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Abstract

Aggregated search or aggregated retrieval can be seen as a third paradigm
for information retrieval following the boolean retrieval paradigm and the
ranked retrieval paradigm. In the first two, we are returned respectively
sets and ranked lists of search results. It is up to the time-poor user to
scroll this set/list, scan within different documents and assemble his/her
information need. Alternatively, aggregated search not only aims the iden-
tification of relevant information nuggets, but also the assembly of these
nuggets into a coherent answer.

In this work, we present at first an analysis of related work to aggre-
gated search which is analyzed with a general framework composed of three
steps: query dispatching, nugget retrieval and result aggregation. Existing
work is listed aside different related domains such as relational search, fed-
erated search, question answering, natural language generation, etc. Within
the possible research directions, we have then focused on two directions we
believe promise the most namely : relational aggregated search and cross-
vertical aggregated search.

e Relational aggregated search targets relevant information, but also re-
lations between relevant information nuggets which are to be used to
assemble reasonably the final answer. In particular, there are three
types of queries which would easily benefit from this paradigm: at-
tribute queries (e.g. president of France, GDP of Italy, major of Glas-
gow, ...), instance queries (e.g. France, Italy, Glasgow, Nokia €72,

..) and class queries (countries, French cities, Nokia mobile phones,

..). We call these queries as relational queries and we tackle with
three important problems concerning the information retrieval and ag-
gregation for these types of queries.

First, we propose an attribute retrieval approach after arguing that
attribute retrieval is one of the crucial problems to be solved. Our
approach relies on the HTML tables in the Web. It is capable to
identify useful and relevant tables which are used to extract relevant
attributes for whatever queries. The different experimental results
show that our approach is effective, it can answer many queries with
high coverage and it outperforms state of the art techniques.

Second, we deal with result aggregation where we are given relevant
instances and attributes for a given query. The problem is particu-
larly interesting for class queries where the final answer will be a table



with many instances and attributes. To guarantee the quality of the
aggregated result, we propose the use of different weights on instances
and attributes to promote the most representative and important ones.
The third problem we deal with concerns instances of the same class
(e.g. France, Germany, Italy, ...are all instances of the same class).
Here, we propose an approach that can massively extract instances of
the same class from HTML lists in the Web. All proposed approaches
are applicable at Web-scale and they can play an important role for
relational aggregated search.

Finally, we propose 4 different prototype applications for relational
aggregated search. They can answer different types of queries with
relevant and relational information. Precisely, we not only retrieve
attributes and their values, but also passages and images which are
assembled into a final focused answer. An example is the query “Nokia
e72” which will be answered with attributes (e.g. price, weight, battery

life, ...), passages (e.g. description, reviews, ...) and images. Results
are encouraging and they illustrate the utility of relational aggregated
search.

e The second research direction that we pursued concerns cross-vertical
aggregated search, which consists of assembling results from different
vertical search engines (e.g. image search, video search, traditional
Web search, ...) into one single interface. Here, different approaches
exist in both research and industry. Our contribution concerns mostly
evaluation and the interest (advantages) of this paradigm. We propose
4 different studies which simulate different search situations. Each
study is tested with 100 different queries and 9 vertical sources. Re-
sult are interesting. We could clearly identify new advantages of this
paradigm and we could identify different issues with evaluation setups.
In particular, we observe that traditional information retrieval evalu-
ation is not the fastest but it remains the most realistic.

To conclude, we propose different studies with respect to two promising
research directions. On one hand, we deal with three important problems of
relational aggregated search following with real prototype applications with
encouraging results. On the other hand, we have investigated on the interest
and evaluation of cross-vertical aggregated search. Here, we could clearly
identify some of the advantages and evaluation issues. In a long term per-
spective, we foresee a possible combination of these two kinds of approaches
to provide relational and cross-vertical information retrieval incorporating
more focus, structure and multimedia in search results.



Résumé

La recherche d’information agrégée peut étre vue comme un troisieme
paradigme de recherche d’information apres la recherche d’information or-
donnée (ranked retrieval) et la recherche d’information booléenne (boolean
retrieval) . Les deux paradigmes les plus explorés jusqu’a aujourd’hui re-
tournent un ensemble ou une liste ordonnée de résultats. C’est a l'usager
de parcourir ces ensembles/listes et d’en extraire I'information nécessaire
qui peut se retrouver dans plusieurs documents. De maniere alternative, la
recherche d’information agrégée ne s’intéresse pas seulement a l’identification
des granules (nuggets) d’information pertinents, mais aussi a ’assemblage
d’une réponse agrégée contenant plusieurs éléments.

Dans nos travaux, nous analysons les travaux liés a la recherche d’information

agrégée selon un schéma général qui comprend 3 parties: dispatching de

la requéte, recherche de granules d’information et agrégation du résultat.
Les approches existantes sont groupées autours de plusieurs perspectives
générales telle que la recherche relationnelle, la recherche fédérée, la génération
automatique de texte , etc. Ensuite, nous nous sommes focalisés sur deux
pistes de recherche selon nous les plus prometteuses: (i) la recherche agrégée
relationnelle et (ii) la recherche agrégée inter-verticale.

e La recherche agrégée relationnelle s’intéresse aux relations entre les
granules d’information pertinents qui servent a assembler la réponse
agrégée. En particulier, nous nous sommes intéressés a trois types
de requétes notamment: requéte attribut (ex. président de la France,
PIB de I'Italie, maire de Glasgow, ...), requéte instance (ex. France,
Italie, Glasgow, Nokia €72, ...) et requéte classe (pays, ville francaise,
portable Nokia, ... ). Pour ces requétes qu’on appelle requétes relation-
nelles nous avons proposés trois approches pour permettre la recherche
de relations et l'assemblage des résultats.

Nous avons d’abord mis ’accent sur la recherche d’attributs qui peut
aider a répondre aux trois types de requétes. Nous proposons une ap-
proche a large échelle capable de répondre a des nombreuses requétes
indépendamment de la classe d’appartenance. Cette approche permet
I'extraction des attributs a partir des tables HTML en tenant compte
de la qualité des tables et de la pertinence des attributs. Les différentes
évaluations de performances effectuées prouvent son efficacité qui de-
passe les méthodes de 'état de 'art.

Deuxiemement, nous avons traité ’agrégation des résultats composés
d’instances et d’attributs. Ce probléme est intéressant pour répondre
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a des requétes de type classe avec une table contenant des instances
(lignes) et des attributs (colonnes). Pour garantir la qualité du résultat,
nous proposons des pondérations sur les instances et les attributs pro-
mouvant ainsi les plus représentatifs. Le troisieme probleme traité
concerne les instances de la méme classe (ex. France, Italie, Alle-
magne, ...). Nous proposons une approche capable d’identifier mas-
sivement ces instances en exploitant les listes HTML. Toutes les ap-
proches proposées fonctionnent a ’échelle Web et sont importantes et
complémentaires pour la recherche agrégée relationnelle.

Enfin, nous proposons 4 prototypes d’application de recherche agrégée
relationnelle. Ces derniers peuvent répondre des types de requétes
différents avec des résultats relationnels. Plus précisément, ils recherchent
et assemblent des attributs, des instances, mais aussi des passages
et des images dans des résultats agrégés. Un exemple est la requéte
“Nokia €72” dont la réponse sera composée d’attributs (ex. prix, poids,
autonomie batterie, ...), de passages (ex. description, reviews, ...)
et d’images. Les résultats sont encourageants et illustrent 1’utilité de
la recherche agrégée relationnelle.

e La recherche agrégée inter-verticale s’appuie sur plusieurs moteurs de
recherche dits verticaux tel que la recherche d’image, recherche vidéo,
recherche Web traditionnelle, etc. Son but principal est d’assembler
des résultats provenant de toutes ces sources dans une méme interface
pour répondre aux besoins des utilisateurs. Les moteurs de recherche
majeurs et la communauté scientifique nous offrent déja une série
d’approches. Notre contribution consiste en une étude sur I’évaluation
et les avantages de ce paradigme. Plus précisément, nous comparons
4 types d’études qui simulent des situations de recherche sur un to-
tal de 100 requétes et 9 sources différentes. Avec cette étude, nous
avons identifiés clairement des avantages de la recherche agrégée inter-
verticale et nous avons pu déduire de nombreux enjeux sur son évaluation.
En particulier, ’évaluation traditionnelle utilisée en RI, certes la moins
rapide, reste la plus réaliste.

Pour conclure, nous avons proposé des différents approches et études
sur deux pistes prometteuses de recherche dans le cadre de la recherche
d’information agrégée. D’une coté, nous avons traité trois problemes impor-
tants de la recherche agrégée relationnelle qui ont porté a la construction de
4 prototypes d’application avec des résultats encourageants. De 'autre coté,
nous avons mis en place 4 études sur 'intérét et I’évaluation de la recherche
agrégée inter-verticale qui ont permis d’identifier les enjeux d’évaluation et
les avantages du paradigme. Comme suite a long terme de ce travail, nous
pouvons envisager une recherche d’information qui integre plus de granules
relationnels et plus de multimédia.
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Chapter 1

Context, contribution and
layout

1.1 Context

Most of current Information Retrieval (IR) systems are instances of the
ranked retrieval paradigm i.e. in response to a query they return a list
of ranked documents that match the query. In general, the user looking
for relevant material browses and examines the returned documents to find
those that are likely to fulfill his need. If lucky, the user will find in this
list the document that satisfies completely his need. However, it is often
the case when one document alone is not enough i.e. the relevant infor-
mation is scattered in different documents. In this case, the user should
collect and aggregate the pieces of information coming from different docu-
ments to build the most appropriate response to his need. The continuous
advancement in Information Retrieval turns the ranked retrieval into a ques-
tionable paradigm. Today, it is possible to retrieve entire documents as well
as parts of documents. It is possible to retrieve textual documents as well
as multimedia documents. Let an information nugget be a generalization
of content of some granularity and multimedia format. Within the new
research questions that come up we can forward the following. Can these
different information nuggets be combined differently to increase IR system
utility? Can we provide more focused and coherent results? Is the ranked
list the best way to show search results? The alternative can be aggregated
search (aggregated retrieval) which corresponds to a new paradigm where
search results should not only be ranked but also assembled with each other.

The key problem which makes the aggregated search complex comes
mainly from the fact that the assembly of information is topic-dependent
i.e. aggregated results cannot be built a priori. Indeed, one cannot predict
and construct all possible combinations that can potentially answer the user
queries. The composition of information nuggets that meet the query con-

3



4 CHAPTER 1. CONTEXT, CONTRIBUTION AND LAYOUT

straints is made upon the query. This leads to several research questions
related to the identification of candidate information nuggets for aggrega-
tion, the definition of the properties and the theoretical framework that may
support the evaluation of the quality of an aggregated result.

The most well-known instances of aggregated search are met in the major
Web search engines. Since few, these search engines do not return uniform
lists of Web pages. They also include results of different type such as images,
news, videos, definitions, etc. The query “define brontosaurus” issued to
Googleﬂ is indeed answered with a definition, followed by a list of Web
pages. The query “brontosaurus” alone issued to Googleﬂ is answered with
a Wikipedia article, images and other Web pages. We can see that Web
search provides more focus and diversity in its results. To do so, major search
engines combine results from traditional Web search (Web page retrieval)
and vertical search engines (video search, image search, ...). We refer to
this approach as cross-vertical aggregated search (cvAS).

Current Web search represents initial effort towards aggregated search,
but they do not perform any explicit “assembly” of information. Documents
are just represented as bags of words and they are matched uniquely to the
user query. Consequently, retrieved search results are just a list of unrelated
items sometimes difficult to explore. It remains up to the user to select the
information he needs and to assemble it. Another form of aggregated search
that we define as relational aggregated search (RAS) relies on the hypotheses
that information can often be decomposed into smaller information nuggets
and information nuggets can be put in relation with each other. In literature
[35, 37], the term relational search is used to refer to Information Retrieval
based on classes (e.g. countries, cities, architects, ...), instances (France,
London, ...) and attributes (capital, GDP, ...). We generalize this term to
relational aggregated search (RAS) to refer to Information Retrieval based
on information nuggets and their relations.

From our perspective, cross-vertical aggregated search and relational ag-
gregated search are the most promising instances of aggregated search. Nev-
ertheless, aggregated search refers to a broad paradigm which can be instan-
tiated in different forms. We could identify related approaches in different
areas including question answering, natural language generation, focused
retrieval, object-level search, etc.

In this chapter, we introduce our work. We start with background knowl-
edge on relational aggregated search (section and cross-vertical ag-
gregated search (section . Then we provide an introduction to our
contribution. In the end of this chapter, we describe the thesis layout.

! August 2011
2 August 2011
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1.1.1 Relational aggregated search

Relational aggregated search is a simple paradigm which fits well within
aggregated search. It relies on the hypotheses that information can be split
into information nuggets and the latter can be related to each other. From
this perspective, the relational aggregated search should retrieve information
nuggets and their relations, which are to be used to coherently assemble the
final search result. Here, we distinguish some immediate research questions
that need to be answered : (i) how can we extract and relate information 7
(ii) which queries benefit more from this approach ? (%ii) how should results
be aggregated 7 We will briefly introduce each of these issues.

In this context, we distinguish three important extracts of information
namely classes (e.g. countries, French wines, US presidents), instances (e.g.
France, USA, Italy) and attributes (e.g. capital:Paris, area:674,843 km?,
demonym:French ...). For these extracts, relations are common and of-
ten implicit e.g. “capital:Paris” is an attribute of the instance “France” or
“France” is an instance of the class “countries”. These information extracts
can play a crucial role in relational aggregated search, because they are com-
mon in information and they have semantic relations with each other. How-
ever, there are many other relations that fit in this framework. Identifying
the ones that enables better search is one of the main issues in relational
aggregated search.

In order to clearly understand the utility of relational aggregated search,
we need to identify beforehand the queries that will benefit the most from
this approach. For illustration, we forward here 3 types of queries which can
be answered through this paradigm with clear benefits:

i. attribute query (“GDP of UK”, “address of Hotel Bellagio”)
ii. instance query (“Samsung Galaxy S”, “Scotland”, “Oscar Wilde”)

iii. class query (“Toshiba notebooks”, “British writers”)

Each of these queries can be answered differently. The result aggregation
process should be adapted consequently. When the query is specifically
asking for an attribute (i), the best choice can be returning its value right
away. When the query is an instance (%), the best choice can be a summary
of salient attributes (properties). When the query is a class of instances
(i), the result can be a comparative table of the class instances with their
attributes (names and values). The above are just some result aggregation
examples inspired from existing work [35].

Until now, relational search is enabled by information extraction tech-
niques [9] and mining within semi-structured data [36]. Existing techniques
can discover many information extracts and their relations. Nevertheless,
their use for information retrieval remains limited. Our goal in this work is
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to increase the recall of relational aggregated search in both terms of queries
that can be answered and relations and content that can be retrieved.

1.1.2 Cross-vertical aggregated search

Cross-vertical aggregated search is an example of aggregated search with
multiple sources. The sources include the traditional Web search engine
that retrieves Web pages, but also the vertical search engines (image search,
video search, news search, ...). Search with multiple sources has already
been addressed in federated search, meta-search, data fusion, etc. Still,
cross-vertical aggregated search represents a new research direction, because
it relies on heterogeneous sources with determined specialities. This has
several advantages: it adds more focus and diversity within search results; it
allows user to query multiple sources from one interface; it provides visibility
to vertical search engines, and so on [154] [123].

Research in cross-vertical aggregated search has taken three main direc-
tions: (i) source (vertical) selection, (7i) result aggregation and presentation
(i) interest and evaluation. We will detail briefly each of them below.

Querying multiple sources can introduce an important delay in query
answering time. Though, many of the existing approaches perform what is
known as source (vertical) selection to determine which sources are likely to
be useful. To do so, it is common to have a central representation of each
source, which can be quickly matched with the query. This representation
can be built based on query logs, samples of documents, etc. [14].

The retrieved results from multiple sources can be assembled in different
ways. Among these, there are two broad categories namely blended and un-
blended result aggregation [166]. The unblended approach consists in keep-
ing results from different sources in different panels. The blended approach
consists in ranking in the same panel results from all sources. The latter
approach has taken the lead in major Web search engines. Ranking results
with each other is not easy. The relevance scores from different sources are
not directly comparable, though new scoring functions are needed [12} [139].

Last but not least, evaluation of cross-vertical aggregated search remains
an open research question. Until now, different evaluation methodologies
have been undertaken for evaluating the effectiveness of cross-vertical aggre-
gated search. They tackle different issues such as source (vertical) selection
[14], 104 10§, result ranking [I3] and visualization interfaces [166}, 168, [173].
Although there is an increasing interest, evaluation remains an open prob-
lem, because until now there is no common agreement on evaluation mea-
sures and possible evaluation benchmarks. As well, it is not clear whether
we can generalize existing techniques to work well across heterogeneous ap-
proaches. In this work, we focus mainly on the interest and evaluation of
cross-vertical aggregated search.
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1.2 Contribution

This thesis presents a long journey within aggregated search. In particular,
we focus on two research directions we believe more promising concretely
relational aggregated search and cross-vertical aggregated search. Though,
our contribution forks in two parts, one per research direction. In the next
two sections, we present our contribution respectively for relational aggre-
gated search following and cross-vertical aggregated search.

