THESE

En vue de I'obtention du

DOCTORAT DE L’'UNIVERSITE DE TOULOUSE

Délivré par /'Université Toulouse III - Paul Sabatier
Discipline ou spécialité : Informatique

Présentée et soutenue par Stefan Daniel Dumitrescu
Le 29 novembre 2011

Titre : L'extraction d'information des sources de données non structurées et semi-
structurées

Information Extraction from Unstructured and Semi-Structured Sources

JURY
Prof. Dr. Florence Sédes - Directeur de thése - Université Paul Sabatier, Toulouse, France
Prof, Dr. Stefan Trausan-Matu - Directeur de thése - Université Politehnica Bucarest, Roumanie
Prof. Dr. Dan-Luca Serbanati - Rapporteur - Université Politehnica Bucarest, Roumanie
Prof. Dr. Elisabeth Murisasco - Rapporteur - Université du Sud Toulon-Var, Toulon, France

Ecole doctorale : Mathématiques Informatique Télécommunications (MITT)
Unité de recherche : Institut de Recherche en Informatique de Toulouse (IRIT)
Directeur(s) de Thése : Florence Sédes, Stefan Trausan-Matu

Rapporteurs :







Résumé

L’ objectif de la thése: Dans le contexte des dép6ts de connaissances de grandes
dimensions récemment apparues, on exige l'investigation de nouvelles méthodes
innovatrices pour résoudre certains problemes dans le domaine de |'Extraction de
I’ nformation (EIl), tout comme dans d’ autr es sous-domaines appar entés.

La these débute par un tour d’ ensemble dans le domaine de I’ Extraction de I’ Information,
tout en se concentrant sur le probleme de I’identification des entités dans des textes en
langage naturel. Cela constitue une démarche nécessaire pour tout systéme EI. L’ apparition
des dépdts de connaissances de grandes dimensions permet le traitement des sous-
problémes de désambiguisation au Niveau du Sens (WSD) et La Reconnaissance des
Entités déenommées (NER) d'une maniére unifiée. Le premier systéme implémenté dans
cette these identifie les entités (les noms communs et les noms propres) dans un texte libre
et les associe a des entités dans une ontologie, pratiquement, tout en les désambiguisant. Un
deuxieme systéme implémenté, inspiré par |'information sémantique contenue dans les
ontologies, essaie, également, I’utilisation d’une nouvelle méhode pour la solution du
probléme classique de classement de texte, obtenant de bons résultats.

Le premier chapitre représente I'introduction de la thése, il présente I'éat actuel de
I"Internet du point de vue du volume d’'information et de la nécessité de |’ existence des
outils efficaces en vue d’ extraire (de retrouver) cette information. On y décrit le concept de
,Web ”sémantique ainsi que sa liaison avec le domaine de |’ extraction de I’information. Le
chapitre s achéve avec un bref sommaire des problémes que lathése vatraiter.

L e deuxieme chapitre présente briévement une grande partie des outils, les méthodes et les
techniques utilisées pour réaliser des systemes El: en commencant par le traitement du texte
(la tokénisation, le stemming, I’identification des parties morphologiques); en passant par
deux classes d'agorithmes du domaine de I'apprentissage automatique, discutant des
parseurs et de I’identification des coréférences et en achevant par une vue d’ ensemble sur
certains dépots de connai ssances disponibles a présent.

Le troisieme chapitre traite le probleme de la représentation et de |’acquisition de
connaissances. On y présente tout en représentant |’ ontologie générale méme de grandes
dimensions utilisée dans cette these). Il y a, également, deux systemes d’Extraction de
I’ Information. TextRunner qui s attache atrouver le plus d'informations possibles méme s
elles sont stockées et présentées dans un format non-structuré, et SOFIE, a I’extréme
opposee s appuyant sur I’extraction des informations a trés grande précision, dans une
forme structurée (ontologique) mais, sans réussir d’ extraire qu’ un nombre réduit par rapport
au TextRunner.

L e quatrieme chapitre consiste dans un regard d’ ensemble sur deux problémes présents
dans El: La Désambiguisation au Niveau de Sens et la Reconnaissance des Entités
Dénommeées Sens (WSD) est le probleme de I'identification correcte du sens d’un mot



(dans une multitude de sens possibles) dans un certain contexte. La Reconnaissance des
Entités Dénommées est le probleme de I’ identification des entités dénommeées (C' est-a-dire
délimiter les entités) et I'attribution d’un tag convenable (identifier le fait qu'une entité
dénommeée est une personne, un lieu). Le chapitre finit avec la définition de la notion de
Reconnaissance Générale des Entités (General Entity Recognition) tout comme on |’ avait
déa proposé Alfonseca et Manandhar; ou I’ on essaie d’identifier le tag convenable pour les
noms communs simples ainsi que pour les entités dénommees (les noms propres) tout en
utilisant une source de connaissance.

Le cinquiéme chapitre présente la contribution principale de la these: le systeme de
Reconnaissance Générale des Entités (GER). Ce systéme proposé, regoit comme entrée, le
texte dans un langage naturel, identifie les entités intéressantes (communes ou dénommées)
et les associe aux classes ontologiques les plus probables. On réalise cela par I utilisation
des a gorithmes de graph appliqués aux ontologies de grandes dimensions. Bien qu'’il utilise
la méme dénomination — GER — le systéme proposé est, en fait, une extension de la
définition originale proposée par Alfonseca et Manandhar par le fait qu'on associe aux
entités dénommeées non seulement des classes représentant leur type mais aussi des classes
ontologiques qui les représentent (par exemple : on n'associe pas a l’entité , Santa Fe’, la
classe ontologique city, mais la classe méme qui |a représente distinctement dans le cadre
de I'ontologie: Santa-Fe). C'est de cette maniére que le systéme essaie de résoudre les
probléemes WSD et NER, d une fagon unifiée.

L e sixieme chapitre décrit un deuxieme systéme implémenté, focalisé, cette fois-ci, sur le
probleme du classement de texte. L’apparition relativement récente des dépbts de
connaissances de grandes dimensions a ouvert la voie d’ une approche nouvelle de ce
probléeme relativement ancien. Quoique, les applications qui utilisent des algorithmes
d’ apprentissage automatique restent toujours plus performants dans le cas de ce probleme,
on a pu montrer gque, par I’ utilisation des algorithmes de graph et un score de similarité
sémantique dépendant du contexte, on a obtenu une bonne performance.

Le septieme chapitre offre des conclusions concernant |'utilisation des ontologies
générales de grandes dimensions aux problemes actuels liés El, mais aussi a des problémes
plus anciens comme celui de classement de texte. On y identifie et discute les points forts
autant que les points faibles.

Le chapitre de Bibliographie contient les 145 ouvrages cités dans le cadre du document de
lathese.

Pour conclure, I’Annexe contient un exemple détaillé du systéme GER (Le quatrieme
chapitre du résumé, le cinquiéme chapitre de la these). Cette annexe offre un regard
d’ingénieur sur le systeme et son mode de fonctionnement. Comme exemple d’ entrée, il y a
2 propositions qui sont analysées et processus. On commente aussi les résultats du systeme
et on exemplifie sur celles-ci laméthode d’ évaluation utilisée pour le systeme.

Mots-clés. extraction de I'information, reconnaissance des entités, ontologies genérales,
algorithmes de graph, traitement du langage naturel






Abstract

Thesis objective: In the context of recently developed large scale knowledge sources
(general ontologies), investigate possible new approaches to major areas of
Information Extraction (1E) and related fields.

The thesis overviews the field of Information Extraction and focuses on the task of entity
recognition in natural language texts, a required step for any IE system. Given the
availability of large knowledge resources in the form of semantic graphs, an approach that
treats the sub-tasks of Word Sense Disambiguation and Named Entity Recognition in a
unified manner is possible. The first implemented system using this approach recognizes
entities (words, both common and proper nouns) from free text and assigns them
ontological classes, effectively disambiguating them. A second implemented system,
inspired by the semantic information contained in the ontologies, aso attempts a new
approach to the classic problem of text classification, showing good results.

Chapter | is the introduction of the thesis, presenting an overview on the current state of
web and the need for efficient tools for information retrieval / information extraction. The
concept of Semantic Web is described, as well asits relation to Information Extraction. The
chapter closes with a short summary of the problems that the thesis will approach.

Chapter 11 covers most of the current tools, methods and techniques needed to perform
Information Extraction. Starting with text pre-processing (tokenization, stemming, part-of-
speech tagging, etc), moving on to two agorithms belonging to the machine learning
domain, discussing about parsers and coreference resolution, and concluding with an
overview of some of the general purpose corpora available today.

Chapter 111 discusses knowledge acquisition and representation. Ontologies are presented,
including WordNet and YAGO (the large scale, general ontology used in the implemented
systems in this thesis). Two current Information Extraction systems are presented:
TextRunner which focuses on extracting as many facts as possible, even if they are
presented in an unstructured format, and SOFIE which focuses on the opposite, extracting
facts with high precision in a structured (ontological) format but lacking recall (finding only
very few facts compared to TextRunner).

Chapter 1V is a survey of two of the problems present in Information Extraction: Word
Sense Disambiguation and Named Entity Recognition. Word Sense Disambiguation (WSD)
is the problem of detecting which sense of a word has been used in a particular context,
given words with multiple senses. Named Entity Recognition is the problem of identifying
proper entities (meaning detecting entity boundaries) and assigning them appropriate tags
(i.e. identifying if a named entity is a person, a location, etc). The chapter closes with the
definition of the General Entity Recognition (GER) task as proposed by Alfonseca and
Manandhar [1], where they try to label both common and proper nouns with tags from a
knowledge source.



Chapter V presents the main contribution of the thesis — the General Entity Recognition
(GER) System. The proposed system takes as input natural language text, identifies
interesting entities (both common and proper) and assigns them the most likely ontological
classes. Thisis performed using graph agorithms applied on large ontologies. While using
the same name — GER — the proposed system is an extension of the original definition of
Alfonseca and Manandhar [1], in which named entities are not only assigned probable types
but actual instances of ontological classes (ex: entity “Santa Fe” is not assigned ontological
classci ty but actual ontological class Sant a_Fe, completely identifying the text entity).
The system thus attempts to solve in a unified manner both WSD and NER, with promising
results.

Chapter VI presents a second implemented system focused on the task of text
classification. The recent arrival of large scale ontologies has opened new possible
approaches to relatively old problems, as in the case of text classification. While machine
learning algorithms still perform best, it was shown that using graph agorithms and a
proposed context-aware similarity scoring function, performance relatively close to state-
of-the-art can be achieved.

Chapter VII offers conclusions on the use of large scale, general ontologies applied to the
major |E tasks of WSD and NER as well asto old problems like text classification. Benefits
are identified but also disadvantages of using large knowledge sources are pointed oui.

The thesis is followed by the Bibliography section where 145 works that have been
referenced throughout the thesis document are cited.

At the end of the document, the Annex contains a test run of the GER system (see Chapter
IV of summary / Chapter V of thesis). This Annex offers a more complete example from an
engineering (input/processing/output) point of view. Two sentences are taken as example
inputs, are analyzed and processed. Ontological entities are assigned, the operational graph
is created and the Linker Algorithm is run. The results that the system outputs are further
commented upon, and the scoring method is also exemplified on them.

Key-words: Information Extraction, Entity Recognition, General Ontologies, Graph
Algorithm, Natural Language Processing



vi



Contents

RESUIME. ...ttt bbbt bbbt e et e e e b et e saesbenre s [
ADSITBCE ... e e bt renreens iv

LISt Of fIQUIES. ..ttt e et e esaeeeeeneenneennens iX
RS 0 7= o] =SSR X

R oo [ T o] o SO R 1
I. Information Extraction related tools, methods and techniques...........cccceceverinnene 6
1.1, TEXE PrE-PrOCESSING .. .eiueeiveeeeereesieeeesseesseeseesseessesseesseessesseesseeessseessessessseessesseessenees 6
[1.1.1. Tokenization and sentence SPIIttiNG.........cevereereerecee e 6

S S (o o 1LY 0] {0 S 7

[1.1.3. SEEIMMING ...ttt nb et sbeeeenne e 8

[1.1.4. Part-0f-Speech TaggiNg.......ccceveeeereeie e s see e este e e e see e 9

11.2. Machine learning approach and toolS ...........ccecveieeeesieie e 10
[1.2.1. SUPPOrt VECtOr MaChiNES........ccceevueeeerieeee et see s te et 11

11.2.2. Conditional Random Fields— Linear-chain CRF............ccccoocviiininneenee. 12

[1.3. PAISEYS ..ttt st e et e ae e ne e ne e eare e nneeeaee 14
[1.4. COreferenCe reSOIULION ..........cceeiieieeie ettt e e nae e 16

[1.5. General PUIPOSE COMPOTA .......eeueervereerieesieeieesseesseseesseesseseesseessesessseessessssseessesnsens 18

1. Knowledge acquisition and representation ............ccoeevereeneeieseesiesee e 20
[11.1. Ontologies as information rEPOSITONES........cccceeiiereerieeieseese e e e ee e sae e 20
[11.1.1. RDF — Resource Description Framework ...........ccccccoveveveeeeieeneeceseene, 21

I 2 VAV L o = OSSPSR 23

0 T 4 L RSP 27

1.2, INfOrmation EXIraCtioN.........coeeiieieiie et 28
[11.2.1. Open [E — TEXTRUNNEY ...t e 30

[11.2.2. Canonic fact extraction — SOFIE...........cccoiiiriniinineeese e 33

V. Entity recognition and word sense disambiguation for Information Extraction...36
IV.1. Word Sense Disambiguation ............coieeieiieenieie e e e esee e e ssee e e 36
IV.1.1. Supervised DisambigUation ...........ccceeerreeieenesieeseenieseeseeee e sse e sseenees 38

IV.1.2. Unsupervised Disambiguation ............ccccceveeieieenieein e 43

1V.1.3. Knowledge-Based Disambiguation............ccocveeeneeninneeneniie e 46

[V.1.4. WSD BOUNGS.......cciiiriiriinieieiesiesie sttt st 51

[V.1.5. EVAlUSLION MELTICS.....ccueiiiiiieiieieiesie et 52

1V.2. Named Entity RECOGNITION ......cc.eoiiiiiiiieiiieiesieeie et 53
IV.2.1. Classification of NER APProaches.........ccccevveeeneeinsenene e 54

vii



IV.2.2. Named Entity detection and recognition teChniques...........ccccceevvecverueenee. 57

[V.2.3. EVAlUBLION IMBLIICS ... .ottt 59

1V.3. General Named Entity RECOgNITION........ccoiieiiriiiiesiee e 60

V. A General Entity Recognition (GER) SyStem.........cccoceeverieninieseese e 63
V. L. SYSEEIM OVEIVIBIW ...ttt sttt sr et s a e e ne e e e nne e 65
V. L L ATCHITECIUN ...t 66

V.2, FOrMElIZBHION ...ttt e 67
V.3. Proposed custom graph algorithm — Linker Algorithm ..........ccccoveeveecevieiecs 70
RV 50 R I 1= 1 1o 1 IS 71

V.3.2. ComMplexity @NaAIYSIS......ccoiieiieieneeseeie e 82

V.33 EXPEIIMENTS. ....eiiiiiiisieeie ettt sttt esaeeneas 86

V.4. Integrating the Linker Algorithm into the General Entity Recognition System...94
V.4.1. Module A - NLP MOQUIE ........ooeiiiiiiieee s 95

V.4.2. Module B - String Entity Processor Module...........ccccveeevvevenceeneecieceenee. 96

V.4.3. Module C - Canonic Entity Processor Module...........ccccoveneeinieeniennnne 101

V.5, SYSIEM @ValUBLION ......cceeeieeeceee ettt nne s 109
V.5.1. Evaluation methodolOogy .........cccererieiinnienienieie st 109

V.5.2. Evaluation set and standard Creation ............coeveveneneeieeiesieseseseseins 110

V.5.3. TESHING the SYSLEM ..o 114

V6. CONCIUSIONS.......eiiiiiiieieeie ettt b e nne e 116

V1. A knowledge-based approach for document classification...........c.ccccevevvrceerennnnne 118
AV 0 I [ 11 0o [0 Tox 1 o o PSSR 118
V1.2. DOMaiN LIterature REVIEW .........coeiuiririeiiiiese et 118
V1.3, System IMplementation ..........ccccveceieereeieese e 119

VA IS 35 W o o ol 1S e = 4 o o OSSR 120

V1.3.2. ProCessor MOUUIE...........coiiiriirinieieeeie et 122

V1.3.3. ANAlYSISMOAUIE .......eeiiiiiee et 126

V1.3.4. EVAlUSIOr MOUUIE........cooieiiiniiriieieie et 132

V1A EVAIUBLION ...ttt sttt sttt et sne b nre s 133
V5. CONCIUSION ...ttt sttt nenre s 135

V1T CONCIUSIONS ...ttt ettt b b nae s 137
VT REFEI ENCES. ...ttt bbb b b 144
N ] 0 1= [0 | PSSR 154
Example run of the proposed GER SyStem .........cccvecvieeieeceseerie e 154

viii



List of figures

Figure 1. SVM, BOUNGAIY .....cccooiiiiiiieeee e ettt 11
Figure 2. Two equivalent notations of dependency trees........covvvieeiereesenre e 15

Figure 3. ENJU deep parser visual example (constituency tree) for the sentence ‘| see what

= P 16
Figure 4. Example of synset partial hypernym graph ... 25
Figure 5. TextRUNNEr @arChit@CLUre ..........ccooiiiiiiii e 31
Figure 6. A Hidden Markov Model example..........ccooveviececeenece e 55
Figure 7. Logical architecture of the proposed SyStem .........cccccveveveeiecce s 67
Figure 8. Example of the graph decision problem ... 72
Figure 9. Abstraction of the 3-partite graph infigure 8 ... 72
Figure 10. Pseudocode for CDFS() fUNCLION.........cccviieiiiiiseee e 74
Figure 11. Pseudocode for addSolution() fTUNCLION ..........ccceveereiceceee e 76
Figure 12. Pseudocode for isSubSetOrEqual () fUNCLION .........cooveeeieeieneereeeee e 76
Figure 13. Pseudocode for canMerge() fUNCLION...........ooeviieeiiiie e 76
Figure 14. Pseudocode for the computeScores() fUNCtion ............ccccvevevieveece e 77
Figure 15. Example RESUIT SEE ATTAY ......cccveuiieeiiee e 78
Figure 16. Pseudocode for mergeNonOverlappingRSA () function ..........cccceevveieeiinnienne 79
Figure 17. Pseudocode for createSolutionTree() fuNCLion ..........cccoveeveneinenieneeseee e 80
Figure 18. Worst case scenario tree construction for step 4 merging function.................... 83
Figure 19. Result Set size variation on complete graph ..........ccccveceveeresceeseese e 87
Figure 20. Algorithm step 2 time variation for complete graph...........ccoceveiiieiieiciene 88
Figure 21. Algorithm step 3 time variation for complete graph...........ccoceveiiiinicinnene 88
Figure 22. Time measurement when varying the number of edges..........cccocevvecevvccieceenne 89
Figure 23. Result Set Array size when varying the number of edges..........ccccoveeevveviecnenne 89
Figure 24. Dependency tree @XampPle.........ooeeiiiieiirienee ettt s 100
Figure 25. Connections found between String ENtities..........cooeveriiieeneneneee e 100
Figure 26. Influence MatrixX eXample.......c.ocveveeeieeresese e 101
Figure 27. Pseudocode for obtaininputGraph() funCtion ...........ccccceceveevesceneese e, 106
Figure 28. Pseudocode for getEdgeWeight() fuNCtioN..........ccooeeieriinienineeeeeeees 106
Figure 29. Operational graph..........ooeoieeiniere e e 107
Figure 30. Input graph derived from the operational graph ..........cccccovveevvecenecce v 108
Figure 31. Document classification system architeCture............ccooveceveevveceseese e 119



List of tables

Table 1. Different semantic Similarity MEASUIES..........cccvveeririeriereee e 48
Table 2. Example of tree creation for merging non-overlapped Result Sets ..........cccveeee. 80
Table 3. Algorithm input parameters average grouped by document category ................... 91
Table 4. Algorithm average run-time grouped by document category ..........ccceeeveeverreenen. 93
Table 5. Example of classes YAGO returns for the query about “engine” ...........cccoceeuennee. 97

Table 6. Example table showing the score percentage assigned to each topic based on its
SUPPOITEN COUNL .....eeuteeestieesieeesitee et e et e st e e s te e e s b e s sae e e e se e e sbe e e sane e e sabeeessseeessseesneeesnneeenas 130

Table 7. Comparison between the proposed system and a standard SVM state-of-the-art

11 070 o SRS 133
Table 8. A short comparison between overal system performance grouped by topic, before
and after topic tweaking, for 5 out of the 50 total tOPICS........cccvevververerieereere e 134






|. Introduction

We live in an age of information. Everywhere around us information is embedded in the
devices we wear, the tools we use, the media we watch or hear, in the workplace and at
home. New information is added every second to the interconnected web of devices that is
the Internet.

This exponential data explosion brings with it the availability of knowledge to end-users,
the ability to interconnect, share, create and develop ideas and business together. However,
this explosion also brings what is known as Information Overload, where humans are
bombarded with too much information that actually makes them less productive. The
volume of scientific knowledge has outpaced our ability to manage it. The continuous data
addition without structure and tools to extract what is relevant leads to data intractability
problems.

There are a number of solutions proposed, some proven, some in development and some
only in concept that try to solve thisissue. The biggest problem is information classification
and retrieval. A user is spending too much time trying to ask a search engine the correct
guestion that will minimize the list of results returned and then to manually crawl the
different web pages until he or she finds the desired information.

An obvious solution is better content classification in directories and libraries. However,
standard classification can only go so far, as the user is ill required to manualy sift
through web pages (even if through a smaller number) to find the information. The
response to a user query should be an actual answer not a list of decreasingly relevant
documents. The solution to this problem is to involve the computer in the search effort,
which means that the computer needs to understand what it is searching and how it relates
to the sea of information available to it. Semantic technologies provide away for computers
to understand the data they process.

However, for computers to be able to work on such datasets, they must first be extracted
from the current web. Information Extraction (IE) is the task of extracting knowledge from
text, usually in the form of facts (two entities that stand in arelation). This representation of
dataisrelational in nature, creating complex graphs of relations between entities. Using this
type of knowledge representation, computers can then answer user queries with actual facts
instead of web pages.

The Web is avast source of information. At the time of writing, a rough estimate of the size
of the web reveals that there are over 15 billion indexed pages:, with thousands more being
indexed every day. Information is added in digital form on an ever-increasing rate, as more

L http://www.worl dwi dewebsi ze.com/

Chapter | - Introduction Page | 1



and more people connect to the Web and as the Web itself creates a framework of tools and
means to add more diverse, heterogeneous data faster.

At first sight, thisinformation appears to be available to anyone and everyone, and, in many
cases, it is, thanks to search engines. Users input their queries in the form of keywords they
consider relevant and are presented with a list of websites that should contain the queried
information. Most queries however are 2 to 3 words in length, allowing search engines to
present from the millions of possible sources a sorted list of ten supposing decreasingly
relevant sites per page. This is (arguably) sufficient for common information queries like
“Ford Focus review” or “seo optimization” (“seo” is short for search engine optimization),
but vastly inefficient for more specific queries like “windshield wipers size for Hyundai
Accent 2003".

There is no person that has searched for something on the Internet at some point and has not
failed to find it, even with the power of an indexed web of billions of pages to choose from.
Professiona needs, local issues, comparative queries, ssimple or more complex questions
(formulated as such) and so on, can be poorly expressed by a set of keywords. Even if there
might be a way to express such queries in terms of just keywords, the semantic links
between the words are lost as the query is seen as a bag of words, without order. This will
result in poor results, with many false positive hits, displaying websites that contain as most
of the keywords as possible, but do not address the query itself. For example, questions like
“which are the current presidents of EU?”, “Japan’s prime minister before Naoto Kan”,
“highest score of a B-division team in 1980 season in Poland” or even more complex
inquiries stated by simple queries like “cities in which both Scorpions and Stones played”
or “medicine that can be taken without interfering with medicine X in flu cases” will not be
solved by current standard search engines.

For such queries to be considered, there first has to be an understanding of the meaning of
such queries (1% problem), and then the result of such queries should be an actual answer
rather than a list of websites that contain such information (2nd problem). These problems
raise the bar to another level of difficulty. The search is now a search for knowledge instead
of asearch for data[1].

Semantic Web

The Semantic Web ideais relatively new, being mentioned for the first timein 1998 by Tim
Berners-Leez. The Semantic Web transates roughly as a web of Meaning, a web where
computers can understand the meaning of information. The focus shifts from links between
web pages to links between entities, or better said, relationships between entities and entity
properties. The current web is centered on the presentation of information while the
Semantic Web centers on knowledge and its representation model.

2“Semantic Web Road map”, http://www.w3.0rg/Designl ssues/ Semantic.html

Chapter | - Introduction Page | 2



There is no single standard format to model the Semantic Web. The entities, relationships
and properties can be represented in any of the available maturing or newly developed
formats. The basic model is RDF — Resource Description Framework? with its associated
RDF Schema (RDFS) and its notations like XML format, N3, Turtle, etc (presented in
section 111.1.1). More advanced models include OWL — Web Ontology Language, currently
at its second version OWL 24,

Even though the Semantic Web promises a revolution, this revolution will come at a slow
pace. One of the major problems is that all the models and tools above do require
knowledge to develop and use. Even the basic RDF standard was created by people with
academic background, and this means that there is a learning curve to be climbed in order
to use the Semantic Web tools at their true potential. This is why, as opposed to the
explosive growth of the standard web where anybody can publish anything without
requiring any special knowledge, the Semantic Web will grow slowly.

A main research direction focuses now on how to create the necessary standards that are
versatile enough and do not require advanced training to use, and, possibly even more
important, to create the tools that will make the Semantic Web as easy to access and
develop as possible.

While thisis avery difficult task, steps have been taken in the right direction. For example,
Microsoft's EntityCube 5 gathers facts about named entities (people, publications,
organizations, places, etc.); WolframAlpha¢ (computationa knowledge engine) links
together domain databases and is able to understand and process queries like “next solar
eclipse” an present a tabular format with results and analysis, it can analyze an electronic
circuit from the query “RLC circuit 10ohm, 12H, 400uF” and many others, Google's
Squared’ attempts to provide a table with entities as rows and columns as attributes in
response to queries.

Freebase? and DBpedie® are two large, free sources of information. Freebase data may be
viewed and edited by anyone and DBpedia dataset can be freely downloaded. Freebase
provides a user friendly interface so that people can define types and relations, and they can
add and search data. DBpedia also provides online access but using a SPARQL Y (an RDF
guery language) endpoint. Both also provide datain RDF format.

In early 2010 the DBpedia data set describes 3.4 million entities with over 1 hillion facts
while Freebase contains about 12 million topics. One notable community effort is the

8 RDF: http://www.w3.0rg/TR/rdf-schema/, W3C recommendation on 10 February 2004

4 Approved W3C Recommendation on 27 Oct 2009, http://www.w3.org/TR/owl2-overview/
5 http://entitycube.research.microsoft.com/

6 http://www.wolframal pha.com

7 http://www.googl e.com/sguared/

8 http://www.freebase.com/

9 http://dbpedia.org/

10 http://www.w3.org/TR/rdf-spargl-query/, W3C recommendation on 15 January 2008

Chapter | - Introduction Page | 3



mapping between these two ontologies — at present 2.4 million RDF links have been added
to DBpedia pointing at the corresponding entities in Freebase. There is a noticeable, though
slow, momentum gathering towards these new technol ogies.

All of the above systems rely on some form of knowledge database and internal knowledge
representation format. Due to the size of the task at hand, amost al of the above systems
(excepting community efforts) use some type of tool to extract information from a source
and then convert it to its representation format.

In the present work we investigate such tools required to create large knowledge
repositories —we look at the Information Extraction (1E) field. Information Extraction is
a type of Information Retrieval that focuses on extracting structured information from
unstructured (free, natural language text) and semi-structured sources (xml, html
documents, etc). The extracted information needs to be in a structured format so that it can
be machine-readable by computers. Structured format has many forms, but the most basic
type is the “fact” or “triple’ containing a subject, an object, and a predicate/relation that
links the subject to the object. For example, the natural language statement “Ann is Mary’s
daughter” can be expressed as (Mar y, hasDaught er, Ann). This simple example illustrates
the need to identify words and detect the existing relations between them. As such, the field
of Information Extraction is split into severa tasks, like entity recognition, relationship
extraction, coreference resolution, etc.

In this thesis we focus especialy on the task of entity recognition, which is to identify
words as candidate entities and recognize them in the context of a reference dictionary
(more specificaly in the form of an ontology). We consider named entities as well as
common nouns. For named entities the task isto determine initially their type (whether they
are persons, locations, organizations, etc — the Named Entity Recognition task), or the more
difficult attempt to uniquely identify them directly in the reference source (detect more
specific instances like city, country, region, etc, not just smple location). For common
words the task at hand is to identify their senses, considering that words are polysemous
(the task of Word Sense Disambiguation). This identification step (both for named and
common entities) is essential for every Information Extraction system, as it usually
provides a first stepping stone on which to perform more advanced text processing. While
seemingly ssimple at a first glance, entity identification (with its two sub-tasks: NER and
WSD) is very difficult, as shown by the many attempts over the past two decades summed
up in specialized conferences and workshops like the Message Understanding Conferences,
Sens/SemEva Workshops!t, CONNL2, CLEF=, EACL* and other important events.

1 http://www.senseval .org/

12 Conference on Computational Natural Language Learning, http://ifarm.nl/signll/conll/
13 Cross-Language Evaluation Forum, http://clef-campaign.org/

14 European Association for Computational Linguistics, http://www.eacl.org

Chapter | - Introduction Page | 4



As asummary of the contents of the thesis, we will start from the basics, investigating the
algorithms, models, tools, the sub-tasks required for any Information Extraction system. We
then look at existing state-of-the-art |E systems like TextRunners and SOFIEz. To be able
to create knowledge bases in which to store the information harvested by such systems a
representation method is needed. Thus, the thesis investigates the usefulness of ontologies
in the field of IE by implementing two knowledge-based systems that rely almost
exclusively on unsupervised methods and large, general ontologies.

The first system implemented is designed to perform entity detection and recognition
starting from natural language texts. The approach taken here unifies two major problems
of IE - Word Sense Disambiguation and Named Entity Recognition into a single task -
General Entity Recognition.

The second implemented system is designed to perform text classification. This system also
uses a genera, large ontology and a custom semantic distance function to assign scores to
topics and topic concepts based on the ontology graph, and then rank them according to
each topic’ s relevance to the analyzed document.

The thesis closes with conclusions on the implemented systems: benefits and disadvantages
of the approach taken, implementation issues and their performance.

15 http://www.cs.washi ngton.edu/research/textrunner/
16 http://www.mpi-inf.mpg.de/yago-naga/

Chapter | - Introduction Page | 5



Il. Information Extraction related tools, methods and
techniques

This chapter describes some of the necessary and/or basic tools and techniques needed to
perform any Information Extraction related task. Some of the methods presented are
actually basic tasks that must be performed before any other magor task, and are not
exclusively located in the Information Extraction sub-domain, but are used in larger
domains such as NLP (Natural Language Processing), IR (Information Retrieval), Machine
Learning and others.

The first section describes text pre-processing tasks like tokenization or stemming. Then,
two machine learning algorithms are presented as they are essential in |IE. Parsers are then
presented as a tool for IE, in which are used to analyze sentences syntactically. After that,
Coreference Resolution is presented as an important task to be done that can sensibly
improve the entity extraction task. Last but not least, annotated generic English corpora are
presented as a basis for many tasks and subtasks, such as training POS Taggers or Parsers,
extracting Information Content values for words and concepts for Word Sense
Disambiguation tasks, etc.

I1.1. Text pre-processing

Text pre-processing is usually the first step that has to be done in NLP related tasks. The
original text has different processing agorithms applied to it, in order to extract (or
annotate) needed information about the text, portions of text or individua words.

[1.1.1. Tokenization and sentence splitting

Tokenization is the process of splitting a text into individual words, phrases, symbols, or
other meaningful elements called tokens. It is usually the first step applied in any NLP task,
asit outputs alist of separated tokens that normally are fed into further pre-processing tasks
or directly into major NLP tasks.

Tokenization, even though at first sight seems a simple matter of splitting words, quickly
becomes problematic for a sentence like “Mr. John Little (b. 1974), C.T.O. of Apala Labs
(05.2005-11.2008) ... “. To begin with, there is a punctuation dot just after the first token
“Mr”. In this case, the tokenizer must include the dot with the token, as opposed to treat the
dot individually as a separated token like it should do with sentence ending dots (sentence
stop). The opening parenthesis should be an individual token, but the dot after “b” should

Chapter 11 - Information Extraction related tools, methods and techniques Page | 6



be included in “b.”. Then, “C.T.O.” is yet another token, this time containing three
punctuation marks. An even more difficult problem arises on dates: should the tokenizer
split the date into “05”, “.”, “2005” or “05.2005"? As can be seen, tokenization becomes a
more difficult problem, accentuated by the fact that an error in this initial step will be very
costly to detect and correct in later processing stages.

Currently there are severa types of tokenization. The simplest way is to use
whitespace/punctuation splitting at the cost of very poor performance. More advanced ways
involve lists of regular expressions providing better performance (which do have the ability
of detecting specific patterns if needed in a domain-text for example). The most successful
way at present is to use statistical/machine learning models such Maximum Entropy or
Hidden Markov Model that are given a tokenized training corpus and learn the language
model on it.

The same issues apply on sentence splitting. Usually sentences end with a punctuation sign,
either a dot, an exclamation or question mark, three dots, etc. However, there are several
punctuation signs inside the sentence itself, and the sentence splitter should recognize them.
The same statistical/machine learning models are also used to split sentences in a text with
good success rates. Even more, to give the tokenizers the clearest input text possible, first
sentence splitting is performed, and then individual sentences are given to the tokenizers.
This ensures that the tokenizer does not get confused with sentence boundaries.

[1.1.2. Stop words

Stop words are list of common words that do not hold value in ashallow NLP analysis, and
as such are filtered out in initial stages of text pre-processing. The term “stop word” has
been first attributed to Hans Peter Luhn for describing the removal of useless words in
Information Retrieval tasks.

Lists of stop words are freely available, and can contain anywhere from tens of words to
hundreds of words. Some lists are domain-related. For example, a genera list would
contain words such as “a’, “by”, “the” or “she”, while a chat-oriented list would contain
words/strings such as “:)”, “brb” (be right back), “gtg” (got to go) or “lol” (laughing out
loud).

Stop word remova in some applications is actually harmful, for example in tools that
support phrase searching where removal of some linking words would lead a search engine
to skip valid results.

Chapter 11 - Information Extraction related tools, methods and techniques Page |7



[1.1.3. Stemming

Stemming is the process of reducing derived words to their root form. It is a basic task that
isusually performed at the beginning of most NLP problems, Information Retrieval, etc.

Currently there are many different approaches to stemming, with various performances:

Suffix Stripping Algorithms use alist of rules to transform an inflected word into its root.
For example, the rule “if the word ends with ‘ing’ = remove ‘ing’” will transform “flying”
in “fly”. This algorithm class provides performance as good as the linguist which programs
the rules. However, there are many exceptional cases that must be hand-coded. Suffix
stripping algorithms have average performance.

Lemmatization Algorithms start by determining the part of speech of the word, to try and
apply different rules depending on that part of speech. This approach does depend greatly
on the accuracy of the part of speech identification.

Brute Force Algorithms use a simple mapping between root forms and inflected forms.
The process is very quick; a simple lookup of an inflected word will return its stem.
However, for such a mapping to be held on a host machine, a huge amount of memory (or
other storage form) would be needed. Also, if the inflected form does not exist in the table,
no result will be given. Counting the number of words in the English language, it is
unlikely the manual filling if such a mapping will ever be completed; even automatic filling
with human supervision is too time consuming and the accuracy increase is minimal. On
the other hand, if every inflected form would be input in such a mapping, the stemming
accuracy would be 100%.

Stochastic Algorithms use probabilities to determine the word’s root. This class uses
machine learning algorithms that are trained on existing mappings between inflected and
root forms of words. Stochastic agorithms try to achieve the highest probability of
correctness of the stemmed word, internally using somewhat similar rules like the suffix
stripping and lemmatization agorithms.

An improvement that can be made to stochastic algorithms is to consider the context in
which each inflected word is found. This can be done by considering the words next to the
inflected word — n-grams. An n-gram is a sequence of entities (most often words but can be
syllables or characters) of sizen. If nis 1, then we have unigrams. If nis 2 we have bigrams
(most used), for n equals 3 — trigrams, and so on. The improved stochastic algorithm can
look at the words preceding the inflected word (the preceding words are called qualifiers
for the last word) to determine its sense, part of speech, if it is already stemmed, what stem
is more appropriate, whether to strip or substitute suffixes, and so on, based on
probabilities.

Chapter 11 - Information Extraction related tools, methods and techniques Page | 8



While n-gram analysis increases accuracy by a varying margin, it is argued that the
programming effort involved and even more the training-retraining requirements of the
model make it hard to maintain.

Hybrid Approaches to stemming mean using at least two existing techniques combined.
The techniques can work in parallel or can be used in sequence: for example, a hybrid
algorithm can first try a brute-force method that has mapped only exceptions; if the word is
not found in the mapping, then the algorithm falls back on a standard suffix stripper.

In the present work the Porter Stemmer [2] is used for stemming support.

[1.1.4. Part-of-Speech Tagging

Part-of-Speech Tagging (or POST for short) means identifying the part of speech that
corresponds to a given word. POST needs to take into account the context (connected or
related words in the same sentence or paragraph) of the word, considering that the same
word in different contexts belongs to different parts of speech.

There is no standard list of parts of speech; there are 9 basic categories in English: noun,
verb, adverb, pronoun, article, adjective, preposition, conjunction, interjection. There are
however many more sub-categories. We can identify a noun as being a named or acommon
noun, being possessive, accusative, having a number, being animate or not, and so on. This
typically increases the number of distinct parts of speech to above 100, different for every
implementation of POS Tagger.

POST is useful in Information Retrieval, Text to Speech (for example the word object can
be either a verb or a noun, depending on the accentuation: object(N) vs. object(V) ), Word
Sense Disambiguation and other more complex tasks.

Algorithmically, there are many types of taggers developed. For example, there are Rule-
Based POS taggers [3], Transformation-based taggers (Brill’s tagger [4]), Stochastic
(Probabilistic) taggers [5]. The best accuracy is obtained by stochastic tagging agorithms.

Supervised taggers use machine learning techniques to assign predefined classes to words.
Most often Hidden Markov Models are used. For any chosen model, they need to be trained
on an existing, pre-tagged corpus before being applied in practice (for example, a general-
purpose, POS tagged corpus used for training is the Brown corpus?). After training, atable
of probabilities is generated, based on part of speech sequences. For example, the word
‘the’ isin most cases followed by either a noun or an adjective, and never by averb. Higher
order models can estimate probabilities of entire sequences, not only pairs of words.
Supervised taggers usually achieve around 95% accuracy.

17 http://khnt.aksi s.uib.no/icame/manual s/brown/

Chapter 11 - Information Extraction related tools, methods and techniques Page |9



Unsupervised taggers use untagged corpora to derive probability tables. Such taggers
extract similar patterns of words (based on a preset metric or other discriminative criteria)
and infer part of speech categories for them. One notable example for this category is the
Brill Tagger [6].

In the present work Stanford’s POS Tagger [7] is used. It is a hybrid supervised tagger,
using both preceding and following tag contexts via a dependency network representation
and using lexical features like jointly conditioning on multiple consecutive words and
modeling of unknown word features.

11.2. Machine lear ning approach and tools

Machine learning agorithms can determine by themselves an output, path of action or
result when given an input, based on previous supervised or unsupervised training.
Machine learning is currently a scientific domain in itself.

“A computer programis said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasksin T, as measured by P, improves
with experience E.” [§]

The purpose of machine learning is to learn to act intelligently upon complex inputs. Being
impossible to map every single possible output course of action, machine learning
algorithms must learn to generalize for them to produce an output dependent on any given
input.

While there are many sub-classes and categories of machine learning algorithms, two major
categories stand out:

- Supervised Learning: Decision trees, nearest neighbors, linear classifiers and
kernels, neural networks, linear regression, bagging and boosting, feature selection.

Supervised learning means that training is done on “supervised” data, data that has
previously been annotated with the result the algorithm should output. After
training, the resulting regression function (if the output is continuous) / classifier
function (if the output is discrete) should provide reasonable output given any input
data.

- Unsupervised Learning: Clustering, graphica models, EM, factor analysis,
manifold learning.

Unsupervised learning means giving unlabeled training data to the algorithm to find
interesting patterns, identify classes of related data, etc. Based on this training, the

Chapter I1 - Information Extraction related tools, methods and techniques Page | 10



algorithm can then process test data, and cluster / assign a new input as belonging to
the most similar class determined in the training phase.

For the rest of this section we will investigate the Support Vector Machines (supervised
algorithm) and the Conditional Random Fields (unsupervised algorithm).

[1.2.1. Support Vector Machines

Support Vector Machines (SVMs) are a set of supervised learning methods used for
regression and classification. o o

A SVM tries to obtain the optimal separation
boundary of two distinct sets in a
multidimensional vector space, independently
on the probabilistic distributions of training
vectors in the sets. The task is to locate the
boundary that is most distant from the vectors
nearest to the boundary in both of the sets. For
nonlinear boundaries, the introduction of a
kernel method is equivalent to atransformation Figure1. SVM, boundary
of the vector space.

class +1
w*xX+b>1

clags -1 O

w*x+b<-1 o .
eparating hyperplane

wrx+b=0

The task of this class of agorithms is to detect and exploit complex patterns in data.
Typica problems are how to represent complex patterns (computational problem) and how
to exclude unstable patterns (statistical problem).

Input is given in the form of data instances. Each instance is an n-dimensional vector.

D= {(xi, Ci) | X; € Rn, c; € {—1,1}}:21 (1)

D is the training set, X; is the i-th dimensional value and ¢; is the class that the vector
belongs to. The n-1 dimensional hyperplane that best divides the data instances is expressed
as.

wix+b=0 (2)

where w is the weight coefficient vector and b is the bias term. The margin is the distance
between atraining vector xi and the boundary:

|wal-+b| (3)

lwll

Introducing arestriction to this expression, we have:

Chapter I1 - Information Extraction related tools, methods and techniques Page | 11



min;\wTx; + b| = 1 (4)
The optimal boundary maximizes the minimum of (3). Considering (4), minimization for:

c;wlx+b)>1 5)
The optimization is done using Lagrange’ s indeterminate coefficient method. Given:

L(w,b,a;) = ngW — Y a;[y;(wTx; + b) — 1] (6)

where ¢; > 0 are indeterminate coefficients. The partial derivatives are zero if w and b take
optimal values:

JaL
ow

oL
=w— Xy and == =X ;Y )

Setting the derivatives to zero, extracting w, rewriting and substituting:

L(w,b,a;) = _%ZiZj a; a4y yix] X+ X (8)

The problem is reduced to a quadratic programming problem, maximizing the right-hand
side term while considering that the sum (o;y;) equals O, for al a; > 0.

The quadratic problem is well known and applications exist that can solve it efficiently.
Another note to make isthat SVM splits the data into two classes. If we have more than two
output classes, then a more complex technique is applied, running the model iteratively.

The SVM dgorithm is implemented in several free and commercial packages, such as
WEKA®= | LIBSVM?®*, SVM-Light* and others. Because of its versatility and ease of usage,
in the present work WEKA [9] will be used for SVM support.

[1.2.2. Conditional Random Fields— Linear-chain CRF

The problem of labeling sequences to a set of observations is often found in many NLP
tasks (ex: labeling words in sentences with parts of speech, labeling words with chunk
identifiers, etc.) Usudly, either Hidden Markov Models (HMMs) [10] or finite-state
machines are used.

Hidden Markov Models define a joint probability distribution p(X,Y) where X is a random
variable ranging over observation sequences while Y ranges over the label sequences. This
form of generative model cannot iterate over al possible observation sequences (as it needs

18 http://www.cs.waikato.ac.nz/ml/weka/
19 http://www.csi e.ntu.edu.tw/~cjlin/libsvm/
20 http://svmlight.joachims.org/

Chapter I1 - Information Extraction related tools, methods and techniques Page | 12



to) if independence assumptions are not made beforehand. Usually, it is assumed that an
observation depends only on the label at a point in time, even though in reality observations
depend on multiple levels and even depend on previous labels in time. A generative model
like the HMM directly describes how the inputs are ‘generated by the outputs
probabilistically.

The answer to this problem is to create a model that defines the conditional probability as
p(Y|X) over label sequences given a certain observation sequence (X) instead of a joint
distribution over observation and label sequences. Another way of saying is that while
HMMs are generative models (modeling p(Y,X)), discriminative models like CRFs model
p(Y]X) that does not need to model p(X) which is usually intractable if it contains many
highly dependent features. The main advantage of discriminative modeling is that it is
better adapted to include many overlapping features.

