	P1	113.6(4)°	C16	C1	P1	107.3(4)°
N1	C2	N2	111.5(4)°	N1	C2	P1	128.0(4)°
N2	C2	P1	120.5(4)°	N1	C3	C4	111.6(5)°
N1	C3	H31	123.538°	C4	C3	H31	124.856°
N2	C4	C3	105.7(5)°	N2	C4	H41	126.702°
C3	C4	H41	127.640°	N2	C5	C6	117.5(5)°
N2	C5	C10	122.8(5)°	C6	C5	C10	119.6(5)°
C5	C6	C7	120.6(5)°	C5	C6	H61	119.811°
C7	C6	H61	119.548°	C6	C7	C8	119.8(5)°
C6	C7	H71	120.031°	C8	C7	H71	120.131°
C7	C8	C9	119.6(5)°	C7	C8	H81	120.012°
C9	C8	H81	120.418°	C8	C9	C10	121.7(5)°
C8	C9	H91	119.045°	C10	C9	H91	119.219°
N3	C10	C5	122.6(5)°	N3	C10	C9	118.8(5)°
C5	C10	C9	118.6(5)°	N3	C11	C12	106.0(5)°
N3	C11	H111	126.538°	C12	C11	H111	127.418°
N4	C12	C11	111.1(5)°	N4	C12	H121	124.279°
C11	C12	H121	124.583°	N3	C13	N4	111.2(5)°
N3	C13	P1	121.2(4)°	N4	C13	P1	127.6(4)°
C1	C14	H141	110.268°	C1	C14	H142	108.529°
H141	C14	H142	108.921°	C1	C14	H143	110.659°
H141	C14	H143	109.133°	H142	C14	H143	109.300°
C1	C15	H153	110.227°	C1	C15	H152	108.693°
H153	C15	H152	109.252°	C1	C15	H151	109.702°
H153	C15	H151	109.602°	H152	C15	H151	109.343°
C1	C16	H161	110.098°	C1	C16	H162	110.400°
H161	C16	H162	109.575°	C1	C16	H163	108.799°
H161	C16	H163	108.634°	H162	C16	H163	109.302°
C18	C17	C24	123.9(5)°	C18	C17	Rh1	110.9(4)°
C24	C17	Rh1	70.6(3)°	C18	C17	H171	114.836°
C24	C17	H171	115.188°	Rh1	C17	H171	112.428°
C17	C18	C19	111.4(4)°	C17	C18	H181	110.032°
C19	C18	H181	108.222°	C17	C18	H182	108.778°
C19	C18	H182	108.688°	H181	C18	H182	109.654°
C18	C19	C20	112.9(5)°	C18	C19	H191	108.550°
C20	C19	H191	108.819°	C18	C19	H192	108.900°

C20	C19	H192	107.888°	H191	C19	H192	109.709°
C19	C20	C21	126.3(5)°	C19	C20	Rh1	109.3(4)°
C21	C20	Rh1	71.7(3)°	C19	C20	H201	113.807°
C21	C20	H201	113.989°	Rh1	C20	H201	113.289°
C20	C21	C22	125.6(5)°	C20	C21	Rh1	70.7(3)°
C22	C21	Rh1	113.1(4)°	C20	C21	H211	113.035°
C22	C21	H211	113.863°	Rh1	C21	H211	112.752°
C21	C22	C23	112.5(5)°	C21	C22	H221	108.993°
C23	C22	H221	108.985°	C21	C22	H222	108.644°
C23	C22	H222	108.342°	H221	C22	H222	109.371°
C22	C23	C24	112.4(5)°	C22	C23	H231	108.820°
C24	C23	H231	108.657°	C22	C23	H232	108.935°
C24	C23	H232	108.913°	H231	C23	H232	109.018°
C17	C24	C23	127.5(5)°	C17	C24	Rh1	73.5(3)°
C23	C24	Rh1	108.2(4)°	C17	C24	H241	113.667°
C23	C24	H241	113.525°	Rh1	C24	H241	111.698°
C26	C25	H251	109.424°	C26	C25	H252	109.652°
H251	C25	H252	109.517°	C26	C25	H253	109.891°
H251	C25	H253	108.770°	H252	C25	H253	109.571°
C25	C26	01	107.6(5)°	C25	C26	H261	110.505°
01	C26	H261	109.900°	C25	C26	H262	110.122°
01	C26	H262	109.611°	H261	C26	H262	109.063°
C28	C27	01	106.8(5)°	C28	C27	H271	110.404°
01	C27	H271	110.403°	C28	C27	H272	109.646°
01	C27	H272	109.917°	H271	C27	H272	109.597°
C27	C28	H281	109.229°	C27	C28	H282	109.839°
H281	C28	H282	109.684°	C27	C28	H283	109.291°
H281	C28	H283	109.217°	H282	C28	H283	109.564°
C17	Rh1	C20	81.3(2)°	C17	Rh1	C21	88.1(2)°
C20	Rh1	C21	37.6(2)°	C17	Rh1	C24	35.9(2)°
C20	Rh1	C24	96.7(2)°	C21	Rh1	C24	81.0(2)°
C17	Rh1	Cl1	90.89(15)°	C20	Rh1	Cl1	157.32(16)°
C21	Rh1	Cl1	164.13(15)°	C24	Rh1	Cl1	88.93(15)°
C17	Rh1	P1	164.88(15)°	C20	Rh1	P1	93.64(16)°
C21	Rh1	P1	96.60(16)°	C24	Rh1	P1	159.13(14)°
Cl1	Rh1	P1	88.46(5)°	C1	P1	C2	106.6(2)°
C1	P1	C13	105.2(2)°	C2	P1	C13	96.1(2)°
C1	P1	Rh1	118.88(18)°	C2	P1	Rh1	111.71(17)°
C13	P1	Rh1	115.65(18)°	C26	01	C27	112.0(5)°

A] Composé 43 250510

258

Maille :		
a = 10.3919(6) Å	$\alpha = 90^{\circ}$	
b = 23.7534(14) Å	$\beta = 90^{\circ}$	
c = 24.5833(14) Å	$\Lambda \gamma = 90^{\circ}$	
Volume	6068.2(6) Å ³	Crystal C
Space group	P b c a	$\mathbf{Z} =$
Formula	$\begin{array}{c} C_{24} \ H_{22} \ F_6 \ N_5 \ O_6 \ P_1 \\ S_2 \end{array}$	$M_{\rm r}$
Cell determined from	9579 reflections	Cell θ ra =
Temperature	180K	
Shape	block	
Colour	colourless	Size
D _x	1.50	F000
μ	0.312 mm ⁻¹	
Absorption correction	multi-scan	
T_{min}	0.93	T _{max}
B] <u>Data C</u>	ollection	
Diffractometer	APEX2	
Scan type	ϕ and ω scans	
Reflections measu	red 141761	
Independent reflect	ctions 8925	
Rint	0.0443	
θ_{max}	30.1127	
h =	$-14 \rightarrow 14$	
k =	$-33 \rightarrow 33$	
1 =	$-33 \rightarrow 34$	
C] Refine	ment	
$\Delta\rho_{min} =$	-0.61 e Å ⁻³	
$\Delta\rho_{max} =$	0.58 e Å ⁻³	
Reflections used	5441	
Cutoff: I >	3.00σ(I)	
Parameters refined	d 397	
S =	1.06	

 $\begin{array}{l} \text{R-factor} & 0.056 \\ \text{weighted R-factor} & 0.143 \\ \Delta/\sigma_{\text{max}} & 0.0006 \end{array}$

Crystal Class Orthorhombic Z = 8 M_r 685.56

$\begin{array}{c} \text{Cell } \theta \text{ range} \\ = & 2 - 29^{\circ} \end{array}$

Size	$\begin{array}{c} 0.15 \times 0.20 \times 0.20 \\ mm \end{array}$
F000	2800.000

0.95

Refinement on F²

w =

$$\begin{split} &1/[\sigma^2(F_{obs}{}^2) + (\ 0.071 \times P)^2 + 11.780 \times P + 0.000 + 0.000 \times sin\theta], \\ &P = 0.333 \times max(F_{obs}{}^2,\!0) + 0.667 \times F_{calc}{}^2 \end{split}$$

D] Distances

P1	C1	1.818(3)Å	P1	C10	1.822(3)Å
P1	C13	1.825(3)Å	C1	N1	1.339(3)Å
C1	N2	1.352(4)Å	C2	C3	1.344(5)Å
C2	N2	1.378(4)Å	C2	H21	0.923Å
C3	N1	1.370(4)Å	C3	H31	0.915Å
C4	C5	1.394(4)Å	C4	C9	1.389(4)Å
C4	N2	1.432(4)Å	C5	C6	1.385(5)Å
C5	H51	0.932Å	C6	C7	1.379(5)Å
C6	H61	0.939Å	C7	C8	1.384(4)Å
C7	H71	0.937Å	C8	C9	1.384(4)Å
C8	H81	0.938Å	C9	N3	1.434(3)Å
C10	N3	1.350(4)Å	C10	N4	1.334(3)Å
C11	C12	1.343(4)Å	C11	N3	1.375(4)Å
C11	H111	0.940Å	C12	N4	1.366(4)Å
C12	H121	0.954Å	C13	C14	1.378(4)Å
C13	C18	1.389(5)Å	C14	C15	1.388(6)Å
C14	H141	0.955Å	C15	C16	1.363(7)Å
C15	H151	0.918Å	C16	C17	1.372(7)Å
C16	H161	0.930Å	C17	C18	1.385(5)Å
C17	H171	0.943Å	C18	H181	0.941Å
C19	N1	1.468(4)Å	C19	H192	0.926Å
C19	H193	0.961Å	C19	H191	0.937Å
C20	N4	1.468(4)Å	C20	H201	0.966Å
C20	H203	0.959Å	C20	H202	0.941Å
C21	C22	1.452(7)Å	C21	H212	0.949Å
C21	H211	0.960Å	C21	H213	0.957Å
C22	N5	1.124(6)Å	C23	S1	1.821(4)Å
C23	F1	1.329(5)Å	C23	F2	1.321(5)Å
C23	F3	1.312(4)Å	C24	S2	1.806(4)Å
C24	F4	1.310(5)Å	C24	F5	1.288(5)Å
C24	F6	1.339(6)Å	01	S1	1.428(3)Å
O2	S1	1.421(3)Å	03	S 1	1.430(3)Å
04	S2	1.418(3)Å	05	S2	1.430(2)Å