1.2.1 Relational aggregated search

We define and formalize for the first time (at our knowledge) relational
aggregated search as an instance of aggregated search. To do so, we rely
on previous work in Information Extraction, object-level search and entity-
oriented search. Research in these directions in conjunction with information
Retrieval provides enough fluidity to envisage more focus and aggregation
for information retrieval. Our contribution accounts for the definition of
a relational framework, various approaches and research investigation. We
summarize our contribution through some key points and brief description:

e Instead of extracting offline information and relations, we present ap-
proaches for online retrieval of relations and information [93,96],97]. In
particular, we focus on attribute retrieval a novel and challenging prob-
lem which allows answering many queries in the context of relational
aggregated search. This approach allows relating instances and classes
to their attributes. In fact, we do not extract attributes through binary
“yes” /“no” classification, but we perform topical (query based) re-
trieval where we score each candidate relation with respect to relevance
scores. Concretely, we propose a recall-oriented approach to retrieve
attributes from HTML tables in the Web (probably the largest source
of relational data). Given an instance as a query, we first identify can-
didate relevant tables. Then, we apply 3 filters that tell respectively:
(i) is the table relational, (ii) has the table a header, (%ii) the confor-
mity of its attributes and values. Then, we rank candidate attributes
with a combination of relevance features. This approach is tested for
three different situations. First, we retrieve relevant attributes for one
given instance (e.g. “University of Strathclyde”). Second, we retrieve
attributes for a given class (e.g. “universities”) represented as a set of
instances. Third, we retrieve attributes for one instance when some
other similar instances are given (from the same class).

e After attribute retrieval, we propose our work on result aggregation
[98], one of the novel challenges in relational aggregated search. We
propose a weight-based framework to assemble relational aggregated
search results. In particular, we focus on the construction of tabular
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results for class queries (e.g. French wines, Macintosh laptops, Nokia
mobile phones, ...). The result will have instances in the first column
and their attributes (names and values) in rest of the columns. The
weights are given with respect to the importance/relevance of instances
and attributes.

e In addition, we propose our investigation for large-scale extraction of
lists of instances of the same class [91], 92], which are proven useful for
relational aggregated search. Typically, existing techniques identify
them passing by the class acquisition, but this process might miss
many of these lists. We propose an alternative approach that relies on
HTML lists where we avoid class acquisition.

e Finally, we show 4 relational aggregated search applications (proto-
types) built through our approaches. Three of the prototypes are
dedicated to one type of query each respectively attribute queries (e.g.
president of France, major of New York, ...), instance queries (e.g.
Eiffel Tower, France, New York, ...) and class queries (e.g. countries,
American cities, ...). The forth prototype can answer all three query
types while it can trigger a dedicated solution for each query type.
Moreover, within these prototypes we also introduce attribute value
retrieval, passage retrieval and image retrieval. This work is interest-
ing for two reasons: we show the components of relational aggregated
search from an application perspective as well as we show encouraging
results for relational aggregated search.

1.2.2 Cross-vertical aggregated search

Cross-vertical aggregated search has already a consecrated place within ag-
gregated search to the extent that it is often used as a synonym of aggregated
search [99] [14] 12]. However, its differences with federated search are not
clear. Our contribution in this direction concerns mostly the interest behind
this new paradigm and its evaluation.

e We propose a study [94] that investigates on the interest (advantages,
new issues) of cross-vertical aggregated search. Interest in this direc-
tion has been proved through analysis on query logs [14], 104, 154] or
user studies with broad tasks [166]. These studies rely on different
configurations and they only prove partially the interest behind cross-
vertical aggregated search. Our aim is to revisit them by exploiting
two definitions of relevance (by intent and by content) and two types
of queries (short text and fixed need). Our study targets the notion
of source relevance and the reasons why multiple sources can be rel-
evant at once: ambiguity, complementary results, different levels of
relevance, . ...
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e Our research targets evaluation issues, too. In fact, interest and eval-
uation are strongly related. We cannot compare different approaches
without identifying clearly their presumed advantages. Concretely, we
analyze differences among 4 different evaluation setups. Our study
identifies weaknesses and strengths of each approach for relevance as-
sessment.

1.3 Thesis outline

This work is divided in 5 parts. The first part (this part) contains the
introduction of this work. The second part is about background knowledge
and state of the art. The third and fourth parts present our contribution
respectively for relational aggregated search and cross-vertical aggregated
search. The last part is about conclusions and future work. In this section,
we will introduce the contents of each part.

e In part 2, we present background knowledge and state of the art. It
is composed of 4 chapters. Chapter [2| introduces the broad paradigm
of Information Retrieval. We describe a broad description of IR sys-
tems with the corresponding components. Then, we distinguish two
broad classes of approaches namely boolean retrieval and ranked re-
trieval. We argue on the limits of these paradigms before introducing
aggregated retrieval as an alternative and sound paradigm.

The state of the art of aggregated search in its broad conception is
provided in chapter We initially introduce a generic framework
which allows us to decompose the aggregated search problem and an-
alyze its approaches. Then, we list existing approaches using different
perspectives. Within the different research directions, we choose re-
lational aggregated search and cross-vertical aggregated search as the
most novel and most promising in research.

In chapter[d] we present relational aggregated search which is described
as a novel and promising instance of aggregated search. Here, we
list the existing related work in the cross-road of many areas such as
Information Retrieval and Information Extraction. In our discourse
we try to highlight the most important research issues.

Chapter[5]is about another important research direction, namely cross-
vertical aggregated search. We define it as a distinct of aggregated
which can be classed as multi-source aggregated search. Here as well,
we list the associated issues and related work.

e In part 3, we focus on our contribution for relational aggregated search.
This involves attribute retrieval, result aggregation, an extraction tech-
nique for lists of instances and 4 prototypes. This work is split in 4
chapters.
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In chapter [6] we focus on attribute retrieval, which is meant to be
crucial for relational aggregated search. For this problem, we include
the description of the approach, experimental setup and results.

In chapter [7] we consider attribute and instance retrieval as resolved
problems and we focus on result aggregation. We propose a weight-
based framework for this purpose which we experiment. We end this
chapter with results and conclusions.

A different and complementary work is presented in chapter [§l Here,
we investigate on lists of class instances already shown useful for rela-
tional aggregated search. We propose a technique for extracting them
at large scale without having to identify their class. This is accompa-
nied as well with experiments and results.

We end this part with prototypes that we could build using our re-
search. They are described in chapter[0] We propose 4 different proto-
types. We start with common issues and our solutions for each issue.
Then, we describe each prototype and its components.

In part 4, we present our research on cross-vertical aggregated search.
Here, we propose a study which targets interest and evaluation of cross-
vertical aggregated search. We start with our motivation. Then, we
describe the study that was setup consisting of 4 simulated evaluation
setups. The results are then analyzed to derive useful thoughts on the
interest and evaluation of cross-vertical aggregated search.

The last part is about conclusions and future work. This is done
separately for each of the two research directions (relational aggregated
search and cross-vertical aggregated search).
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Chapter 2

Boolean, ranked and
aggregated information
retrieval

Information Retrieval (IR) is finding material (information) within large
collections of documents (usually stored on computers) [I12]. An Informa-
tion Retrieval System (IRS) is built on top of one collection of documents to
facilitate information access, organization and storage [50]. The term search
engine is also used to refer to an IRS.

Information retrieval can help for whatever large collection of documents
of unstructured or partially structured data such as text, HTML documents,
XML documents, but also multimedia such as images, video, etc. The col-
lection can be a corpus of books, a corpus of news articles from one or more
news agencies, all pages of a Web site. The most illustrate example of IR
system is represented by Web search engines. They are used daily from most
Web surfers. Names such as Google, Yahoo!, Bing are popular to almost ev-
eryone. Their users write down what they are looking for in their own words
and these search engines return a list of results potentially useful (relevant).

In this chapter, we will initially define the common elements of IR sys-
tems as well as the components of the IR process. Then, we will define
boolean retrieval and ranked retrieval. Critics on these paradigms will be
used to support the definition of aggregated information retrieval.

2.1 Information Retrieval Process

The user of an IRS has a need for information that can be potentially found
in a collection of documents C. An information retrieval system (search
engine) is built on top of this collection to help the user satisfy his/her
needs for information. We can distinguish here three important components
of the IR process:

13
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Figure 2.1: The IR process simplified schema

e Indexing: The IRS indexes the collection to enable fast and efficient
information access

e Querying: The user expresses his/her information need in the form
expected from the IRS, usually a free-text query

e Query matching: Every query is matched with the documents in
the index

This process can be more complex than described, but we describe a
simplified view, which is also schematized in figure as a U-process [27].
The indexation process is not executed every time a query is issued. It is
generally executed once initially and every time the collection has important
updates. We will describe in the following sections each of these
components. This will allow us later to introduce the two broad information
retrieval paradigms namely boolean and ranked retrieval. The latter will be
described in section 2.2

2.1.1 Indexing

We cannot compare a query with every document in a collection as it would
be far too expensive in terms of computation time. This is easy to realize if
we estimate the answering time of Web search engines which are built over
several billions of documents. The users of these engines would have to wait
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for days or months for results. Search engines demand for multiple opti-
mizations to guarantee that the answer will reach their users in a reasonable
time with a reasonable quality.

An essential component of an IRS is the construction of an index of the
collection also known as indexing. The index is a large data structure which
contains data about the collection that enables fast and efficient querying.
Most indexes are built from the text within documents even when the target
of the IRS is images, videos, etc. In this section, we describe common
indexing of text, although for specific applications and data formats, indices
contain specific features such as image dimensions, video length, etc.

The most common form of index is the inverted index. The inverted index
is composed of a vocabulary and posting lists. The vocabulary contains all
terms extracted from documents retained as useful for information retrieval
purposes. Every term in the vocabulary is associated with a posting list
which tells in which documents the term appears. In other terms, instead of
having for every document a pointer towards the terms that appear within,
we keep an index of all terms pointing to the documents they appear in.

Documents need to be processed to extract only the targeted content
(text, images, videos). Then terms are extracted, processed and weighted
to build the index. The following steps are common in indexing text. They
are applied to documents, but also to queries.

e Extracting a normalized sequence of characters

e Tokenization

Stop-word removal

Normalization

Lemmatization and stemming

Term weighting

We describe next briefly each of these steps. Some of these steps can
be language-dependent. To illustrate, we will suppose English to be the
language of the indexed documents.

Extracting normalized sequence of characters: Documents need
to be processed to extract text as a sequence of characters. Concretely,
documents can have different formats such as pdf, Microsoft Word format,
HTML. Furthermore, the text can be in different encodings such as UTFS8
or ASCII. The goal is to remove all format specific structure and keep just
a linear textual sequence should in one predefined encoding.
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Tokenization: After transforming the document in a sequence of char-
acters, tokenization is applied. This corresponds to the task of chopping
this sequence into pieces (usually terms), also called tokens. Typically, to-
kenization is also associated with punctuation removal. The final result of
this step is a sequence of terms (tokens).

Stop-word removal: The presence of some terms can be of no statis-
tical importance for information retrieval. This is the case for very frequent
terms such as “the”, “an”, “a”, “of”. These terms are called stop words
and they are removed in most IRS-s. The removal of stop words has some
advantages and disadvantages. On one hand, it reduces significantly the in-
dex size helping answer queries more quickly. On the other hand, for some
queries the presence of stop words can be of vital importance. Let’s con-
sider the query “The Who” which refers to a famous rock band. In this case,
all the query terms can correspond to stop words. This might explain the
fact that some of the major Web search engines do not remove all stop words.

Normalization: Sometimes, we might want different tokens to match
each other. This is the case for words such as N.A.T.O and NATO, or US,
USA, U.S. and U.S.A. We call token normalization the task of grouping to-
kens that should match with each other in equivalence classes. For instance,
we can map both the tokens “semi-conductor” and “semiconductor” in one
of the two terms.

There are different ways to normalize. Above we mentioned some exam-
ples where it is enough to remove punctuation. Another way to normalize
is to reduce all letters in lower case also known as case-folding. We have to
be careful with case folding. If we meet Jaguar with the first letter in upper
case, it is likely to be the car make, while if we meet “jaguar” in lower case
it is more likely to refer to jaguar the animal. Classes of equivalence can
also include synonyms.

Lemmatization and stemming: The same word can be meet in differ-
ent forms. For instance, “computing”, “computes”, “computed” and “com-
putation” are all different syntactic forms of “compute”. It makes sense
to group words of similar meaning together, especially when they are just
grammatical transformations of each other. Stemming and lemmatization
are two well-known techniques that tackle this issue. Stemming is just some
heuristics which work well most of the times. It mainly consists of removing
some word endings (postfixes). On the other hand, lemmatization is more
precise, but demand more hard-coded rules. It corresponds to the removal
of inflectional endings to return the dictionary base of a word also known as
lemma. One of the most used techniques is the Porter Stemming algorithm
which is empirically shown to be very effective [142].
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Term weighting: For every term in its normalized, stemmed and/or
lemmatized form, indexing produces some statistics which are vital for fu-
ture scoring in the query match process. We list below some important
features/weights that are commonly stored in an index:

e term frequency (tf): The term frequency corresponds to the number
of times a term appears in a document.

e document frequency (idf): The document frequency corresponds
to the number of documents a term appears within. Usually, it is the
inverse document frequency that is used, because a term that appears
in many documents is unlikely to be discriminative.

e term location: It is also common to store the location of a term in
a document. This can be used to detect if two terms appear consecu-
tively in a document.

We presented above just a short summary of the steps involved in in-
dexing. The index is very important in the query matching process. The
document-query match is scored based on the statistical data stored in the
index.

2.1.2 Querying: Information need and queries

The concept of information need is at least as old as Information Retrieval
[152]. We can find early definitions in the work “The process of asking
question” [I7I] from Robert Taylor. The author studies the way individuals
obtain answers from information systems. One of the definitions he gives of
the information need is of an unconscious or conscious need for information
not existing in remembered experience.

In other terms, the information need exists in the presence of missing
knowledge. Individuals address IR systems when they suspect they might
find the needed information through them. Typically, they issue free-text
queries i.e. users write down their needs and they give them as an input to
the IRS. So far, the IR process is more difficult than that. The IRS user
should be aware that the quality of the retrieved results depends on the
query he issues. Most search engines deal better with short queries which
contain well-selected terms.

The input to a search engine does not be to be a textual query. For
instance, it can be an image and the returned result can be other similar
images. Nowadays, textual queries remain by far the most used. Most
information needs are expressed as free-text queries.

2.1.3 Query matching

In all IR systems, documents and queries are indexed and represented inter-
nally as a set of features. Most of the features are computed from the index.
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Typically, each term in a document can generate a feature, usually a real
number indicating the weight of the term within the document. The query
is also transformed into a set of features. These representations are also
known as internal representations (IREP) of the query and the document.

Because queries are usually quite short, it is also common to extend the
query with other related terms. This process is called query expansion. The
final feature representations of the query and the document are used for the
query matching process.

The result of the query matching process is pairs of documents and scores
where the score indicates the relative or absolute degree of presumed rel-
evance for the document with respect to the user’s information need. In
boolean IR models [I12], this score can be 0 or 1. The 0 score marks the
document as irrelevant and the 1 score marks the document as relevant.
This approach is obsolete in most of the IR applications today, because it
scores all relevant documents equally and it can often return 0 results. Cur-
rent IR models assign real value scores to documents. This allows ranking
documents with each other.

We will now present each of these two models accompanied with some
critics. We will then introduce aggregated retrieval.

2.2 Boolean and ranked retrieval

The different IR process can be instantiated in different ways. Within dif-
ferent approaches, we distinguish two broad paradigms that have been the
goal of research for many years namely boolean and ranked retrieval. The
main difference between these approaches is that boolean retrieval returns a
set of (unranked) documents and ranked retrieval returns an ordered list of
search results. Boolean represents the dominant model in the early times of
IR, while ranked retrieval has taken the lead in current times. We describe
below each of them.

2.2.1 Boolean retrieval

Boolean information retrieval dates back to the origins of IR [112]. In this
model, queries are expressed through boolean logic. For instance, the query
“New AND York” tells that we want both the terms “New” and “York” to
appear in the retrieved documents. The query “(London OR Paris) AND
NOT Berlin” would match documents that contain the terms “London” or
“Paris”, and none of retrieved documents will have the term “Berlin”.

In this model of IR, it does not matter how often a term appears in a
document, we are only interested in its presence within the document. A
document that contain the term “London” 20 times scores the same with
a document that contains the term “London” once. This approach has the
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advantage that it shows only documents that will match the query precisely,
but it has many other disadvantages. We will list below some of them.

First, sometimes it is difficult to know the exact words that will have
to appear in the documents as well as it difficult to guess the best logic
operators to connect these terms. In fact, most users of the boolean model
were expert users. The large audience does not necessarily master boolean
logic.

Second, the returned documents will have no order. If the list of returned
documents is long, one might prefer to access the documents which are more
likely to be relevant first. The lack of order affects both true negatives and
false negatives. In other terms, let’s take the query “Paris and London and
Berlin” where we want to compare these cities. The results which mention
these terms several times will score the same with the results which contain
each of these terms once. On the other hand, a document which contains
both “Paris” and “London”, but does not contain “Berlin” will score 0, the
same as other documents which do not contain any of the query terms.

Nowadays, pure boolean IR has turned to be obsolete for most IR appli-
cations. Existing techniques had to integrate some sort of ranking.

2.2.2 Ranked retrieval

Ranked retrieval [I12] allows users to issue free text queries i.e. they type
one or more words without any logic operators or other complex operators.
The main difference with boolean IR is that the output is a ranked list rather
than a set of documents. Here, we can always list results even when some
of the query terms are not present in the document. The ordering of the
results aims to keep relevant results on top. This corresponds to the ranking
principle. Robertson states that the optimal IR system should order results
by their probability to be relevant [146].

Typically, results are ranked by scoring functions which combine different
features generated from the query and the documents. Instead of the binary
presence of a term within a document, ranked retrieval models combine other
weights. Within them, two are the more popular namely term frequency
tf and the inverse document frequency idf. Features are also specific to
the IR model being used where we can mention vector space models [I51],
probabilistic models[147, B0], language models [140, 3], fuzzy models [26].

The next section presents some critics on traditional ranked retrieval.

2.2.3 Limits of ranked retrieval

The list of documents of the same format is not necessarily the best approach
for Information Retrieval. A survey on traditional Web search [22] shows
that users find relevant search results in the first page of results in 39.9%
of the cases and that only 21.2% of the interviewed find the results well
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organized. Below, we list some limits on the ranked retrieval paradigm from
different perspectives.

Data sparseness: The relevant information can be scattered in different
documents [123]. The ranked list for these cases is inadequate, because
the user has to scan within different documents to satisfy his informa-
tion need. This can be a time-consuming and burdensome process.