A Conditional Random Field (CRF) is a discriminative model, represented as an undirected
graphica model where nodes are random variables and the links between nodes are
dependencies. A CRF defines a log-linear distribution over label sequences for a certain
observation sequence [11]. Linear-chain CRFs relate to HMMs in that they are used for
many of the same problems, but are more permissive about input and output assumptions.
A CRF can be viewed as a HMM with general feature function that do not use necessarily
constant probabilities to model the emissions and transitions. Furthermore, CRFs can
contain an arbitrary number of feature functions and these feature functions may not be
defined as probabilities.

If we start from a HMM, introducing feature functions for more compact notation and
considering the need of one feature function f;; for each (i, j) transition and one feature
function f;, for each state-observation pair (i, 0), then the HMM can be written as:

1 K
p(y,x) = EeXp {Z Akfk()’t:)’t—l:xt)} 9)
k=1

and considering that the joint probability of a state sequence y and an observation sequence
X can be written as follows:

T
p0.0 = | [pOelye-pCdyo (10)
t=1
then the HMM can be written as;
o) = PO _ e B Aefi O Ve, X))
Y00, x) Xy exp (XK Afie e Y o1 %0} (11)

Chapter I1 - Information Extraction related tools, methods and techniques Page | 13



This distribution is a linear-chain CRF that includes features just for an element identity
(for example a single word in a word sequence labeling problem). To use additional
features (like adjacent words or prefixes or suffixes) the feature functions f, should be made
more general than just identity functions. Thus, alinear-chain CRF iswritten as:

K
1
PO, x) = 775 &P {kZl Mefe e Ye-1, xt)} (12)
where Z(X) is the normalization function defined as:
K
Z(x) = Z exp {Z Aecfe (Ve Ye-1, xt)} (13)
y k=1

CRFs are a good solution for a number of relational problems [12] because they allow
dependencies between entities and include rich features of entities. Furthermore, CRFs
avoid the bias problem that conditional Markov models based on directed graphical models
exhibit [13]. On the other hand, CRFs are more difficult to implement, the training step is
more complex and they are rather slow compared to HMMs and even to Maximum Entropy
Markov Models.

Due to their characteristics and performance, CRFs are being used on an ever increasing
rate for IE and NLP tasks. Commercial and open source implementations exist, like
MALLET=, MinorThird?, CRFSuite?, CRF++2 or in Stanford’'s NER>. In the proposed
system in thiswork, Stanford’s NER is used for CRF support.

11.3. Parsers

Parsers, from a NLP point of view, perform syntactic analysis on texts in order to discover
their sentences’ grammatical structure. Parsing is done in respect to a formal grammar of
choice.

There are many categories of parsers, but a general classification could identify a few
distinct areas like dependency parsing vs phrase structure parsing or shallow vs deep
parsing.

Dependency parsing reveals a sentence’s structure as determined by a relation between a
head (aword) and its dependents (other words, usually modifiers, objects or complements).

2L http://mallet.cs.umass.edu/

22 http://minorthird.sourceforge.net/

2 http://www.chokkan.org/software/crfsuite/

% http://crfpp.sourceforge.net/

% http://nlp.stanford.edu/software/ CRF-NER.shtml

Chapter I1 - Information Extraction related tools, methods and techniques Page | 14



Dependency parsing is concerned only with creating dependency trees and ignores other
issues like word order for example. This makes them well suited for language invariant
syntactic analysis (ex: for languages with free word order). Furthermore, dependency
parsers have a high efficiency rating compared to phrase structure parsing and deep parsing.

The output of these parsers are dependency trees. The trees look similar to constituency
trees (dependency grammar is equivalent to constituency grammar if there is one restriction
of the constituency grammar — that in each phrase a word is set to be its head [14]) and
usually the NLP field treats both tree types the same [15]. A dependency tree makes
explicit relationships between words in terms of heads and dependents (see figure 2) while
a constituency tree makes explicit syntactic constituents visible in a sentence (see figure 3).

is (V)

o

This (Prn) example (N) m
A AN A
Prn \ D N P N N

an (D) of (P)

'

dependency (N) This is an example of dependency trees

'

trees (N)
Figure 2. Two equivalent notations of dependency trees

Thetrees' nodes are words, while their links are rel ations between words.

Some examples of current dependency parsers. KSDEP [16] — uses a probabilistic shift
reduce algorithm, MST [17] — implements an Eisner algorithm for projective dependency
parsing.

Phrase structure parsing, coming from phrase structure grammar, usually divides phrases
into averb phrase (VB) and a noun phrase (NP) and then further refines each until reaching
individual word level. Phrase structure parsing has been the most active parsing sub-domain
due to the existence of the Penn Treebank.

Examples of current parsers include NO-RERANK [18] — based on lexicalized PCFG
model; RERANK [19] — takes the first 4 results of NO-RERANK and using a MEM
(Maximum Entropy Model) selects the most probable choice; BERKELY's Parser [20];
Stanford’s[7] parser —an unlexicalized parser.

Shallow parsing analyses a sentence to identify its component groups (nouns, verbs, etc),
but does not attempt to describe the sentences’ internal structures or any other deeper
features (as deep parsers do). In NLP applications shallow parsers are often used over deep
parsers due to their considerable speed gain. Deep parsers use the concept of predicate
argument structures in their parse evaluation. Such a structure is a graph that represents

Chapter I1 - Information Extraction related tools, methods and techniques Page | 15



syntactic and/or semantic relations between words. Deep parsers provide theory specific
syntactic and/or semantic structures [21].

A good example is the ENJU deep parser [22] using a HPSG grammar extracted from the
Penn Treebank. It also uses a maximum entropy model that has been trained with a HPSG
treebank derived from the Penn Treebank.

| WX NP

[ |
VBP
| 5-FREL

e

NP-FREL S-TRACE

WP

| NF VP-TRACE
what | |
FRF VBF

| eat

Figure 3. ENJU deep parser visual example (constituency tree) for the sentence ‘| see what | eat’ %

Most of the current parses are statistical parsers, incorporating machine learning algorithms.
These kinds of parsers require training data before usage. The mgority of parsers are
trained using the treebank (parse tree collection) offered by Penn, and especially using the
Wall Street Journal section of the Penn Treebank. There are other available treebanks, for
example in the medical sector there is the GENIA Treebank [23]. The accuracy of parsers
varies with the available training set’s size and most importantly, domain. A state of the art
parser trained on a generic treebank will perform worse that an older generation parser
trained on a specific domain treebank.

In the present work Stanford’s Parser is used to obtain the syntactic and the dependency
trees.

I1.4. Coreferenceresolution

Coreference resolution is the task of identifying expressions (words or sequences of words)
that refer to other expressions in texts. This is an important task as it allows NLP
applications to identify information that is given about each particular entity throughout the
available text. In particul ar, coreference resolution isa critical component of an |E system.

Anaphora is a linguistic phenomenon in which an entity is interpreted using knowledge of
previous entity or expression (defined as the antecedent) in a text. The anaphor and the

2 |mage obtained using the online ENJU 2.4 parser at http://www-tsujii.is.s.u-tokyo.ac.j p/enju/demo.html

Chapter I1 - Information Extraction related tools, methods and techniques Page | 16



antecedent are in a coreference relation, with one referring to the other. This creates
confusion on the definitions of anaphor and coreference. Both are interrelated, but also have
non-overlapping areas. There are coreference relations that are not anaphoric and the other
way around: for the sentence “The best teams in NBA are better than ours'.” the anaphoric
relation is not coreferential, while for the sentence “The capital of Romania ... in
Bucharest...” the coreferential relation is not anaphoric.

Coreference resolution is a very difficult task due to the complexity inherent in natura
language. There are many types of coreference, for example repetition coreference (I saw a
car. The car was green), synonym (I lost my bicycle. | think my bike was stolen.), hypernym
(Alex was stung by a mosquito. The insect then flew away), proper name (Bill Gates gave a
speech. Mr. Gates said that ..), pronoun (I saw Alex, | told himto..) etc.

The coreference resolution task can be considered with three approaches. Supervised
Machine Learning, Unsupervised Machine Learning and Knowledge-based approach.

The Supervised Machine Learning approach is a very active sub-domain, due to the
increasing ML popularity. The systems usualy work by finding anaphoric NPs (Noun
Phrases) and then create chains by identifying the most likely antecedent(s) using
predefined features [24]. Training is done on existing corpora (for example MUC —
Message Understanding Conference — training and test data).

Feature sets are diverse and several techniques are used for comparing features. string
match (cat matches the cat), alias (if an entity is an alias of another, depending on type, can
be dates like 08.10 matches August, 2010, or Clinton matches Bill Clinton), distance
between entities (number of words or sentences that separates two entities), pronouns
features (true or false if entity is a pronoun or not), definite NP features (true or false if a
NP is definite — if it starts with the word the — the car), demonstrative NP features (true or
falseif a NP is demonstrative — if it starts with this, that, these, those), number agreement
(if both entities are singular or plura), semantic class agreement (use of WordNet for
example to determine if both entities are persons, dates, objects, etc.), gender agreement (if
both entities are a he, a she or unknown), proper name agreement (if both entities are
capitalized), appositive features (if one entity is in apposition to the other — ex: president of
USAisin apposition to Lincoln in “Lincoln, president of USA, ..."”), etc [25].

The choice of classifiers is aso varied, starting from Hidden Markov Models, to decision
tree learning algorithms [24], up to Conditional Random Fields [26].

Unsupervised Machine Learning approaches are an alternative to the well performing
supervised approaches where annotated training corpora are not available. Even for

Chapter I1 - Information Extraction related tools, methods and techniques Page | 17



English, where corpora are plentiful, there are sub-domains that are poorly covered, and
thus unsupervised coreference resolution systems are chosen.

The best known unsupervised system was proposed by Cardie and Wagstaff [27] [28] in
1999, viewing the problem as a clustering task. The clustering is done using a distance
metric that is given by a set of incompatibility functions and other indicators. Iteratively,
the algorithm starts the initially single-word clusters and merges them based on the distance
metric. The initial system had 12 features. Eventua developments rose the number of
features to amost 50, and one experimental system later tried the same approach with a
feature set of over 300 obtaining improved results.

Knowledge-based approaches use a lot of diverse methods. There are all kinds of
combinations between rule-based systems, heuristic systems, morphological, syntactic and
semantic information provided by deep parsers, up to data and knowledge repositories
(starting from word lists, dictionaries and gazetteers containing lists of names/
organizations/places to semantic information such as WordNet’ s hypernym tree).

For example, one such system [29] works by first using heuristics to extract only valid
antecedent candidates and then choose pair candidates based on proximity and coreference
type. Another approach is to use information extraction patterns to identify entity role: first
identify NPs that are not anaphoric and then use case resolution to determine coreference.
The remaining unsolved cases go through a series of manually coded extraction patterns
that use knowledge sources [30].

One big advantage of knowledge-based approaches is that usually there is no need of
annotated corpora; however, the downside is that manually created rules and heuristics are
needed (sometimes difficult to upkeep), involving domain knowledge of the devel opers.

11.5. General purpose corpora

Corpora have started to be developed in the early 60s, as a natura need for a repository of
accurate data for one task or another. Initially, the vast majority of work was done by hand.
As time passed and computers evolved, the corpora started to benefit from semi-automatic
and automatic annotation, further improving the accuracy but especially the time needed for
manual correction. The size of corpora increased, as well as their specialization. Today
there exists alarge variety of large corporafor very diverse tasks, starting from the standard
POS tagged corpora, treebanks, domain corpora (large collections of medical texts or news
articles, or old language documents, etc), tokenized corpora used for chunker training,
semantically annotated corpora annotated with ontology references, and so on.

Chapter I1 - Information Extraction related tools, methods and techniques Page | 18



Further on, two important corporawill be presented, the Penn Treebank [31] and the Brown
Corpus. The Penn corpus provides a collection of syntactically parsed sentences while
Brown provides POS tagged text for tagger training.

Penn Treebank

Treebank refers to a text that has been syntactically annotated and represented as a
collection of tree structures. Such treebanks are usually created starting from texts that have
been annotated with part-of-speech tags and syntactic structures.

As an dternative to the manually solution, where linguists annotate sentences with syntactic
structure, a parser can be used to assign it. The parser aternative does not eliminate the
human interaction — the annotation being required to be checked and if necessary corrected.

Penn Treebank annotates the phrase structure (it is also possible to annotate the dependency
structure) and is very popular due to its large size and simplicity of the representation. It
can be rapidly used to train parsers or other NLP related tools.

A simple example:

Cat hunts nice
(S (NP (NNP Cat))
(VP (VPZ hunts)
(NP (NNP mice)))

(. ))

Brown Corpus

In the mid-1960s, at Brown University, the first mgjor corpus for computer analysis was
developed — the Brown Corpus, made up of 1,000,000 words from random publications.

Almost a decade later, the tagging for the Brown Corpus was nearly completed. It was
based on a handmade list of what categories of part-of-speech could co-occur at all.
Initially, the first approximation was around 70% accurate. Subsequently, corrections have
been made and the tagging accuracy improved to amost 100% (considering that there
exists inter-annotator disagreement).

The Brown Corpus formed the basis for later part-of-speech tagging systems, such as
VOLSUNGA and has been superseded by the much larger British National Corpus (100
million words).

The Brown corpus is used for many purposes, starting from POS training to using the
sentences and words themselves to provide a reference for each word’ s information content
when used with an ontology like WordNet.

Chapter I1 - Information Extraction related tools, methods and techniques Page | 19



I11. Knowledge acquisition and representation

[11.1. Ontologies asinfor mation repositories

An ontology is a form of knowledge representation and can be used to describe a domain
using a set of concepts and the relationships between those concepts in the context of that
domain. There are many definitions of ontologies; one would be that an ontology defines a
common vocabulary for entities (humans or machines) who need to share information in a
domain. It includes machine-interpretable definitions of basic concepts in the domain and
relations among them [32].

Anontology is based on formal explicit descriptions of concepts, properties of each concept
and restrictions on these properties. Description of concepts are applied to a specific
context, they describe particular meanings. These descriptions are called concepts or
classes. Properties or roles of these concepts describe various features and attributes of the
concepts. While classes have the role to represent an entity into an ontology, a specific
example of thisentity is represented by instances.

Artificial intelligence, software engineering®, biomedical informatics®, Semantic Web or
GIS Systems [33] [34] arejust afew of the domains the ontologies are used in.

One of the purposes ontologies are developed for is to share the same language between
entities. For example, there are different Web sites containing information from the same
domain or providing e-commerce services in the same area — for example pharmaceutical
information/e-commerce. If al these sites share and publish the same basic ontology of the
terms they use, then software agents can extract information and can aggregate it from each
of these different sites. The aggregated information will be used to answer user queries or
will be sent as input data to other applications.

If an ontology is developed to represent different domains with specific needs (for example
different domains whose models need to represent the notion of time) then the ontology can
be simply reused by other groups. An ontology can aso be extended to describe a specific
domain of interest or can be integrated among other ontologies to describe portions of a
larger domain.

When reusing existing ontologies or extending them, a formal analysis of terms is useful.
Once a declarative specification of the terms of a domain knowledge is available, the
anaysis of domain knowledgeis possible.

The major ontology components are classes, relations, attributes and individuals.

27 For example, SUMO (http://www.ontologyportal .org/index.html) is used in commercial applications
28 http://www.ebi.ac.uk/ontology-lookup/ontol ogyL.ist.do

Chapter 111 - Knowledge acquisition and representation Page | 20



Classes are concepts, abstract groups of objects defining kinds of things, from general to
specific. Classes can be subclasses of other classes. Classes classify other classes and/or
individuals. For example, classt hi ng is a superclass of classvehi cl e. In turn, vehi cl e
is a superclass of class aut onobi | e, meaning aut onobi | e is a subclass of vehi cl e.
This type of inheritance between classes forms a tree or a graph defining a domain. Classes
can be instantiated by individuals. For example, the class Hyundai _Accent can be
instantiated by an individual that is an aut onobi | e and has specific attributes.

Relations are ways in which classes and individuals can be related to one another. The set
of relations describes the semantics of the domain. The most important types of relations
are the super d assOf, t ype or subCl assOf . This defines which objects are classified by
which class. Based on these relations a hierarchical taxonomy is created and each object is
the “child” of a“parent class’. Other relations exist. For example, another possible relation
iSisPart Of (meronymy). pet rol _engi ne is part of car since a car contains an engine.
Relations link classes or instances to other classes, instances or literals. For example, the
relation i sBor nOnDat e linksaper son instance to a calendar date.

Attributes are aspects, properties, features, characteristics, or parameters that objects (and
classes) can have and that relate them to other objects.

Individuals: instances or objects (the basic or "ground level" objects). A class is given
specificity by instantiating it (creating an object that is atype of a specific class) so that the
class is now unique by the values of the attributes it now has filled. There is an ongoing
discussion whether individuals should be used instead on named classes, especially more so
on rather small ontologies, where both approaches work. In theory [32], an individua
should be used when it has properties that are different from other individuals of the same
type, and that individual is further referred on by other individuas. Otherwise, named
classes should be used. Individuals should be instantiated classes that are located at the
bottom layer (leaf nodes —most specific) of an ontology.

There are other ontology components like restrictions (dependencies between classes
restricting the set of valid assignments), rules (classic if-then constructs), events (triggers
on changing values of attributes or relations), etc.

[11.1.1. RDF — Resour ce Description Framework

RDF is a metadata model designed originally by the W3C2 and became a W3C
Recommendation in 2004. It is a standardized method of information modeling
implemented in web resources, initially on top of XML for encoding metadata (metadata is

2 http://www.w3.org/

Chapter 111 - Knowledge acquisition and representation Page | 21



data about data, like the date of the author of a news article, accompanying the article
itself). RDF is designed to be read and understood by computers, not humans (though more
human-readable formats exist).

RDF identifies resources using URIs (Web identifiers) and describes them using properties.
For example:

<?xm version="1.0"7?>
<rdf >
<descri ption about="http://ww. stefandunitrescu.ro">
<aut hor >St ef an Dumi t r escu</ aut hor >
<honepage>htt p: // ww. st ef andumi trescu. r o</ honepage>
</ descri ption>
</rdf >

where the resource is a website (www.stefandumitrescu.ro), having the property ' author’
and the property value’ Stefan Dumitrescu’.

A statement is an association of a subject and an object linked by a predicate. The above
example trandates as ‘ Stefan Dumitrescu is the author of www.stefandumitrescu.ro’ , with
‘Stefan Dumitrescu’ as subject, the website address as object, linked by the ‘is the author’
relation. We can aso say that the statement is a triple, meaning we have a subject, a
predicate and an object. The subject is normally either a URI or a blank node (anonymous
resource). The predicate is aso a URI, and the object can be either a URI, a blank node or a
simple string literal.

RDF defines a specific vocabulary: rdf:type (the resource is an instance of a specific class),
rdf:Property, rdf:Alt rdf:Bag rdf:Seq (containers), rdf:List (list), rdf:nil (an empty list),
rdf: Statement, rdf:subject, rdf:predicate, rdf:object.

RDF can be seridized in different formats. The main format is XML, like in the example
above. Notation 3 (N3) is aso a magjor format for RDF, being a more compact non-XML
notation, designed mainly for human readability.

In N3, the example above becomes (using ds as a namespace, definition omitted):

http://ww. st ef anduni trescu.ro
ds: author “Stefan Dunitrescu”
ds: honepage “http://ww. st ef andum trescu.ro"

Another RDF format is Turtle (Terse RDF Triple Language), it is a superset of N-Triples
(yet another RDF format) and also valid N3 format. Turtle does not extend RDF's graph
model, unlike N3.

N-Triples uses plain-text serialization to store RDF information. It was designed to be a
simpler format than both N3 and Turtle.

Chapter 111 - Knowledge acquisition and representation Page | 22



Ontologies can be stored in RDF format, and RDF itself can form the basis of more
advanced knowledge representation languages, like OWL (Web Ontology Language).

[11.1.2. WordNet

Princeton University’s WordNet= [35] is a free electronic lexical resource containing
dictionaries of nouns, verbs, adjectives and adverbs. It provides not only dictionaries but
also organizes related concept from the individual categories into synsets (Synonym sets).
Currently the latest version of WordNet is 3.0, containing around 150000 words organized
in around 115000 synsets.

The basic WordNet concepts are: synsets, glosses and lemmas. The gloss is an explanation
or definition of aword in atext, basicaly a sense-disambiguated corpus. In addition to the
definition itself, the gloss aso contains additional explanations and examples. Lemmas are
the words that belong to a synset. They represent the string text of the word from WordNet
database.

The synset is the equivalent of a concept. A synset is, in essence, an ordered list of
synonyms. The synonyms themselves are words that are in the same lexical category and
are commonly used to express the same meaning. Synsets as well and the synset hierarchy
(created by relations like is-A, part-of, etc.) represent the most used information in
WordNet, bringing also semantic value over the standard lexica value a dictionary
provides.

WordNet is currently the most commonly used lexical resource for word sense
disambiguation. It encodes many senses for every word, and while this seems at first a solid
base to use for the diverse tasks, it has been argued that there may be too many senses even
for humans [36]. This issue might prevent Word Sense Disambiguation systems from
performing at their best. Solutions have been proposed, like clustering methods that might
be used to group similar senses together and reduce the total number to only a few, more
manageable and distinct senses [37]. For English, accuracy is over 90% if we take coarse-
grained senses (every word has few, clearly defined and separate senses), and about 59.1%
- 69.0% for fine-grained senses (reported by Senseval-2%) (every word has a many senses
covering many possible meanings). We must note that for fine-grained senses, the baseline
algorithm is that of always choosing the first sense of every word, with accuracy ranging
from 51.5% to 57%. This fine-grained baseline accuracy is a problem for most agorithms
to even reach, let alone out-perform.

30 http://wordnet.princeton.edu/
31 http://www.senseval .org/

Chapter 111 - Knowledge acquisition and representation Page | 23



There is an ongoing discussion whether WordNet can be viewed as an ontology. From one
point of view, the graph provided by the synsets and the hypernym relations between them
can be viewed as such an ontology. But, an ontology in its definition does not alow
inconsistencies that are present in WordNet, like redundancies in the hierarchy or common
specializations for exclusive categories. However, the hierarchy has been automatically
cleaned and imported, in one form or another, in several ontological systems, starting from
WebKB-222 to DOLCE=, DBpedia* or Y AGO=.

WordNet synset graph

WordNet's synsets together with the different relations between them, as discussed above,
may be considered to form an ontology. Although under discussion, even if is not
considered an ontology, then at the very least the tree-like graph it forms if we consider the
hypernym relation (subCl assO ) is alarge taxonomy.

The formed graph can be used to add semantic value to nodes, and the links themselves are
used as information in NLP, IR, IE agorithms, where the nodes are considered entities the
algorithms work with.

For example, figure 4 presents a fragment of WordNet’s hypernym tree. It can be seen that
classes are linked up to more and more generic classes until the top of the tree
wordnet _entity.

%2 Integration of WordNet 1.7 in WebKB-2, http://www.webkb.org/doc/wn/wnl ntegration.html

3 http://www.loa-cnr.it/DOL CE.html, also reference Sweetening WORDNET with DOLCE [145]

% DBpedia includes Wikipedia categories, the YAGO Classification scheme and WordNet Synset links,
http://wiki.dbpedia.org/Datasets

% YAGO is huilt starting from Wikipedia and WordNet. Every entity in YAGO has at least one
correspondence to a WordNet class through the t ype relation ex: For d_Focus t ype wor dnet _car [39]

Chapter 111 - Knowledge acquisition and representation Page | 24



Wi_entity

wn_physical enti
ty

wn_causality wn_artifact

wn_instrumentali
ty

‘Wwn_convcyance

wn_device wn_vehicle

wn_selfpropelled
_vehicle

wn_instrument

wn_motor_vehicl

wn_machine o

wn_motor

wn_engine 2 wn_engine 3

. . wn_database e
wn_engine 1 wn_locomotive - —
- - - ngine

Figure 4. Example of synset partial hypernym graph

Semantic similarity measures

Semantic similarity is a measure of the closeness of relatedness of two concepts. While
there are many existing ways to determine relatedness, we will present measures that use
Information Content (concept introduced by Resnik in 2005 [38]). Information Content (1C)
is a specificity measure for concepts. For example, concepts that are more specific have a
higher IC associated value than more genera concepts (ex: locomotive has a higher IC than
device). The IC value is calculated depending on the frequency of concepts from the text.
The process is as follows: the text (corpus) from which I1C values are to be derived from is
parsed, and for every concept found, its frequency as well as the frequency count of its
ancestors are increased by one in WordNet. The ancestor hierarchy is a concept hierarchy
where the links are WordNet relations (e.g.: for nouns we have subd assOf or part Of
relations). Most often the hypernym relation is used (subCl assCf ).

An important issue comes from the corpora on which the IC values are determined. If the
corpus is sense-tagged, it is easy to count the senses that have to be incremented for every
word. However, if the text is not sense-tagged, then al the possible senses for every word
are incremented, as well as their ancestors. In this scenario, the frequency of al the
occurrences of aword is divided equally among the different possible senses.

Chapter 111 - Knowledge acquisition and representation Page | 25



After the frequency count is completed, for each concept in WordNet the IC vaue is
computed as the negative log of the probability (frequency count) of the concept.

IC(s) = —log(P(s)) (14)
IC information is extracted from general corporalike the Brown or SemCor corpora.

We will investigate three different Information Content measures. Resnik’s measure res,
Lin’s measure lin, Jiang and Conrath’s measure jcn. All these measures take two synsets as
inputs, and produce areal value that represents the similarity between the two synsets. They
are al based on the idea of finding the least common ancestor (LCA), meaning finding the
concept that subsumes both of the synsets in WordNet’s synset hypernym hierarchy. If
thereis more than one LCA, the least general LCA istaken (the lowest in the hierarchy).

The Resnik measure (res) provides the basic metric that is used both for lin and jcn
measures. The similarity value is the Information Content value of the synset’s LCA.

Sim,.5(s1,s2) = IC(lcs(s1,s2)) (15)

The res measure may provide the same value for different synsets that share the same LCA,
and thusis not avery informative measure. Lin’s measure attempts to improve the accuracy
by incorporating information about the IC of each of the synsets.

2 X SiM,es(s1,s2)
1C(s1) + IC(s2) (16)

simyy(s1,s2) =
Jiang and Conrath provide an alternate distance metric instead, using the same elements as
Lin:
distjcy(s1,52) = 1C(s1) + IC(s2) — 2 X sim,5(s1,52) 17)

However, to transform jcn into a similarity measure, we can simply invert the distance
formula

1
distjc, (s1,52) (18)

Simjcn(s1,s2) =
While this formula provides a similarity measure instead of a distance measure between
synsets, it does ater the value differences between sets of synsets due to the division.

These three measures types represent standard measures used for a long time in NLP
applications, with consistent results.

Chapter 111 - Knowledge acquisition and representation Page | 26



11.1.3. YAGO

YAGO (standing for Yet Another Great Ontology) is a light-weight and extensible
ontology with high coverage and quality [39]. YAGO was built as a very large, accurate
(95+ accuracy) and simple to use ontology for machines including WordNet entities and
hierarchy, and information extracted from Wikipedia like named entities (people,
organizations, geographic locations, books, songs, products, etc.), and aso relations among
these entities.

For the chosen representation language, YAGO designers decided to extend RDFS to suit
their particular needs. Although OWL is the current web standard, the motivation of not
developing YAGO in OWL was because OWL Full is undecidable (it is an extension of
RDF) and OWL Lite and DL, while decidable, place some restrictions on class definition
and description (they are both extensions of a restricted view of RDF). RDFS, which is the
basis for OWL can express such relations but can only provide limited semantics, thus the
need to extend RDFS. In the YAGO model all objects are entities and two such entities can
stand in arelation.

Example [39]:
Al bert Ei nstei n hasWnPri ze Nobel Pri ze
Al bert _Ei nst ei n bor nOnDat e 1879
"Einstein” means Al bert _Ei nstein

In the first two statements entity Al bert_Ei nstein stands in relations to entity
Nobel _Pri ze and the date 1879. The third relation links a string to a class using the neans
relation. This enables the linking of any number of strings to an entity, helping to deal with
name synonymy. Entities are instances of classes. For this relation, YAGO uses the type
relation as in Al bert _Ei nstei n type physicist. Also, classes stand in a subd assCOf
relation to one another. Thus, we have physi ci st subd assOf sci enti st, whichinturn
is a subclass of another class, and so on until reaching the root node ent i ty (every classis
an indirect subclass of classenti ty).

Another important note to be made about YAGO is that for n-ary relations it uses facts
about facts. Each fact (two entities that stand in a relation) is given a unique id. Thus, for
example, we could express that Einstein was born in the city of Ulm, Germany in the year
1921 like:

#1. Al bert _Ei nstei nborninU m _Germany

#H2: #1time 1921

Chapter 111 - Knowledge acquisition and representation Page | 27



YAGO uses two sources of information: WordNet and Wikipedia From WordNet it
borrows the hypernym hierarchy, while from Wikipedia it borrows entities and uses them
as arguments to the relations implemented in YAGO. Each synset from WordNet is
translated in a YAGO class. In cases where Wikipedia also contributes entities, WordNet is
always given preference. Thus, WordNet defines the upper hierarchy, while Wikipedia
contributes to the lower, most specific branches. These are also linked up using the
subd assOF relation.

WordNet synsets have words with similar meaning. After YAGO creates an class from
each synset, it uses every word in the synset to add neans relations to the created class. For
example, the word “car” belongs to the Automobile synset — Y AGO creates the Automobile
class, and the fact “car” means aut onobi | e.

There are meta-relations defined, like cont ext, or ext ract edBy. These give information
about the place the data was extracted, the confidence in the extraction, etc. It should be
noted that there is a fixed number of relations built in YAGO. While this does not mean
that YAGO is limited, it does create the need of extending YAGO with new relations, and
brings up the debate whether the relations should be canonical (being pre-defined as a
function with domain and range f:D > R) or free (not defined). YAGO can be improved
with the addition of new canonical relations.

YAGO stores its data in any of the XML, SQL and RDFS formats. This provides a great
boost in accessibility.

In summary, YAGO stores more than 2 million entities with 20+ million facts about them.
The facts are high quality, having been automatically extracted from two trusted
information sources, Wikipedia and WordNet. Also, YAGO uses a simple, extendable,
RDFS-compatible model. YAGO is important because it is amajor step in providing large,
accurate data sources. At the time of writing, the Y AGO upper hierarchy was embedded in
DBPedia* database, which is the only larger source of information than YAGO itself.
However, community efforts like Freebases will, if not aready, create much larger
information sources.

[11.2. Information Extraction

The Information Extraction (IE) field has risen from the need for computers to understand
the huge amount of information on the Web that isin raw unstructured text format. I1E tries
to extract textual facts into arelationa structure, a knowledge base. The smart structuring

3 http://dbpedia.org/About
37 http://www.freebase.com/

Chapter 111 - Knowledge acquisition and representation Page | 28



of information into such knowledge repositories alows computers to answer user queries
with actual answers instead of lists of candidate web sites.

The core task that defines |E is the extraction of facts form natural language, in one form or
another, using an extractor that identifies entities and their linking relationships. For
example, from the sentence “Einstein, born in Ulm (1879), went on to win the Nobel Prize
in Physicsin 1921” severa facts can be extracted:

1. Einstein was born in Ulm.

2. Einstein was born on date 1879.

3. Einstein won the Nobel Prizein Physics.

4. Einstein won Nobel Prizein Physicsin 1921.

While for humans these facts are extracted instantly and correctly, for acomputer it is much
more difficult. For example, Einstein in this case is the subject of every fact. Einstein is a
reference in fact to the Al bert _Ei nst ei n entity. The extractor must know that usually a
number in brackets after a location means a date, so it can extract that the born date is the
one in brackets. The extractor must ignore irrelevant words such as “went on” and pick
“win” as the correct relation between Einstein and the Nobel _Pri ze entity. Furthermore,
the Nobel _Prize entity is generic, and it has to be specified that there exists a
Nobel Prize_in_Physics instance characterized by the date of winning, in this case,
1921.

Normally, the standard triple format is used: Subject, predicate, Object. But how to store
relations that have multiple arguments? For example fact 4 cannot be stored into a standard
triple. One solution is to also store the id for each fact, and then fact 4 would be stored as
#4 (#3, onDate, 1921) where fact 3 would be #3 (Al bert Ei nstein, wonPrize,
Nobel _Pri ze_i n_Physi cs); Another solution would be to individualize the Nobel Prize
instance, meaning to add another fact like (Nobel Prize_in_Physics_12345, type,
Nobel Prize_in_Physics) wherethe 12345 would be an unique identifier for the new
entity that is a type of generic Nobel Prize in Physics. Then it would be easy to link
Einstein to this specific instance (for fact 3) and specify that this instance was won in 1921
(for fact 4).

There is a choice of storage formats that influences the types of algorithms that can be run
on the database in response to queries. There are representation formats on which
inferences can be made; some formats are decidable but more restricted (OWL Lite, DL),
some are not decidable but much more expressive (OWL Full). An extractor has to take
every such aspect into consideration.

There are two major types of results obtained for the IE task. The mgor effort currently in
IE is to analyze texts and extract canonical facts. A canonical fact is a fact that has its
relation predefined in an ontology (the relation is one from a set of relations defined in that
ontology) and its entities also belong to a specific generic entity (they can be either

Chapter 111 - Knowledge acquisition and representation Page | 29



subclasses of a more generic class or instances of a specific class). There are advantages
and disadvantages with this approach. For example, one has to predefine each relation of
interest. This leads to a certain domain specificity degree, and also the time needed for
every relation islinear to the number of required relations.

Initially, IE systems tried to extract information from very domain-specific sources like
news articles or internet posts. More recently different systems have begun to be used on a
larger domain base, with decent success [40] [41]. SOFIE — Self-Organizing Framework for
Information Extraction [42] is agood example of the current generation of systems.

The second major approach is based on the premise that the Web contains very much
information and the number of possible relationships that can be found is much larger that it
is possible for humans to predefine and create models for each relation type. To be able to
extract al possible relations (in the thousands as opposed to only a few hundred) some
concessions have to be made. While the extracted entities and relations number is vastly
superior to the traditional canonical approach, the facts themselves are not canonical,
meaning they are just strings, without any predefined meaning behind them. The best
example of this approach is TextRunner [43], having a collected knowledge base of
millions of entities and thousands of extracted relations.

[11.2.1. Open |E — TextRunner

The TextRunner system (developed by Michele Banko [43]) introduces a new term coined
“Open Information Extraction”, moving “away from architectures that require relations to
be specified prior to query time in favor of a single data-driven process that discovers an
unbounded number of relations whose identity need not be known in advance” [43].

TextRunner takes as input web documents (unstructured free text) and outputs sets of tuples
containing entities that stand in a relation. TextRunner tries to extract as many relations as
possible. It does not have a set of predefined relations, thus the tuples it extracts are string
tuples (entities and relations are not canonical, meaning they are not predefined in an
ontology, for example). Currently TextRunner has extracted a large number of tuples (more
than 13 million after tuple reductions), spanning about 16000 distinct relations linking
around 4.2 million entities.

The system emphasi zes on three points / problems:

- Automation — meaning that for a system to be useful it must extract as many
relations as possible.

- Domain Independence — meaning that an IE system should handle texts from any
domain.

- Efficiency — meaning that the system must scale to the size of the Internet, being
able to process billions of documents.

Chapter 111 - Knowledge acquisition and representation Page | 30



The main feature of TextRunner is that it implements a unitary model of expressing
relationships (independent of relationships themselves). This allows for a language model
that can either be learned automatically or developed by hand that takes as input documents
(domain independent) and outputs tuples that contain entities linked by relations. This
feature addresses the three points above in that it removes the need for manua relation
identification (reducing manual labor to a constant, independent on the relation set size) and
it shifts the focus to relation discovery and extraction rather than the traditional entity
discovery and relation identification from the pre-programmed set.

In the thesis that presents TextRunner [43], Banko shows that 95% of the patterns that are
used to define binary relationships can be grouped into only a few generic patterns. Thus,
most instances are verb-centric — about 37%, verbs + preposition at about 16%, infinitival
phrases — 9%, noun phrases + verb — 1%.

TextRunner is composed of the L earner module, Extractor module, Assessor module and
the Query Processor module.

Figure5. TextRunner architecture

The Learner module outputs an extraction model for relationships based on a training
corpus and manually added heuristics. The model is language dependent (given it was
trained on a certain corpus) but is relation independent.

In the first stage (of two) the Learner labels its own training examples based on heuristics
as possible relation instances. In the second stage it uses the labeled data to train the
Extractor module. The Learner uses a set of parse trees to train the extractor using a single
self-supervised procedure instead of using a parser repeatedly. The relation instances

38 |mage taken from [43], page 24

Chapter 111 - Knowledge acquisition and representation Page | 31



(positive and negative examples) are modeled using features that do not depend on
syntactic or semantic analysis during extraction. The output model does not contain relation
specific features.

The Extractor is used to extract tuples for al possible relations found in a given text.
TextRunner implements two extractors. the first considers relation extraction as a
classification problem while the second as a sequence labeling problem.

The first Extractor implements the Naive Bayes classifier [44] which tries to evaluate if
chunks of text involving two delimiting entities form a relation. The classifier is trained
using the examples previously labeled by the Learner. Possible relationships are found by
examining the tokens (words) in the intermediate context created by a pair of given entities.
The search is refined by using a phrase chunker to identify and eliminate unnecessary
tokens such as adverbs or adjectives. The top most likely tuples are kept to be evaluated in
the next module.

The second Extractor implements CRFs (Conditional Random Fields, presented in section
11.2.2). The second order linear chain CRF is used to determine if token sequences are valid
candidates for entity-relation-entity tuples. After entity identification, all combinations of
two entities no more than a set word count apart (window size) are considered as borders
for a possible relation. The tokens between the entities are labeled using the BIO encoding
[45]. This encoding labels tokens as either B (beginning), | (intermediate — follows B) or O
(out — not in the phrase).

There are some limitations though: the extractors extract only explicit relations from the
text; the extractors extract word-based relations, not punctuation bases; relations must occur
in the same sentence to be considered.

The Assessor module identifies and ranks instances that refer to the same object or indicate
the same relation using different words. It implements an unsupervised algorithm [46]. It
firsts normalizes the tuples, performs synonymy reduction and then ranks the resulting
tuples.

Normalization is performed by simply stemming the words to their roots. Also, it removes
tokens that can lead to over specification by using a set of head-finding rules developed by
the parsing community [47]. This may introduce some problems, as possible needed words
are lost (ex: “most people” is reduced to “people’). The next step is Synonym Resolution
where the RESOLVER algorithm [46] is used to predict the likelihood that two strings refer
to the same item based on string-similarity and shared relational attributes. The last step is
the Assessment, where identical tuples are merged together. Given that if the number of
tuples is large, memory and processing problems may occur, the MapReduce [48]
framework is employed.

Chapter 111 - Knowledge acquisition and representation Page | 32



The Query Processor is the last module in TextRunner. It takes as input the tuples and
outputs a distributed index, useful for fact retrieval based on user queries. The inverted
index is created using Lucene® (an open source search engine). The Query Processor
enables relational Web search, where nodes in the graph are entities and the edges that link
two nodes are rel ationshi ps between entities.

TextRunner is available online for testing at « where it allows searching the extracted
tuples.

[11.2.2. Canonic fact extraction — SOFIE

SOFIE - A Self-Organizing Framework for Information Extraction [42] was developed as a
system for automated ontology extension. SOFIE parses text documents and extracts
ontological facts, adding the facts back in the ontology it used to asses them.

The problems SOFIE comes up against are: Word Sense Disambiguation, Pattern Matching
and Ontological Reasoning. SOFIE is interesting from quite a few points of view. First, for
the WSD problem, if it detects as it parses the text that more evidence for a word sense
accumulates against the previously selected sense, it reevaluates its choice for that word.
Second, it can reason on the plausibility of the proposed extracted patterns and reject some
of them. Third, SOFIE uses an ontology for reasoning, meaning it uses relation information
(like relation domain and range, constraints, etc), proposes hypotheses that it tries to satisfy.
It does all this by combining the three distinct problemsin a single framework — translating
the problems into logical clauses that need to be satisfied, in essence solving a weighted
Maximum Satisfiability problem. The MaxSat problem (an extension of the standard Sat
problem) is to determine the maximum number of clauses that can be satisfied for a given
Boolean formula. The weighted MaxSat adds weight to the clauses and asks to determine
the maximum weight obtainable for the given formula.

The motivation behind SOFIE was that even though large sources of information exist, like
YAGO or DBpedia, they are still small compared to the information volume available on
the web. Furthermore, the size of the ontologies (knowledge repositories) themselves
should help with the effort of extracting even more knowledge with high accuracy.

The SOFIE model uses the following notations:

Facts are noted as pr oduced(Hyundai,Accent) [1], meaning that the company Hyundai has
produced the product (in this case a car) named Accent, with the truth value of 1 (can be
either 1 or 0) in square parenthesis.

3 http://lucene.apache.org/
40 http://www.cs.washington.edu/research/textrunner/

Chapter 111 - Knowledge acquisition and representation Page | 33



SOFIE extracts pattern such as pat t er nCce (@ isin @”, Bucharest@D1, Romania@D1)
[1], meaning that it has found a pattern represented by the string “@ is in @” where @
denotes placeholders, with text entities Bucharest and Romania, both of them found in
document 1 (noted as @D1). There is a restriction in place, meaning that if an entity is
found several times in the same document it is considered to denote a single entity
throughout that document — ex: “Java’ found several times in one document will denote
either theisland or the programming language, never both.

The fact that states how likely it isfor atext entity to refer to an ontological entity is called
a disambiguation prior, that has a confidence value attached: di sanbPri or (Accent@D1,
Hyundai _Accent, 0.6)[1]. Based on the disambiguation priors, SOFIE can propose
hypotheses like one that states that an text entity is to be disambiguated as an ontological
entity: di sanmbi guat eAs(Accent@D1, Hyundai _Accent ) [7]. The truth value is unknown
and thus noted with a question mark. The same type of hypotheses can be made for new
facts that have yet to be verified: | ocat edl n(Buchar est , Pol and) [?7] or about patterns
that may or may not express arelation: expresses(*@ isin @”, | ocat edl n) [7].

SOFIE aso uses rules, which are first order predicate logic statements. The rules are used
for general world knowledge, like expressing a fact that if a person has died on date X it
cannot be born on a date later than X, or that if that person is born in alocation, it cannot
be born on any other location. For example, the latter rule is expressed (generically) by:

RCKY) M type(R,function) A di f f er ent (Y,Z) => IR(X,Y)

There are aso rules that link facts and hypotheses. For example, arule that links the pattern
occurrence P (string) to an actual relation R (ontological relation), with WX, WY meaning
words (text entities) and X and Y ontological entities:

pat t er nGcc(P,WX,WY) " di sanmbi guat edAs(WX,X) * di sanbi guat edAs (WX, X) »
R(XY) => expresses (P,R)

All the rules are hand-added to the system.

The aim of SOFIE isto find the maximum number of satisfiable rules that make hypotheses
to be accepted as facts. The taken approach is to cast the problem as a weighted Max Sat
(Maximum Satisfiability) problem, with variables as hypotheses and rules the first order
predicate logic formula. SOFIE is given facts, hypotheses and rules and tries to find the
combination of truth values for the hypotheses so that the maximum number of rules is
satisfied.

First, the text is cleaned, tokenized and interesting entities are extracted. Between the
entities (which might be names, locations, organization, dates, numbers, etc) the linking
text is kept as a possible pattern, spanning no more than a preset window length. This step
produces the following fact type: pat t er nCcc (P, WX, WY) [1], where P is the pattern (text
string), WX and WY are the interesting entities. Then all the interesting entities are

Chapter 111 - Knowledge acquisition and representation Page | 34



evaluated and the following fact type is produced: di sanbPri or (WX, X, k) [1], where WX
isthe text entity, X isthe ontological entity and k is a value that expresses the trust that WX
actually refers to X. What is interesting here is that the system uses the ontology for this
step. In the ontology there is a means relation that links strings to entities. In this way, if
“Lincoln” is found in the text, then the ontology is searched for the means relation that has
the string parameter equal to “Lincoln” and the ontological entity parameter is taken. This
may produce more than one disambiguation priors, as “Lincoln” can be aperson, arifleor a
car, and thus produce three facts with their own trust value.

The second step is the weighted MaxSat problem, which is NP-hard. The facts, hypotheses
and rules are cast into clauses. However, due to the form of the specific rules used by
SOFIE, a special customized algorithm named Functional Max Sat is used to “circumvent”
the difficulty of solving an NP-hard problem yet aso delivering performance. This
approximation algorithm outputs solutions that are guaranteed to be in a certain range from
the optimal solution. The approximation guarantee parameter can be tuned for faster run
time but probably further from the optimum or longer run times but closed to the optimal
solution. The output of this second step is a set of facts like expresses(P,R),
di sanbi guat edAs(WX,X), meaning that SOFIE is certain that a pattern expresses an actual
relation, and an entity from the text refers to an ontological entity. Based on these relations,
new facts can be added: R(X,Y).

Results showed that SOFIE performs well, delivering 90%+ precision (meaning that 90%-+
of the facts that it finds are correct). However the recall isvery low (so it actually finds very
few facts out of the total number of facts that could be found in a document), but
comparable to current systems.