O6 S2 1.419(3)Å

E] Angles

C1 P1 C10 92.61(12)° C1 P1 C13 100.59(13) C10 P1 C13 102.29(13)° P1 C1 N1 125.2(2)° P1 C1 N2 128.0(2)° N1 C1 N2 106.7(2)° C3 C2 N2 102.68(3)° C3 C2 H21 127.824° N2 C2 H21 125.361° C2 C3 N1 107.7(3)° C2 C3 H31 127.045° N1 C3 H31 125.259° C5 C4 C9 119.8(3)° C4 C5 C6 119.4(3)° C4 C5 H51 119.680° C6 C5 K6 119.4(3)° C7 C6 H61 120.7(3)° C5 C6 C7 R1 118.567° C7 C6 H61 120.7(3)° C4 C5 C6 H1 118.760° C4 C9 R8 19.801° C4 C9 R8 120.003° C4 C9								
C10P1C13102.29(13)°P1C1N1125.2(2)°P1C1N2128.0(2)°N1C1N2106.7(2)°C3C2N2106.8(3)°C3C2H21127.824°N2C2H21125.361°C2C3N1107.7(3)°C2C3H31127.045°N1C3H31125.259°C5C4C9119.8(3)°C5C4N2117.7(3)°C9C4N2122.5(3)°C4C5C6119.4(3)°C4C5H51119.680°C6C5H51120.885°C5C6C7120.7(3)°C5C6H61118.567°C7C6H61120.746°C6C7R8120.0(3)°C6C7H71121.275°C8C7H71118.760°C7C8C9120.0(3)°C7C8H81120.200°C9C8H81119.801°C4C9C8120.1(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°P1C10N3127.9(2)°P1C10N4125.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C12C11H111128.10°N3C11H111125.110°C13C14107.8(3)°C11C12H121129.600°N4C12H	C1	P1	C10	92.61(12)°	C1	P1	C13	100.59(13)°
P1C1N2128.0(2)°N1C1N2106.7(2)°C3C2N2106.8(3)°C3C2H21127.824°N2C2H21125.361°C2C3N1107.7(3)°C2C3H31127.045°N1C3H31125.259°C5C4C9119.8(3)°C5C4N2117.7(3)°C4C5H51119.680°C6C5H51120.885°C5C6C7120.7(3)°C5C6H61118.567°C7C6H61120.746°C6C7R8120.0(3)°C6C7H71121.275°C8C7H71118.760°C7C8C9120.0(3)°C7C8H81120.200°C9C8H81119.801°C4C9C8120.1(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°P1C10N4106.8(2)°C12C11N3106.7(3)°C12C11H11128.10°N3C11H111125.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C12C11H11128.10°N3C11H111125.0(2)°N4C12H121120.608°P1C13C14121.3(3)°C12C11H11128.10°C11C12H121120.60°N3 <td< td=""><td>C10</td><td>P1</td><td>C13</td><td>102.29(13)°</td><td>P1</td><td>C1</td><td>N1</td><td>125.2(2)°</td></td<>	C10	P1	C13	102.29(13)°	P1	C1	N1	125.2(2)°
C3 C2 N2 106.8(3)° C3 C2 H21 127.824° N2 C2 H21 125.361° C2 C3 N1 107.7(3)° C2 C3 H31 127.045° N1 C3 H31 125.259° C5 C4 C9 119.8(3)° C5 C4 N2 117.7(3)° C9 C4 N2 122.5(3)° C4 C5 C6 119.4(3)° C4 C5 H51 119.680° C6 C5 H51 120.885° C5 C6 C7 120.7(3)° C5 C6 H61 118.567° C7 C6 H61 120.746° C6 C7 R8 120.0(3)° C6 C7 H71 118.760° C4 C9 R8 120.103° C4 C9 N3 122.103° C8 C9 N3 117.7(3)° P1 C10 N4 106.8(2)° C12 C11 N3 106.7(3° C12 C11 H11 128.10° <td>P1</td> <td>C1</td> <td>N2</td> <td>128.0(2)°</td> <td>N1</td> <td>C1</td> <td>N2</td> <td>106.7(2)°</td>	P1	C1	N2	128.0(2)°	N1	C1	N2	106.7(2)°
N2C2H21I25.361°C2C3N1I07.7(3)°C2C3H31I27.045°N1C3H31I25.259°C5C4C9I19.8(3)°C5C4N2I17.7(3)°C4C5H51I19.680°C6C5H51I20.885°C5C6C7I20.7(3)°C5C6H6118.567°C7C6H61120.746°C6C7C8I20.0(3)°C6C7H71I21.275°C8C7H71I18.760°C7C8C9120.0(3)°C7C8H81120.200°C9C8H81119.801°C4C9C8I20.1(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°C1C10N3127.9(2)°P1C10N4125.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C12C11H111128.210°N3C11H111125.110°C11C12N4107.8(3)°C11C12H121129.600°N4C12H121122.608°P1C13C14121.3(3)°C13C14H121122.608°P1C13C14121.2(4)°C14	C3	C2	N2	106.8(3)°	C3	C2	H21	127.824°
C2C3H31127.045°N1C3H31125.259°C5C4C9119.8(3)°C5C4N2117.7(3)°C9C4N2122.5(3)°C4C5C6119.4(3)°C4C5H51119.680°C6C5H51120.885°C5C6C7120.7(3)°C5C6H6118.567°C7C6H61120.746°C6C7C8120.0(3)°C6C7H71121.275°C8C7H71118.760°C7C8C9120.0(3)°C7C8H81120.200°C9C8H81119.801°C4C9C8120.1(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°P1C10N3127.9(2)°P1C10N4125.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C12C11H111128.10°N3C11H11125.10°N3C10N4107.8(3)°C11C12H12129.600°N4C12H121122.608°P1C13C14121.3(3)°P1C13C18118.2(2)°C14C13C14121.3(3)°C13C14H141120.972°C14C15C16121.2(4)°C13C14H141120.972°C14C15C16121.2(4)°C	N2	C2	H21	125.361°	C2	C3	N1	107.7(3)°
C5C4C9 $119.8(3)^{\circ}$ C5C4N2 $117.7(3)^{\circ}$ C9C4N2 $122.5(3)^{\circ}$ C4C5C6 $119.4(3)^{\circ}$ C4C5H51 119.680° C6C5H51 120.885° C5C6C7 $120.7(3)^{\circ}$ C5C6H61 118.567° C7C6H61 120.746° C6C7C8 $120.0(3)^{\circ}$ C6C7H71 121.275° C8C7H71 118.760° C7C8C9 $120.0(3)^{\circ}$ C7C8H81 120.200° C9C8H81 119.801° C4C9C8 $120.1(3)^{\circ}$ C4C9N3 $122.1(3)^{\circ}$ C8C9N3 $117.7(3)^{\circ}$ C4C9N3 $122.1(3)^{\circ}$ C8C9N3 $117.7(3)^{\circ}$ C1C10N3 $127.9(2)^{\circ}$ P1C10N4 $125.0(2)^{\circ}$ N3C10N4 $106.8(2)^{\circ}$ C12C11N3 $106.7(3)^{\circ}$ C12C11H11 128.210° N3C11H11 $125.0(2)^{\circ}$ C11C12N4 $107.8(3)^{\circ}$ C11C12H121 129.600° N4C12H121 122.608° P1C13C14 $111.3(3)^{\circ}$ C13C14H141 119.830° C14C13C18 $120.2(3)^{\circ}$ C14C13C18I18.2(2)^{\circ}C14	C2	C3	H31	127.045°	N1	C3	H31	125.259°
C9C4N2I22.5(3)°C4C5C6I19.4(3)°C4C5H51119.680°C6C5H51120.885°C5C6C7I20.7(3)°C5C6H61118.567°C7C6H61120.746°C6C7C8120.0(3)°C6C7H71I21.275°C8C7H71118.760°C7C8C9120.0(3)°C7C8H81120.200°C9C8H81119.801°C4C9C8120.1(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°C4C9N3127.9(2)°P1C10N4125.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C12C11H111128.210°N3C11H111125.110°C11C12N4107.8(3)°C11C12H121129.600°N4C12H121122.608°P1C13C14121.3(3)°P1C13C18118.2(2)°C14C13C18120.2(3)°C13C14H141120.972°C14C13C18120.4(4)°C14C15H151120.275°C16C15H151118.508°C15C16C17H161118.345°C16C17C18120.7(4)°C14C15H151120.275°C16C16H161 <t< td=""><td>C5</td><td>C4</td><td>C9</td><td>119.8(3)°</td><td>C5</td><td>C4</td><td>N2</td><td>117.7(3)°</td></t<>	C5	C4	C9	119.8(3)°	C5	C4	N2	117.7(3)°
C4C5H51119.680°C6C5H51120.885°C5C6C7120.7(3)°C5C6H61118.567°C7C6H61120.746°C6C7C8120.0(3)°C6C7H71121.275°C8C7H71118.760°C7C8C9120.0(3)°C7C8H81120.200°C9C8H81119.801°C4C9C8120.1(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°C4C9N3127.9(2)°P1C10N4125.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C11C12N4107.8(3)°C11C12H11129.600°N4C12H11128.210°N3C11H11125.110°C11C12N4107.8(3)°C11C12H12129.600°N4C12H12122.608°P1C13C14121.3(3)°P1C13C18I18.2(2)°C14C13C18189.7°C13C14H14120.972°C14C13C18120.2(3)°C15C16K15I19.0(4)°C14C15K16121.2(4)°C14C15H15120.275°C16C16K17I18.508°C15C16K16I19.3(4)°C16C17C18120.7(4)° <td>C9</td> <td>C4</td> <td>N2</td> <td>122.5(3)°</td> <td>C4</td> <td>C5</td> <td>C6</td> <td>119.4(3)°</td>	C9	C4	N2	122.5(3)°	C4	C5	C6	119.4(3)°
C5C6C7I20.7(3)°C5C6H61I18.567°C7C6H61I20.746°C6C7C8I20.0(3)°C6C7H71I21.275°C8C7H71I18.760°C7C8C9I20.0(3)°C7C8H81I20.200°C9C8H81I19.801°C4C9C8I20.1(3)°C4C9N3I22.1(3)°C8C9N3I17.7(3)°C4C9N3I22.1(3)°C8C9N3I17.7(3)°C1C10N3I27.9(2)°P1C10N4I25.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C12C11H111I28.210°N3C11H111I25.010°C13C14H111I28.210°N3C11H111I25.010°C14C12N4107.8(3)°C11C12H121I29.600°N4C12H121I22.608°P1C13C14I21.3(3)°P1C13C18I18.2(2)°C14C14C13C18I20.2(3)°C13C14H141I20.972°C14C13C16I21.2(4)°C14C15H19.0(4)°C14C15H161I22.067°C15C16C17I19.6(3)°C16C15H161I22.067°C14C15H151I20.75°C16C16H161I20.7	C4	C5	H51	119.680°	C6	C5	H51	120.885°
C7C6H61120.746°C6C7C8120.0(3)°C6C7H71121.275°C8C7H71118.760°C7C8C9120.0(3)°C7C8H81120.200°C9C8H81119.801°C4C9C8120.1(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°P1C10N3127.9(2)°P1C10N4125.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C12C11H111128.210°N3C11H111125.110°C11C12N4107.8(3)°C11C12H121129.600°N4C12H121122.608°P1C13C14121.3(3)°P1C13C18118.2(2)°C14C13C14121.3(3)°C13C14C15119.0(4)°C13C14C14129.87°C13C14H141120.972°C14C13C16121.2(4)°C14C15H151120.275°C16C15H151118.508°C15C16C17119.6(3)°C15C16C16121.2(4)°C14C15H161118.345°C16C17C18120.7(4)°C15C16H161118.345°C16C17C18120.7(4)°C16C17H17119.312°C18C18H181 <td>C5</td> <td>C6</td> <td>C7</td> <td>120.7(3)°</td> <td>C5</td> <td>C6</td> <td>H61</td> <td>118.567°</td>	C5	C6	C7	120.7(3)°	C5	C6	H61	118.567°
C6C7H71121.275°C8C7H71118.760°C7C8C9120.0(3)°C7C8H81120.200°C9C8H81119.801°C4C9C8120.1(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°P1C10N3127.9(2)°P1C10N4125.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C12C11H111128.210°N3C11H111125.110°C11C12N4107.8(3)°C11C12H121129.600°N4C12H121122.608°P1C13C14121.3(3)°P1C13C18118.2(2)°C14C13C18120.2(3)°C13C14C15119.0(4)°C13C14C14121.3(3)°C13C14C15119.0(4)°C13C14H141119.987°C15C14H141120.972°C14C15C16121.2(4)°C14C15H151120.275°C16C15H151118.508°C15C16C17119.6(3)°C15C16C16H161122.067°C14C15H151120.275°C16C15H151118.508°C15C16C17T19.3(4)°C13C18H17119.030°C13C18K17H171120.312° <td< td=""><td>C7</td><td>C6</td><td>H61</td><td>120.746°</td><td>C6</td><td>C7</td><td>C8</td><td>120.0(3)°</td></td<>	C7	C6	H61	120.746°	C6	C7	C8	120.0(3)°
C7C8C9 $120.0(3)^{\circ}$ C7C8H81 120.200° C9C8H81 119.801° C4C9C8 $120.1(3)^{\circ}$ C4C9N3 $122.1(3)^{\circ}$ C8C9N3 $117.7(3)^{\circ}$ P1C10N3 $127.9(2)^{\circ}$ P1C10N4 $125.0(2)^{\circ}$ N3C10N4 $106.8(2)^{\circ}$ C12C11N3 $106.7(3)^{\circ}$ C12C11H111 128.210° N3C11H111 125.110° C11C12N4 $107.8(3)^{\circ}$ C11C12H121 129.600° N4C12H121 122.608° P1C13C14 $121.3(3)^{\circ}$ P1C13C18 $118.2(2)^{\circ}$ C14C13C18 $120.2(3)^{\circ}$ C13C14C15 $119.0(4)^{\circ}$ C13C14C14 $121.3(3)^{\circ}$ C13C14H141 120.972° C14C13C16 $121.2(4)^{\circ}$ C14C15H151 120.275° C16C15H151 118.508° C15C16C17119.6(3)^{\circ}C15C16H161 122.067° C14C15H161 118.345° C16C17C18 $120.7(4)^{\circ}$ C15C16H161 118.345° C16C17C18 $120.7(4)^{\circ}$ C16C17H171 120.312° C18C18H161 122.067° C17C16H161<	C6	C7	H71	121.275°	C8	C7	H71	118.760°
C9C8H81119.801°C4C9C8120.1(3)°C4C9N3122.1(3)°C8C9N3117.7(3)°P1C10N3127.9(2)°P1C10N4125.0(2)°N3C10N4106.8(2)°C12C11N3106.7(3)°C12C11H111128.210°N3C11H111125.110°C12C11H111128.210°N3C11H111125.110°C11C12N4107.8(3)°C11C12H121129.600°N4C12H121122.608°P1C13C14121.3(3)°P1C13C18118.2(2)°C14C13C18120.2(3)°C13C14C15119.0(4)°C13C14C14121.3(3)°C15C14H141120.972°C14C15C16121.2(4)°C14C15H151120.275°C16C15H151118.508°C15C16C17119.6(3)°C15C16C16112.2(4)°C14C15H151120.275°C16C15H161122.067°C15C16C17119.6(3)°C15C16C17I18120.7(4)°C16C17H171120.312°C18C18H181121.75°C17C16H161118.345°C16C17C18120.7(4)°C16C17H171120.312°	C7	C8	C9	120.0(3)°	C7	C8	H81	120.200°
C4C9N3 $122.1(3)^{\circ}$ C8C9N3 $117.7(3)^{\circ}$ P1C10N3 $127.9(2)^{\circ}$ P1C10N4 $125.0(2)^{\circ}$ N3C10N4 $106.8(2)^{\circ}$ C12C11N3 $106.7(3)^{\circ}$ C12C11H111 128.210° N3C11H111 $125.0(2)^{\circ}$ C12C11H111 128.210° N3C11H111 $125.0(2)^{\circ}$ C12C11H111 128.210° N3C11H111 $125.0(2)^{\circ}$ C11C12N4 $107.8(3)^{\circ}$ C11C12H121 129.600° N4C12H121 122.608° P1C13C14 $121.3(3)^{\circ}$ P1C13C18 $118.2(2)^{\circ}$ C14C13C18 $120.2(3)^{\circ}$ C13C14C14I12 129.600° C13C14H141 199.87° C13C14C15I19.0(4)^{\circ}C13C14C14 $121.3(3)^{\circ}$ C15C14H141 120.972° C14C15C16 $121.2(4)^{\circ}$ C14C15H151 $120.2(3)^{\circ}$ C16C15H151 118.508° C15C16C17H196(3)^{\circ}C15C16C16H161 122.067° C14C16H161 118.345° C16C17C18 $120.7(4)^{\circ}$ C15C16H161 118.345° C16C17C18 $120.7(4)^{\circ}$	C9	C8	H81	119.801°	C4	C9	C8	120.1(3)°
P1 C10 N3 127.9(2)° P1 C10 N4 125.0(2)° N3 C10 N4 106.8(2)° C12 C11 N3 106.7(3)° C12 C11 H111 128.210° N3 C11 H111 125.110° C11 C12 N4 107.8(3)° C11 C12 H121 129.600° N4 C12 H121 122.608° P1 C13 C14 121.3(3)° P1 C13 C14 I12.1 122.608° P1 C13 C14 121.3(3)° C13 C14 C15 I19.0(4)° C13 C14 H141 119.987° C14 C15 I19.0(4)° C13 C14 H141 119.987° C14 C15 H151 120.275° C16 C15 I16 121.2(4)° C14 C15 H151 120.275° C16 C15 H161 122.067° C15 C16 I17	C4	C9	N3	122.1(3)°	C8	C9	N3	117.7(3)°
N3 C10 N4 106.8(2)° C12 C11 N3 106.7(3)° C12 C11 H111 128.210° N3 C11 H111 125.110° C11 C12 N4 107.8(3)° C11 C12 H121 125.00° N4 C12 H121 122.608° P1 C13 C14 121.3(3)° P1 C13 C18 118.2(2)° C14 C13 C14 121.3(3)° C13 C14 C15 119.0(4)° C13 C14 H141 119.987° C14 C15 H19.0(4)° C13 C14 H141 119.987° C15 C14 H141 120.972° C14 C15 I15 118.508° C15 C16 H151 120.275° C16 C15 H151 118.508° C15 C16 H171 119.6(3)° C15 C16 H161 122.067° C17 C16 H161 <td< td=""><td>P1</td><td>C10</td><td>N3</td><td>127.9(2)°</td><td>P1</td><td>C10</td><td>N4</td><td>125.0(2)°</td></td<>	P1	C10	N3	127.9(2)°	P1	C10	N4	125.0(2)°
C12 C11 H111 128.210° N3 C11 H111 125.110° C11 C12 N4 107.8(3)° C11 C12 H121 129.600° N4 C12 H121 122.608° P1 C13 C14 121.3(3)° P1 C13 C14 I12.0(3)° C14 C13 C14 121.3(3)° P1 C13 C14 I141 120.2(3)° C14 C13 C14 120.2(3)° C13 C14 C15 119.0(4)° C13 C14 H141 119.987° C15 C14 H141 120.972° C14 C15 C16 121.2(4)° C14 C15 H151 120.275° C16 C15 H151 118.508° C15 C16 C17 119.6(3)° C15 C16 H161 122.067° C16 C17 H196 120.275° C16 C17 C18 120.7(4)° C16 C17 H161 118.345° C16 C17 H171 119.030° <tr< td=""><td>N3</td><td>C10</td><td>N4</td><td>106.8(2)°</td><td>C12</td><td>C11</td><td>N3</td><td>106.7(3)°</td></tr<>	N3	C10	N4	106.8(2)°	C12	C11	N3	106.7(3)°
C11C12N4 $107.8(3)^{\circ}$ C11C12H121 129.600° N4C12H121 122.608° P1C13C14 $121.3(3)^{\circ}$ P1C13C14C13C14I12.2(3)^{\circ}C14C13C14 $121.3(3)^{\circ}$ C13C14C15I19.0(4)^{\circ}C13C14C13C18 $120.2(3)^{\circ}$ C13C14C15I19.0(4)^{\circ}C13C14C14 119.987° C15C14H141 120.972° C14C15C16 $121.2(4)^{\circ}$ C14C15H151 120.275° C16C15H151 118.508° C15C16C17I19.6(3)^{\circ}C15C16C16 1161 122.067° C16C17H161 118.345° C16C17C18 $120.7(4)^{\circ}$ C16C17H171 120.312° C18C18C17H171 19.030° C13C18C17H171 120.312° C13C18H181 121.75° C16C17H171 120.312° C13C18H181 121.75° C17C18H181 119.567° N1C19H192 109.104° N1C19H193 111.632° H192C19H193 110.037° N1C19H191 109.339° H192C19H191 108.752° H193C19H191 107.924° N4	C12	C11	H111	128.210°	N3	C11	H111	125.110°
N4 C12 H121 122.608° P1 C13 C14 121.3(3)° P1 C13 C18 118.2(2)° C14 C13 C18 120.2(3)° C13 C14 C15 119.0(4)° C13 C14 H141 119.987° C15 C14 H141 120.972° C14 C15 C16 121.2(4)° C14 C15 H151 120.275° C16 C15 H151 118.508° C15 C16 C17 119.6(3)° C15 C16 H161 122.067° C16 C17 H171 120.312° C18 C17 T18.508° C16 C17 H171 120.312° C18 C17 H171 19.030° C13 C18 C17 119.3(4)° C13 C18 H181 121.75° C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 <t< td=""><td>C11</td><td>C12</td><td>N4</td><td>107.8(3)°</td><td>C11</td><td>C12</td><td>H121</td><td>129.600°</td></t<>	C11	C12	N4	107.8(3)°	C11	C12	H121	129.600°
P1 C13 C18 118.2(2)° C14 C13 C18 120.2(3)° C13 C14 C15 119.0(4)° C13 C14 H141 119.987° C15 C14 H141 120.972° C14 C15 C16 121.2(4)° C14 C15 H151 120.275° C16 C15 H151 118.508° C15 C16 C17 119.6(3)° C15 C16 H161 122.067° C16 C17 I19.6(3)° C16 C17 C18 120.7(4)° C16 C17 H161 118.345° C16 C17 C18 120.7(4)° C16 C17 H171 120.312° C18 C17 H171 19.030° C13 C18 C17 H19.3(4)° C13 C18 H181 121.175° C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 111.632° H192 C19 H193 110.037° N1 C19 <td>N4</td> <td>C12</td> <td>H121</td> <td>122.608°</td> <td>P1</td> <td>C13</td> <td>C14</td> <td>121.3(3)°</td>	N4	C12	H121	122.608°	P1	C13	C14	121.3(3)°
C13 C14 C15 119.0(4)° C13 C14 H141 119.987° C15 C14 H141 120.972° C14 C15 C16 121.2(4)° C14 C15 H151 120.275° C16 C15 H151 118.508° C15 C16 C17 H19.6(3)° C15 C16 H161 122.067° C17 C16 H161 118.345° C16 C17 C18 120.7(4)° C16 C17 H171 120.312° C18 C17 H171 119.030° C13 C18 C17 H19.3(4)° C13 C18 H181 121.175° C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 111.632° H192 C19 H193 110.037° N1 C19 H191 109.339° H192 C19 H191 108.752° H193 C19 H191 107.924° N4 C20 H203 109.214° N4<	P1	C13	C18	118.2(2)°	C14	C13	C18	120.2(3)°
C15 C14 H141 120.972° C14 C15 C16 121.2(4)° C14 C15 H151 120.275° C16 C15 H151 118.508° C15 C16 C17 119.6(3)° C15 C16 H161 122.067° C17 C16 H161 118.345° C16 C17 C18 120.7(4)° C16 C17 H171 120.312° C18 C17 H171 19.030° C13 C18 C17 H171 120.312° C18 C17 H171 19.030° C13 C18 C17 H19.3(4)° C13 C18 H181 121.175° C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 111.632° H192 C19 H193 100.37° N1 C19 H191 109.339° H192 C19 H191 108.752° H193	C13	C14	C15	119.0(4)°	C13	C14	H141	119.987°
C14 C15 H151 120.275° C16 C15 H151 118.508° C15 C16 C17 119.6(3)° C15 C16 H161 122.067° C17 C16 H161 118.345° C16 C17 C18 120.7(4)° C16 C17 H171 120.312° C18 C17 H171 19.030° C13 C18 C17 H171 120.312° C18 C17 H171 19.030° C13 C18 C17 H19.3(4)° C13 C18 H181 121.175° C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 111.632° H192 C19 H193 110.037° N1 C19 H191 109.339° H192 C19 H191 108.752° H193 C19 H191 107.924° N4 C20 H203 109.214° N4	C15	C14	H141	120.972°	C14	C15	C16	121.2(4)°
C15 C16 C17 119.6(3)° C15 C16 H161 122.067° C17 C16 H161 118.345° C16 C17 C18 120.7(4)° C16 C17 H171 120.312° C18 C17 H171 119.30° C13 C18 C17 H171 120.312° C13 C18 H171 119.30° C13 C18 C17 H19.3(4)° C13 C18 H181 121.175° C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 111.632° H192 C19 H193 110.037° N1 C19 H191 109.339° H192 C19 H191 108.752° H193 C19 H191 107.924° N4 C20 H203 109.214° N4 C20 H203 108.779° H201 C20 H202 107.510° H203	C14	C15	H151	120.275°	C16	C15	H151	118.508°
C17 C16 H161 118.345° C16 C17 C18 120.7(4)° C16 C17 H171 120.312° C18 C17 H171 119.030° C13 C18 C17 I19.3(4)° C13 C18 H181 121.175° C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 111.632° H192 C19 H193 110.037° N1 C19 H191 109.339° H192 C19 H193 110.037° N1 C19 H191 107.924° N4 C20 H201 109.676° N4 C20 H203 108.779° H201 C20 H203 109.214° N4 C20 H202 111.388° H201 C20 H202 107.510° H203 C20 H202 110.245° C22 C21 H212 108.806°	C15	C16	C17	119.6(3)°	C15	C16	H161	122.067°
C16 C17 H171 120.312° C18 C17 H171 119.030° C13 C18 C17 119.3(4)° C13 C18 H181 121.175° C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 111.632° H192 C19 H193 110.037° N1 C19 H191 109.339° H192 C19 H191 108.752° H193 C19 H191 107.924° N4 C20 H203 109.214° N4 C20 H203 108.779° H201 C20 H203 109.214° N4 C20 H202 111.388° H201 C20 H202 107.510° H203 C20 H202 110.245° C22 C21 H212 108.806°	C17	C16	H161	118.345°	C16	C17	C18	120.7(4)°
C13 C18 C17 119.3(4)° C13 C18 H181 121.175° C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 111.632° H192 C19 H193 110.037° N1 C19 H191 109.339° H192 C19 H191 108.752° H193 C19 H191 107.924° N4 C20 H201 109.676° N4 C20 H203 108.779° H201 C20 H203 109.214° N4 C20 H202 111.388° H201 C20 H202 107.510° H203 C20 H202 110.245° C22 C21 H212 108.806°	C16	C17	H171	120.312°	C18	C17	H171	119.030°
C17 C18 H181 119.567° N1 C19 H192 109.104° N1 C19 H193 111.632° H192 C19 H193 110.037° N1 C19 H191 109.339° H192 C19 H193 110.037° N1 C19 H191 109.339° H192 C19 H191 108.752° H193 C19 H191 107.924° N4 C20 H201 109.676° N4 C20 H203 108.779° H201 C20 H203 109.214° N4 C20 H202 111.388° H201 C20 H202 107.510° H203 C20 H202 110.245° C22 C21 H212 108.806°	C13	C18	C17	119.3(4)°	C13	C18	H181	121.175°
N1 C19 H193 111.632° H192 C19 H193 110.037° N1 C19 H191 109.339° H192 C19 H191 108.752° H193 C19 H191 107.924° N4 C20 H201 109.676° N4 C20 H203 108.779° H201 C20 H203 109.214° N4 C20 H202 111.388° H201 C20 H202 107.510° H203 C20 H202 110.245° C22 C21 H212 108.806°	C17	C18	H181	119.567°	N1	C19	H192	109.104°
N1 C19 H191 109.339° H192 C19 H191 108.752° H193 C19 H191 107.924° N4 C20 H201 109.676° N4 C20 H203 108.779° H201 C20 H203 109.214° N4 C20 H202 111.388° H201 C20 H202 107.510° H203 C20 H202 110.245° C22 C21 H212 108.806°	N1	C19	H193	111.632°	H192	C19	H193	110.037°
H193 C19 H191 107.924° N4 C20 H201 109.676° N4 C20 H203 108.779° H201 C20 H203 109.214° N4 C20 H202 111.388° H201 C20 H202 107.510° H203 C20 H202 110.245° C22 C21 H212 108.806°	N1	C19	H191	109.339°	H192	C19	H191	108.752°
N4 C20 H203 108.779° H201 C20 H203 109.214° N4 C20 H202 111.388° H201 C20 H202 107.510° H203 C20 H202 110.245° C22 C21 H212 108.806°	H193	C19	H191	107.924°	N4	C20	H201	109.676°
N4 C20 H202 111.388° H201 C20 H202 107.510° H203 C20 H202 110.245° C22 C21 H212 108.806°	N4	C20	H203	108.779°	H201	C20	H203	109.214°
H203 C20 H202 110.245° C22 C21 H212 108.806°	N4	C20	H202	111.388°	H201	C20	H202	107.510°
	H203	C20	H202	110.245°	C22	C21	H212	108.806°

C22	C21	H211	108.201°	H212	C21	H211	109.894°
C22	C21	H213	109.082°	H212	C21	H213	109.005°
H211	C21	H213	111.800°	C21	C22	N5	178.1(6)°
S 1	C23	F1	111.6(3)°	S 1	C23	F2	110.4(3)°
F1	C23	F2	106.9(3)°	S 1	C23	F3	112.3(3)°
F1	C23	F3	107.1(3)°	F2	C23	F3	108.5(3)°
S2	C24	F4	112.1(3)°	S2	C24	F5	113.0(3)°
F4	C24	F5	110.7(4)°	S2	C24	F6	110.1(4)°
F4	C24	F6	104.2(4)°	F5	C24	F6	106.2(4)°
C1	N1	C3	109.6(2)°	C1	N1	C19	126.5(3)°
C3	N1	C19	123.9(3)°	C1	N2	C2	109.3(2)°
C1	N2	C4	126.9(2)°	C2	N2	C4	123.8(2)°
C9	N3	C10	126.8(2)°	C9	N3	C11	123.7(2)°
C10	N3	C11	109.2(2)°	C10	N4	C12	109.5(2)°
C10	N4	C20	126.4(3)°	C12	N4	C20	124.1(3)°
C23	S 1	01	103.07(17)°	C23	S 1	02	104.40(19)°
01	S1	02	115.2(2)°	C23	S 1	03	102.89(18)°
01	S1	03	114.70(19)°	O2	S1	03	114.4(2)°
C24	S2	04	103.3(2)°	C24	S2	05	104.0(2)°
O4	S 2	05	112.2(2)°	C24	S2	06	103.88(19)°
O4	S2	06	117.4(2)°	05	S2	06	114.09(19)°

A] Composé 46 270611-CM290

N. K	1 -	
wiai	Ie.	•
Triun	uv	•

 $\begin{array}{l} \text{Marte}.\\ a=9.5244(4) \text{ Å} \quad \alpha=64.578(5)^{\circ}\\ b=13.4771(8) \text{ Å} \quad \beta=85.402(4)^{\circ}\\ c=14.1632(7) \text{ Å} \quad \gamma=78.637(4)^{\circ} \end{array}$

Volume	1609.77(16) Å ³
Space group	P -1
Formula	$\begin{array}{c} C_{29}H_{30}Cl_3F_3N_4O_3P_1 \\ Rh_1S_1 \end{array}$
Cell determined from	9522 reflections
Temperature	100K
Shape	stick

Crystal Class	triclinic
Z =	2
$M_{\rm r}$	811.88
Cell θ range =	4 - 61°

	Annexe	<i>?S</i>					An	nexes
Colour	pale yellow	Size	$0.05 \times 0.18 \times 0.20$	N2 C3	1.382(2)Å	N2	C4	1.428(2)Å
D _v	1.67	F000	820.000	N3 C9	1.442(2)A	N3	C10	1.363(2)A
μ	8.150 mm ⁻¹			N3 C11	1.382(2)A	N4	C10	1.344(2)A
Absorption	multi-scan			N4 C12 C1 P1	1.378(2)A 1.8120(17)Å	N4 C2	C13 C3	1.471(2)A 1.361(3)Å
Tmin	0.49	Tmar	0.67	C2 H21	0.950Å	C3	H31	0.934Å
1 11111	0.12	- max	0.07	C4 C5	1.393(3)Å	C4	C9	1.397(3)Å
B] Data	Collection			C5 C6	1.384(3)Å	C5	H51	0.939Å
Diffractometer	GEMINI			C6 C7	1.377(3)Å	C6	H61	0.920Å
Scan type	ϕ and ω scans			C7 C8	1.381(3)Å	C7	H71	0.950Å
Reflections meas	sured 19499			C8 C9	1.389(3)Å	C8	H81	0.942Å
Independent refle	ections 4842			C10 P1	1.8234(18)Å	C11	C12	1.347(3)Å
Rint	0.0435			C11 H111	0.925Å	C12	H121	0.915Å
θ_{max}	10 > 10			C13 H133	0.974Å	C13	H132	0.955Å
11 – k –	$-10 \rightarrow 10$			C13 H131	0.954Å	C14	C15	1.390(3)Å
1 =	$-15 \rightarrow 16$			C14 C19	1.396(3)Å	C14	P1	1.8326(18)
				C15 C16	1.385(3)Å	C15	H151	0.941Å
C] <u>Refin</u>	ement			C16 C17	1.391(3)Å	C16	H161	0.916Å
$\Delta \rho_{min} =$	$-0.56 \text{ e} \text{ Å}^{-3}$			C17 C18	1.387(3)Å	C17	H171	0.932Å
$\Delta \rho_{max} =$	$0.52 \text{ e} \text{ Å}^{-3}$			C18 C19	1.383(3)Å	C18	H181	0.924Å
Reflections used	4367			C19 H191	0.928Å	C20	C21	1.504(3)Å
Cutoff: 1 >	3.005(1)			C20 C27	1.391(3)Å	C20	Rh1	2.1161(18)
refined	406			C20 H201	0.983Å	C21	C22	1.531(3)Å
S =	1.14			C21 H212	0.965Å	C21	H211	0 999Å
R-factor	0.025			C_{22} C_{23}	1 528(3)Å	C22	H222	0.990Å
weighted R-facto	or 0.025			C22 H221	0.977Å	C23	C24	1 386(3)Å
Δ/σ_{max}	0.0022			C23 Rh1	2 1097(18)Å	C23	H231	0.948Å
Refinement on	F			C24 C25	1 507(3)Å	C24	Rh1	2.1117(18)
$\mathbf{w} =$	$w' \times [1$ - $(\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$			$C_{24} = C_{23}$	0.960Å	C25	C^{26}	1.530(3)Å
,	$[P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}]$	$(x)^{-1}$,		C25 H252	0.984 Å	C25	H251	0.985Å
$\mathbf{w}' =$	where P_i are the coefficients of a F_{acle}/F_{acle}	a Chebychev series if	$t_i(x)$, and $x =$	$C_{25} = C_{27}$	1.514(3)Å	C25	H261	0.987Å
$P_0 - P_{n-1} =$	14.6 6.17 7.53 11.4			C26 U27	0.963Å	C20	Rh1	2 1/00(17)
0 - 11-1				C27 H271	0.962 Å	C29	F1	$\frac{2.1400(17)}{1.333(2)}$
D] <u>Dista</u>	nces			C28 E2	1 337(2) Å	C20	F3	1.330(2)Å
S1 O1 1.44	18(14)Å S1 O2 1.44	59(13)Å		C_{20} Γ_{2}	1.337(2)A	C20	1'5 C13	1.550(2)A 1.767(2)Å
S1 O3 1.436	55(14)Å S1 C28 1.830	01(19)Å			1.137(2)A	C29		1.707(2)A