Lack of focus: Ranked retrieval approaches provide a ranked list of uni-
formly presented results. Typically, each result is a snippet composed
of the result title, a link to the document and a summary of the linked
document. But it is known that the beginning of a document is not
necessarily the best entry point [145]. For queries when the answer is
just a part of document, it might be better to return this part of docu-
ment right away. The uniform snippets do not have enough flexibility
for focused retrieval.

Lack of diversity: For some queries, search results should be diverse [47]
in both terms of content and presentation. The traditional ranked re-
trieval approach would provide a uniform presentation on all results.
The queries “images of Niagara Falls”, “videos of Niagara Falls” and
“Niagara Falls” would all be returned Web page snippets from tradi-
tional Web search. Ideally, the first two queries should be returned
respectively images and videos right away, while the third query can
be answered with diverse results (images, videos, Web pages, ...).
Ranked retrieval approach should account for diversity in both terms
of content and presentation. In fact, diversification of search results
has an increasing interest in IR research [45] §].

Ambiguity: Many queries can be ambiguous in terms of information need.
The reference example is Jaguar which can refer to a car, an animal,
an operating system and so on. Ideally, we should return one answer
per query interpretation [I61]. This can be multiple ranked lists or
linked sets of results.

2.3 Conclusion: Towards aggregated retrieval

In this chapter we presented the basic architecture of traditional IR sys-
tems with some details on their main components. Within the retrieval
approaches we distinguish two main classes namely boolean retrieval and
ranked retrieval. We listed on both of these paradigms many disadvantages
which proves interest towards new information retrieval paradigms. Within
these limits we highlighted data sparseness, lack of focus, lack of diversity
and ambiguity. This is sound motivation that tells for the need of new in-
formation retrieval paradigms. Aggregated retrieval represents one of the
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promising alternatives, because it can incorporate more focus, diversity as
well as flexible result assembly. We will describe “how” and “why” in the
next chapters.
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Chapter 3

Aggregated search

3.1 Introduction

Data sparseness, lack of focus and lack of diversity are just some of the lim-
itations of ranked retrieval. To whatever query, the user is returned a list of
documents. However, the user often needs just a small part of a document.
Even worse, his/her information need can be sparse in many documents.
In this context, it is reasonable to investigate for new information retrieval
paradigms. Among these, we distinguish a new research domain, namely
aggregated retrieval or aggregated search. This new paradigm concerns dif-
ferent ways of putting together search results. In other terms, aggregated
search considers that there are ways to put results together other than the
ranked list. If we see ranked retrieval as an extension of boolean retrieval
and if we consider ranked retrieval as traditional information retrieval, then
aggregated search is an extension of traditional IR, and we might classify IR
models as boolean retrieval models, ranked retrieval models and aggregated
retrieval models.

Major Web search engines already provide some form of aggregated
search. They do not return anymore only lists of Web pages. They also
include results of different type such as images, news, videos, definitions.
Let’s illustrate with some examples (some of them were already introduced
earlier). The query “define brontosaurus” issued to GoogleE] is indeed an-
swered with a definition which is followed by a list of results. For the query
“brontosaurus images”, we will find around 16 images followed by a list
of Web pages. On the other hand, the query “brontosaurus” alone issued
to Googleﬂ will be answered with a Wikipedia article, 4 images and other
Web pages. We can see that Web search provides more focused search re-
sults and that sometimes different results can be useful at the same time
(e.g. images, definitions, Wikipedia articles, etc.). To do so, major search

Thttp://www.google.com accessed in August 2011
Zhttp://www.google.com accessed in August 2011
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engines combine results from different search engines, Web search, video
search, image search, etc. From this perspective, it can be seen as a special
case of federated search [3§].

Although major Web search have introduced more focus and diversity
within search results, there is no explicit assembly of results. The query
“French red wines” is unlikely looking for a list of documents and it is dif-
ficult to find all needed information in one page. Adding images, videos
or news articles will not help. Alternatively, one can put together a list of
instances of French wines with their properties (attributes) such as color,
region, description, price, etc. The query “all about Nokia e72” also de-
mands for information from many documents. This can be a description, a
list of features, images, videos, but also reviews, ratings, news articles, etc.
Here assembly can be explicit because we are generating a new document
on “Nokia e72”.

The above examples are just meant to illustrate. Aggregated search can
be met in many other forms and applications. Depending on the application,
the content to be retrieved and be put together can vary in terms of granu-
larity (document, passage, sentence, phrase) and type (text, video, image).

The first definiton of aggregated search (AS) is met in a dedicated work-
shop in SIGIR 2008 [123|: Aggregated search is the task of searching and
assembling information from a variety of sources, placing it into a single
interface. From this perspective, an aggregated search system is built on
top of one or multiple search engines (sources).

We can decompose an aggregated search system into three main com-
ponents namely query dispatching (QD), nuggets retrieval (ND) and result
aggregation (RA). We will introduce them briefly here and then we will
detail later in a general framework.

Query dispatching: We use this term to refer to the process that
precedes retrieval (query matching). It includes the interpretation of the
query and the selection of the sources to be used. In aggregated search, we
use the term source to refer to a search engine that relies on at least one
collection and one search algorithm. The notion of source is important here,
because aggregated search systems can be classified as mono-source and
multi-source. When there are multiple sources, it is up to query dispatching
to select the sources to be used.

Nugget retrieval: As we mentioned earlier, we can retrieve content of
different granularity (sentence, passage, document, ...) and different type
(text, image, video, ...). To remain general, we introduce the information
nugget concept which enable us to generalize well across different instances
of aggregated searchlﬂ The term information nugget will refer to whatever

3The term “information nugget” has been used frequently in research to denote seman-
tic pieces of information [45] [62] [143] [1T] and in particular in question answering [88] [180],
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amount of data which can satisfy some information need. This can be a
document or a part of document. Though, an information nugget can be
a single word such as “Paris” when answering “capital of France”, but it
can also be a sentence, some sentences, a paragraph, a document, a link, an
image, a video, etc. The nugget retrieval corresponds to the identification
of the potentially useful information, but it does not involve their assembly.

Result aggregation: Given a set of potentially relevant information
nuggets, result aggregation corresponds to the assembly of these nuggets
into a final answer. Depending on the cases, this can involve summariza-
tion, ranking, clustering, .... We will provide a generalized view of result
aggregation actions in section [3:3.3

In the next sections, we will list the broad issues of aggregated search.
Then, we will detail the general framework for aggregated search composed
of nugget retrieval and result aggregation. Then, in section we will
provide an overview of aggregated search approaches from different perspec-
tives.

3.2 Issues

If we keep to the broad problem of aggregated search, we can list some of
the broad and important issues in this domain, although they might sound
a little abstract initially.

e Identify the type of answer the query demands for: In fact,
different queries can be answered differently. Some queries can be
answered with a single information nugget, some others with multiple
information nuggets. Queries such as “capital of France”, “BBC home-
page”, “height of Everest”, “definition of Brontosaurus” can be an-
swered with a single information nugget, while queries such as “French
wines by region”, “ratings of Nokia e€72”, “chinese restaurants in New
York”, and “all about Nokia €72” demand for multiple nuggets. We
can observe that the way information nuggets should be assembled
depends on the query. It becomes though important in aggregated
search to integrate more flexible query answering.

e Identify the components (information nuggets) of the final
answer: In aggregated search, we can retrieve information nuggets of
different granularity and different type. This enables more focus in the
final answer. It is not trivial though to identify the information nuggets
that should be used to compose the final answer. When should we use
part of a document instead of an entire document? When should we
use multimedia content (images, videos, ...)? When should we use

although without any common agreement on its meaning. Here, we give a general defini-
tion which suits also the context of aggregated search.
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specialized search engines (image search, video search, news search,
...)? This is one of the most difficult question in this domain.

o Assemble together the different information nuggets in a co-
herent aggregated document: Aggregated search can involve all
possible ways to assemble search results. This can be a summary, two
images and a definition, a relational table, etc. One of the targets of
aggregated search is to choose the best result aggregation given the
available search results. Whatever the final result might look like, it
has to be readable and coherent. The main question is how to assem-
ble and how to evaluate aggregated results with respect to the query
knowing that it is impossible to build a priori all potentially useful
combinations of results, i.e. this problem is topic-dependent.

3.3 A generic framework for aggregated search

As we discussed before, aggregated search can be met in different forms.
We have defined a general framework and conceptual schema that eases the
introduction of the components of aggregated search for whatever approach.

Figure presents a conceptual schema for the aggregated search pro-
cess. It tells that we can have more than one source. The query can be issued
across multiple sources to retrieve potentially useful information nuggets,
which is similar to federated search [38]. However, this is not a necessary
condition. Many aggregated search systems can be built with one source.
In both cases, retrieved information nuggets have to be assembled with each
other to provide the final answer to the user. This can be whatever sensed
organization of information (though not just the ranked list).

In the schema, we distinguish three important components for aggre-
gated search: query dispatching (QD), nuggets retrieval and result aggrega-
tion (RA). In this general conception, the aggregated search system adds
two additional steps to traditional retrieval namely query dispatching and
result aggregation, while nugget retrieval plays the role of the information
collector.

Let’s consider the query “visit Eiffel Tower” and an aggregated search
system which includes Web search, map (geographic) search, weather search,
image search and news search. The aggregated search system can select as
useful all these sources except of news search. It can issue the query “Eiffel
Tower” to map search, Web search, image search, while it can issue the
query “weather in Paris, France” to the weather search tool. All these steps
are done before any query matching and they correspond to what we call
query dispatching.

The nugget retrieval takes a query as an input and it returns a set of
information nuggets typically associated with matching scores. Some sources
return a ranked list of results while others return only precise matches. For
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Figure 3.1: Detailed schema of the aggregated search process

instance, the query “Eiffel Tower” if issued to map search, it will likely be
answered with one result. If it is issued to Web search, it will be answered
with many search results. The nugget retrieval can vary a lot. Generally
speaking, it corresponds to the query matching process on a given query
by one or multiple sources. It is the output of nugget retrieval that will be
used as input for result aggregation. Result aggregation has to deal with the
assembly of search results.
In the next section, we will describe each of the three components.

3.3.1 Query dispatching

Query dispatching precedes retrieval (query matching). It corresponds to
initial interpretation and treatment on the query. This involves different sub-
tasks: it can select the sources to send the query to; it can trigger a specific
solution; it can transform the query into one or more modified queries. We
distinguish 2 sub-tasks that fall in the query dispatcher’s responsability.

Source selection: Source selection is one of the most well-known prob-
lems in aggregated search. Given a set of sources, its goal is to select the
sources that are likely to answer the query. We will discuss this task more
in details when we will treat multi-source aggregated search.

Query decomposition: Some queries can be decomposed in two or
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more subqueries eg. “Paris museums and monuments” can be decomposed
into “Paris museums” and “Paris monuments”. If we are unable to find in
one page information about both Paris museums and monuments, we can
join the results of the two subqueries. We will call this kind of queries as
compound queries. The same information need can sometimes be expressed
with different queries which cannot be easily decomposed. eg “what to visit
in Paris”. Although query decomposition is one of the query dispatching
issues, it remains one of the most difficult problems in IR for some simple
reasons. Machines do not know the information need behind the query and
it is difficult to interpret or decompose queries expressed in human language.

3.3.2 Nuggets retrieval

Nugget retrieval is situated between query dispatching and result aggrega-
tion. It takes as input a query and it returns a set of potentially relevant
information nuggets. Generally speaking, this process involves at least one
collection of documents and at least one query matching process. This pro-
cess can vary a lot depending on the type of content being retrieved and the
query matching approach. We will enumerate here some of the main classes
of approaches.

We can retrieve entire documents or parts of documents. This corre-
sponds to document retrieval and focused retrieval respectively [61], [83] 175,
137, 138]. The retrieval process also depends on the multimedia type (text,
image, video, ...). We can distinguish here textual retrieval and multime-
dia retrieval [I03]. Some search engines such as Web search engines retrieve
content of heterogeneous type (Web pages, images, news articles, videos,
pdf files, ...). When the one-size-fits-all solution does not work well, it is
common to derive vertical search solutions which are specialized on a media
type, query type, task, result type, etc. We can see that there are many
different ways to retrieve information nuggets.

Nugget retrieval can also involve multiple sources. This has been an
intensive area of research for at least two decades. It starts with federated
search (Distributed Information Retrieval) [38] in the context of distributed
data collections (hidden Web, databases, etc). Then, it has evolved into new
areas such as meta-search [162] and more recently into cross-vertical aggre-
gated search. The latter represents the most succesful class of approaches
and it is applied by almost all major Web search engines. To distinguish
between these approaches it is important to have a clear definition of source.
The terminology in literature is a little messy as terms such as search engine,
resource, collection are often used as synonyms. We recall that we prefer
using the term source to refer to a search engine or a component of a search
engine that uses at least one collection and one search algorithm. This en-
ables us to classify multi-source retrieval approaches such as meta search
[156} 113, 162], federated search [38], 66], data fusion [I8T], 191 192} 23| (6],



3.3. A GENERIC FRAMEWORK FOR AGGREGATED SEARCH 29

mashups [67, [144] and cross-vertical aggregated search [14 53] 123, 166, [95].
We will describe them more in details in section [3.4

To conclude, we can say that the nugget retrieval output depends on the
type of sources and the number of sources being used. This affects the focus
and the diversity within retrieved information nuggets.

3.3.3 Result aggregation

Result aggregation starts from the moment we have a set of potentiall rele-
vant information nuggets for a given query with or without relevance scores.
Ranked retrieval approaches just show these results ranked by relevance, but
there are many other ways to assemble results with each other.

Result aggregation can be done a posteriori (i.e at query time) or a
priori (i.e. the query is not known yet) [90]. A priori result (content)
aggregation would decrease the query response time, while the a posteriori
approach would allow more flexibility. In general a priori result aggregation
is not easy. First, it is impossible to generate all possible useful answers.
Alternatively, we can generate all combination of results. Let nq, ng...n,, all
information nuggets that can be identified within a collection. There are
2™ — 1 ways to put together these nuggets. Even if we limit the maximum
number of nuggets in an aggregated document to be p we would have (7;)
ways to assemble results. We can see that the result space can explode
exponentially if we perform a priori aggregation of content. To avoid the
explosion of the answer space, most of the aggregation is done a posteriori,
although some content can be aggregated offline at indexing time to enable
faster answering time.

Due to a survey we did on different instances of aggregated search [95],
we identified several techniques that help assembling search results. Within
these techniques there are 4 basic actions that concern most result aggre-
gation approaches. They are sort, group, merge and split/extract. We will
detail each of them below.

e Sorting: Given a set of information nuggets ni, no...n,, the sorting
action produces another list of nuggets n;, , ny,...n;,, where all elements
are ranked with respect to some feature. This feature can be relevance
scores, but also time, author, location, popularity scores, and so on.
Sorting can also take into account diversity and novelty of search re-
sults following the principle “A result should not only be relevant, but
also novel [33]”.

Although we mention that the goal of aggregated search is to go beyond
the ranked list approach, ranking (sorting) by relevance or by other
features remains one of the basic and most important actions that an
IRS can perform.
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e Grouping: Given a set of information nuggets ni, ns...n,, the group-

ing action produces groups (sets) of nuggets Gp,Go...G; where ele-
ments of the same group share some property. A group of results can
be composed of results with similar content, results that have hap-
pened in the same period in time, results with a common feature, and
SO on.

Among grouping approaches we can mention clustering |76} [190] and
classification [112] as special and illustrative cases. Clustering groups
set of documents/nuggets into subsets or clusters. The goal is to pro-
duce coherent clusters while keeping dissimilar content in distinct clus-
ters. In classification, we are given a set of pre-defined classes such as
for example “sport”, “economy”, “art” known also as labels or cate-
gories. The goal of classification is to associate documents to classes.
Its main difference with clustering is that each group has a pre-defined
label.

We can also mention here faceted search which includes grouping. In
faceted search [29], it is common to extract features/labels from the
collection and results are browsed based on common features of the
results such as year, author, etc.

Merging: We refer to merging as an action that takes a set of infor-
mation nuggets ni,ns...n,, and produces a new cohesive aggregation
unit (see figure [3.2). From this definition, merging is different from
grouping in that it produces one final grouped unit and not multiple
groups.

For instance, multi-document summarization [51, 115, 64, 120] is a
form of merging, which produces one new entity, the summary. Instead
of accessing multiple documents, a summary provides users a quick
insight of the available content. This is different from grouping, which
would not provide one final group but different groups. Typically the
summarized documents are sensed to relate to some topic or to each
other. That’s why some clustering might precede summarization [158].

More instances of this action can be met in section 3.4l Generally
speaking, merging can be seen as an aggregation step that aims pro-
viding more relevant and related information at once.

Splitting /extracting: Given some content, we can do the opposite
action of merging. We can decompose the content in other smaller
nuggets (see figure . The result of this decomposition can be one
smaller nugget or a set of smaller nuggets. Given some content n, the
result of extracting/splitting is a set of information nuggets ni, ns...npy,
with m > 1. Typically splitting produces total partition over the initial
content such that n;UnoU...Un,, = n. On the other hand, extracting
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Figure 3.2: A simple schema for merging

is more about identifying one or more semantically sound information
nuggets within the initial content.

Splitting /extracting is a fundamental action for result aggregation.
Suppose we want to put together all restaurant names in the city of
New York. We should be able to extract these names within documents
and then assemble them. Or let’s consider the query “Nokia e€72” and
let’s suppose that all relevant content resides in 2 Web pages d; and do.
Page d; contains the mobile phone’s specifications and other irrelevant
content. Page do contains images, videos and also some irrelevant
content. To build an ideal answer, we should be able to decompose
the Web pages d; and ds into smaller parts and then merge the relevant
information nuggets.

In the next section, we list different instances of aggregated search seen
from different perspectives. All of them can fit in the general framework,
although each approach has its pecularities.