Chapter 111 - Knowledge acquisition and representation Page | 35



V. Entity recognition and word sense disambiguation for
| nfor mation Extraction

A magjor task in Information Extraction (as well as in Information Retrieval, Artificia
Intelligence, etc) is entity recognition and disambiguation — entities are the subjects and
objects of sentences, and clear identification is essential in order to achieve performance in
thisfield.

Regarding entity type, there are two major categories. named and common entities. Named
entities are usually persons, objects, places that are identified by a proper name (in most
cases beginning with a capital letter). Common entities are usually normal nouns, adverbs,
adjectives starting with lower case letter. For example: “Today, John is visiting the city of
New York” — “Today”, “city” are common entities and “John”, “New York” are named
entities.

The differences between entity types and characteristics have created two distinct tasks of
NLP: the task of disambiguating the senses of words (Word Sense Disambiguation — WSD
— applied generaly to common nouns) and the task of recognizing and classifying named
entities (Named Entity Recognition — NER — applied generally to proper nouns as well as
other interesting entities like dates or numbers).

This chapter presents the tasks of WSD and NER separately, and then looks at common
points and systems that see both tasks from a single point of view (aterm coined GNER —
Genera Named Entity Recognition).

IV.1. Word Sense Disambiguation

Entity disambiguation is the task of identifying which sense (meaning) of an entity (a
simple or composed word) is used in a sentence, given the fact that words are affected by
polysemy / homonymy problems. WSD allows computers to ‘understand’ the meaning of
words and language. It is an essential problem that if solved (or better stated if a WSD
approach would be developed that has human-like performance) would advance many
fields, starting from commercial applications like Internet search performance increases (as
a computer would ‘understand’ what a search string means), better automatic language
tranglation, etc, up to the field of Artificial Intelligence where WSD would be a requirement
for a‘reasoning computer’ that could pass the Turing test.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 36



Brief History of WSD

WSD first began as a problem for Machine Trandation (MT) by Weaver, 1949. Later, Bar-
Hillel (1960) tried to determine the sense of certain words in different sentences, but the
attempt was a failure, deciding that there were no means to identify the correct senses and
thus left the problem to the MT field. Bar-Hillél's report represented the basis for the
ALPAC report (ALPAC, 1966), which is generaly regarded as the direct cause for the
abandonment of most research on machine trandation in the early 1960’'s. The 1980s
brought rule based systems, relying on hand crafted knowledge sources. Most of these
years were spent on Al-based work, yielding promising yet almost unusable results in all
but restricted domain fields. The major problem was the “knowledge acquisition
bottleneck” [49] — the problem of acquiring very large amounts of knowledge. In the 1990s
corpora were beginning to be developed to a large enough scale, and coupled with the
increase in processing power of the new PCs, corpus based approaches began to appear
[50]. The last decade brought hybrid systems that combine classic methods and newly
available resources like the Web.

WSD Applications

Sense disambiguation is an “intermediate task” [51], necessary in some step or another to
aid or to form the basis for many natural language processing tasks. Besides its main
purpose for message understanding and communication, it is aso used in instances where
language understanding is not needed:

e machine trandlation, needed for automatic translation of foreign words that depend on the
surrounding context;

» speech processing, where WSD is needed for correct phonetization of words in speech
synthesis, segmentation and homophone discrimination in speech recognition;

e simple text processing, necessary for spelling correction, hyphenation, case changes,
diacritics placement, etc;

e information retrieval and hypertext navigation, WSD is used to eiminate word
occurrences from documents that use other senses for the given keyword,;

« content and thematic analysis, WSD is needed to analyze the distribution of pre-defined
categories of words,

e grammatical analysis. for example, in part of speech tagging.
Approaches

Currently, there are two major directions for WSD:

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 37



e Supervised Disambiguation, where machine learning approaches are used to train
various classifiers; these systems encode custom features into feature-vectors, and,
based on the provided labeled training data build models used to assign appropriate
word senses;

e Unsupervised Disambiguation, where the learning system uses unlabeled corpora.

When evauating a WSD approach based on the resources used, two main categories
appear:

e Knowledge-Rich, where lexical resources like ontologies, thesauri or dictionaries are
used;

e Knowledge-Poor, where no such resources are used, instead relying only on the
corpus.

IV.1.1. Supervised Disambiguation

Supervised WSD uses machine learning (ML) techniques to determine a word's sense. As
during the last decade new agorithms were developed and older ones improved, the ML
pool offered increasing resources to researchers that began using more and more such
algorithms. Currently, the vast mgority of WSD systems is based on one or more ML
algorithms and overall performs better than other non-supervised systems.

[V.1.1.1. Decision based WSD

This approach to WSD is among the first attempts to use ML type of agorithms. However
this type of WSD was not very successful. Early attempts using decision trees in the 70s
[52] and 80s [53] and decision lists [54] yielded rather poor results. The development of the
C4.5 agorithm by Ross Quinlan [55], an algorithm now implemented and used in many
ML tools and application suites such as WEKA [9] did improve the results obtained by
using decision trees.

A decision tree is used as a predictive model to classify some input based on observations
about it. The process starts from the root observation and moves on branches down to the
leaves which represent the possible classification variants. The choice whether to move
down a branch or another from any node within a tree is based on the result of the
evaluation of the observation in that particular node.

For example, the C4.5 algorithm builds a decision tree starting from a set of training data,
using the concept of information entropy (entropy is the measure of uncertainty associated
with a random variable). Information entropy here refers to Shannon’s entropy which
measures the expected value of information contained in a word/message, using a standard

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 38



unit of measure (ex: abit). The training data is represented as feature vectors of the form t;
={f,f2,f3, ... ., G} wherefy represents the features of training item t; and ¢; is the class of t;.
In the process of building the tree, at each node the a gorithm chooses the attribute that best
splits the training set into two distinct categories by evaluating the normalized information
gain obtained by using that attribute to split the data. The information gain is in this case
the difference in entropy, and the attribute that maximizes this difference is chosen as the
criterion for the node. The process repeats on the now smaller list of attributes until the tree
is complete (all attributes have been used and are found in the tree — with a few base cases
as exceptions to thisrule).

The advantage of using decision trees is that they are ssmple for humans to understand, do
not require extensive data pre-processing (like normalization, etc), handle both numerical
and nominal data attributes (a nominal attribute is a ‘class attribute), the models are
consistent in that they are robust and are statistically provable to obtain certain results and
also due to the open nature of the algorithm, it’s progress can be followed step-by-step,
unlike aneura network for example.

On the other hand, there are some disadvantages. The problem of generating the tree is a
difficult task. During the tree building process, the decision to pick an attribute over another
at each node is actually a problem of alocal optimum usually solved by greedy algorithms.
The addition of genetic agorithms shifts the local to a globa optimum problem, yielding
better results. Another problem would be that because of their features, some problems
cannot be modeled very well as a decision tree, even though it would seem so at first sight.
Problems such as overfitting [56] and attribute bias [57] arise.

Unlike a decision tree, a decision list is an ordered list of rules of the type if-then-else.
These rules are determined from the training set. Given that each rule has a weight
assigned, the list obtained by sorting the rules descending by their weights constitutes a
decision list. For every word and its features, the list is checked and the rule that has the
highest score matching the features of the word will give the sense of that word.

[V.1.1.2. Neural network WSD

An artificial neural network (ANN) is a mathematica model that tries to replicate the
behavior of rea biological neurons. An artificial neuron also tries to replicate a biological
neuron by implementing a mathematical function such as that when it receives an input (it
receives values on one or more connections from previous artificial neurons) it uses a
function to evaluate the inputs and produce an output. The function could be, for example,
the sigmoid function or the step function. Such a network interconnects a number of
artificial neurons in different patterns. Depending on the type of ANN, its structure may
change during the evolution of the network. An ANN can be trained on |abeled examples to
induce an input type - conditioned output behavior.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 39



ANNs have been in constant development since the 40s [58]. A short classification of
ANNSs used in WSD based on the distinction between connection patterns between units
and the way data is being propagated: Feedforward Neural Network — Without any loops or
cycles, here the information moves in only one direction, from the input nodes through the
output nodes. While this is the simplest of ANNS, it is one of the most used. Radial Basis
Function (RBF) — the network has a hidden layer of radia units, each modeling a Gaussian
response surface. RBF is a real-valued function which has built into a distance criterion
with respect to origin or some other point called center. Kohonen Self-organizing Neural
Network (SOM) — this network is characterized by a set of artificial neurons that learn to
map points in an input space to coordinates in an output space — this is a form of
unsupervised learning but is presented here for reference. The input space and the output
space can have different dimensions and topologies. Learning Vector Quantization Neural
Network (LVQ) — neural networks that consist of two layers. The first layer maps input
vectors into clusters that are found by the network during training. The second layer maps
merges groups of first layer clusters into the classes defined by the target data. An LVQ
system is represented by prototypes of the classes parameterize, together with an
appropriate distance measure, a distance-based classification scheme. Recurrent Neural
Networks — (RNNs) — here the data flow is bi-directional. This property allows for a large
number of variants of this base type, like fully recurrent networks, simple recurrent
networks, hierarchical RNNs, etc.

The usage of ANNs for WSD can take many shapes. One is to consider the neurons as
words. Then, during training, words that appear in context are activated together, thus
linking the words in context to word senses [59]. Later uses of this method involve linking
sense to current knowledge repositories [60]. Numerous attempts have been made to use
ANNSs to the task of WSD, some of them with good results [61] [62].

One of the disadvantages of using ANNSs is that they require alot of training data to output
usable results, a problem even for the existing annotated corpora today. Also, they have a
large number of human-adjustable parameters. While this can be seen as both an advantage
and a disadvantage, these parameters make replicating previous work (previous results)
difficult and thus makes comparing the performance of this class of systems even more so.

1V.1.1.3. Instance-based WSD

In this approach to WSD a classifier is built from example instances. This class of
algorithms does not perform explicit generalization, instead evaluates each new instance to
the previous instances from the training set (lazy-learning). The advantage of this type of
learning is that it can adapt to new data instances, and does not have to re-train on the entire
training set from scratch.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 40



As instances are seen as feature vectors, they can be represented as points in an n-
dimensional feature space.

Because the space is n-dimensional, a metric to evaluate the ‘distance’ between two
instances is required. Many distance metrics can be employed, one of the simplest being the
Hamming distance:

n
Ham(tl-, tj) = Z Wkl(tik' tjk) (19)
k=1
where t; and t; are instances, w is the weight associated to attribute k and I(titjk) is the
identity function that is 1 if t; =t or O otherwise.

Another simple distance (if it can be applied — working with real-valued features) is the n-
dimensiona Euclidian distance:

Buc(tut) = | ) (tue = tj0)? (20
k=1

The k-Nearest Neighbor agorithm is the most basic algorithm in the instance-based
learning class. A new instance is classified as belonging to a certain class based on the
classes of its closest k neighbors — the class of the new instance is the class of the majority
of neighbors.

The training of a KNN algorithm is simply storing each instance as an n-dimensional point.
In the classification phase, a new point has its distance calculated and the mgjority of its
closest k neighbors gives the class of this new instance. While simple, the algorithm does
suffer from imbalances. Classes with many representatives will likely be selected more
often simply because the probability that the majority of neighbors of any point belong to
that particular class. Techniques to alleviate this issue exist, such as weighing the value of
each neighbor based on the distance from the new instance. A value of 1/d, where d is the
distance (expressed as a real value in the particular case of rea-valued features) is caled
linear interpolation, helping dampen the influence of an uneven data set.

The choice of k is human adjustable, low values favoring noise while higher values being
less susceptible to noise but failing to make good distinctions among classes. Cross-
validation is one technique used to estimate k.

Applied to WSD, the magor difficulty is creating a good feature vector, meaning
determining the best mix of attributes to describe an example instance. While thisisamajor
issue with the vast mgjority of ML systems applied to WSD, it is even more relevant here
as the kNN algorithm, for example, is very susceptible to imbalanced datasets. Features can
be extracted in many ways: part-of-speech tags, stemmed form (for verbs), singular form

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 41



(for nouns), words adjacent, head of phrases, tags extracted from the syntactic tree or the
dependency tree, capitalization, distance to other relevant words, string similarity measures,
number of other certain words, etc, can be used to create a feature vector. Several systems
using kNN have been implemented [63] [64], with good resullts.

[V.1.1.4. Probabilistic Classifiers

The Naive Bayes (NB) classifier is the basic example of probabilistic classifiers, and at the
basis of advanced probabilistic-based systems.

A NB classifier is a probabilistic classifier that uses Bayes' formula while making strong
independence assumptions between features. The general model for a probabilistic
Classifier is:

p(Clfi, s fn) (21)

where C is the dependent class variable, with fy the features for a particular instance.
Estimating p will yield the class of that instance. However, when the number of features n
is very large or the number of possible values for the features is very large, directly
computing such probabilitiesis not practical. Using Bayes' theorem that states that:

P(B|A)P(A)

PUIB) = =55 (22)

and also using the independence assumption that a feature f; is independent of f;, meaning:

p(fi|C.f;) = p(f,C) withi#j 23)

then rewriting iteratively the first formula, the conditional distribution over C (class
variable) becomes:

p(Clfi i f) = 2O [pGIO 24

The obtained formulais now easily computable. A scaling factor can be applied to adjust p.

Applied to WSD, the NB classifier computes the probability of each sense of a given word
to appear, given the feature vector for that particular word, assuming that there are no
dependencies between individua features. p(C) can be estimated as the frequency of a
certain sense while p(fi|C) is the frequency of feature f; when used in the sense C.

While this approach produces surprisingly good results in spite of the independence
assumption [65] [66], and several systems have been created in the late 90s based on this
method [67] [68], its use in recent systems is minimal, being superseded by better
performing supervised approaches, such as random forests or SVMs.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 42



IV.1.1.5. Support Vector Machines

Support Vector Machines (SVM) are a useful tool for many IE/IR/NLP applications,
including WSD. Because of its importance, the SVM concept was presented in more detail
in an earlier chapter. In short, a SVM tries to obtain an n-dimensiona hyperplane that
separates two instance classes. Based on the support vectors, a SVM constructs the
hyperplane by maximizing the distance between the two classes.

In WSD, a SVM classifier is trained on a set of instances (a feature vector and the sense
assigned to the word that yielded the feature vector) and used to classify new, unseen
instances, similar to the NB classifier. However, as the SVM is abinary classifier, so to be
used to determine several senses (several classes) either many SVM classifiers are trained
in a one vs. al strategy or one vs. one strategy and then combined as to overall offer a
multiple class answer.

Another way to use the SVM (different from the NB style) in cases where the number of
features is too large to be tractable is to create custom kernel functions. In essence, a SVM
computes the dot product between two vectors. The kernel function (which is in fact a
similarity function between two vectors) is overridden to compute the dot product in a
tractable way (meaning using heuristics that do not require the features to be explicitly
expressed, for example). This ability makes the SVMs aversatile tool in many fields.

Applied to WSD [69], the SVMs have been shown to perform very well [70], usually better
than other supervised approaches. The most frequently used approach here is the standard
extraction of a feature vector for every instance word as well as its class (sense), train the
classifier on as many training instances as possible, and then apply the created model to
new instances.

1V.1.2. Unsupervised Disambiguation

Unlike supervised approaches, in most cases unsupervised methods attempt to cluster
words together rather than identify a class for each word from alexical resource containing
structured words / word senses. Assuming that a word has a sense when surrounded by a
certain context and another sense in another context, unsupervised disambiguation tries to
cluster together words in common contexts.

Because of the lack of using an external resource (an ontology, taxonomy or dictionary)
based on which to link words to word senses, most unsupervised WSD systems cannot be
compared or have their performance clearly evaluated.

There are three main approaches. word clustering, context clustering and co-occurence
graphs.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 43



1V.1.2.1. Word Clustering

Word clustering approaches try to cluster words that are semantically close. One such
approach [71] identifies words similar to a word w based on the information content of
individual features like syntactic dependencies. To discriminate between word senses
(which at this stage cannot be done as the similar words associated to w can represent any
sense of w) a word clustering algorithm is applied. The similar words are sorted by their
similarity to w. Next, w is placed as a root node in the currently empty ‘sense’ tree. Each
similar word is then added to w (and in later stages to previous similar words) so that
iteratively atreeis constructed. Finally, each similar word that is a child of w is considered
asadistinct sense (asit contains under it further words that describe that particular sense).

Other methods that follow the same general idea have been developed. For example,
instead of atree, a matrix is created where the value of row i and column j is the similarity
of wordsi and j, and then a clustering algorithm is applied on the matrix.

1V.1.2.2. Context Clustering

The basic strategy for unsupervised systems is context clustering. A feature vector, or in
this scenario a better name would be a context vector, is used to represent each encountered
word. The grouping of these vectors represents word sense clusters. The ssimplest form of
such vectorsis a standard frequency count of surrounding words. Given the n most frequent
words in atext (pruning is usually performed to not consider words that are very infrequent
— also done because the number of distinct words can be very large), the context vector of a
word w; would be an n-length array of values, on each position (dimension) having the
frequency of that word measured in a certain window (a fixed number of sentences for
example).

context vector of w; = (freq“z,vli ,freqvmlfz" , ...,freqvml,’r"l)
freq“:,/]", = frequency of word w; in the window surrounding w;

Having ‘trandlated’ each word into a context vector, similar such vectors can be grouped
into clusters using different similarity metrics. One such metric is the cosine similarity,
where the similarity between two vectors is their dot product divided by the norm of each
vector. More specifically, it is the sum of the product of their individua dimensions divided
by the root of the product between the individual sums of each vector’s squared component.
The lower the cosine value, the more similar the vectors are.

Applying different clustering algorithms on the collection of context vectors will yield
sense clusters [72] [73]. Methods to improve results have been studied, such as applying
Latent Semantic Analysis [74] on the matrix obtained from the context vectors

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 44



(cooccurence matrix). This will reduce the dimensionality and arguably improve the
context vectors by reducing ‘noise’ (less relevant words in context). Also, it is helping with
the polysemy problem where similar words are so-called ‘merged’ during dimensionality
reduction. Another method to improve results is to create better context vectors, such as
adding features of the word itself or other external information like glosses taken from a
repository such as WordNet [75].

V.1.2.3. Co-occurrence graphs

Another approach to unsupervised disambiguation is to use co-occurrence graphs. Such a
graph has words as nodes and the links between the nodes are syntactic relations extracted
from the text in which the words occur [76]. For every word in a text, a graph is built
starting from it.

Given the co-occurrence graph (also seen as an adjacency matrix), several algorithms can
be applied. [76] proposes both a method to create the graphs as well as using a Markov
clustering agorithm to cluster senses together.

Another proposed algorithm is HyperLex [77]. The graph in this instance is created
between words that appear in the same paragraph. A word is added only once even if seen
multiple times. The edges in this graph are assigned weights representing the co-occurrence
of the linked words in the paragraph. The weight is based on the frequency of each word
and the frequency of the co-occurrence of the two words, in such a way as two frequently
co-occurring words have a weight closer to zero, and infrequently co-occurring words
closer to one. Next, hub nodes are selected from the graph based on their connection
degree. These hubs represent the ‘senses of the word, and are linked to the targeted word
itself by virtual zero-weight edges. Next, the Minimum Spanning Tree algorithm is applied
starting from the root word, linking al hubs. A score vector is then assigned to the word.
The score vector contains on each position a score computed between the word and the hub
whose index corresponds to the index in the score vector. This score is a distance based
metric, calculating the distance in the MST tree between the word and each hub. Every
word receives a score vector. Next, the score vectors are summed and then the hub most
relevant to each position (word index) is chosen as the sense for that particular word.

PageRank [78] is another well known agorithm that has been applied to WSD. Given a
graph, the degree of anode P(V)) is:
wj; * P(V))

Zedges Vi= Vi ij (25)

P(V) =(1—d)+d * Z

edgesV;—-V;

where d is the damping factor and w is the weight of an edge.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 45



Agirre [79] applied PageRank to WSD by considering weight w as being the co-occurrence
probability between two words. Thus, the degrees of every node is computed and the top
scoring nodes are picked as hubs, similar to HyperLex. Both HyperLex and PageRank
obtained good results when applied to WSD, but still lower than standard supervised
approaches.

Co-occurrence graphs can be extended in multidimensional space, where the assumption of
asingle link between co-occurring words is no longer a limiting factor. Thisis based on the
assumption that that two or more words are usually combined to form a relationship of
concepts in the context. Also, planar graph-based approaches fail to model collocations or
multi-word terms. [80] proposed such a model. An edge in this multidimensiona graph is
called a hyperedge and is able to model the relation between multiple words — a hyperedge
is a set of vertices. Thus, words are seen as vertices and relations between them as
hyperedges. The degree of a vertex becomes the number of hyperedges it belongs to, and
the degree of a hyperedge is the number of vertices it contains. Related nouns are grouped
into hyperedges that are weighted by calculating support and confidence parameters. Both
parameters are based on frequency functions of co-occurring words. Next, a variant of the
HyperLex algorithm is used to select the hubs of the hypergraph, based on the degrees of
the vertices. The results of [80] are average, achieving high entropy and purity performance
(values that measure different aspects of a system’s performance) measures that outperform
the most-frequent-sense baseline, however having low F-Scores.

1V.1.3. Knowledge-Based Disambiguation

Knowledge-based (KB) WSD is a class of methods that uses the knowledge drawn from
lexical resources such as dictionaries or thesauri and also from the raw text that is analyzed.
Some of the advantages of knowledge based disambiguation are that the scope is generally
al-words sense disambiguation, as opposed to corpus based methods that usually restrict
the set of candidate words for disambiguation; the target document can be from any source
as opposed to supervised methods for example that require a similar annotated document to
train on; KB methods do not require annotated documents making them very desirable to
apply to other languages for example, or on domains where there are no large corpora to
work with.

Regarding knowledge sources, dictionaries provide for every word contained in them alist
of meanings, definitions and examples that help clarify the meaning of the word for each of
its senses. A thesaurus adds basic relations between word meanings (ex: synonymy
relation). The further addition of other relation types and the ordering of concepts in
specific forms (like a tree or directed graph) define a semantic network. For example,
WordNet organizes the noun synsets into a directed graph in respect to the Is-A relation
(hypernymy). Moving to more complex examples, an ontology labels links between
classeg/entities. A graph is a good representation of an ontology, as the directed edges are

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 46



the relations between the graph’s nodes, represented by classes/entities. For example, the
YAGO ontology (presented earlier) has a graph structure (including cycles) while a tree-
like structure extracted from WordNet (actually the WordNet hypernym tree) can be seen as
the head of the ‘pyramid’, with every entity in the ontology linking to aleaf of the tree. An
ontology has a defining schema. If more of these schemas can be merged, meaning that if
correspondences between relations or classes/entities from two different ontologies can be
found, then they can be seen as an aggregated ontology. For example, DBpedia“ is a
complex collection of alarge number of domain ontologies linked together.

As a classification of knowledge based methods we enumerate the following classic
approaches. the Lesk Algorithm, syntactic similarity measures, selectiona preferences,
other heuristic methods.

1V.1.3.1. Lesk Algorithm

This classic agorithm [81] is one of the first attempts at al-words WSD. Essentially a
dictionary-based approach, the Lesk algorithm has provided not only a starting point and a
general method of WSD but also a consistent and rather good baseline used for evaluating
other systems.

The classic Lesk algorithm tries to identify word senses based on evaluating the
overlapping among their sense definitions. Considering n words, each word having a
number of senses, the algorithm evaluates all combinations of senses, for each combination
measuring the overlap in the chosen senses definitions. The overlap is calculated as the
number of words common in the senses of two or more words. The initial precision
reported by Lesk in thisinitial attempt (1986) was around 50-70%. The dictionary resource
used was Oxford’s Advanced Learner’s Dictionary.

An variant of the Lesk algorithm is the use of annealing. Given that the original agorithm
tries to evaluate all possible combinations of senses, for many words with many senses this
leads to an intractable problem due to the exponential nature of the problem. Simulated
annealing is a function that reflects the overlap of a certain choice of senses, with the
minimum value corresponding to the correct sense set. In an iterative manner, starting from
the most likely sense of each word, one sense from a word is changed to another. The
change is kept only if the function has a lower value (meaning a higher overlap). When
thereis no change in score, the iterations stop and the current sense set is chosen as correct.

Another variant is the simple Lesk agorithm. This approach disambiguates words in turn,
instead of considering them all at once. The idea here is to choose the best sense of a word
that overlaps with its context. Chosen senses for words do not influence the choice for the

4 http://wiki.dbpedia.org/Datasets

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 47



senses of other words. [82] showed that the simplified Lesk algorithm showed an
improvement of 16% over the origina algorithm in Senseval-2’s all words English task.

Y et another approach involves using augmented semantic spaces [83] where not only the
definition of the target word is used, but also the definitions of related words
(hyper/hyponyms, holo/meronyms, etc.). On the Senseval-2 task of English nouns this
algorithm doubled the precision up to 32% of the original Lesk.

Overall, the best performing variant, both in performance and speed (due to the exponential
nature of the original algorithm) isthe simplified Lesk.

1V.1.3.2. Semantic Similarity

The semantic similarity approach is based on the premise that words sharing common
context have similar senses. Thus, the task of WSD becomes the task of measuring the
semantic distance between words and surrounding context.

The semantic measures are based on some type of semantic repository. The most often used
such resource is WordNet. The table below offers a fast overview of semantic similarity
measures, some of which were presented in an earlier section:

Table 1. Different semantic similarity measures

Measure Expression Notes
Resnik IC(C) = —log (P(C)) IC(C) is the information content of a concept, usually

quantified as the inverse log of the frequency in a corpus

1995
( ) Sim(C,, C;) = IC(LCA(C,,Cy)) LCA isthe least common ancestor of two concepts C,, C,
desc (C) is the number of conceptsin C's hierarchy sub-
tree (where C isroot)
W, is the weight of a concept in the hierarchy expressed
Agirre #of senses of C ) as the number of hyponyms of the concept adjusted by
and Rigau ConDens(C) = X i an empirically determined value
(1996) desc(C) The sense with the highest ConDens is the chosen sense
when using this semantic measure in a system. The
approach is similar to Lesk’s, but using this measure to
determine similarity.
Jiang and
Sim(Cy,C,) = 2+ IC(LCA(C,, C T
Conrath’s im(C, C2) *1C(LCAG, ) Improvement over the Resnik similarity measure
(1997) - IC(Cl) - IC(CZ)
Lin 2% IC(LCA(C,, Cy)) L
i = Improvement over the Resnik similarity measure
1908y S G) = —ErsTe ) P y

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 48



Hirst and
! Slm(Cl, Cz) = C— path(Cl, Cz) - k

d. is the number of direction changes

St-Onge d C and k are adjustment constants
*
(1998) ¢ Path(C,, C,) isthe path length between the concepts
, path(Cy, C;)
L k = —log ——~ 2727
(iagcgog) Sim(Cy, C2) log 2%D D isthe depth of the taxomony
Mihal
Ian dcea 5 Hiz H., is the number of common words in the definitions of
Sim(C,, Cy) = —=L L C, and C,'s hierarchies
Moldovan (. 6) log (desc(C,)) o : :
(1999) 2 W isin this case the depth of the concept in the hierarchy

These measures can be applied in different ways. Due to the fact that in a sentence there
can be many words that need disambiguation, the method of calculating overall similarities
such as to take into account how any one word influences another is opening an array of
different methods on how to actually apply these measures. Two distinct categories emerge
when considering context: either local or global.

When considering local context, the general consensus is that a window of fixed size is
inspected around each target word. For example, [84] applied the measures above to a data
set from Senseval-2 using a context window of size k = 1, meaning adjacent words. The
best scoring method was JCN (Jiang and Conrath’s), with Hirst and St-Onge's being the
most consistent among different words.

Global context relies mainly on another type of approach: lexical chains. A lexical chainis
a list of diverse words (word distance is not important) from a text that are related and
generate context and continuity in a discourse.

A lexical chainisusualy created in the following manner: for each candidate word in atext
(most usually nouns) find a suitable lexical chain and add the word to the chain, or else start
a new chain. A word is added to a lexical chain if its semantic similarity to the words
preexisting in the chain is above a threshold. Several systems that create lexical chains and
thus the senses of words have been proposed: Galey et al. [85] obtained a 61%
disambiguation precision for a SemCor corpus; aso on a SemCor corpus Mihalcea [86]
reported a 90% precision and 60% recall using chaining started from anchor words (words
that can be reliably annotated with its corresponding meaning).

Using a graph agorithm for sequence data labeling, Mihalcea [87] obtained good results
(55% precision) compared to the baseline set by the simplified Lesk algorithm (48.7%
precision) on the al-words English Senseval-2 task.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 49



1V.1.3.3. Selectional Preferences

The concept of selectional preferences means detecting the links and relations between
words in text, thus constraining the possible meaning of those words. Relations between
concepts emerge, based on an array of features like concept class (Picture — Color, where
the noun representing the Color class means a color due to the usage in a Picture context),
part of speech (verb — noun, where the noun’s senses are restricted by the action expressed
in the verb), etc.

As with most approaches, learning selectional preferences depends on the amount of
training data. The more senses are encoded/annotated in a text, the larger amount of
selectional preferences can be extracted and the better the performance of the WSD.

The simplest learnable constraints in a text can be word-to-word facts. Such a fact can be
expressed as the frequency of count of two words that stand in a relation. Two words w;
and w, that stand in relation R are expressed as cnt(w;,W»,R). Extending to conditional
probabilities, considering that w1 depends on w2 is expressed as:

P(wylwy, R) = cnt(wy, wy, R)/cnt(wsy, R) (26)

If considering semantic classes (suggested initially by Resnik in this thesis [88]) then
selectional associations can be the measure of the semantic fit between a word w and a
semantic class C. If the word is linked to the class by a relation R, then the conditional
probability of the class C dependent on the word wiis:

P(C|w,R) = cnt(w,C,R)/cnt(w,R) 27)

where cnt(w, €, R) = Yeverywe e c % then the sdlectional association is

P(Clw,R) xlog (P(C|w,R)/P(C))

assoc(w,C,R) = YcP(Clw,R) *log (P(C|w,R)/P(C)) (28)

Extending even further to class-to-class selectional preference Agirre and Martinez [89]
propose a measure that tries to maximize the co-occurrence of the class of a target word
with the class of its co-occurred word. The measure is rather complex and involves the
calculation of several word-to-word conditional probabilities, and then choosing the
maximum scoring choices.

[89] tested these measures and discovered that on the noun data set of SemCor the class-to-
class disambiguation works significantly better than word-to-word and word-to-class, but
still under the most frequent sense baseline. Other systems have been implemented,
including an unsupervised WSD system [90] that learned selectional preferences without a
sense-tagged corpus, but none exceeded the baseline.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 50



IV.1.3.4. Heuristic Methods

The first and very basic heuristic method is the most frequent sense. For several reasons
this heuristic is used as a baselinein WSD systems. It is based on the observation that while
words have several meanings, there always is one meaning that is used more often than the
others. Thus, for every word a most-frequent-sense can be determined by ssimply counting
the senses frequency of that word on a corpus as large as possible. Because of its ssmplicity
and ease of implementation, the most-frequent-sense is the baseline that other systems
should exceed [91]. However, this heuristic does have limits. For example, if considering
domains, the sense distribution for each word changes increasingly with the specialization
of the domain. Also, the measure is dependent on the available annotated corpus used to
extract sense information. The larger the corpus, the better the frequency distribution
(considering that this method has a clearly established upper bound performance).

Another used heuristic is the one-sense-per-discourse [92], stating that a word tends to
preserve the same sense in the entire discourse. This immediately simplifies the problem of
WSD, meaning that from severa appearances of a word, the clearest disambiguation (the
chosen sense should have the highest confidence among other candidate senses) is chosen
as the sense for every appearance of the word. In the rather small experiment, [92] showed
a 98% correlation between the appearances of a word and its senses. The experiment
covered only words with two senses. This result showed that the heuristic was rather good.
However, in alater experiment where words were allowed more than two senses [93], the
hypothesis that a word will mean the same thing obtained a poorer score, where a third of
the words were found to have different senses in the same discourse. This leads to the
conclusion that where fine-grained word disambiguation is concerned, this heuristic can
actually decrease a system’ s performance.

Scaling down the one-sense-per-discourse heuristic yields the one-sense-per-collocation,
where the assumption made is that a word keeps its sense when used in the same
collocation. The correlation between a target word and its context is strong, with the
strongest links being to the words closest to the target word. However, similar to the
previous heuristic, the more senses aword has, the worse this assumption holds.

IV.1.4. WSD Bounds

The lower and upper bounds are measures that are needed to evaluate the performance of a
system.

The lower bound is the minimum acceptable performance for any system. An example of
such a measure is the random baseline, where the choices for senses are made randomly.
Any system should outperform this baseline. A more difficult baseline is the first sense,

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 51



where the most frequent sense of every word is always chosen. Thislower bound is actually
quite difficult to exceed.

The upper bound is the maximum performance that a system could obtain. The upper bound
surprisingly is not a 100% score for every WSD system performance measure. The standard
upper bound usually chosen is the ITA — Inter Annotator Agreement, the percent of word
senses that human annotators (at |east 2) agree upon given atext to be sense-disambiguated.
For coarse grained tasks (few senses per word) the percent is rather high, reaching 90%
[91]. For finer grained tasks (many senses per word, such as the senses in dictionaries or
WordNet for example) the percent drops in the 60-80% range [94].

One of the big problems for WSD is the granularity of senses. For example, using WordNet
for sense inventory, a Senseval-3 system obtained 65% accuracy on the all-words English
task [95]. This performance raises questions on both sides: the performance is rather good
given the upper bound ITA; on the other side the low ITA means that there might be a
problem with the senses definitions themselves — if humans cannot exceed a certain percent
then maybe the fine-grained WSD problem should be redefined.

The ITA upper bound raises interesting questions [96] such as what happens if a system
exceeds the ITA bound, and is better than human annotators, especially for the fine-grained
task where the ITA scoreis not very high.

A different upper bound is considered to be the ‘oracle bound’. Such a system always
knows the correct sense for every word out of the available senses. In systems
implementing multiple WSD sub-systems, its accuracy is determined by the number of
word instances for which at least one of the systems outputs the correct sense.

IV.1.5. Evaluation metrics

To evaluate aWSD system afew standard metrics are used:

Precision is percentage of words that are tagged correctly out of the words addressed by the
system.

Recall is the percentage of words that are tagged correctly out of all words in the test set.
Specificaly to the WSD domain, recall is also called accuracy.

Coverage is the percentage of words that the system has evaluated out of all words in the
test set.

Example: If a system has 100 words to evaluate, out of which it attempts only 75 and
correctly disambiguates 50, then the precision P will be 50 / 75 = 66% while recall R will
be 50/ 100 = 50%. This system’s coverage C is 75/ 100 = 75%.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 52



It can be seen that if coverage C is 100% then P = R, else, R will aways be smaller or at
most equal to P.

The classic F score in WSD is usualy the F; measure defined as. F; = %, obtained from
1 _ (B?+1)PR
a%+(1—a)% "~ B2P+R

1
pZ+1’

the general F, measure, where F, = , Witha = Choosing =1

balances precision and recall, obtaining the F; metric. This is a good measure for systems
with less than 100% coverage. However the integrated F measure can hide a very bad
precision or recall. If either P or Ris almost 100% while the other is close to zero, then the
F measure will still be around 50%.

As [96] summarizes, the F measure is not always a good indicator of system performance.
[97] proposed an evaluation metric that if a system performs a wrong classification, then it
should be penalized on the distance of choice it has made to the correct sense. If the chosen
wrong sense is a fine-grained distinction of the correct sense then the system should be
penalized less than if it had chosen a sense which was very far from the correct sense (a
coarse grained distinction). Other methods have been proposed, but because most systems
are evaluated on the precision, recall and F; measures, then subsequent systems will also
use the same measures, to have a common ground on which to be able to compare to earlier
attempts.

V.2. Named Entity Recognition

Named Entity Recognition (NER) is atask in the area of Information Extraction that refers
to the identification of certain entities in a text. A rather recent development as a stand-
aone task [98], the Message Understanding Conference 6 (MUC, 6™ edition, 1996)
outlined the need to entity identification as a needed component for better 1E systems.
Initially termed Named Entity Recognition and Classification, the task handles recognition
of persons, locations, organizations, etc. as well as certain numeric values such as dates or
money amounts.

Even though the term was ‘officially’ used for the first time in 1996, works that undertook
subsets of NER were published in the early 90s. Initial attempts to detect restricted
categories of entities such as company names [99] slowly evolved to more and more
complex systems, and with the formalization of the task in the MUC conference, NER
research gained speed.

Before presenting the main approaches to NER we will present some of the aspects of the
task. The first and most important aspect is the entity types searched for and used. As the
name of the task suggests (Named Entity Recognition), the targeted entities are primarily
proper names, most often proper nouns and/or capitalized words (ignoring common nouns
that start a sentence).

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 53



Traditiondly, there are three large categories that a named entity could be: a person, a
location or an organization. These three categories were proposed as initial designators for
entities a& MUC conferences, and they have remained in use unchanged so far, most
systems being developed to detect these three categories. There is adso a forth category,
which is the ‘other’ category, or the miscellaneous category, encompassing named entities
that do not fall in the other three. Systems that further specify this very simple division
exists, trying to detect fine-grained entity recognition to subclasses such as musician, poet,
writer for the people category, or village, city, state, country, continent for the location
category [100].

Other types of entities suitable for detection with a NER system are dates, time, money,
percents. These types are accepted as candidates for the mgjority of systems; there are
however some purpose-built systems that detect fringe-entities like phone numbers, email
addresses [101], person titles (detect from “Dr. Eng. Smith” that person Smith has the
Doctor and Engineer titles), movie or literature titles, job titles [102] and so on. Also, the
biomedical domain, one of the most active sub-domains, has proposed a large number of
systems that detect domain entities like proteins or drugs in medical text [103].

Extending the entity range even further, the “open” NER proposes the idea of unrestricted
entity type, meaning a fine-grained recognition of entities, down to very specific categories
like truck, car, sports-car, convertible, etc [104]. This approach requires the predefinition of
the fine-grained categories thus requiring an ontol ogy/taxonomy to represent them.

Another aspect regarding NER is the language. By far, English is the most studied language
regarding NER systems. Recently however many languages attract attention, like German
or Arabic. Special tasks in domain workshops like CONLL or MUC have Chinese or
Japanese NER tasks.

Also, the genre of the analyzed text is important. The development of systems for specific
genres such as scientific texts versus standard news articles (for example) shows a sensible
performance difference [105], marking the text’s genre as an important aspect of a NER
system.

IV.2.1. Classification of NER Approaches

IV.2.1.1. Supervised Learning

Just like in WSD, supervised learning is the method currently most often used in NER. It is
relatively straightforward to apply, requiring the modelization of the problem to fit a certain
supervised learning algorithm. As WSD, the core idea is to extract a number of features for
every entity and then apply a classification algorithm. Virtually all classifier types that were
suitable to model the NER problem were experimented with.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 54



Initial attempts to model the NER problem as a Hidden Markov Model proved relatively
successful [106]. A Markov Mode is a stochastic model in which the Markov property is
assumed: the present state of the system does not depend on the past or the future states. In
aHMM the named entity recognition problem is seen as a Markov process with unobserved
hidden states. While in a normal Markov Model the states are directly observable with the
state transition probabilities as the only parameters, in the HMM the states cannot be seen,
only the output is observable, which is dependent on the states generating it — the states
through which the model passes are ‘hidden’.

Figure 6. A Hidden Markov M odel example

where s are the states the system passes through, o; are the outputs of the system, the dotted
arrows between the states are the state transition probabilities and the arrows linking the
states to the outputs are the output probabilities.

A HMM system tries to find, given an output sequence the most likely set of state
transitions and output probabilities. As such, given a set of labeled entities and a number of
features for each one, the system determines the most likely parameters that output each
label in turn, and then applies the trained model to new unseen entities.

Decision trees, presented in the WSD section can aso be applied to NER. Learning to
discriminate among features to obtain the label of an entity as the leaf in the learning tree
was also applied with limited success [107]. This approach works best with a limited
number of entity categories, and depends greatly on the extracted features.

Maximum Entropy Modes, aso known as multinomial logistic regression models,
implement a regression model that generalizes logistic regression by allowing severa
possible discrete outcomes. Unlike generic regression models which estimate continuous
values, when the output variables are nomina (categories), the ME model is used instead.
This model does not place independence restrictions on the independent variables (input
variables / entity features) like the Naive Bayes, thus allowing a more realistic modelization
and accepting sacrificing the tractability of the problem for large feature spaces. One of the
first uses of the ME model applied to NER was in the 7™ edition of the Message
Understanding Conference [108].

SVMs, presented in detail in chapter 11.2.1. are among the best classifiers used in the NER
field. Together with CRFs (chapter 11.2.2.) represent the state-of-the-art supervised learning

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 55



techniques applied to NER. For example, the NER system used in this work based on CRFs
is the Stanford Named Entity Recognizer+[109] that in the CONNL 2003 English news
dataset obtained 92.15% precision and 92.39% recall.

1V.2.1.2. Semi-supervised L earning

Semi-supervised learning started from the observation that to be successful, supervised
systems require large training sets that are difficult to create. Thus, different techniques and
approaches have been developed that circumvent to a degree the training-data size issue.
One such method is the ‘bootstrapping’ where initial seeds are given to start the learning
process. The seeds might take many forms, for example known names for organizations.
The system then searches on a corpus of data for sentences containing the seeds and
features surrounding them, extracting patterns. After a system is sufficiently certain that the
pattern is valid, it applies that pattern to extract more organization names. After a large
enough number of iterations, the system has collected atraining corpus of sufficient size for
the learning process. The main ideais that allowing a certain variation on the valid patterns,
new entities and more importantly, new contexts will be discovered after a number of
iterations.

There are many ways to detect such patterns. Regular expressions are one of the first
techniques applied [110], along with using syntactic features such as part of speech and
noun phrase analysis [111]. Mutual bootstrapping consists of a set of entities and contexts
(patterns) that each grown in size in turn. Initialy starting from a number of seeds, al
found contexts are kept, and then using those contexts in turn new seeds are found, and so
on. Such an algorithm is very sensitive to noise [112].

Other approaches use NER systems to generate initial seeds [113]. Use of syntactic
relations instead of RegEx (regular expression) patterns is aso a possibility. A very
interesting showcase of the use of semanticaly related words is performed by [114] where
allowing patterns containing words in the same semantic class a precision of 88% was
achieved when applying their system on the web, starting from only 10 seed pairs.

1V.2.1.3. Unsupervised L earning

NER approaches using unsupervised learning are similar to the WSD approaches using the
same unsupervised methods. attempt to group together entities that are similar. As such,
entities that are found in similar contexts will be grouped together. Another way to evaluate
the similarity of entities is to use their semantic type thus requiring lexical resources like
WordNet. [104] attempted to use the semantic entity types gathered from WordNet, where

42 http://nlp.stanford.edu/ner/index.shtml

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 56



to every top level WordNet class a certain topic was assigned to by counting the co-
occurring frequency of the word in acorpus. Then, for every target entity in a document the
context is analyzed and depending on the words found in the context, the most likely
WordNet classis assigned.

Another unsupervised learning method is to detect named entity hyponyms and hypernyms.
This is accomplished by identifying patterns that indicate hypo/hypernym relations (ex: “A
such as B” indicates that A is ahypernym of B) [115].

IV.2.2. Named Entity detection and recognition techniques

This section reviews the magjor features used in NER systems to detect and tag the targeted
entities. [116] provides a very good overview of the feature space. A feature is a unit of
information about a targeted word/entity. It can be a number, a Boolean value, a nomina
value or a string. For example, the POS tag is a nomina value because it is a value
belonging to a restricted set of possible POS tags. The length of a word (the number of
characters) is represented as a number. The fact that an entity is the first word in a sentence
is represented a Boolean true/false value.

IV.2.2.1. Word Features

Word Case — usually a Boolean vaue signaling if the word is capitalized, if contains al
uppercase or lowercase letters, or amixture of both.

Punctuation — also usually a Boolean value signaling if the word ends with a punctuation
mark, or if it contains punctuation marks inside the word (ex: “Dr. Smith”)

Digit — a Boolean value if the word is composed only of number; if the word contains
numbers inside, etc; special patterns can indicate that a number is a date, a year, a zip code,
a phone number, or more specific cases such as an IP address.

Part-of-Speech — the POS tag is usually represented as a nominal value.

Character —if it isasingle character. In context maybe it represents first person pronoun,
for example.

Word-form —there are several features that can be used, such as the word suffix and prefix
(string values), singular form (plural> singular); in case the word is a verb then stemming
can be applied to obtain the root form, etc.

Word-type — this category also contains several possible features. For multi-word tokens
the word count is a possible feature. The lowercase and the uppercase versions of the word,
non-a phanumeric characters and n-grams are also good features. Pattern features are also

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 57



found in this category. Pattern features can be used to encode character types such as using
a character for all uppercase letters, another character for lowercase, yet others for al
punctuation or numerical characters.

IV.2.2.2. List Features

List features form a different category of features atogether. Lists (also known as
dictionaries or gazetteers) contain an enumeration of words belonging to some category.
The ssimplest examples can be the list of months in the year, the list of popular English
names, the list of capita cities, the list of countries, etc. Below are summarized possible list

types:

General lists — these lists contain usua generic information, like the days in a week or
stop-words. Other larger generd lists include common nouns or common verbs.