N1 C2 1.385(2)Å

N2 C1 1.365(2)Å

N1 C1

1.325(2)Å

N1 Rh1 2.0944(14)Å

C29 H292 0.967Å

C29 H291 0.960Å

Rh1 Cl1 2.3905(4)Å

01	S 1	O2	114.52(8)°	01	S1	O3	115.74(8)°
02	S 1	03	115.00(8)°	01	S 1	C28	103.02(8)°
O2	S1	C28	102.88(8)°	O3	S1	C28	103.13(9)°
C1	N1	C2	107.13(14)°	C1	N1	Rh1	123.18(11)°
C2	N1	Rh1	129.66(12)°	C1	N2	C3	107.27(14)°
C1	N2	C4	128.49(14)°	C3	N2	C4	124.05(14)°
C9	N3	C10	126.80(14)°	C9	N3	C11	123.68(15)°
C10	N3	C11	109.04(14)°	C10	N4	C12	109.93(15)°
C10	N4	C13	126.80(15)°	C12	N4	C13	123.08(15)°
N1	C1	N2	110.09(14)°	N1	C1	P1	121.69(12)°
N2	C1	P1	128.20(13)°	N1	C2	C3	108.69(15)°
N1	C2	H21	123.699°	C3	C2	H21	127.564°
N2	C3	C2	106.80(15)°	N2	C3	H31	124.621°
C2	C3	H31	128.577°	N2	C4	C5	116.91(15)°
N2	C4	C9	124.04(16)°	C5	C4	C9	119.03(16)°
C4	C5	C6	120.56(16)°	C4	C5	H51	120.232°
C6	C5	H51	119.178°	C5	C6	C7	120.29(17)°
C5	C6	H61	119.151°	C7	C6	H61	120.542°
C6	C7	C8	119.69(16)°	C6	C7	H71	119.993°
C8	C7	H71	120.315°	C7	C8	C9	120.81(16)°
C7	C8	H81	119.134°	C9	C8	H81	120.049°
N3	C9	C4	124.23(15)°	N3	C9	C8	116.14(15)°
C4	C9	C8	119.57(16)°	N3	C10	N4	106.41(15)°
N3	C10	P1	129.50(13)°	N4	C10	P1	124.10(13)°
N3	C11	C12	107.40(16)°	N3	C11	H111	123.411°
C12	C11	H111	129.188°	N4	C12	C11	107.21(16)°
N4	C12	H121	125.319°	C11	C12	H121	127.466°
N4	C13	H133	108.054°	N4	C13	H132	108.666°
H133	C13	H132	109.751°	N4	C13	H131	109.378°
H133	C13	H131	110.781°	H132	C13	H131	110.156°
C15	C14	C19	119.35(17)°	C15	C14	P1	122.30(13)°
C19	C14	P1	118.06(13)°	C14	C15	C16	120.00(16)°
C14	C15	H151	118.237°	C16	C15	H151	121.756°
C15	C16	C17	120.77(17)°	C15	C16	H161	119.097°
C17	C16	H161	120.133°	C16	C17	C18	119.08(17)°
C16	C17	H171	119.075°	C18	C17	H171	121.835°
C17	C18	C19	120.60(18)°	C17	C18	H181	120.557°

C19	C18	H181	118.837°	C14	C19	C18	120.18(18)°
C14	C19	H191	120.088°	C18	C19	H191	119.733°
C21	C20	C27	125.20(18)°	C21	C20	Rh1	110.57(13)°
C27	C20	Rh1	71.85(10)°	C21	C20	H201	115.389°
C27	C20	H201	115.268°	Rh1	C20	H201	107.516°
C20	C21	C22	112.83(16)°	C20	C21	H212	109.709°
C22	C21	H212	110.237°	C20	C21	H211	108.180°
C22	C21	H211	107.287°	H212	C21	H211	108.456°
C21	C22	C23	112.28(15)°	C21	C22	H222	110.110°
C23	C22	H222	109.218°	C21	C22	H221	108.807°
C23	C22	H221	108.305°	H222	C22	H221	108.013°
C22	C23	C24	122.39(17)°	C22	C23	Rh1	112.91(13)°
C24	C23	Rh1	70.91(11)°	C22	C23	H231	115.398°
C24	C23	H231	116.510°	Rh1	C23	H231	109.044°
C23	C24	C25	125.84(18)°	C23	C24	Rh1	70.76(11)°
C25	C24	Rh1	110.71(13)°	C23	C24	H241	115.161°
C25	C24	H241	114.423°	Rh1	C24	H241	109.720°
C24	C25	C26	113.27(16)°	C24	C25	H252	109.406°
C26	C25	H252	109.927°	C24	C25	H251	109.698°
C26	C25	H251	106.970°	H252	C25	H251	107.379°
C25	C26	C27	112.37(15)°	C25	C26	H261	107.404°
C27	C26	H261	109.798°	C25	C26	H262	109.525°
C27	C26	H262	108.672°	H261	C26	H262	109.023°
C20	C27	C26	123.46(18)°	C20	C27	Rh1	69.99(10)°
C26	C27	Rh1	112.79(12)°	C20	C27	H271	117.734°
C26	C27	H271	115.356°	Rh1	C27	H271	105.342°
S 1	C28	F1	111.10(12)°	S 1	C28	F2	110.71(12)°
F1	C28	F2	107.83(15)°	S1	C28	F3	111.50(13)°
F1	C28	F3	107.75(15)°	F2	C28	F3	107.78(14)°
Cl2	C29	Cl3	112.47(11)°	Cl2	C29	H291	108.471°
Cl3	C29	H291	110.625°	Cl2	C29	H292	107.408°
Cl3	C29	H292	107.296°	H291	C29	H292	110.527°
N1	Rh1	C20	160.75(7)°	N1	Rh1	C23	93.05(7)°
C20	Rh1	C23	82.49(7)°	N1	Rh1	C24	89.64(6)°
C20	Rh1	C24	98.06(7)°	C23	Rh1	C24	38.32(8)°
N1	Rh1	C27	161.09(7)°	C20	Rh1	C27	38.15(8)°
C23	Rh1	C27	90.91(7)°	C24	Rh1	C27	82.06(7)°
N1	Rh1	Cl1	88.64(4)°	C20	Rh1	Cl1	89.86(5)°

266

E] Angles

C23	Rh1	Cl1	161.49(6)°	C24	Rh1	Cl1	160.19(6)°
C27	Rh1	Cl1	93.44(5)°	C1	P1	C10	94.78(7)°
C1	P1	C14	101.44(8)°	C10	P1	C14	99.02(8)°

A] Composé 47 040112

Maille :

 $\begin{array}{l} a = 8.6872(3) ~ {\mathring{A}} \quad \alpha = 108.511(3)^{\circ} \\ b = 9.6723(3) ~ {\mathring{A}} \quad \beta = 94.614(3)^{\circ} \\ c = 15.2200(5) ~ {\mathring{A}} \ \gamma = 104.558(3)^{\circ} \end{array}$

Volume	1155.73(7) Å ³
Space group	P -1
Formula	$C_{26}H_{25}Cl_1N_4P_1Rh_1$
Cell determined from	14668 reflections
Temperature	180K
Shape	block
Colour	orange
D _x	1.62
μ	0.947 mm ⁻¹
Absorption correction	multi-scan
T _{min}	0.82

B] Data Collection

Diffractometer	multi-scan
Scan type	ϕ and ω scans
Reflections measured	50571
Independent reflections	5882
Rint	0.0660
θ_{max}	29.2711
h =	$-11 \rightarrow 11$
k =	$-12 \rightarrow 13$
1 =	$-20 \rightarrow 20$

C] Refinement

 $\begin{array}{ll} \Delta\rho_{min}=&-0.38~e~{\mbox{\AA}}^{-3}\\ \Delta\rho_{max}=&0.45~e~{\mbox{\AA}}^{-3}\\ \mbox{Reflections used} & 4694 \end{array}$

 $\begin{array}{ll} Crystal Class & triclinic \\ Z=& 2 \\ M_r & 562.84 \\ Cell \ \theta \ range = 3 - 29^\circ \end{array}$

Size $0.20 \times 0.25 \times 0.25$ mm F000 572.000

T_{max} 0.83

Annexes

Cutoff: I >	3.00σ(I)
Parameters refined	298
S =	1.06
R-factor	0.031
weighted R-factor	0.033
Δ/σ_{max}	0.0011
Refinement on	F
w =	$w' \times [1 - (\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$
w' =	$\begin{split} & [P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1}, \\ & \text{where } P_i \text{ are the coefficients of a Chebychev series in } t_i(x), \text{ and } x = F_{cale}/F_{calcmax}. \end{split}$

 $P_0 \text{ - } P_{n\text{-}1} = \qquad \qquad 4.64 \text{ -} 1.30 \text{ } 2.69 \text{ } 0.922$

D] Distances

C1	N1	1.316(3)Å	C1	N2	1.376(3)Å
C1	P1	1.815(3)Å	C2	C3	1.353(4)Å
C2	N1	1.384(4)Å	C2	H21	0.925Å
C3	N2	1.385(3)Å	C3	H31	0.930Å
C4	C5	1.395(3)Å	C4	C9	1.403(3)Å
C4	N2	1.422(3)Å	C5	C6	1.387(4)Å
C5	H51	0.932Å	C6	C7	1.384(4)Å
C6	H61	0.926Å	C7	C8	1.379(4)Å
C7	H71	0.935Å	C8	C9	1.392(3)Å
C8	H81	0.926Å	C9	N3	1.419(3)Å
C10	C11	1.359(4)Å	C10	N3	1.382(3)Å
C10	H101	0.934Å	C11	N4	1.373(3)Å
C11	H111	0.926Å	C12	N3	1.379(3)Å
C12	N4	1.318(3)Å	C12	P1	1.819(2)Å
C13	C14	1.394(3)Å	C13	C18	1.383(4)Å
C13	P1	1.811(2)Å	C14	C15	1.391(4)Å
C14	H141	0.916Å	C15	C16	1.377(5)Å
C15	H151	0.920Å	C16	C17	1.380(4)Å
C16	H161	0.932Å	C17	C18	1.399(4)Å
C17	H171	0.939Å	C18	H181	0.937Å
C19	C20	1.403(4)Å	C19	C26	1.512(4)Å
C19	Rh1	2.124(2)Å	C19	H191	0.968Å
C20	C21	1.518(4)Å	C20	Rh1	2.132(2)Å
C20	H201	0.977Å	C21	C22	1.533(4)Å
C21	H211	0.964Å	C21	H212	0.965Å
C22	C23	1.505(4)Å	C22	H221	0.964Å
C22	H222	0.973Å	C23	C24	1.369(4)Å
C23	Rh1	2.217(2)Å	C23	H231	0.980Å
C24	C25	1.518(4)Å	C24	Rh1	2.241(2)Å
C24	H241	0.988Å	C25	C26	1.526(4)Å
C25	H251	0.959Å	C25	H252	0.971Å

C26 H	1261 0.965Å	C26	H262	0.958Å
Rh1 P	1 2.2854(6)Å	Rh1	Cl1	2.3636(6)Å

E] Angles

N1	C1	N2	111.9(2)°	N1	C1	P1	129.07(19)°
N2	C1	P1	119.02(17)°	C3	C2	N1	111.5(2)°
C3	C2	H21	124.972°	N1	C2	H21	123.530°
C2	C3	N2	105.5(2)°	C2	C3	H31	128.928°
N2	C3	H31	125.571°	C5	C4	C9	119.3(2)°
C5	C4	N2	118.4(2)°	C9	C4	N2	122.3(2)°
C4	C5	C6	120.5(2)°	C4	C5	H51	118.523°
C6	C5	H51	121.005°	C5	C6	C7	120.0(2)°
C5	C6	H61	120.263°	C7	C6	H61	119.781°
C6	C7	C8	120.1(2)°	C6	C7	H71	118.978°
C8	C7	H71	120.872°	C7	C8	C9	120.7(2)°
C7	C8	H81	120.021°	C9	C8	H81	119.269°
C4	C9	C8	119.4(2)°	C4	C9	N3	122.6(2)°
C8	C9	N3	118.0(2)°	C11	C10	N3	105.4(2)°
C11	C10	H101	128.752°	N3	C10	H101	125.891°
C10	C11	N4	111.6(2)°	C10	C11	H111	124.950°
N4	C11	H111	123.427°	N3	C12	N4	111.7(2)°
N3	C12	P1	120.29(17)°	N4	C12	P1	128.02(18)°
C14	C13	C18	119.9(2)°	C14	C13	P1	121.9(2)°
C18	C13	P1	118.22(19)°	C13	C14	C15	119.5(3)°
C13	C14	H141	120.370°	C15	C14	H141	120.122°
C14	C15	C16	120.4(3)°	C14	C15	H151	119.933°
C16	C15	H151	119.654°	C15	C16	C17	120.4(3)°
C15	C16	H161	119.639°	C17	C16	H161	119.920°
C16	C17	C18	119.5(3)°	C16	C17	H171	120.465°
C18	C17	H171	120.000°	C13	C18	C17	120.2(3)°
C13	C18	H181	120.390°	C17	C18	H181	119.417°
C20	C19	C26	125.7(2)°	C20	C19	Rh1	71.06(14)°
C26	C19	Rh1	109.21(17)°	C20	C19	H191	114.961°
C26	C19	H191	113.722°	Rh1	C19	H191	113.459°
C19	C20	C21	124.7(2)°	C19	C20	Rh1	70.44(14)°
C21	C20	Rh1	113.22(17)°	C19	C20	H201	115.852°
C21	C20	H201	113.445°	Rh1	C20	H201	110.488°
C20	C21	C22	113.3(2)°	C20	C21	H211	108.324°
C22	C21	H211	108.325°	C20	C21	H212	107.661°
C22	C21	H212	110.142°	H211	C21	H212	109.023°
C21	C22	C23	113.8(2)°	C21	C22	H221	108.011°
C23	C22	H221	109.105°	C21	C22	H222	108.308°
C23	C22	H222	108.272°	H221	C22	H222	109.252°

Annexes

C22	C23	C24	126.1(3)°	C22	C23	Rh1	107.35(17)°
C24	C23	Rh1	73.07(15)°	C22	C23	H231	114.691°
C24	C23	H231	115.946°	Rh1	C23	H231	108.004°
C23	C24	C25	123.7(3)°	C23	C24	Rh1	71.17(15)°
C25	C24	Rh1	110.55(17)°	C23	C24	H241	117.361°
C25	C24	H241	115.694°	Rh1	C24	H241	106.035°
C24	C25	C26	111.9(2)°	C24	C25	H251	108.434°
C26	C25	H251	108.270°	C24	C25	H252	108.318°
C26	C25	H252	109.282°	H251	C25	H252	110.687°
C19	C26	C25	114.4(2)°	C19	C26	H261	110.040°
C25	C26	H261	108.492°	C19	C26	H262	106.749°
C25	C26	H262	107.350°	H261	C26	H262	109.756°
C1	N1	C2	104.6(2)°	C1	N2	C3	106.5(2)°
C1	N2	C4	128.2(2)°	C3	N2	C4	124.8(2)°
C9	N3	C10	125.7(2)°	C9	N3	C12	127.3(2)°
C10	N3	C12	106.5(2)°	C11	N4	C12	104.8(2)°
C19	Rh1	C20	38.50(10)°	C19	Rh1	C23	97.07(10)°
C20	Rh1	C23	81.59(10)°	C19	Rh1	C24	81.42(10)°
C20	Rh1	C24	88.92(10)°	C23	Rh1	C24	35.76(10)°
C19	Rh1	P1	94.18(7)°	C20	Rh1	P1	94.41(7)°
C23	Rh1	P1	155.98(8)°	C24	Rh1	P1	168.22(7)°
C19	Rh1	C11	157.03(8)°	C20	Rh1	Cl1	163.55(7)°
C23	Rh1	Cl1	88.18(8)°	C24	Rh1	Cl1	90.27(7)°
P1	Rh1	Cl1	89.69(2)°	C1	P1	C12	95.80(11)°
C1	P1	C13	105.26(11)°	C12	P1	C13	103.70(11)°
C1	P1	Rh1	110.93(8)°	C12	P1	Rh1	115.91(7)°
C13	P1	Rh1	121.72(8)°				

Chapitre II :

Composé 4

Table 1. Crystal data and structure refinement

Identification codeCarine2Empirical formulaC37 H36 Cl2 F6 O6 P2 S2Formula weight887.64Temperature193(2) KWavelength0.71073 ACrystal system, space groupmonoclinic, P 21/c

Z, Calculated density 4, 1.489 Mg/m ³	
Absorption coefficient 0.423 mm^-1	
F(000) 1824	
Crystal size 0.12 x 0.08 x 0.06 mm	
Theta range for data collection 1.47 to 25.35 deg.	
Limiting indices -11<=h<=11, -18<=k<=20, -30<=	:l<=27
Reflections collected / unique $29237 / 7216 [R(int) = 0.0441]$	
Completeness to theta = 25.35 99.4 %	
Refinement method Full-matrix least-squares on F^2	
Data / restraints / parameters 7216 / 268 / 605	
Goodness-of-fit on F^2 1.018	
Final R indices [I>2sigma(I)] R1 = 0.0541, wR2 = 0.1278	
R indices (all data) $R1 = 0.0852, wR2 = 0.1474$	
Largest diff. peak and hole 0.617 and -0.432 e.A^-3	

Table . Bond lengths [A] and angles [deg]

C(1)-C(6)	1.391(4)
C(1)-C(2)	1.428(4)
C(1)-P(1)	1.826(3)
C(2)-C(3)	1.393(4)
C(2)-P(2)	1.817(3)
C(3)-C(4)	1.379(5)
C(3)-H(3)	0.9500
C(4)-C(5)	1.365(5)
C(4)-H(4)	0.9500
C(5)-C(6)	1.380(5)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-C(12)	1.388(5)
C(7)-C(8)	1.396(5)
C(7)-P(1)	1.802(3)
C(8)-C(9)	1.378(5)
C(8)-H(8)	0.9500
C(9)-C(10)	1.388(5)
C(9)-H(9)	0.9500
C(10)-C(11)	1.368(6)
C(10)-H(10)	0.9500
C(11)-C(12)	1.387(5)
C(11)-H(11)	0.9500
C(12)-H(12)	0.9500
C(13)-C(14)	1.389(4)
C(13)-C(18)	1.390(5)
C(13)-P(1)	1.788(3)
C(14)-C(15)	1.374(5)
C(14)-H(14)	0.9500
C(15)-C(16)	1.376(5)
C(15)-H(15)	0.9500
C(16)-C(17)	1.361(6)
C(16)-H(16)	0.9500
C(17)-C(18)	1.384(5)
C(17)-H(17)	0.9500
C(18)-H(18)	0.9500
C(19)-C(24)	1.388(5)
C(19)-C(20)	1.388(5)
C(19)-P(2)	1.785(3)
C(20)-C(21)	1.393(5)
C(20)-H(20)	0.9500