3.4 Aggregated search from different perspectives

In this section, we will illustrate aggregated search instances from different
perspectives. Each of the perspectives corresponds to one research area or
the conjunction of multiple areas. This includes focus-oriented approaches
which concern question answering, natural language generation, relational
aggregated search as well as approaches where we assume the presence of
multiple sources such as federated search, meta-search, data fusion, mash-
ups, cross-vertical aggregated search. We end with some domain-specific
applications.
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Figure 3.3: A simple schema for splitting

3.4.1 Question Answering

Question answering (QA) adresses question-like queries and it aims focused
answers for them [88]. This involves detecting the type of query (question)
and then the type of answer to return. We can list some of the common
query types: factoid questions (who, when, where, ...), boolean (yes/no)
questions (i.e. Is Airbus based in Toulouse?), definition questions (what is .
. . ), list questions (Which are the names of the last 10 US presidents?).

For some queries, the answer can reside in one document. For instance
the query “Is Airbus based in Toulouse?” can be answered by some doc-
ument that contains the sentence “Airbus headquarters are in Toulouse.”.
In this case, the question answering system should say “yes” and prefer-
ably highlight the supporting question to the answer. In general, there can
be many candidate answers and many candidate supporting sentences. For
some queries, it is also necessary to identify multiple components for the
answer. This is the case for list questions or more complex questions such
as “why” and “how” questions.

In [121], Moriceau et al. combine syntactic information with QA tech-
niques. Their general approach is simple. They extract candidate answers,
which they associate with supporting passages. Each answer is then scored
and ranked. This work is particularly interesting because it discusses links
of QA with result aggregation. In particular, they highlight the need of
result aggregation to answer list questions, questions that can have multiple
answers, and complex queries (“how” and “why” queries). We state some of
these considerations. For “how” and “why” queries, the information is likely
to be sparse in multiple documents. For some other queries, it is necessary
to decompose the answering process. For instance, “What minister com-
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mited suicide” can be decomposed into “who did commit suicide” and “is
he/she a minister”. For such queries, information can be sparse in multiple
documents, too.

A different approach is presented in [I89] by Wu et al. Instead of re-
turning a list of documents to answer questions and instead of very focused
answers, they propose different intermediary approaches which can assist the
answering process. This corresponds to 5 different result aggregations: (i)
an abstract and a document; (7i) sentence fragments with keywords high-
lighted and a document; (i) an abstract with one document and other
related documents; (7v) sentence fragments and multiple documents; (v) a
set of paragraphs.

In QA, we can identify all broad components of aggregated search: query
dispatching, nugget retrieval and result aggregation. The first corresponds
to the detection of the question type and the question target. The second
correspond to sentence, passage or document retrieval. Third, it is needed
to extract semantic information from documents and assemble them in one
answer.

3.4.2 Natural Language Generation

Given an information need (usually a question), the goal of NLG is to gen-
erate an answer with the right information in an appropriate linguistic form
[130]. This can demand merging content from different documents. So far,
natural language generation addresses a limited range of information needs
and research focuses on application specific needs.

NLG perspective addresses issues such as the comprehensibility of the
answer [68], coherence, structure of the answer. McKeown [116] recognizes
the need of a prototypical structure for certain queries. Returned facts
can be organized based on some relationships. For instance, they can be
ordered chronologically, they can have a cause-effect relation, background
information is shown first and so on [134].

Paris et al. [132) 133, [I31] show benefits and application of natural
language generation approaches across different domains. In [I32], they use
discourse planning to generate automatically surveillance reports tailored
to various contexts and tasks. The document generation is considered as a
goal which can be decomposed in sub-goals represented through a discourse
tree. Nevertheless, the information need in this application is not explicit
(query), but implicit. In [133], authors use a similar approach for a traveling
application. In this work, they incorporate query-based search. The user
can indicate his target destination, but also some budget constraints. The
third application is called Scifly and it produces brochures on demand. The
users query is the name of an organisation and the result is a generated
brochure containing several text passages. The effectiveness of this approach
is evaluated through user studies.
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Instead of summaries, Szlavik et al [I69] aggregate content from different
documents which they show preceded by a table of contents. This approach
facilitates navigation, but it does not guarantee any coherence among the
assembled content.

Sauper et al. [I55] propose an approach to automatically generate
Wikipedia-like documents. They study the document structure for specific
classes of information such as diseases and actors from Wikipedig} The
learned document structure is then used to automatically build inexistent
documents for other instances of the class. For instance, for diseases it is
common to have sections on causes, treatment, symptoms. For a disease
which is not present in Wikipedia, a document with the same structure is
generated extracting information from the Web.

To summarize, natural language generation approaches also fall in the
general aggregated search framework. We can observe that queries can dis-
patch different solutions. It involves various nugget retrieval and result
aggregation.

3.4.3 Relational aggregated search

In this class of approaches, we place a generalization of relational search [35]
and entity-oriented search [19]. We consider it as a search paradigm that
relies on relations between different information nuggets. In addition to
nugget retrieval, relational aggregated search retrieves relations. The latter
can be precious for result aggregation.

To better understand this new paradigm, we will first present entity-
oriented search and relational search. The first one is more about retrieving
entities, while the second is more about retrieving their relations. The com-
bination of both enables what we call relational aggregated search.

¢ Entity-Oriented search

Named entities are common concepts which belong to categories such
as locations, person names, organisations, .... They are also called
class instances [9, 93]. They are particularly common in text and
queries. In a recent work, Kato et al. [87] found that about 71% of
the Web search queries contain named entities. Another recent study
[25] on query logs found that about 73% - 87% of the queries contain
named entities and that about 18% - 39% of the queries are named
entities. Given the importance of named entities and their frequent
occurrence in queries, there is an increasing interest in retrieving them
as well as retrieving content for them.

Instead of a list of documents, in entity-oriented search the result is a
list of entities [I9]. This is useful when we cannot name some entity

*http://en.wikipedia.org/
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(e.g. actor playing in Pretty Woman) or when we want to find related
entities (e.g. entities similar to Nokia e72).

From a broader perspective we can consider that information is aggre-
gated around entities. When we query about the entity, we can then
return a lot of concerning information about it. In literature, there
exist plenty approaches that take an entity as a query and return re-
lated content such as the Wikipedia homepage of the entity [19] 20],
images [170], social network profile of a person [195], etc.

In [24], authors define the notion of composite item to correspond
to the conjunction of an entity and related compatible entities. For
example, a user shopping for an iPhone can be presented as a com-
posite item containing the iPhone and a list of gadgets that match
the iPhone, all within the user’s budget. The approach is interesting
but authors do not focus much on the retrieval process rather than on
aggregation with given constraints.

Another name for entity-oriented search is object-level search [126]
125]. In the latter, the main target is to extract and assemble infor-
mation around an entity. The result of this aggregation is refered to as
object. This enables returning pre-built objects instead of documents.

e Relational search: In Information Extraction (IE), it is common to
extract and relate content from documents. Existing approaches can
extract named entities such as person names, locations, organisations,
etc., but also their relations such as “John” works for “Motorola”.
Information retrieval based on these extracts is also known as relational
search.

In [35], authors identify different types of queries that can be answered
with relational search. To illustrate we can give some examples such
as “French wines”, “capital of France”, “features of iPhone” [93]. The
first query can be answered with a list of instances (named entities).
The second query can be answered with an attribute value, while the
third can be answered by many attributes (name and value).

Relational search is enabled by information extraction techniques [9]
and mining within semi-structured data [36]. Existing techniques can
discover many information extracts and their relations. Nevertheless,
their use for information retrieval remains limited.

Because retrieving information nuggets and their relations is possible
and because this can enable flexible result aggregation, we consider rela-
tional aggregated search as one of the most promising research directions of
aggregated search. We will study in detail relational aggregated search in
chapter [
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3.4.4 Federated search

Most of the work in IR with multi-sources is classified as federated search
[18, 6, [79] also known as distributed information retrieval [38] or text database
discovery [66].

In federated search, instead of having one central collection indexed by
one search engine, there are many distributed collections each indexed by
a search engine. In figure we illustrate the difference between a feder-
ated search system and a simple search engine. In federated search as in
all multi-source aggregated search, query dispatching, nugget retrieval and
result aggregation are always present.

collection collection collection collection

/ ‘ / / /
index | index index index
/ -/ )/
algo | algo algo algo
result | result

Figure 3.4: Schema for a simple search engine and a federated search engine

For instance, in the FedLemur project [18], we are presented a federal
search engine that is built on top of statistical data issued from 100 US fed-
eral agencies. Instead of building a centralized collection which can quickly
get outdated, authors propose building local search engines in many dis-
tributed nodes (one per agency). The federated search system has to select
at query time the relevant sources, query them and assemble in one list the
results.

We can say that the collection of data C'is sparse in many sub-collections
C,Cq,...Cy such that C1|JColJ---JCy = C. For every collection C;
there is a source s; which is wrapped through some API. At query time,
the federated search system has to select the sources which are likely to be
useful for the query. To do so, local representations of significatly reduced
size of each collection are used. The obtained results from different sources
are then to be assembled with each other. Typically, the final answer is a
ranked list.

Although there is a significant amount of research in federated search,
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it has met little commercial success in its initial days. Federated search ap-
proaches with multiple distributed collections have not been show to produce
very significant improvement with respect to centralized approaches. Nev-
ertheless, they are commonly used when the sources are too heterogeneous
or when some collection is hidden behind some API.

3.4.5 Meta-search

Meta-search can be seen as an instantiation of federated search in the context
of Web search [99]. Initial meta-search engines used to wrap different Web
search engines with the goal of improving precision and recall of Web search
[156]. This was reasonable at the time because the indexes of the existing
Web search engines covered small fractions of the Web. Though, the chances
to have relevant results in another source were high.

I 77 &N
N/ N/

result
result

Figure 3.5: Schema for meta-search and data fusion

The sources in meta-search are typically black-box search engines which
receive queries and return a ranked list of results. The returned results
from different sources are then combined into one interface [156] 113], 162].
Typically results are sorted by source, but they can also be ranked with
each other in one list. In contrast with most federated search work, sources
can target the same task and collection. This is the case for Web search
meta-search engines which are built on several existing Web search engines,
each of them targeting “Web search queries”. A simple schema is shown in
figure [3.5] on the left.

Meta-search engines have not known a significant success. This can be
explained by the advancement in major Web search engines which have now
very huge indexes and well-performing algorithms. Furthermore, there are
important usage limits in Web search API-s giving meta-search few chances
to become competitive.
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3.4.6 Data fusion

The data fusion problem in IR is about finding optimal combinations of
search algorithms. The idea is that common ranking functions have their
weaknesses and strengths. One algorithm might work well for some query
and fail for another. The goal of data fusion is to combine different ranking
functions fi, fo, ..., fm in a new ranking function f'(f1, fo, ..., fm) that im-
proves global performance of ranking. The output of data-fusion algorithms
remains a ranked list. A simple schema is shown in figure [3.5| on the right.

The investigated approaches are quite rich. In [102], Lee combines dif-
ferent evidence through some heuristics. Its method remains one of the best
performing. Wu et al [I91] extends this work with the addition of weights
for the ranking functions. Montageu et al. treat data fusion as a voting
problem [I19]. The above is just some examples of various approaches for
data fusion.

Data-fusion can be seen as a multi-source AS problem if we consider
each ranking result as a different source of information. Data fusion is also
used as synonym of meta-search [56]. The main difference in meta-search
is that different sources can use different collections, while in data fusion
the collection is fixed and it is the combination of ranking functions that
matters.

3.4.7 Mash-up

Mash-ups represent an interesting approach which relates to the ways one
can interact with information systems and information retrieval systems.
They represent tools composed of several resources (search engines, databases,

..) assembled sequentially or paralelly (see figure . The output of one
or many resources is the input of another resource. Most of the mash-up
applications are domain specific and they are hard-coded [67].

query

o N

SOLICR:. source

Z %
%

source source

Y

result

source

Figure 3.6: Schema for mash-up
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Each resource is a blackbox which provides some API to enable querying
and result re-use. These resources can be search engines, but also databases
and other services. For instance, let’s have the yellow pages database as
well as an image search source. Given a person name P, we can generate an
SQL select query to retrieve personal details for P and through the image
search engine we can retrieve a list of images in some markup language
such as XML. The mash-up system can use the output of both resources to
generate a document similar to a visit-card.

Although mash-ups are quite promising, they need quite some integra-
tion effort and their applications are typically domain-specific. This is why
mash-ups are usually oriented toward expert users [67, [144].

3.4.8 Cross-vertical aggregated search

Cross-vertical aggregated search [14], (53, [123] [166] 05] deals with the aggre-
gation of search results from different vertical search engines. This is usually
done in a Web search context. A vertical search engine can be image search,
video search, news search, etc. Aggregated search allows users to query
different verticals and Web search from the same interface. We define as
cross-vertical aggregated search the task of searching and assembling infor-
mation from vertical search engines and Web search. A simple schema is
shown in figure [3.7]

/ Web
image collection news collection
index index index
alge algo algo

Sl

result

Figure 3.7: Schema for cross-vertical aggregated

Cross-vertical aggregated search provides more visibility to vertical search
engines and it integrates its advantages within Web search. A vertical search
result can often be better than the Web search result. Furthermore, some-
times the relevant content can be sparse in different sources. For instance
“Inception movie” can be answered with news, videos, images, wikipedia
article, its homepage, etc. From this perspective this research direction rep-
resents an interesting case study for query dispatching, nugget retrieval and
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result aggregation. The vertical search engines can be assigned specific tasks
and the final result can be more than a list of nuggets.

Cross-vertical aggregated search is met in literature as instance of both
federated search[0] and meta-search [70]. Nevertheless, since the definition
of aggregated search, a lot of recent work [I4] 99, 166, 94, 95] is classified
within this later direction.

We will concentrate on cross-vertical aggregated search in chapter

3.4.9 Domain-specific applications

Instances of aggregated search can be found in domain-specific applications.
These approaches can sometimes be too specific, but they remain interesting
to study, because some of the work can be generalized to larger use.

In [85], Kaptein et al. investigate focused retrieval and result aggrega-
tion on political data. Their documents are long (50-80 pages) containing
transcripts of the meetings of the Dutch Parliament. Most of the docu-
ments have similar known structure and they have meta-data such as topic,
speaker, interruption, year .... Instead of returning entire documents, au-
thors choose speeches as best entry points into documents. For a given
query, they provide a summary of the results as a graph with 3 axes: year,
political party and number of search results. Search results can be browsed
through three facets: person, political party and year. Each speech is sum-
marized in both terms of structure and content. The latter corresponds to
word clouds and interruption graphs. We can observe at least 4 different
aggregation formats within this work namely interruption graph (structure
summary), content summarization, facets, results graph with 3 axes.

Another application is met in social science [127]. Here, authors provide
search across research papers. They extract and aggregate research concepts,
their relations, research methods and contextual information. The results
can then be browsed by method, relation or research concept. For each
research concept, the user is provided a summary of contextual information.

Strotmann et al. [163] also focus on research articles. They introduce
two graph-based structures to help browsing search results. The first is a
graph on the papers aggregated by author. The second is a graph of the
authors with links based on co-citation analysis.

We will also illustrate domain-specific instances of aggregated search
through two case studies namely news search and geographic information
retrieval. We selected them for being interesting and well-known to the
large audience.

e News search: News represents one of the primary sources of in-
formation especially when it comes to actuality. With the massive
publication of news articles in many sites by different news agencies,
it becomes necessary to provide search functionalities over news. News
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search should adapt to the massive and frequent publication of new
content.

To be able to cover many different events and points of view, search
engines crawl news articles from the sites of different news providers,
while news meta-search engines rely on different news search engines

[107).

Results can be grouped based on topical similarity and time. Cluster-
ing news has been shown to be beneficial [149, [77]. News articles with
similar topic and near publication time can represent a news story
with the concerning coverage. Such an organization can help the user
to focus his search within a topic and a time interval.

Related multimedia content can be juxtaposed to a news story [148].
This is the case for Google Newaﬂ (see figure and Ask Newsﬂ
Rohr et al. [148] propose a timeline to show the evolution of the topic.

News aggregators represent good examples of result aggregations that
go beyond the ranked list visualization. They organize search results
in search stories making use of topical similarity and content freshness.

Google == T [
Freferences
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News results: Standard Version | Text Wersion | Image Yersion
Browse Top Stories
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Figure 3.8: Google News results on the query “Chelsea”, accessed on April
2009

Shttp://news.google.com/ accessed in April 2009
Shttp://www.ask.com/news accessed in April 2009
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e Geographic Information Retrieval: Geographic location is be-
coming an important feature for Information Retrieval [177, [82] [153].
Information relates to geographical location as things happen in a de-
termined geographic place. Persons and their tasks relate to their
positions. This relation becomes important when searching for geo-
graphic entities as well as to personalize search based on user’s location
[73, 122} 32].

Geographic entities or geographic references represent physically con-
tinuous entities with static positions in geographic space [172, 82].
Examples include shops, bars, restaurants, cities, countries and land-
scapes. Geographic entities can be associated with geographic coordi-
nates and shown in maps, which is particularly useful when the user
is trying to locate a place or some content.

Geographic search or local search allows search for geographic entities
through free text queries [177, [82]. Usually a list of candidate results
is returned unless the query is specific enough to identify exactly one
result. For instance, the query “Café Madrid” can identify bars in
the Spanish capital, but also a bar in “Padua, Italy”. Ambiguity is
an important issue, but some results are more probable than others.
However some other queries implicitly demand for many results such
as for “student bars in Padua”.

Typically the list of results is shown in a map juxtaposed with the cor-
responding ranked list. This is the case for major search engines such
as Google Map&ﬂ and Yahoo Mapsﬂ This is a form of result aggrega-
tion which allows users to localize search results in geographic space
assisted by ranking which helps users identify the most useful results.
Geographic proximity can be used to group and organize search results
[32, [114].

If the query is good enough to identify one single geographic entity
or the user clicks on one of the proposed results, a geographic search
engine can support the user with more information about the entity.
For instance, for a hotel it is possible to provide a phone number,
reviews, images and so on.

Geographic entities can be associated with other types of content.
They can be associated to images [124], 89], to related named entities
[178], news articles and so on. Such relations can become useful for
other vertical searches or Web search.