Lists of Entities — in this category the lists contain actual named entities, such as city
names, continent names, organization names, governments, shop hames, airport names, etc.

List of Entity Cues — these lists contain words that are frequently found to indicate a
certain entity type, such as“Dr.” indicating a person or “Inc.” indicating and organization.

An interesting aspect of the list pointed out by [116] is the way of using such lists. As
simple match on one or more of the elements in these lists is too restrictive, other
approaches have been used. The first approach involves stemming words (removing
prefixes and suffixes) and reducing reasonably similar characters to the standard ASCII (or
English) character set, meaning accepting letters as ¢ or € to a and e. Another approach isto
use distance-based metrics between strings. There are severa string distance measuring
algorithms available such as the Hamming Distance, the Levenshtein Distance, Smith-
Waterman Distance, Jaro-Winkler Distance, cosine similarity or even simple Euclidian
Distance. Another interesting string distance is the SoundEx Distance which is actualy a
phonetic algorithm [117] that indexes sounds as they are pronounced in English. Therefore,
based on the difference in the sound of two similarly sounding strings a distance metric can
thus be used to pick fuzzy matchesin aNER list.

1V.2.2.3. Corpus Features

This category contains document-wide dependent features.

Multiple occurrences or references — If in a document a word appears both as a common
word and as a capitalized word, it is classified as common word that sometimes appears as
ambiguous due to its position at the start of a sentence, for example [118]. Another feature
in this category is entity coreference. The task of coreference resolution isadifficult task in

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 58



itself; however, having a hypothetical system that can tell whether a target entity is actually
a reference to a previously found entity would provide a large amount of information for
the target entity.

L ocalized syntax — possible features include Boolean values that signal whether the target
entity is in apposition with another adjacent entity, it is part of an enumeration; another
feature can be the actual position of the entity relative to the sentence /phrase or document
beginning.

Metadata — depending on the document, metadata can be extracted from the document
itself. If the document is an e-mail, then usualy the From: field is a good indicator of
person names. If a document contains tables or figures, then the description below them can
provide clues about the types of entities enumerated.

Frequency M easur es — the simple word frequency count is another numeric feature useful
for a NER system. The frequency can be normalized across all words and documents for
example (apply standard TF-IDF). Frequency count can aso be applied to non-standard
words (multi-word tokens or very long words, for example). Such ‘special’ words will be
considered for as candidate entities for the NER system.

IV.2.3. Evaluation Metrics

Evauation of a NER system is a rather complex issue, because there are many cases of
partia errors whose scores are debatable. Here, precison and recall have a different
meaning than when used in the WSD context. A NER system will mark an entity by
borders (thus delimiting the entity — single or multi-word — from the other adjacent words)
and also specify the type of that entity. For example, some of the errors a NER system will
output are missing to identify an entity or identifying an entity where none should be found;
assigning a wrong type to an entity; misplacing the borders — either including other extra
words or not including all the entity’ s words; or any combination of the above errors.

A first evaluation method proposed by the MUC conference divides the attempt to score a
system in two categories: finding exact entities (entity boundary) and finding exact
categories for the entities. A positive score is assigned to the category choice if the category
is correctly assigned, even if the boundaries are not exact. Similarly, a positive score is
assigned if the boundary assignment is exact, regardless of the category assigned. For each
of the two distinct aspects, the following measures are proposed: the number of correct
entities (correct identification, both for boundary and category), the number of identified
entities by the system and the number of possible entities in the solution. Precision is
calculated as the number of correct entities divided by the number of number of identified
entities by the system. Recall is the number of correct entities divided by the number of
possible entities in the solution. An F-measure is proposed which is the harmonic mean of

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 59



precision and recall for both aspects (boundary and category). The harmonic mean is used
because it tends to minimize the influence of large and small values.

Another more complex evaluation method is the ACE# evauation. Due to the fact that the
NER task in the ACE setting involves finer-grained entity categories, coreferences, etc, it
implements measures for partial matching and partial credit for errors and so on. Here, the
initial score is 100% out of which a certain value is deducted for every mistake the system
makes. For example, the score calculated for correct identification of entity category
depends on the category type (ex: a correctly recognized person scores differently than a
correctly identified location or organization); al the entities’ aspects contribute to the 100
score. Partial score is taken for missed entities, border mismatch, category
misclassification. For each error class more subtle rules are used: for example, for border
mismatch, an allowable mismatch is if an entity’s head matches on a minimum amount of
characters. The ACE scoring method is on one hand very customizable and complete, but
on the other, due to the number of customizable parametersit is difficult to implement and
use as a common scoring method amongst NER systems not devel oped specifically for the
ACE task.

The last method of NER evaluation is the smple, strict match. This evaluation method is
used by CoNNL “ to evaluate its systems. Here an entity is given points for correct
recognition only if the borders are a perfect match and the chosen category is aso correct.
Precision is in this case the number of correct entities divided by the number of entities
found by the system, while recall is the number of entities found by the system divided by
the total number of entities.

V.3. General Named Entity Recognition

In a very broad sense, both Word Sense Disambiguation and Named Entity Recognition
have the task to identify and clarify the sense of words. Whether to determine if the word
‘engine’ in “The engine is broken” refers to a mechanical engine or a locomotive (WSD),
or to determine that ‘ Santa Fe' in “I drove the new Santa Fe in Santa Fe’ refersto a car and
then a city (NER), in both cases the overall aim isto determine words' meanings. There are
differences between WSD and NER, clearly defined in the ACE, MUC, CoNNL and in
many other Natural Language Processing / Information Retrieval conferences. Because of
those particular differences, currently the problem of identifying words is split into WSD
and NER domains and almost never treated as a single entity.

Alfonseca & Mandahar try to define the WSD/NER recognition problem (and a unified
approach) in their paper [104], where they define the term “General Named Entity

4 Automatic Content Extraction, http://wwwv.itl.nist.gov/iad/mig//tests/ace/ , with the latest edition in 2008
4 Conference on Natural Language Learning, http://ifarm.nl/signll/conll/

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 60



Recognition” (GNER) in the context of an existing knowledge source used for sense
repository. Given an ontology O having a set of concepts C (person, country, etc), a set of
instances | of those concepts (Ann, France, etc) and a hypernymy functionh:C Ul - C
that determines a taxonomy of instances and concepts, then the task of GNER is “the task
of identifying, for an unknown concept or instance u, the correct concept ¢ [Clsuch that
h(u) = ¢, i.e. consisting of finding the most accurate immediate generalization of u in the
known hierarchy of concepts. “ [104].

The relation of GNER to NER (as seen by Alfonseca & Mandahar) is that NER is a
restricted task compared to GNER, having a flat hierarchy and containing relatively few
concepts whereas GNER has a taxonomy of fine-grained concepts. Regarding WSD, they
also consider it a more restricted task than GNER. In GNER the task is to find the synset
that matches the best meaning of the word, where WSD tries to find the synsets containing
that particular lexical word. GNER is seen as a “task that covers, and is harder than both
Named Entity Recognition and Word Sense Disambiguation”.

The system they propose is based on the work of Yarowksy [119] and Agirre [120] and
involves first collecting topic signatures for every WordNet concept using an unsupervised
algorithm. For every synset the algorithm generates a query containing the words in the
synset, the hyponyms as positive keywords and words in other synsets that contain the
same words as negative keywords. The query is sent to a search engine and the responses
are analyzed, counting the frequencies of the words that appear in each initial word's
window context. After a cleaning and scoring step, the algorithm obtains a frequency count
for co-occurring words for every WordNet concept (a topic signature). Alfonseca &
Mandahar then use the topic signatures to calculate the similarity of new unknown concepts
to the existing topic signatures using a top-down approach in the concept hierarchy. For an
unknown concept u its topic signature is obtained using the same method as for the existing
WordNet concepts. Then, at each level of the taxonomy the concept whose signature is
closest to U's is selected. If none of the selected concept’s children have a higher similarity
score then the currently selected concept is the concept that is assigned to u. The similarity
metric used is the dot product of vectors, here topic signatures.

They tested the system using a small, domain specific taxonomy and have obtained some
interesting results. However, because there is no other similar system to compare them to,
the overall system performance cannot be determined. They have discussed the problems of
topic specificity (where for example, some concepts are too general for use, like the
‘person’ or ‘location’ concepts — too many sub-concepts linking to them), the context
window size (small is apparently for thistask better, because large windows introduce noise
words), and so on. The system can be used to extend or even create an ontology (at least
concerning the hypernym hierarchy).

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 61



Another closer ‘unified’ view of WSD and NER is the Super-Sense Tagger (a SST). A SST,
just like NER and WSD is a Natural Language Processing task where significant entities
(nouns, verbs, etc) are annotated with super-senses [121] from a taxonomy (most often
WordNet). A super-senseis ahigher level class from the taxonomy. Compared to WSD it is
an easier task as the higher level senses are more fine-grained; compared to NER is a more
difficult task as there are more super-senses than the usually very few categories a NER
system deals with.

A SST system can have many forms of implementation. For example, Ciaramita and Altun
[122] developed a system that annotates nouns and verbs with 41 WordNet super-senses.
They modeled the problem as a sequentia labeling task and have implemented a
discriminatively trained Hidden Markov Model, showing better results than the baseline on
SemCor and Senseval corpora. The baseline for this task is the super-sense of the most
frequent synset for atarget word. They obtained a 11% improvement on the SemCor corpus
over the 66% f-score of the baseline, and a 6% improvement over the 64% baseline for the
Senseval-3 corpus.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 62



V. A General Entity Recognition (GER) System

The Web is currently the most used information source world-wide. New content is added
every day, in ever increasing amounts. However, the vast mgority of this content is added
in an unstructured manner. Current search engines build increasingly larger indexes of
websites to allow access to this content. But current Information Retrieval methods are
starting to show their limits given the information amount or when subjected to very
specific user queries, and new methods to quickly obtain information are requested. The
Semantic Web promises relevant information delivered fast, and in the format the user
desires. This means that computers need to ‘understand’ to some degree the information
they store and process. The field of Information Extraction (IE) takes on the task of
extracting information from existing sources, be they unstructured (free text, books, news
articles), semi-structured (XML, structured web pages like Wikipedia) or structured sources
(databases) and then trandating this information in a computer understandable structured
format that the machine can process. One basic form to store this information so that it can
be easily processed by the computer is in the form of simple entity-relation tuples (subject-
predicate-object).

As such, some of main tasksin |IE are entity and relation detection and identification.

This chapter presents an approach to a sub-task of 1E, namely identification and correct
assignation of predefined ontological classes to entities found in free text. We present
an unsupervised, knowledge-rich system that, given natural text as input will extract
relevant entities from it (both common and named entities) and will assign to each
extracted entity a class found in an ontology. From a certain point of view it may seem
comparable to a fine-grained, partially targeted word sense disambiguation (WSD) problem
[96], or even partially as the WSD sub-problem of word sense discrimination [123] .

The entire system is driven by the idea that entities are defined by their context. A single
entity can mean multiple things, but when put in context its meaning becomes clear.
Context in this case means some form of directional logical link from an entity to another,
as each entity specifies every other to some degree. Extending a classic example [123],
when saying “the bank in Paris’, bank defines Paris, and Paris defines bank. Individually,
“Paris’ could mean the capital of France, the singer or even the historic Greek figure, and
“bank” could mean a monetary institution, a school of fish, aflight maneuver or the side of
ariver. Put together, their meaning becomes clearer. Paris can no longer be a person, and
bank can no longer be a flight maneuver. Adding another entity as “accounts opened at the
bank in Paris’ will then clearly specify every entity, including bank which represents a
monetary institution and not the bank of ariver possibly named Paris, even without looking
at the words linking them such as verbs, prepositions, etc.

Chapter V - A Genera Entity Recognition (GER) System Page | 63



We rely on the fact that in order to connect entities together, this information has to already
exist in some form of knowledge repository. Ontologies match our desired repository
structure, as an ontology is at its core a type of graph that interconnects entities. In the
system presented in this chapter we will use a generic, large scale ontology that
encompasses both named and common entities — the Y AGO ontology.

Before starting a formal description, to better understand the aim of the system we present
the following example showing the inputs and outputs of the system.

Example: Let us consider an input document (unstructured, natural language text). For
simplicity, let’s assume the document is composed of only one sentence:

Document: “He replaced the pipe giving his car new life - his Santa Fe now runs quieter.”

Given this document, the system will identify interesting entities (both named and
common nouns — shown underlined) and assign to each entity a suitable class from an
ontology. The system will output pairs of entities identified in the text with ther
assigned entity from the ontology:

“pipe€’ > wor dnet _exhaust _pi pe_103303510
“car” > wor dnet _car 102958343
“life” > wordnet _|ife_ 115140405
“SantaFe€’ - Hyundai _Santa_Fe

On the left we have interesting entities extracted from the text while on the right we have
canonic entities existing in the YAGO ontology (presented in section 111.1.3, YAGO aso
integrates WordNet classes thus covering both common and named entities). The system
attempts in a generalized manner the task of WSD (handling common nouns, ex:
determining that the correct sense of “car” here is identified by id #102958343 out of the
other possible senses of the word “car”) and NER (handling proper nouns, ex: determining
that in this sentence “ Santa Fe” represents a car, and not other similarly named entities like
the town SantaFein USA).

The content of this chapter is structured as follows: we start with a system overview,
referring to other partially similar systems, discussing the architecture of our proposed
system and then presenting a formalization of our stated problem. At this point it is
noticeable that the system can be divided into two major components: the Linker Algorithm
(acustom graph algorithm we named “Linker Algorithm”) and the supporting system. Even
though the algorithm is the last processing step of the system it will be presented first
because it needs to be characterized out of the context of the current system, from an
abstract mathematical point of view. We then return to the supporting system, present its
implementation and close the chapter with performance evaluation and conclusions.

Chapter V - A Genera Entity Recognition (GER) System Page | 64




V.1. System overview

Given free text in the form of sentences written in natural language, we aim to detect
relevant entities and then identify them to matching classes in an ontology. For example,
for the sentence “Einstein’s theories are discussed by Kaku in his latest book.” we would
like to detect that Einstein is an entity and that it refers to Albert Einstein, Kaku is also an
entity and it refers to physicist Michio Kaku, and also that the common nouns “theories’
and “book” are identified as a scientific theory or at least a genera theory and a literature
book respectively.

We will attempt to do so using graph algorithms applied on an ontology which represents
our knowledge source.

One useful feature of the system is that al results are accompanied by their semantic
justification graph composed of the path between entities (including relation types and
intermediate entities). This justification graph can be used for further result evaluation,
manual or automatic, similar to [124] [125].

Our purpose could be interpreted as a fine-grained all-word disambiguation (WSD)
problem, similar to some of the tasks presented in past MUC/SensEval“* challenges. From
acertain point of view, we aim at exactly that: given atext and a knowledge source, assign
to each word a class from the knowledge source. However, there are differences: 1) for
example while we look at both named entities and common entities (closer to targeted
WSD), we do not take into account verbs or other modifiers, and focus only on nouns
(named or common). 2) we use a generic ontology that contains millions of possible entities
to choose from instead of a small, restricted set. 3) the aim of the system isfor its results to
be further used in conjunction with other methods or systems (ex: relation detection,
machine learning methods) to provide, for example, full ontological facts. This is even
more relevant as we allow for unknown entities (entities from the text that have not been
assigned an entity from the ontology) to exist in valid result sets, thus allowing them to be
used in new extracted facts to gather information about previously unknown entities.

We shortly review some of the closest methods and techniques our system is related to in
the area of knowledge-based methods for WSD [123] [126].

One approach is to determine the overlap of sense definitions. Also known as the Lesk
algorithm [81], the similarity between a pair of words is calculated as the highest overlap of
words definitions. In some sense it is related to our algorithm problem: as the number of
words increases linearly, the computational problem increases exponentially having to
consider every possible sense combination for all entities. Another approach is by
selectiona preferences. These are constraints on the type of words that can stand next to

4 http://www-nlpir.nist.gov/related projectsmuc , http://www.senseval.org

Chapter V - A Genera Entity Recognition (GER) System Page | 65



another. Word to word measures are computed using frequency count on a corpus or other
methods [127]. For other, more interesting word to class or class to class (a problem we
actually face when evaluating results), large corpora are parsed and frequency together with
words semantic classes provide a way to select a preferred class or word. This approach
however yields poorer results than Lesk’s algorithm [89] but is interesting for its class to
class selection feature that could be applied as afina result selector for our system.

Another category is structural approaches, divided into similarity and graph-based methods.
Similarity methods propose methods to assign a score to different words based on the
structure of the graph, for example measuring WordNet hypernym edge distances between
words (not much unlike our own scoring method) [128]. Many other metrics have been
proposed, including distance and information content based metrics. The second category
of graph-based methods exploits the structure of graphs itself. However, most of these
approaches [129] [130] focus on lexical chains (structures of semantically related words),
an approach different from ours.

Overal, knowledge-based systems usually have a somewhat poorer performance than fully
supervised machine learning algorithms. However, they do benefit from a wider coverage
due to the general, large knowledge sources they exploit [96].

Compared to Alfonseca & Mandahar’s system for General Named Entity Recognition [104]
(described in more detail in the previous chapter) the proposed system has as a common
feature that it targets both common nouns and proper nouns. On the other hand, there are
two major differences stemming from the knowledge source used and method. On one hand
Alfonseca & Mandahar’s system used WordNet to tag words while our proposed system
uses YAGO as atag repository. The current version of YAGO (v1) we use contains about
70.000 WordNet classes from about 2 million + classes, yielding a tag space amost 30
times larger. Another difference is that the former system tags named entities with
WordNet tags (ex: Bucharest/wor dnet _ci t y) while the latter system tags named entities
with actual instances of WordNet classes (ex: Bucharest/Buchar est ). The second major
difference is the way tags are assigned. While both systems are unsupervised and
knowledge-rich in their approach, the former system uses frequency counts of co-occurring
words to create WordNet topic signatures while the latter uses graph-based methods to
determine the most likely tags for groups of related words.

V.1.1. Architecture

The proposed system is structured as presented in the figure below. The diagram shows a
natural sequential flow of the component modules that operate on the input document. Step
by step the document (Input) is split into sentences then tokens; the tokens are analyzed and
merged, if necessary, into multi-word tokens (Module A). The ontology is consulted for
possible entities that could represent the words identified in the document (Module B.1).

Chapter V - A Genera Entity Recognition (GER) System Page | 66



The influence of the extracted entities on each other is captured into an influence matrix
(Module B.2). A graph is created based on the ontology itself and the possible entities
extracted from it (Module C.1). The entire entity group is split into smaller manageable
groups (Module C.2). A custom graph algorithm (Linker Algorithm) has been developed
that, applied to each entity group, will detect the strongest connected entities (Module C.3),

which isthe final result of the system (Output).

Natural language document

System Input: Raw text

A.NLP Pipe A.1. NLPPipe
v
r
B.1. Canonic Entity Assignation
> B. String Entity Processor
B.2. Influence Matrix Computation
\.
Ontology $
( C.1. Operational Graph Initialization
»| C. Canonic Entity Processor C.2. Process Group Creation
C.3. Linker Algorithm
g
A 4
Canonic Entities System Output: Canonic Entities

Figure 7. Logical architecture of the proposed system

V.2. Formalization

To understand the notations used in the rest of the chapter we will formalize the problem,

explaining itsindividual components.

The input of the system is a natura language, free text document (DOCUMENT),

composed of a number of sentences (SENTENCE).

DOCUMENT = {SENTENCE,, | k is the number of sentences } (29)

Chapter V - A General Entity Recognition (GER) System

Page | 67




Each sentence isin turn composed of individual tokens (TOKEN)

SENTENCE = {TOKEN,, | k is the number of tokens in the sentence } (30)

Example: avalid DOCUMENT composed of two sentences could be “Einstein visited Ulm.
The ship sailed towards the Bering Strait.”.

The first module of the system analyzes each sentence and its tokens, and extracts a number
of String Entities (SE). The String Entities are composed of either a single token or from
multiple adjacent tokens (for example in the case of names that contain afirst and a last
name).

SENTENCE = {SE,, | k is the number of string entities in the sentence } (31)

Example: for SENTENCE; = “The ship sailed towards the Bering Strait.” we detect 7
tokens (individual words). After analysis we detect that token “ship” is a noun and create
String Entity SE; = “ship”. We also detect that tokens 6 and 7 are proper nouns and can be
merged into a single String Entity, SE, = “Bering Strait”. Thus this sentence can be
represented as SENTENCE, = { SE;, SE5}.

We now introduce the concept of Canonic Entity (CE), in contrast to the String Entity.
While the String Entities extracted from sentences are just that, bounded sequences of
characters, entities in the ontology will be called Canonic Entities. They are clearly defined,
immutable entities linked by several relations between them that generate a certain
Ssemantic structure.

Next, we define the concept of a Set of Canonic Entities (PCE). We assign to each String
Entity SEx alist of Canonic Entities that each could represent SEi. For example we assign to
String Entity SE; “Einstein” Canonic Entity CE; Al bert _Einstein, but also CE;
Her mann_Ei nst ei n, his father. Both are valid possibilities for “Einstein” as a first name
is not specified. We define PCEg the set of probable Canonic Entities CE assigned to a
String Entity SEy:

PCEg; = {CE;lj € [Lm]} (32)
where m, is the number of Canonic Entitiesidentified for String Entity SEy.

Example: For SE; = “Einstein” we have PCEs; = {CE;, CE;} = {Al bert_Ei nstein,
Her mann_Ei nst ei n}

The purpose of the system is to assign a Canonic Entity to each String Entity identified in
the document. Up to this point we have identified String Entities, and to each String
Entity’s PCE we have added a number of possible Canonic Entities. However, String
Entities can either be related amongst themselves or not (usualy String Entities in a
sentence are related amongst themselves but not to String Entities in other sentences). As it
will be shown in a later section, we have the need to split our problem into smaller tasks,
that is we do not want to process al String Entities at once, and due to the fact that we can

Chapter V - A Genera Entity Recognition (GER) System Page | 68




identify groups of related String Entities we will focus on processing these independent
groups separately. As each group is processed in exactly the same way, we have reduced
the problem from considering all String Entities in a document to just a group of N related
String Entities. For the remainder of the chapter, unless stated otherwise, N is the number
of String Entities we have to deal with.

N = |{SE; | any SE is related to any other SE in this group }| (33)

Thus, given our group of N related String entities, we define a Result Set (RS):

RS = {CEy| CEy € {PCEsg, U @}, k € [1,N]} (34)

A Result Set RS always contains exactly N Canonic Entities CEy, each one belonging either
to its probable Canonic Entity set PCEgs assigned to String Entity SEx or being unknown,
as we alow for the possibility of new, unknown entities. The system will output for each
group of String Entities not just one, but a sorted array of Result Sets RS, (from which we
will usually consider only the top scoring result).

Example: considering the previous example: “Einstein visited Ulm.” We have String Entity
SE;= “Einstein” with PCEgz1 = {Al bert _Ei nstein, Herman_Ei nstei n} and SE; =
“Ulm” with PCEs, = {U m U m_Mont ana}. After processing, we can have several Result
Sets:

RS, ={Al bert_Ei nstein, U m}
(because the system knows that Albert Einstein was born in Ulm, Germany)
RS, ={Her man_Ei nstei n, 1

(avalid Result Set comprising of Herman Einstein and [1lle empty placeholder, showing
that the system did not find enough evidence to link Herman Einstein to any of the Ulm
townsin PCEg).

RS={ L1 m Mont ana }

(another valid Result Set, showing that maybe there is a person named Einstein that is not
Albert nor Herman, and the town in question is actually the Ulm in Montana)

etc.

It can be seen that on the i™ position of any Result Set there is either an empty placehol der
or aCanonic Entity of thei™ String Entity, wherei (1, N).

We define RSA asthe array of Result Sets:

RSA = {{RS;,Score;}| i € [1,Q]} (35)

Chapter V - A Genera Entity Recognition (GER) System Page | 69




where Score is the score associated to RS, afloating point value.

Example: considering the above example, the RSA would be:
RSA = { {RS;, 2.0}, {RS;, 0.8}, ..., {RS, 0.5} }

While Result Sets do not have scores, the containing Result Set Array assigns scores to
each of its Result Sets.

Another important variable is the size of the Result Set Array (Q). The number of Result
Setsin RSA will be used in the complexity evaluation of the algorithm.

Regarding the algorithm that produces these Result Sets, we need to introduce further
notations:

We define the input graph (G) used by the algorithm. G is a weighted, undirected graph,
with the following properties: 1. every vertex represents a Canonic Entity CE that belongs
to aPCEg:; 2. no links exist between the Canonic Entities belonging to the same PCE, only
direct links to Canonic Entities belonging to other of the N-1 PCEs. These properties make
G an N-partite graph.

We define the number of vertices (V), aswell asthe number of edges (E) in G.

V= |V(G)|adE = |E(G)] (36)
where V(G) isthe set of verticesin G, and E(G) is the set of edgesin G.

These two integer values are also used in the algorithm’s complexity evaluation. It is worth
noting that Q will be determined in the algorithm, being afunction of N, V and E.

V.3. Proposed custom graph algorithm — Linker Algorithm

As the graph algorithm represents a distinct contribution, as well as for the reason that the
algorithm can be presented independent of any system, the algorithm’s description,
implementation and results will be presented in this separate section. The evaluation of the
algorithm presented in this section will focus only on the algorithm’s performance
(runtime/memory/complexity/etc.) and not on the accuracy of the results when applied to
the General Entity Recognition System (which will be presented after this section,
integrated in the system).

The proposed algorithm is designed to solve the problem of discovering the highest
scoring sets of connected vertices within an N-partite weighted graph. An N-partite
graph isagraph that islogically divided into n partitions, having the property that there are
no edges between vertices in the same partition.

Chapter V - A Genera Entity Recognition (GER) System Page | 70



The agorithm was developed in the context of our proposed system, where it serves the
purpose of assigning ontological classes to entities extracted from text, given an ontology.

We abstract the ontology to a graph, the relations between classes in the ontology as
weighted edges and the classes as the graph’ s vertices.

As the input of the algorithm in the context of our system is a group of N related String
Entities (SE), each of them having associated a set of probable classes from the ontology
(PCE<), we thus abstract the input of the algorithm to N sets of starting nodes. We consider
the input graph on which the algorithm will work upon as previously created, with all the
Canonic Entities from the input as included.

The output of the algorithm in the context of our system is an array of Result Sets (RS
sorted by their descending scores. A Result Set is an N-size set of Canonic Entities (CE),
where the i"™ CE is the chosen CE that represents the i SE from the algorithm’s input (as
presented in the formalization section V.2).

We now continue with an in-depth algorithm description, complexity anaysis and
evaluation.

V.3.1. Description

This section presents the algorithm in detail. It starts with an example, then divides the
algorithm into smaller logical steps and presents them individually.

As previoudy stated, the algorithm aims at discovering sets of vertices, each belonging to a
different partition. The sets are created based on the scores derived from the values of the
weighted edges in the graph.

Consider the following example: Starting from the sentence “Bucharest is the capital of
Romania” we identify “Bucharest”, “capital” and “Romania’ as interesting entities, and for
each we assign 3 probable Canonic Entities, as shown in figure 8. Also, we create the graph
linking them based on the ontology. Because in this section we focus on the algorithm only,
the way the graph is created and the weights on its edges are not of importance (they will be
presented in the next section V .4.).

Chapter V - A Genera Entity Recognition (GER) System Page | 71



wor dnet _nati onal _capital )
wor dnet _capi t al wor dnet _st ate_capi tal

Buchar est Ronani a
[0 45l
Buchar est _Ring . 1045} ‘ Sport_Venues_in_Romani a
Bot ani cal _Garden_of Buchares Metropolitan Areas of Romani a
where:

. are ontological entities that could represent SE; “Bucharest”
. are ontological entities that could represent SE, “capital”
‘ are ontological entities that could represent SE; “ Romania’

Figure 8. Example of the graph decision problem

As can be seen, there are no links between vertices representing Canonic Entities of the

same String Entity, the graph respecting the N-partite property, with N=3 in this particular
case.

We now abstract the actual Canonic Entities for a shorter representation, and the graph
becomes:

.................................................................................................................................. PCEsg
CE? CE? CE? :

Figure 9. Abstraction of the 3-partite graph in figure 8

Chapter V - A Genera Entity Recognition (GER) System Page | 72



Thus, given an N-partite graph (input), find the sets of N vertices maximizing the score,
each vertex belonging to one of the partitions (output is in the form of a Result Set Array
containing multiple scored Result Sets). For example, in the figure above, we could have a
valid Result Set Array:

RSA = {{{CE%, CE%, CE3}, 2.05}, {{CEL, cE2, CE3}, 0.95), {{CE}, 0, CE3}, 0.45}, ... }

As seen, the RSA holds sorted Result Sets and their scores. Also, Result Sets that are not
‘complete’ in the sense that for the third RSin our example RSA, we have on the second CE
position a void element C_Mheaning that this 0.45 scoring RS is composed of CE,* from
PCEx: and CE,® from PCEgs, and ANY Canonic Entity from PCExs,. Because there is no
edge between either of the selected entities to any entity from PCEsz,, we cannot assume an
information link and thus any entity residing in PCEs:, (or none of them) could be a valid
choice for us. We adlow this because if we find a strong link between two entities for
example, then it is much more likely that the two entities are the correct CEs for their
respective SEs than forcing a third, forth, etc entity to appear in the Result Set but with a
weaker score.

The algorithm can be divided into four distinct sequential steps, each further detail ed:

Step 1. Load and initialize data

Step 2. Perform DFSfor every vertex in the graph
Step 3. Compute scoresfor the Result Set Array
Step 4. Merge non-overlapping Result Sets (optional)

A quick overview: first, data is loaded and processed in the format needed for the
algorithm. Then, a depth-first search is performed starting from every vertex in the graph.
This will discover possible solutions that will be added to the Result Set Array. After the
graph search, scores are computed for every Result Set in the array. Next, if desired, a
merging will take place between non-overlapping Result Sets to create the best scoring
Result Sets.

V.3.1.1. Step 1 —Load and initialize data

This first step loads and converts the external data in the form needed for processing. The
input of the algorithm is actually along array of tuples, holding links between vertices and
their weights. Also, the logical partitions are provided, in the form of an array holding sets
of vertices.

In this step the link array is parsed. Because the original datais taken from a directed larger
graph, if thereis alink from CE; to CE,, then there might be alink from CE, to CE; with a

Chapter V - A Genera Entity Recognition (GER) System Page | 73



different weight. Because the algorithm runs on undirected graphs, every reverse link is
deleted and its weight is added to the original link.

Then, the array containing al the vertices is created from the array containing the
individual sets of vertices. This array is created for efficiency, because we aready have all
the vertices, just separated into sets. However this would require two operations instead of
one when iterating over the vertices. We can view thisnew array as V(G).

Also for algorithm efficiency, a hash map (key-value) is created for every vertex,
containing the vertex as key, and the array of its neighbors as the value.

V.3.1.2. Step 2 — Perform a custom DFSfor every vertex in the N-partite graph

Thisisthe main processing step of the algorithm.

The main idea here is to determine sets of connected components. This is done by
performing a custom depth-first search in the graph. But we need to determine all
connected components containing each individual vertex. For this we need to perform the
graph search starting from every point in the graph.

So for every vertex CE, in the V(G) array created in step 1 we launch the CDFS() function.

function CDFS(CE,) {
push CE, to path;
for every nei ghbor CE, of CE,: {
if size(path)=1
if edge(CE,, CE,) is already visited
continue to next neighbor;
if CE, visited OR CE, does not belong to a uni que PCEg
continue to next neighbor;
el se
mar k edge(CE,, CE,) as visited;
CDFS( CEn) ;
}
if CE, has no valid neighbors AND size(path)>1
addSol uti on(path);
pop CE, from pat h;
}

Figure 10. Pseudocode for CDFS() function

CDFS() is a recursive depth-first search, storing the path from the initia vertex on each
recurrent call, and stopping to add a new solution only when no neighbor vertices can be
further added to the path. A new vertex can be added only if this vertex is not already
present in the path and the vertex (which is a Canonic Entity CE) belongs to a probable

Chapter V - A Genera Entity Recognition (GER) System Page | 74



Canonic Entity set PCEg: that no other vertex on the path belongs to. This ensures that we
only add solutions that contain one Canonic Entity for every String Entity found.

Also another point of interest is the condition to continue the depth-first search only for the
links that have not yet been visited. This heuristic drastically reduces the total number of
graph searches and will be explained in the complexity analysis section.

Whenever the search encounters a valid vertex which has no further neighbors to explore,
the addSolution() function is called, with the path parameter that holds the visited vertices so
far.

The purpose of addSolution() is to add new, increasingly larger result sets (paths) to the
possible solutions pool. It does this by performing two operations. subset detection and
merging of solutions. Given a new solution path, and the already existing set of aready
added solutions, it will first be determined if path is not a subset of an existing solution, and
then if path cannot be actually merged with an existing solution. This means that path can
either be added as a new solution, discarded because it is a subset of an existing solution or
merged into an existing solution.

Example: Let us consider a more complex example with four String Entities SEa, SEg, SEc,
SEp, each with its associated PCE<:. Let’'s assume that for SEa, PCEsa is {Al, A2}, for
SEg, PCEsg is{B1, B2} and similar for SEc and SEp. A result set RSwill have in this case
length 4, because we have 4 String Entities. On each position, RS must necessarily have
either a null value or a vertex (Canonic Entity) belonging to that respective PCEs:. For
example, a void RS can be visualized as { LI} {where “ C"_Ineans null value,
interpreted as “any” Canonic Entity), a completely filled RS as {Al, B2, C1, D1} and a
partidly filled RSas{Al, I, 12}. In our example, let’s say we determined path as { Al,
B1, C1, CEf when iterating over the existing RSA we find that there is already a RS like
{A1, B1, C1, D1} then we drop our proposed path RS because it is a subset of the existing
one. If we find that path is not a subset of any existing RS, we search if we can merge path
to any of the existing RSinstead. For example, if wefind {Al, 1, D1}, then path can be
merged to it (because Al and C1 are common to both, and the [Cffbm the second position
from the existing RS can be replaced by B1 from path, and the [irbm the forth position
from path can be replaced by D1 from the existing RS) and produce the merged solution
{A1, B1, C1, D1}. If path cannot be merged, it is added as a new RSto RSA.

function addSol uti on(path){
RS = new enpty result set;
fill RS s appropriate slots with CEs extracted from path
for every RS; in result set array RSA {
i f isSubSet Or Equal (RS, RS;)
exit function w thout any changes;
i f canMerge(RS, RS))
RS, = nergeRS(RS, RS);

Chapter V - A Genera Entity Recognition (GER) System Page | 75




exit function;

}
add RS to RSA;

}

Figure 11. Pseudocode for addSolution() function

The addSolution() function will create an empty result set, populate it with entities found in
CDFS's path, and then check every other result set in our result set pool to seeif the current
result set is either a subset or an equal or if it can be merged with any of them.

Determining if aRSis asubset of another RS ( isSubSetOrEqual() ):

function isSubSet Or Equal (RS, RS)){
for j =0 > N{
if RS[j] # RS[j] AND RS[j] # [
return fal se;

}

return true;

}

Figure 12. Pseudocode for isSubSetOr Equal() function

The function checksiteratively all N positions of both RSs. If it finds a position of RSthat is
different from RS and that position isnot [CIhkn RSis not a subset of RS.

Determining if RS can be merged with another RS ( canMerge() ):

function canMerge(RS, RS){
conmonEl enents = 0;
for j =0 > N{
if RS[j] # CADRS[j] # [
if RS[j] = RS[j]
conmonEl enent s++;
el se
return fal se;

}

if comonEl enents > 0
return true;

el se
return fal se;

Figure 13. Pseudocode for canM erge() function

This function iteratively counts the number of common elements in both RSs. If thereis a
position that is not [amd the respective elements are different, then the RSs cannot be
merged. Finaly, if the function cannot find at least one common element, the RSs cannot be
merged because they are actually distinct, non-overlapping.

Chapter V - A Genera Entity Recognition (GER) System Page | 76



Both of these seemingly minor functions are important in the algorithm as the algorithm
spends a great deal of timein them.

Overall, this step of the algorithm creates the initial RSA, but without any scores associated
to the RSs contained within.

V.3.1.3. Step 3— Compute scoresfor the Result Set Array

After CDFS() was run on every vertex in the graph, we have a RSA that contains many
Result Sets, but with score zero. The score calculation is left for a later stage of the
algorithm and not included in the CDFS() because it would add too much unneeded
overhead if it would be computed on-the-fly. Also, it was not needed for Result Set
generation. The Result Sets having been obtained, this step now computes the scores for
each one of them.

function conputeScores() {
for every RS in RSA {
for C in RS (i =1 > N): {

i f CEi = [
continue to next CE;

for every neighbor CE of CE
if Cg [CBS AND position of Cg > position of CE in RS

Scoregs += wei ght of edge between CE and CE

}

}
sort (RSA);

}

Figure 14. Pseudocode for the computeScor es() function

The computeScores() function iterates over all Q Result Sets RS in RSA. For each RS it
searchesiteratively each of its N positions. Each position might hold a CE or be void. If itis
not void, it searches for every neighbor of CE not already visited. If a neighbor is found, it
then adds the weight of the edge between them to the RS s score.

After computing the scores, the Result Set Array is sorted descending by the score of each
RS

At the end of this step we have a sorted Result Set Array filled with possible vertex choices,
each belonging to alogical partition. At this point, the first RS (or first RSs) can be used as
the solution to the current problem.

Chapter V - A Genera Entity Recognition (GER) System Page | 77



V.3.1.3. Step 4 — Merge non-over lapping Result Sets

This step is optional. To see the opportunity/necessity of this step, consider the following
possible RSA output by the algorithm for an N=6 logical partition problem:

(RS; = {41,B1,C1,8,E1,F1} Scoregs, = 4.0
RS, = {A42,B1,0,0,0,0 } Scoregs, = 3.0

RSA = { RS; = {43,B1,1,0,0,0}  Scoregs, = 2.5

RS; = {0,0,0,D1,E2,0 } Scoregs, = 0.6
L RS; = {0,0,c2,0,0,F2} Scoregs; = 0.6 )

Figure 15. Example Result Set Array

For this example it is clear that the best choice is RS1 with the highest score 4.0. However,
if we look down the list of other result sets, we can see that there are other RSs that could
be useful. As [Csiands for the ANY placeholder, meaning that a [—Sgot can hold any vertex
initslogical partition, maybe it would be useful to combine non-overlapping Result Sets,
like RS and RS for example into a single RS It is immediately apparent that the
combination of RS, RS and RS would yield a higher scoring RS containing { A2, B1, C2,
D1, E2, F2} with ascore of 3.0 + 0.6 + 0.6 = 4.2, higher than RS;. Another option would be
to combine RS; with RS yielding { A3, B1, C1, D1, E2, [} With score 2.5+0.6 = 3.1.

Even though this step will present a new Result Set Array with different RSs (larger) that
have higher scores, it does not add new information. The creation of new, larger RSs could
even be seen as confusing. Intuitively, the vertices presented in a RS are thought to be
linked each one of them (as they are in essence connected components in a graph).
However, presenting a new RS composed of two distinct, non-overlapping RSs would
create the impression that all vertices contained form a connected component, which is not
true. But in the context of our system, this step is actually required as we aim to detect most
likely CEs for every SE, meaning that a SE that is represented by a CE is better that being
represented by ANY CE inits set.

Having motivated the opportunity/necessity of the merging, we come to an interesting
problem. What combination is the highest scoring? Or in other words, how to determine the
combinations of Result Sets that lead to the best scores? This in itself is a problematic
guestion.

Example: Consider the following two cases, identical sets but with different scores for the
forth Result Set:

Chapter V - A Genera Entity Recognition (GER) System Page | 78



RS, = {A1,B1,0,0,0,0} 1.0 RS, = {41,B1,0,0,0,0} 1.0
RSA = {RSZ = {¢,0,¢1,D1,0,0} 1.0 l RSA = {RS2 = {9,0,c1,D1,0,0} 1.0 l

RS; = {0,0,0,0,E1,F1} 1.0 RS; = {0,0,0,6,E1,F1} 1.0

RS, = {0,0,0,D2,E2,0} 1.0) RS, = {9,0,6,D2,E2,0} 3.0)

Cae1l Case 2

The best scoring set in the first case would be RS = RS, + RS, + RS; with score 3.0.
However, modifying the score of R34 in the second case would produce a higher scoring
result RS of just RS, + RS, = 4.0. Even though RS’ has all positions filled and RS ™ has to
void places, RS " scores higher and should be chosen. From this example it can also be seen
that higher-scoring Result Sets can be created from any number of non-overlapping Result
Sets.

One brute-force approach would be to consider all combinations of Result Sets. However,
that would lead to factorial complexity, a worst case complexity scenario. We propose the
following agorithm:

function nmergeNonOverl appi ngRSA() {
initialize new RSAhal;
for RS in RSA (i =0 2> Q {
initialize RSAgg;
for RS in RSA(j =i+l 2 Q {
if RS and RS, are non-overl appi ng
add RS to RSAgg

}
creat eSol uti onTree(RS;, RSAgs);

RSiina = get Best Sol ution(RS));
add RSfinal to RSAfinal;

}
RSA = sort (RSAfna ) ;

}

Figure 16. Pseudocode for mergeNonOverlappingRSA() function

The genera ideais that we want to create for each Result Set in RSA a weighted tree with
all the other Result Sets that are non-overlapping, and then search the tree to determine the
highest scoring branch. This approach, while not factorial in complexity, will provide an
optimum solution for each RS,

In more detail, mergeNonOverlappingRSA() will create a new empty Result Set Array
RSAsina. For each Result Set RS in the origina RSA it will create a new Result Set Array
RSAgg for RS (the algorithm will thus create Q new smaller RSAs by the end). It will then
populate RSAgg with al the other Result Sets RS in RSA that are non-overlapping with RS.
Then, it will launch the createSolutionTree() function, presented below, that will create atree

Chapter V - A Genera Entity Recognition (GER) System Page | 79




with weighted edges, and Result Sets as nodes. Then getBestSolution() function will traverse
the tree searching for the highest scoring path from the root RS to aleaf RS, and return the
merged results as a new Result Set RSia. RSina is then added to the new RSAsiny array. The
last step isto sort RSAsina, and replace RSA with the new, larger Result Set Array.

We now present createSolutionTree():

function createSolutionTree (RS, RSAgrs) {
RSwergea = Merged RS fromroot to current RS;
for RS in RSAgs {
if RS} and RSpergeq NON are non-overl appi ng
create edge between RS and RS with weight Scoregg;
createSol uti onTree(RS;, RSAgs Wi thout RS ...RS);

}

Figure 17. Pseudocode for createSolutionTree() function

This function will recursively create a tree having as root the initial Result Set in the
mer geNonOverlappingRSA() function. It takes two parameters, the RS node and the RSA
corresponding to that node.

In the following example we use Case 1 or 2 presented above, where we abstract RS
notation for easier reading — instead of {Al, B1, C_II_II_1I} We write just { A1, B1}. For
this example scores are not important, just the items in the Result Sets to see how they can
be merged.

Table 2. Example of tree creation for merging non-overlapped Result Sets

Depth RS | RSA Observations Tree
1 AlB1 {C1D1, E1F1, Search RSA for non-overlapping children of
D2E2} Al1B1
Find children: C1D1, E1F1, D2E2 AlB1

For child C1D1 create link A1B1 - C1D1
Call function with (C1D1, { E1F1, D2E2})

2 CiD1 {E1F1, Search RSA for non-overlapping children of
D2E2} C1D1 AlBl
Find children: E1F1 10
For child E1F1 create link C1D1 > E1F1 N
Call function with (E1F1, { D2E2}) CiD1
l 1.0
E1F1

Chapter V - A Genera Entity Recognition (GER) System Page | 80



3 E1F1 {D2E2} Search RSA for non-overlapping children of
E1F1 A1B1
Find no children and return to parent (depth 2)
Find no children and return to parent (depth 1) A
For child E1F1 createlink A1B1 > E1F1
Call function with (E1F1, { D2E2})

CiD1| |E1F1

E1F1
2 E1F1 {D2E2} Search RSA for non-overlapping children of
E1F1 AlBl1
Find no children and return to parent (depth 1)
For child D2F2 create link A1B1 > D2F2 Pt N
Call function with (D2F2, { Ok cioi| |e1F1| | D2E2
l 1.0
E1F1
2 D2F2 {3 Search RSA for non-overlapping children of
D2F2 Al1B1
Find no children and return to parent (depth 1) 1o Lo/30
Find no children and return to parent (depth 0) 19 o
Exit recursion tree CiD1| |E1IF1| | D2E2
l 1.0
E1F1

The new merged Result Sets are obtained by traversing the tree from root to leaf. For the
example above, the first merged RS is obtained by starting from A1B1, moving down
through C1D1 to E1F1, yidlding RS, = { A1, B1, C1, D1, E1, F1}. RS, will be {A1, B1, 1
CHl, F1} and RS will be{Al, B1, 12, E2, (IO

As presented in the table, the createSolutionTree() function will create a tree containing on
each level a non-overlapping RS It should be noted that on every step, we pass the Result
Set Array parameter to the next function call with al elements up to RS (as in the
pseudocode above) to avoid duplication of results. This will actually halve the solution
space (tree) obtained. Having the tree constructed, the getBestSolutionFunction() will
perform a DF search in the tree and obtain the highest scoring path. In the example above,
the trees are identical for cases 1 and 2 with only the weight of edge A1B1 > D2E2 being
different. If getBestSolutionFunction() is called in case 1, it will return a RS containing { Al,
B1, C1, D1, E1, F1} with score 3.0 and in case 2 it will return a RS containing { A1, B1, L1
D2, E2, [} with score 4.0.