C(21)-C(22)	1.358(6)
C(21)-H(21)	0.9500
C(22) C(22)	1 272(6)
C(22)-C(23)	1.373(0)
C(22)-H(22)	0.9500
C(23)-C(24)	1.385(5)
C(23)-H(23)	0.9500
C(24)-H(24)	0.9500
C(25)-C(26)	1 390(5)
C(25) - C(20)	1.370(5)
C(25)-C(30)	1.399(5)
C(25)-P(2)	1.795(3)
C(26)-C(27)	1.372(5)
C(26)-H(26)	0.9500
C(27)-C(28)	1 370(6)
C(27) = U(27)	0.0500
$C(27) - \Pi(27)$	0.9300
C(28)-C(29)	1.384(6)
C(28)-H(28)	0.9500
C(29)-C(30)	1.384(5)
C(29)-H(29)	0.9500
C(20) H(20)	0.0500
C(30) - H(30)	0.9300
P(2)-C(31)	1.792(9)
P(2)-C(31')	1.816(13)
C(31)-C(32)	1.50(2)
C(31)-H(31A)	0.9900
C(31) H(31B)	0.0000
$C(31) - \Pi(31D)$	0.9900
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(31')-C(32')	1.51(3)
C(31')-H(31C)	0.9900
C(21') II(21D)	0.0000
C(31)-H(31D)	0.9900
C(32')-H(32D)	0.9800
C(32')-H(32E)	0.9800
C(32')-H(32F)	0.9800
C(33)-C(34)	1 517(4)
C(33) C(34) C(32) P(1)	1.800(2)
C(33) - I(1)	1.000(3)
C(33)-H(33A)	0.9900
C(33)-H(33B)	0.9900
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34) H(34C)	0.9800
C(25) E(2)	1 296(5)
C(35)-F(2)	1.280(5)
C(35)-F(1)	1.325(5)
C(35)-F(3)	1.337(5)
C(35)-S(1)	1.787(5)
C(37)-C(2)	1 719(10)
C(37) C(1)	1.766(0)
C(37)-CI(1)	1.700(9)
C(3/)-H(3/A)	0.9900
C(37)-H(37B)	0.9900
C(37')-Cl(1')	1.72(2)
C(37')-Cl(2')	1.73(2)
C(37')-H(37C)	0.9900
C(27') H(27D)	0.0000
C(37) - H(37D)	0.9900
O(1)-S(1)	1.434(3)
O(2)-S(1)	1.421(3)
O(3)-S(1)	1.425(3)
S(2)-O(5')	1.354(11)
S(2)-O(4')	1 363(11)
S(2) = O(-7) S(2) = O(-7)	1 417(11)
S(2) - O(0)	1.41/(11)
S(2)-O(6)	1.420(4)
S(2)-O(5)	1.423(4)
S(2) = O(4)	1 443(4)
-----------------------	-----------------------
S(2) - O(4)	1.790(6)
3(2)-C(30)	1.789(0)
S(2)-C(36)	1.847(14)
C(36)-F(4)	1.321(8)
C(36)-F(5)	1.326(9)
C(36)-F(6)	1 343(7)
C(36) F(6)	1.343(7) 1.212(17)
$C(30)$ - $\Gamma(0)$	1.312(17)
C(36) - F(5)	1.317(18)
C(36')-F(4')	1.319(19)
C(6)-C(1)-C(2)	1174(3)
C(6) C(1) P(1)	112 2(2)
C(0)-C(1)-F(1)	113.3(2)
C(2)-C(1)-P(1)	129.3(2)
C(3)-C(2)-C(1)	118.2(3)
C(3)-C(2)-P(2)	113.3(2)
C(1)-C(2)-P(2)	1284(2)
C(4) C(3) C(2)	122.1(2)
C(4) - C(3) - C(2)	112.1(5)
C(4)-C(3)-H(3)	118.9
C(2)-C(3)-H(3)	118.9
C(5)-C(4)-C(3)	119.6(3)
C(5)-C(4)-H(4)	120.2
C(3)-C(4)-H(4)	120.2
C(4) C(5) C(6)	110.7(2)
C(4) - C(5) - C(6)	119.7(5)
C(4)-C(5)-H(5)	120.2
C(6)-C(5)-H(5)	120.2
C(5)-C(6)-C(1)	122.5(3)
C(5)- $C(6)$ - $H(6)$	118.8
C(1) C(6) H(6)	110.0
C(1)-C(0)-H(0)	110.0
C(12)-C(7)-C(8)	119.8(3)
C(12)-C(7)-P(1)	119.6(3)
C(8)-C(7)-P(1)	120.6(2)
C(9)-C(8)-C(7)	119.9(3)
C(9)-C(8)-H(8)	120.0
C(7) C(8) H(8)	120.0
C(8) C(0) C(10)	120.0 110.6(4)
C(8)-C(9)-C(10)	119.0(4)
C(8)-C(9)-H(9)	120.2
C(10)-C(9)-H(9)	120.2
C(11)-C(10)-C(9)	120.7(3)
C(11)-C(10)-H(10)	119.6
C(9)-C(10)-H(10)	119.6
C(10) - C(11) - C(12)	120.2(4)
C(10) - C(11) - C(12)	120.2(4)
C(10)-C(11)-H(11)	119.9
C(12)-C(11)-H(11)	119.9
C(11)-C(12)-C(7)	119.7(4)
C(11)-C(12)-H(12)	120.2
C(7)-C(12)-H(12)	120.2
C(14)-C(13)-C(18)	119.6(3)
C(14) C(12) D(1)	119.0(3)
C(14)-C(15)-P(1)	118.9(2)
C(18)-C(13)-P(1)	121.5(3)
C(15)-C(14)-C(13)	120.1(3)
C(15)-C(14)-H(14)	120.0
C(13)-C(14)-H(14)	120.0
C(14)-C(15)-C(16)	120.1(4)
C(14) = C(15) = C(10)	110.0
C(14)-C(15)-H(15)	119.9
C(16)-C(15)-H(15)	119.9
C(17)-C(16)-C(15)	120.1(4)
C(17)-C(16)-H(16)	119.9
C(15)-C(16)-H(16)	119.9
C(16) - C(17) - C(18)	121 0(4)
C(16) - C(17) - C(18)	110.5
C(10)-C(17)-H(17)	119.3

C(18)-C(17)-H(17)	119.5
C(17)-C(18)-C(13)	119.0(4)
C(17) - C(10) - C(15)	120.5
C(17)-C(18)-H(18)	120.5
C(13)-C(18)-H(18)	120.5
C(24)-C(19)-C(20)	120.0(3)
C(24)-C(19)-P(2)	122.2(3)
C(20)-C(19)-P(2)	117.7(3)
C(19)-C(20)-C(21)	119.3(4)
C(19)-C(20)-H(20)	120.4
C(21) C(20) H(20)	120.1
$C(21)$ - $C(20)$ - $\Pi(20)$	120.4
C(22)-C(21)-C(20)	120.3(4)
C(22)-C(21)-H(21)	119.7
C(20)-C(21)-H(21)	119.7
C(21)-C(22)-C(23)	120.4(4)
C(21)-C(22)-H(22)	119.8
C(23)-C(22)-H(22)	119.8
C(22)-C(23)-C(24)	1204(4)
C(22)-C(23)-H(23)	119.8
C(24) C(23) H(23)	110.0
C(24)-C(23)-H(23)	119.0
C(23)-C(24)-C(19)	119.4(4)
C(23)-C(24)-H(24)	120.3
C(19)-C(24)-H(24)	120.3
C(26)-C(25)-C(30)	119.6(3)
C(26)-C(25)-P(2)	119.9(3)
C(30)-C(25)-P(2)	120.2(3)
C(27)-C(26)-C(25)	119.9(4)
C(27)-C(26)-H(26)	120.0
C(25) C(26) H(26)	120.0
C(28) C(27) C(26)	120.0
C(28) - C(27) - C(20)	110.9
C(28)-C(27)-H(27)	119.8
C(26)-C(27)-H(27)	119.7
C(27)-C(28)-C(29)	120.7(4)
C(27)-C(28)-H(28)	119.7
C(29)-C(28)-H(28)	119.7
C(28)-C(29)-C(30)	119.5(4)
C(28)-C(29)-H(29)	120.2
C(30)-C(29)-H(29)	120.2
C(29)-C(30)-C(25)	119.8(3)
C(29)-C(30)-H(30)	120.1
C(25)-C(30)-H(30)	120.1
C(19)-P(2)-C(31)	115 3(6)
C(19) P(2) C(25)	107 30(15)
C(21) P(2) C(25)	107.39(13) 106.0(8)
C(31)-P(2)- $C(23)$	100.0(8)
C(19)-P(2)-C(31')	108.1(10)
C(31)-P(2)-C(31')	7.3(16)
C(25)-P(2)-C(31')	108.5(13)
C(19)-P(2)-C(2)	110.27(15)
C(31)-P(2)-C(2)	108.6(7)
C(25)-P(2)-C(2)	108.98(15)
C(31')-P(2)-C(2)	113.4(13)
C(32)-C(31)-P(2)	113.2(12)
C(32)-C(31)-H(31A)	108.9
P(2)-C(31)-H(31A)	108.9
C(32)- $C(31)$ - $H(31P)$	108.9
D(2) C(21) U(21D)	100.9
$\Gamma(2)$ - $U(31)$ - $\Pi(31B)$	108.9
п(31А)-С(31)-Н(31В)	107.8
C(31)-C(32)-H(32A)	109.5
C(31)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(31)-C(32)-H(32C)	109.5

-

Annexes

Annexes

H(32A)-C(32)-H(32C)	109.5
H(22P) C(22) H(22C)	100.5
H(32B)-C(32)-H(32C)	109.5
C(32')-C(31')-P(2)	121.7(19)
C(32')-C(31')-H(31C)	106.9
P(2) C(21) U(21C)	106.0
P(2)-C(31)-H(31C)	106.9
C(32')-C(31')-H(31D)	106.9
P(2)-C(31)-H(31D)	106.9
	100.7
H(31C)-C(31)-H(31D)	106.7
C(31')-C(32')-H(32D)	109.5
C(31')-C(32')-H(32E)	109.5
	107.5
H(32D)-C(32)-H(32E)	109.5
C(31')-C(32')-H(32F)	109.5
H(22D) C(22) H(22E)	100.5
II(32D)-C(32)-II(32I)	109.5
H(32E)-C(32')-H(32F)	109.5
C(34)-C(33)-P(1)	116.0(2)
C(24) C(22) U(224)	100.2
C(34)-C(33)-H(33A)	108.5
P(1)-C(33)-H(33A)	108.3
C(34)-C(33)-H(33B)	108.3
P(1) C(22) H(22P)	100.5
P(1)-C(33)-H(33B)	108.3
H(33A)-C(33)-H(33B)	107.4
C(33)-C(34)-H(34A)	109.5
C(33) - C(34) - H(34H)	109.5
C(33)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34B)	109.5
C(33) C(34) H(34C)	109.5
C(33)-C(34)-II(34C)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
E(2) C(25) E(1)	108 5(5)
F(2)-C(55)-F(1)	108.5(5)
F(2)-C(35)-F(3)	106.1(4)
F(1)-C(35)-F(3)	107.0(4)
F(2) C(25) F(3)	112.0(2)
F(2)-C(35)-S(1)	113.0(3)
F(1)-C(35)-S(1)	111.1(3)
F(3)-C(35)-S(1)	110 9(3)
C(2) C(27) C(1)	111 2(5)
CI(2)-C(3/)-CI(1)	111.3(5)
Cl(2)-C(37)-H(37A)	109.4
C(1)-C(37)-H(37A)	109.4
C(1) - C(37) - H(37H)	102.4
CI(2)-C(3/)-H(3/B)	109.4
Cl(1)-C(37)-H(37B)	109.4
H(37A) C(37) H(37B)	108.0
II(3/A)-C(3/)-II(3/B)	100.0
CI(1')-C(3'/')-CI(2')	113.9(12)
Cl(1')-C(37')-H(37C)	108.8
$C_{1}(2') C_{3}(37') H_{37}(37C)$	108.8
C(2) - C(37) - H(37C)	100.0
CI(1)-C(3/)-H(3/D)	108.8
Cl(2')-C(37')-H(37D)	108.8
H(27C) C(27') H(27D)	107.7
H(3/C)-C(3/)-H(3/D)	107.7
O(5')-S(2)-O(4')	116.3(11)
O(5')-S(2)-O(6')	113.3(12)
O(4') S(2) O(6')	124.0(11)
0(4)-3(2)-0(0)	124.9(11)
O(5')-S(2)-O(6)	159.5(10)
O(4')-S(2)-O(6)	78.4(8)
O(6') S(2) O(6)	10 0(0)
O(0) - S(2) - O(0)	48.0(8)
O(5')-S(2)-O(5)	45.1(9)
O(4')-S(2)-O(5)	144.9(8)
O(6') S(2) O(5)	60 2(8)
0(0) - 3(2) - 0(3)	09.2(8)
O(6)-S(2)-O(5)	114.6(3)
O(5')-S(2)-O(4)	78.0(8)
O(4') S(2) O(4)	28 5(7)
O(4) - S(2) - O(4)	38.3(7)
O(6')-S(2)-O(4)	150.8(7)
O(6)-S(2)-O(4)	1144(3)
O(5) S(2) O(4)	112 1(2)
O(3) - S(2) - O(4)	112.1(3)
O(5')-S(2)-C(36)	86.9(8)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(4')-S(2)-C(36) O(6)-S(2)-C(36) O(5)-S(2)-C(36) O(4)-S(2)-C(36) O(4)-S(2)-C(36) O(4)-S(2)-C(36) O(4)-S(2)-C(36) O(6)-S(2)-C(36) O(5)-S(2)-C(36) O(4)-S(2)-C(36) O(4)-S(2)-C(36) O(4)-S(2)-C(36) O(4)-S(2)-C(36) F(4)-C(36)-F(5) F(4)-C(36)-F(5) F(4)-C(36)-F(5) F(5)-C(36)-F(4) F(5)-C(36)-F(4) F(5)-C(36)-F(4) F(5)-C(36)-F(4) F(5)-C(36)-F(4) F(5)-C(36)-F(4) F(5)-C(36)-S(2) F(5)-C(36)-S(2) F(5)-C(36)-S(2) F(5)-C(36)-F(4) F(5)-C(36)-S(2) F(5)-C(36)-S(2) F(5)-C(36)-S(2) F(4)-F(4)-S(4)-S(4)-S(4) F(4)-F(4)-S(4)-S(4)-S(4)-S(4)-S(4)-S(4)	$\begin{array}{c} 101.8(8)\\ 103.2(7)\\ 104.6(3)\\ 105.6(3)\\ 104.3(3)\\ 97.2(9)\\ 99.9(10)\\ 96.2(8)\\ 93.8(7)\\ 110.9(7)\\ 109.5(7)\\ 109.5(7)\\ 108.2(6)\\ 107.1(6)\\ 108.2(6)\\ 107.1(6)\\ 108.5(7)\\ 110.5(5)\\ 111.7(6)\\ 110.7(5)\\ 110.7(5)\\ 108.8(18)\\ 103.4(19)\\ 98.6(15)\\ 114.5(13)\\ 115.7(13)\\ 114.0(18)\\ 108.9(15)\\ 108.45(15)\\ 108.$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(5')-C(36')-F(4') F(6')-C(36')-S(2)	98.6(15) 114.5(13)
$\begin{array}{cccc} C(13)-P(1)-C(33) & 108.99(13)\\ C(13)-P(1)-C(7) & 108.45(15)\\ C(33)-P(1)-C(7) & 107.83(15)\\ C(13)-P(1)-C(1) & 109.94(14)\\ C(3)-P(1)-C(1) & 104.79(14)\\ C(7)-P(1)-C(1) & 106.64(14)\\ O(2)-S(1)-O(3) & 115.0(2)\\ O(2)-S(1)-O(3) & 115.0(2)\\ O(2)-S(1)-O(1) & 114.76(19)\\ O(2)-S(1)-C(35) & 101.7(2)\\ O(3)-S(1)-C(35) & 101.7(2)\\ O(3)-S(1)-C(35) & 104.5(2)\\ O(1)-C(35) & 102.7(2)\\ O(1)-C(1)-C(35) & 102.7(2)\\ O(1)-C(1)-C(1)-C(1)-C(1)\\ O(1)-C(1)-C(1)-C(1)-C(1)-C(1)\\ O(1)-C(1)-C(1)-C(1)-C(1)\\ O(1)-C(1)-C(1)-C(1)\\ O(1)-C(1)-C(1)-C(1)\\ O$	F(5')-C(36')-S(2) F(4')-C(36')-S(2)	115.7(13) 114.0(18)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(13)-P(1)-C(33) C(13)-P(1)-C(7)	108.45(15)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(33)-P(1)-C(7) C(13)-P(1)-C(1) C(22) $P(1)$ $C(1)$	107.83(15) 109.94(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7)-P(1)-C(1) C(7)-P(1)-C(1)	106.64(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(2)-S(1)-O(3) O(2)-S(1)-O(1)	115.7(2)
O(3)-S(1)-C(35) 104.5(2) O(1) S(1) C(35) 102.7(2)	O(3)-S(1)-O(1) O(2)-S(1)-C(35)	114.76(19) 101.7(2)
O(1)-S(1)-C(33) 102.7(2)	O(3)-S(1)-C(35) O(1)-S(1)-C(35)	104.5(2) 102.7(2)

A] Composé 7b 160511

Maille :

a = 9.9459(2) A $\alpha = 72.500(2)^{\circ}$		
b = 11.2494(3) Å $\beta = 89.6428(19)$	9)°	
c = 15.1467(4) Å γ = 79.3817(19	9)°	
Volume	1586.40(7) Å ³	Crystal Class	Triclini
Space group	P -1	Z =	2
Formula	$\begin{array}{c} C_{35}H_{33}F_{3}\\ O_{3}P_{2}S_{1} \end{array}$	$M_{\rm r}$	652.65
Cell determined from	26565 reflections	Cell θ range =	4 - 61°
Temperature	180K		
Shape	planar		
Colour	colorless	Size	$0.15 \times$

			0.25 × 0.30 mm
D _x 1.	37	F000	680.000
μ 2.	308 mm ⁻		
Absorption m correction m	ulti-scan		
T _{min} 0.	38	$T_{max} \\$	0.71
B] D;	ata Collection		
Diffractometer	GEMINI		
Scan type	o and o	scans	
Reflections me	asured 29049		
Independent ref	lections 4780		
Rint	0.0272		
θ_{max}	60.6027		
h =	$-11 \rightarrow 11$	l	
k =	$-12 \rightarrow 12$	2	
1 =	$-17 \rightarrow 16$	5	
CL D	£		
$\Delta \rho_{\min} =$	-0.31 e A^{-3}		
$\Delta \rho_{\rm max} =$	0.43 e A ³⁵		
Reflections use	d 4619		
Cutoff: I >	3.00σ(1)		
Parameters refi	ned 452		
S =	1.05		
R-factor	0.035		
weighted R-fac	tor 0.047		
Δ / σ_{max}	0.0009		

max	
Refinement on	F
$\mathbf{w} =$	$w' imes [1 - (\Delta F_{obs} / 6 imes \Delta F_{est})^2]^2$
w' =	$\begin{split} & [P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1}, \\ & \text{where } P_i \text{ are the coefficients of a Chebychev series in } t_i(x), \text{ and } x = F_{calc}/F_{calcmax}. \end{split}$
$P_0 - P_{n-1} =$	9.84 5.11 6.89 2.47

D] Distances

 D_x μ

F1	F4	0.433(18)Å	F1	C35	1.366(6)Å
F1	C36	1.479(10)Å	F2	F5	0.534(12)Å
F2	C35	1.312(4)Å	F2	C36	1.561(9)Å
F3	04	1.023(9)Å	F3	C35	1.349(4)Å
F3	S2	1.902(3)Å	F4	C35	1.35(2)Å
F4	C36	1.22(2)Å	F5	C35	1.369(15)Å
F5	C36	1.266(15)Å	F6	O3	0.864(7)Å
F6	S 1	1.873(7)Å	F6	C36	1.293(13)Å
01	S 1	1.4916(18)Å	01	S 2	1.306(2)Å
02	S 1	1.3903(15)Å	02	S 2	1.572(2)Å

03	S1	1.450(2)Å	O3	C36	1.683(10)Å
04	S2	1.385(8)Å	C1	C2	1.529(2)Å
C1	P1	1.7230(14)Å	C1	P2	1.7135(14)Å
C2	H21	0.959Å	C2	H22	0.956Å
C2	H23	0.957Å	C3	C4	1.522(2)Å
C3	P1	1.8223(15)Å	C3	H31	0.960Å
C3	H32	0.968Å	C4	H43	0.964Å
C4	H42	0.955Å	C4	H41	0.958Å
C5	C6	1.390(2)Å	C5	C10	1.391(2)Å
C5	P1	1.8183(14)Å	C6	C7	1.388(2)Å
C6	H61	0.927Å	C7	C8	1.380(3)Å
C7	H71	0.928Å	C8	C9	1.377(3)Å
C8	H81	0.930Å	C9	C10	1.384(2)Å
C9	H91	0.929Å	C10	H101	0.929Å
C11	C12	1.380(3)Å	C11	C16	1.386(2)Å
C11	P1	1.8186(15)Å	C12	C13	1.388(3)Å
C12	H121	0.938Å	C13	C14	1.368(3)Å
C13	H131	0.930Å	C14	C15	1.368(3)Å
C14	H141	0.932Å	C15	C16	1.386(3)Å
C15	H151	0.931Å	C16	H161	0.934Å
C17	C18	1.390(2)Å	C17	C22	1.389(2)Å
C17	P2	1.8194(15)Å	C18	C19	1.388(3)Å
C18	H181	0.930Å	C19	C20	1.371(3)Å
C19	H191	0.932Å	C20	C21	1.373(3)Å
C20	H201	0.933Å	C21	C22	1.394(3)Å
C21	H211	0.929Å	C22	H221	0.923Å
C23	C24	1.399(2)Å	C23	C28	1.383(2)Å
C23	P2	1.8172(15)Å	C24	C25	1.374(2)Å
C24	H241	0.929Å	C25	C26	1.379(3)Å
C25	H251	0.934Å	C26	C27	1.378(3)Å
C26	H261	0.931Å	C27	C28	1.386(2)Å
C27	H271	0.938Å	C28	H281	0.931Å
C29	C30	1.389(2)Å	C29	C34	1.402(2)Å
C29	P2	1.8055(15)Å	C30	C31	1.391(3)Å
C30	H301	0.928Å	C31	C32	1.383(3)Å
C31	H311	0.929Å	C32	C33	1.376(3)Å
C32	H321	0.937Å	C33	C34	1.374(3)Å
C33	H331	0.932Å	C34	H341	0.935Å
S 1	C35	1.799(3)Å	S1	S2	0.9339(17)Å
S 1	C36	1.502(9)Å	C35	S2	1.614(3)Å
C35	C36	0.971(10)Å	S2	C36	1.820(10)Å

Annexes

Annexes

	E] <u>An</u> g	gles				
F4	F1	C35	79(3)°	F4	F1	C36	47(3)°
C35	F1	C36	39.7(4)°	F5	F2	C35	84.6(18)°
F5	F2	C36	47.9(17)°	C35	F2	C36	38.3(4)°
04	F3	C35	101.3(4)°	04	F3	S2	45.1(4)°
C35	F3	S2	56.50(14)°	F1	F4	C35	83(3)°
F1	F4	C36	118(4)°	C35	F4	C36	44.0(8)°
F2	F5	C35	72.5(19)°	F2	F5	C36	114(2)°
C35	F5	C36	43.0(6)°	03	F6	S1	48.3(4)°
03	F6	C36	100.7(7)°	S1	F6	C36	52.9(5)°
S1	01	S2	38.28(9)°	S1	02	S2	36.10(7)°
F6	03	S1	105.3(5)°	F6	03	C36	49.0(6)°
S1	03	C36	56.7(3)°	F3	04	S2	103.3(6)°
C2	C1	P1	118.11(10)°	C2	C1	P2	117.69(10)
P1	C1	P2	123.89(8)°	C1	C2	H21	110.499°
C1	C2	H22	111.203°	H21	C2	H22	109.250°
C1	C2	H23	109.498°	H21	C2	H23	108.227°
H22	C2	H23	108.082°	C4	C3	P1	115.64(11)
C4	C3	H31	108.007°	P1	C3	H31	108.065°
C4	C3	H32	108.365°	P1	C3	H32	107.129°
H31	C3	H32	109.537°	C3	C4	H43	109.441°
C3	C4	H42	109.989°	H43	C4	H42	109.195°
C3	C4	H41	109.872°	H43	C4	H41	109.414°
H42	C4	H41	108.912°	C6	C5	C10	119.32(14)
C6	C5	P1	120.09(11)°	C10	C5	P1	120.58(11)
C5	C6	C7	120.32(15)°	C5	C6	H61	119.635°
C7	C6	H61	120.045°	C6	C7	C8	119.81(16)
C6	C7	H71	120.149°	C8	C7	H71	120.039°
C7	C8	C9	120.10(15)°	C7	C8	H81	119.272°
C9	C8	H81	120.625°	C8	C9	C10	120.56(16)
C8	C9	H91	119.372°	C10	C9	H91	120.066°
C5	C10	C9	119.84(15)°	C5	C10	H101	119.569°
C9	C10	H101	120.595°	C12	C11	C16	119.21(15)
C12	C11	P1	122.15(13)°	C16	C11	P1	118.63(13)
C11	C12	C13	119.98(19)°	C11	C12	H121	120.053°
C13	C12	H121	119.967°	C12	C13	C14	120.4(2)°
C12	C13	H131	119.639°	C14	C13	H131	119.920°
C13	C14	C15	119.94(18)°	C13	C14	H141	119.775°
C15	C14	H141	120.282°	C14	C15	C16	120.3(2)°
C14	C15	H151	120.064°	C16	C15	H151	119.597°
C11	C16	C15	120.09(19)°	C11	C16	H161	119.843°
C15	C16	H161	120.066°	C18	C17	C22	119.33(15)
C18	C17	P2	118.29(12)°	C22	C17	P2	122.30(13)