To summarize, in Geographic IR we can find interesting result ag-
gregation approaches. Geographic entities can be associated to other

"http://maps.google.com/ accessed in May 2010
8http://maps.yahoo.com/ accessed in May 2010
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content such as entities, images, reviews or Web pages. This is useful
to enrich and organize search results. Furthermore, geographic re-
lated results can be shown in a map, they can be grouped by location
proximity, etc.

3.5 Conclusions

In this chapter, we presented aggregated search starting from its broad
definition. We proposed a general framework which enables to decom-
pose and analyze aggregated search through smaller sub-problems. Further,
we present the rich and heterogeneous spectrum of approaches, where it is
shown that aggregated search can be instantiated in different ways. Among
these approaches, we argued that cross-vertical and relational aggregated
search are the most promising and fertile research directions. They can
both adress many queries and they can be used at large scale. Because our
contribution will also concern these two types of aggregated search, we will
focus on them in the next two chapters.
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Chapter 4

Relational aggregated search

4.1 Introduction

Traditional information retrieval does not take into account for relations.
Documents are just represented as bags of words and they are matched
uniquely to the user query. Consequently, retrieved search results are just
a list of unrelated items sometimes difficult to explore. Different search re-
sults are not really merged with each other. It is up to the user to select
the information he needs and to assemble it. But, as we mentioned ear-
lier, information can often be decomposed into smaller information nuggets
and information nuggets can be put in relation with each other. We refer
to retrieval based on information nuggets and their relations as relational
aggregated search.

To illustrate, we will use two existing Web applications namely Google
SquaredE] and Wolfram Alphaﬂ In figure it is shown the result returned
by Google Squared for the query “arctic explorers”. Each line corresponds
to an arctic explorer. For each of the explorers there are attributes such as
date of birth, date of death, but also an image and a description. The user
can specify his own attributes to search for and he/she can search for a new
arctic explorer which is not in the list. To answer this query it is necessary
to rely on class-instance relations (arctic explorers - Roald Amundsen) and
instance-attribute relations (Roald Amundsen - date of birth). We should
highlight that information comes from many different documents.

Wolfram Alpha is another interesting case study. It exploits an under-
lying knowledge base with encyclopaedia-like knowledge to answer different
queries. These queries can be named entities such as “Russia”, “Oslo”,
“crocodylus”, “Frank Sinatra”, ..., but it can also answer queries on their
attributes such as “capital of Russia”, “internet code of Russia”. In fig-
ure |4.2] we see the search result for the query “Russia”. It can involve

tex http://www.google.com/squared/ no longer available online within Google labs
Zhttp:/ /www.wolframalpha.com/
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Figure 4.1: Google Squared result for “artic explorers” accessed on May
2010

different attributes, but also maps, images, etc. The disadvantage of this
approach is that it cannot answer queries which fall out of the knowledge
base. Google Squared which retrieves from the the Web can potentially an-
swer more queries and can be more up to date, although the answers are
often inaccurate. Nevertheless, both applications show that we can foresee
another way of assembling search results based on information extracts and
their relations.

In literature [35], 37, 93], 06], the term relational search is used to refer to
Information Retrieval based on semantic information extracts. We general-
ize this term to relational aggregated search (RAS) to refer to Information
Retrieval based on information nuggets and their relations.

In the next section we will situate relational aggregated search in the
general framework of aggregated search and we will enumerate some issues
which we will be followed with related work.

4.2 Framework and issues

This paradigm fits in our general framework we presented for aggregated
search in chapter We can find here the same components (query dis-
patching, nugget retrieval and result aggregation) with an additional rela-
tions layer.

Nugget retrieval: Every information nugget can be used for relational
aggregated search. We can retrieve and relate images, videos, news articles,
etc. However, there are 3 types of information nuggets that fit best rela-
tional aggregated search. They are classes (e.g. countries, French wines, US
presidents), instanceéﬂ (e.g. France, USA, Italy) and attributes (e.g. capi-

3The instance is a synonym fon named entity. We prefer this term because it invokes
a semantic relation with classes.
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russia 8
InpL t
Russia
full name Russian Federation
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Figure 4.2: Wolfram Alpha result for “Russia” accessed on August 2011

tal:Paris, area:674,843 km?, demonym:French ...) [9].

Relations: In relational aggregated search, we are interested in all
nugget-nugget relations that can be useful for information retrieval.
Within these relations, we distinguish instance-nugget relations. These
relations put in relation a given instance with whatever kind of content.
This can be particularly useful, because we can at least answer queries about
the instance with related nuggets. Here, we can place the relation between
an instance and an image, video, document, definition. The relation can be
“image X is an image of John Travolta”.

Within the different information nuggets, classes, instances and attributes
are particularly interesting because for them relations are common and of-
ten implicit e.g. “capital:Paris” is an attribute of the instance “France”
or “France” is an instance of the class “countries”. We can define here 3
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specific relations:

e instance-class relation: This relation exists between the instance
and its class e.g. “Everest”-“mountains”.

e instance-instance relation: This relation exists between two in-
stances. It can be a connecting phrase such as “plays in” taken from
the phrase “John Travolta plays in Pulp Fiction”. It can also be
broader relations such as “has the same class as” or “relates to”.

e instance-attribute relation: This relation exists between the in-
stance and its attributes e.g. “Everest”-“height”.

These relations have been adressed in Information Extraction (IE) and
Natural Language Processing (NLP). Here extracting and relating happens
mostly at the same time. We will detail more in section [4.4]

Query dispatching: Inspired by the work in [35], we distinguish three
types of information needs where benefits from relational aggregated search
are obvious. We call them relational queries:

e attribute query (“GDP of UK”, “address of Hotel Bellagio”)
e instance query (“Samsung Galaxy S”, “Scotland”, “Oscar Wilde”)

e class query (“Toshiba notebooks”, “British writers”)

For each of these queries we can trigger a different approach. From
this perspective, query dispatching becomes important to detect the type of
query.

Result aggregation: Relations can enable new ways to assemble search
results. When the query is specifically asking for an attribute, the best choice
can be returning its value right away. When the query is an instance, the
best choice can be a summary of salient attributes (properties). When the
query is a class of instances, the result can be a comparative table of the
class instances with their attributes. Figure [£.3] shows what these results
might look like.

Relational aggregated search has to deal with many open issues. First,
we need to know which queries will benefit from relational aggregated search
(see section[4.3). Second, we need to identify at large-scale (extract/acquire)
relations between information nuggets (see section . Third, we need to
transform extraction techniques into retrieval techniques with high recall
(see section {4.5). Fourth, we have to assemble a final results based on
the information nuggets and their relations (see section . In the next
sections, we will detail on each of these issues with related work.
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Query: president of France
Result: NicolasSarkozy
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Query: Tower of Pisa

Result: Location| Italy
Width | Tuscany
Height | 55.8m
Steps | 296

Query: Macintosh notebooks

Result: | MacBook | MacBook Pro
Height | 1.08 inches 0.11-0.68 inches
Width | 13.00 inches | 11.8 inches
Depth | 9.12 inches | 7.56 inches
Weight | 4.7 pounds 2.3 pounds

Figure 4.3: Examples of relational search results

4.3 Relational queries

To build relational aggregated search, we need to identify the queries that
benefit the most from this paradigm. This is also important if we consider
that different types of queries demand for different types of answers. In this
section, we list queries from literature that fit in the relational aggregated

search framework.

In [35], Cafarella et al. present one of the first query taxonomies for
relational search. For these queries named entities and their relations find a

crucial role.

e qualified-list queries: retrieve a list of objects that share multiple
properties (e.g., west coast liberal arts college).

e unnamed-item queries: qualified-list queries that aim to locate a
single object whose name the user does not know or cannot recall (e.g.,

the tallest inactive volcano in Africa).

e relationship queries: find the relationship(s) between two objects
(e.g., the relationship between Bill Clinton and Justice Ginsberg).

e tabular queries: find a set of objects annotated by their salient

properties (e.g., inventions annotated
announcement).

by their inventor and year of

In the above list, the query type and the type of result are binded i.e.
the query definition includes the type of expected result.
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Other interesting taxonomies of queries can be found in question answer-
ing [88]. In [121], authors list some queries that would benefit from focused
retrieval and result aggregation. These queries include:

e Factoid queries (Who, what, when ...)

e Definition queries (What is .. .)

Boolean queries (expecting a yes/no answer)

Complex questions (why and how questions)

List queries (expecting a list of instances)

Although not all of the above queries can be answered directly with
the relational framework, some of them can. List queries can be answered
with a list of class instances. Definition queries demand for an explicit
definition relation. Most of the factoid questions ask for named entities or
their attributes although interpreting the factoid question is more a question
answering task.

We will use a simpler taxonomy of queries inspired by [9]. The definition
of queries is illustrated by examples and it is not binded with the type of
expected result:

e query by attribute (“GDP of UK”, “address of Hotel Bellagio”)
e query by instance (“Samsung Galaxy S”, “Scotland”, “Oscar Wilde”)

e query by class (“Toshiba notebooks”, “British writers”)

Among all the presented queries, most of them benefit from relational
aggregated search. We refer to the last taxonomy for the rest of the work,
because it is simpler, it does not bind with the type of answer and it is closer
to our conception of relational aggregated search.

4.4 How to acquire relations?

In this section, we list existing techniques to extract relations. First, we
introduce generally these techniques from the perspective of information
extraction. In the next sub-sections, we will take one relation type at a time
and we will provide an overview on the existing techniques.

Information extraction techniques correspond to rules that can be applied
to sites, documents, or parts of documents to extract automatically classes,
instances,attributes and their relations.

Most of the extraction rules have the form of LxMyR, where x and y
are meant to be two information extracts and L, M and R are meant to



4.4. HOW TO ACQUIRE RELATIONS? 51

be patterns that are found respectively before, in between and after the
two extracts. For instance, the rule “the x of y is” can be used to identify
attributes of instances e.g. “the capital of France is Paris”. Rules that rely
only lexicon (words, phrases) and part-of-speech tags are also referred to
as lexico-syntactic rules, while rules that contain structure tags are usually
known as wrappers.

Extraction rules can be hard-coded or learned. Hard-coded rules are
usually intuitive rules which are easy to write. Machine learning is applied
to learn new and complex rules. A survey on IE [4] classifies IE techniques
in 4 classes with respect to the need for training (automation degree):

e Hard-coded: The extraction rule is not learned, but manually coded.

e Supervised: The extraction rule is learned from a labelled training
set.

e Semi-supervised: The extraction rule is learned from a training set
which is not labelled.

e Unsupervised: The extraction rule is learned without any training.

Information extraction techniques are quite heterogenous and they make
use of various evidence such as statistics on terms, tags, decoration mark-up,
part-of-speech tags, etc. This evidence is then combined to define rules that
match classes, instances, attributes and their relations. We provide below
just a short taxonomy of features (evidence) that are commonly used for
this purpose:

e word statistics [58, [7, 49, 10, 105, [71]: Some terms are more
frequent within or around information extracts. Statistics on words
(often in conjunction with part-of spech tags) are helpful to learn com-
mon lexico-syntactic patterns for information extraction.

e part-of-speech tags [57,28]: Information extracts are usually nouns
or compound noun phrases surrounded by verbs, adjectives, preposi-
tions, etc. Part-of-speech tags are helpful to learn possible patterns.

e tags (HTML, XML) [49, 36, 96, 93, 97, 92]: Most of the docu-
ments have some structure denoted through tags. The structure of the
document is often useful to determine relations. In particular, HTML
tables and HTML lists are known to contain relational data.

e decoration, visual appearance [17, 117, 194]: Sometimes the
structure of a document is easier to learn through its visual aspects,
especially when a pattern in terms of tags is difficult to define or learn.
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e external quality sources (Wikipedia, DBPedia) [164, 165, 188|,
98|, [105]: Existing ontology-like and encyclopaedia-like sources pro-
vide already a large knowledge base which is used to learn patterns or
to reinforce confidence on extraction.

e PMI and search hits [44, 176, 141]: Pointwise Mutual Information
(PMI) [44], I76] is a statistical measure that indicates the relation
between two expressions. An easy way to estimate PMI is through
search hits which indicate the number of search results a search engine
has to return on a given query [I41]. PMI and similar statistical
measures can play a crucial role to determine relations.

Most of the techniques in IE are domain-specific i.e. they are designed
to work well for some classes or instances or attributes. Most of them
are oriented towards precision. To enable relational aggregated search we
need high recall and reasonable precision. From this perspective, domain-
independent methods and high recall methods become crucial.

In the next section, we list approaches with respect to the relation type
they target.

4.4.1 Instance-class relation

The class instance is often referred in literature as named entity. Some of the
pioneer research is met in the Message Undestanding Conference [69]. Here,
studies on named entities involved only 7 defined categories [69], namely
person names, organizations, locations, date, time, money and percentage
expressions, while today standardized taxonomies with 150 classes can be
found such as the extended named entities hierarchyﬂ In reality, we cannot
enumerate all possible named entity classes. A class can be as simple as
“countries”, but it can also be “members of the UN Security Council” or
“my friends”. Sometimes, we might not even be able to name the class in a
reasonable way.

The definition of named entities as instances of some class makes the
class-instance relation intrinsic for extraction techniques. These techniques
are also known as Named Entity Recognition (NER). Initial work as men-
tioned is domain specific i.e. it adresses specific classes of instances. We can
find approaches which are specific to locations [183], music [48], books [34]
and so on.

Hearst [74, [75] proposes one of the pioneer domain-independent ap-
proaches to extract named entities and their classes. The author identifies 6
lexico-syntactic patterns which detect this relation. For instance the pattern
“N Py such as NP;” relates a class N Py with one named entitiy NP; (NP
stands for noun phrase). We can illustrate with a sentence that matches

“The full hierarchy can be found in http://nlp.cs.nyu.edu/ene/version6_1_0eng.html
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this pattern: “I have never visited big cities such as London”. We can also
list some other patterns from this work: “NP such as {NP, }* {(and|or)}
NP’ “NP {,NP}* or other NP” “NP, {, NP}* and other NP”, etc.

In [71], Guo et al. study named entity recognition within queries. To
identify named entities they use a probabilistic approach which relies on
query logs and Latent Dirichlet Allocation. They represent the query as
named entities and context (the part of the query which is not a named en-
tity). Then, they train a classifier with triples of (i,c,cz) i.e. (instance, class,
context). Their approach is experimented with 4 classes namely “Movie”,
“Game”, “Book” and “Music” with an initial seed of 120 labeled triples.
Their approach performs well on queries, but it is likely to lose performance
if applied to longer text and to more classes.

In [58], Etzioni et al. present KnowItAll an Information Extraction
system aiming domain-independent and unsupervised extraction. They in-
tegrate many of the state of the art lexico-syntactic rules from Hearts [74].
They also deal with subclass detection i.e. detect if class z is a subclass of
class y. For instance, “chemist” is a subclass of “scientist”.

The class-instance relation is also targeted in TREC Entity Track 2009
[19] and 2010 [20]. One of the proposed tasks involves returning a list of
named entities of a given class. In addition, one initial entity is given. The
query can be similar to “Formula 1 drivers related to Luis Hamilton”. Here,
we can find many pointers towards other approaches that we will not be
mentioned here.

We can conclude that there is a large interest in identifying named enti-
ties and their classes. Existing techniques are promising, although they are
mostly precision oriented.

4.4.2 Instance-instance relation

Inspired from [164, 92], we distinguish four main relations that can relate
an instance to another namely: synonymy, sibling relation, meronymy and
non-taxonimic relations. To illustrate, “Big apple” is a synonym for “New
York City”. France and Italy are siblings in that they are instances of the
same class “countries”. Meronymy involves part-of-a-whole relations such
as “Italy -is a member of- NATO”, “Quebec- is part of -Canada”, “CPU -is
part of the- computer”. The non-taxonomic relations are relations between
two instances given by textual description such as: “John Travola -plays in-
Pulp Fiction”, “Windows -is a product of- Microsoft”. The phrase “plays
in” defines a relation between the instances “John Travolta” and “Pulp
Fiction” as well as the phrase “is a prodcuct of” defines a relation between
“Microsoft” and “Windows”. Non-taxonomic relations are usually defined
through some text phrase. Typically, instances of one class share relations
with instances of another class. For example, “Uma Thurman” plays in
“Kill Bill”. The relation “plays in” is met between instances of “actors”
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and instances of “movies”.

In [164], we are presented YAGO, a large extensible ontology built through
careful combination of heuristics on Wordnet and Wikipedia. They ex-
tract synonyms, instance-class relations (hyponomy) and non-taxonomic re-
lations. The result is a set of about 1 million instances and about 5 million
relations. They focus only on some specific non-taxonomic relations such as
“born in year”, “died in year”, “established in”, etc. Most of the heuristics
are designed to obtain a high accuracy ontology.

Snowball [7] is another state of the art IE system which aims non-
taxonomic relations between instances. Starting from a handful of training
examples, it can learn new relations as well as many related instances. Train-
ing data and target data are represented as 5-tuples Lz MyR which contain
the instances and the text before, between and after them. Although the
technique looks domain-independent, it depends on the training data i.e.
another seed of training data can produce different results.

In the KnowItAll system [58], relations are learned starting from a seed
of instances. Each instance is issued as a query to a Web search engine. The
returned results are used to learn common relation patterns. Then, these
relations are also used to learn new instances. In [57], Banko et al. pro-
pose TextRunner a system that runs an unsupervised domain-independent
technique to extract instance-instance relations. The approach consists of
a single-pass over data which extracts 3-tuples e;r; je; (entity, candidate
relation string, entity). Textual features and part-of-speech tags are com-
bined in a Naive Bayes Classifier to learn relations. TextRunner is shown
to achieve a 33% error reduction when compared to KnowItAll. TextRun-
ner depends on the quality of the part-of-speech tagger and although it is
designed to be domain-independent it works better for some classes.

The sibling relation is useful when we cannot associate an instance to
its class. In this case, telling that two instances belong to the same class
is enough. This is useful to identify instances with similar properties and
for set expansion i.e. given a set of instances we enlarge this set with new
instances of the same class [184], [129].