Chapter V - A Genera Entity Recognition (GER) System Page | 81



After every Result Set in the original RSA has been merged with the best combination of
non-overlapping Result Sets, the final operation of mergeNonOverlappingRSA() is to sort the
newly created RSA.

V.3.2. Complexity analysis

The complexity of the algorithm is determined by inspecting each component in turn.

Step 1 of the algorithm handles loading data and processing it. The first operation
performed is to transform the directed graph in an undirected graph. This is performed by
inspecting every edge and checking if there is another reverse edge. If so, the weights are
combined and the reverse edge is dropped. Considering that the graph has E* edges and will
be reduced to E edges (as defined at the beginning of this chapter), we can approximate the
number of operations to O(E?).

Next, a hash map is created, containing for every vertex an array of its neighbors. Thisis
required because we create a dictionary of edges that will make edge retrieval an constant
time O(1) operation in the next step. This requires iterating over every vertex (we have V
vertices in the graph). For each vertex we traverse the edge list containing E edges. The
entire operation implies O(VE) complexity.

The second step of the algorithm is where the actual depth first searches are performed,
starting from every vertex.

The depth-first search in itself is a O(V+E) operation [131], because we have previousy
created the edge dictionary (hash map) so that neighbor retrieval is now an O(1) operation.
However, when reaching a vertex where no new nodes can be added, the addSolution()
function is called. The graph hasV vertices, so the function will be called V-1 times.

The addSolution() function performs two operations in respect to its input parameter which
isapotentia solution (RS). It first tries to detect whether the potential solution is a subset of
another existing solution, then whether the potential solution can be merged with another
existing solution. This implies iterating over the Result Set Array that has an increasing
number of solutions. Finally, RSA will contain Q elements, so we will consider the worst-
case scenario where we have to iterate over Q elements. Thus, addSolution() will iterate over
Q Result Sets, for each comparing position by position (N positions corresponding to the N
partitions of the graph) whether the candidate RS is a subset of exiting RSs. Both
isSubSetOrEqual() and canMerge() are O(N) functions. This implies that addSolution() will
have a complexity equal to O(N+Q(N+N)) = O(2QN+N).

Therefore the total complexity of a CDFS() call will be O(V+E* (2QN+N)) = O(20QNE + NE
+V). Considering that in worst case scenario we will have V CDFS() cals, then the total
complexity of step 2 will be O(2QNEV+NEV+VA).

Chapter V - A Genera Entity Recognition (GER) System Page | 82



Step 3 handles computing scores for the Result Sets obtained in step 2. This requires
iterating over the Q Result Sets. For each Result Set, for each position (from a total of N
positions, as RS is a N-length array), a list of neighbors is obtained (using the edge
dictionary in O(1) time). This list of neighbors is then iterated over. However, considering
the worst case scenario, where we have a complete k-partite graph, we need to iterate close
to V neighbors. Thisimplies that computeScores() will have a complexity of O(QNV) so far.

Next, we need to sort the Result Set Array. For this reason we use a merge sort algorithm
because it is a stable sorting algorithm as the average and worst time complexity are both
O(QlogQ) in our interpretation (as opposed to Quick Sort for example* which has a worst
time complexity of O(Q% when the list is sorted, even though in average is aso a

O(QlogQ) agorithm).
After sorting, computeScores() will have total complexity of O(QNV + QlogQ).

In step 4 we create a tree of possible Result Set combinations. We have Q Result Sets to
look at. We will analyze the worst case scenario where we have Q Result Sets that all are
non-overlapping between them.

Example: Consider we have Q = 5 Result Sets, noted as A, B, C, D and E (assuming for
simplicity that A= {A, LI 11}, B={ B LI 1}, ¥c.). Wehave N = 5 Result Set
length (also for simplicity we will allow Result Sets having only one Canonic Entity). To
create merged sets we can have any combination of A .. E. A valid RSwould be A CB] C [}
D [CElor even A [BILCC1C D1 CE]The created tree would look like this:

1

Figure 18. Wor st case scenario tree construction for step 4 merging function

The createSolutionTree() function complexity can be calculated as follows, considering that
in any step, in worst case scenario, a node will have Q-d children (d = depth in tree), and

46 http://en.wikipedia.org/wiki/Randomized_algorithm

Chapter V - A Genera Entity Recognition (GER) System Page | 83



will visit them each sequentially, with a Q-d-iw chiig children array. We can write this
function asfollows:

Tn)=N+(N+T(n-1)+ (N+Tn—-2))+.+(N +T(1)

(37)
Tm)=nN+Tn—-1)+T(nh—2)+..4T(1)

where the initial N is for obtaining RSnerged, and each parenthesis is a “for” iteration
containing an O(N) for checking if RS and RSnerged @€ non-overlapping and then calling

the recursive function again with a sequentially decreasing RSA. T(1) = O(1) = 1
Simplifying notation yields:

T(n) = nN + Z T (i) (38)
i=1

Isolating T(n-1) and expanding recursively:

T(n) = nN + [T(n — D] + Z T(i) =
i=1

n-—2 n-2 n-2
— N + (n—l)N+ZT(i) +ZT(i) - (n+n—1)N+ZZT(i)
i=1 i=1 i=1 (39)

n
Tm)=m+n—1+n-2+.+DN+2"'T(1) = Nz i+ 2"1T(1)

=1

Considering that n can be at most Q, and T(1) = 1, ignoring constants and approximating,
T(n) becomes:

nn+1)

—+ 2n~1 = NQ? 4201 (40)

T(n)=N

The dominant term is 2°* and is half of the sum of al k-combinations of Q elements
(which is 2°) considering all other operations are O(1), which is we would need to do to
check all possible combinations of Result Sets by brute force.

As a side node, even though worst case complexity is amost as bad as having to generate
all possible k combinations of Q elements, in average, in our problem setting, thisis a non-
issue because rarely we have more than one or two possible Result Sets to combine with —
meaning we create a tree of depth 1 or 2 with only a couple of branches — bringing the
average complexity down into amost constant time O(kN) (because having only one or two

Chapter V - A Genera Entity Recognition (GER) System Page | 84



children implies 1 or 2 calls to the function that needs to check for non-overlapping which
takes O(N) for each child).

The getBestSolution() function has complexity O(V'+E’) as it is a depth-first search.
However, in the worst case scenario the tree has 227 vertices with 2%*-1 edges. This means
the complexity of this function is O(29).

The total complexity of mergeNonOverlappingRSA() is thus: O(Q*(NQ + NQ*+2%* + 2%
H+QlogQ) = O(NQ*+ NQ*+ 2°Q + QlogQ). The total complexity obtained is the largest of
any step. However, in real life scenarios this function is executed quickly, the largest
influence having the Q° term.

Observation: We have generally sacrificed storage space for speed. Considering that in
genera we work with relatively small number of edges, vertices and Result Sets that in
current computers occupy only a fraction of the total available amount of RAM, the choice
for speed over storage is obvious. This is why, for example, in step 1 we create an edge
dictionary even though we already have the graph links stored as asimple array, or in step 3
we use merge sort instead of quick sort.

We now calculate the total complexity of our algorithm:
Step 1: O(E? + VE)
Step 2: O(2QNEV + NEV + V)

Step 3: O(QNV + QlogQ)
Step 4(optional): O(NQ*+ NQ3*+ 2°Q + QlogQ)

The total complexity of the algorithm will thus be the sum of each individual step, as each
step is executed sequentially.

The experiments that follow show that core processing time (step 2 + 3) is very fast
(especidly for red-life graphs applied to our problem setting), on the order of less than
500ms per graph. It can be seen that in the forth optional step there is an exponential term
in the complexity: 22 which takes the problem from the polynomial to the exponential
complexity domain. However, as Q is a variable dependent on N, E and V (basicaly
depends on the graph density — in our case defined as the ratio of E over V as we can have
several edges between any two vertices), it will be shown that in real life scenarios Q will
be small, and the 2° term will play aless significant role than other polynomial terms. The
following “Experiments’ section will further elaborate on the complexity and performance
of the proposed graph algorithm.

Chapter V - A Genera Entity Recognition (GER) System Page | 85




V.3.3. Experiments

To evaluate the performance of the algorithm we will focus on runtime of diverse types of
graphs, varying the input parameters N, E and V, which will directly influence Q.

The evauation will follow two types of graphs: random generated graphs that show how
performance and parameters vary, and real-life graphs extracted from actual texts, to see the
algorithm’ s actual performancein practice.

The algorithm (as the entire system) was built in Java 1.6 64bit. It was implemented as a
single threaded application, even though all steps can be easily parallelized. Steps 1, 3 and
4 can be directly parallelized as they process data that is not dependent on other data. Step 2
can also be parallelized by synchronizing thread access for 1/0O on the Result Set Array. The
algorithm was not paralelized because analysis is easier and more relevant when not
considering threads as a parameter.

The experiments were conducted on a norma PC, powered by a single-core Pentium 4
processor (Cedar Mill, with Hyper Threading disabled) at 2.8 GHz. A low-end machine
was chosen specifically for the algorithm not to take advantage of operating system or java
compiler automatic pseudo-parallelization that happens when running single-threaded
applications on multi-core processors.

V.3.3.1. Evaluation on random-gener ated complete graphs

The first type of evaluation the agorithm will be subjected to is a worst-case scenario
complete graph. A complete graph is a graph in which every vertex is connected to every
other vertex (in our case excluding connections between partition vertices to maintain k-
partite property). We generate the graph with an equal number of vertices in each of its N
partitions. Similarly, an equal number of edges will link the vertices of any two partitions.

We use the term ‘complete’ graph somewhat abusive, because we refer to the graph as
complete in the sense that every partition is linked to every other partition, even though
individual vertices from a partition could have any number of links to vertices of another
partition (including zero links meaning isolated vertices). We will thus use the term
‘complete’ graph in this section keeping in mind the note above.

We implemented a random graph generator. This generator varies the V and E parameters
and benchmarks the algorithm for every variation. We generate complete graphs by first
generating N times V/N vertices representing the N partitions. This generates an equal
amount of vertices for each partition. Then we iteratively generate between every two
partitions a number of 2* E/(N*(N-1)) links between elements of the two partitions. Because

Chapter V - A Genera Entity Recognition (GER) System Page | 86



acomplete graph has V*(V-1)/2 links, in total we obtain a number of E randomly generated
links, but evenly distributed between partitions.

For our tests, we fixed N = 5, as it is the average number of partitions we estimate the
algorithm will handle; the number N itself is not very relevant as the results will scale
accordingly. More important parameters are the total number of vertices V and the total
number of edges E in the graph. We vary E from 100 edges to 1000, and V from 5 vertices
(meaning one vertex per partition) to 500 (meaning 100 vertices per partition).

We first observe the number of Result Sets obtained varying E and V as specified.

__ 350000

S

% 300000

B 250000 m

g 200000 8

o il

£ 150000 v,

o S - Y—

T 100000 /L TS 900

- y Q

£ 50000 Y s "0 E

0 P

Number vertices (V) 450 500

Figure 19. Result Set size variation on complete graph

The surface above immediately shows two things: 1. the agorithm has an amost
exponential tendency for alarge number of edges and a small number of vertices, and 2. for
the vast majority of our test cases, the Result Set Q number remains fairly small and
constant.

It can be seen that Q depends greatly on the ratio of edges to vertices. The higher this ratio
is, the higher the number of Result Sets generated. This happens because if in a graph
where there are several edges between any two vertices the agorithm will evauate all
combinations of edge paths in the graph between vertices, yielding several Result Sets
having the same vertices but with different scores. In the figure above we can see that the
highest number of Result Sets is found for graphs with the fewest number of vertices
interconnected by the largest number of edges. We now look at the time required for the
algorithm to finish steps 2 and 3 (step 1 is performed <5ms each time, and thus irrelevant,
and step 4 isoptional and mimics step 2 in trend so it is omitted).

Chapter V - A Genera Entity Recognition (GER) System Page | 87



Timerequired for step 2 of algorithm
Number of edges (E)

Number of vertices (V) 450 500

Figure 20. Algorithm step 2 time variation for complete graph

Timerequired for step 3 of algorithm
Number of edges (E)

Number of vertices (V) 0 500

Figure 21. Algorithm step 3 time variation for complete graph

We see the same evolution for both steps 2 and 3 as in the Result Set number figure. Thisis
a first indication that the size of the Result Set Array Q is the most important factor
deciding run time. Also, based on the variation of E and V, Q is obviously varying greatly
on the structure of the graph. As the graph is denser, with fewer vertices but more
interconnections, Q is growing very fast. The strong correlation between run-time with Q
implies that Q is the deciding factor in agorithm complexity, more than E or V. Overall, we
see that the average running time for most of the test casesisjust afew milliseconds.

Chapter V - A General Entity Recognition (GER) System Page | 88



We now look into more detail to the algorithm time performance and the size of the Result
Set Array for afixed number of V = 50 vertices for 5 partitions, with the number of edges
varying from 50 to 1000.

5000

= Step 2 Time = Step 3 Time
4000 I“A
3000 Al

2000 M

1000 _,,.,.r\/v‘v B4
0 A——é_-——-—M""’VM

0 200 400 600 800 1000
Number of edgesE in graph for V=50and N=5

Time (ms)

Figure 22. Time measur ement when varying the number of edges

450000
o 400000

£ 350000
§ 300000 A Iw

B 250000 MV

N
o
+ 200000 o/

& 150000 MN

E 100000 _,\/A
< 50000 —

P N
0

0 200 400 600 800 1000
Number of edgesE ingraph for V=50and N=5

Figure 23. Result Set Array size when varying the number of edges

Considering the complexity of steps 2 and 3 (Step 2: O(2QNEV + NEV + V?) and Step 3:
O(QNV + QlogQ) ) we see that the most important variable appears to be Q, as it tends to
grow exponentially in certain cases, even though E and V increase linearly. Q isbasically a
function of three parameters. E, V, and the graph’s structure, and is determined in step 2 of
the algorithm. However, both steps vary linearly depending on Q, so we can conclude the
algorithm has an amost linear complexity in average cases (we based this on the worst case
scenario involving the largest solutions possible. This was due to the fact that the custom
depth first search has to discover every possible maximal length solution due to the nature
of the graph).

Chapter V - A Genera Entity Recognition (GER) System Page | 89



V.3.3.2. Evaluation in areal world scenario

The evaluation of the agorithm is better performed in the scenario it was designed for,
which means a varying number of vertices, edges and uneven partitions and links between
partitions. All of these parameters are determined by the characteristics of the text the
algorithm is applied on — in this section the graphs are generated from a collection of text
documents using the General Entity Recognition system itself to extract and process the
String Entities. The agorithm is given a graph in the form of links between vertices and the
logical partitions of these vertices. The vertices themselves represent entities extracted from
the ontology, and the edges between them are the paths in the ontology between these
entities.

As such, to determine the graph that the algorithm will be run upon we first need to
determine the entities and links in the ontology which in turn are found by anayzing the
words that make up the sentences in documents. We need to determine the N, E and V
parameters, as well as the structure of the graph represented by the edges between vertices.

The N parameter is the number of String Entities that are related. Usually, N is the number
of nouns in a sentence, because we target only nouns (common and proper) and usualy we
consider al nouns as related in simple sentences.

Next, the number of vertices V is determined by the number of Canonic Entities found in
the ontology for every String Entity. The number of vertices is thus strongly linked to the
method of discovering possible matches in the ontology and to the ontology itself (larger
ontologies will hold more probable entities that could mean the same thing). The method of
Canonic Entity assignation to a String Entity is explained in the section describing the
Genera Entity Recognition system itself.

The number of edges E, and the structure of the graph itself is also directly linked to the
ontology, as an edge between two vertices in our graph is actually a path (either direct or
composed of other intermediate entities) between the two entities in the ontology. The
method of generating the graph starting from the ontology will also be explained in the
GER system section.

We are interested in real life evaluations of these parameters to be able to run the algorithm
and analyze its performance. Keeping in mind that we intend for our system to be used in
the context of Information Extraction from the Internet, we try to evaluate the parameters
by analyzing three sources of information: Wikipedia pages, news articles and blogs.

For this evaluation we will use 50 Wikipedia pages, 50 news articles and 50 blog entries.
While the average words per Wikipedia article is 590+ we chose articles that had at least

47 http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons

Chapter V - A Genera Entity Recognition (GER) System Page | 90



5000 words, as we wanted to create a category of longer documents. The length of the news
articles and blog entriesis usually around 400-800 words.

For Wikipedia pages awiki parser+ was used to parse some of the more popular and longer
articles online. The extracted HTML tree was cleaned and a text-only version of the pages
was obtained.

For the news articles we have used BBC# as a news source, but filtered the pages as text-
only versions by another online sitex. 50 news items were extracted and placed in simple
txt files. For the blog entries we used the random function on blogspot.com to extract 50
names of English language blogs. For the text-only trandation viewtext.org was given as
parameter the newest post in every blog. The obtained HTML was parsed and only the text
section (excluding title, etc) was kept and stored in .txt files, in the same format as above.

Next, we ran the entire system on each of the documents sequentialy. For each document,
it was first split into sentences, sentences into tokens, tokens were merged where necessary
to create String Entities, to which Probable Canonic Entity sets were added. Then, the
intermediary ontology was created and paths between related entities were identified. The
set of edges links and the Canonic Entities themselves were given to the algorithm for
processing.

We ran the algorithm for each of the three categories of items. We present the algorithm’s
results in the table below showing the average number of String Entities found that are
related and implicitly processed together and associated parameters:

Table 3. Algorithm input parameter s aver age grouped by document category

Property Wikipedia Blogs News  All Combined

Number of sentences per document 268.7 29.6 31.2 109.85

N average (average # of related String Entities) 6.7 5.7 6.9 6.4
Named SE average per partition (proper nouns) 25 2.0 2.2 2.2
Common SE average per partition (com. nouns) 4.2 3.7 4.7 4.2
Distribution of Named vs. Common SE per part. 37%/63% 35%/65% 32%/68%  34%/66%
Average # Canonic Entities per document 107121 7896 12017 42375
Average Canonic Entities per Named SE 119.9 87.1 113.4 106.8
Average Canonic Entities per Common SE 184 14.2 15.0 15.9

From the experimental results obtained we can draw some conclusions:

e The average number of sentences per document illustrates the average size of
documents chosen. While the news from BBC and blog posts are rather short,

4 http://sweble.org/wiki/Sweble Wikitext_Parser
4 www.bbc.com
%0 Example: http://neilbryson.net/newsfeed/single.php?url=/go/rss/int/news/-/news/world-africa-13371638

Chapter V - A Genera Entity Recognition (GER) System Page | 91



visited Wikipedia pagers are longer, reaching an average of 268 sentences per
document.

e The N average is the average number of related String Entities. News documents
have the highest average of 6.9 SEs per partition. Out of these total average numbers
of SEs we have aso calculated the number of String Entities representing common
words or named entities. It can be seen that most named entities are found in
Wikipedia articles (37% out of all String Entities are named entities). However, the
distribution is rather similar for every category. Thisis an important parameter, as it
shows that most of the vertices in the graph are common words, together with the
observation that links in the graph between common words are links of type
subd assOF which are of lower importance. In our problem setting, the existence of
named entities is essential as named entities are strongly interconnected compared
to the common entities that usually have only a single subd assOf link to asingle
other entity, up one level in the WordNet hypernym tree. Also this parameter is
important for the algorithm itself, as graphs with many named entities will have a
much higher number of edges and vertices, and thus more Result Sets and longer
processing times.

e The average number of Canonic Entities per document is a statistical parameter to
show approximately the number of CEs identified and passed to the algorithm per
document. The bigger the documents, the more Canonic Entities are identified in the
ontology.

e The last two values are the average number of Canonic Entities identified for each
named or common String Entity. It can be seen that Wikipedia articles (with news
articles close behind) have String Entities that are more ‘popular’, meaning YAGO
knows more probable classes per String Entity than for blog articles, both for named
and common entities. This reflects the fact that blogs have words that are less
common, and thus less probabilistically to exist in the ontology, just as expected.

Another interesting parameter is partition distribution. If we analyze the number of Canonic
Entities per each String Entity (named and common combined), we observe the following
distribution:

Chapter V - A Genera Entity Recognition (GER) System Page | 92



35
30 -
~ 25 - I
m Blogs
§ 20 - 9
gf = News
15 - e
Wikipedia
10 - .
mAll Combined
5 .
0 .

0 1-10 11-25 26-50 51-100 101-500 501-1000 >1000
Number of Canonic Entities per String Entity

The figure above shows that most String Entities (almost 80%) have less than 25 Canonic
Entities associated. This means the algorithm will most usually run with partitions that have
less than 25 vertices. Interestingly, we see a surprising number of String Entities that have
no Canonic Entity associated. This means that during the Canonic Entity association phase
(later described in the General Entity Recognition system section) we have found no
suitable candidate. As seen, many partitions will thus have no vertices whatsoever. On the
other end of the chart, we see that there are partitions that have more than 1000 vertices.
These String Entities are aways proper nouns representing persons, locations, etc. For
example, searching the ontology for candidates for String Entity “United States’ can match
3171 possible Canonic Entities (it matches many more as a substring, but only 3171 remain
after the cleaning step — explained later in the GER system section), while searching for
common String Entities like “book” yield a much lower 44 possible Canonic Entities for
example (including the 6 senses of the word “book” itself available in WordNet, along with
other possible classes like cook_book or pi ct ure_book).

In the following table we present the results obtained for the three categories analyzed. We
have the N, E, V and Q average for each individual category. Also we have recorded the
algorithm processing time for each step individually for every group of String Entities.
Each step is then averaged by summing the time and dividing it to the number of groups.

Table 4. Algorithm average run-time grouped by document category

Property Wikipedia Blogs News  All Combined
N average 6.7 57 6.9 6.4
E average 585.6 345.9 680.3 537.2
V average 114.7 91.3 1344 1134
Q average 7505 458 6871 4945
Step 1 (ms) 950 139 241 433

Chapter V - A Genera Entity Recognition (GER) System Page | 93



Step 2 (ms) 5412 107 1192 2237

Step 3 (ms) 916 6 220 380
Step 4 (ms) 14410 177 3733 6107
Step 2 + 3 (my) 6328 114 1412 2618
Step1+2+3+4(ms) 21688 291 5145 9041

The table shows some interesting results. For example, while the Wikipedia documents
have in average dlightly smaller graphs than news items, the number of Result Sets Q is
larger, and also the processing time is significantly higher. This shows that the graph
structure is more complex for Wikipedia documents. Blogs on the other hand have lower
numbers of vertices per graph as well as aimost half the number of edges, thus making the
average computational time (step 2+3) very small, 114ms.

About the runtime, the Wikipedia documents have came up with some very long and
difficult sentences, that have taken in some cases around 1-2 minutes and also very few
sentences that were so complex (so many related named String Entities with many vertices
in each partition) that processing time exceeded 5 minutes. Clearly such extreme running
times for just a set of entities make the system unusable even in offline processing.
However graph complexity is independent of the algorithm that will be run upon it and
depends directly on the previous computation. Thus, we include all times in the average
document run-time. Because of these border cases with very high complexity the average
for Wikipedia for step 2 for example is amost 5 times bigger than for the news. However,
for the vast majority of cases run-time is around 50-300 ms, faster than the time it takes to
parse the sentence (which is around 500ms for the Stanford Parser).

The results show an agorithm adapted for the particular scenario of k-partite graphs that
exhibits good performance given the exponential nature of the problem.

V.4. Integrating the Linker Algorithm into the General Entity
Recognition System

In the previous chapter we have investigated the proposed Linker graph algorithm as out-
of-context as possible, as it can be abstracted and presented as a stand-al one agorithm for
solving a particular graph problem. This chapter will present the entire General Entity
Recognition (GER) system with which the algorithm is integrated with.

As seen in the system architecture diagram presented at the beginning of this chapter, the
Linker Algorithm is actually the last sub-module in the process-flow of the system. Each

Chapter V - A Genera Entity Recognition (GER) System Page | 94



module with its sub-modules will be presented in order, showing the required steps and
proposed methods to obtain a set of Canonic Entities starting from a text document.

V.4.1. Module A - NLP Module

This first module handles document preparation for processing. It is basically a full NLP
pipe. The NLP pipe is the standard treatment applied to texts, meaning sentence detection,
tokenization, noun transformation from plura to singular form, Part-Of-Speech tagging,
parsing, Named Entity recognition. For most of these tasks we use Stanford CoreNLP
packages.

Initially, the document is split into sentences. This is done by Stanford’ s SentenceAnnotator
(the splitter uses a Maximum Entropy model to detect sentence boundaries). This ensures
with rather high accuracy that sentences like “The book is written by JR.R. Tolkein.” are
correctly identified and not split whenever encountering a comma or other punctuation.
Each sentence is then split into tokens by Stanford’s tokenizer. Next each token is further
processed. Each token contains the original string, its singular form (for nouns), its Part of
Speech, word type (whether it is a common word, a proper noun or punctuation mark),
named entity type (if it isaproper noun, then what kind of proper noun it is).

The original string is the token itself. The singular form of common nouns is obtained using
the Inflector class? (Java implementation) of JBoss®* Community DNA open middleware.
Thisis arequired step as entities in the ontology are al in the singular form. The Part-Of-
Speech tag is obtained from Stanford’s POS Tagger [132] (a Maximum Entropy model).
The detection of common words is done using a free English dictionary, with added
heuristics (such as ignore capitalized words and words that start the sentence — they are
always capitalized and the dictionary is not a sufficiently accurate measure for these cases).
Punctuation marks tokens are detected using regular expressions.

If aword is not acommon word (words not found in the noun dictionary, capitalized words
that start the sentence, words which are recognized as having a NNP POS (Nominal Noun
Proper)) then it might be a named entity. A named entity type can either be a person, a
location, an organization or other. We have taken these 4 major categories because they are
the standard used for named entity recognizers including Stanford’'s Named Entity
Recognizer [109]. This NER uses a Conditional Random Field implementation to detect
whether a proper noun could be one of the four broad categories above. It is useful for the
system in alater phase as it alows the cutting down of unlikely Canonic Entities for each
String Entity.

51 http://nlp.stanford.edu/software/corenl p.shtml
52 http://docs.j boss.org/modeshape/0.4/apidocs/org/jboss/dna/common/text/I nflector.html
53 http://www.jboss.org/

Chapter V - A Genera Entity Recognition (GER) System Page | 95



After token processing, the sentence is parsed using Stanford’'s Parser [133], storing the
syntactic tree and the dependency tree.

The final step of this module is to reiterate over the tokens sequentially and extract String
Entities. String Entities are basically noun tokens with added properties. A String Entity can
be composed of asingle token (ex: “government”) or span severa (“ex: “John E. Smith”) in
cases of proper nouns. Also, each String Entity inherits the entity type and named entity
type properties from its tokens. So, a String Entity might be a common word, punctuation
(this category is ignored in this stage and further), a unit of measure or a named entity. In
case it is a named entity, it could be a person, a location, an organization or another type
designated by ‘unknown’.

As asummary, this module receives a document and outputs extracted String Entities.

Example: let us consider the sentence “Alan Mulaly has just announced the new Focus
with a 1.6 liter engine”’. String Entities are made of single or multiple neighboring tokens.
From the example sentence, we identify nouns (proper or common) and other interesting
words as. Allan, Muladly, Focus, 1.6, liter, engine. After identification we join named
entities together if they could represent afull name. Thisis done with the help of Stanford’'s
NER and heuristically when finding proper nouns that have not been marked by the NER
(automatically setting the named entity type to ‘unknown’). If neighboring named entity
tokens are in the same sequence (as marked by the NER) then we merge tokens together to
create a single String Entity. Otherwise we let each token be an individual String Entity. If
units of measure are detected (based on a dictionary) they are always linked together with
their values. As such, we obtain String Entities: “Allan Mulaly”, “Focus’, “1.6 liter” and
“engine”.

V.4.2. Module B - String Entity Processor Module

This second module takes as input the processed sentences from the NLP pipe. It performs
two relatively distinct operations on it. First, to each String Entity it retrieves a set of
appropriate Canonic Entities from the ontology. Second, it computes an influence matrix
that measures the influence of each String Entity on every other based on each sentence's
dependency tree.

V.4.2.1. Canonic Entity Assignation

Each sentence comes out of the NLP pipe with a set of identified String Entities. For each
of these entities we must assign a set of possible Canonic Entities that the String Entity
might represent. We obtain these Canonic Entities from the ontology we use. Using
YAGO'sneans relation we can link strings to ontology classes (Canonic Entities).

Chapter V - A Genera Entity Recognition (GER) System Page | 96




For example, for String Entity “engineg’” we ask YAGO to give us al the entities that
contain the substring “engine”. In this particular case, YAGO return for this initial phase
2259 facts, in the form:

Table 5. Example of classes YAGO returnsfor the query about “engine”

Subject (string) Relation Object (YAGO class)

"Alfa Romeo Flat-4 engine" means Al fa_Romeo_Fl at -4_engi ne

"automobile engine" means wor dnet _aut onobi |l e_engi ne_102761557
"diesel engine" nmeans wordnet _di esel _103193107

"engine" means wordnet _engi ne_103287733

"engine" means wordnet _engi ne_103288003

"engine" means  wordnet _engine_111417561

"engine" means  wordnet _| oconptive_103684823

We search for substrings and not exact strings because each ontology class has at least one
means relation, meaning that there are more ways to define a single entity. For example,
Canonic Entity United_States is referenced by “U.S’, “Stati Uniti dAmerica‘ or
“American Civilization® (to name afew) through the means relation. Also the reverse holds
true, meaning that we can define with the same word more YAGO classes. Asillustrated in
the table above, the word “engine” can mean either a motor engine or a locomotive with
equal probability. Searching for substrings means we do not miss any probable Canonic
Entity.

Having obtained for each String Entity a set of probable Canonic Entities, we now perform
a cleaning step for each String Entity. The first thing the cleaner does is that for each
Canonic Entity a String Entity has associated, it ensures that al the individual words of the
String Entity are found in the Canonic Entity’ s name. For example, for String Entity “New
York” Canonic Entity Yor k is removed as a probable entity because it does not contain
“New” in its name. This strategy removes a large number of false positive entities but also
could sometimes remove afew true positives.

Then, depending whether a String Entity is a common or named entity, it cleans
WordNet/non-WordNet Canonic Entities appropriately. As presented in the previous
section describing Y AGO, the ontology has an almost tree-like topology, with the WordNet
hypernym hierarchy on top, then wikicategory classes and then other entities linking to
them. This means that common words (nouns for example) can only mean WordNet
classes, and named entities only lower level, non-WordNet classes. For the above example,
we drop Canonic Entity Al f a_Roneo_Fl at - 4_engi ne becauseit isan individua and not
a generic entity. The reverse is done for named entities, where al matching WordNet
entities are dropped. In YAGO, entities starting with “wor dnet _" and followed by an id
are high-level entities (ex: wor dnet _engi ne_103287733).

Chapter V - A Genera Entity Recognition (GER) System Page | 97



The cleaning step allows for more heuristics to be applied. For example, a good heuristic
we apply to reduce the number of possible Canonic Entities per String Entity isto not allow
named entities to contain years or other numbers enclosed in parentheses in their names (for
example we discard directly all the individual highways identified by numbers, ex:
I nterstate_|50); another heuristic is to not allow too long Canonic Entities names: if
the number of words in the Canonic Entity’s name is three times more that the number of
words in the String Entity then we discard it (this is done because of the way YAGO was
created from Wikipedia, which tends to have many long names); another good heuristic we
observed is to remove wikicategory entities atogether, because they are generic
concentrators, are neither suited for common nouns or for named entities.

The fina cleaning step is applied only to String Entities that are named entities (proper
nouns) and is basically a collection of heuristic cleaning rules. A first heuristic isto look for
commas in its entity name to identify if it could be a location. For example, for String
Entity “Cdifornia’, using the neans relation in the ontology we find
Farmersville, California. Because the word “Cadlifornia’ is after the comma, we
drop the Canonic Entity because it is a location in California and not an entity that could
represent California itself. However, for String Entity “Farmersville”, Canonic Entity
Farmersville, Californiaisavalid candidate (“Farmersville’ is before the comma).
In YAGO locations can be identified by the comma separating the city/town/village to its
region/state/country.

Another heuristic in this fina step is that by using the information provided by the NER in
module A we have a general idea whether the String Entity is a Person, a Location, an
Organization or in the Other category. This fact aone helps to reduce the number of
possible Canonic Entities greatly, and most importantly by removing entire types of CEs it
prevents the detection of many false-positive Result Sets. To understand how this hamed
entity category cleaning happens, it is useful to know that any entity in the ontology has at
least one t ype relation (the type relation in YAGO is basically the generic Is-A relation),
specifying what type of entity it is. For example, for String Entity “Paris” YAGO returns,
among others, CEsPari s and Pari s_Hi | t on. They are of thefollowing t ype:

Pari s type(=)wordnet _nunicipality 108626283
Paris_Hiltontype(>)wordnet artist_109812338

To determine if a CE is of a certain type, we have marked a few CEs by hand in the
ontology as class determiners. For example, any CE that links to
wor dnet _person_100007846 is a Peson, and any CE tha Ilinks to
wor dnet | ocati on_100027167 isalocation.

To determine the type of any entity we simply need to walk up the WordNet hypernym tree
to see if we reach any of the marked entities. For example, Pari s_Hi | t on is a Person,
based on the path Paris_Hilton type(=>) wordnet_artist_ 109812338 type(>)
wor dnet _creator_109614315 type(>) wordnet person_100007846. The same

Chapter V - A Genera Entity Recognition (GER) System Page | 98



procedure applies for Paris to determine it is a Location. If during the upward walk
through the hypernym tree no marked entity is found, then the Canonic Entity is considered
to fall in the Other category.

This cleaning step ensures that a named String Entity will not contain Canonic Entities of
another distinct type. However, it should be noted, that for completeness (because
sometimes YAGO misses to label a CE as a type atogether, even though for a human it is
obvious it should be labeled as a Person/Location/Organization), the Other category is
never removed for any String Entity. This has the effect that named SE “Paris’ that has
been identified by the NER as a Location will contain CEs that are of type Location and
Other (stripping down only Organization and Person).

Even after this cleaning step, we are usualy still left with many probable classes. For
example, for String Entity “California’ we clean more than 90% of the 12000 possible
Canonic Entities and we are still left with around 1000 that each could be correct. There are
even cases where after cleaning there could be more than 5000 entities. However, the
majority of words are common nouns, and they have less than 25 Canonic Entities
associated, only named entities having more, usually around 100-500.

V.4.2.2. Influence Matrix Computing

The NLP pipe provides a set of String Entities but it does not provide a measure of
influence of an entity over another that we need to take into account in the processing
module. Thus, given the set of String Entities and a sentence’ s dependency tree> (obtained
in module A) we need to compute a matrix of String Entity — String Entity influence.

For example, for the sentence “The new Hyunda Accent is equipped with a 1.6 liter engine
delivering 110 hp.” the NLP pipe provides us with String Entities: “Hyunda Accent”, “1.6

liter”, “engine” and “110 hp”.

The obtained dependency tree looks like the following (type-of-dependency, governing
entity, dependant entity):

det (Accent-4, The-1)

amod( Accent -4, new- 2)

nn( Accent -4, Hyundai - 3)

nsubj pass(equi pped-6, Accent-4)
auxpass(equi pped-6, is-5)

det (engi ne-11, a-8)

nunm( engi ne-11, 1.6-9)

nn(engi ne-11, liter-10)

prep_wi t h(equi pped-6, engine-11)

©CoNoO~wNE

% Presented in section 1.3, more  information  about  dependency trees at
http://nlp.stanford.edu/software/stanford-dependencies.shtml

Chapter V - A Genera Entity Recognition (GER) System Page | 99



10. part nod(engi ne- 11, delivering-12)
11. nunber (hp- 14, 110-13)
12. dobj (del i vering-12, hp-14)

Figure 24. Dependency tree example

For each String Entity we traverse the tree looking for connections to other String Entities.
For our example sentence, we discover the following:

conput el nfl uence for : Hyundai Accent-4 - 1.6 liter-10
Val ue: 1. 0 subject relation but with proxy engine-11
conput el nfl uence for : Hyundai Accent-4 - engine-11
Val ue: 1. 0 subject relation.
conput el nfluence for : engine-11 - 1.6 liter-10
Value: 1.0 direct link for nn(engine-11,liter-10)
conput el nfluence for : engine-11 - 110 hp-14
Val ue: 0.5 proxy for engine - 110 hp using proxy delivering-12

Figure 25. Connections found between String Entities

We determine for each String Entity a head word to use as a match in the dependency tree
(for multi-word tokens like “Hyundai Accent” we use Accent-4 as the representative for the
String Entity and hp-14 for “110 hp” — the number after the dash is the word’s position in
the sentence, as words can be repeated in the same sentence with different meanings and
influences).

We heurigticaly assign three distinct influence values between entities. The 1.0 value
means strong connection, 0.5 means somewhat connected and 0.1 means no direct link, but
used for context.

In the above example Accent-4 is the subject of the sentence and is thus directly linked to
engine-11 through dependency link #4 (of type nsubjpass, meaning a houn subject relation
in passive tense) and 9 (of type prep_with meaning the “with” preposition). This link will
score 1.0 meaning a strong link between them. The same score is assigned to the link
between “engine” and “1.6 liter” due to their direct link (link #8). We also check for so-
called “proxy” relations, meaning non-direct links between entities.

We perform a breadth-first search with maximum depth 2 and look for certain link types
between entities. For example, entity “engine” is linked to entity “110 hp” by the word
“delivering” (links #10 and #12).

We obtain the following matrix:

Chapter V - A Genera Entity Recognition (GER) System Page | 100



Influence Matrix: (ROW Subject) has property (COLUMN- Qbj ect)
Hyund 1.6 I engin 110 h

Hyundai Accent: 1.0 1.0 0.1

1.6 liter 0.1 - 0.1 0.1
engi ne 0.1 1.0 --- 0.5
110 hp 0.1 0.1 0.1 ---

Figure 26. Influence Matrix example

As can be seen, the matrix is not symmetrical. Hyundai Accent influences engine, but
engine does not influence Hyundai Accent. This is critical in the algorithm processing
module as many false-positives result sets can be avoided. Also, the matrix is stored as a
spare matrix, because of the large amounts of zero influences among entities (in larger
documents there can be at least one thousand String Entities identified).

A note worth mentioning is that the system’s performance is strongly connected to this
influence matrix. At times, the dependency tree fails to generate correct dependencies and
thus the final results will be rather poor due to missed links between entities. However, we
assume that parser we use (Stanford's Parser) is among the best currently available. The
dependency tree generation, like the syntactic tree generation is ahard problem in itself.

V.4.3. Module C - Canonic Entity Processor Module

The String Entity Processor module provides sentences with delimited String Entities, each
entity having associated a set of probable Canonic Entities, as well as an influence matrix
between the String Entities themselves. Based on this data, the Canonic Entity Processor
module will provide sets of Canonic Entities sorted by descending scores.

Example: for the simple sentence “Bucharest is the capital of Romania’ having String
Entities “Bucharest”, “capita” and “Romania’, we expect the Canonic Entity Result Set
with the highest scoreto be (Buchar est , wor dnet _capi tal _108518505, Romani a).

However, there are two steps that need to be performed prior to applying the algorithm.
First we need to create the graph on which to run the algorithm, and then we need to split
the entire array of String Entities into smaller sets that can and should be processed
independently. The splitting is needed because it is impractical (performance-wise) to run
the algorithm on tens or hundreds of entities in one run, and also because many entities do
not have any connection to each other and then the algorithm will yield many result sets
having the same score but with combinations of related entity sets that can al be valid. This
issue will be further detailed in the Process Group creation sub-section.

Chapter V - A Genera Entity Recognition (GER) System Page | 101



V.4.3.1. Operational Graph initialization

The operational graph is the structure from which the input graphs that the algorithm will
be run on are derived, so it is the first to be created. It is a large, directed, unweighted
graph. It should not be confused with the smaller N-partite input graphs that the algorithm
IS run on, as these graphs are created based on this operational graph every time a group of
related String Entities is encountered. Figure 29 presents an example of an operational

graph.

As the ontology can be viewed as a graph, then the operational graph itself is actually an
ontology, a smaller section of the original ontology. It contains all the probable Canonic
Entities from every String Entity as well as YAGO'’s top level WordNet hypernym tree. In
essence, the graph created hereis a stripped down sub-graph of YAGO itself.

We need to create this graph and not directly use Y AGO due to the following reasons:

1. YAGO is too large to be stored into main memory for our current available
machines. After some tests, we determined a machine with at least 12GB of RAM
would be needed to load the essential YAGO core in main memory as a graph.
Efficient processing (time-wise) cannot be performed using YAGO as arelational or
XML database stored on slow medialike a hard disk.

2. We prune unneeded links from the graph itself. Not only does this increase
performance because the search space is drastically reduced, but it is needed
because of the way YAGO stores facts about entities. For example, if we ask
Y AGO about Canonic Entity Pari s, we will obtain the facts that Pari s is of type
wor dnet _city 108524735 as well as wor dnet _| ocati on_100027167. The
nature of the proposed agorithm requests that we use classes that are most specific,
and we need to drop wor dnet _| ocati on_100027167 because alocation is more
genera than a city (city isin fact a hyponym of location in WordNet’'s hypernym
tree).

The first step in graph creation is the addition of YAGO'’s entire top-level hypernym tree.
This will generate a graph that contains around 65000 entities and 73000 relations between
them. As can be noticed, the hypernym tree is in fact an acyclic graph containing only
subd assO links starting from the most specific WordNet classes up to the final root class
entity. A class can have links that skip afew levels up in the tree. Thisis why the *‘tree’
has more links than the number of entities. However, it is conceptually easier to speak of
this acyclic graph as atree, and we will maintain this convention throughout this chapter.

The second step is to add all the Canonic Entities assigned to every String Entity that is a
named entity. String Entities that are common words have already been included in the first
step — they can only have WordNet entities. So, for each named String Entity, every
Canonic Entity is added to the graph. However, we add not only the Canonic Entity itself,

Chapter V - A Genera Entity Recognition (GER) System Page | 102



but other Canonic Entities from Y AGO that have connections to the original entity. We find
these related entities and links by performing a breadth-first (BF) search on the YAGO
ontology starting from the initial Canonic Entity. We limit the BF search to a maximum
depth of 3. Thus, for each Canonic Entity belonging to a String Entity we add a sub-graph
starting from the Canonic Entity. We restrict the links and entities in this sub-graph with a
few rules. First, we allow only 51 out of the ailmost 100 relations Y AGO knows. We do this
because the rejected relations are not relevant for our search, for example relation
hasBudget between a movie and its production budget will yield no further links as the
budget is a number. Second, we ignore certain entities. For example,
wor dnet _physical _entity 100001930 istoo general to be of any use and all entities
will eventualy link to it. Third, each Canonic Entity is a type of a WordNet class. We
accept only the most specific links between the entity and WordNet. For example for
Canonic  Entity Al bert_Einstein we accept only the link to
wor dnet _physi ci st 110428004 and not the link to wor dnet _person_100007846 as
physicist is more specific than a person. We thus link each entity to the most specific
WordNet class. An entity can be linked though to more WordNet specific classes, if the
classes themselves are not one-other’s hypernym up to a certain height (because all classes
eventually meet at the root node).

The operational graph is created after these two steps, containing all the initial Canonic
Entities and possible entities that may link them, as well as the complete WordNet tree to
which every entity must have at least one link to.

V.4.3.2. Process Group creation

The Process Group creation is a needed step before the algorithm itself is run. A document
can contain many sentences, and each sentence can contain many String Entities. For
example, a norma Wikipedia page can have around 500 identified String Entities and a
longer page more than 2000. The proposed algorithm provides solution sets that are as long
as the original String Entity set, and this would lead to very long processing times if the
algorithm would be run on hundreds of String Entities at once. Because we consider that
String Entities are not related between sentences or even inside longer phrases, based on the
influence matrix we obtain small sets of related String Entities that are processed

separately.

Example: let’s consider two sentences S, S, each having two String Entities, SEa and SEg
for S, SEc and SEp for S,. In this example the String Entities from S, are not related to the
String Entities from sentence S,. Now, for each String Entity we have discovered three
probable Canonic Entities. The algorithm has aso discovered the following link: A1-B1,
A2-B2, A3-C3, C1-D1, C2-D2 and C3-D3, every link having the same value/score. We now
have two options: Option A — consider all String Entities together, Option B — consider

Chapter V - A Genera Entity Recognition (GER) System Page | 103




only groups of related String Entities at atime. A Result Set is as long as the number of
String Entities provided.

For Option A. N=4, so we expect Result Sets of length 4. The agorithm provides 9 Result
Sets, al having the same score, being the combination of al the links discovered.

For Option B. we have two groups, each with N=2. Thisin turn generates RS;, RS; and RS3
for the first sentence, and RS, RS;, and RS for the second. In total we have 6 Result Sets.