C17	C18	C19	120.54(18)°	C17	C18	H181	119.821°
C19	C18	H181	119.628°	C18	C19	C20	119.9(2)°
C18	C19	H191	120.433°	C20	C19	H191	119.682°
C19	C20	C21	120.09(17)°	C19	C20	H201	119.479°
C21	C20	H201	120.426°	C20	C21	C22	120.87(18)°
C20	C21	H211	119.568°	C22	C21	H211	119.560°
C17	C22	C21	119.27(19)°	C17	C22	H221	120.001°
C21	C22	H221	120.724°	C24	C23	C28	119.43(14)°
C24	C23	P2	120.66(11)°	C28	C23	P2	119.91(11)°
C23	C24	C25	120.14(14)°	C23	C24	H241	120.460°
C25	C24	H241	119.395°	C24	C25	C26	119.91(15)°
C24	C25	H251	119.887°	C26	C25	H251	120.196°
C25	C26	C27	120.62(15)°	C25	C26	H261	119.706°
C27	C26	H261	119.673°	C26	C27	C28	119.74(16)°
C26	C27	H271	119.655°	C28	C27	H271	120.606°
C23	C28	C27	120.13(15)°	C23	C28	H281	120.102°
C27	C28	H281	119.773°	C30	C29	C34	119.81(15)°
C30	C29	P2	121.98(12)°	C34	C29	P2	118.08(12)°
C29	C30	C31	119.56(17)°	C29	C30	H301	120.042°
C31	C30	H301	120.391°	C30	C31	C32	119.72(18)°
C30	C31	H311	119.529°	C32	C31	H311	120.746°
C31	C32	C33	120.94(17)°	C31	C32	H321	118.893°
C33	C32	H321	120.166°	C32	C33	C34	119.90(18)°
C32	C33	H331	119.734°	C34	C33	H331	120.358°
C29	C34	C33	120.06(18)°	C29	C34	H341	120.111°
C33	C34	H341	119.831°	C1	P1	C3	117.84(7)°
C1	P1	C5	108.09(7)°	C3	P1	C5	106.53(7)°
C1	P1	C11	113.76(7)°	C3	P1	C11	104.51(7)°
C5	P1	C11	105.20(7)°	C1	P2	C17	109.99(7)°
C1	P2	C23	115.72(7)°	C17	P2	C23	102.36(7)°
C1	P2	C29	110.95(7)°	C17	P2	C29	110.59(7)°
C23	P2	C29	106.88(7)°	F6	S1	01	114.4(3)°
F6	S 1	02	128.8(3)°	01	S1	02	115.13(11)°
F6	S 1	03	26.4(2)°	01	S1	O3	114.17(13)°
02	S1	O3	115.75(12)°	F6	S1	C35	76.0(3)°
01	S 1	C35	102.03(11)°	02	S1	C35	105.49(12)°
03	S1	C35	101.75(15)°	F6	S1	S2	134.9(3)°
01	S1	S2	60.07(13)°	02	S1	S2	82.59(12)°
03	S1	S2	159.89(15)°	C35	S1	S2	63.43(14)°
F6	S 1	C36	43.4(5)°	01	S1	C36	110.3(3)°
02	S1	C36	124.2(3)°	03	S1	C36	69.5(4)°
C35	S1	C36	32.7(4)°	S 2	S1	C36	93.8(4)°
F1	C35	F2	109.1(4)°	F1	C35	F3	107.0(3)°

F2	C35	F3	107.3(3)°	F1	C35	F4	18.3(7)°
F2	C35	F4	96.5(8)°	F3	C35	F4	124.6(7)°
F1	C35	F5	106.9(8)°	F2	C35	F5	22.9(4)°
F3	C35	F5	127.8(6)°	F4	C35	F5	90.1(10)°
F1	C35	S1	110.8(3)°	F2	C35	S1	113.4(2)°
F3	C35	S1	109.1(2)°	F4	C35	S1	105.6(9)°
F5	C35	S1	94.3(5)°	F1	C35	S2	112.7(3)°
F2	C35	S2	133.5(3)°	F3	C35	S2	79.3(2)°
F4	C35	S2	117.8(9)°	F5	C35	S2	120.9(6)°
F1	C35	C36	76.5(6)°	F2	C35	C36	84.9(5)°
F3	C35	C36	164.8(6)°	F4	C35	C36	61.0(9)°
F5	C35	C36	62.8(7)°	S 1	C35	S 2	31.17(8)°
S 1	C35	C36	56.6(5)°	S2	C35	C36	85.7(6)°
F3	S2	01	132.80(16)°	F3	S 2	02	111.78(13)°
01	S2	O2	115.10(16)°	F3	S2	04	31.6(4)°
01	S2	O4	119.5(5)°	02	S2	04	111.5(4)°
F3	S2	S1	127.36(17)°	01	S2	S 1	81.65(15)°
02	S2	S1	61.31(11)°	04	S2	S 1	157.0(5)°
F3	S2	C35	44.20(15)°	01	S2	C35	122.52(16)°
02	S2	C35	106.36(15)°	04	S2	C35	75.6(4)°
S1	S2	C35	85.41(17)°	F3	S2	C36	76.3(3)°
01	S2	C36	102.4(3)°	02	S2	C36	97.5(3)°
04	S2	C36	107.5(5)°	S 1	S2	C36	55.4(3)°
C35	S2	C36	32.1(3)°	F1	C36	F2	91.6(6)°
F1	C36	F4	14.9(9)°	F2	C36	F4	90.2(11)°
F1	C36	F5	106.0(8)°	F2	C36	F5	18.2(7)°
F4	C36	F5	101.3(13)°	F1	C36	F6	123.3(8)°
F2	C36	F6	121.8(7)°	F4	C36	F6	112.3(13)°
F5	C36	F6	103.8(9)°	F1	C36	O3	139.5(6)°
F2	C36	03	127.2(6)°	F4	C36	03	135.0(12)°
F5	C36	03	110.5(8)°	F6	C36	03	30.3(4)°
F1	C36	S1	122.7(6)°	F2	C36	S1	117.1(6)°
F4	C36	S1	135.4(10)°	F5	C36	S1	115.3(9)°
F6	C36	S1	83.8(6)°	F1	C36	C35	63.9(6)°
F2	C36	C35	56.8(5)°	F4	C36	C35	75.0(11)°
F5	C36	C35	74.2(9)°	F6	C36	C35	172.7(10)°
F1	C36	S2	97.1(6)°	F2	C36	S2	105.2(6)°
F4	C36	S2	111.8(10)°	F5	C36	S2	113.4(10)°
F6	C36	S2	113.3(7)°	03	C36	S1	53.8(3)°
03	C36	C35	143.4(8)°	S 1	C36	C35	90.7(7)°
03	C36	S2	84.1(4)°	S 1	C36	S2	30.79(19)°
C35	C36	S2	62.1(5)°				/

Composé 9

deg.

Table 1. Crystal data and structure refinement for 060109.

Empirical formula	C32 H30 P2, 2(C F3 O3 S)
Formula weight	774.64
Temperature	180 K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 1 21/n 1
Unit cell dimensions	a = 15.479(5) A alpha = 90 deg. b = 13.374(5) A beta = 106.112(5)
	c = 19.291(5) A gamma = 90 deg.
Volume	3837(2) A^3
Z, Calculated density	4,1.341 Mg/m^3
Absorption coefficient	0.292 mm^-1
F(000)	1592
Crystal size	0.2 x 0.05 x 0.03 mm
Theta range for data collection	2.20 to 28.29 deg.
Limiting indices	-17<=h<=20, -17<=k<=17, -25<=l<=18
Reflections collected / unique	42662 / 9493 [R(int) = 0.0542]
Completeness to theta = 28.29	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.989 and 0.941
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	9493 / 0 / 453
Goodness-of-fit on F^2	0.984
Final R indices [I>2sigma(I)]	R1 = 0.0553, wR2 = 0.1341
R indices (all data)	R1 = 0.0951, wR2 = 0.1477
Largest diff. peak and hole	0.449 and -0.300 e.A^-3

Table. Bond lengths [A] and angles [deg] for 060109.

C(1)-P(1)	1.785(3)
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600
C(2)-P(2)	1.780(3)
C(2)-H(2A)	0.9600
C(2)-H(2B)	0.9600
C(2)-H(2C)	0.9600
C(3)-C(4)	1.383(3)
C(3)-C(8)	1.391(3)
C(3)-P(1)	1.804(2)
C(4)-C(5)	1.392(3)
C(4)-H(4)	0.9300
C(5)-C(6)	1.392(3)
C(5)-P(2)	1.796(2)
C(6)-C(7)	1.371(4)
C(6)-H(6)	0.9300
C(7)-C(8)	1.392(3)
C(7)-H(7)	0.9300
C(8)-H(8)	0.9300
C(9)-C(10)	1.376(3)
C(9)-C(14)	1.389(3)
C(9)-P(1)	1.793(3)
C(10)-C(11)	1.379(4)
C(10)-H(10)	0.9300
C(11)-C(12)	1.375(4)
C(11)-H(11)	0.9300
C(12)-C(13)	1.370(4)
C(12)-H(12)	0.9300
C(13)-C(14)	1.385(4)
C(13)-H(13)	0.9300
C(14)-H(14)	0.9300
C(15)-C(20)	1.373(4)
C(15)-C(16)	1.382(4)
C(15)-P(1)	1.794(3)
C(16)-C(17)	1.388(4)
C(16)-H(16)	0.9300
C(17)-C(18)	1.372(5)
C(17)-H(17)	0.9300
C(18)-C(19)	1.350(5)
C(18)-H(18)	0.9300
C(19) - C(20)	1.390(4)
C(19)-H(19)	0.9300
C(20)-H(20)	0.9300
C(21)-C(26)	1.369(4)
C(21) - C(22)	1.3/9(4)
(21) - P(2)	1.790(3)
L(22) - L(23)	1.386(4)
C(22) - H(22)	0.9300
C(23) - C(24)	1.352(5)
C(23)-H(23)	0.9300
C(24)-C(25)	1.352(5)

	Annexes
C(24)-H(24) C(25)-C(26) C(25)-H(25) C(26)-H(26) C(27)-C(32) C(27)-C(32) C(27)-C(28) C(29)-C(29) C(28)-H(29) C(29)-H(29) C(30)-C(31) C(30)-H(30) C(31)-C(32) C(31)-H(31) C(32)-H(32) C(31)-H(32) C(50)-F(3) C(50)-F(3) C(50)-F(3) C(50)-F(1) C(50)-F(1) C(50)-F(1) C(51)-F(6) C(51)-F(6) C(51)-F(5) C(51)-F(5) C(51)-F(5) C(51)-F(5) C(51)-F(5) C(51)-F(2) O(1)-S(1) O(2)-S(1) O(4)-S(2) O(6)-S(2)	0.9300 1.376(4) 0.9300 0.9300 1.385(4) 1.394(4) 1.794(3) 1.377(4) 0.9300 1.380(4) 0.9300 1.374(4) 0.9300 1.381(4) 0.9300 1.333(4) 1.334(4) 1.337(4) 1.782(3) 1.335(3) 1.336(3) 1.336(3) 1.426(2) 1.436(2) 1.4336(19) 1.437(2) 1.432(2)
$\begin{array}{l} P(1)-C(1)-H(1A) \\ P(1)-C(1)-H(1B) \\ H(1A)-C(1)-H(1B) \\ P(1)-C(1)-H(1C) \\ H(1A)-C(1)-H(1C) \\ H(1B)-C(1)-H(1C) \\ P(2)-C(2)-H(2A) \\ P(2)-C(2)-H(2B) \\ H(2A)-C(2)-H(2B) \\ H(2A)-C(2)-H(2C) \\ H(2B)-C(2)-H(2C) \\ H(2B)-H(2B)-H(2C) \\ H(2B)-H(2B)-H(2B)-H(2C) \\ H(2B)-H(2B)-H(2B)-H(2B)-H(2B)-H(2B)-H(2B) \\ H(2B)-$	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.8(2) 121.48(17) 118.69(18) 120.0(2) 120.0 120.0 120.0 120.25(18) 120.9(2) 120.9(2) 119.5 119.5 119.4(2)

	Annexes		Annexes				
C(6)-C(7)-H(7)	120.3	C(21) - C(26) - C(25)	119.8(3)				
C(8) - C(7) - H(7)	120.3		120.1				
(3) - (8) - (7)	120.4(2)	L(25)-L(26)-H(26)	120.1				
C(3) - C(8) - H(8)	119.0	C(32) - C(27) - C(20)	120.0(2) 120 51(10)				
C(10) = C(0) = C(14)	119.8	C(32)-C(27)-P(2) C(32)-C(27)-P(2)	120.31(19) 118 9(2)				
C(10) - C(9) - P(1)	120.3(2) 119 33(19)	C(20) - C(27) - C(27)	110.9(2) 119 4(3)				
C(14) - C(9) - P(1)	120 2(2)	C(29) - C(28) - H(28)	120 3				
C(9)-C(10)-C(11)	119.7(2)	C(27) - C(28) - H(28)	120.3				
C(9) - C(10) - H(10)	120.1	C(28)-C(29)-C(30)	120.0(3)				
C(11)-C(10)-H(10)	120.1	C(28)-C(29)-H(29)	120.0				
C(12)-C(11)-C(10)	120.2(3)	C(30)-C(29)-H(29)	120.0				
C(12)-C(11)-H(11)	119.9	C(31)-C(30)-C(29)	120.4(3)				
C(10)-C(11)-H(11)	119.9	C(31)-C(30)-H(30)	119.8				
C(13)-C(12)-C(11)	120.1(3)	C(29)-C(30)-H(30)	119.8				
C(13)-C(12)-H(12)	119.9	C(30)-C(31)-C(32)	120.5(3)				
C(11)-C(12)-H(12)	119.9	C(30)-C(31)-H(31)	119.7				
C(12)-C(13)-C(14)	120.5(3)	C(32)-C(31)-H(31)	119.7				
C(12)-C(13)-H(13)	119.8	C(31)-C(32)-C(27)	119.1(3)				
C(14)-C(13)-H(13)	119.8	C(31)-C(32)-H(32)	120.5				
C(13) - C(14) - C(9)	119.0(3)	C(27)-C(32)-H(32)	120.5				
C(13) - C(14) - H(14)	120.5	F(3)-L(50)-F(2)	106.7(3)				
C(39) - C(14) - H(14)	120.5	F(3)-C(50)-F(1)	106.8(2)				
C(20) - C(15) - C(16) C(20) - C(15) - D(1)	119.8(3)	F(2)-C(50)-F(1)	100.8(3)				
C(16) - C(15) - P(1)	120.4(2)	F(3)-C(50)-S(1) F(2)-C(50)-S(1)	112.3(2) 112.4(2)				
C(15) - C(15) - F(1)	119.8(2) 120 1(3)	F(2) - C(50) - S(1) F(1) - C(50) - S(1)	112.4(2) 111 3(2)				
C(15) - C(16) - H(16)	120.0	F(2) = C(30) = S(2) F(6) = C(51) = F(4)	107.4(2)				
C(17)-C(16)-H(16)	120.0	F(6)-C(51)-F(5)	107.3(2)				
C(18)-C(17)-C(16)	119.4(3)	F(4)-C(51)-F(5)	107.1(3)				
C(18)-C(17)-H(17)	120.3	F(6)-C(51)-S(2)	111.9(2)				
C(16)-C(17)-H(17)	120.3	F(4)-C(51)-S(2)	111.1(2)				
C(19)-C(18)-C(17)	120.5(3)	F(5)-C(51)-S(2)	111.7(2)				
C(19)-C(18)-H(18)	119.7	C(1)-P(1)-C(9)	109.94(13)				
C(17)-C(18)-H(18)	119.7	C(1)-P(1)-C(15)	109.37(13)				
C(18)-C(19)-C(20)	120.9(3)	C(9)-P(1)-C(15)	110.22(12)				
C(18)-C(19)-H(19)	119.6	C(1)-P(1)-C(3)	108.62(12)				
C(20) - C(19) - H(19)	119.6	C(9) - P(1) - C(3)	108.84(11)				
((15)-((20)-((19)))	119.3(3)	C(15) - P(1) - C(3)	109.82(12)				
C(15)-C(20)-H(20) C(10)-C(20)-H(20)	120.4	C(2) - P(2) - C(21)	110.80(13) 100 41(12)				
C(19)-C(20)-H(20) C(26)-C(21)-C(22)	110 2/2)	C(2) - P(2) - C(27)	109.41(12) 109.71(12)				
C(26) - C(21) - C(22) C(26) - C(21) - P(2)	119.5(3) 120 7(2)	C(21)-F(2)-C(21)	109.71(12) 110.04(13)				
C(22) - C(21) - P(2)	119 9(2)	C(2) - F(2) - C(3)	10.04(13) 108 35(11)				
C(21) - C(22) - C(23)	119.7(3)	C(27) - P(2) - C(5)	108.43(12)				
C(21)-C(22)-H(22)	120.2	0(1)-S(1)-0(3)	114.09(14)				
C(23)-C(22)-H(22)	120.2	0(1)-S(1)-O(2)	116.59(13)				
C(24)-C(23)-C(22)	120.4(3)	0(3)-5(1)-0(2)	114.14(14)				
С(24)-С(23)-Н(23)	119.8	0(1)-S(1)-C(50)	103.52(15)				
C(22)-C(23)-H(23)	119.8	0(3)-S(1)-C(50)	102.94(16)				
C(23)-C(24)-C(25)	119.9(3)	O(2)-S(1)-C(50)	103.14(14)				
C(23)-C(24)-H(24)	120.0	0(6)-5(2)-0(4)	115.76(13)				
C(25)-C(24)-H(24)	120.0	0(6)-S(2)-O(5)	115.63(15)				
C(24)-C(25)-C(26)	120.9(4)	0(4)-5(2)-0(5)	113.90(13)				
C(24)-C(25)-H(25)	119.5	0(6)-S(2)-C(51)	102.54(13)				
C(26)-C(25)-H(25)	119.5	0(4)-S(2)-C(51)	103.15(13)				

0(5)-S(2)-C(51)

A] Composé 2 310112

<u>Chapitre III :</u>

<u>Maille :</u> $a = 17.2519(8) \text{ Å } \alpha = 90^{\circ}$ $b = 8.6843(3) \text{ Å } \beta = 110.714(5)^{\circ}$ $c = 14.5205(8) \text{ Å } \gamma = 90^{\circ}$						
Volume	2034.85(18) Å ³	Crysta l Class	Monoclini c			
Space group	P 1 2 ₁ /c 1	Z =	4			
Formula	$\begin{array}{c} C_{24} H_{19} N_4 \\ P_1 \end{array}$	$M_{\rm r}$	394.42			
Cell determined from	7158 reflections	Cell θ range =	3 - 31°			
Temperatur e	180K					
Shape	block					
Colour	colorless	Size	$\begin{array}{c} 0.25 \times \\ 0.25 \times \\ 0.30 \ mm \end{array}$			
D_x	1.29	F000	824.000			
μ	0.153 mm ⁻¹					
Absorption correction	multi-scan					
T_{min}	0.76	T_{max}	0.96			

B] Data Collection

Diffractometer	multi-scan
Scan type	ϕ and ω scans
Reflections measured	19722
Independent reflections	6242
Rint	0.0302
θ_{max}	31.2457
h =	$-22 \rightarrow 24$
k =	$-12 \rightarrow 12$
1 =	$-20 \rightarrow 17$

C] Refinement

 $\begin{array}{ll} \Delta\rho_{min}= & -0.27\ e\ {\mbox{\dot{A}}^{-3}$} \\ \Delta\rho_{max}= & 0.49\ e\ {\mbox{\dot{A}}^{-3}$} \\ Reflections used & 4782 \\ Cutoff:\ I > & 3.00\sigma(I) \\ Parameters refined & 262 \\ \end{array}$

Annexes

S =	1.08
R-factor	0.041
weighted R-factor	0.049
Δ/σ_{max}	0.0006
Refinement on	F
w =	$w' \times [1$ - $(\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$
$\mathbf{w}' =$	$\begin{split} & [P_0T_0'(x)+P_1T_1'(x)+P_{n-1}T_{n-1}'(x)]^{-1},\\ & \text{where }P_i \text{ are the coefficients of a Chebychev series in }t_i(x), \text{ and } x=F_{cale/}F_{calcmax}. \end{split}$
$P_0 - P_{n-1} =$	8.66 5.34 7.27 2.29

D] Angles

N1	C1	N2	110.33(9)°	N1	C1	P1	128.77(8)°
N2	C1	P1	120.82(8)°	C3	C2	N1	110.71(10)°
C3	C2	H21	126.064°	N1	C2	H21	123.226°
C2	C3	N2	105.44(9)°	C2	C3	H31	130.482°
N2	C3	H31	124.080°	C5	C4	C9	120.07(10)°
C5	C4	N2	119.88(9)°	C9	C4	N2	120.05(9)°
C4	C5	C6	119.92(11)°	C4	C5	H51	119.330°
C6	C5	H51	120.734°	C5	C6	C7	119.92(11)°
C5	C6	H61	119.948°	C7	C6	H61	120.132°
C6	C7	C8	120.34(11)°	C6	C7	H71	119.101°
C8	C7	H71	120.556°	C7	C8	C9	120.16(11)°
C7	C8	H81	121.158°	C9	C8	H81	118.682°
C4	C9	C8	119.56(10)°	C4	C9	N3	121.17(9)°
C8	C9	N3	119.25(10)°	N3	C10	N4	112.20(12)°
N3	C10	H101	122.167°	N4	C10	H101	125.633°
C12	C11	N3	106.13(11)°	C12	C11	H111	129.519°
N3	C11	H111	124.325°	C11	C12	N4	110.40(11)°
C11	C12	H121	124.720°	N4	C12	H121	124.880°
C14	C13	C18	117.89(13)°	C14	C13	P1	124.48(9)°
C18	C13	P1	117.48(10)°	C13	C14	C15	120.89(13)°
C13	C14	H141	118.934°	C15	C14	H141	120.176°
C14	C15	C16	120.35(15)°	C14	C15	H151	117.660°
C16	C15	H151	121.990°	C15	C16	C17	119.44(15)°
C15	C16	H161	119.612°	C17	C16	H161	120.946°
C16	C17	C18	120.91(15)°	C16	C17	H171	118.360°
C18	C17	H171	120.728°	C13	C18	C17	120.50(15)°
C13	C18	H181	120.265°	C17	C18	H181	119.231°
C20	C19	C24	119.43(13)°	C20	C19	P1	124.16(10)°
C24	C19	P1	116.41(11)°	C19	C20	C21	119.73(15)°
C19	C20	H201	120.400°	C21	C20	H201	119.847°
C20	C21	C22	120.14(17)°	C20	C21	H211	119.580°
C22	C21	H211	120.279°	C21	C22	C23	120.45(15)°
C21	C22	H221	119.601°	C23	C22	H221	119.925°