Instance-instance relations are mostly extracted through lexico-syntactic
rules based on term statistics and part-of-speech tags. Some of these tech-
niques are particularly interesting in that they are appliable at large scale
and domain-independent. Nevertheless, some relations are difficult to cap-
ture as their extraction depends on the training data or the technique being
used. So far, instances and their relations have been used few for retrieval
purposes. In addition to massive acquisition of relations, research should
investigate on ways to store and exploit them.
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4.4.3 Instance-attribute relation

Attributes can find different uses. They can be used for the summarization
(representation) of content [193] [125], to assist search such as for query sug-
gestion [28] and faceted search [29], or for question answering [60]. Attribute
acquisition methods can be domain-independent or domain-dependent. From
domain-dependent approaches, we can mention approaches that focus on
products. In this domain, attributes have been used to improve product
search and recommendation [125] 141], but also to enable data mining [187].

To acquire attributes from the Web, it is common to use decoration
markup [194] 187, 49] and text 28], 174} 135]. HTML tags (for tables, lists
and emphasis) have also been shown to help for attribute acquisition [194]
187]. Wong et al. [I87] combine tags and textual features in a Conditional
Random Fields model to learn attribute extraction rules, but they need a
seed of relevant documents manually fed.

Another common technique to acquire attributes is through the use of
lexico-syntactic rules. For example, Pasca et al. [9,[136] use rules such as “A
of I” and “I’s A” to acquire attributes from query logs. Authors represent
the class as a set of instances and multiple class instances are used to improve
extraction. In [I0], authors use more precise lexico-syntactic rules such as
“the A of I is”, but recall of these rules is lower. In [I41], Popescu et al. use
lexico-syntactic rules to extract product attributes from reviews.

At last, tables are known to be a mine for relational data and attributes.
Cafarella et al. [37, [36] show we can identify billions of relational tables in
the Web. They do not explicitly extract attributes from these tables, but
they show how we can automatically classify tables into relational tables
and tables with headers. This is an initial step towards massive extraction
of attributes although we need additional processing to extract attributes
and associate them with instances. In [43], Chen et al. identify attributes
using column (or row) similarities. Another common technique to extract
attribute from tables is through wrapper induction [41l 49, [186]. Given a
training set or a set of similar documents, wrapper induction learns extrac-
tion rules. Many wrappers extract at record level, but they do not distin-
guish between attribute name and attribute value. Furthermore, wrappers
are precision oriented and they work well only for some sites.

To summarize, current attribute acquisition techniques can obtain a high
precision. Although many of these techniques produce a considerable num-
ber of attributes, they cannot cover the needs that can be answered with the
Web. Most of them are conceived to work offline and they cannot extract
instance attributes whatever the instance.
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4.4.4 Instance-nugget relations and nugget-nugget relations

We do not focus much on these relations as they are too broad and state
of the art can explose. Nevertheless, it is worth mentioning that different
relations have been identified and used differently in information retrieval.

The instance nugget relation can be whatever relation that relates an
entity /instance to some content. The content can be an image, a document,
a passage, a video and so on. For instance, in [I70] Taneva et al. study
image retrieval for instances. This is similar to assigning a relationship
“image of”. In product search and opinion mining [141] [78], reviews are
related to instances and their features (attributes). These relations are then
used to summarize product reviews.

The nugget-nugget relation is the broader class of relations we define. We
will list here just some illustrate examples without aiming to be exhaustive.

Similarity (“similar to”): Two information nuggets can be similar to
each other. This is a very common relation. It can be found in cluster-
ing, classification, multi-document summarization, news aggregators,
etc. For instance, news aggregators group similar news articles into
stories.

Diversity (“different to”): On the other hand, the inverse of similarity
represents another useful relation. Studies on novelty and diversity
claim that it is better to promote some diversity among the retrieved
results. This is useful to increase chances of guessing at least one
relevant result [8], but also to find different aspects of the same in-
formation need [45]. Result diversification is today present in major
search engines.

Space-time (“happens in time/space”): Content can also relate with
respect to some features such as time and location. For instance,
sometimes it is better to order information chronologically to favor
freshness of information [55) [148]. In Geographic Information Retrieval
the location feature is fundamental to organize search results [177, [82].

4.5 How to retrieve relations?

Information extraction is mostly an offline process which scans documents
and labels information within them. In the context of search, we have to
do with an online process which is query-dependent. We need to adapt
information extraction techniques to assist search through online and high-
recall extraction. We will call online relation extraction as relation retrieval.
This means that given a query we want to return a scored list of relations.

Cafarella et al. [37, [36] perform relation retrieval using HTML tables in
the Web. They return rows of tables that match a given query. Taneva et al.
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[170] issue instance queries to retrieve related images. The above examples
are just meant to illustrate that retrieving relations is sensed and possible.
However, there is few work done to adapt retrieval for classes, instances and
attributes.

In particular, we define attribute retrieval and instance retrieval as pro-
cesses which will enable flexible and high recall answering for relational
queries.

o Attribute retrieval takes as input an instance (e.g. France, Homer,
London) and returns a ranked list of attributes.

o Instance retrieval takes as input a class (e.g. countries, authors, cities)
and returns a ranked list of instances.

Existing work which targets attributes, instances, classes is mainly con-
ceived as an offline process [41], 58, [7, 57, 28], [49], 164 [165].

Within attribute retrieval we can detach the attribute value retrieval
problem. Indeed, if attribute retrieval identifies correctly the attribute name,
we can launch a second retrieval process to identify its value/s. A separate
treatment of attribute names and values is not novel in literature [194] [10].
If we treat attribute values separately, we can define another online process
namely:

o Attribute value retrieval takes as input an attribute name and an in-
stance (e.g. (capital, France); (birthplace, Homer); (population, Lon-
don)) and returns a ranked list of attributes values.

These three relation retrieval approaches can all assist relational aggre-
gated search in particular for attribute, instance and class queries. We
believe that the most prioritary approach is attribute retrieval. Indeed, in-
stance retrieval is handy mostly for class queries, while attribute retrieval
(on names and values) can assist most types of relational queries. We will
detail in the next section possible aggregation of the retrieved relations.

4.6 Result aggregation

This section is about ways to aggregate search results in the context of rela-
tional aggregated search. We will list related work and thoughts using one
query type at a time.

Attribute queries (e.g. capital of France) should ideally be answered
with the correct attribute value/s. However for many queries we might find
many candidate values without being certain on their relevance and correct-
ness. With respect to this issue, there is a lot of work in question answering
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(what is the capital of Congo?) [88]. Here, the result is one or more can-
didate answers, typically associated with supporting text. Another mean
to answer attribute question are knowledge bases (ontologies, encyclopae-
dia). In particular, we can mention DBPedia which allows querying through
SPARQL its ontology to identify attribute values of some entity [16]. The
user has to know SPARQL, the exact name of the entity and attribute name.
Wolfram Alpha also answers attribute queries through its internal knowlege
base. Major search engines have started to answer some attribute queries.
They propose its value on top of the other search results. This is done rarely
mostly when the answer is almost certain.

Instance queries can also be answered in many different ways. In object-
level search, these queries are answered through records and attributes ex-
tracted from one or more pages [126, [125]. The answer can also be a set
of related instances [24, [87], multimedia content [I70], passages [155], at-
tributes [93],96],[07]. Specific approaches have been adapted for people search
[110} 4], product search [126] 141l 5], 3], bibliographic search [80, 126}, 2], etc.
Most of the existing approaches are domain-dependent and some of them
have low recall. In the relational framework, we are mostly interested at
retrieving attributes at large-scale for whatever instance through high-recall
and domain-independent techniques.

Class queries can be answered with a list of instances. This is the case for
most approaches that can be found in Question Answering [88], TREC entity
tracks [19} 20]. These queries can also be answered through knowledge bases
such as Wikipedia and DBPedia which store class instance relations [16].
Google Map5E| answers some class queries concerning geographic locations
through a list of instances, adresses, rating and their visualization on a map.
Google Squared answers these queries with a tabular result composed on the
instances and their attributes. This is closer to the perspective of relational
aggregated search.

We can conclude that there are several ways to answer queries in the
relational framework. The quality of the result aggregation depends on the
quality of the relation and the relevance of the result components.

4.7 Case studies

In this section, we propose two case studies. First, we analyze object-level
search. The latter falls within the relational aggregated search, but its
conception and terminology are slightly peculiar. Then, we present opinion
mining as a special case where relations with instances and attributes are
used to summarize content.

Shttp://maps.google.com
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4.7.1 Object-level search

In object-level search, the retrieval unit is not documents but objects [126].
An object is meant to be an entity with the corresponding related informa-
tion, which is usually attributes and records [126] [I01]. From this point of
view, generating an object demands information extraction and merging.

It is often the case when the user is searching for an object (entity) e.g.
Nokia e72, Restaurant Belvedere, London, Jim Belushi. In such cases, an
object-oriented result might be preferable to lists of documents. A document
might contain relevant and irrelevant content and often information about
the same object can be sparse in several documents, while the object can be
an aggregate of extracted information.

Objects are very common in Web data. They can be products [80, [125],
books, academic papers [125] and so on. Objects can be described with a
schema. For instance, in [118], the schema looks like:

o <|ELEMENT Book (Title, PubDate, Price, Authors) >
o <IELEMENT Title (#PCDATA) >

o <|IELEMENT PubDate (#PCDATA) >

o <\ELEMENT Price (#PCDATA) >

o <IELEMENT Authors (Author+) >

o <IELEMENT Author (#PCDATA) >

The schema can be learned or known a priori [118] [72], 106].

Still, it is necessary to code or learn good wrappers for each object
element. Such wrappers can be specific to some class or they can be class-
independent (domain-independent).

Nie [125] identifies three common sub-tasks namely Object-level Informa-
tion Extraction, Object Identification and Integration, Web object retrieval.

Seed documents and IE: Object-level search needs a set of seed docu-
ments to extract objects from. Typically focused crawlers are used to
select useful resources depending on the domain (products, academic
papers, etc.) [80, 106, 101]. Lin et al. [106] propose a meta-search
based seed expansion in addition to focused crawling. Another alter-
native is the use of classifier to select pages that are useful with the
respect to the type of object [126].

Information Extraction is vital to this domain. It is not only necessary
to identify the objects and their categories, but also the related infor-
mation, which is typically records and attributes [126]. For instance,
for a product it is possible to extract its name, a description, a price,
a production year and so on.
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Object identification and integration: The same object can be found
with different names as well as the same name can refer to different
objects. It is necessary to disambiguate objects and integrate around
the correct object all the related information.

Object-level search has to build quality structured objects. If a Web
page is supposed to be coherent and comprehensible as it is created by
humans, the object oriented result introduces a better focus, but also
new issues. Reliability, completeness and ranking accuracy are some
of these issues [126]. Objects can integrate information from different
documents providing more complete answers, but the extracted infor-
mation is error-prone. An attribute value correctness depends strongly
on the IE techniques used as well as from the quality of the record and
the document it comes from [125]. As well an attribute value can vary
with time [12§].

Retrieval: After assembling objects, it is necessary to rank aggregated
objects with respect to the users information needs (queries). Lee et
al. consider two important cases namely personalization which aims
to maximize the satisfation for a given user and diversification which
aims to minimize the risk of dissatisfaction of varying user intents
[101]. They propose to cluster object results to propose different user
intents.

Typically, object-level vertical search focus on specific class of objects,
but it is also possible to find search over multiple classes. For instance,
Microsoft Academic Search provides search over authors, papers and con-
ferences. Google Squared can also be seen as object-level search. It uses a
simple result organization and it is domain independent (class-independent).

Object-level search represents an interesting example involving informa-
tion extraction and result aggregation. The retrieved information is orga-
nized into object. Each object associates an entity to related information
such as common attributes.

4.7.2 Opinion mining

Textual information can be broadly classified into facts and opinions. With
the advent of Web and the explosion of user-generated content, a lot of
opinionated text is available today. We can find opinions in forums, blogs,
discussion groups, user reviews and so on, where users share their point of
view about entities and events.

Today, there is an increasing interest in mining opinions. It becomes im-
portant to detect opinion containing sentences and their polarity. In TREC
Blog Track 2006-2009, several tasks have been proposed. They include the
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opinion finding track (i.e. “What people think about X”?) and polarity
detection (i.e. “Find me positive or negative opinionated posts about X.”)
[111].

In TAC 2008 Summarization Track [I], an opinion summarization task
is proposed. The goal is to build short coherent summaries from answers
to opinion related questions. For instance, one question can be “Why did
people enjoy the movie “Good Night and Good Luck”?”.

Opinion mining can be applied to user reviews to automatically extract
or summarize user opinions for specific entities such as for products, services
[52, 159, R1]. Opinion summaries differ from text summaries. Opinions
are associated (related) to entities, but they can also be associated to the
features (attributes) of the entities [52]. Using relations between reviews
and instances and attributes we can summarize and search more efficiently
reviews across different sites [78].

For instance, in Wize.com [I59] users can exploit user reviews from dif-
ferent sites for their search. The query includes the type of product and a
selection criterion, such as “best cameras for holidays”. Products are ranked
based on opinions about the product and the specified criteria. These opin-
ions are extracted from different sites of user reviews.

Opinion mining relates to relational aggregated search. Information ex-
tracts, relations and opinion mining are combined to provide a sentiment or
a summary of sentiments.

4.8 Conclusions

In this chapter, we presented relational aggregated search as a distinct in-
stance of aggregated search. Here, information nuggets can be decomposed
and related to each other. In particular we focused on classes, instances, at-
tributes and their relations. We presented the existing techniques to acquire
them and we propose possible result aggregation for these queries. Although
existing techniques can extract many classes, instances and attributes, an
additional effort is needed to increase the recall of these methods for search
applications. In other terms existing techniques are designed to work offline
and they are experimented in an offline setup. They rely on precise patterns
and they have not been proven to scale for search applications.

In particular, we identified in recall-oriented techniques such as attribute
retrieval the potential to enable relational aggregated search. The goal is to
retrieve attributes (names and values) for given queries (instances, classes)
which can by analogy be generalized to other approaches such as instance
retrieval, passage retrieval, etc. The retrieved content and relations can then
be used to assemble relational aggregated search results.



62

CHAPTER 4. RELATIONAL AGGREGATED SEARCH



Chapter 5

Cross-vertical aggregated
search

5.1 Introduction

Traditional Web search returns a list of snippets of Web pages. Queries such
as “cheap flight from London to Paris” and “photos of Eiffel Tower” will not
be answered directly from this approach. The user has to scroll the list of
snippets and scan within Web pages to satisfy his information need. By
contrast, a vertical search engine for traveling can provide a more accurate
result for the first query and an image search engine can answer right away
the second query.

Nowadays, it is possible to access results from some of the vertical search
engines directly from the Web search interface, which is already the case
for the major search engines such as Google, Yahoo! Search and Bing.
This approach provides great visibility to vertical search engines, while it
enables Web search to integrate the advantages of vertical search engines.
We define as cross-vertical aggregated search (cvAS) the task of searching
and assembling information from vertical search engines and Web search to
distinguish with federated search and meta-search.

One way to aggregate vertical searches is to place content of the same
type into predefined layout panels. This is the approach chosen by Yahoo!
Alphaﬂ (see image , Askﬂ and Kosmixﬂ Whenever a minimal amount of
vertical content is available for a query, the predefined layout panel is used.
Major search engines have tried other approaches. They started integrating
vertical content only on top or bottom of their search results list (see figure
[5.3), but nowadays, they rank results by blocks. Precisely, groups (blocks)
of results from each source are ranked with each other and assembled in

"http://au.alpha.yahoo.com
2http://www.ask.com
Shttp://www.kosmix.com
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the same panel. Within each block, results are usually ranked i.e. they are
showed in the order they are returned from the origin source (see figure .
For instance, we can have a block of three Web search results followed by
a block of images, followed by a block of news search results and then Web
search results again. The advantage of this approach is that the user views
results in an ordered and uniform way. We can also integrate new sources
without needing more visualization space for search results (e.g. additional
panel).

Web Images Maps Mews Shopping Gmail more v
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Figure 5.1: Google Universal search results on the query “Chelsea”, accessed
on April 2009

In cross-vertical aggregated search it is easy to identify the components
of our general framework for aggregated search (query dispatching, nugget
retrieval and result aggregation). Query dispatching will correspond to the
selection of sources. Each source will perform its nugget retrieval process
and finally retrieved nuggets will have to be assembled in one interface.
Although the tasks are well distributed, the problem is far away from being
solved. It is not easy to decide which sources should be used and how the
retrieved results should be assembled and presented. In particular, we can
list some major issues which have the attention of current research:

e Source selection and representation Which source should be used?
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How should they be represented internally in terms of features? [14]
104}, 53], 99]

e Result aggregation: How should search results from different sources
be assembled (ranking by item, ranking by block, ...)? [139] 12} [108]

e Result presentation: Which are adequate interfaces for cross-vertical
aggregated search? [166] [168] (presentation)

e Evaluation: Which are the advantages of aggregated search and how
can they be assessed? [94] [13, 196]

In the next section, we list some of the advantages of cross-vertical ag-
gregated search. Then, we will focus on the research issues one by one.

5.2 Advantages of cross-vertical aggregated search

Before cross-vertical aggregated search was implemented by major aggre-
gated search engines, different studies [L08|, [14] on query logs have shown
that vertical search intent was often present among Web search queries. For
example, queries such as “Avatar trailer” or “Jennifer Lopez images” can
be found in Web search logs, although these queries might have been issued
for videos and images.

Liu et al. [I08] analyzed 2153 generic Web queries into verticals, using
query logs. They found that 12.3% have an image search intent, 8.5% have
a video search intent and so on. Arguello et al. [I4] classified 25195 unique
queries, randomly sampled from search engine logs, into 18 verticals. 26%
of the queries (mostly navigational) were assigned no vertical, 44% of the
queries were assigned one vertical and the rest of the queries were assigned
more than one vertical. The latter were mostly ambiguous.