Considering both options it is immediately clear that the result sets from A. are just
combinations of Result Sets from B, so basically Option A provided a larger number of
Result Sets that are not more informative than those generated by Option B. at the expense
of more processing time and more memory used. As a generalization, processing entities
that are not related will inevitably generate an exponentia number of combinations
between the independent groups, as the agorithm tries to maximize overall Result Set
score. Furthermore, the average number of related String Entities is usualy less than 10,
compared to the total number of String Entities in a document which can be orders of
magnitude larger (on which it becomes impractical to run such an agorithm). Graphical

example:
SEa € {AL, A2, A3}
Sentence S < SE; € {B1, B2, B3}
SEc € {CL,C2,C3}
Sentence S < S, ¢ {D1, D2, D3}

Links between Canonic Entities: A1-B1, A2-B2, A3-C3, C1-D1, C2-D2, C3-D3

Document D

How String Entities are considered:

A. All together (1 group, N=4): B. Separate groups (2 groups, N=2 for each):
RS, ={A1, B1, C1, D1} RS, = {Al, B1}
RS, ={A1, B1, C2, D2} RS, = {A2, B2}
RS; ={A1, B1, C3, D3} RS; = { A3, B3}
RS, ={A2, B2, C1, D1} RS, ={C1, D1}
RS ={A2, B2, C2, D2} RS ={C2, D2}
RS ={A2, B2, C3, D3} RS ={C3, D3}

RS, = {A3, B3, C1, D1}
RS = {A3, B3, C2, D2}
RS, = {A3, B3, C3, D3}

Another strong argument of group creation is that this setup of partial results suits well to
parallelization, where independent processors can handle independent entity groups,
because the operational graph is read-only and thus can be shared between threads each

Chapter V - A Genera Entity Recognition (GER) System Page | 104




handling its own group of related String Entities. Furthermore, the vast effort of graph
searching would be wasted as entities that are not related will likely not have connecting
paths between them.

Thus, we need to find the smallest independent groups of String Entities. This is achieved
by applying the flood-fill algorithm on the influence matrix Inf. First we create a copy of
the influence matrix where every value that is non-zero is replaced with a 1.0 (a black/white
table). We find the first non-zero element Inf;; (which in the matrix means that entity in row
i influences entity in column j) and start zeroing any element that it influences or is being
influenced by while in the mean time adding these elements to a new Process Group
(“flooding” the connected elements). This flood-fill is a breadth-first graph search on the
matrix. We repeat the process until the entire matrix is zeroed out and we have obtained all
the independent groups of String Entities.

In practice, we have observed that most often amost all entities in a sentence are related,
even if only for context (exception being long phrases that contain more sentences not
separated by usual punctuation). This basically narrows down the problem to working on a
single sentence at atime.

V.4.3.3. Linker Algorithm

This sub-module is applied to each Process Group independently. The input here is a
Process Group containing String Entities that each has a list of probable Canonic Entities
associated, and the operationa graph from which to derive the input graph for the
algorithm. So, two phases are identified: first the input graph is obtained from the
operational graph, and then the agorithm is run on it. The output is alist of sorted Result
Sets.

The creation of the input graph for the current Process Group is based on the following
algorithm:

function obtainl nput Gaph () {
initialize enpty graph G
for SE in the current Process Goup (i =0 2> N) {
for every CE in PCEs {
initialize BFiterator for BF starting fromCE on the op. graph;
while (BFiterator) {
CE, = BFiterator.getCurrentEntity();
If (CEg CBCEsg wWithi #j) {
edgeVei ght = get EdgeWei ght (CE;, CE);
add to G vertices CE and CE; (if not already added);
add to G edge between CE and CE; with weight = edgeWei ght;
}
}
}

Chapter V - A Genera Entity Recognition (GER) System Page | 105



}

return G

}

Figure 27. Pseudocode for obtainl nputGraph() function

In essence, function obtaininputGraph() performs a BF search from every CE; belonging to
a SE on the operational graph. Whenever encountering a vertex CEg that belongs to a
different SE, it calculates the score of the path between the two Canonic Entities and adds
them and the weighted edge to the input graph G. The function that calculates the path
score is presented next:

function get EdgeWei ght (CE, CEp) {

path = path fromCE to CE, in the operational graph;

score = getMatrixlnfluence(CE, CE;) / path.getDi stance();

i f path contains changes of direction
score = score * penalizationCoefficient;

if path contains |links of type “subCdassCOF” or “type”
score = score * penalizationCoefficient;

/1 other possible heuristics

return score;

Figure 28. Pseudocode for getEdgeWeight() function

The getEdgewWeight() function calculates a score between two Canonic Entities in the
operational graph based the path between them. First, the score is calculated as the value in
the influence matrix between the String Entities representing them, divided by the distance
between them. For example if a two String Entities are strongly connected (influence
matrix value of 1.0) but their representing Canonic Entities are found to be linked by a path
of length 2 (meaning an intermediate Canonic Entity), then the initial score will be 1.0/2 =
0.5.

Next, we apply some heuristics, such as the one used by Hirst and Onge [134] in their
semantic distance measure for WordNet, penalizing the changes of direction in the path
from one entity to the other, or discriminating between relation types. For example if
between two named entities there are 2 or more links of type subCl assOf or type then we
penalize the score. A link like Entity_ A type(=) wordnet _vill age subd assOf ()
wordnet _city type(€) Entity_ B is not very informative, and can lead to erroneous
results, linking two entities just because they are of the same general type in this instance.
The pendlization coefficient is a variable, set heuristically a 0.5, halving the score
whenever encountering an unwanted path type. The resulting score is then returned as the
weight the edge between the two Canonic Entities will have in the input graph.

In summary, obtainlnputGraph() performs several BF searches on the operational graph to
build an undirected weighted input graph.

Chapter V - A Genera Entity Recognition (GER) System Page | 106



System Example: Revisiting the initial example of this chapter, we illustrate here the
process for the sentence “He replaced the pipe giving his car new life - his Santa Fe now
runs quieter.”. String Entities “pipe’, “car”, “life” and “Santa Fe" are extracted in the first
module of the system. Next, in module B the influence matrix is computed and Canonic
Entities from the ontology are associated to each SE. Next, in module C the operationa
graph is created. First the WordNet hypernym tree is added, then every CE from each SE is
taken as a starting point for a breadth-first search in the ontology, and every neighbor of the
CE is added to the operational graph, up to a depth of 3. The figure below shows this
operational graph (only a small section). We consider that we only have a single Process
Group containing al the String Entities.

.................................. Classesof SE
....................................... “ Cal""
. [ st ock_car ] )
[ car _bonmb ]
subCl-assOf
. ( s ) subQasst . Classes of SE

........................ @ pl pe”

exhaust ]‘\_ +sPartl —‘—[ exhaust _pi pe ]

: [ Hyundai _Sant a_Fe ] i sPartof
E i sPart of y
_. ; [ borb ]
aut onobi | e_engi ne
[ Sant a_Fe_(group) ] [ ] Subg.assg\{ ——
" \ [P (P20
C‘!assesof ?E " ype [ pi pe_mmaj or
Santa e
nusi ci an . subQasscr
subClrassOf )
pi per

Figure 29. Operational graph

The obtainlnputGraph() function is run on the graph for the set of String Entities. SE “life”
is not shown in the image as no path was found from any of its CE set to any CE of other
SEs. Paths exist, but they are of length greater than 3, and thus ignored. For every starting
CE the breadth search is performed and a graph like the one in the following figure is
obtained:

Chapter V - A Genera Entity Recognition (GER) System Page | 107



Cla%ofSE

[ .............. - _ ]
I fo - T~ L

_“SantaFe’

exhaust _pi pe ]

[ pi pe_bonb ]

. pi pe_maj or ] C|8885_ O,,f SE
.......................... ‘pipe

Figure 30. Input graph derived from the operational graph

The obtained input graph is much smaller and ssimpler. The only vertices are the starting
Canonic Entities. The undirected weighted edges represent the paths between the Canonic
Entities from the operational graph. The input graph created in this manner is actually a k-
partite graph. For example, even though CE st ock_car does not have a direct link to any
other CE belonging to a SE, it is still connected to Hyundai _Sant a_Fe through car . In
the input graph thus choosing st ock_car over car isavalid choice, if the combined score
of the chosen entities would be higher than using directly car .

After obtaining the input graph, the Linker Algorithm is applied. It runs the four steps
presented in the previous section in sequence.

First it searches the graph for any duplicate links and creates the edge dictionary and the
vertex hash set.

Then, in the second step, it performs a custom depth-first search. At the end of each search,
whenever adding another vertex is not possible, respecting the constraint that a solution
cannot have two vertices belonging to the same partition, it adds the path obtained until that
point to the Result Set Array. It is added to the array if the solution is not a subset of
another Result Set, in which case it is discarded, or it cannot be merged with any other
Result Set.

After the search space has been exhausted, for every solution it computes its score based on
the weights of the edges, and then sorts the Result Set Array (only required if the following
step 4 is not applied).

The last step isto obtain a merged Result Set Array, where non-overlapping Result Sets are
combined to create the most specific Result Sets possible. This larger Result Set Array is
finally sorted, and represents the solution to the problem of detecting the best choice of
Canonic Entities that represent the String Entities extracted from the text document.

Chapter V - A Genera Entity Recognition (GER) System Page | 108




V.5. System evaluation

We start the GER system evaluation first from a computer hardware point of view. We
have run the complete system on a standard 2.8 GHz, 64 bit machine with 8 GB of RAM.
RAM is largely needed to store the models used by the Stanford CoreNLP and other
support tools, at amost 3 GB in total. The developed system itself uses at maximum
another 2-3 GB, for everything from the syntactic and dependency trees, influence matrix to
the operational graph and edge dictionaries for the algorithm.

Due to the splitting of string entities into independent Process Groups, the algorithm
computationally performs very well, because usually in a single set there are no more than
4-8 entities, a number for which processing is almost instant, even though there usually are
anywhere from a few tens to a few thousand of probable entities (vertices in the graph) for
each String Entity in the individual set. Even better, due to the independent nature of
process groups, they can be run in paralel without any algorithm modification (as
explained in a previous section).

A point needed to be made, the bottleneck of the system in terms of run-time is the
ontology interface. Even though a query is answered in milliseconds, there are thousands of
these calls to the database. From obtaining the PCE for every String Entity to creating the
graph by starting a BF search on the ontology from every CE in every PCE (that could
potentially have thousands of additional CEs discovered), the need to access the hard drive
for the vast majority of them (the database cache is almost useless here as almost every new
guery is different from the previous ones) is actually by far the slowest part of the system
(more than 95% run-time islost here).

V.5.1. Evaluation methodology

Evaluation of the system’s results from an accuracy point of view is a somewhat difficult
task as we have found no other systems to compare ours with because of our particular
setting: we cannot apply the system to reference test corpora like the ACE 2003/2004 or
other similar Sens/SemEval corpora because we rely on alarge generic ontology and not on
a subset of entities, and we handle both named and common entities (basically the proposed
system does not fit completely into any of the ACE/MUC/SemEval tasks). Also, we cannot
restrict our working entity set because the system is working better the larger the entity set
is and the connections number within it. Our knowledge base is actually our entire search
and result space. The larger the number of entities and relations, the larger the number of
resulting assigned classes. However, we can manually create a set of tests and measure our
system’ s performance against them.

Chapter V - A Genera Entity Recognition (GER) System Page | 109



As such, in our problem setting, we measure the accuracy of the Canonic Entities
assignation in the following manner: for example, for the sentence “Smith was born in
Farmersville, a smal town in California” we extract String Entities (“Smith”,
“Farmersville”, “town”, “Cdlifornia’). For the Result Set (43
Farmersville, _California, wordnet_town, California) we assign a 4/4 (100%
accuracy) score because it matched all the preset entities: 1. it correctly identified that
Smith could be any person (* C_theaning that either Y AGO does not contain any possible
canonic entities for “Smith” or more likely that no links have been found between any
canonic entities representing Smith to any other entities), 2. “Farmersville” is correctly
identified by Canonic Entity Farmersville, _California, 3. “town” is correctly
identified by wor dnet _t own and 4. “California’ is correctly identified by Cal i f orni a
Canonic Entity. If for example instead of [l would have been Canonic Entity
John_Smi t h, then accuracy would have dropped to 3/4 (75%), because even if there is
some long, improbable, low scoring path between John Smith and Farmersville, such as
John_Smith bor ni n(=>) San_Franci sco type(=) city type(€)
Farmersville, Califonia, for ahuman thereis no logical link, because we know (or
at least agree by general consensus or by probabilistic reasoning) that no generic John
Smith was actualy born in a small town in California named Farmersville. We thus
evaluate the system against human judgment on which Canonic Entities should correctly
represent String Entities. Accuracy is calculated as the number of correctly assigned
Canonic Entitiesto String Entities divided by the total number of String Entities.

V.5.2. Evaluation set and standard creation

The evaluation set consists of 40 sentences, each with minimum 3 String Entities and a
maximum of 14. The sentences belong to Wikipedia snippets and news article phrases. In
total, the 40 sentences contain in total a number of 211 String Entities. This averagesto 5.3
String Entities per sentence. The distribution of named versus common String Entities is a
bit different from the 34%/66% obtained from the document test set for agorithm
performance, to 45%/55% in our sentence set (2.4 named String Entities and 3.1 common
String Entities per sentence or 95 named and 116 common String Entities).

To obtain a “gold standard” (a test set considered as 100% accurate by humans) a small
application was created to reduce the time needed to create the standard. For each of the
221 String Entities the application returns every Y AGO Canonic Entity that could represent
that entity. So, for every String Entity extracted, its Possible Canonic Entity set was
obtained, but sorted in a tree-like manner by entity type, for annotator ease of usage and
speed. For example, when searching for String Entity “Maryland” YAGO returns exactly
1776 Canonic Entities (before cleaning — the same cleaning method as the one described in
the system in a previous section) like:

Chapter V - A Genera Entity Recognition (GER) System Page | 110



-- “Maryl and” --

Maryl and_Rout e_396

Maryl and I nstitute Col |l ege_of Art
Maryl and_(aut onobi | e)

USS Maryl and_( SSBN- 738)

Maryl and_Synphony_Orchestra

Maryl and_Exil es

Maryl and

As there are four major entity types (for named entities only), four checkboxes were
implemented: Person, Location, Organization and Other. Clicking on any will show only
Canonic Entities of that type (all Canonic Entities have the type property linking them in
the WordNet hypernym tree, thus being able to detect the type of entity). For example,
checking Location will show only entities like Mar yl and or Sandy_Spri ng, _Maryl and.
Thisis done by checking thet ype facts belonging to each Canonic Entity. For example, for
Maryl and we discover that Maryland is of type wordnet district_108552138.
When further investigating wor dnet _di strict_108552138 we find it is actualy a
subCl assOf wordnet _region_108630985 which in turn is a subd assOf
wor dnet _| ocati on_100027167. Any entity that links up to
wor dnet _| ocation_100027167 is a Location entity. Similarly for Person and
Organization. If it is does not reach any of these three predefined entities, it falls into the
Other category.

However most of the entities are of type Other. For entities that are unknown for the person
creating the standard, clicking on an entity will display in an adjacent window the entity’s
properties. For example, at first sight entity, a person does not know what
Maryl and_Exi | es mean. Clicking on the entity in the list will show up the following
properties:

Maryl and_Exi | es

type 2> wi ki category_US rugby_uni on_teans

type 2> wordnet team 108208560.

describes €« http://en.w ki pedi a.org/w ki/Mryland_Exi | es

From this information aone it is obvious for a person that when speaking whether
Maryland won this season we are actually talking about the rugby team named Exiles, and
the fact that String Entity “Maryland” in that sentence should be represented by
Maryl and_Exi | es (rugby team) and not, for example, by Maryl and (location). The
arrow displays the relation direction. A right pointing arrow indicates that
Maryl and_Exi | es is the subject. An inverse relation means Mar yl and_Exi | es isthe
object.

Chapter V - A Genera Entity Recognition (GER) System Page | 111



For common String Entities we come up on another problem. While for named entities the
problem was the large number of them, for common entities the issue of sense becomes the
main problem. For example for String Entity “bank” (in a sentence where bank is used in
the economic context) we find Canonic Entities like:

wor dnet _agent _bank_108418316
wor dnet _bank 100169305
wor dnet _bank 102787772
wor dnet _bank 108462066

wor dnet _bank 113368318
wor dnet _banker 109837720

wor dnet _pi ggy_bank_103935335

In this type of list we easily figure out the correct entity, which is (for our example) a bank,
without any modifiers. However, here comes the problem — there are 8 senses for
wor dnet _bank_#i d. For this problem the most obvious choice (as we don’t have access
to the glosses in WordNet) is to move up the hypernym tree. The same mechanism of
hovering or clicking on a named entity will now show for a common entity the following:

wor dnet _bank 100169305

- 0>subd assOf
-2 1>subd assOf
-2 2>subd assOf

bank 102787772
- 0>subd assOf
- 1>subd assOf
> 2>subd assOf

wor dnet

wor dnet _bank 108462066
-2 0>subd assOf
- 1>subd assOf
2> 2>subd assOf

wor dnet _bank 109213434
- 0>subd assOf
- 1>subd assOf
> 2>subd assOf
..etc ..

wor dnet _flight_maneuver 100170844
wor dnet _naneuver 100059552
wor dnet _evasi on_100059127

wor dnet _depository 103177349
wordnet _facility 103315023
wordnet _artifact 100021939

wor dnet _array_107939382
wor dnet _arrangenment 107938773
wor dnet _group_100031264

wordnet _ridge 109409512
wor dnet _natural el evati on_109366317
wor dnet _geol ogi cal _formati on_109287968

From this display it is obvious for a person that the correct choice is the second one:
wor dnet _bank_ 102787772, considering that its direct hypernym is a depository

Chapter V - A General Entity Recognition (GER) System

Page | 112



Using this small application that automates Y AGO discovery, the three persons annotating
the sentences took only a few seconds to a minute per String Entity to select the correct
meaning (as opposed by just navigating a very large list of possible entities which would
have taken a long time). This created the “gold” standard needed on which to test the
system against.

Before moving on to evaluate the system using this standard, it should be noted that the
task of annotating is difficult, in the sense that different people annotate differently. For
example, when annotating the simplest of sentences. “The car has an engine”, for String
Entity “engine” we obtain the following possible Canonic Entities:

wor dnet _i nt er nal - conbusti on_engi ne_103579982
wor dnet _aut onobi | e_engi ne_102761557

wor dnet _gasol i ne_engi ne_103424630

wordnet _aircraft_engi ne_102687423

wor dnet _gas_engi ne_103422771

wor dnet _engi ne_103287733

Given these choices, which is the correct one? In essence all could be correct as they are
just more or less specific types of engine. The sentence itself does not say that the car is a
diesel or a petrol, so maybe the types of engine that specify that should be rejected as valid
Canonic Entities. Given the lack of any additional information in the sentence, the car could
actually be powered by a steam engine or even ajet engine (in the case of land-speed record
vehicles). However, the choice between wordnet_engi ne 103287733 and
wor dnet _aut onobi | e_engi ne_102761557 is less clear, as the term “car” in usua
usage is actually an automobile. Because of the same lack of information, we do not know
if it is an automobile, but common logic saysit is, based solely on that almost all the times
when we use the term “car” we are referring to an automobile.

This issue was resolved by |etting the annotators choose multiple correct choices. However,
to enforce some strictness, a Canonic Entity was considered valid if two of the three
annotators marked it as correct.

It should also be noted that String Entities that were found to not have any correct Canonic
Entity were marked as null, meaning that the system should not pick any CE to represent
that SE. This happens in two cases, first if YAGO does not know about an entity (YAGO
was created on a Wikipedia dump from 2009 and there are official persons in the news that
were unknown then, thus impossible to appear in Wikipedia and therefore YAGO), or if the
String Entity denotes an generic entity (ex: sentence from a blog entry: “Ann walks among
the houses, ... “, where Ann is just a normal person, that should not have a corresponding
Canonic Entity in the ontology).

We estimate an ITA (inter-annotator agreement) for the current task of around 60% (given
that the annotators were not related to the NLP/linguistic field). Similar results were

Chapter V - A Genera Entity Recognition (GER) System Page | 113



obtained for fine-grained tasks, for example [94] reports an ITA on WordNet senses
between 67% and 80%. The most common issue was which and how many of the selected
Canonic Entities to be alowed in the “gold” standard considering that annotators
sometimes picked several general and specific entities as correct. The ITA was calculated
the number of times that at least two annotators came up with the same correct Canonic
Entity set per String Entity divided by the total number of String Entities.

V.5.3. Testing the system

The system was run, and we evauated the first Result Set for every processed group of
String Entities (the system outputs a descending sorted array of Result Sets — in this case
we only looked at the first RS). We obtained an arguably low/average performance of
22.3% for this strict evaluation method.

Performance is affected because in many cases we run into one or both of the following
issues:

Issue 1. the system cannot yet discriminate between similar scoring Result Sets with
similar entity types. Given the sentence “Alan Mulaly has just announced the new Focus
with a 1.6 liter engine.” with string entities “Alan Mulaly”, "Focus’, “1.6 liter” and
“engine’) and the first two scoring Result Sets:

RS1: 2.0 (ANY, Ford _Focus_WRC, wordnet liter, wordnet_autonobile_engine)
RS2: 2.0 (ANY, Ford Focus, wordnet liter, wordnet_ autonobil e _engi ne)

As can be seen, the only difference between the two Result Sets (both scoring equally at
2.0) is that “Focus’ could be either a Ford Focus WRC or a generic Ford Focus vehicle.
Both entities are present in YAGO with the same type of links, and no information can
differentiate one over the other. Because YAGO does not know that the WRC Focus is
actually a modified type of standard Focus, then it will treat both entities as equal possible
representatives for String Entity “Focus’.

Issue 2: the ontology lacks information in the form of relations between entities, and the
system biases certain links to compensate for the lack of this information by penalizing a
few link types. The act of finding a suitable coefficient for penalization, as the entire
heuristic penalization method itself is just an attempt to “correct” the choices the system
makes, usually with different degrees of success — a certain coefficient will generate good
RSs for a sentence and break other previously-well performing sentences. In quite a few
Result Set Arrays we find Result Sets with the correct choice for Canonic Entities having a
score just a bit lower than the best scoring RS, because of the penalization coefficient. Just
likeissue 1, thisissueis unavoidable.

We propose two more ‘forgiving’ evaluation methods, in which we relax allowed results.

Chapter V - A Genera Entity Recognition (GER) System Page | 114



The first of the two evaluation methods implies ignoring issue 1. This means we |ook to see
if in any of the equal top-score Result Sets we have correctly identified Canonic Entities.
To exemplify this relaxation, if we take the Ford Focus example above, we would get for
that sentence a (4/4) 100% accuracy, because even though the system’s default choice is
RS, which only evaluates to 3/4 (75%) accuracy, we inspect also RS, because it has the
same top score, and we detect that RS; actually provides a better 4/4 (100%) accuracy.

The relaxation of the second issue means that we allow searching for correct results in
lower scoring Result Sets. Result Set scores usually are not distributed linearly (meaning
Result Sets have many dlightly different scores) but tend to be distributed in a step-like
manner (meaning that we have relatively few different scores, implying many Result Sets
having the same score). Because of this property, we alow searching for correctly
identified Canonic Entities in Result Sets having the second- and third-best scores.

The table below shows the accuracy obtained when using these new evaluation criteria.

Table2. Accuracy of system against amanually created standard

Evaluation method System Accuracy
Strict evaluation (first RSonly) 47/ 211 (22.3%)
Evaluation w/o issue 1 76/ 211 (36.0%)
Evaluationw/oissue 1 & 2 89/ 211 (42.2%)

The results show that when evaluating on somewhat more relaxed criteria, the initia
accuracy almost doubles, from the initial figure of 22.3% to 42.2%. The last figure itself is
quite impressive, meaning that in almost half of the cases the system was able to determine
the matching Canonic Entities within the first few top scoring results.

While our initial overal results with this system are average, we can conclude on some
points:

First, the results depend heavily on the type and composition of sentences tested. For
sentences with entities in areas of the ontology with higher information density, results are
usually better, because of the increased link number and not necessarily because of the
scoring function. This function is an important performance affecting factor: we have used
a distance-based function, which is sensitive to information density fluctuation, a problem
practically unavoidablein large general ontologies.

Second, calculated accuracy depends even more on the human created standard to which
results are evaluated against. But currently we can only evaluate the proposed system on
such a standard. The standard was created by people reviewing possible classes extracted
from YAGO manually and assigning them as correct answers to each String Entity. Even
so, misunderstandings have been rather common between the annotators because of the

Chapter V - A Genera Entity Recognition (GER) System Page | 115



large number of apparently correct classes. Also, a standard baseline was very difficult to
establish. Standard baselines like random-sense or first-sense are hard to implement
because we work with both named and common entity identification, meaning we do not
have a ‘first sense’ as we could have had if evaluating only common nouns for example.
Also, because of the number of seemingly good responses (especialy for named entities)
among a very large number of possible classes, a random baseline would vyield
uninformative results. For example, String Entity “Hyunda” could mean the ship building
company, the auto company or any of its 30+ car models, all being named entities. Though
not comparable, for a general overview, SemEval 2007 yielded results in the 50%-60%
performance range for fine-grained tasks (with a maximum 10% above the baseline for the
best system for their 465 tagged words), underlining the task’ s difficulty.

Third, context is highly important. For example for sentence "Hyundai has launched a new
car named Santa Fe.", with string entities “ Santa Fe”, “car” and “Hyundai”, we obtain the
Result Set (Hyundai _Tucson, wordnet_car 102958343, Hyundai _Santa_Fe)
scoring 2/3 accuracy because the system thinks that “Hyundai” could mean
Hyundai _Tucson whichisacar similar to its partner CE Hyundai _Sant a_Fe, instead of
the arguably correct Hyundai _Mot or _Conpany. However, for the sentence "Hyundai has
launched the new Santa Fe" we obtan (Hyundai _Motor _Conpany,
Sant a_Fe_I ndustri es), because of the conceptual link between Santa Fe Industries and
Hyundal Motor Company as they are both industries, and missing the link to the auto
vehicles because of insufficient evidence for Santa Fe being acar;

Forth, the proposed agorithm efficiently makes the most of the information available to it.
Where links are available, it finds all possible connections, evaluates them al in a single
pass instead of processing an exponential number of entity combinations, and based on the
scoring method, creates the result best sets given the available information.

V.6. Conclusions

In this chapter we have presented a knowledge-based system that presents a viable
algorithm and encouraging first results for entity identification and correct class assignation
from ontologies. We aim to show that ontologies can be used for more than just standard
classification of the entities they contain, and that the structure itself of such large generic
ontologies can be used to generate added value. Furthermore, we have presented an
algorithm that provides fast resultsin asingle pass for the current problem of evaluating the
best combination of every possible entity assignation. Using a standard combinatorial
approach where each entity would be tested against every other, the problem would quickly
grow unsolvable even for afew entities.

% SemEval 2007 - http://nlp.cs.swarthmore.edu/semeval/index.php

Chapter V - A Genera Entity Recognition (GER) System Page | 116



As aconclusion we note the major issues that influence performance to alarge degree:

1. Dependency tree generation. In most cases the tree is correctly generated, but it also
happens that the parser misses or incorrectly assigns dependencies between words
that lead to a poor starting point for the influence matrix creation.

2. Matrix creation rules. The matrix is generated by parsing the dependency tree. As
rules are heuristically created, new rules or improved versions can be implemented.

3. Scoring function. Same as the matrix creation, the scoring function has been
heuristically chosen. As with existing similarity measures for WordNet for example,
variations of the scoring function applied in the same algorithm can be created for
improved system performance. While we used a distance-based scoring method,
which by default suffers from large variations in information density [96], it does
provide a good performance and is applicable to both named and common entities,
even though named entities are linked in a random graph of direct links while
common entities are linked in a hypernym tree. For this reason a conceptual-density
[125] measure is arguably risky to implement.

4. Knowledge source. The most important factor in the system’s performance by the
largest margin is the ontology used. For sentences where there is a large
information amount about a subject, results will be surprisingly good, while lower
information densities will yield poor results. As time passes and knowledge sources
get richer, even without any change to the system, its performance will increase.

Chapter V - A Genera Entity Recognition (GER) System Page | 117



VI. A knowledge-based approach for document
classification

VI1.1. Introduction

This chapter presents a knowledge-based, unsupervised approach to the problem of
document classification in respect to a set of topics.

The system we propose takes as input unclassified text documents and a set of possible
topics, and outputs the n-best possible topics for each processed document. It uses the
ontology as a knowledge source on which it applies graph agorithms to detect and create a
partial sub-graph illustrating the relations between the concepts that characterize each
document. Thus, our solution avoids the use of machine learning agorithms in the main
processing phase, while only employing such agorithms in the document pre-processing
phase for sentence identification, token splitting and named entity recognition (standard
NLP pipeline).

The proposed approach is presented as an implemented, working system that uses the
YAGO ontology as its knowledge source in order to perform unsupervised, natural
language document classification. We also engage in a discussion on the benefits and
problems of using ontologies for such atask.

The system presented in this chapter, while using some of the same methods and tools as
the GER system presented in the previous chapter, represents a distinct contribution with a
different goal.

VI1.2. Domain Literature Review

The domain of text classification is, at present, dominated by machine learning and
statistical methods, with knowledge engineering methods trailing behind [135]. While a
large variety of approaches can be observed, the best performing systems consistently use
algorithms like SVM (Support Vector Machine) to achieve consistent and good results, a
class of supervised machine learning (ML) agorithms.

ML agorithms like SVM, Naive Bayes or Maximum Entropy are relatively ssimple to
understand and use, and unlike knowledge engineering methods, they do not require large
knowledge-bases to be manually pre-defined by engineers. Also, this category of systemsis
not domain related, unlike most knowledge engineering approaches which are focused on
sub-domains (as it happens, for example, in the medical domain where compact parts of

Chapter VI - A knowledge-based approach for document classification Page | 118



consecrated ontologies are adopted for certain medical speciaizations). The functioning of
these algorithms usually requires the “translation” of the documents into feature vectors.
Common construction of feature vectors involves term frequency, document frequency,
term frequency and inverse document frequency combined, information gain, term strength,
and chi-statistic [136] [137].

Latent Semantic Indexing (LSI, also known as Latent Semantic Analysis or LSA) has been
used in conjunction with WordNet or other domain ontologies to reduce the dimensionality
of feature vectors [138] [139]. The main idea of LSI is that there is a semantic structure
between words in a document that can be discovered and used to group similar documents
into similar space structures using statistical analysis. Using LSl means that after document
preprocessing, the document vector is obtaned (in the form of
d={ (keyword;,weight;)|i=1..n}, its dimensionality is reduced using LSl and then it is
compared to every category vector topic. The category vector that is closest to the
document vector is the topic assigned to that document. [140] showed an slight increase in
performance when using LS| and an ontology as opposed to ssmply using a Naive Bayes
classifier (or equivalent) and an ontology. In [141] we developed a text classification
method where the LS| technique was combined with a WordNet-based text analysis.
However, while LS is effective in mitigating word similarities, it is quite difficult to
maintain such a system when the document size varies and any modification of the initia
set of documents requires the entire semantic space to be reconstructed [142].

Concerning the ontology-based approaches of text classification, it can be observed that
domain ontologies are most often used [143]. Domain ontologies are usually small and
contain very specific facts about a domain, like certain group of illnesses for the medical
domain, names and hierarchy of wines for the oenologica domain or car parts for the
automotive domain. When applied to a collection of texts from a certain area, a domain
ontology focusing on that area will be much more effective than a general ontology.
However, for diverse collections of documents, the use of domain ontologies is no longer
possible.

V1.3. System | mplementation

This section discusses system architecture and implementation. The system can be logically
divided into three major modules. Processor, Analysis and Evaluator.

List
|—'_—> Pr ocessor Analysis Evaluator of
[

1 1
1 1
1 1
i Ontology |
1 1

Raw

doc. tonics

Figure 31. Document classification system ar chitecture

Chapter VI - A knowledge-based approach for document classification Page | 119



A quick overview of how the system works: First, at initialization phase, the topic list is
constructed. Then a document is fed to the Processor where it is parsed and tokens are
extracted from it, along with other useful information, as word frequency and word type,
form, etc. The tokens are analyzed and String Entities are created based on these tokens. A
String Entity is a simple string representing a token or multiple connected tokens (for first
and last names or for composed nouns, etc) — we use the definition of String Entity from
section V.2. In the Analysis module, the String Entities are searched for in the ontology and
possible Canonic Entities (also defined in section V.2. — as a side-note, throughout this
chapter we may omit writing their trailing IDs if they are not relevant) are associated to
each String Entity. A String Entity can be represented by a Canonic Entity from the
ontology. Based on YAGO, a graph containing every Canonic Entity of every String Entity
is created. Based on this constructed graph, links are found between topics and String
Entities. Thus, topics are scored depending on these links. After all String Entities have
been processed, the topics are sorted by their descending score in the Evaluator module.
The topic with the highest score is the document’ s proposed topic. Below, we present each
module, starting with the initial topic list creation.

VI1.3.1. Topic list creation

The topic list creation is not a module in itself, but rather an essentia initialization step,
hand-built into the system.

We assume the system will deal with afixed number N of topics. In our case, N = 50, as we
use the LA’ 94 news articles data collection® for evaluation. For each of the topics, we
create an array holding a variable number of topic concepts (TC). A topic concept is
actually a simple word, concept, idea. Thus, severa topic concepts are needed to define one
topic.

A topic concept has a name (a simple word — a string), aweight (areal value number) and a
score (also a rea value number). From an implementation point of view, as the topic
concept cannot be represented by a simple string — its name, it contains an array of classes
from our knowledge source, aong with a weight of the class itself representing how
relevant that class is for the topic concept. We use YAGO as the knowledge source, so the
array contains YAGO entities.

Example: Given topic #53 (topic ids start from #41 to #91 in our test collection) “Genes
and Diseases’, we create the following 5 topic concepts:

% | A94 news articles collection, http://trec.nist.gov/data/docs _eng.html

Chapter VI - A knowledge-based approach for document classification Page | 120



Topic top = new Topic(“53 CGenes and Di seases”); Topic #53

tc = new Topi cConcept ("gene", 1. 0);
tc. addwor d("wor dnet _gene_105436752", 1.0);

Topic Concept 1
t c. addwor d("wor dnet _genot ype_107941405", 1.0);
t op. addNewTopi cConcept (tc);
tc = new Topi cConcept ("di sease", 1. 0);
tc. addwor d("wor dnet _di sease_114070360", 1.0); Topic Concept 2

tc. addword("wordnet illness_114061805", 1.0);
t c. addwor d("wor dnet _di sorder _114052403", 1.0);

t op. addNewTopi cConcept (tc);

tc = new Topi cConcept ("body", 1. 0);
t c. addWor d( " wor dnet _body_105216365", 1.0); Topic Concept 3
tc. addwor d("wor dnet _torso_105549830", 0.5);

t op. addNewTopi cConcept (tc);

tc = new Topi cConcept ("hunman", 0.7); )
t c. addWor d( " wor dnet _homo_102472293", 1.0); Topic Concept 4
t op. addNewTopi cConcept (tc);

tc = new Topi cConcept ("syndrone”, 1. 0); .
tc. addWor d("wor dnet _syndronme_114304060", 1.0); Topic Concept 5
t op. addNewTopi cConcept (tc);

The above code shows the structure of atopic and how it is created. The topic in question
has 5 topic concepts. The topic concepts have different weights associated. For example, in
this case topic concept “human” is assigned aweight of 0.7 instead of the maximum weight
of 1.0, meaning that if encountered it is less relevant than other topic concepts. Each topic
concept has at least one representative class from YAGO. For example, topic concept
“body” has more YAGO entities associated, out of which wor dnet _t or so_105549830
has weight 0.5, meaning is not as relevant to the topic concept as for example
wor dnet _body_ 105216365 is.

As such, each topic has a number of weighted topic concepts, each topic concept being
defined by a number of weighted YAGO entities. The weighing allows a fine-grained
control over entity/concept influence. The weights associated are heuristicaly chosen, in
increments of 0.1. It can be observed that topic concepts actually encode simple
words/concepts. Thus, common concepts like “corruption”, “government”, “military”,

“fruit”, “food”, etc will be shared among severa topics.

Chapter VI - A knowledge-based approach for document classification Page | 121




The topic list initialization is among the most important aspects of the system, asit plays a
centra role in the system’s performance. As can be seen, the topic concepts have been pre-
programmed into the system manually.

This was done for a number of reasons, the primary one being that Word Sense
Disambiguation is a yet unsolved problem and current systems do not perform at a
sufficient performance level (as for example POS taggers that have 95-98% accuracy) to be
included as trusted modules in an application (as discussed in the previous chapters). Fine-
grained WSD performance is even worse than standard coarse-grained WSD, and we are
working in a fine-grained environment. Because in this phase we chose the correct YAGO
entities to represent the topic/topic concepts, meaning we performed the WSD manually,
thiswill mostly alleviate the problem of WSD when analyzing the documents later.

Another reason is that the system is purpose-built for document classification. This means
that in real world usage the number of categories (topics) is rather small and constant. We
argue that given an initial effort to define the categories in an appropriate manner, then the
system can be run as-is without any human intervention, except maybe adding another topic
when necessary, atask that is done very fast.

The topic list was introduced programmatically in the system. However, the YAGO entities
and the initial topic suggestions were done automatically. We wrote a small helper
application that iterates over all topics, extracts the words, uses WordNet to suggest
synonyms and Y AGO to suggest named entities where necessary. Human intervention was
required to add new topic concepts, delete or adjust weights of existing topic concepts, and
to remove YAGO entities that are irrelevant for topic concepts. So, in some sense, the topic
list was created semi-automatically. Ironically, for the 50 topics evaluated, the work needed
by a human annotator was actually far less (a few hours) that the time needed to write the
hel per application.

V1.3.2. Processor Module

This initial module takes in a natural language text document and outputs a list of String
Entities, each one having associated a set of probable classes (Canonic Entities) from the
ontology.

From a functionality point of view, this module is similar to the preprocessing module of
the GER system presented in the previous chapter. As such, using Stanford’s CoreNLPs7,
the text document is first split into sentences. Each sentence is further split into individual
words (tokens). The tokens are then analyzed and their part of speech is determined, their
form (singular or plural —if the word isin its plural form, it is transformed to its singular
form) and whether the token is a named entity or a simple common word (using an English

57 Stanford's CoreNL P package can be found at : http://nlp.stanford.edu/software/corenl p.shtml

Chapter VI - A knowledge-based approach for document classification Page | 122



dictionary to recognize common words). The named entities (which are first recognized by
their ‘NNP' part of speech tag®) are assigned a general category by the Stanford NER (part
of Stanford's CoreNLP suite), such as Location, Organization, Person or Other. Punctuation
tokens, numbers and dates are ignored.

Next, individual tokens (nouns only) are analyzed to see whether they form multi-word
tokens. After this step, we will refer to the tokens as String Entities, as a String Entity may
span multiple adjacent tokens. Then to each String Entity is associated a set of Canonic
Entities from the ontology.

String Entity processing is done differently for named entities and common entities.
Named String Entities

Named entities are grouped together based on their category. If named entity tokens are
adjacent and have the same category tag, they are joined into asingle String Entity.

Example: For example, even if punctuation is omitted, the entities in the fragment “By/-
visiting/- Sydney/L Ann/P Marie/P has/- ...” will be correctly processed into two String
Entities, even if al three named entities are together. “Sydney” will be the first extracted
String Entity because it has tag L — Location while the adjacent named entities will be
grouped into String Entity “Ann Marie” because they both are of type P — Person.

Next, for a named String Entity YAGO is queried using the means relation. This relation
provides an entry in the ontology by having a list of strings that point to a Canonic Entity.
These strings are not unique and a string can mean several Canonic Entities. Similarly a
Canonic Entity can be represented by several different strings. So, for each named String
Entity of the form “word; .. word,” YAGO is queried as ‘ Select all Canonic Entities where
relation is means and the string argument is “%word;%word,% .. %word,%" ’, where %
means any character or string. A query for String Entity “Ann Marie” would look like
“%AnNn%Marie%” and would return Canonic Entities Ann-Marie, Ann_Marie,
Princess_Ann_Mari e, €tC.

Furthermore, the category tag is considered. Using the method presented in the previous
chapter, the type of any Canonic Entity can be determined. In summary, because we have
only four large categories, out of which one is Other, we mark three Canonic Entities in the
ontology, one for Person, one for Location and one for Organization. As any extracted non-
WordNet CE has at ype relation that links to a WordNet CE, following a few links up in
the hypernym hierarchy will find one of the three CEs marking the type. If none of theseis
found, then the initial CE is of type Other. So, after the query for the String Entity is
completed and al matching CEs are obtained, each CE is assigned a type out of the
possible four. If the assigned type is not of the type of the String Entity itself, the CE is

%8 These are Penn Treebank style POS tags. http://www.comp.leeds.ac.uk/ccal as/tagsets/upenn.html

Chapter VI - A knowledge-based approach for document classification Page | 123




discarded. This ensures that if for example String Entity “Sydney” is determined as a
Person, then al Canonic Entities that can represent Sydney and are locations or
organizations are discarded. This processing usually halves the number of possible Canonic
Entities associated to any named String Entity.

Common String Entities

The processing for common entities is a bit more computationally and 1/0 intensive. To
determine if we deal with multi-word common String Entities we search for nouns
separated by maximum of two non-noun, non-verb tokens. We obtain patterns like (noun;
noun,), (noun; word nouny) or (noun; word word nouny). The linking words cannot be
punctuation marks, numbers, any other nouns or verbs or else the obtained pattern is
discarded. Furthermore, the two nouns must be in the same noun phrase (determined by the
syntactic tree of the sentence).

Next, the two nouns are searched for in the WordNet section of the ontology (in YAGO
WordNet is represented as the hypernym hierarchy to which all other entities must link to
by at least one t ype relation). All common Canonic Entities that contain both nouns are
kept for further analysis. These initia CEs are iterated over. For each CE the linking words
between the nouns have to match the linking words in the String Entity. For some CEs
there might be extra words before the first noun or after the second. These words must
match external words of the String Entity. If there are no remaining CEs then the String
Entity is not multi-word, and the initial noun is kept as the only token. Class assignation for
single word String Entities is a bit different that for multi-word, and will be described after
an example of multi-word common String Entities.

Example: A sentence extracted from a news article: “Failure to take into account some of
the effects predicted by the second law of thermodynamics has led to the failure of the
initial prototype.”. Nouns are extracted sequentialy. When reaching “law” we anayze
nouns at a distance of maximum two, finding “thermodynamics’. A pattern is obtained (law
of thermodynamics). The pattern is valid, as both nouns are in the same noun phrase (NP):
(NP

(NP (DT the) (JJ second) (NN | aw))

(PP (IN of)

(NP (NNS t her nodynami cs))
)

YAGO is queried in the form of “%law%thermodynamics%” and we obtain severd
Canonic Entities, like wor dnet _| aw_of _t her nodynami cs,
wor dnet _second_| aw_of t hernmodynam cs,

wor dnet _t hird_| aw_of _t her nodynani cs. The first CE is kept, as the linking word
“of” appears both in the CE and the SE. The second CE is aso kept because the first word
“second” (here not a noun), even though before the initial noun “law”, appears both in the

Chapter VI - A knowledge-based approach for document classification Page | 124




CE and the text before the SE, matching exactly. The third CE is discarded because the
word “third” does not appear in the words in the text before the SE. Asthereis at least one
valid CE, the String Entity will now encompass both nouns, and it will be formed by two
nouns linked by a preposition “law of thermodynamics’.

If a multi-word String Entity is found, then the valid CE list is kept as probable Canonic
Entities that each could represent the SE. However, because of the way YAGO is
structured, (common words are linked in a tree structure — the WordNet hypernym tree), we
keep not only theinitia list of CEs, but also each of these CES' direct hypernyms.

Example: For the remaning CEs. wordnet | aw of _thernodynanics,
wor dnet _second_| aw_of _t her nodynami cs we determine their hypernyms. For
wor dnet _| aw_of _t her nodynami cs the direct hypernym is wor dnet _| aw (a certain
wor dnet _| aw from the seven possible CEs wor dnet _| aw (seven senses of the word law,
each having the same word/name but different ids to differentiate them — not printed here
because the actua ids are irrelevant for this example), which we keep). For
wor dnet _second_I| aw_of _t her nodynam cs the direct hypernym in this case is
actually wor dnet _| aw_of _t her rodynami cs, which is aready added.

This heuristic ensures a larger coverage for the purposes of this system, even if for this
sentence we have actually found the actual, most specific Canonic Entity.

For single-word String Entities the treatment is a bit different. Here, we keep any Canonic
Entity that contains the word itself.

Example: For String Entity “engine’, both classes wor dnet _aut onobi | e_engi ne and
wor dnet _engi ne are accepted, even though wor dnet _aut onobi | e_engi ne is more
specific than simply wor dnet _engi ne.

After this step, all String Entities, both named and common, multi-word or single-word will
have associated a set of possible Canonic Entities that could represent them.

As String Entities are identified and processed in sequence, a master frequency array list is
kept, recording the frequency of identified String Entities.