C22	C23	C24	119.86(17)°	C22	C23	H231	119.500°
C24	C23	H231	120.602°	C19	C24	C23	120.39(17)°
C19	C24	H241	119.156°	C23	C24	H241	120.402°
C1	N1	C2	105.81(9)°	C1	N2	C3	107.71(9)°
C1	N2	C4	126.49(9)°	C3	N2	C4	125.60(9)°
C9	N3	C10	128.20(10)°	C9	N3	C11	125.52(9)°
C10	N3	C11	106.26(10)°	C10	N4	C12	105.02(11)°
C1	P1	C13	100.74(5)°	C1	P1	C19	100.92(5)°
C13	P1	C19	102.16(6)°				

A] Composé 4 090212

Maille :

 $\begin{array}{l} \hline a = 10.32731(18) ~ {\rm \AA}~ \alpha = 90^{\circ} \\ b = 12.5657(2) ~ {\rm \AA}~~ \beta = 91.7906(16)^{\circ} \\ c = 18.9763(3) ~ {\rm \AA}~~ \gamma = 90^{\circ} \\ \end{array}$

Volume	2461.36(8) Å ³
Space group	P 1 2 ₁ /c 1
Formula	$C_{26}H_{22}F_3N_4O_3P_1S_1$
Cell determined from	8175 reflections
Temperature	100K
Shape	planar
Colour	colorless
D _x	1.51
μ	2.324 mm ⁻¹
Absorption correction	multi-scan
T _{min}	0.74

B] Data Collection

 $\begin{array}{ll} Crystal Class & Monoclinic \\ Z=& & 4 \\ M_r & & 558.52 \\ Cell \, \theta \ range = & 4 - 62^\circ \end{array}$

T_{max} 0.83

 $-21 \rightarrow 21$

1 =

C] <u>Refin</u>	ement
$\Delta\rho_{min} =$	-0.36 e Å ⁻³
$\Delta \rho_{max} =$	0.37 e Å ⁻³
Reflections used	3463
Cutoff: I >	2.50σ(Ι)
Parameters refined	343
S =	0.98
R-factor	0.030
weighted R-factor	0.035
Δ / σ_{max}	0.0014
Refinement on	F
w =	$w' \times [1$ - $(\Delta F_{obs} \slash 6 \times \Delta F_{est})^2]^2$
w' =	$[P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1}$, where P_i are the coefficients of a Chebychev series in $t_i(x)$, and $x = F_{calc}/F_{calcmax}$.
$P_0 - P_{n-1} =$	19.0 15.5 19.8 8.40 4.20

D] Distances

01	S 1	1.4395(12)Å	02	S1	1.4378(12)Å
03	S1	1.4409(12)Å	F1	C26	1.3378(18)Å
F2	C26	1.3313(17)Å	F3	C26	1.3289(18)Å
N1	C1	1.3177(18)Å	N1	C2	1.3734(19)Å
N2	C1	1.3789(18)Å	N2	C3	1.3757(19)Å
N2	C4	1.4360(18)Å	N3	C9	1.4400(18)Å
N3	C10	1.3385(18)Å	N3	C11	1.3881(19)Å
N4	C10	1.3246(18)Å	N4	C12	1.3825(19)Å
N4	C25	1.4678(18)Å	C1	P1	1.8221(13)Å
C2	C3	1.361(2)Å	C2	H21	0.962Å
C3	H31	0.966Å	C4	C5	1.391(2)Å
C4	C9	1.389(2)Å	C5	C6	1.387(2)Å
C5	H51	0.970Å	C6	C7	1.382(2)Å
C6	H61	0.967Å	C7	C8	1.387(2)Å
C7	H71	0.968Å	C8	C9	1.388(2)Å
C8	H81	0.978Å	C10	H101	0.973Å
C11	C12	1.349(2)Å	C11	H111	0.978Å
C12	H121	0.967Å	C13	C14	1.389(2)Å
C13	C18	1.404(2)Å	C13	P1	1.8355(14)Å
C14	C15	1.393(2)Å	C14	H141	0.980Å
C15	C16	1.383(2)Å	C15	H151	0.963Å
C16	C17	1.393(2)Å	C16	H161	0.977Å
C17	C18	1.381(2)Å	C17	H171	0.966Å
C18	H181	0.973Å	C19	C20	1.396(2)Å
C19	C24	1.402(2)Å	C19	P1	1.8378(14)Å
C20	C21	1.396(2)Å	C20	H201	0.979Å

C21	C22	1.388(2)Å	C2	1 H21	0.982Å	
C22	C23	1.389(2)Å	C2	2 H22	l 0.990Å	
C23	C24	1.391(2)Å	C2	3 H23	l 0.975Å	
C24	H241	0.974Å	C2	5 H252	2 0.981Å	
C25	H251	0.981Å	C2	5 H253	3 0.989Å	
C26	S1	1.8263(16)Å				

E] Angles

C1	N1	C2	105.93(12)°	C1	N2	C3	106.73(11)°
C1	N2	C4	128.80(11)°	C3	N2	C4	124.00(12)°
C9	N3	C10	123.74(11)°	C9	N3	C11	126.52(11)°
C10	N3	C11	109.03(11)°	C10	N4	C12	108.93(12)°
C10	N4	C25	124.74(12)°	C12	N4	C25	126.11(12)°
N1	C1	N2	110.87(12)°	N1	C1	P1	125.93(10)°
N2	C1	P1	123.00(10)°	N1	C2	C3	110.45(12)°
N1	C2	H21	123.408°	C3	C2	H21	126.114°
N2	C3	C2	106.02(12)°	N2	C3	H31	124.924°
C2	C3	H31	129.046°	N2	C4	C5	118.25(12)°
N2	C4	C9	122.77(12)°	C5	C4	C9	118.96(13)°
C4	C5	C6	120.23(14)°	C4	C5	H51	118.733°
C6	C5	H51	121.022°	C5	C6	C7	120.25(13)°
C5	C6	H61	119.188°	C7	C6	H61	120.560°
C6	C7	C8	120.21(14)°	C6	C7	H71	119.954°
C8	C7	H71	119.840°	C7	C8	C9	119.28(13)°
C7	C8	H81	120.994°	C9	C8	H81	119.720°
N3	C9	C4	121.78(12)°	N3	C9	C8	117.16(12)°
C4	C9	C8	121.05(13)°	N3	C10	N4	108.13(12)°
N3	C10	H101	125.263°	N4	C10	H101	126.602°
N3	C11	C12	106.29(12)°	N3	C11	H111	122.903°
C12	C11	H111	130.796°	N4	C12	C11	107.61(12)°
N4	C12	H121	124.254°	C11	C12	H121	128.137°
C14	C13	C18	118.98(13)°	C14	C13	P1	122.80(11)°
C18	C13	P1	118.13(10)°	C13	C14	C15	120.32(13)°
C13	C14	H141	119.858°	C15	C14	H141	119.811°
C14	C15	C16	120.50(14)°	C14	C15	H151	119.794°
C16	C15	H151	119.701°	C15	C16	C17	119.37(14)°
C15	C16	H161	119.880°	C17	C16	H161	120.751°
C16	C17	C18	120.53(14)°	C16	C17	H171	119.883°
C18	C17	H171	119.590°	C13	C18	C17	120.26(13)°
C13	C18	H181	119.672°	C17	C18	H181	120.063°
C20	C19	C24	119.23(13)°	C20	C19	P1	124.48(11)°
C24	C19	P1	116.14(11)°	C19	C20	C21	120.09(14)°
C19	C20	H201	119.601°	C21	C20	H201	120.298°

Annexes

C20	C21	C22	120.25(14)°	C20	C21	H211	119.642°
C22	C21	H211	120.113°	C21	C22	C23	119.95(14)°
C21	C22	H221	119.565°	C23	C22	H221	120.483°
C22	C23	C24	120.15(15)°	C22	C23	H231	120.096°
C24	C23	H231	119.734°	C19	C24	C23	120.26(14)°
C19	C24	H241	119.028°	C23	C24	H241	120.708°
N4	C25	H252	108.152°	N4	C25	H251	108.946°
H252	C25	H251	110.797°	N4	C25	H253	109.869°
H252	C25	H253	109.383°	H251	C25	H253	109.672°
F1	C26	F2	106.96(12)°	F1	C26	F3	107.49(13)°
F2	C26	F3	107.30(12)°	F1	C26	S1	111.00(10)°
F2	C26	S1	112.18(10)°	F3	C26	S1	111.65(10)°
C1	P1	C13	97.82(6)°	C1	P1	C19	101.71(6)°
C13	P1	C19	104.03(6)°	01	S1	02	115.03(7)°
01	S1	O3	115.63(7)°	02	S1	O3	115.40(7)°
01	S1	C26	102.92(7)°	02	S1	C26	102.46(7)°
O3	S1	C26	102.52(7)°				

A] Composé 5 020512

Maille :

 $\label{eq:a} \hline a = 10.2886(3) \mbox{ Å } \alpha = 90^{\circ} \\ b = 23.8018(7) \mbox{ Å } \beta = 96.338(2)^{\circ} \\ c = 18.4053(4) \mbox{ Å } \gamma = 90^{\circ} \\ \hline \end{array}$

Volume	4479.7(2) Å ³	Crys
Space group	P 1 2 ₁ /n 1	Z =
Formula	$\begin{array}{c} C_{16}H_{14}F_6N_4O_6\\ S_2 \end{array}$	$M_{\rm r}$
Cell determined from	7979 reflections	Cell =
Temperature	100K	
Shape	plate	
Colour	colorless	Size
D _x	1.59	F000
μ	3.017 mm ⁻¹	
Absorption correction	multi-scan	
T _{min}	0.55	T_{max}

Crystal Class Z =	Monoclinic 8
M_r	536.43
Cell θ range =	3 - 61°
Size	$\begin{array}{c} 0.01 \times 0.15 \times 0.20 \\ mm \end{array}$
F000	2176.000

0.97

B1 Data (ollection
DJ <u>Data C</u>	
Diffractometer	multi-scan
Scan type	φ and ω scans
Reflections measu	ured 27193
Independent refle	ctions 6804
Rint	0.0466
θ_{max}	60.8940
$\mathbf{h} =$	$-11 \rightarrow 11$
k =	$0 \rightarrow 26$
1 =	$0 \rightarrow 20$
C] <u>Refine</u>	ment
$\Delta\rho_{min} =$	-0.90 e Å ⁻³
$\Delta \rho_{max} =$	1.55 e Å ⁻³
Reflections used	5093
Cutoff: I >	2.50o(I)
Parameters	612

1.13

refined

S =

R-factor	0.089
weighted R-factor	0.095
Δ/σ_{max}	0.0003
Refinement on	F
$\mathbf{w} =$	$w' \times [1 - (\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$
w' =	$\begin{split} & [P_0T_0'(x)+P_1T_1'(x)+P_{n-1}T_{n-1}'(x)]^{-1},\\ & \text{where }P_i \text{ are the coefficients of a Chebychev series in }t_i(x)\text{, and }x=\\ & F_{calc}/F_{calcmax}. \end{split}$
$P_0 - P_{n-1} =$	15.5 13.1 13.1 3.69

D] Distances

C1	C11	1.418(7)Å	C1	N1	1.332(7)Å
C1	N2	1.361(7)Å	C2	2 C3	1.332(9)Å
C2	N1	1.389(8)Å	C2	H21	0.922Å
C3	N2	1.364(7)Å	C3	H31	0.927Å
C4	C5	1.386(8)Å	C4	C14	1.376(8)Å
C4	N2	1.426(7)Å	C5	5 C6	1.385(9)Å
C5	H51	0.921Å	Cé	6 C16	1.357(9)Å
C6	H61	0.938Å	C7	/ N1	1.473(8)Å
C7	H72	0.956Å	C7	H71	0.955Å
C7	H73	0.956Å	C1	1 N11	1.340(7)Å
C11	N12	1.367(7)Å	C1	2 C13	1.334(8)Å

C12	N11	1.365(7)Å	C12	H121	0.921Å
C13	N12	1.366(7)Å	C13	H131	0.924Å
C14	C15	1.396(8)Å	C14	N12	1.408(7)Å
C15	C16	1.360(9)Å	C15	H151	0.931Å
C16	H161	0.930Å	C17	N11	1.490(7)Å
C17	H172	0.955Å	C17	H171	0.958Å
C17	H173	0.959Å	C21	C31	1.420(8)Å
C21	N21	1.351(7)Å	C21	N22	1.363(7)Å
C22	C23	1.356(9)Å	C22	N21	1.355(8)Å
C22	H221	0.926Å	C23	N22	1.370(7)Å
C23	H231	0.923Å	C24	C25	1.408(8)Å
C24	C34	1.371(8)Å	C24	N22	1.416(7)Å
C25	C26	1.357(9)Å	C25	H251	0.930Å
C26	C36	1.385(10)Å	C26	H261	0.928Å
C27	N21	1.465(9)Å	C27	H272	0.960Å
C27	H271	0.969Å	C27	H273	0.959Å
C31	N31	1.351(7)Å	C31	N32	1.354(7)Å
C32	C33	1.342(8)Å	C32	N31	1.377(7)Å
C32	H321	0.925Å	C33	N32	1.375(7)Å
C33	H331	0.928Å	C34	C35	1.387(8)Å
C34	N32	1.428(7)Å	C35	C36	1.386(9)Å
C35	H351	0.939Å	C36	H361	0.936Å
C37	N31	1.462(7)Å	C37	H372	0.955Å
C37	H371	0.956Å	C37	H373	0.954Å
C41	S 1	1.786(7)Å	C41	F1	1.361(9)Å
C41	F2	1.336(8)Å	C41	F3	1.307(8)Å
C42	S2	1.813(7)Å	C42	F4	1.341(8)Å
C42	F5	1.325(8)Å	C42	F6	1.325(8)Å
C43	S 3	1.797(8)Å	C43	F7	1.335(8)Å
C43	F8	1.324(8)Å	C43	F9	1.361(8)Å
C44	S4	1.790(9)Å	C44	F10	1.285(9)Å
C44	F11	1.360(9)Å	C44	F12	1.318(12)Å
S1	01	1.423(4)Å	S1	02	1.485(4)Å
S1	03	1.423(5)Å	S2	04	1.433(5)Å
S2	05	1.449(4)Å	S2	06	1.439(4)Å

S3 O7

S3 O9

1.441(5)Å

1.449(4)Å

Annexes

S4 O10 1.445(6)Å

1.441(4)Å

S3 O8

S 4	011	1.429(5)	Å	S 4	012	1.400(4)	Å
	E]	Angles					
C11	C1	N1 13	24 7(5)0		C11	C1 N2	

C11	C1	N1	134.7(5)°	C11	C1	N2	118.1(5)°
N1	C1	N2	107.1(4)°	C3	C2	N1	108.0(5)°
C3	C2	H21	125.749°	N1	C2	H21	126.261°
C2	C3	N2	107.3(5)°	C2	C3	H31	126.007°
N2	C3	H31	126.706°	C5	C4	C14	120.5(5)°
C5	C4	N2	121.4(5)°	C14	C4	N2	118.1(5)°
C4	C5	C6	118.5(6)°	C4	C5	H51	119.827°
C6	C5	H51	121.676°	C5	C6	C16	120.8(6)°
C5	C6	H61	118.990°	C16	C6	H61	120.210°
N1	C7	H72	110.831°	N1	C7	H71	111.105°
H72	C7	H71	108.269°	N1	C7	H73	111.103°
H72	C7	H73	108.040°	H71	C7	H73	107.351°
C1	C11	N11	134.7(5)°	C1	C11	N12	118.9(4)°
N11	C11	N12	106.3(4)°	C13	C12	N11	108.3(5)°
C13	C12	H121	125.453°	N11	C12	H121	126.257°
C12	C13	N12	107.2(5)°	C12	C13	H131	127.014°
N12	C13	H131	125.749°	C4	C14	C15	119.7(5)°
C4	C14	N12	118.5(5)°	C15	C14	N12	121.8(5)°
C14	C15	C16	119.2(6)°	C14	C15	H151	120.096°
C16	C15	H151	120.678°	C6	C16	C15	121.2(6)°
C6	C16	H161	119.593°	C15	C16	H161	119.155°
N11	C17	H172	108.947°	N11	C17	H171	110.839°
H172	C17	H171	108.999°	N11	C17	H173	109.671°
H172	C17	H173	109.589°	H171	C17	H173	108.778°
C31	C21	N21	135.8(5)°	C31	C21	N22	117.7(5)°
N21	C21	N22	106.5(5)°	C23	C22	N21	109.1(5)°
C23	C22	H221	125.730°	N21	C22	H221	125.218°
C22	C23	N22	105.9(5)°	C22	C23	H231	127.220°
N22	C23	H231	126.842°	C25	C24	C34	119.8(5)°
C25	C24	N22	121.1(5)°	C34	C24	N22	119.0(5)°
C24	C25	C26	118.7(6)°	C24	C25	H251	119.585°
C26	C25	H251	121.697°	C25	C26	C36	122.0(6)°
C25	C26	H261	118.899°	C36	C26	H261	119.060°
N21	C27	H272	108.983°	N21	C27	H271	109.363°
H272	C27	H271	109.128°	N21	C27	H273	110.304°

H272	C27	H273	109.488°	H271	C27	H273	109.554°
C21	C31	N31	134.7(5)°	C21	C31	N32	119.2(5)°
N31	C31	N32	106.0(5)°	C33	C32	N31	108.9(5)°
C33	C32	H321	126.068°	N31	C32	H321	125.078°
C32	C33	N32	105.8(5)°	C32	C33	H331	127.411°
N32	C33	H331	126.818°	C24	C34	C35	120.9(5)°
C24	C34	N32	117.4(5)°	C35	C34	N32	121.8(5)°
C34	C35	C36	119.3(6)°	C34	C35	H351	119.669°
C36	C35	H351	121.025°	C26	C36	C35	119.2(6)°
C26	C36	H361	120.382°	C35	C36	H361	120.369°
N31	C37	H372	109.072°	N31	C37	H371	110.151°
H372	C37	H371	108.956°	N31	C37	H373	110.642°
H372	C37	H373	109.131°	H371	C37	H373	108.860°
S1	C41	F1	108.4(5)°	S1	C41	F2	112.9(5)°
F1	C41	F2	105.9(6)°	S1	C41	F3	112.9(5)°
F1	C41	F3	106.6(6)°	F2	C41	F3	109.7(6)°
S2	C42	F4	110.6(4)°	S2	C42	F5	112.1(5)°
F4	C42	F5	106.1(5)°	S2	C42	F6	111.8(5)°
F4	C42	F6	108.1(6)°	F5	C42	F6	107.9(5)°
S 3	C43	F7	111.8(5)°	S 3	C43	F8	111.9(5)°
F7	C43	F8	108.1(5)°	S 3	C43	F9	111.5(4)°
F7	C43	F9	106.3(6)°	F8	C43	F9	106.9(6)°
S4	C44	F10	113.8(6)°	S4	C44	F11	107.9(7)°
F10	C44	F11	109.2(7)°	S4	C44	F12	112.1(6)°
F10	C44	F12	107.6(9)°	F11	C44	F12	105.9(8)°
C1	N1	C2	108.4(5)°	C1	N1	C7	131.2(5)°
C2	N1	C7	120.3(5)°	C1	N2	C3	109.2(5)°
C1	N2	C4	123.2(4)°	C3	N2	C4	127.6(5)°
C11	N11	C12	109.2(4)°	C11	N11	C17	131.0(5)°
C12	N11	C17	119.8(5)°	C11	N12	C13	108.9(4)°
C11	N12	C14	123.1(4)°	C13	N12	C14	127.9(4)°
C21	N21	C22	108.8(5)°	C21	N21	C27	129.9(5)°
C22	N21	C27	121.3(5)°	C21	N22	C23	109.7(5)°
C21	N22	C24	123.3(5)°	C23	N22	C24	126.9(5)°
C31	N31	C32	108.7(5)°	C31	N31	C37	129.9(5)°
C32	N31	C37	121.4(5)°	C31	N32	C33	110.6(4)°
C31	N32	C34	123.3(5)°	C33	N32	C34	126.1(5)°
C41	S1	01	106.8(3)°	C41	S 1	02	102.3(3)°

01	S 1	02	111.3(3)°	C41	S 1	03	105.6(3)°
01	S 1	03	118.5(3)°	O2	S 1	03	110.9(3)°
C42	S2	O4	102.8(3)°	C42	S 2	05	102.4(3)°
04	S2	05	114.6(3)°	C42	S2	06	104.1(3)°
O4	S2	06	115.8(3)°	05	S 2	06	114.7(3)°
C43	S 3	07	103.3(3)°	C43	S 3	08	103.9(3)°
O 7	S 3	08	114.8(3)°	C43	S 3	09	103.3(3)°
07	S 3	09	115.5(3)°	08	S 3	09	113.9(3)°
C44	S 4	O10	104.7(5)°	C44	S 4	011	103.4(4)°
O10	S 4	011	109.4(4)°	C44	S4	012	106.1(3)°
O10	S4	012	114.9(4)°	011	S 4	012	116.9(3)°

A] Composé 6 250512

Maille : $a = 11.37505(13) \text{ Å} \alpha = 90^{\circ}$ $b = 16.09785(17) \text{ Å } \beta = 96.0475(11)^{\circ}$ $c = 11.60677(14) \text{ Å } \gamma = 90^{\circ}$

Volume	2113.53(4) Å ³	Crystal Class	Monoclinic
Space group	P 1 2 ₁ /c 1	Z =	4
Formula	$\begin{array}{c} C_{16}H_{16}F_6N_4O_6\\ S_2 \end{array}$	M_r	538.45
Cell determined from	25125 reflections	Cell θ range =	3 - 31°
Temperature	100K		
Shape	stick		
Colour	colorless	Size	$\begin{array}{c} 0.15 \times 0.15 \times \\ mm \end{array}$
D _x	1.69	F000	1096.000
μ	0.348 mm ⁻¹		
Absorption correction	multi-scan		
T_{min}	0.83	T _{max}	0.95
B] Data Colle	ection		

297

Diffractometer multi-scan Scan type ϕ and ω scans Reflections measured 63741

0.30

Independent refle	Independent reflections 6255							
Rint	0.0241							
θ_{max}	30.8257							
h =	$-16 \rightarrow 16$							
k =	$-22 \rightarrow 22$							
1 =	$-16 \rightarrow 16$							
C] Refine	ment							
$\Delta \rho_{min} =$	-0.38 e Å ⁻³							
$\Delta \rho_{max} =$	0.43 e Å ⁻³							
Reflections used	5521							
Cutoff: I >	3.00o(I)							

Parameters refined	307
S =	1.03
R-factor	0.029
weighted R-factor	0.036
Δ/σ_{max}	0.0020
Refinement on	F
w =	$w' \times [1 - (\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$
	$[P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1},$
w' =	where P_i are the coefficients of a Chebychev series in $t_i(x)$, and $x =$
	F _{calc} /F _{calcmax} .