Sushmita et al. [166] analyze the advantages of cross-vertical aggregated
presentation of results in comparison with the traditional tabbed access of
sources. They used 6 broad tasks as topics and they observed an increase
in the diversity and number of relevant results accessed by the users. A
similar approach is used in [I58]. Image, news and Web results are used in
conjunction with clustering. This is done to increase the user’s result space.

Some of the advantages in cross-vertical aggregated search should be
sought in the diversification of search results. The importance of result
diversification is known since earlier times. Goffman states that a document
should not only be relevant, but also novel [63, 39]. Diversification increases
chances to guess at least one relevant result [8] and it can help users to
collect multiple aspects of an information need [45]. In [154], Santos et
al. analyze ambiguity across 30 queries which have been met in query logs
across 4 different sources namely Web search, image search, news search
and product search. They could identify several interpretations (relevant
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aspects) for each query. Each source could satisfy more than one ambiguous
interpretation. Nevertheless, some interpretations were found more frequent
than others. We can confirm from this study that cross-vertical aggregated
search helps to deal with ambiguous queries.

The facts that vertical intent is often present within Web search queries
and that cross-vertical aggregated search produces a diverse set of rele-
vant results proves only partially the usefulness of cross-vertical aggregated
search. The vertical search engines should prove their aptitude to answer
well and frequently queries from the embedding source (usually Web search)
as well as the embedding source should integrate appropriately these results
to improve its effectiveness. Furthermore, we need to know when and why
two different sources can be relevant at the same time. Do they contribute to
answer the same information need. Do they provide redundant information?
Are they complementary to each other?

5.3 Source selection and representation

Some aggregated search systems make use of all sources they dispose for
all queries, while others are source selective i.e. they make use only of the
sources considered useful for the query. Because, most of the major current
approaches are source selective, deciding which source is useful (relevant)
becomes one of the primary issues in cross-vertical aggregated search. This
corresponds in research to the vertical selection problem [14], which we will
call as source selection to enable generalization on Web search and vertical
search. Source selection consists in predicting whether a source is relevant
or not for a given query/information need..

Typically, source selection aims avoiding delay times that would be
caused if many sources are inquired and we wait for all results. Though,
sources are typically selected before retrieving results. To enable efficient
selection, sources have some internal representation in the system. This
representation can be as simple as a textual description of the source, but
in general it contains representative terms and features for the source ex-
tracted from sampling or other mining techniques. We will list some of these
techniques below starting from the perspective of federated search.

The source selection and source representation problems are first met in
federated search. Here, we meet the term resource as synonym of source. In
federated search, it is common to distinguish between cooperative sources
and non cooperative sources. In the case of cooperative sources we can
access the collection of each source and though compute useful statistical
data on the collection terms. But, in federated search sources are mostly
non cooperative, though we cannot access the entire collection. In the latter
case, the source representation can be a manually written description of the
source [65], although this is generally not enough. Typically, a sample of
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representative documents is obtained issuing queries to the source. There
are two main approaches. In the first approach [38], an initial representation
is built using top search results from one seed query. The representation is
then used to generate new queries and update the representation. Alterna-
tively, Shokohui et al. [160] show that better results are obtained when most
frequent queries are used to generate the sample. In the case of cooperative
sources, we can use all collection to select a set of representative terms and
features for the source.

In cross-vertical aggregated search, there exist approaches where the
source is selected after retrieval i.e. given some of the search results the
source has to offer, it is decided whether the source is useful or not. Though,
when we speak of internal representation of sources in terms of features, we
distinguish between pre-retrieval features and post-retrieval features. All
these features are also presumed to be useful for ranking and assembling
results.

Table contains a list of common pre-retrieval features used in liter-
ature listed with the work they appear in. In [12] 139, [14], authors rely
on terms that indicate vertical intent. Some of them are obvious and they
can be input manually such as the terms “photo”, “image”, “video”, “clip”.
Others are derived from the source representation or external sources. In
[14] they propose mapping verticals to Wikipedia articles which tend to be
uniform and verbose. For instance, a vertical search engine on autos can be
mapped into the Wikipedia articles of the “Automobile”, “Car” and “Vehi-
cle” category. This is particularly useful for sources that contain few textual
data.

Queries are also associated to predefined categories such as “sports”,
“arts”, “technology”. This is done in [139} 12| 167]. In [12], authors map
queries to 30 topical categories derived from the Open Directory Project
(ODP). Another important source of evidence is found in query logs of the
sources. If a query has already been issued in one of the verticals from
the source interface itself, this is a strong indicator of vertical intent. This
approach is used in [12| [14].

Table contains a list of common post-retrieval features used in litera-
ture listed with the work they appear in. This set of features has been shown
to be very useful to score sources and blocks of results [12]. In the case of
cooperative sources, we can have access to the relevance scores of the source
itself or the source confidence on the utility of these results [139]. Neverthe-
less, in general we need to compute features that are uniform across sources
in order for scores to be comparable. Ponnuswami et al. [139] compute
the BM25 weighting function, while Arguello et al. [12] combine 4 different
scores: (1) the cosine similarity between the query and the document /title
representation, (2) the maximum number of query terms appearing consec-
utively in the document/title representation, (3) the percentage of query
terms appearing in the document /title representation (/) the percentage of
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the document /title representation that matches query terms.

The number of returned results from a source can also be source of
evidence. For some sources, the freshness of the returned results is more
indicative. For instance, microblogs are usually prefered when they are
issued recently.

Source selection approaches correspond generally to supervised classifiers
[104) 53], [14] that are trained through 3-tuples (query, source, relevance).
The relevance assessments have been collected through human assessments
on queries and intents [I4] and through implicit feedback derived from click-
through analysis [53]. These techniques will be described in detail in the next

section.

Table 5.1: Pre-retrieval features

Feature based on

Description

Vertical intent terms [12]
139, [14]

Some terms indicate vertical intent such as image,
video, photo. Some others can be related. This
feature combines hard-coded and learned associa-
tion rules for queries and sources

Query logs [12), 14]

These features indicate if the query has been met
in a source query log.

Recent popularity of the

This feature indicates how often the query has

query [53] been met in a source query log recently.
Click-through These features are generated from the documents
[12, 139, 104] that have been clicked for the query. The click is

considered implicit feedback.

Query domain [14]

This feature is generated through classification of
the query into predefined domains such as sport,
arts, technology.

IsNavigational [139)

This feature indicates the chances of the query to
come from navigational needs.

Query length [139]

This feature corresponds to the length of the query
in terms.

Relevance feedback [54]

This feature is computed based on explicit and
implicit feedback on the query and its intent.

Named-entity type [12]

These features indicate the presence of named en-
tities of some type in the query.

5.4 Result aggregation

There are different ways to assemble results in cross-vertical aggregated
search. Some approaches rely on source selection [104, 53], [14]. They inte-
grate search results from a source on top of Web search results only when the
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Table 5.2: Post-retrieval features

Feature based on

Description

Vertical relevance

[53]

score

This feature corresponds to the relevance score of
the vertical source itself for a result or a block of
results.

Query-results match [12]
139] 104]

These features correspond to match score com-
puted on one or more search results from the
source. This score can be returned from the source
itself or computed from scratch on the result.

Number of results [12]

This feature corresponds to the results count of a
source.

Freshness of documents

12, 53]

This feature indicates how fresh are search results
for the query within a source.

Contextual score of results

These features indicate the relatedness of search
results with respect to some context.

Geographic-context
of results

score

These features indicate the relatedness of search
results with respect to some geographic context.

source is deemed relevant. Some others go beyond source selection. They
rank results with each other. There are two main approaches in this direc-
tion. Some rank results in blocks of results of the same source [139, 12] and
others rank results one by one [108].

Diaz studies the integration of news search results within Web search [53].
They estimate newsworthiness of a query to decide whether to introduce
news results on top of the Web search results. They make use of click-
through feedback to recover from system errors. Liu et al. [104] also rely on
click-through data to extract implicit feedback for source selection. They
represent queries and documents as a bipartite graph and they propagate
implicit feedback in this graph. Their approach is experimented for the
integration of product search and job search results.

Arguello et al. [14] list various sources of evidence that can be used
to tackle source selection such as query-log features, vertical intent terms,
corpus features. In later work [54], they show how they can integrate implicit
and explicit feedback for vertical selection. From a set of 25195 labeled
queries, they propagate implicit feedback across about ten million queries.
In [I5], the same authors show how to adapt source selection methods to
new unlabeled verticals.

In [I39] and [12], search results are ranked in blocks of vertical content
(e.g. 3 images versus 3 Web search results). Ponnuswami et al. [139] use
as training data pairwise preferences between a block of Web search results
and a block of vertical search results. Similarly, Arguello et al. [12] also rely
on pairwise preferences to train their ranking functions. They experiment



70 CHAPTER 5. CROSS-VERTICAL AGGREGATED SEARCH

three ranking techniques: one derived from classification, a voting approach
and learning to rank techniques. Learning to rank techniques are shown to
work best.

In [108], Liu et al. define a probabilistic model that enables ranking
search results from different sources. In contrast with other approaches,
they rank single items (search results) instead of blocks of search results.
Although the probability model is interesting, the probability estimates are
not convincing.

Current result aggregation approaches are inspired from the approaches
taken by major search engines. We need a more flexible framework for
result aggregation which enabled different ways to put results together and
preferably less training or no training.

5.5 Result presentation

In this section, we focus on result presentation. We will first list some il-
lustrative examples from existing commercial applications. Then, we will
classify and analyze approaches.

One way to aggregate vertical searches is to place content of the same
type into predefined layout panels. This is the approach chosen by Yahoo!
Alphaﬁ (see image , Askﬂ and Kosmixﬂ Whenever a minimal amount of
vertical content is available for a query, the various predefined holes are filled
and displayed around the natural search listings. The advantage of such an
approach is that the user knows where the vertical content is shown. If
he/she knows what he is looking for, he/she knows where to expect the
relevant content, while it remains possible to benefit from all sources. On
the other hand, vertical content is almost always shown even if there is
nothing relevant for such a type of content. As well, this approach limits
the number of vertical searches that can be integrated at once.

Some of the major search engines started integrating vertical content
only on top or bottom of their search results list. This is the case for Mi-
crosoft’s search engine Bing (in 2009) (see figure in its initial times, but
it was also the case for Yahoo! Search and Google some time ago. In this
case, web search results are ranked as usual. When it is probable that the
user is looking for other types of content such as images, news, video, this
content is placed in the bottom or the top of the Web results list. One of the
advantages is that vertical search results are added only when needed and
visualization remains simple. However, this approach enables integrating
search results from just one or two vertical search engines.

“http://au.alpha.yahoo.com
Shttp://www.ask.com
Shttp://www.kosmix.com
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Figure 5.2: Yahoo! Alpha search results on the query “Chelsea FC”, ac-
cessed on April 2009

Nowadays, major search engines rank results by blocks, i.e groups (blocks)
of results from each source are ranked with each other. Within the block,
results are usually ranked i.e. they are showed in the order they are returned
from the origin source (see figure . For instance, we can have a block of
three Web search results followed by a block of images, followed by a block
of news search results and then Web search results again. The advantage
of this approach is that it is simple and at the same time flexible. We can
add as many vertical searches as needed and to show only the ones which
are more relevant.

In the Web, we can also find other picturesque applications such as Spez-
ifym which proposes an original way to exploit visualization space (see figure
. Spezify aggregates results from different vertical sources with a slight
preference for content with immediate visual impact such as images, videos.
Each result fills a rectangle, while different rectangles are placed side to side
to fill the visualization space. The results expand in all direction (up, down,
left, right) and it looks as a mosaic filled of content. The user gets an im-
mediate image of the content and he can scroll it in all directions. Google

"http://www.spezify.com
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Web

Images

Videos

RELATED SEARCHES
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Photos Cameron Diaz

Cameron Diaz - Wikipédia Translate this page

Cameron Michelle Diaz (née le 30 aodt 1972 en Californie) est une actrice américaine, d'origine
Eva Longoria anglaise, allemande, francaise et cherokee par sa mére et cubaine par son pére.

Biographie - Filmographie - Récompenses - Nominations

fr wikipedia_org/wiki/Cameron_Diaz - C d page

Cameron Diaz Boyfriend

Jessica Simpson
Madonna
Jessica Alba Cameron Diaz - AlloCiné  Translate this page

MNée dune mére anglo-allemande et d'un pére cubano-américain, Cameron Diaz est repérée, & [4ge

de 16 ans, par un représentant de I'agence de top-models Elite, qui lui ..
www .allocine fr/personneffichepersonne_gen_cpersonne=17044 html - Cached page

Drew Barrymore

Cameron Diaz  Translate this page

Cameron Diaz : Mée a San Diego, Californie, Cameron Diaz est |a digne représentante du
cosmopolitisme américain. En effet son.__.

www.cinefil. com/star/cameron-diaz - Cached page

Cameron Diaz - Biosstars — Translate this page

Cameron Michelle Diaz Né le - 30 ao(t 1972 Lieu: Long Beach, Californie Taille 1m75 Couleur des
yeux bleu. Pére emilio Diaz cubano américain,

www.biosstars.com/c/cameron_diaz.htm Cache &

Figure 5.3: Bing search results on the query “Cameron Diaz”, accessed in
april 2009

has also launched a new application called “what do you love”El (ﬁgure.
This application aggregates results from several verticals as well as from
other Google applications such as Google Translator, search term popular-
ity measures and so on. The user of this application can save the returned
results for future use or share them with friends.

The above examples were meant to show that there exist different pos-
sible and reasonable ways to assemble search results in cross-vertical ag-
gregated search. We will now analyze them with respect to existing work
in research. Here, we can classify approaches in two broad classes namely
blended result aggregation and unblended result aggregation [166), [108].

Blended result aggregation: consists of merging search results from
different sources with each other into the same panel.

Unblended result aggregation aggregation consists of keeping search
results from different sources separate. Results are shown in different
panels.

The “Yahoo! Alpha”-like and “Bing (year 2009)”-like approaches are
examples of the unblended approach, while the Google-like and Spezify-
like approaches use the blended approach. This classification might not be

Shttp://www.wdyl.com
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Figure 5.4: Spezify search results on the query “Avatar movie”, accessed on
June 2010

What do you love?  chelsea fe [ » |
e Cnigle

4 Measure popularity of ‘ Explore chelsea fc Tu Watch videos of
~ chelsea fc on the web in3D chelsea fc

on Trer with ShelchUp o Yoy

ANtorosE (VAT Tama fod "Chaluas i

Last 12 meachs

] -
L 4 @
aa
1 G0 voulTube
:
i W Startachelseafc
discussion group
G s Sk i Quvups
i n Toand: 1. Gomi -
PP P IS TRNEIY TR e Translate ‘chelseafc’ No results were found.

Figure 5.5: “What do you love” search results on the query “Chelsea FC”,
accessed on August 2011

enough. Yahoo! Alpha and Bing (year 2009) do not blend results, but
they are clearly different. They both place content into predefined areas
in the visualization layout, but in the first approach the content is placed
if available and in the second case if probable. We can say that the first
approach is not source selective, while the second is source selective.
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5.6 Evaluation

Until now, different evaluation methodologies have been undertaken for mea-
suring the effectiveness of cross-vertical aggregated search. Because existing
techniques have been designed with different goals, they are quite heteroge-
neous. We can classify them with respect to their target. In [14], 104 [10§],
the main goal is to evaluate source selection. In [166] 168, 73], the main
goal is to compare cross-vertical aggregated search interfaces. In [13], au-
thors target result ranking. We will describe here the different evaluation
approaches.

One common protocol to evaluate source selection is to ask human par-
ticipants to choose which are the relevant sources for a query [14], 104, [10§].
Liu et al. [I08] performed this kind of relevance assessment on 2153 generic
Web queries. In [I4], human judges classified 25195 queries. This kind of
assessments is fast, but not necessarily accurate. The human judge might
not guess the real information need or might neglect some interpretations of
the query and some queries might demand specific knowledge.

In [166], [168], Sushmita et al. compare the effectiveness of different inter-
faces for cross-vertical aggregated search. They show that users find more
relevant results when vertical results are placed together with Web results.
They also show that placing vertical results on top, on bottom or in the
middle of search results can affect the amount of vertical search results ac-
cessed by users. In both studies, participants are shown concrete search
results from the considered sources. They are also given the information
need behind the query. They have to click on results and bookmark the
ones that are relevant. This approach is closer to traditional IR evaluation.
The information need is not ambiguous and assessors can access real search
results.

Instead of human participants, relevance assessments have been simu-
lated using click-through logs [167, (53] [168]. In [53], Diaz shows that queries
which obtain a high click through rate within news results are probable to
be newsworthy. Click-through logs are also used in [I68]. It is shown that
for some sources such as video click-through behavior is different. Although
click-through logs enable a large scale automatic evaluation, they cannot be
as realistic as human based evaluation.

Recently, Arguello et al. [I3] proposed a methodology to evaluate result
ranking. Relevance assessments are pair-wise preferences between result
sets. Each result set contains results from one source. This work does
not focus on the notion of source relevance, rather than on the relative
effectiveness of ranking.

Zhou et al. [I96] propose building an evaluation benchmark for cross-
vertical aggregated search through the re-use of existing evaluation bench-
marks. They make use the the CluWeb track in TREC [46]. They artificially
build vertical collections using classification. Then, they choose topics that
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cover many verticals. We can see this work as a step towards evaluation
benchmarks, although a more substantial effort is needed in this direction
to make the distribution of topics, sources and assessments more realistic.

In general, evaluation of cross-vertical aggregated search remains an open
problem. There are different types of relevance assessment, different mea-
sures, while there is no common agreement yet. In particular, it is not clear
which are the advantages of this approach that are prioritary and how they
should they be assessed. We know that cross-vertical aggregated search can
provide focus and diversity, but we do not know why and at which extent
this improves information retrieval. Research needs to investigate more on
the interest and evaluation of cross-vertical aggregated search.