One assumption that is being made in this module is that if a String Entity is identified and
counted, then if another identical word-by-word String Entity is found, it is automatically
considered “processed” and the frequency of the first String Entity is increased by one. The
assumption is that a String Entity will always refer to the same thing in the current analyzed
document.

This output in the form of a list of String Entities with their frequency and associated
Canonic Entitiesis further fed to the Analysis Module.

Chapter VI - A knowledge-based approach for document classification Page | 125




V1.3.3. AnalysisModule

This second module takes as input the list of String Entities with their associated classes
and as output it assigns a score to every topic concept (but does not score the topics holding
the topic concepts — atask for the Evaluator module).

First, the ontology graph on which to calculate the scores is created. Every Canonic Entity
associated to every String Entity contributes to this ontology. Given we use YAGO as the
knowledge source, the graph we are creating is actually a fragment of YAGO itself.
Starting from every Canonic Entity a depth-first search is performed in YAGO, and all
encountered entities and relations up to a depth of 2 are added to the new ontology graph (if
they are allowed to be added as we allow only certain relevant relation types).

At this point, the topic list contains topics that have a score of zero, and all of the topic
concepts themselves have a score of zero. While the score of a topic (the final score) is
determined in the following module, the scores of the topic concepts (on which the
document-topic assignation will be made) are obtained in this module.

The score assignation for topic concepts is done in the following manner: from every
Canonic Entity assigned to every String Entity a breadth-first search is performed on the
created ontology. If during the search, the visited entity is actually an entity in a topic
concept, then the topic concept’s score is increased accordingly. The formula by which the
value of thisincreaseis calculated is:

log®(1 + freqsg)
2dce x freqgg

fullScore = (42)
where dc is the distance in the search from the originating Canonic Entity, and freqs: is the
frequency of the String Entity to which the originating Canonic Entity belongs. Thisis a
distance based score. The score is multiplied by the logarithm of the frequency of the String
Entity processed to dampen the influence of the same String Entity repeated several times,
while the division by the frequency of the SE directly is to add to the full score only the
increment of the logarithm of the frequency corresponding to this particular instance of SE.
If a SE is encountered 10 times (for example), then each time it is analyzed it will add the
tenth part of its total value of log?(1+10) to a certain topic. The need to add several times a
small increment instead of adding the entire value a single time and then ignoring duplicate
SEswill be explained later on.

The breadth-first search is limited at a depth of three. Paths longer than three have an
almost zero information value and are ignored.

Two aspects need mentioning so far. The first aspect is to show how the problem of Word
Sense Disambiguation is handled, or better said, partially avoided by making some

Chapter VI - A knowledge-based approach for document classification Page | 126



compromises, and second, the influence of context in determining the scores (or so far, the
lack of influence).

To exemplify, let’s consider we have the common String Entity “artillery”, for which we
have a number of possible Canonic Entities:

String Entity “artillery”

Associ ated Canonic Entities:
Canonic Entity #1: wordnet _artillery 102746365
Canonic Entity #2: wordnet _artillery 108389297
Canonic Entity #3: wordnet _artillery plant 112395289
Canonic Entity #4: wordnet _artillery_shell 102746595
Canonic Entity #5: wordnet _artillery fire 100994449

As can be observed, for String Entity “artillery” YAGO knows two different artillery
entities (#1 & #2, having the same name but different trailing IDs meaning different senses
of the same word), along with three other possible representative entities. So, this far, the
system does not know whether the word “artillery” means either a plant, a shell, artillery
fire, or which of the two senses of artillery is the correct one (if any). Because of the fact
that the topic list was created manually, and each topic has associated topic concepts that
have “disambiguated” entities (meaning the topic concepts are described by the correct
YAGO entities), starting a breadth-first search from each of the five Canonic Entities will
yield the following:

Canonic Entity: wordnet _artillery 102746365
No mat ches;
Canonic Entity: wordnet _artillery_ 108389297
Match 0.1725 e: wordnet _army_ 108191230 for Topic Concept “mlitary”
For Topic “47 Russian Intervention in Chechnya”
For Topic “48 Peace- Keepi ng Forces in Bosnia”
For Topic “66 Russian Wthdrawal from Latvia”
Canonic Entity: wordnet _artillery_plant_ 112395289
No mat ches;
Canonic Entity: wordnet _artillery_shell 102746595
No mat ches;
Canonic Entity: wordnet _artillery fire 100994449
No mat ches;

The BF search from wor dnet _artillery_102746365 is performed up to the maximum
distance of three, but no entity in any topic concept of any topic is found. This yields the
“No matches” message. Only the second sense of the word “artillery” finds at a depth of 2
the topic concept “military” that has been defined for more than one topic. This example
shows both aspects.

The first sense of “artillery” wor dnet _artillery 102746365 does not match any topic
concept, meaning that sense is  never used, as opposed to

Chapter VI - A knowledge-based approach for document classification Page | 127



wordnet _artillery_ 108389297 who actually contributes to three topics. This shows
that because the topic concepts contain the correct, ‘disambiguated’ entities (and only those
entities), then even if in this document processing phase we do not perform any
disambiguation and keep al possible senses, only the correct sense will contribute to a
topic. However, this does not remove the possibility that the word was used in the first
sense of the word and not in the second, so it does introduce some fal se-positive results, but
we estimate a much lower number if we just used direct word matching without regard to
senses.

On an implementation note, the fact that for example the first sense does not reach any
topic concept entity while the second sense does, is because that the WordNet hypernym
tree is actually atree with clearly separated senses, so for a BF search started from the first
sense to arrive at the wordnet _arny_ 108191230 entity belonging to topic concept
“military” it would have to climb amost to the top of the tree and then back down, a path of
very long length. To a lesser degree this happens to named Canonic Entities, as different
CEs describing a SE will usually be linked by different entities in different parts of the
ontology graph (below the WordNet tree stands the majority of the ontology in the form of

agraph).

The second aspect needing discussion is the fact that, as seen in the example, entity
wordnet _artillery_ 108389297 contributes to three topics. While this is normal, as
topic concept “military” is common to more than one topic, to attribute the same score to
topic concepts belonging to different topics might not prove to give correct results. The
following example will focus on this specific aspect:

Consider the sentence: “There are suspicions that apples treated with ... might lead to an
increased risk of developing a condition similar to ..."“. Among the String Entities identified
there is SE “apples’ and SE “condition”. Consider that during our processing of the
sentence we have reached SE “condition” and, following the algorithm presented above, we
start the BF search in the ontology from the its possible Canonic Entities. The BF search
from a CE of SE “condition” has encountered the CE wor dnet _i | | ness. In the WordNet
hypernym tree wor dnet _condi ti on is a direct hyponym of wordnet _ill ness. To
make the example easier to read and to keep track of, we drop the ids following each entity
as we consider that each entity isthe correct one (for example, out of the possible 8 senses/
8 CEs of SE “condition” we chose the correct one, meaning, as reported by WordNet: (n)
condition (an illness, disease, or other medical problem) "a heart condition”; "a skin
condition").

At this point the BF search was completed, and the wor dnet _i | | ness entity belonging to
two different topics was reached: topic #71 “Vegetables, fruit and cancer” and topic #53
“Genes and diseases’. As per the agorithm described above, both topics having the topic
concept “disease” containing, among others, entity wor dnet _i | | ness, should have a
Similar score increase.

Chapter VI - A knowledge-based approach for document classification Page | 128



However, for humans the context alows to discriminate to which of the topics the word
“condition” should contribute more. It is relatively easy, even from the fragmented
sentence, to determine that “condition” is probably more relevant to topic #71 than #53. A
simple clue might be that “apples’ are fruits (topic #71), and the rest of the words do not
imply anything related to genes (for topic #53).

We aim to follow this ssimple logic to discriminate between the different topics when
considering atopic concept belonging to all the topics involved.

The algorithm is the following: for a String Entity that is currently under analysis, we
define a window of q SEs to analyze, before and after the current SE. We heuristically
define g = 5, as we observed good results given our test documents, but it can take any
other value. However, SEsin thiswindow must be in the same sentence as the current SE or
at most in the previous or following sentence.

In our example, for simplicity, consider that in the window of g SEs we have found only SE
“apples’. At this point we ask if maybe “apples’ is a clue that might differentiate between
topics for the currently analyzed SE “condition”. So, we perform a BF search to see if
“apples’ might contribute either to topic #71 and/or #53. From an implementation point of
view, because SE “apples’ was found before SE * condition”, the BF was already performed
and the results cached, so performance-wise the BF is not repeated, its cached results are
directly used instead. Actually, in the system’s implementation a BF is performed for every
CE of every SE keeping the results into memory, then taking each SE in sequence to
anayze its impact.

We determine that SE “apples’ has alink to topic concept “fruit” of topic #71 “Vegetables,
fruit and cancer” by the conceptual link of depth 2 in the ontology wor dnet _appl e
subd assO (=) wordnet_pome subdassO (=) wordnet fruit, where
wor dnet _fruit isan entity in topic concept “fruit” with weight 1.0. However “apples’
does not have any link to topic #53.

So, at this point, we know that SE “condition” should contribute to both topics #71 and #53
(reaching topic concept “disease”, present in both topics), but knowing that SE “apples’ has
alink to topic #71 alows us to make the assumption that the scores assigned should not be
equal, but that topic #71’s topic concept “disease” should receive a higher score than topic
#53 s topic concept “disease’. As such, topic #71 will receive the full score defined earlier,
while #53 will receive a smaller score. It should be noted that when saying topic score, for
this module we do not assign scores to topics but to the topic concepts of each topic. The
topic scores are calculated in the final module based on the scores of their topic concepts.

In a more complex scenario, there might be cases where a SE can contribute to several
topics (reaching common topic concepts like “death”, “money”, “government”, “disease’,
etc), with some of the neighboring SEs analyzed in the g window supporting some of these
topics, and some other SEs pointing to other of the identified topics. To solve this issue we

Chapter VI - A knowledge-based approach for document classification Page | 129



simply count the number of “supporters’. So, given a number of n topics that the currently
analyzed SE contributes to, for each of these topics we assign a temporary supporter count
variable. For every Canonic Entity of every String Entity in the g windows, if during the BF
for that CE an entity is found in one of the topic concepts belonging to one of the n topics,
we increase that topic’'s supporter count by one.

With this strategy we can count how many supporters each topic has, and we can actually
sort the topics descending according to these values. On the now sorted n topics a score
assigning strategy can be applied, so that similar topic concepts belonging to different
topics can take different scores.

Given a number of n topics, each having a certain supporter count, we assign scores as
follows. for the top scoring topics (because there might be topics with equal supporter
count) we assign the full score as defined previously; for the second set of highest scoring
topics we assign only half of the full score; for the third set of highest scoring topics half of
the half of the full score, and so on.

fullScore
QtopicPosition—1 (42)

topicScore =

where topicScore is the score assigned to a certain topic (out of the n possible topics),
fullScore is the score calculated by the formula defined previously, and topicPosition is the
position of the topic in the sorted topic list. More topics can share the same position if they
have the same number of supporters.

Example: if we consider that a String Entity has found 5 topics to which it should contribute
(reaching a common topic concept present in al 5 topics, alikely scenario as some genera
topic concepts are often shared between topics), and after analysis of the window of g SEs
surrounding the current SE, it has found a variable number of topic supporters for each
topic. The scores will be assigned as follows:

Table 6. Example table showing the scor e per centage assigned to each topic based on its supporter
count

Topic#  Supporter count  Scoreassigned (% of fullScore)

#1 0 25%
#2 3 100%
#3 1 50%
#4 1 50%
#5 3 100%

Using this strategy, the topic concepts of topics #2 and #5 will receive full score, topic
concepts of topics #3 and #4 will receive half while the topic concept belonging to topic #1

Chapter VI - A knowledge-based approach for document classification Page | 130




will receive a quarter of the full score, even if we are talking about the same topic concept
for each of the five topics.

A short review of this module: First, the ontology on which the analysis will be performed
is created by applying a limited depth Breadth First search on the Y AGO ontology starting
from every Canonic Entity belonging to every String Entity. After the ontology is created,
each String Entity is analyzed in order of appearance. The topic concepts of individual
topics it contributes to are determined based on a BF search on the created ontology. If
during the search an entity is encountered that belongs to a topic concept of a topic, that
topic concept is added to the list of topic concepts that should have their score increased. A
list of n topicsis thus created. To discriminate between the same topic concept belonging to
different topics, a strategy is employed: first, a window of g String Entities in the text
document that appear before and after the current SE are analyzed. In the same fashion, a
BF search starting from each of their individual Canonic Entities is performed to see to
which (if any) of the n topics it can reach. If atopic is reached (meaning one of its topic
concepts), then the topic has its “supporter count” variable increased. After al the BF
searches are performed, the topics are sorted descending by the supporter count variable.
The topics that have the highest single value of supporters award their topic concept the full
score. Then, topics with the next highest supporter count award half the score, and so on,
halving the score on each lower value of supporter count. Using this method, each String
Entity will be analyzed sequentially and it will contribute (if possible) to one or more of
topics by increasing the score of their topic concepts.

After all the SEs are analyzed, the topic list will contain topics that have non-zero scores to
some of their topic concepts.

Example: In the example below, a document was analyzed and the score composition of
topic concept “food” from topic #41 “Pesticides in Baby Food” is shown, as each matching
String Entity adds a small increase to the final score of 8.5574:

concept [food/1.0] 8.5574: wordnet food 107555863/ 1. 0: 8. 5574
>> Add 1.0*3.76=3.76 to 3.76 fromwordnet food 107555863/ 42

>> Add 0.25*0.69=0.1725 to 3.9324 from wordnet _gane_107650449/ 1

>> Add 0.5*2.89=1.445 to 5.3774 fromwordnet _neat 107649854/ 17

>> Add 0.5*1.1=0.55 to 5.9274 fromwordnet _fish 107775375/ 2

>> Add 0.5*0.69=0.345 to 6.2724 from wordnet cheese 107850329/ 1

>> Add 0.5*1.95=0.975 to 7.2474 from wordnet seafood 107776866/ 6

>> Add 0.25*2.48=0.62 to 7.8674 fromwordnet _shel | fish 107783210/ 11

>> Add 0.25*0.69=0.1725 to 8.04 from wordnet beef 107663592/ 1

>> Add 0.25*0.69=0.1725 to 8.2124 from wordnet delicatessen 107594406/ 1
>> Add 0.25*0.69=0.1725 to 8.384 from wordnet _vegetabl e 107707451/ 1

>> Add 0.25*0.69=0.1725 to 8.5574 from wordnet pork 107668702/ 1

It should be noted that in the examples above we give only WordNet classes (e.g. class
wor dnet _beef 107663592) from YAGO because the relations between them are easier

Chapter VI - A knowledge-based approach for document classification Page | 131



to understand. However, YAGO's imported WordNet hierarchy contains only around
65.000 classes from the more than 2 million entities known. Named entities contribute just
as much as (and in some cases even more than) the common entities that our system uses.

V1.3.4. Evaluator Module

The evaluator module takes as input the topic list with their scores, and evaluates them. The
output is asorted list of probable topics for the currently analyzed document.

Given we already have for each topic the scores of its topic concepts, one method is to
simply add the scores of the topic concepts and call this sum as the final score of the topic,
then just sort the topics using this value. However, because of the way the system works,
there are documents that have very many common words that contribute more to other
topics and not the correct one. This is partly because of the structure of YAGO and
WordNet, partly because of the problem of word sense disambiguation that is rather slightly
circumvented and not solved, partly because of the way the topics were defined.

To alow a degree of variation to an otherwise strict method of scoring, we assume the
following strategy:

1. We calculate the general score for each topic by adding the scores of its topic
concepts.

2. We evauate the first 4 highest scoring topics, and we calculate the average of the
score differences between each topic, which will call the error margin.

3. If the score of the best topic is greater that the score of the second topic plus the
error margin, we assume that the first topic is the correct topic. If the second topic is
within the error margin of the first, we count for each topic the number of topic
concepts that have a score greater than 0. The topic we believe is correct is the topic
that has the best coverage. The coverage of atopic is the percent of non-zero topic
concepts.

This heuristic was introduced because sometimes the correct topic is the second or third
best scoring, with a score amost equal to the top scoring topic. We alow for the second
scoring topic to precede thefirst if alarger percent of the topic's topic concepts are reached
(non-zero) based on the assumption that a topic that characterizes a document should have
most if not all of the wordsin the topic at least one time in the document.

Example: Given two topics that score amost equal, with topic #2 scoring slightly lower but
being the correct choice, if topic #1 has 4 out of 5 concepts greater than zero, and topic #2
has 4 out of 4 topic concepts greater than zero, then we choose topic #2, because topic #1
has only 4/5 = 80% coverage while topic #2 has 4/4 = 100% topic concept coverage).

Chapter VI - A knowledge-based approach for document classification Page | 132




V1.4. Evaluation

Before evaluating the results, a quick description of the data collection on which we tested
is needed. We used the LA94 TREC Information-Retrieval Text Research Collection®,
representing a sampling of news articles published by the Los Angeles Times in 1994. The
collection includes 828 such articles, which are classified over 50 topics. The articles are
small to medium-sized news (200 to 1500 words) on different topics such as entertainment,
movies, television, music, politics, business, health, technology, etc.

In order to compare our results against a standard method of text classification used today,
we have implemented a SVM based system for text classification. The system is built in
Java and uses core functionality from WEKA [9]. Each document is parsed, and a feature
vector is extracted. The vector is further elaborated upon, eliminating stop-words, using
lowercase tokens, setting a minimum term frequency for alowed terms, pruning
periodically, using a stemmer, and finally applying a TF*IDF transform. The SVM is then
trained on the document collection, and evaluated using a random-seed, 10-fold cross
validation. We have tried to build the evaluator system as best as possible using the latest
feature vector techniques and the best classifier for thisjob, the SVM.

Table 7. Comparison between the proposed system and a standard SVM state-of-the-art method

System Performance (correctly classified

documents)
Proposed K B-approach ontol ogy-centric system 570/ 828 (68.84%)
SVM comparison system 661 / 828 (79.83%)

The SVM comparison system at this moment performs better, by a margin of almost 11%.
However, our proposed system achieves a respectable performance of 68.84% using only
the ontology as a source of information. We designed this system as proof-of-concept, to
test the possibility of using ontologies as the core of atext classification system, and to see
the performance degree of such an approach.

While the system proves effective even at this stage, we believe that its performance can be
greatly improved. During the implementation, we have noted a series of improvements that
should significantly boost performance:

The first and most important issue affecting performance is the topic list creation.
Depending on the description of each topic (meaning the topic concepts of each topic),
performanceis greatly affected.

59 LA94 news articles collection, http://trec.nist.gov/data/docs _eng.html

Chapter VI - A knowledge-based approach for document classification Page | 133



Table 8. A short comparison between overall system perfor mance grouped by topic, before and after
topic tweaking, for 5 out of the 50 total topics

Topic Topic # of Performar.]ce Performan.ce after Difference
# docs  bef. tweaking tweaking
#50 Revolt_in_Chiapas 105 98/105(93.3%) 99/ 105 (94.28%) + 0.98%
#43 El_Nino _and the Weather 11 4/ 11 (36.36%) 6/ 11 (54.54%) + 18.18%
#80 Hunger Strikes 56  9/56(16.07%) 18/32(34.61%)  +18.54%
#70 Death of Kim_Il_Sung 33 28/33(84.84%) 22/ 33(66.66%) - 18.18%
#58 Euthanasia 49  14/49(2857%) 31/49(63.26%)  + 34.69%

This table shows some of the performance gains after manually tweaking some of the
topic’s concepts. For example, while adding context to topic #50, performance is very
dlightly improved by amost 1%, while for topic #80 the correct topic classification rate is
doubled to 34%. By concept tweaking we mean editing individual topic concepts. For
example, for topic #80 we had the initial topic concepts of ‘hunger’ and ‘strike’. After
adding context, meaning topic concepts “government”, “demonstration” and “cause” (each
with a dlightly lower weight than the initial two topic concepts), the detection rate greatly

increased.

However, after also tweaking topic #58, the performance negatively affected topic #70's
recognition rate. This is due to the adding to topic #58 (and others) of the concept ‘kill’
which was aready present in more topics, including topic #70. This means that the word
“kill” will now score for topic #58 also. The multiplicity of the same topic concept in many
topics, while unavoidable, does negatively impact performance. It should also be noted
after tweaking, each topic has grown from 2-3 topic concepts to an average of 4 topic
concepts, few topics having more than 6 topic concepts.

Another valuable insight from this before/after comparison is related to the ontology
information content. We have found out that there are sometimes lacks in information in the
ontology, while in other places there is an abundance of it. For example, we had trouble
finding YAGO classes to describe the concepts for topic #76 “Solar Energy”: while we
have wor dnet _energy_111452218 for the “energy” concept, for the “solar” concept
there is no smple, generad wordnet _solar_# class, just classes like
wor dnet _sol ar_cel |l 104257986, wor dnet _sol ar _di sh_104258138 or
wor dnet _sol ar_house_104258438. While YAGO (and WordNet) contains
wor dnet _sol ar _energy_111509697 (which we have aso used to describe the topic),
because it is multi-word, for it to positively match we need to have the entire “ solar energy”
expression in the text. This means that in the documents where the word “solar” is found, if
it is not followed by “cell”, “dish”, “house”’ or “energy”, it will not be counted. This issue
accounts for the proposed system’s <15% detection rate for this particular topic.

Chapter VI - A knowledge-based approach for document classification Page | 134



Another topic list related point is that the list needs to be created partialy by hand. While
usually thisis not desired due to the required human intervention, we argue that the number
of possible topics for any classification is manageable, ranging from a few tens to usually
no more than afew hundreds, arelatively simple task for even one person. For the 50 topics
we had, it took no more than a few hours to initialy create the list (while assisted by the
computer, using only topic concepts found in the topic name), and a bit longer for the topic
tweaking (using topic concepts extracted from each topic’'s description which is a few
sentence-long summary, also available to us in the LA 94 collection, but not used directly
in the system) which increased overal system performance from an initial 55.79% (462
correctly identified documents out of the total 828) to the current 570 / 828 (68.84%).

Another idea to be implemented in a future revision, is that we could use the ontology as
not only a semantic similarity map, but also use the relations themselves as useful
information. That would mean identifying subject — object entities and then match the verb
that links them to a specific relation in the ontology. This would provide a stronger link
between concepts, and an algorithm could judge whether to take into account certain
entities or not based on the relations between them. However, at present, the task of relation
extraction is an even more difficult problem that text classification. Relation extraction
systems do exist, but are difficult to implement and use, and they require very particular
conditions to run under — thus currently impractical to use.

V1.5. Conclusion

We believe that ontologies, especially genera ontologies represent a powerful yet
somewhat underused tool for the text classification problem. The structure of the ontology
itself contains information that can be used in the form of concept closeness, synonymy,
hypernymy, relation types, etc. As time passes, it is inevitable that general ontologies will
become larger and larger, thus providing better results even using the same algorithms.

However, the use of ontologies does impose some limitations and problems. For example,
information density in an ontology varies greatly, meaning some concepts will be defined
in more detail than others, that in turn leading to uneven topic recognition accuracy. This
problem is usually addressed by using domain ontologies. However, for example, for news
articles adomain ontology is mostly useless considering the method we have applied in this
article, where we do not use the ontology as a simple hierarchical taxonomy, but as a
concept semantic similarity map.

We propose a text-classification approach that achieves a good performance rating using
only an ontology as its information source, and graph algorithms with a custom scoring
method. The system uses the links available in the ontology to assign a score to the

Chapter VI - A knowledge-based approach for document classification Page | 135



semantic similarity between concepts. Future work on the subject will include
implementing some of the suggestions in the previous chapter, as well as an attempt to use
a supervised ML algorithm to self-create the topic list's concepts instead of manualy
tweaking them, and eval uate performance between this system’s versions.

Chapter VI - A knowledge-based approach for document classification Page | 136



VIl. Conclusions

The field of Information Extraction (IE) is a relatively young area of research that holds
many possible rewards. Information Extraction means extracting structured information
from unstructured and semi-structured sources by a computer. Making the computer
‘understand’ the data it is processing will yield improvements in many areas, like better
Internet search engines that identify words meanings, automatic multimedia annotation
that leads to more accurate information delivery, knowledge discovery from existing
knowledge sources (like predicting events based on entity identification and the
heterogeneous links between them), up to the field of Artificia Intelligence where a
computer that would try to pass the Turing test would first need to understand the question
it is being asked and then to reason a response adapted to the meaning of the question.

One of the main research problems of IE is entity identification and classification, an
essentia step in any |E system. This research problem is actually split in two distinct tasks:
Word Sense Disambiguation and Named Entity Recognition.

Word Sense Disambiguation is the task of identifying the senses of words in context. It
usually deals with common nouns (but can target also verbs, adverbs, adjectives, etc). For
example, in the sentence “John is the engine that keeps our business going”, ‘engine’ is not
a mechanical engine or a synonym for locomotive, but refers to something used to achieve
a purpose. Depending on the number of senses considered, WSD can be a coarse-grained
(and easier) task having only a few possible senses per word, or a fine-grained (and thus
more difficult) task having severa senses per word, encoding subtler distinctions. The
senses are references in a sense repository, usually a dictionary or a taxonomy (like

WordNet).

Named Entity Recognition is the task of identifying and classifying interesting entities in
context. It usualy deals with proper nouns, meaning names of persons, locations,
organizations, etc, but can also target other entities such as dates, numbers and so on. As
with the WSD task, NER can be a coarse-grained task where only a few basic types of
entities are recognized (ex: the standard major three categories. persons, organizations and
locations) or fine-grained (having more categories, for example instead of location, having
city, state and country categories). For example, in the sentence “I drove the new Santa Fe
through Santa Fe” a good NER system might recognize the first “Santa Fe’ as an car (in
case of a coarse-grained system, recognize it as a named entity labeled “Other”) and the
second “Santa Fe” as acity (in case of a coarse-grained system, recognize it as alocation).
A NER system would use either aflat-list or ataxonomy to store possible entity categories.

Because there are obvious differences between NER and WSD the tasks remain strongly
separated, with only little research in systems having a unitary view over both tasks. A
General Entity Recognition system would try to tag both common and proper nouns with

Chapter V11 - Conclusions Page | 137



appropriate labels. Here, the labels would also come from a taxonomy encoding a hierarchy
of classes. For example, for the sentence “Hyundai Accent has a 1.6 liter engine delivering
110 hp.” such a system would tag “Hyundai Accent” asacar, “1.6” as a quantity, “liter” as
a unit of measure (liter), “engine” as an engine (having the sense of mechanical engine),
“110” as a quantity and “hp” as a unit of measure (horse-power). This requires techniques
from both WSD and NER. For example, the identification of entity boundaries is a NER-
specific task (“Hyundai Accent” forms a single entity), while the correct identification of
the fact that “engine” is used with the sense of mechanica engine and not a locomotive or
other is a WSD-specific task.

The thesis presents a system that extends the task of General Named Entity Recognition (as
defined in [104] : to tag every interesting entity — both named or common noun — with a
WordNet sense) to identifying interesting entities and matching them to the most likely
canonic classes in alarge, genera ontology. For the purposes of the thesis and the system
we have used the YAGO ontology [39], holding among its 2+ million entities and 20+
million links between them all WordNet senses in the form of a hypernym tree. Therefore,
the proposed system first identifies interesting words (defined as String Entities) and then
attempts to assign to each one a class (defined as Canonic Entity) from the YAGO
ontology.

We define the notions of String Entity and Canonic Entity as follows. a String Entity is a
bounded sequence of characters, a single or multi-word token (ex: “chair”, “USA”,
“relativity theory” or “Charles Darwin’), while a Canonic Entity is a class
(entity/individual) from an ontology (ex: wordnet_chair, United_States_of
_Anerica,wordnet _relativity_theory orCharl es_Darw n).

For example, for the sentence “The new Hyundai Accent has a 1.6 liter engine that delivers
110 hp” the system identifies “Hyundai Accent” as a multi-word String Entity and assigns
it the YAGO Canonic Entity Hyundai _Accent, “liter” as the WordNet Canonic Entity
(integrated in YAGO) wordnet _liter, “engin€’ as wor dnet _aut onobi | e_engi ne
(and not just the more generic engi ne Canonic Entity for example) and “hp” as
wor dnet _hor sepower .

The approach of the system is to try to find for each String Entity the best matching
Canonic Entity (or tagging the String Entity as unknown), taking into consideration the
context of each entity. The approach taken first analyzes each sentence from a NLP point of
view, performing token splitting, Part-of-Speech-Tagging, applying a Named Entity
Recognizer of proper nouns (for indication of the general class of that noun : location /
organization / person / other), obtaining the syntactic and the dependency tree for the
sentence itself. From the dependency tree an influence matrix is created where the values
represent the connection strength between any two String Entities. Next, for each String
Entity the most probable Canonic Entities are found in the ontology (a String Entity can

Chapter V11 - Conclusions Page | 138



have anywhere from a few Canonic Entities to more than 1000). Then, a sub-graph is
created starting from every Canonic Entity of every String Entity by exploring the YAGO
ontology and adding relevant neighbors. Based on this directed unweighted sub-graph,
every set of related String Entities (meaning they have a non-zero value in the influence
matrix) is analyzed, creating a smaller directed and weighted graph. This latter graph is
formed by finding limited-distance paths in the initial sub-graph to other Canonic Entities,
weighing the connection strength between them using a distance-based metric and adjusting
the score using vaues from the influence matrix. Thus, for each set of related String
Entities a k-partite graph is formed. Such a graph has the property that it is divided into k-
partitions in which there are no edges between the vertices belonging to a partition. For the
purposes of the system, a partition represents a String Entity, and the vertices in the
partition are the Canonic Entities associated to that String Entity. On this specia graph type
we propose a custom agorithm that finds the best combination of Canonic Entities
respecting the k-partite property — picking at most one Canonic Entity for every String
Entity (partition) in the graph, based on edge scores. The last step of the algorithm is to
merge non-overlapping solutions (several non-overlapping connected components in the k-
partite graph) to provide the highest scoring solution possible.

The approach taken here is based on graph algorithms and ontologies. This unsupervised,
knowledge-rich approach yields interesting results. While the performance figures are not
themselves very high, the problem undertaken is very difficult. Though not comparable, a
task that resembles the General Entity Recognition approach is the Word Sense
Disambiguation - English nouns fine-grained disambiguation task. Here, senses (usually
WordNet senses) are associated to nouns. However, wherein the coarse-grained task there
are no more than 2-3 senses per word, the fine-grained task has no limit, having sometimes
more than 5-8 senses per word. This apparently slight increase in possible senses for aword
has a mgjor impact on disambiguation performance: for coarse grained tasks (few senses
per word) the percent is rather high, reaching 90% [91]. For finer grained tasks (many
senses per word, such as the senses in dictionaries or WordNet for example) the percent
drops in the 60-80% range [94], not to mention that the Inter Annotator Agreement Rate
was under the same circumstances at most 85% showing that even humans have a difficult
time agreeing on word senses. The system we propose has to identify the correct tag (or
corresponding Canonic Entity in the ontology) from not just a few but sometimes hundreds
of possible choices, meaning the search space is much larger, as well as having more
entities to dea with —both named and common.

Also, the thesis presents another system which is based on largely the same tools and
techniques (ontologies and graph algorithms) but differently applied to the problem of text
classification into predefined topics. Currently, this problem is usually solved by machine
learning algorithms like the well-performing Support Vector Machine. While such
supervised algorithms are sound, the problem of input data fed to them is not yet solved.

Chapter V11 - Conclusions Page | 139



Depending on the feature vectors created (or other internal features like type of kernels
used), machine learning algorithms provide better or worse results. The problem of
supervised text classification has been studied in depth and while good results have been
achieved, there seems to be a limit on the performance of such machines. New approaches
should be developed and used either by themselves or with current state-of-the-art
approaches in order to improve classification performance. With the system presented in
this work we investigate an aternative approach that tries to leverage the information
contained in large scale, genera ontologies and apply it to the problem of text classification
with encouraging results.

In the following paragraphs a short summary of the workings of this knowledge-rich system
IS presented:

Before the system is used, there is a phase of semi-manual topic crafting. This task is
performed only once to define the topics in a way the system can understand. Here we
introduce a few notions:. as atopic can be defined by aword (ex: “ Science” — general topic)
up to several words / a sentence (ex: “Pesticides in baby food” — more specific topic), we
define a topic as being composed of topic concepts. A topic concept is the encoding of a
word/sense from that particular topic. For example in the example “Pesticides in baby
food” we have 3 explicit topic concepts. “pesticides’, “baby” and “food”. Now, because we
are working with an ontology, the topic concepts have to be ‘translated’ to that knowledge
source. As such, each topic concept is itself composed of severa weighted ontological
classes. For example, topic concept “baby” can be expressed as the ontology class baby
indicating a human infant (and not another sense of the word) as well as the ontological
classchi I d (in the same sense — a very young human as defined in the ontology). Because
we are working with topic concepts expressing ideas, a certain generality must be
maintained, in the form of synonymy. The classes are weighted to indicate that, for
example, class baby is better suited to topic concept “baby” than classchi | d, but chi | d
should also be allowed in our scenario as an indication of topic concept “baby”.

This topic crafting is performed semi-automatically by one or more persons that add or
remove ontological classes to the topic concepts that form topics. Using this approach we
partially avoid the problem of Word Sense Disambiguation that appears in any NLP
system, as will be explained shortly.

As we designed this system for text topic classification we assume that the topic number is
relatively low (less than 100 topics for example). Even though the semi-manual topic
creation would seem an undesired feature of the system, for our test collection of 50 topics
of 848 Los Angeles Times (from year 1994) news articles, the topic creation phase took a
short time to complete, and the benefits of this small initial topic ‘disambiguation’ would
increase the performance of the system, avoiding many fase-positives due to sense
mismatch.

Chapter V11 - Conclusions Page | 140



The first working step of the system is text pre-processing, where the standard NLP
treatment is applied. Sentences are split into POS tagged tokens, multi word named entities
and common entities are grouped together into larger String Entities (similar to the previous
GER system proposed in this thesis).

After this step, every String Entity is assigned a number of Canonic Entities (classes from
the ontology that could represent the String Entity). For example, for the String Entity
“baby” extracted from a natural language text, the ontology reports 6 Canonic Entities
(ontological classes) as baby_# (where the number following the word is an identifier to
differentiate between the senses of baby). Because we perform no WSD, each and every
Canonic Entity is kept as a possible representative of that String Entity. This means for our
example that for the String Entity “baby” we keep all 6 senses of baby, including unlikely
senses like “S: (n) baby (a project of persona concern to someone) "this project is his
baby"”.

After assignation of Canonic Entities to String Entities is completed, for each String Entity
we start to sequentially look for classes from any of our topic concepts in the vicinity of
every Canonic Entity for our current String Entity. This means that we perform a custom
depth-first search starting from every Canonic Entity assigned to every String Entity in the
ontology graph. If during the search we encounter a class that has been marked as
belonging to a topic concept, we increase the score of that topic concept using a custom
distance-based function (implementing some of the ideas like direction change penalization
in the WordNet semantic similarity metric of Hirst and St-Onge (1998)).

At this point we are faced with two aspects: first, we keep every sense for every common
String Entity and every individual for every named String Entity. This means that
interpretation and sense errors should be overwhelming. However, due to the ontology’s
structure, it is not the case. Because we manually crafted the topic concepts before running
the system, the limited depth first search initiated from every Canonic Entity from a String
Entity will hit only the correct class of atopic concept. Returning to the “baby” example, if
we initiate a search from each of the 6 senses for baby, only the correct sense of human
infant would reach topic concept “baby” because of its direct link; all the other senses
would have to go up to atop-level class (like root class entity) and then back down, a path
too long and directly discarded. This is why even if we keep all possible Canonic Entities
without discrimination, because of the manua choosing of the correct target class and
because of the ontological paths linking different senses or individuas, we avoid many
false-positive results and thus partially the problem of automatic WSD.

The second aspect needing discussion is how to solve the problem of topic concepts that are
repeated amongst different topics. For example topic concept “military” belongs both to
topics “Peace-keeping forces in Bosnia” and “Insurgency in Middle East” and a word like
“army” would contribute to both topic concepts of both topics. Using context words (both
previous and following words) we search for them if they appear in any of the topics. The

Chapter V11 - Conclusions Page | 141



distance from the target word and the frequency count in our limited window allows for
ranking the scores assigned to a topic concept that belongs to multiple topics, thus
differentiating between topics and directly increasing classification performance.

Thefinal step isto heuristically score every topic based on their topic concepts scores and
assign the most likely topic to that text document.

As an overview, the system uses a general ontology as a graph in which it calcul ates custom
distance-based scores between pre-defined topics and the words in text document. Based on
the ranking of these scores the system offers the user a sorted list of topics. The system
shows performance averaging close to the standard supervised classification system
implementing the SVM with TF*IDF approaches, using only distances between classes in
the ontology.

Contributions

In summary, the thesis makes the following contributions:

® An approach to Genera Entity Recognition using knowledge based methods and
unsupervised algorithms. Based on a large, genera ontology, the implemented
system assigns ontological classes to text-extracted entities. Furthermore, it is a
fine-grained system — its search space of ontological classes (that can be assigned to
extracted entities from the text) is very large. For the implemented system the
Y AGO ontology was used, having 2+ million entities.

® The GER system has a unified approach based on an ontology seen as a semantic
graph. It treats both named entities (proper nouns) and common nouns equally -
basically it covers both the tasks of Named Entity Recognition (applied to proper
nouns) and Word Sense Disambiguation (applied to common nouns) in a single
pass.

® Varied methods and heuristics to reduce the complexity of IE/NLP problems. most
likely ontological classes assignation heuristics for text entities to minimize future
search space; sparse text entity influence matrix based on dependency trees,
splitting of text entities into separate process groups based on influence matrix to
vastly reduce the processing effort needed; algorithm designed to handle process
groups in parallel (one process group per thread/core).

® A well-performing graph algorithm tuned to the problem of determining the best
scoring sets of vertices in a weighted undirected k-partite graph. It is abstracted and
can be applied to any problem that can be reduced to these specifications. It is
shown to perform when applied to the General Entity Recognition task with dense

graphs.

Chapter V11 - Conclusions Page | 142



® An unsupervised system designed for text classification using general ontologies.
Using partially annotator-corrected topics, such a system can obtain a relatively
close score to the current state-of-the-art supervised classification standard (SVM
machines), opening a new possible approach to this problem.

® A context-aware intelligent scoring method based on a custom semantic similarity
distance function. This allows differentiated scores to be assigned to similar topic
concepts that belong to different topics and thus increases topic classification
accuracy.

® A topic scoring method implementing the concept of topic coverage. This method is
applied only after the scores of topic concepts have been assigned. It allows topics
with higher topic concept coverage but with lower scores (the lower scores have to
be within the error-margin of the best score) to take precedence in the final sorted
topic list.

® A survey of current tools, techniques and approaches in the domains of NLP
processing, Word Sense Disambiguation and Named Entity Recognition.

® |nteresting insights, benefits and limitations in the use of large-scale, general
ontologies applied to the Information Extraction related problems treated in this
thesis as shown by the two implemented systems. These less-investigated aspects
are discussed and conclusions are offered.

Chapter V11 - Conclusions Page | 143



VIIIl. References

[1] Ceri, S., & Brambilla, M. (2010). Search for Knowledge. In Search Computing, LNCS 5950.
Berlin.

[2] Rijsbergen, C. v., Rabertson, S., & Porter, M. (1980). New models in probabilistic information
retrieval. In British Library Research and Devel opment Report no. 5587. London: British Library.

[3] Voutilainen, A. (1995). A syntax-based part of speech analyser. Seventh Conference of the
European Chapter of the Association for Computational Linguistics, (pp. 157-164). Dublin.

[4] Brill, E. (1995). Transformation-Based Error-Driven Learning and Natural Language
Processing: A Case Study in Part-of -Speech Tagging. Computational Linguistics, 21, 543-565.

[5] Brants, T. (2000). TnT - A Statistical Part-Of -Speech Tagger.

[6] Brill, E. (1995). Unsupervised learning of disambiguation rules for part of speech tagging. Third
Workshop on Very Large Corpora, (pp. 1-13).

[7] Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. ACL.
[8] Mitchell, T. M. (1997). Machine Learning.

[9] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, |. H. (2009). The
WEKA Data Mining Software: An Update. S GKDD Explorations, 11 (1).

[10] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications.
Proceedings of the |IEEE, 77, 2.

[11] Lafferty, J.,, McCalum, A., & Pereira, F. (2001). Conditional random fields: probabilistic
models for segmenting and labeling sequence data. International Conference on Machine Learning.

[12] Sutton, C., & McCdlum, A. (2007). An Introduction to Conditiona Random Fields for
Relational Learning. In Introduction to statistical relational learning. MIT Press.

[13] Brill, E. (2003). Processing Natural Language without Natural Language Processing. In
Lecture Notesin Computer Science. Springer Berlin / Heidelberg.

[14] Gaifman, H. (1965). Gaifman, Haim. In Information and Control (pp. 304-307).

[15] Covington, M. A. (2000). A Fundamental Algorithm for Dependency Parsing. 39th Annual
ACM Southeast Conference, (pp. 95-102).

[16] Miyao, Y., Sagae, K., & Tsyjii, J. (2007). Towards framework-independent evaluation of deep
linguistic parsers. In Grammar Engineering across Frameworks (pp. 238-258).

[17] Pereira, R. M. (2006). Online learning of approximate dependency parsing algorithms. EACL.

Chapter V111 - References Page | 144



[18] Charniak, E. (2000). A maximum-entropy-inspired parser. NAACL.

[19] Charniak, E., & Johnson, M. (2005). Coarse-to-fine n-best parsing and MaxEnt discriminative
reranking. ACL.

[20] Petrov, S., & Klein, D. (2007). Improved inference for unlexicalized parsing. HLT-NAACL
2007.

[21] Sagae, K., Miyao, Y., Matsuzaki, T., & Tsujii, J. (2008). Challenges in mapping of syntactic
representations for framework-independent parser evaluation. Workshop on Automated Syntatic
Annotations for Interoperable Language Resour ces.

[22] Miyao, Y., & Tsujii, J. (2008). Feature forest models for probabilistic HPSG parsing.
Computational Linguistics.

[23] Kim, D., Ohta, T., Teteis, Y., & Tsujii, J. (2003). GENIA corpus — a semantically annotated
corpus for bio-texmining. In Bioinformatics.

[24] Soon, W., Ng, H., & Lim, D. (2001). A machine learning approach to coreference resolution of
noun phrases. In Computational Linguistics (pp. 521-540).

[25] Yang, X., Zhou, G., Su, J., & Tan, C. L. (2004). Improving noun phrase coreference resolution
by matching strings. Proc. of the 1st Int’'l Joint Conference on Natural Language Processing.
Hainan.

[26] Mccalum, A., & Weéllner, B. (2004). Conditiona models of identity uncertainty with
application to noun coreference. NIPS-17. VVancouver.

[27] Cardie, C., & Wagstaff, K. (1999). Noun phrase coreference as clustering. Joint SGDAT
Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, (pp.
82-89). Maryland.

[28] Gainaru, A., Dumitrescu, S. D., & Trausan-Matu, S. (2010). NLP Toolbox. COMMZ2010 -
|IEEE , 22-26.

[29] Zhou, G., & Su, J. (2004). A High-Performance Coreference Resolution System using a
Constraint-based Multi-Agent Strategy. 20th International Conference on Computational
Linguistics (COLING-2004), (pp. 522-528). Geneva.

[30] Bean, D., & Riloff, E. (2004). Unsupervised Learning of Contextual Role Knowledge for
Coreference Resolution. Human Language Technology Conference / North American Chapter of
the Association for Computational Linguistics Annual Meeting (HLT/NAACL-04), (pp. 297-304).
Boston.

[31] Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a Large Annotated
Corpus of English: The Penn Treebank. COMPUTATIONAL LINGUISTICS, 19 (2), 313-330.

[32] Noy, N., & McGuinness, D. (2001). Ontology Development 101: A Guide to Creating Your
First Ontology. Stanford Knowledge Systems Laboratory.

Chapter V111 - References Page | 145



[33] Dumitrescu, S. D., Smeureanu, A., Diosteanu, A., & Cotfas, L. (2010). Adaptable Network
Management System Using GIS and network ontology. 9th RoEduNet IEEE International
Conference, (pp. 310-315).

[34] DIOSTEANU, A., COTFAS, L., SMEUREANU, A., & DUMITRESCU, S. D. (2010). Multi-
Agents and GIS Framework for Collaborative Supply Chain Management Application. Sth
RoEduNet | EEE International Conference, (pp. 157-162). Sibiu.

[35] Miller, G. A., Beckwith, R., Fellbaum, C. D., Gross, D., & Miller, K. (1990). WordNet: An
online lexical database. 235-244.

[36] Navigli, R. (2006). Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation
Performance. 44th Annual Meeting of the Association for Computational Linguistics joint with the
21st International Conference on Computational Linguistics, (pp. 105-112). Sydney.

[37] Snow., R., S, P., Jurafsky., D., & Ng, A. Y. (2007). Learning to Merge Word Senses. Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), (pp. 1005-1014). Prague.

[38] Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy.
14th International Joint Conference on Artificial Intelligence. Montreal.

[39] Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago - A Core of Semantic Knowledge.
16th international World Wide Web conference (WWW 2007).