298

 $P_0 - P_{n-1} =$ 7.87 5.71 6.74 1.57

D] Distances

C1	N1	1.3261(11)Å	C1	N2	1.3438(10)Å
C1	H11	0.907Å	C2	C3	1.3552(11)Å
C2	N1	1.3903(11)Å	C2	H21	0.932Å
C3	N2	1.3913(10)Å	C3	H31	0.908Å
C4	C5	1.3927(11)Å	C4	C9	1.3951(11)Å
C4	N2	1.4317(10)Å	C5	C6	1.3945(12)Å
C5	H51	0.913Å	C6	C7	1.3962(14)Å
C6	H61	0.939Å	C7	C8	1.3946(13)Å
C7	H71	0.932Å	C8	C9	1.3894(11)Å
C8	H81	0.949Å	C9	N3	1.4347(10)Å
C10	C11	1.3597(11)Å	C10	N3	1.3921(10)Å
C10	H101	0.923Å	C11	N4	1.3874(11)Å
C11	H111	0.913Å	C12	N3	1.3441(10)Å
C12	N4	1.3290(11)Å	C12	H121	0.915Å
C13	N1	1.4647(11)Å	C13	H132	0.967Å

C13	H131	0.948Å	C13	H133	0.977Å
C14	N4	1.4696(11)Å	C14	H142	0.947Å
C14	H143	0.958Å	C14	H141	0.945Å
C15	S1	1.8282(10)Å	C15	F1	1.3376(14)Å
C15	F2	1.3443(11)Å	C15	F3	1.3325(13)Å
C16	S2	1.8277(9)Å	C16	F4	1.3379(10)Å
C16	F5	1.3405(10)Å	C16	F6	1.3452(10)Å
01	S 1	1.4450(7)Å	02	S 1	1.4440(7)Å
O3	S1	1.4475(7)Å	04	S2	1.4437(7)Å
05	S2	1.4480(8)Å	06	S2	1.4469(7)Å

E] Angles

N1	C1	N2	108.10(7)°	N1	C1	H11	126.088°
N2	C1	H11	125.798°	C3	C2	N1	107.14(7)°
C3	C2	H21	129.651°	N1	C2	H21	123.201°
C2	C3	N2	106.55(7)°	C2	C3	H31	128.988°
N2	C3	H31	124.430°	C5	C4	C9	120.16(7)°
C5	C4	N2	119.69(7)°	C9	C4	N2	120.14(7)°
C4	C5	C6	119.21(8)°	C4	C5	H51	119.350°
C6	C5	H51	121.426°	C5	C6	C7	120.60(8)°
C5	C6	H61	121.401°	C7	C6	H61	117.993°
C6	C7	C8	119.85(8)°	C6	C7	H71	120.588°
C8	C7	H71	119.556°	C7	C8	C9	119.53(8)°
C7	C8	H81	121.348°	C9	C8	H81	119.119°
C4	C9	C8	120.50(7)°	C4	C9	N3	120.24(7)°
C8	C9	N3	119.24(7)°	C11	C10	N3	106.39(7)°
C11	C10	H101	130.954°	N3	C10	H101	122.659°
C10	C11	N4	107.15(7)°	C10	C11	H111	129.226°
N4	C11	H111	123.597°	N3	C12	N4	107.91(7)°
N3	C12	H121	125.344°	N4	C12	H121	126.739°
N1	C13	H132	110.156°	N1	C13	H131	110.336°
H132	C13	H131	109.906°	N1	C13	H133	108.206°
H132	C13	H133	108.071°	H131	C13	H133	110.121°
N4	C14	H142	108.585°	N4	C14	H143	108.263°
H142	C14	H143	108.603°	N4	C14	H141	109.091°
H142	C14	H141	112.096°	H143	C14	H141	110.116°
S 1	C15	F1	110.98(7)°	S1	C15	F2	111.08(7)°
F1	C15	F2	107.41(9)°	S1	C15	F3	111.68(7)°

F1	C15	F3	107.90(9)°	F2	C15	F3	107.60(9)°
S2	C16	F4	112.10(6)°	S2	C16	F5	111.35(6)°
F4	C16	F5	107.85(7)°	S2	C16	F6	110.60(6)°
F4	C16	F6	107.42(7)°	F5	C16	F6	107.31(7)°
C1	N1	C2	109.22(7)°	C1	N1	C13	124.52(8)°
C2	N1	C13	126.16(7)°	C1	N2	C3	108.99(7)°
C1	N2	C4	124.51(7)°	C3	N2	C4	126.33(7)°
C9	N3	C10	125.83(7)°	C9	N3	C12	124.97(7)°
C10	N3	C12	109.16(7)°	C11	N4	C12	109.39(7)°
C11	N4	C14	125.70(8)°	C12	N4	C14	124.87(8)°
C15	S1	01	102.63(5)°	C15	S1	O2	103.68(5)°
01	S1	02	115.16(5)°	C15	S 1	03	102.73(4)°
01	S1	03	115.12(4)°	02	S 1	03	114.97(4)°
C16	S2	04	102.52(4)°	C16	S2	O5	103.42(4)°
04	S2	05	115.12(5)°	C16	S2	06	103.32(4)°
04	S 2	06	115.06(5)°	05	S2	06	114.92(5)°

A] Composé 10 060510

Maille : $a = 9.2198(2) \text{ Å} \quad \alpha = 90^{\circ}$ $b = 15.5327(3) \text{ Å } \beta = 90^{\circ}$ $c = 16.9810(3) \text{ Å} \gamma = 90^{\circ}$

Volume	2431.82(8) Å ³
Space group	$P 2_1 2_1 2_1$
Formula	$\begin{array}{c} C_{25} \ H_{21} \ Cl_2 \ N_4 \ P_1 \\ Pd_1 \end{array}$
Cell determined from	15978 reflections
Temperature	180K
Shape	block
Colour	yellow
D _x	1.60
μ	1.070 mm ⁻¹
Absorption	multi-scan

Crystal Class orthorhombic

Size

Z = 4 M_r 585.75 Cell θ range 3 - 29° =

0.20 imes 0.20 imes 0.20mm F000 1176.000

correction			
$\mathrm{T}_{\mathrm{min}}$	0.78	T _{max}	0.81
B1 Data (Collection		
Diffusition atom	CEMINI		
Diffractometer	GEMINI		
Scan type	φ and ω scans		
Reflections measure	ured 24534		
Independent refle	ctions 5899		
Rint	0.0286		
θ_{max}	29.1657		
$\mathbf{h} =$	$-12 \rightarrow 12$		
k =	$-21 \rightarrow 21$		
1 =	$-23 \rightarrow 23$		
C] Refine	ement		
$\Delta \rho_{\min} =$	-0.33 e Å ⁻³		
$\Delta \rho_{max} =$	0.38 e Å ⁻³		
Reflections used	5010		
Cutoff: I >	3,00g(I)		
Parameters refined	299		
S =	1.02		
R-factor	0.021		
weighted R-factor	r 0.022		
Δ/σ_{max}	0.0028		
Flack parameter	0.045(18)		
Refinement on	F		
w =	$w' \times [1$ - $(\Delta F_{obs} / 6 \times \Delta F_{est})^2]^2$		
$\mathbf{w'} =$	$\begin{split} & [P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)] \\ & \text{where } P_i \text{ are the coefficients of a Ch} \\ & F_{calc}/F_{calcmax}. \end{split}$	⁻¹ , hebychev series	in $t_i(x)$, and $x =$
$P_0 - P_{n-1} =$	6.19 -4.81 3.37		
DI D'			

D] Distances	
--------------	--

N1	C1	1.352(3)Å	N1	C2	1.386(3)Å
N1	C13	1.460(3)Å	N2	C1	1.346(3)Å
N2	C3	1.396(3)Å	N2	C4	1.424(3)Å
N3	C5	1.428(3)Å	N3	C10	1.376(3)Å
N3	C12	1.376(3)Å	N4	C10	1.320(3)Å
N4	C11	1.377(3)Å	C1	Pd1	1.972(2)Å
C2	C3	1.340(4)Å	C2	H21	0.934Å

C3	H31	0.933Å	C4	C5	1.388(4)Å
C4	C9	1.392(3)Å	C5	C6	1.383(4)Å
C6	C7	1.384(4)Å	C6	H61	0.926Å
C7	C8	1.380(5)Å	C7	H71	0.941Å
C8	C9	1.385(4)Å	C8	H81	0.922Å
C9	H91	0.946Å	C10	P1	1.822(2)Å
C11	C12	1.345(4)Å	C11	H111	0.923Å
C12	H121	0.926Å	C13	H132	0.949Å
C13	H131	0.953Å	C13	H133	0.946Å
C14	C15	1.389(4)Å	C14	C19	1.394(4)Å
C14	P1	1.816(2)Å	C15	C16	1.385(4)Å
C15	H151	0.916Å	C16	C17	1.374(5)Å
C16	H161	0.920Å	C17	C18	1.387(5)Å
C17	H171	0.944Å	C18	C19	1.392(4)Å
C18	H181	0.917Å	C19	H191	0.935Å
C20	C21	1.395(3)Å	C20	C25	1.384(4)Å
C20	P1	1.816(2)Å	C21	C22	1.392(4)Å
C21	H211	0.923Å	C22	C23	1.374(5)Å
C22	H221	0.939Å	C23	C24	1.371(5)Å
C23	H231	0.923Å	C24	C25	1.386(4)Å
C24	H241	0.906Å	C25	H251	0.959Å
Pd1	P1	2.2308(6)Å	Pd1	Cl2	2.3344(6)Å
Pd1	Cl1	2.3501(7)Å			

El	Angles
	1 mgieb

C1	N1	C2	110.2(2)°	C1	N1	C13	124.9(2)°
C2	N1	C13	124.8(2)°	C1	N2	C3	110.8(2)°
C1	N2	C4	124.39(18)°	C3	N2	C4	124.74(19)°
C5	N3	C10	129.3(2)°	C5	N3	C12	124.2(2)°
C10	N3	C12	106.52(19)°	C10	N4	C11	104.9(2)°
N1	C1	N2	105.29(19)°	N1	C1	Pd1	127.38(17)°
N2	C1	Pd1	126.95(16)°	N1	C2	C3	107.5(2)°
N1	C2	H21	124.652°	C3	C2	H21	127.806°
N2	C3	C2	106.1(2)°	N2	C3	H31	125.091°
C2	C3	H31	128.811°	N2	C4	C5	119.2(2)°
N2	C4	C9	120.4(2)°	C5	C4	C9	120.3(2)°
N3	C5	C4	120.4(2)°	N3	C5	C6	119.5(2)°
C4	C5	C6	119.9(2)°	C5	C6	C7	119.7(3)°

C5	<u>C6</u>	U41	110 7110	C7	<u>C6</u>	1161	121 5650
C_{5}		П01 С9	110./11			H01	121.303
	C7		120.4(3)	C6		H/I	120.269*
C8	C7	H/1	119.286°	C/	C8	<u>C9</u>	120.3(3)°
C 7	C8	H81	120.017°	C9	C8	H81	119.650°
C4	C9	C8	119.3(3)°	C4	C9	H91	120.738°
C8	C9	H91	120.000°	N3	C10	N4	111.23(19)°
N3	C10	P1	123.45(17)°	N4	C10	P1	125.19(17)°
N4	C11	C12	111.3(2)°	N4	C11	H111	122.547°
C12	C11	H111	126.148°	N3	C12	C11	106.0(2)°
N3	C12	H121	125.376°	C11	C12	H121	128.612°
N1	C13	H132	108.924°	N1	C13	H131	107.739°
H132	C13	H131	111.356°	N1	C13	H133	108.494°
H132	C13	H133	108.566°	H131	C13	H133	111.687°
C15	C14	C19	119.8(2)°	C15	C14	P1	118.67(19)°
C19	C14	P1	121.4(2)°	C14	C15	C16	120.4(3)°
C14	C15	H151	119.873°	C16	C15	H151	119.725°
C15	C16	C17	119.8(3)°	C15	C16	H161	118.709°
C17	C16	H161	121.468°	C16	C17	C18	120.5(3)°
C16	C17	H171	120.238°	C18	C17	H171	119.228°
C17	C18	C19	120.1(3)°	C17	C18	H181	118.732°
C19	C18	H181	121.213°	C14	C19	C18	119.4(3)°
C14	C19	H191	121.382°	C18	C19	H191	119.238°
C21	C20	C25	119.4(2)°	C21	C20	P1	120.6(2)°
C25	C20	P1	119.6(2)°	C20	C21	C22	119.4(3)°
C20	C21	H211	121.237°	C22	C21	H211	119.378°
C21	C22	C23	120.5(3)°	 C21	C22	H221	118.614°
C23	C22	H221	120.851°	C22	C23	C24	120.1(3)°
C22	C23	H231	119.572°	C24	C23	H231	120.295°
C23	C24	C25	120.2(3)°	C23	C24	H241	119.746°
C25	C24	H241	120.058°	C20	C25	C24	120.3(3)°
C20	C25	H251	120.342°	C24	C25	H251	119.344°
C1	Pd1	P1	92.69(7)°	C1	Pd1	C12	177.53(7)°
P1	Pd1	Cl2	87.69(2)°	C1	Pd1	Cl1	87.18(7)°
P1	Pd1	C11	178 54(3)°	C12	Pd1	C11	92 38(3)°
C10	P1	C14	101 78(10)°	C10	P1	C20	103 86(11)°
C14	тт Р1	C20	109 15(12)	C10	P1	Pd1	117 13(8)°
C14	1 1 D1	Dd1	115 10(0)°	C_{20}	1 1 D1	Dd1	108 02(8)°
U14	r1	rui	113.19(9)*	C20	r1	rui	108.92(8)

A] Composé 13 200409

Maille :											
a = 10.9023	(7) Å $\alpha = 90^{\circ}$										
b = 31.179(2	$b = 31.179(2) \text{ Å} \beta = 97.982(4)^{\circ}$										
c = 12.68220	(8) Å $\gamma = 90^{\circ}$										
Volume	4269.2(5) Å ³	Crystal Class	Monoclinic								
Space group	P 1 2 ₁ /c 1	Z =	4								
Formula	$\begin{array}{c} C_{45}H_{36}F_6 \\ N_2O_6P_2 \\ S_2 \end{array}$	$M_{\rm r}$	940.86								
Cell determined from	5963 reflections	Cell θ range =	2 - 20°								
Temperature	e 180K										
Shape	planar										
Colour	colorless	Size	$\begin{array}{c} 0.02 \times 0.25 \\ \times \ 0.30 \ mm \end{array}$								
D _x	1.46	F000	1936.000								
μ	0.278 mm ⁻¹										
Absorption	multi-										
correction	scan										
T_{min}	0.96	T_{max}	0.99								
B] <u>D</u>	Data Collection	PEX2									

 ϕ and ω scans

0.0725

20.2746

Scan type

Rint

 θ_{max}

Reflections measured 49062 Independent reflections 4144

		Annexes					1	Annexes
h =	$-10 \rightarrow 10$			_	C16 H161	0.955Å	C17 C18	1.415(5)Å
k =	$-30 \rightarrow 30$				C17 H171	0.953Å	C18 P2	1.813(3)Å
1 =	$-12 \rightarrow 12$				C19 C20	1.388(5)Å	C19 C24	1.389(5)Å
Cl D. C.					C19 P2	1.792(4)Å	C20 C21	1.369(5)Å
CJ <u>Refine</u>	$\frac{1}{2}$				C20 H201	0.951Å	C21 C22	1.377(6)Å
$\Delta \rho_{\rm min} =$	-0.36 e A^{-3}				C21 H211	0.955Å	C22 C23	1.369(6)Å
$\Delta p_{max} =$	0.49 e A 3453				C22 H221	0.946Å	C23 C24	1.386(5)Å
	$1.00\sigma(I)$				C23 H231	0.954Å	C24 H241	0.956Å
Parameters	1.000(1)				C25 C26	1.394(5)Å	C25 C30	1.387(5)Å
refined	568				C25 P2	1.791(4)Å	C26 C27	1.377(5)Å
S =	1.19				C26 H261	0.960Å	C27 C28	1.376(6)Å
R-factor	0.042				C27 H271	0.941Å	$\frac{C_{28}}{C_{28}}$	1 373(6)Å
weighted R-facto	r 0.036				C28 H281	0.942Å	$\frac{ C20 C20}{ C20 C30}$	1 377(5)Å
Δ/σ_{max}	0.0008				C29 H291	0.959Å	C30 H301	0.958Å
Refinement on	F				C31 P2	1 785(3)Å	C31 H311	0.974Å
w =	$W' \times [1 - (\Delta F_{obs} / 6)]$	$\times \Delta F_{est})^2]^2$	<u></u>		C31 H312	0.967Å	C31 H313	0.963Å
<i>x</i> ′ =	$P_0 I_0 (x) + P_1 I_1 (x)$ where P _i are the co	$+ \dots P_{n-1} I_{n-1} (x)$	The by the vertex in $t_i(x)$, and $x = 1$		C_{32} C_{33}	1 391(5)Å	$\frac{C32}{C32}$	1 384(5)Å
	F _{calc} /F _{calcmax} .				C32 P1	1.829(4)Å	$\frac{C32}{C33}C34$	1.378(5)Å
$P_0 - P_{n-1} =$	0.709 -0.660E-01 0	.337			C33 H331	0.954Å	$\frac{C34}{C34}$	1 375(5)Å
DI Distor					C34 H341	0.942Å	C35 C36	1 382(5)Å
Dj <u>Distan</u>	ices	1.05.00 8	1		C35 H351	0.944Å	C36 C37	1.302(5)Å
CI NI 1.347	(4)A CI N	2 1.356(4)A			C36 H361	0.942Å	C37 H371	0.955Å
CI PI 1.846	$\begin{array}{c c} (3)A & C2 & C. \\ \hline (5) & & \\ \hline \end{array}$	3 1.375(5)A			C_{38} C_{39}	1 385(5)Å	$\frac{C38}{C43}$	1.383(5)Å
C2 C7 1.377	(5)A C2 N	2 1.398(4)A			C38 P1	1.818(3)Å	$\frac{ C30 C40}{ C39 C40}$	1 383(5)Å
C3 C4 1.3/5	(5)A C3 H	31 0.955A			C39 H391	0.946Å	$\frac{ C40 C41}{ C40 C41}$	1 369(6)Å
24 C5 1.399	(5)A C4 H4	41 0.950A			C40 H401	0.947Å	C41 C42	1 366(6)Å
C6 1.360	(5)A C5 H	51 0.953A			C41 H411	0.957Å	C42 C43	1.383(5)Å
C6 C7 1.393	(5)A C6 H	51 0.958A			C42 H421	0.951Å	C43 H431	0.947Å
C_1 INI 1.393	(4)A $C8$ N	1 1.465(4)A			C44 S1	1.802(5)Å	C44 F1	1.320(5)Å
	$\begin{array}{c c} A \\ \hline \\ \lambda \\ \hline \\ \end{array} \\ \hline \\ \hline \\ CO \\ CO \\ CO \\ CO \\ CO \\ CO \\$	0.90/A			C44 F2	1.370(6)Å	C44 F3	1.267(7)Å
$C_0 = H_{0.5} = 0.970$	$\begin{array}{c c} A \\ \hline \\$	10 1.418(5)A			C45 S2	1.806(5)Å	C45 F4	1.329(5)Å
C10 C11 1 412	$\begin{array}{c c} (5)\mathbf{A} \\ \hline (5)\mathbf{A} \\$	$\frac{1.44}{(4)A}$			C45 F5	1.315(5)Å	C45 F6	1.324(5)Å
(10 (11 1.413 (1.413)))))))))))))))))))))))))))))))))))	$\begin{array}{c c} (S)A \\ \hline \\ (S)A \\ \hline$	13 1.423(5)A			S1 01	1.436(3)Å	<u>S1</u> 02	1.418(3)Å
C11 C12 1.360	(5)A $CII H$	111 0.951A			S1 03	1.421(3)Å	<u>S2</u> 04	1.427(3)Å
12 13 1.406	(5)A $C12$ H	121 0.964A			S2 05	1.427(3)Å	<u>82</u> 06	1.429(3)Å
C13 C14 1.353	(5)A C13 H	131 0.948A			52 05		152 100	
C14 C15 1.415	(5)A C14 H	141 0.950A			E1	Angles		

E] Angles

N1 C1 N2 107.5(3)°	N1 C1 P1 134.1(3)°
--------------------	--------------------

C16 C17 1.362(5)Å

C15 C16 1.407(5)Å

N2	C1	P1	118.4(2)°	C3	C2	C7	122.9(3)°
C3	C2	N2	131.0(3)°	C7	C2	N2	106.1(3)°
C2	C3	C4	115.7(3)°	C2	C3	H31	121.667°
C4	C3	H31	122.598°	C3	C4	C5	121.4(3)°
C3	C4	H41	119.237°	C5	C4	H41	119.361°
C4	C5	C6	122.8(3)°	C4	C5	H51	118.524°
C6	C5	H51	118.663°	C5	C6	C7	115.6(3)°
C5	C6	H61	123.204°	C7	C6	H61	121.197°
C2	C7	C6	121.5(3)°	C2	C7	N1	107.3(3)°
C6	C7	N1	131.1(3)°	N1	C8	H81	110.681°
N1	C8	H82	110.175°	H81	C8	H82	109.028°
N1	C8	H83	109.640°	H81	C8	H83	108.546°
H82	C8	H83	108.727°	C10	C9	C18	122.4(3)°
C10	C9	N2	115.7(3)°	C18	C9	N2	121.9(3)°
C9	C10	C11	123.3(3)°	C9	C10	C15	118.0(3)°
C11	C10	C15	118.7(3)°	C10	C11	C12	121.0(3)°
C10	C11	H111	118.872°	C12	C11	H111	120.099°
C11	C12	C13	119.9(4)°	C11	C12	H121	119.539°
C13	C12	H121	120.605°	C12	C13	C14	121.1(4)°
C12	C13	H131	120.017°	C14	C13	H131	118.899°
C13	C14	C15	120.6(4)°	C13	C14	H141	120.139°
C15	C14	H141	119.260°	C10	C15	C14	118.7(3)°
C10	C15	C16	118.9(3)°	C14	C15	C16	122.4(3)°
C15	C16	C17	121.6(3)°	C15	C16	H161	118.986°
C17	C16	H161	119.371°	C16	C17	C18	120.9(3)°
C16	C17	H171	119.962°	C18	C17	H171	119.084°
C9	C18	C17	118.1(3)°	C9	C18	P2	126.5(3)°
C17	C18	P2	115.3(3)°	C20	C19	C24	120.0(3)°
C20	C19	P2	118.2(3)°	C24	C19	P2	121.7(3)°
C19	C20	C21	119.8(4)°	C19	C20	H201	119.464°
C21	C20	H201	120.750°	C20	C21	C22	120.1(4)°
C20	C21	H211	120.409°	C22	C21	H211	119.447°
C21	C22	C23	120.7(4)°	C21	C22	H221	119.346°
C23	C22	H221	119.917°	C22	C23	C24	119.9(4)°
C22	C23	H231	120.095°	C24	C23	H231	120.010°
C19	C24	C23	119.4(4)°	C19	C24	H241	120.407°
C23	C24	H241	120.211°	C26	C25	C30	119.4(3)°
C26	C25	P2	121.5(3)°	C30	C25	P2	119.1(3)°

C25	C26	C27	120.2(4)°	C25	C26	H261	119.424°
C27	C26	H261	120.382°	C26	C27	C28	119.7(4)°
C26	C27	H271	120.066°	C28	C27	H271	120.195°
C27	C28	C29	120.5(4)°	C27	C28	H281	118.988°
C29	C28	H281	120.555°	C28	C29	C30	120.4(4)°
C28	C29	H291	119.367°	C30	C29	H291	120.206°
C25	C30	C29	119.8(4)°	C25	C30	H301	119.126°
C29	C30	H301	121.118°	P2	C31	H311	108.781°
P2	C31	H312	110.102°	H311	C31	H312	110.561°
P2	C31	H313	107.755°	H311	C31	H313	109.313°
H312	C31	H313	110.268°	C33	C32	C37	118.0(3)°
C33	C32	P1	117.4(3)°	C37	C32	P1	124.4(3)°
C32	C33	C34	121.1(3)°	C32	C33	H331	119.497°
C34	C33	H331	119.406°	C33	C34	C35	120.0(4)°
C33	C34	H341	119.989°	C35	C34	H341	119.987°
C34	C35	C36	119.6(4)°	C34	C35	H351	119.868°
C36	C35	H351	120.494°	C35	C36	C37	120.1(3)°
C35	C36	H361	119.363°	C37	C36	H361	120.498°
C32	C37	C36	121.0(3)°	C32	C37	H371	119.136°
C36	C37	H371	119.902°	C39	C38	C43	118.5(3)°
C39	C38	P1	115.6(3)°	C43	C38	P1	125.8(3)°
C38	C39	C40	120.6(4)°	C38	C39	H391	119.029°
C40	C39	H391	120.349°	C39	C40	C41	120.0(4)°
C39	C40	H401	120.174°	C41	C40	H401	119.781°
C40	C41	C42	119.9(4)°	C40	C41	H411	119.701°
C42	C41	H411	120.353°	C41	C42	C43	120.5(4)°
C41	C42	H421	119.366°	C43	C42	H421	120.133°
C38	C43	C42	120.3(4)°	C38	C43	H431	119.485°
C42	C43	H431	120.192°	S1	C44	F1	112.5(4)°
S1	C44	F2	108.6(4)°	F1	C44	F2	104.2(4)°
S1	C44	F3	113.6(4)°	F1	C44	F3	109.2(5)°
F2	C44	F3	108.1(5)°	S2	C45	F4	111.8(3)°
S2	C45	F5	111.6(3)°	F4	C45	F5	106.5(4)°
S2	C45	F6	111.6(3)°	F4	C45	F6	108.4(4)°
F5	C45	F6	106.6(4)°	C1	N1	C7	109.4(3)°
C1	N1	C8	129.2(3)°	C7	N1	C8	121.3(3)°
C1	N2	C2	109.6(3)°	C1	N2	C9	124.2(3)°
C2	N2	C9	124.7(3)°	C1	P1	C32	101.86(15)°

C1	P1	C38	100.76(15)°	C32	P1	C38	105.32(15)°
C18	P2	C19	109.41(16)°	C18	P2	C25	113.86(16)°
C19	P2	C25	108.89(17)°	C18	P2	C31	108.26(16)°
C19	P2	C31	108.43(17)°	C25	P2	C31	107.85(17)°
C44	S 1	01	105.0(3)°	C44	S 1	02	103.0(2)°
01	S 1	02	111.8(2)°	C44	S 1	03	104.6(2)°
01	S 1	03	116.0(2)°	O2	S 1	03	114.75(19)°
C45	S 2	04	103.0(2)°	C45	S 2	05	103.0(2)°
O4	S 2	05	115.97(17)°	C45	S 2	06	103.1(2)°
O4	S 2	06	114.48(18)°	05	S 2	06	114.8(2)°

A] Composé 160412 C16 Maille : $a = 15.34398(14) \text{ Å} \alpha = 90^{\circ}$ $b = 15.19131(12) \text{ Å } \beta = 104.1899(8)^{\circ}$ $c = 19.68394(16) \text{ Å } \gamma = 90^{\circ}$ $\begin{array}{ccc} 4448.24(& Cryst \\ al & Monoclin \\ 7) \ \mathring{A}^3 & Class \end{array} \hspace{0.1cm} Monoclin \\ \begin{array}{c} c \\ c \\ c \end{array}$ Volume Space $P \ 1 \ 2_1/n \ 1 \ Z = 4$ group C35 H67 $B_2 Cl_2 F_8 M_r = 819.43$ Formula $N_4 P_1$ 23088 Cell θ Cell determined reflection range 3-61° from s = Temperatu 100K re Shape block $0.15 \times$ colorless Size $0.20 \times$ Colour 0.20 mm F000 1744.000 D_x 1.22 2.186 μ mm⁻¹ Absorption multicorrection scan

T _{min} 0.65	T _{max} 0.72
B] Data C	Collection
Diffractometer	multi-scan
Scan type	ϕ and ω scans
Reflections measure	ured 35138
Independent refle	ctions 6783
Rint	0.0190
θ_{max}	60.9799
$\mathbf{h} =$	$-17 \rightarrow 16$
$\mathbf{k} =$	$-16 \rightarrow 17$
1 =	$-22 \rightarrow 22$
Cl Refine	ment
Ao	$0.70 \circ Å^{-3}$
$\Delta \rho_{\rm min} =$	-0.70 c A^{-3}
$\Delta p_{max} =$	6471
Cutoff: I >	3 00 0 (I)
Parameters	5.000(1)
refined	469
S =	1.10
R-factor	0.042
weighted R-factor	r 0.045
$\Delta/\sigma_{\rm max}$	0.0013
Refinement on	F
w =	w' \times [1 - (ΔF_{obs} / 6 \times ΔF_{est}) ²] ²
	$[P_0T_0'(x) + P_1T_1'(x) +P_{n-1}T_{n-1}'(x)]^{-1},$
w' =	where P_i are the coefficients of a Chebychev series in $t_i(x)$, and $x =$
	F _{calc} /F _{calcmax} .
$P_0 - P_{n-1} =$	6.36 0.301 3.42
D] <u>Distan</u>	ces

C1	C2	1.384(2)Å	C	1 C	3	1.385(2)Å
C1	P1	1.8188(16)Å	C	2 C	3	1.411(2)Å
C2	N1	1.309(2)Å	C	3 N	2	1.311(2)Å
C4	C5	1.522(2)Å	C	4 C	6	1.519(3)Å
C4	N2	1.484(2)Å	C	4 H	[41	1.001Å
C5	H53	0.993Å	C	5 H	51	0.981Å
C5	H52	0.982Å	C	6 H	61	0.981Å
C6	H63	0.987Å	C	6 H	[62	0.979Å
C7	C8	1.523(3)Å	C	7 C	9	1.525(3)Å

C7	N2	1.491(2)Å	C7	H71	1.006Å
C8	H81	0.978Å	C8	H83	0.982Å
C8	H82	0.978Å	C9	H92	0.983Å
C9	H91	0.981Å	C9	H93	0.968Å
C10	C11	1.518(3)Å	C10	C12	1.524(3)Å
C10	N1	1.483(2)Å	C10	H101	1.006Å
C11	H112	0.989Å	C11	H111	0.982Å
C11	H113	0.979Å	C12	H122	0.983Å
C12	H123	0.982Å	C12	H121	0.967Å
C13	C14	1.521(2)Å	C13	C15	1.520(2)Å
C13	N1	1.491(2)Å	C13	H131	1.004Å
C14	H142	0.972Å	C14	H143	0.988Å
C14	H141	0.981Å	C15	H153	0.974Å
C15	H151	0.981Å	C15	H152	0.989Å
C16	C17	1.380(2)Å	C16	C18	1.383(2)Å
C16	P1	1.8117(16)Å	C17	C18	1.419(2)Å
C17	N3	1.307(2)Å	C18	N4	1.303(2)Å
C19	C20	1.518(3)Å	C19	C21	1.519(3)Å
C19	N4	1.491(2)Å	C19	H191	1.001Å
C20	H203	0.983Å	C20	H201	0.981Å
C20	H202	0.974Å	C21	H211	0.979Å
C21	H212	0.977Å	C21	H213	0.975Å
C22	C23	1.521(2)Å	C22	C24	1.523(2)Å
C22	N4	1.490(2)Å	C22	H221	0.999Å
C23	H232	0.981Å	C23	H231	0.987Å
C23	H233	0.980Å	C24	H242	0.977Å
C24	H243	0.982Å	C24	H241	0.976Å
C25	C26	1.524(2)Å	C25	C27	1.520(2)Å
C25	N3	1.485(2)Å	C25	H251	1.010Å
C26	H262	0.982Å	C26	H263	0.985Å
C26	H261	0.980Å	C27	H273	0.982Å
C27	H271	0.974Å	C27	H272	0.970Å
C28	C29	1.520(3)Å	C28	C30	1.510(3)Å
C28	N3	1.493(2)Å	C28	H281	1.007Å
C29	H293	0.984Å	C29	H291	0.970Å
C29	H292	0.984Å	C30	H301	0.976Å
C30	H303	0.971Å	C30	H302	0.981Å
C31	C32	1.539(2)Å	C31	C33	1.534(2)Å

C31	C34	1.530(2)Å	C31	P1	1.8734(16)Å
C32	H322	0.992Å	C32	H321	0.981Å
C32	H323	0.989Å	C33	H332	0.979Å
C33	H333	0.979Å	C33	H331	0.993Å
C34	H343	0.987Å	C34	H341	0.993Å
C34	H342	0.975Å	C35	Cl1	1.735(3)Å
C35	Cl2	1.753(2)Å	C35	H351	0.995Å
C35	H352	0.989Å	B1	F1	1.380(2)Å
B1	F2	1.358(3)Å	B1	F3	1.383(3)Å
B1	F4	1.330(3)Å	B2	F5	1.397(2)Å
B2	F6	1.394(2)Å	B2	F7	1.385(2)Å
B2	F8	1.387(2)Å			

E] Angles

C2	C1	C3	61.30(12)°	C2	C1	P1	140.00(13)°
C3	C1	P1	155.78(13)°	C1	C2	C3	59.39(11)°
C1	C2	N1	150.29(16)°	C3	C2	N1	150.32(16)°
C1	C3	C2	59.31(11)°	C1	C3	N2	150.36(16)°
C2	C3	N2	150.32(15)°	C5	C4	C6	113.33(15)°
C5	C4	N2	111.17(14)°	C6	C4	N2	110.41(15)°
C5	C4	H41	107.953°	C6	C4	H41	107.783°
N2	C4	H41	105.822°	C4	C5	H53	110.594°
C4	C5	H51	108.028°	H53	C5	H51	111.025°
C4	C5	H52	108.482°	H53	C5	H52	109.337°
H51	C5	H52	109.324°	C4	C6	H61	109.510°
C4	C6	H63	107.979°	H61	C6	H63	109.649°
C4	C6	H62	110.082°	H61	C6	H62	110.153°
H63	C6	H62	109.433°	C8	C7	C9	116.61(16)°
C8	C7	N2	110.72(14)°	C9	C7	N2	110.67(14)°
C8	C7	H71	106.662°	C9	C7	H71	106.129°
N2	C7	H71	105.231°	C7	C8	H81	109.031°
C7	C8	H83	112.129°	H81	C8	H83	108.355°
C7	C8	H82	109.541°	H81	C8	H82	108.736°
H83	C8	H82	108.984°	C7	C9	H92	110.141°
C7	C9	H91	111.116°	H92	C9	H91	109.207°
C7	C9	H93	109.593°	H92	C9	H93	107.860°
H91	C9	H93	108.853°	C11	C10	C12	113.46(17)°
C11	C10	N1	110.73(16)°	C12	C10	N1	110.63(15)°

C11	C10	H101	107.856°	C12	C10	H101	108.433°
N1	C10	H101	105.341°	C10	C11	H112	109.557°
C10	C11	H111	109.108°	H112	C11	H111	108.908°
C10	C11	H113	108.446°	H112	C11	H113	110.323°
H111	C11	H113	110.480°	C10	C12	H122	109.191°
C10	C12	H123	109.000°	H122	C12	H123	111.547°
C10	C12	H121	107.394°	H122	C12	H121	109.620°
H123	C12	H121	109.990°	C14	C13	C15	113.52(15)°
C14	C13	N1	111.01(14)°	C15	C13	N1	110.74(14)°
C14	C13	H131	107.210°	C15	C13	H131	108.393°
N1	C13	H131	105.549°	C13	C14	H142	109.960°
C13	C14	H143	108.972°	H142	C14	H143	109.287°
C13	C14	H141	110.219°	H142	C14	H141	109.275°
H143	C14	H141	109.106°	C13	C15	H153	109.308°
C13	C15	H151	108.641°	H153	C15	H151	110.329°
C13	C15	H152	108.907°	H153	C15	H152	110.523°
H151	C15	H152	109.093°	C17	C16	C18	61.82(11)°
C17	C16	P1	145.37(13)°	C18	C16	P1	152.66(13)°
C16	C17	C18	59.21(11)°	C16	C17	N3	149.09(15)°
C18	C17	N3	151.61(15)°	C16	C18	C17	58.97(11)°
C16	C18	N4	147.27(15)°	C17	C18	N4	153.59(15)°
C20	C19	C21	114.99(15)°	C20	C19	N4	111.51(14)°
C21	C19	N4	110.42(15)°	C20	C19	H191	107.597°
C21	C19	H191	107.479°	N4	C19	H191	104.139°
C19	C20	H203	109.692°	C19	C20	H201	110.529°
H203	C20	H201	108.627°	C19	C20	H202	110.288°
H203	C20	H202	109.226°	H201	C20	H202	108.441°
C19	C21	H211	110.155°	C19	C21	H212	110.684°
H211	C21	H212	109.514°	C19	C21	H213	108.362°
H211	C21	H213	109.213°	H212	C21	H213	108.879°
C23	C22	C24	113.12(14)°	C23	C22	N4	110.40(13)°
C24	C22	N4	110.85(14)°	C23	C22	H221	108.784°
C24	C22	H221	107.944°	N4	C22	H221	105.396°
C22	C23	H232	109.799°	C22	C23	H231	109.849°
H232	C23	H231	109.100°	C22	C23	H233	108.444°
H232	C23	H233	109.642°	H231	C23	H233	109.996°
C22	C24	H242	109.413°	C22	C24	H243	109.455°
H242	C24	H243	110.234°	C22	C24	H241	107.617°

H242	C24	H241	110.532°	H243	C24	H241	109.543°
C26	C25	C27	112.24(14)°	C26	C25	N3	109.10(13)°
C27	C25	N3	111.33(14)°	C26	C25	H251	109.080°
C27	C25	H251	108.917°	N3	C25	H251	105.949°
C25	C26	H262	109.181°	C25	C26	H263	109.540°
H262	C26	H263	110.312°	C25	C26	H261	109.204°
H262	C26	H261	109.573°	H263	C26	H261	109.012°
C25	C27	H273	109.737°	C25	C27	H271	109.180°
H273	C27	H271	108.605°	C25	C27	H272	109.669°
H273	C27	H272	110.062°	H271	C27	H272	109.567°
C29	C28	C30	112.19(16)°	C29	C28	N3	109.39(14)°
C30	C28	N3	112.88(14)°	C29	C28	H281	108.511°
C30	C28	H281	107.865°	N3	C28	H281	105.706°
C28	C29	H293	108.656°	C28	C29	H291	109.009°
H293	C29	H291	110.074°	C28	C29	H292	108.768°
H293	C29	H292	111.594°	H291	C29	H292	108.695°
C28	C30	H301	110.231°	C28	C30	H303	108.993°
H301	C30	H303	109.855°	C28	C30	H302	109.448°
H301	C30	H302	109.304°	H303	C30	H302	108.989°
C32	C31	C33	108.87(13)°	C32	C31	C34	108.51(13)°
C33	C31	C34	112.67(14)°	C32	C31	P1	105.82(11)°
C33	C31	P1	106.08(11)°	C34	C31	P1	114.57(11)°
C31	C32	H322	110.634°	C31	C32	H321	109.786°
H322	C32	H321	109.962°	C31	C32	H323	107.975°
H322	C32	H323	110.169°	H321	C32	H323	108.259°
C31	C33	H332	111.560°	C31	C33	H333	110.463°
H332	C33	H333	108.255°	C31	C33	H331	109.844°
H332	C33	H331	108.545°	H333	C33	H331	108.080°
C31	C34	H343	111.281°	C31	C34	H341	109.847°
H343	C34	H341	110.068°	C31	C34	H342	108.375°
H343	C34	H342	108.982°	H341	C34	H342	108.214°
Cl1	C35	Cl2	112.38(14)°	Cl1	C35	H351	108.426°
Cl2	C35	H351	108.180°	Cl1	C35	H352	107.663°
Cl2	C35	H352	107.625°	H351	C35	H352	112.638°
C2	N1	C10	120.74(14)°	C2	N1	C13	121.31(14)°
C10	N1	C13	117.84(13)°	C3	N2	C4	119.95(14)°
C3	N2	C7	122.50(14)°	C4	N2	C7	117.53(13)°
C17	N3	C25	121.41(13)°	C17	N3	C28	120.50(13)°

Annexes

C25	N3	C28	117.92(12)°	C18	N4	C19	123.23(13)°
C18	N4	C22	118.00(13)°	C19	N4	C22	118.29(12)°
C1	P1	C16	99.35(7)°	C1	P1	C31	107.01(7)°
C16	P1	C31	100.81(7)°	F1	B1	F2	108.96(17)°
F1	B 1	F3	108.53(17)°	F2	B1	F3	107.1(2)°
F1	B1	F4	111.09(18)°	F2	B1	F4	111.5(2)°
F3	B 1	F4	109.5(2)°	F5	B2	F6	109.27(15)°
F5	B2	F7	108.91(16)°	F6	B2	F7	110.00(15)°
F5	B2	F8	109.17(15)°	F6	B2	F8	109.22(16)°
F7	B2	F8	110.26(16)°				

RESUME

La thématique de recherche développée au cours de ce doctorat concerne l'élaboration de nouveaux ligands à caractère donneur extrême en vue d'applications en catalyse.

La première partie de ces travaux consiste à la synthèse de ligands phosphorés pauvres en électrons, plus particulièrement des imidazoliophosphines qui représentent des phosphines cationiques où la charge positive portée par un noyau imidazolium est conjuguée avec l'atome de phosphore. De ce fait, deux stratégies de synthèse ont été mises en place : (a) modifier les substituants de la partie phosphorée ou (b) introduire une deuxième charge cationique. Ces deux méthodes ont conduit à la préparation de trois types de ligands pauvres : les amidiniophosphonites, les di-amidiniophosphines et les hydroxy-phosphines cationiques. La limite de la coordination de ces nouveaux ligands pauvres en électrons a aussi été mise en évidence en série rhodium (I).

A l'opposé, la seconde partie présente la synthèse de ligands riches en électrons de type ylures de phosphonium et plus précisément, des bis-ylures de diphosphonium. La préparation à partir des motifs 1,2- ou 1,3-diphénylphosphinobenzène et la coordination de ces espèces ont été étudiées. De nouveaux ylures de phosphoniums chiraux ont été également envisagés à partir de leurs précurseurs phosphoniums.

La troisième partie s'intéresse à la synthèse de ligands hybrides riches-pauvres par leurs extrémités « électroniquement » opposées et présentant les caractéristiques des deux premières catégories de ligands développés. Des ligands bidentes à extrémités mixtes du type NHC – amidiniophosphine ont ainsi été préparés dans l'optique d'applications catalytiques mais aussi photophysiques (transfert de charge).

Ces nouveaux ligands à caractère donneur extrême, pauvres en électrons pour les amidiniophosphines, et riches en électrons pour les ylures de phosphonium, ouvrent ainsi de nouvelles perspectives en catalyse.

Mots clefs : Ligand, Amidiniophosphine, Ylure de phosphonium, NHC, Phosphénium, Coordination.

ABSTRACT

The project developed during this PhD thesis aims at the elaboration of novel ligands with extreme donor character for applications in catalysis.

The first part of this work, reports on the synthesis of electron-poor phosphorus ligands especially imidazoliophosphines. The positive charge of the imidazolium moiety of these ligands is conjugated with the phosphorus atom. Thereby, two synthesis methods were developed; while the first consists on the modification of the substituents at the phosphorus atom, the second aims to introduce an additional cationic charge.

Both methods have yielded three types of electron-poor ligands, namely the amidiniophosphonites, the di-amidiniophosphines and the cationic hydroxyphosphines. The limits of the coordination of these ligands have been evidenced by the preparation of a series of rhodium (I) complexes.

By marked contrast, the second part of this project, concerns the synthesis of electron-rich phosphonium ylide ligands, more particularly the diphosphonium bis-ylides. These ligands were elaborated from the 1,2- or 1,3-diphenylphosphinobenzene bridge, prior to complexation. Preparation of chiral phosphonium ylides were also considered.

Finally, the third part of this work focuses on the elaboration of hybrid "rich-poor" ligands having a carbene (NHC) and an amidiniophosphine coordinating extremities. These hybrid bidente ligands were developed for catalytic but also for photo-physic (charge transfer) applications.

These new ligands with extreme donating character, electron-poor for the amidiniophosphines, and electron-rich for phosphonium ylides, open interesting perspectives in catalysis.

Keywords : Ligand, Amidiniophosphine, phosphonium Ylide, NHC, Phosphenium, Coordination.