[40] Pasca, M., Lin, D., Bigham, J., Lifchits, A., & Jain., A. (2006). Names and similarities on the
web: Fact extraction in the fast lane. Proceedings of the Association for Computational Linguistics.

[41] Suchanek, F. M., Kasneci, G., & Weikum, G. (2008). YAGO: A large ontology from
Wikipediaand WordNet.

[42] Suchanek, F. M., Sozio, M., & Welkum, G. SOFIE: A Self-Organizing Framework for
Information Extraction. 18th International World Wide Web conference. 2009.

[43] Banko, M. (2009). Open Information Extraction for the Web. PHD Thesis, University of
Washington, Washington.

[44] Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., & Etzioni, O. (2007). Open
information extraction from the web. Proceedings of 1 JCAI.

[45] Ramshaw, L. A., & Marcus, M. P. (1995). Text chunking using transformation based learning.
In CoRR.

[46] Yates, A., & Etzioni, O. (2007). Unsupervised resolution of objects and relations on the web.
Proceedings of the Conference on Human Language Technologies/ North American Chapter of the
Association for Computational Linguistics.

[47] Collins, M. (1999). Head-Driven Satistical Models for Natural Language Parsing. PHD
Thesis, University of Pennsylvania, Pennsylvania.

Chapter V111 - References Page | 146



[48] Dean, J., & Ghemawat, S. (2004). Mapreduce: Simplified data processing on large clusters.
OSDI.

[49] Gae, W. A., Church, K. W., & Yarowsky, D. (1993). A method for disambiguating word
sensesin alarge corpus. (26).

[50] Ide, N., & Véronis, J. (1998). Word Sense Disambiguation: The State of the Art. 24.

[51] Wilks, Y., & Stevenson., M. (1998). Word Sense Disambiguation using Optimised
Combinations of Knowledge Sources. COLING-ACL'98. Montreal, Canada.

[52] Kelly, E. F., & Stone, P. J. (1975). Computer recognition of English word senses. North-
Holland Pub.

[53] E., B. (1988). An experiment in computational discrimination of English word senses. In IBM
J. Res. Devel (Vol. 32, pp. 185-194).

[54] Rivest, R. L. (1987). Learning decision lists. In Machine Learning 2 (Vol. 3, pp. 229-246).
[55] Quinlan, J. R. (1993). Programs for Machine Learning. San Francisco: Morgan Kaufmann.
[56] Bramer, M. (2007). Principles of Data Mining . Springer London.

[57] Deng, H., Runger, G., & Tuv, E. (2011). Bias of importance measures for multi-valued
attributes and solutions. 21st International Conference on Artificial Neural Networks.

[58] McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. In Bull. Math. Biophys. (Val. 5, pp. 115-133).

[59] Veronis, J., & Ide, N. (1990). Word sense disambiguation with very large neura networks
extracted from machine readable dictionaries. 13th International Conference on Computational
Linguistics, (pp. 389-394). Helsinki, Finland.

[60] Tsatsaronis, G., Vazirgiannis, M., & Androutsopoulos, 1. (2007). Word sense disambiguation
with spreading activation networks generated from thesauri. International Joint Conference on
Artificial Intelligence, (pp. 1725-1730). Hyderabad, India.

[61] Mooney, R. J. (1996). Comparative experiments on disambiguating word senses: An
illustration of the role of bias in machine learning. Conference on Empirical Methods in Natural
Language Processing, (pp. 82-91).

[62] Towdl, G., & Voorhees, E. (1998). Disambiguating highly ambiguous words. Computational
Linguistics, 125-145.

[63] Hoste, V., Hendrick, 1., Daelemans, W., & Van Den Bosch, A. (2002). Parameter optimization
for machine learning of word sense disambiguation. J. Nat. Lang. Eng. , 8 (4), 311-325.

[64] Decadt, B., Hoste, V., Daglemans, W., & Bosch, V. D. (2004). GAMBL, genetic agorithm
optimization of memory-based WSD. 3rd International Workshop on the Evaluation of Systems for
the Semantic Analysis of Text (Senseval-3), (pp. 108-112). Barcelona, Spain.

Chapter V111 - References Page | 147



[65] Zhang, H. (2004). The Optimality of Naive Bayes. FLAIRS.

[66] Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning
algorithms. 23rd international conference on Machine learning.

[67] Bruce, R.,, & Weibe, J. (1999). Decomposable modeling in natural language processing.
Computational Linguistics, 2 (25), 195-207.

[68] Ng, T. H. (1997). Getting serious about word sense disambiguation. ACL SIGLEX Workshop
on Tagging Text with Lexical Semantics. Why, What, and How?, (pp. 1-7). Washington D.C.

[69] Murata, M., Utiyama, M., Uchimoto, K., Ma, Q., & Isahara, H. (2001). Japanese word sense
disambiguation using the simple Bayes and support vector machine methods. 2nd International
Workshop on Evaluating Word Sense Disambiguation Systems (SENSEVAL-2), (pp. 135-138).
Toulouse, France.

[70] Keok, L. Y., & Ng, H. T. (2002). An empirical evaluation of knowledge sources and learning
algorithms for word sense disambiguation. Conference on Empirical Methods in Natural Language
Processing, (pp. 41-48). Philadelphia, PA.

[71] Lin, D. (1998). Automatic retrieval and clustering of similar words. 17th International
Conference on Computational linguistics, (pp. 768—774). Montreal, P.Q., Canada.

[72] Pedersen, T., & Bruce, R. (1997). Distinguishing word senses in untagged text. Conference on
Empirical Methods in Natural Language Processing, (pp. 197-207). Providence, RI.

[73] Savova, G., Pedersen, T., Purandare, A., & Kulkarni, A. (2005). Resolving ambiguities in
biomedical text with unsupervised clustering approaches. Minneapolis, MN: UMSI.

[74] Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science and
Technology , 38 (1), 188-230.

[75] Purandare, A., & Pedersen, T. (2004). Improving word sense discrimination with gloss
augmented feature vectors. Workshop on Lexical Resources for the Web and Word Sense
Disambiguation, (pp. 123-130). Puebla, Mexico.

[76] Widdows, D., & Dorow, B. (2002). A graph model for unsupervised lexical acquisition.
International Conference on Computational Linguistics, (pp. 1-7). Taipei, Taiwan.

[77] Veronis, J. (2004). Hyperlex: Lexica cartography for information retrieval. Comput. Speech
Lang. , 18 (3), 223-252.

[78] Brin, S., & Page, M. (1998). Anatomy of a large-scale hypertextual Web search engine.
Conference on World Wide Web, (pp. 107-117). Brisbane, Australia.

[79] Agirre, E., & Stevenson, M. (2006). Knowledge sources for WSD. Word Sense
Disambiguation: Algorithms and Applications, 217-251.

[80] Klapaftis, I. P., & M., S. (2007). UQY: A Hypergraph Model For Word Sense Induction &
Disambiguation. Workshop on Semantic Evaluations (SemEval) .

Chapter V111 - References Page | 148



[81] Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: How to
tell a pine cone from an ice cream cone. 5th SGDOC, (pp. 24-26). New Y ork.

[82] Vasilescu, F., Langlais, P., & Lapame, G. (2004). Evaluating variants of the Lesk approach for
disambiguating words. Conference on Language Resources and Evaluation, (pp. 633—636). Lisbon,
Portugal.

[83] Banerjee, S., & Pedersen, T. (2002). An adapted Lesk algorithm for word sense disambiguation
using WordNet. Conference on Computational Linguistics and Intelligent Text Processing, (pp.
136-145). Mexico City, Mexico.

[84] Patwardhan, S., Banerjee, S., & Pedersen, T. (2003). Using measures of semantic relatedeness
for word sense disambiguation. Conference on Computational Linguistics and Intelligent Text
Processing, (pp. 241-257). Mexico City, Mexico.

[85] Galley, M., & McKeown, K. (2003). Improving word sense disambiguation in lexical chaining.
International Joint Conference in Artificial Intelligence, (pp. 1486-1488). Acapulco, Mexico.

[86] Mihalcea, R., & Moldovan, D. (2000). An iterative approach to word sense disambiguation.
Florida Artificial Intelligence Research Society, (pp. 219-223). Orlando, US.

[87] Mihacea, R. (2005). Large vocabulary unsupervised word sense disambiguation with graph-
based algorithms for sequence data labeling. Joint Human Language Technology and Empirical
Methodsin Natural Language Processing Conference, (pp. 411-418). Vancouver, Canada.

[88] Resnik, P. (1993). Selection and information: A class-based approach to lexical relationships.
Ph.D. Thesis, University of Pennsylvania.

[89] Adgirre, E., & Martinez, D. (2001). Learning classto-class selectiona preferences. 5th
Conference on Computational Natural Language Learning, (pp. 15-22). Toulouse, France.

[90] McCarthy, D., Carroll, J., & Preiss, J. (2001). Disambiguating noun and verb senses using
automatically acquired selectional preferences. International Workshop on Evaluating Word Sense
Disambiguation Systems, (pp. 119-122). Toulouse, France.

[91] Gale, W., Church, K., & Yarowsky, D. (1992). Estimating upper and lower bounds on the
performance of word-sense disambiguation programs. Annual Meeting of the Association for
Computational Linguistics, (pp. 249-256). Newark, U.S.A.

[92] Gale, W., Church, K., & Yarowsky, D. (1992). One sense per discourse. DARPA Speech and
Natural Language Workshop, (pp. 233-237). Nwe York, U.SA.

[93] Krovetz, R. (1998). More than one sense per discourse. Workshop on Evaluating Word Sense
Disambiguation Systems. Sussex, England.

[94] Palmer, M., Dang, H., & Fellbaum, C. (2007). Making fine-grained and coarse-grained sense
distinctions, both manually and automatically. Journal of Natural Language Engineering , 13 (2),
137-163.

[95] Snyder, B., & Pamer, M. (2004). The English all-words task. Senseval-3.

Chapter V111 - References Page | 149



[96] Navidli, R. (2009). Word sense disambiguation: A survey. ACM Computer Survey , 41 (2).

[97] Resnik, P., & Yarkowsky, D. Distinguishing systems and distinguishing senses: new evaluation
methods for word sense disambiguation. J. Nat. Lang. Eng, 5 (2), 113-133.

[98] Grishman, R., & Sundheim, B. (1996). Message Understanding Conference - 6: A Brief
History. International Conference on Computational Linguistics.

[99] Rau, L. F. (1991). Extracting Company Names from Text. Artificial Intelligence Applications
of IEEE.

[100] Lee, S, & Geunbae Lee, G. (2005). Heuristic Methods for Reducing Errors of Geographic
Named Entities Learned by Bootstrapping. International Joint Conference on Natural Language
Processing.

[101] Witten, I. H., Bray, Z., Mahoui, M., & J.,, T. W. (1999). Using Language Models for Generic
Entity Extraction. International Conference on Machine Learning. Text Mining.

[102] Cohen, W. W., & Sarawagi, S. (2004). Exploiting Dictionaries in Named Entity Extraction:
Combining Semi-Markov Extraction Processes and Data Integration Methods. Conference on
Knowledge Discovery in Data.

[103] Tsuruoka, Y., & Tsyjii, J. (2003). Boosting Precision and Recall of Dictionary-Based Protein
Name Recognition. Conference of Association for Computational Linguistics in Natural Language
Processing in Biomedicine.

[104] Alfonseca, E., & Manandhar, S. (2002). An Unsupervised Method for General Named Entity
Recognition and Automated Concept Discovery. International Conference on General WordNet.

[105] Poibeau, T., & Kosseim, L. (2001). Proper Name Extraction from Non-Journalistic Texts.
Computational Linguisticsin the Netherlands.

[106] Bikel, D. M., Miller, S.,, Schwartz, R., & Weischedel, R. (1997). Nymble: a High-
Performance Learning Name-finder. Conference on Applied Natural Language Processing.

[107] Sekine, S. (1998). Description of the Japanese NE System Used For Met-2. Message
Under standing Conference.

[108] Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R. (1998). NY U: Description of the
MENE Named Entity System as used in MUC-7. 7th Message Under standing Conference.

[109] Finkel, J. R., Grenager, T., & Manning, C. (2005). Proceedings of the 43nd Annua Meeting
of the Association for Computational Linguistics (ACL 2005). 363-370.

[110] Brin, S. (1998). Extracting Patterns and Relations from the World Wide Web. Conference of
Extending Database Technology. Workshop on the Web and Databases.

[111] Coallins, M., & Singer, Y. Unsupervised Models for Named Entity Classification. Joint
S GDAT Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora.

Chapter V111 - References Page | 150



[112] Riloff, E., & Jones, R. (1999). Learning Dictionaries for Information Extraction using Multi-
level Bootstrapping. National Conference on Artificial Intelligence.

[113] Cucchiareli, A., & Veardi, P. (2001). Unsupervised Named Entity Recognition Using
Syntactic and Semantic Contextual Evidence. (M. Press, Ed.) Computational Linguistics, 123-131.

[114] Pasca, M., Lin, D., Bigham, J., Lifchits, A., & Jain, A. (2006). Organizing and Searching the
World Wide Web of Facts—Step One: The One-Million Fact Extraction Challenge. National
Conference on Artificial Intelligence.

[115] Evans, R. (2003). A Framework for Named Entity Recognition in the Open Domain. Recent
Advances in Natural Language Processing.

[116] Nadeau, D., & Sekine, S. (2007). A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30 (1), 3-26.

[117] Raghavan, H., & Allan, J. (2004). Using Soundex Codes for Indexing Names in ASR
documents. Human Language Technology conference - North American chapter of the Association
for Computational Linguistics. Interdisciplinary Approachesto Speech.

[118] Mikheev, A. (1999). A Knowledge-free Method for Capitalized Word Disambiguation.
Conference of Association for Computational Linguistics.

[119] Yarowsky, D. (1992). Word-sense disambiguation using statistical models of roget's
categoriestrained on large corpora. COLING, (pp. 454-460). Nantes, France.

[120] Agirre, E., Ansa, O., Hovy, E., & Martinez, D. (2000). Enriching very large ontologies using
the www. Ontology Learning Workshop, ECAI. Berlin, Germany.

[121] Ciaramita, M., & Johnson, M. (2003). Supersense Tagging of Unknown Nouns in WordNet.
EMNLP.

[122] Ciaramita, M., & Yasemin, A. (2006). Broad-Coverage Sense Disambiguation and
Information Extraction with a Supersense Sequence Tagger. Empirical Methods in Natural
Language Processing (EMNLP).

[123] Manning, C., & Schutze, H. (1999). Foundations of Statistical Natural Language Processing.

[124] Navigli, R. (2006). Consistent validation of manual and automatic sense annotations with the
aid of semantic graphs. Computational Lingusitics, 32 (2), 273-281.

[125] Navigdli, R. (2006). Experiments on the validation of sense annotations assisted by lexical
chains. 11th Conference of the European Chapter of the Association for Computational Linguistics,
(pp. 129-136). Trento, Italy.

[126] Mihalcea, R. (2006). Knowledge-based methods for WSD. Word Sense Disambiguation:
Algorithms and Applications, pp. 107-131.

[127] Hindle, D., & Rooth, M. (1993). Structural ambiguity and lexical relations. Computational
Lingusitics, 19, pp. 103-120.

Chapter V111 - References Page | 151



[128] Rada, R., Mili, H., Bicknéll, E., & Blettner, M. (1989). Development and application of a
metric on semantic nets. |EEE Transactions on Syst. Man Cybernet., 19(1), pp. 17-30.

[129] Navigli, R., & Velardi, P. (2005). Structural semantic interconnections. A knowledge-based
approach to word sense disambiguation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27 (7).

[130] Mihalcea, R., Tarau, P., & Figa, E. (2004). Pagerank on semantic networks, with application
to word sense disambiguation. 20th International Conference on Computational Linguistics, (pp.
1126-1132). Geneva, Switzerland.

[131] Cormen, T. H. (2009). Introduction to Algorithms, 3rd ed. Cambridge, England: MIT Press.

[132] Toutanova, K., Klein, D., Manning, C., & Singer, Y. (2003). Feature-Rich Part-of-Speech
Tagging with a Cyclic Dependency Network. HLT-NAACL 2003, (pp. 252-259).

[133] Toutanova, K., & Manning, C. D. (2000). Enriching the Knowledge Sources Used in a
Maximum Entropy Part-of-Speech Tagger. Joint SGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora (EMNLP/VLC-2000), (pp. 63-70).

[134] Hirst, G., & Onge, D. S. (1998). Lexical chains as representations of context for the detection
and correction of malapropisms. Fellbaum, (pp. 305-332).

[135] Nedjah, N., Franga, F. M., & Souza, A. F. (2009). Intelligent Text Categorization and
Clustering. Studies in Computational Intelligence , 64.

[136] Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text Classification Using Machine
Learning Tehniques. WSEAS Transactions on Computers , 4, 966-974.

[137] Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Computing
rveys, 34(1), 1-47.

[138] Moravec, P., M., K., & Snasel, V. (2004). LSl vs. wordnet ontology in dimension reduction
for information retrieval. 18-26.

[139] Lv, L., Liu, Y. S., & Liu, Y. (2006). Realizing English text classification with semantic set
index method. Journal of Beijing University of Posts and Telecommunications, 29 (2), 22-25.

[140] Yang, X.-Q., Sun, N., Sun, T.-L., Cao, X.-Y., & Zheng, X.-J. (2009). The Application of
Latent Semantic Indexing and Ontology in Text Classification. International Journal of Innovative
Computing, Information and Control , 5 (12(A)), 4491-4499.

[141] Brut, M., Dumitrescu, S., & Sedes, F. (2010). A Semantic-Oriented Approach for Organizing
and Developing Annotation for E-learning. IEEE Transactions on Learning Technologies .

[142] Lee, Y .-H., Tsao, W.-J., & Chu, T.-H. (2009). Use of Ontology to Support Concept-Based
Text Categorization. Lecture Notes in Business Information Processing , 22(6), 201-213.

[143] Gu, H., & Zhou, K. (2006). Text Classification Based on Domain Ontology. Journal of
Communication and Computer , 3 (5).

Chapter V111 - References Page | 152



[144] Yang, X., Zhou, G., Su, J., & Tan, C. L. (2004). An NP-Cluster Based Approach to
Coreference Resolution. 20th International Conference on Computational Linguistics. Geneva.

[145] Gangemi, A., Guarino, N., Masolo, C., & Oltramari, A. (2003). Sweetening WORDNET with
DOLCE. Al Magazine, 24.

Chapter V111 - References Page | 153



Appendix

Examplerun of the proposed GER System

This annex presents atest run of the system on a document composed of two sentences. We
present the steps of the system and we discuss the resullts.

Input document: “Currently, heart disease and stroke are the leading causes of death
worldwide and according to World Health Organisation estimates will kill almost 24
million people by 2030. The metabolic syndrome, associated with an increased risk of
type 2 diabetes and cardiovascular disease, affects about one fifth of the world's adult
population.”

The GER System starts by splitting the document into sentences. Then each sentence goes
through part-of-speech tagging, parsing, tokenization and a standard NER system to |abel
named entities with one of the probable 3 classes (person, location and organization). The
entities we are interested in are common and proper nouns (shown in bold above).

We obtain the following information:

Sentence 1. “Currently, heart disease and stroke are the leading causes of death
worldwide and according to World Health Organisation estimates will kill almost 24
million people by 2030.”

New sentence ID 1
(ROOT .
(s Syntactic tree for sentence #1
(ADVP (RB Currently))

G (on which to determine POS taggs and NP

(s
(NP groups)
(NP (NN heart) (NN disease))
(CC and)
(NP (NN stroke)))
(VP (VBP are)
(NP
(NP (DT the) (VBG Ieading) (NNS causes))
(PP (IN of)
(NP (NN death) (NN worldwide))))))
(CC and)
(s
(PP (VBG accordi ng)
(PP (TOto)
(NP (NNP World) (NNP Health) (NNP Organisation))))
(NP (NNS estimates))
(VP (MDwill)
(VP (VB Kkill)
(NP
(QP (RB alnost) (CD 24) (CD nmillion))
(NNS peopl e))
(PP (IN by)

Appendix Page | 154



(.

(NP (CD 2030))))))
)

advnod( causes-10, Currently-1)
nn(di sease-4, heart-3)
nsubj (causes- 10, disease-4)

conj _and(di sease- 4,
nsubj (causes- 10,

stroke- 6)
stroke-6)

cop(causes-10, are-7)

det (causes- 10,
anod( causes- 10,

t he- 8)
| eadi ng-9)

nn(wor | dw de-13, death-12)
prep_of (causes-10, worl dw de-13)

prepc_

according_to(kill-22, to-16)

nn( Organi sation-19, Wrld-17)
nn( Organi sation-19, Heal th-18)
pobj (kill-22, Organisation-19)

nsubj (kill-22,

esti mat es- 20)

aux(kill-22, wll-21)
conj _and(causes- 10, kill-22)

quant mod(m | | i on- 25,

al nost - 23)

nunber (m | lion-25, 24-24)

nun{ peopl e-26, mnillion-25)

dobj (kill-22, peopl e-26)
prep_by(kill-22, 2030-28)

T1000
T1001
T1002
T1003
T1004
T1005
T1006
T1007
T1008
T1009
T1010
T1011
T1012
T1013
T1014
T1015
T1016
T1017
T1018
T1019
T1020
T1021
T1022
T1023
T1024
T1025
T1026
T1027
T1028

Dependency tree for sentence #1

(on which to calculate the Influence Matrix)

Token list for sentence #1

original token, stem, singular form)

[Currently] (UNKNOWN, RB,O) g Currently] S[current] I[currently]
[,] (PUNCTUATION,,,O d.,] S[Invalid term I[,]
[heart] (COWDON, NN, O { heart] S[heart] I[heart]

[di sease] (COMMON, NN, O (] di sease] S[diseas] |[disease]
[and] (COMWON, CC,O) ( and] S[and] I[and]

[stroke] (COWDON, NN, O ( stroke] S[stroke] |[stroke]
[are] (COMWDON,VBP,O) Jare] S[ar] I[are]

[the] (COMMON, DT, O O the] S[the] I[the]

[1 eadi ng] (UNKNOWN, VBG, O) (| eading] S[lead] I[leading]
[ causes] (COWON, NNS, O ( causes] S[caus] |[cause]

[of] (COMWDN, IN, O Jof] S[of] I[of]
[death] (COWDON, NN, O ( death] S[death] |[death]
[worl dwi de] (COWON, NN, O  worl dwi de] S[worldwi d] |[worl dwi de]

[and] (COMMON, CC, O ( and] S[ and]

I [ and]

[accordi ng] (UNKNOWN, VBG, O) { according] S[accord] |[according]
[to] (COWDON, TO, O (to] S[to] I[to]
[World] (UNKNOAN, NNP, ORGANI ZATI ON) {World] S[world] I[world]

[Heal th] ( UNKNOWN, NNP, ORGANI ZATI ON)  Heal th] S[heal th] I[health]
[ Organi sation] (UNKNOAN, NNP, ORGANI ZATI ON) ( Organi sation] S[organis] |[organisation]
[estimates] (COMMON, NNS, O) (O estimates] S[estin] |[estimate]

[will] (COMVON,MD, O Owill] S[wil
[Kill] (COMVON, VB, O Okill] S[kil

11 1[will]
11 1[kill]

[al most] (COWMON, RB, O (Jal nost] S[al nost] I[al nost]
[24] (UNKNOMN, CD, NUMBER) (0 24] S[lInvalid terni |[24]
[mllion] (COMMON, CD,NUMBER) O million] S[million] I[mllion]
S[ person] |[person]
[by] (COMMON, IN, QO Qby] S[by] I[by]
[2030] (UNKNOWN, CD, DATE) (0 2030] S[Invalid terni I[2030]

[ peopl e] (COWON, NNS, O ( peopl €]

(-]

New sentence ID 2

( ROOT
(s

(NP
(NP (DT The) (JJ netabolic) (NN syndrone))

G o))
(VP (VBN associ at ed)
(PP (IN with)

(PUNCTUATION, ., O) O[.] S[Invalid tern I[.]

(Format: ID, token, type of word, POS tag, NER tag,

Syntactic tree for sentence #2

(on which to determine POS taggs and NP

groups)

Appendix

Page | 155



(NP
(NP (DT an) (VBN increased) (NN risk))
(PP (IN of)
(NP
(NP (NN type) (CD 2) (NN diabetes))
(CC and)
(NP (JJ cardiovascular) (NN disease)))))))
G )
(VP (VBZ affects)
(PP (I N about)
(NP
(NP (CD one) (NN fifth))
(PP (IN of)
(NP
(NP (DT the) (NN world) (PCS 's))
(NN adult) (NN population))))))

G

det (syndrone-3, The-1)

anod(syndrone-3, metabolic-2) Dependency tree for sentence #2
nsubj (af f ect s- 18, syndrone- 3)
part mod(syndrome-3, associ at ed- 5) (on which to calculate the Influence Matrix)

det (risk-9, an-7)

anod(risk-9, increased-8)

prep_wi th(associ ated-5, risk-9)

nn(di abet es-13, type-11)

num(di abet es-13, 2-12)

prep_of (risk-9, diabetes-13)

anod(di sease- 16, cardi ovascul ar-15)

prep_of (risk-9, disease-16) Token list for sentence #2
conj _and(di abet es-13, di sease-16)

num(fifth-21, one-20)
prep_about (af fects-18, fifth-21) (Format: 1D, token, type of word, POS tag, NER teg,

det (wor | d-24, the-23) original token, stem, singular form)
poss(popul ati on-27, worl d-24)

nn( popul ati on-27, adult-26)
prep_of (fifth-21, popul ation-27)

T2000 [ The] (UNKNOWN, DT, O (d The] S[the] I[the]

T2001 [netabolic] (UNKNOMWN, JJ, O (J netabolic] S[netabol] |[netabolic]
T2002 [syndrome] (COWDON, NN, O { syndrone] S[syndrone] |[syndrone]
T2003 [,] (PUNCTUATION,,,O (,] S[lnvalid term I[,]

T2004 [associ ated] (UNKNOMN, VBN, O ( associ ated] S[associ] |[associated]
T2005 [with] (COWON, IN O gwith] S[with] I[wth]

T2006 [an] (COMMON, DT, O dan] S[an] I[an]

T2007 [increased] (UNKNOMN, VBN, O (Jincreased] S[increas] |[increased]
T2008 [risk] (COWON, NN, O Qrisk] S[risk] I[risk]

T2009 [of] (COWON, IN, O Jof] Sof] I[of]

T2010 [type] (COMMON, NN, O Jtype] S[type] I[type]

T2011 [2] (UNKNOWN, CD, NUMBER) 2] S[lnvalid tern] 1[2]

T2012 [di abetes] (UNKNOMW, NN, O ( di abetes] S[diabet] I[diabete]

T2013 [and] (COMMON, CC, O (J and] S[and] |[and]

T2014 [cardi ovascul ar] (COWON, JJ, O ( cardi ovascul ar] S[cardi ovascul ar] |[cardi ovascul ar]
T2015 [di sease] (COWMMON, NN, O ( di sease] S[diseas] |[disease]

T2016 [,] (PUNCTUATION,,,O (,] S[lnvalid ternm I[,]

T2017 [affects] (COMON, VBZ, O (affects] S[affect] I[affect]

T2018 [about] (COWON, IN, O ( about] S[about] I[about]

T2019 [one] (COWMON, CD, NUMBER) J one] S[on] |[one]

T2020 [fifth] (COMMON, NN, O (fifth] S[fifth] I[fifth]

T2021 [of] (COWON, IN, O gof] Sof] I[of]

T2022 [the] (COWON, DT, O dthe] S[the] I[the]

T2023 [world] (COMMON, NN, O gworld] S[world] |[world]

T2024 ['s] (PUNCTUATION,PCS, O O's] S[Invalid term I["]

T2025 [adult] (COWON, NN, O (adult] S[adult] I[adult]

Appendix Page | 156



T2026 [popul ation] (COMMON, NN, O ( popul ation] S[popul] |[popul ation]
T2027 [.] (PUNCTUATION,.,O O.] S[Invalid ternm I[.]

Tokens that can be merged are merged (ex: “World”, “Hedth” and “Organization” are
merged into a single String Entity “World Health Organization”). Based on the dependency
trees for every sentence, the asimetric influence matrix is created:

I nfluence Matrix: (ROWSubject) has property (COLUMN (bject)

hea dis str cau dea wr Wr est per syn ris typ dia dis wor adu pop
heart 0.1 0.1 01 01 01 01 01 01 0 0 0 0 0 0 0 0
di sease 1 --- 1 01 1 1 1 1 1 0 0 0 0 0 0 0 0
stroke 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0
cause 009 1 09 --- 1 09 09 09 0 0 0 0 0 0 0 0
deat h 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0
wor | dwi de 0.1 0.1 01 01 1 0.1 0.1 01 0 0 0 0 0 0 0 0
World Hea 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0
estimate 0.1 0.1 0.1 0.1 0.1 1 1 0 0 0 0 0 0 0 0
per son 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0
syndr one 0 0 0 0 0 0 0 0 0 0.9 0.1 0.1 01 1
ri sk 0 0 0 0 0 0 0 0 0 0.1 1 09 01 01 0.1
type 0 0 0 0 0 0 0 0 0 01 0.1 0.1 0.1 0.1 0.1
di abet es 0 0 0 0 0 0 0 0 0 01 01 1 1 01 01 0.1
di sease 0 0 0 0 0 0 0 0 0 01 0.1 0.1 0.1 0.1 0.1
wor | d 0 0 0 0 0 0 0 0 0 01 0.1 0.1 0.1 - 0.1 0.1
adul t 0 0 0 0 0 0 0 0 0 01 0.1 0.1 01 01 --- 0.1
popul ati on 0 0 0 0 0 0 0 0 0 01 0.1 0.1 0.1 1 1 ---
The matrix shows the influence of each entity on every other. For example the influence of
“heart” on “disease” in the first sentence is 1.0 because “disease’ is determined by “heart”
(ex: Question: what type of disease? Answer: A heart disease. Thisiswhat is meant by the
influence of an entity over another)
conput el nfl uence for di sease-4 - heart-3
Dependency val 1.0 direct link for nn(disease-4, heart-3)
while “hearth” is not determined by “disease” and therefore receives the context score of
0.1.
Next, each String Entity (single or multiple joined tokens) gets assigned a number of
possible classes from the YAGO ontology. The assignation process was described in
section V.4.2.1. For example, String Entity “heart” gets the following probable canonic
entity set PCEgeneqrt CONtaining 33 items:
wor dnet _heart _val ve_105395098, wordnet _heart_val ve_103507857,
wor dnet _bul | ock' s_heart 111694866, wordnet bul | ock' s_heart_ 107761461,
wor dnet _heart _bl ock_114362593, wordnet _|ine_of _heart_ 113906936,
wor dnet _bl eedi ng_heart 111910271, wordnet _heart _di sease_114103288,
wor dnet _bi auri cul ate_heart 105389310, wordnet heart 104857490,
Appendix Page | 157



wor dnet _heart _attack_114112855, wordnet_heart_failure_114112255,

wor dnet _broken_heart _107534847, wordnet_val vul ar _heart _di sease_114112466

wordnet _artificial_heart_102745492, wordnet_heart _rurnur_114334814, wordnet heart 105388805,
wor dnet _congeni tal _heart_defect_ 114469014, wordnet_bl eedi ng_heart 109859818

wor dnet _heart 104624826, wordnet heart 105919263, wordnet heart 113865904,

wordnet _heart 107651905, wordnet heart 103507048, wordnet_athl ete's_heart 105389182

wor dnet _congestive_heart_failure_114112719, wordnet_heart_surgery_ 100675219

wor dnet _heart _cherry_112642435, wordnet _heart_cherry_107757602,

wor dnet _arti choke_heart 107718920, wordnet _rheumati c_heart_di sease_114142983

wor dnet _heart _urchin_102319829, wordnet _coronary_heart _di sease_114102631

As a side comment, out of the 33 entities we can spot 7 wor dnet _heart _# (underlined).
In this scenario we are interested in wor dnet _heart 107651905 (marked with italics)
which WordNet describes as: (n) heart, pump, ticker (the hollow muscular organ located
behind the sternum and between the lungs; its rhythmic contractions move the blood
through the body) "he stood still, his heart thumping wildly", being actually the second
most used sense for the word “heart”. However, the computer does not know at this time
which, if any, Canonic Entity is the correct choice.

Next, the Operational Graph is created. Initially the Operational Graph consists of only the
WordNet hypernym graph to which every possible Canonic Entity of every String Entity is
added (even if it forms a disconnected graph). Next, a breadth-first search is performed on
the YAGO graph starting from the just added Canonic Entities to a maximum depth of 3,
adding encountered neighbors and edges.

Separately, Process Groups are created using a flood-fill algorithm on the influence matrix.
From this point forward each Process Group is treated separately as they are al
independent.

We consider Process Group #1 as the group containing the entities of the first sentence.

At this point, we need to create the N-partite graph for this Process Group. For sentence 1
we have 9 String Entities so N = 9. Starting at every Canonic Entity belonging to every
String Entity, a breadth-search is performed on the Operational Graph to see what other
Canonic Entities of interest are in the neighborhood. For example, from the entities
belonging to String Entity “heart”, starting from wor dnet _heart _murnur 114334814
we reach wor dnet _di sease_114070360. To this link we assign a score (described in
sections V.4.3.1. and V.4.3.3.) based on the distance, influence and types of relations
between the two end-point entities.

wor dnet _heart _murmur_114334814 -> wordnet _di sease_114070360 [ 1003] 1:2
infl: 0.1 score: 0.05 wordnet _disease 114070360 [isPart O]
wor dnet _synpt om 114299637 [subd assOf] wordnet _heart _murnur_114334814

Also starting from the other endpoint we find:

Appendix Page | 158



wor dnet _di sease 114070360 -> wordnet heart nurnur_ 114334814 [1002] |:2
infl: 1.0 score: 0.5 wor dnet _heart _murnur 114334814 [ subd assOf ]
wor dnet _synpt om 114299637 [isPart Of] wordnet _di sease_114070360

Using this process paths are found between Canonic Entities of interest. Every time such a
path is added an edge is created in the N-partite graph. In this example, the undirected edge
between wor dnet _heart _nmurnur 114334814 and wordnet di sease_114070360
will have a score of 0.55 (0.05 + 0.5). Only paths between Canonic Entities belonging to
different String Entities (partitions) are added.

Next, the Linker Algorithm is run (described in section V.3.). After step 3 of the algorithm
we have the following Result Sets (only the first 3 are shown):

RS1 : 1.25
heart [1002]: wordnet_heart _rurnur_114334814 (33)
di sease [1003]: wordnet _di sease_114070360 (51)
stroke [1005] : ANY (16)
causes [1009]: wordnet _probabl e_cause_105824514 (9)
deat h [1011]: ANY (29)
wor | dwi de [1012]: ANY (0)
Wirld Health Organisation [1018]: ANY (1) [Worl d_Heal t h_Organi zati on]
estimates [1019]: ANY (4)
peopl e [1025]: ANY (42)
RS2 : 1.1
heart [1002]: wordnet_heart_di sease_114103288 (33)
di sease [1003] : wordnet _cardi ovascul ar _di sease_114057371 (51)
stroke [1005] : ANY (16)
causes [1009]: ANY (9)
deat h [1011]: ANY (29)
wor | dwi de [1012]: ANY (0)
Wirld Health Organisation [1018]: ANY (1) [Worl d_Heal t h_Organi zati on]
estimates [1019]: ANY (4)
peopl e [1025]: ANY (42)
RS3 : 0.7333333333333333
heart [1002]: wordnet_heart _rurnur_114334814 (33)
di sease [1003]: wordnet _bl ood_di sease_114189204 (51)
stroke [1005]: wordnet _i schem c_stroke_114166358 (16)
causes [1009]: ANY (9)
deat h [1011]: ANY (29)
wor | dwi de [1012]: ANY (0)
Wirld Health Organisation [1018]: ANY (1) [Worl d_Heal t h_Organi zati on]
estimates [1019]: ANY (4)
peopl e [1025]: ANY (42)

We then run step 4 or the Linker Algorithm which is supposed to merge non-overlapping
Result Sets. In this case, no improvements are found.

This output is the result of the GER system. It has the String Entities on the left side, their
ID in sguare brackets and then the suggested Canonic Entity. Following the canonic entity
is the number of Canonic Entities it had to choose from (how large the PCEs of each
String Entity is). When there is just one possible Canonic Entity, like in the case of “World
Health Organization”, the corresponding entity is shown in square brackets but unless there

Appendix Page | 159



is evidence to support it (connecting links in the graph) it is not selected by default, instead
the system preferring to say it does not know.

The highest scoring Result Set of this example (score 1.25) can be analyzed as follows:

For String Entity “heart” it has missed the intended result wor dnet _heart 107651905,
instead choosing wor dnet _heart _nurnur 114334814 because of the strong link to
wor dnet _di sease_114070360. Interestingly, consulting the debugging log of the
system, there is no path (of length equa or less than 3) from
wor dnet _heart _107651905 to any other Canonic Entity. Because of the structure of the
WordNet hypernym tree, in this scenario, there was no way for the system to discover to
correct Canonic Entity.

For String Entity “disease’ it has chosen the correct Canonic Entity. However this choice
was made on the partially wrong path to wor dnet _heart _nmurnur _114334814.

For the String Entities “stroke’, “death”, “estimates’ and “people” the GER system did not
find any information path so did not know what Canonic Entity to choose from.

For String Entity “worldwide” the system did not find any possible Canonic Entity that
could represent it. This happens for words unknown to WordNet or YAGO, or if the
cleaning step of the Canonic Entity assignation procedure cleans out all the Canonic
Entities.

Last, for String Entity “World Health Organization” even though its PCEs only contains
one entity Wor | d_Heal t h_Or gani zat i on (which is actually the correct one), because it
does not find any information path, it prefers not to choose it.

Overal, in respect to the way we defined accuracy for the GER system, for this sentence
the system would receive a score of 1/9 = 11% accuracy, for correctly matching only one of
the 9 interesting String Entities.

Moving on to the second sentence:

Sentence 2. “The metabolic syndrome, associated with an increased risk of type 2
diabetes and cardiovascular disease, affects about one fifth of the world's adult
population.”

Before discussing the results for the second sentence, it is interesting to note that because
“metabolic” and “cardiovascular” are seen as adjectives (*JJ’ part-of-speech tag) they are
not included in the analysis even though for us, humans, they are relevant.

Appendix Page | 160



The same steps as for the first sentence are taken to create the N-partite graph based on the
Operational Graph. The Linker Algorithm is run (here N = 8). We present two Result Sets
after step 3 of the algorithm:

RS1 : 0.9833333333333334

syndr onme [2002] : ANY (15)

risk [2008]: ANY (4)

type [2010]: ANY (14)

di abet es [2012]: ANY (5)

di sease [2015]: ANY (51)

wor | d [2023]: wordnet_worl d_102472987 (16)

adul t [2025] : wordnet _adult 109605289 (7)

popul ati on [2026] : wordnet _popul ati on_108179879 (9)
RS4 : 0.65

syndr onme [2002]: wordnet _syndronme_114304060 (15)

risk [2008]: ANY (4)

type [2010]: ANY (14)

di abet es [2012]: wordnet _di abetes_114117805 (5)

di sease [2015]: wordnet_genetic_di sease_114151139 (51)

wor | d [2023]: ANY (16)

adul t [2025]: ANY (7)

popul ati on [2026] : ANY (9)

After running step 4 (merging non-overlapping Result Sets) we find that merging the first
RS and the forth RS is possible, as they are non-overlapping, summing the fina score
accordingly and producing the highest Result Set possible:

RS1 : 1.6333333333333333

syndr one [2002] : wordnet _syndrone_114304060 (15)

risk [2008]: ANY (4)

type [2010]: ANY (14)

di abet es [2012] : wordnet _di abetes_114117805 (5)

di sease [2015]: wordnet_genetic_di sease_114151139 (51)
wor | d [2023]: wordnet_worl d_102472987 (16)

adul t [2025] : wordnet _adult 109605289 (7)

popul ati on [2026]: wordnet _popul ati on_108179879 (9)

This Result Set can be interpreted as follows:

String Entity “syndrome” has chosen wordnet _syndrone_114304060 correctly,
identifying it as a pattern of symptoms indicative of some disease, the second most
common sense of syndrome in WordNet.

String Entities “risk” and “type” were not identified.

String Entities “diabetes” was correctly identified as wor dnet _di abet es_114117805.
The length 2 information path to disease is the following:

wor dnet _di abetes_114117805 -> wordnet _genetic_di sease_114151139 [2015]
[:2 infl: 1.0 score: 0.5 wordnet _genetic_disease 114151139 [subC assOf]

Appendix Page | 161



wor dnet _pol ygeni c¢_di sorder 114075199 [subd assOf ]
wor dnet _di abetes 114117805

String Entity “disease” was incorrectly identified as wor dnet _geneti c_di sease_
114151139. Even though wor dnet _genetic_di sease_114151139 is actually a sub
class of wor dnet _di sease_114070360 (the expected correct choice), for this sentence
specificity is not better because the sentence makes no reference to a genetic disease. The
information path linking “syndrome” to “ disease”:

wor dnet _syndronme_114304060 -> wordnet _genetic_di sease_114151139 [2015]
[:2 infl: 0.1 score: 0.05 wordnet_genetic_di sease_ 114151139

[subCl assOf] wordnet disease 114070360 [isPart O]

wor dnet _syndromnme_114304060

String Entities “world”, “adult” and “population” are the correct choices for this example.
Interestingly, out of the 16 possible Canonic Entities for “world”,
wor dnet _wor | d_102472987 was chosen.

wor dnet _popul ation_108179879 -> wordnet _worl d_102472987 [2023] |:2 infl:
1.0 score: 0.5 wor dnet _worl d_102472987 [i sMenber Of ]
wor dnet _peopl e_107942152 [subCl assO] wordnet _popul ati on_108179879

This presents some level of ambiguity, because of the 8 senses WordNet has for “world”
(included in the 16 possible Canonic Entities we assigned), the chosen sense was the
second, referring to the world as a group of people. While maybe the first sense of “world”
would have been better (world seen as everything that exists on earth), the second sense is
also correct; arguably, world seen as the physica Earth globe would also be correct,
captured in another Canonic Entity of the form wor dnet _wor | d_#. Soin this scenario we
have multiple correct answers.

The score for this Result Set is 5/8 = 62% correct, a quite good result considering the very
large search space available.

Overal, for the example document we had 1 correctly identified Canonic Entity out of 9 for
the first sentence/Process Group and 5 out of 8 for the second sentence/Process Group. The
overall accuracy is thus 6(1+5) / 17(9+8) = 35%. The scores for this example were
calculated using the strict method (first method presented in the evaluation section V.5 of
the system), meaning we considered only the first Result Set provided by the system and
any Canonic Entity that was not the expected Canonic Entity would be judged as a
mismatch.

Appendix Page | 162



	Résumé
	I. Introduction
	II. Information Extraction related tools, methods and techniques
	II.1. Text pre-processing
	II.1.1. Tokenization and sentence splitting
	II.1.2. Stop words
	II.1.3. Stemming
	II.1.4. Part-of-Speech Tagging

	II.2. Machine learning approach and tools
	II.2.1. Support Vector Machines
	II.2.2. Conditional Random Fields – Linear-chain CRF

	II.3. Parsers
	II.4. Coreference resolution
	II.5. General purpose corpora

	III. Knowledge acquisition and representation
	III.1. Ontologies as information repositories
	III.1.1. RDF – Resource Description Framework
	III.1.2. WordNet
	III.1.3. YAGO

	III.2. Information Extraction
	III.2.1. Open IE – TextRunner
	III.2.2. Canonic fact extraction – SOFIE


	IV. Entity recognition and word sense disambiguation for Information Extraction
	IV.1. Word Sense Disambiguation
	IV.1.1. Supervised Disambiguation
	IV.1.2. Unsupervised Disambiguation
	IV.1.3. Knowledge-Based Disambiguation
	IV.1.4. WSD Bounds
	IV.1.5. Evaluation metrics

	IV.2. Named Entity Recognition
	IV.2.1. Classification of NER Approaches
	IV.2.2. Named Entity detection and recognition techniques
	IV.2.3. Evaluation Metrics

	IV.3. General Named Entity Recognition

	V. A General Entity Recognition (GER) System
	V.1. System overview
	V.1.1. Architecture

	V.2. Formalization
	V.3. Proposed custom graph algorithm – Linker Algorithm
	V.3.1. Description
	V.3.2. Complexity analysis
	V.3.3. Experiments

	V.4. Integrating the Linker Algorithm into the General Entity Recognition System
	V.4.1. Module A - NLP Module
	V.4.2. Module B - String Entity Processor Module
	V.4.3. Module C - Canonic Entity Processor Module

	V.5. System evaluation
	V.5.1. Evaluation methodology
	V.5.2. Evaluation set and standard creation
	V.5.3. Testing the system

	V.6. Conclusions

	VI. A knowledge-based approach for document classification
	VI.1. Introduction
	VI.2. Domain Literature Review
	VI.3. System Implementation
	VI.3.1. Topic list creation
	VI.3.2. Processor Module
	VI.3.3. Analysis Module
	VI.3.4. Evaluator Module

	VI.4. Evaluation
	VI.5. Conclusion

	VII. Conclusions
	VIII. References
	Appendix