5.7 Conclusions

In this chapter we provided an overview on the cross-vertical aggregated
search. We have organized related work around some main issues: source
selection, result aggregation, result presentation and evaluation. Some of
the related work is inspired from federated search while some is quite novel.
Source selection has to take into account for vertical search and web search
specificities. Result aggregation and presentation approaches go beyond the
uniform ranked list. Evaluation techniques are also specific to the targeted
issue (e.g. source selection, result aggregation, result presentation).

However, research in this direction remains quite heterogeneous and
should be taken to converge. We need to clearly identify the novel issues
and advantages of cross-vertical aggregated search. Which are the advan-
tages of combining diverse sources remains to be explored. As well, we have
seen that there are different ways to assemble and present results, which
can affect user satisfaction. Existing evaluation techniques rely on binary
relevance assessments but different setups. To better capture the utility of
cross-vertical aggregated search we need to investigate more on the notion
of relevance for cross-vertical aggregated search and the ways to capture it
realistically. This will also be the goal of our contribution in this research
direction.

Moreover, vertical search engine results can be combined in other tasks
and uses except of Web search. We believe that the potential of this domain
is to discover and research outcome will be proliferous in future years.
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Chapter 6

Attribute retrieval

6.1 Introduction

Semi-structured HTML data (tables and lists) in the Web are probably the
largest source of relational data in the Web [37]. Because, we target high-
recall for relational aggregated search in both terms of queries that can be
answered and information that can be retrieved we propose approaches that
rely on this kind of data. To do so, we do not rely on patterns for text
extraction [0, 58] nor on precise wrapper induction techniques [41]. Our
work is mostly inspired from the work of Cafarella et al. [37]. Their work
is at our knowledge the largest mining from HTML tables and HTML lists
for search purposes. They show how to identify relational tables and lists,
although they do not specifically extract attributes or instances from nor
they perform search for them. Our work is different because we explicitly
extract and we perform query matching i.e. we rank by relevance.

In this chapter, we propose an approach for attribute retrieval i.e. given
a query (instance or set of instances) our approach can extract candidate
attributes and rank them by relevance to the query. We will show in the
next chapter how they can be used to build aggregated information retrieval
answers. In chapter [§] we present our research on HTML lists to extract
sets of instances. In chapter [9) we apply our research to build relational
aggregated search prototypes.

As we mentioned, for our attribute retrieval approach we rely on rela-
tional HTML tables. Although tables are probably the largest source of
relational data [37], the task is not easy for the following reasons. Many
of the HTML tables are not in a relational form, especially the ones used
for layout design and navigation. Some tables are useful but not uniformly
relational (see table 2 in figure As well, relevant tables are not easy to
detect. A table can be relevant for an instance even when the instance is
not present within the table text.

Our approach takes into account for the above issues and it is designed

79
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to work at large scale with high recall. It is composed of three main steps:

e retrieval of a seed of potentially relevant tables
o filtering of useless tables and attributes

e ranking of attributes by relevance features

To test our approach, we use three search situations. First, we retrieve
relevant attributes for one given instance (e.g. “University of Strathclyde”).
Second, we retrieve attributes for a given class (e.g. “universities”) repre-
sented as a set of instances. Third, we retrieve attributes for one instance
when some other similar instances are given (from the same class). We
use the term instance attribute retrieval when we retrieve attributes for one
instance. By analogy, we use the term class attribute retrieval when we
retrieve attributes for a class. The last search situation corresponds to rein-
forced instance attribute retrieval. However, the instance attribute retrieval
is the core problem in all cases.

Moreover, we compare attribute retrieval from HTML tables with other
existing approaches from state of the art. Concretely, we use the lexico-
syntactic rules used in [9] and a combination of DBPedia and Wikipedia.

In the next section, we describe our general approach. Then we describe
our experimental setup (section and the corresponding results (section

51).

6.2 Attribute retrieval

The core of the attribute retrieval problem is to extract and rank attributes
with respect to an instance query 7. If we are able to do so, we can also
retrieve attribute for a class (given as a set of instances). Here, we describe
our approach composed of three main steps:

e Retrieval of a seed of potentially relevant tables: The first
step corresponds to the collection of potentially useful relevant tables.
Instead of retrieving only tables that match the query, we retrieve all
tables that are within documents that match the query. This is done
to avoid an important loss of recall. However, the problem is far away
from being solved. Tables in the Web are quite heterogeneous and
many of the retrieved tables are partially or not relevant.

e Filtering of useless tables and attributes: The second step cor-
responds to a recall-oriented filtering over tables and attribute lines.
We apply three filters on tables and attributes namely relational filter,
header filter, and attribute line filter. They are recall-oriented classi-
fiers that can filter out many useless tables and useless attribute lines.
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The first two filters target tables that are not relational and that do
not have headers. The remainder of these tables is then used to extract
attribute lines (rows or colums), which are then input to the attribute
line filter to remove non conform candidates. This step is necessary
because we can a last chance to detect useless data when we check at
line level.

e Ranking of attributes by relevance features: The extracted at-
tribute lines are ranked with respect to their relevance. The task is
not easy. If we consider only tables that match the instance, we would
lose many relevant tables (e.g. table 2 in figure is relevant for
“France”, but does not match it). Extracted attributes are ranked
with a relevance score ¢(a,i) which is applied over an instance i and
an attribute a. It will be described in details in section [6.2.2]

This approach is easy to generalize to class attribute retrieval. Here
the query is a set of instances I that represents a class. For example
the class “countries” can be represented by the set: “France”, “Italy”,
“UK”, etc. The relevance score for an attribute a for the class of
instances I will be:

1|

In other terms, a relevant attribute for the class is likely to be present
in many instances of the class. Though, we average the relevance score
across all instances.

ola,I) = (6.1)

As well, we can easily deal with reinforced instance attribute retrieval.
Let @ be the target instance and let I be a set of similar instances given
to reinforce retrieval. The hypothesis is that having more instances can
improve attribute retrieval due to the simple fact that similar instances
share common attributes. However, even if most relevant attributes
are shared among instances of the same class, many exceptions can
occur. For example, “queen” is relevant for the instance “UK”, but it
is irrelevant for the instance “USA”. To overcome this problem, when
it comes to ranking, we privilege attributes retrieved for the instance
1 using only the instances in I to reinforce ranking. The relevance
score for the instance i will be computed as follows:

.o if ¢(a,i) =0
¢lai) = {qb(a,i) + ¢(a, 1) otherwise (6:2)

Due to the complexity of the problem, we evaluate separately the per-
formance on attribute names and attribute values. Let the query be the
instance “France”. The attributes names “capital”’, “president”, “area”,
“population”, “GDP”, “GDP per capita” are examples of relevant attribute
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Relational Filter Header Filter

fi: t rows fi: t rows

fo:  f#cols for  f#cols

f3: Y%rows w/mostly  fs: %head row cells with lower-case
NULLS

fa: ¢ cols w/non-string  fo: % head row cells with punctuation
data

f5:  cell strlen avg p fio: % head row cells with non string data

fe: cell strlen stddev o fi1: % cols w/non-string data in body

far % fi2: % cols w/|len(row_1) — p| > 20

fis: % cols w/|o < len(row-1) — u| < 20
fia: % cols w/|o > len(row-1) — p|

Table 6.1: Features for the relational and header filter

names. The attribute values can be retrieved with errors even when the
attribute name is correct. For example, table 1 in figure has relevant
attribute names for the instance “Germany” although none of the values
will be relevant /correct.

Facts
Population | Medianage || Capital Paris 1 |Loud Rihanna
France 64,768,389 39.7 years Demonym French 2 | Theking of limbs | Radiohead
Italy 58,090,681 | 43.7 years Population 3 | Femme fatale Britney Spears
Table 1 | Population 64,768,389 Table 3
Median age 39.7 years Table 2

Figure 6.1: Examples of interesting tables

In the next sections, we will explain how our filters (relational, header
and attribute line) work and which are relevance features used to compute

o(a,i).

6.2.1 Filters
Relational tables and attribute headers

We build the relational filter and the header filter using the same features
as done by Cafarella et al. in [37]. Features on the left of table are used
to learn a rule-based classifier for the relational filter and features on the
right are used to learn a rule-based classifier for the header filter. Learning
is done with a training set of human-classified tables described later in the
experimental setup.

Features include the dimensions of the table (fi, f2), the fraction of
lines with mostly nulls (empty cells) (f3), the lines with non-string data
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(numbers, dates) (fy), statistics on the character length of cells and their
standard variance (fs, fs, f7), conformity of the header cells (lower-case,
punctuation, non-string data) (fs-f11) and different statistics on the column
lines with respect to their cell lengths (how many (%) of these lengths do
not follow normal distribution) (fi2, fi3, f14)-

We have to consider that relational tables can be oriented vertically or
horizontally depending on the orientation of attribute lines. For example,
tables 1 and 3 in figure [6.1] are oriented vertically and table 2 is oriented
horizontally. We adapt our approach to work for both horizontally and
vertically oriented tables. This is not difficult. We consider the origin table
t and another table ¢ which is obtained from ¢ considering its rows as columns
and its columns as rows.

If ¢ passes both the relational and header filter, table columns are con-
sidered as candidate attribute lines to extract attributes from. Similarly, if
t passes both the relational and header filter, the table rows are considered
as candidate attribute lines. It can happen that both columns and rows are
considered as candidate attribute lines. The latter are then passed to the
attribute line filter.

Attribute line filter

In addition to the relational and header filter, we defined the attribute line
filter. Let a be the first cell of the line (row or column) and V be the rest
of the cells of the line. We consider that a conform attribute line should
contain an attribute name in the first cell and attribute values in the rest
of the cells. Attribute values can correspond to one instance or multiple
instances.

Typically, attribute names do not have much punctuation except of the
colon and parenthesis. They rarely contain numbers. On the other hand,
attribute values are usually in the same format (number, string, date) and
their length is similar. Based on the above observations, we define the
following features for the attribute line filter:

e presence of punctuation (except colons, brackets) in a
e presence of numbers in a

e ¢ is a stop word

e length (char) of a;

e length (words) of a

e average of the length (char) of values p

e standard deviation of the length (char) of values o
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fvalues v € V' with |len(v) — u| > 20

fvalues v € V with o < |len(v) — u| < 20

fvalues v € V with o > |len(v) — p|

. mazre; i values_of type(T .
data conformity : Temt’“””g’d”r{}(‘ﬁ f type(T) (it measures at

which extent the values have uniform type)

These features are then used to learn a rule-based classifier from a train-
ing set of human classified attribute lines described later in the experimental
setup. Once candidate attributes are filtered, we rank the remaining set as
explained in the following section.

6.2.2 Ranking attributes by relevance

It is not easy to tell whether an attribute is relevant for a given instance.
There are many tables relevant to the instance where the instance is not even
present in its cells. We propose combining different features to estimate a
relevance score ¢(a,i) for a candidate attribute a and an instance i. These
features include a score on the match of the instance on the table, document
relevance and external evidence from DBPedia, Wikipedia and Web search.
¢(a,i) is a linear combination of these features. Relevance features are
described below.

Table match: Tables from which attributes are extracted should be
relevant for the instance. For some tables, this is easier to detect because
the instance appears explicitly within the table cells. From an analysis on
a small sample of random tables from the Web we derived two important
observations. (i) There are many relevant tables that do not match the
instance; (i) however, there is a higher concentration of relevant attributes
within tables that match the instance. This indicates that a table match
feature will be helpful. We define it as follows:

Let a be an attribute extracted from a table T for an instance i¢. The
match of an instance within a table cell T, is measured with the cosine
distance between the terms of the instance and the terms of the table cell.
Let 7 and ¢ be the vector representation of the instance and the table cell
content. We have i = (w14, wa, ..., Wn;) and ¢ = (w1¢, Wa ¢, ..., Wnc). Bach
dimension corresponds to a separate term. If a term occurs in the instance,
its value is 1 in 4. If it occurs in the table cell content, its value is 1 in c.
The match is computed with the cosine similarity among the vectors.

The table match score is computed as the maximal match within table
cells:

match(i, T) = Jmax cos(i, Ty y) (6.3)
vy €

To improve the table match score, we rely on another important obser-
vation. We observed that an attribute name is unlikely to be present in
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the same line (row or column) with the instance name, while the relevant
attribute value is likely to appear in the same line with the instance. In-
deed, the instance is more likely to be present in the first column or first
row. Although its appearence in other cells is still evidence of relevance, it
is unlikely that the attribute name and the instance will be met in the same
line because in this case the instance is likely to be an attribute value. We
can illustrate this with the table 2 in figure The table matches the query
“Paris” but the attribute “capital” cannot be relevant for this instance. To
take into account for this observation, we will define the shadow area of a
cell O as the set of cells in the same row and same column with O. There are
some exceptions to this rule. We call headline cells, the ones that have are
spanned (colspan > 1)E| that cover the entire table width such as the ones
in table 2 in figure [6.1] Headline cells usually act as titles that introduce
parts of the table. We consider that the headline cells are not part of the
shadow of another cell (see figure [6.2).

Figure 6.2: The shadow for a cell O, 3 cases

We define the match score of an attribute as the difference between the table
match score and the shadow match score.

match(a,i,T) = match(i, T) — match(i, shadow(a)) (6.4)
where

match(i, shadow(a)) = . Grslllzifi{ow(a) cos(i, Ty y)
z,y

Document relevance : If a document is relevant for the instance, the
tables within the document are likely to be relevant for the instance. We
should though take into account the document relevance. More precisely,
let fresults be the number of retrieved results for an instance i and rank
be the rank of a document d within this list. We compute:

fresults — rank

drel(d,i) = (6.5)

fresults

Search hits: Search hits is a feature that has already been used for
attribute extraction [194) T41]. It corresponds to the number of search re-
sults returned by a Web search engine to a query “attribute of instance”

3The colspan is an HTML attribute that defines the number of columns a cell should
span.
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within double quotes (successive ordering of terms is obligatory, e.g. “cap-
ital of France”). As done in literature, we use the logarithm (base 10) of
the search hits count. To normalize, we used the following observation. Few
attributes score higher than 6 i.e logio(search_hits_count(a of i)) > 6. All
the attributes that score higher than 6 were given a score of 1, the other
scores were normalized by 6. Doing so, we have all scores in the interval [0, 1].

DBPedia feature: DBPedia represents a large ontology of information
which partly relies on information extracted from Wikipedia [16]. Given an
instance ¢ and an attribute a, the DBPedia feature DB Pedia(a,i) is equal
to 1 if a is found as an attribute of ¢ in DBPedia.

Wikipedia feature: Although information in DBPedia is much more
uniform, there exist many attributes in Wikipedia infobozx tables which are
not present in DBPedia. Infobox tables are available for many Wikipedia
pages. They contain lists of attributes for the page. Given an instance ¢ and
a candidate attribute a, we set the Wikipedia feature Wikipedia(a,i) to 1
if @ can be found in the infobox of a page for i in Wikipedia.

Other features: It is difficult to find features which help rank attributes
that are domain-independent and apply at large-scale. We excluded from the
relevance features the frequency feature. This feature is meant to measure
how often an attribute appears within tables of relevant documents. Intu-
itively, we can think that a relevant attribute will repeat more frequently
than non-attributes or irrelevant attributes. We observed that candidate
attributes that repeat the most are the ones that are used in ads or forms.
Thus, candidate attributes such as “login”, “search”, “previous”, etc. were
the ones that were favored by this feature. To tackle this issue, we developed
a stop-word list for attributes, but even with this list, previous experiments
did not show the interest of the frequency feature. This may be due to the
fact that our list is still incomplete and need to be built using the whole
web. We leave for future work a correct integration of this feature in the
evaluation of ¢(a,1).

Combination of features At last, ¢(a,i) is evaluated as a linear com-
bination L of the relevance features:

¢(a,i) = L(match(a,i,T),drel(d,1),
logio(search_hits_count(a of 1)),
DBPedia(a, i), Wikipedia(a,1)) (6.6)

with T the table from which a was extracted and d the document contain-
ing T. We tried different combinations of these features to determine the
contribution of each feature. The results are described later.
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6.3 Experimental setup

In this section, we describe the experimental setup. We start with the
general setup. We show how our approach was instantiated and then we
follow with evaluation on filtering and attribute ranking.

For each instance of the dataset (200 instances), we retrieved top 50
search results using the Yahoo! BOSS API. These pages are used as a
seed to extract tables and attributes. For each table, we apply the three
filters sequentially, which are learned and evaluated as described in the next
sections.

After filtering, we extract attribute lines and we rank them using the
linear combination of features ¢(a,i). More precisely, we use ¢(a,i) for
instance attribute retrieval, ¢(a, I) for class attribute retrieval and ¢(a, I;)
for reinforced attribute retrieval.

Below, we will describe the evaluation and setup of filtering and attribute
retrieval.

6.3.1 Filtering setup and evaluation

The three filters correspond to rule-based classifiers. They were trained
using the previously mentioned features using the WEKA package [185].
We randomly selected a sample of 3000 tables (with more than 1 row and
more than 1 column) which were judged by 3 assessors from our research
institute. For each table assessors had to tell, if the table is relational. If
“yes” they had to tell if the table is oriented vertically or horizontally and
whether the table has a header.

Similarly, we choose a sample of 3000 random attribute lines from our
dataset of tables. They are as well assessed from our assessors. For each
attribute line, the assessor has to tell if it is a conform attribute line i.e. it
contains an attribute name and attribute values.

We cross-validated the trained classifiers by splitting the human-judged
dataset into five parts. Each time four parts are used training and the fifth
for testing. We trained five different classifiers, rotating the testing set each
time. Performance results are averaged from the resulting five tests.

6.3.2 Attribute retrieval evaluation

Attribute relevance was assessed by 5 volunteering participants from our
institution. Each of the participants had to judge disjoint sets of attributes
with respect to their relevance. An assessor had to consider an attribute
relevant if at least its name was relevant. At a second time, assessors had to
assess values from a sample of 5000 relevant attributes from the previously
judged attributes. This is done for two reasons. First, we mentioned that
attribute retrieval and attribute value retrieval can be considered as two
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separate problems. Second, assessing attribute values can demand more
time and expert knowledge. Though, we preferred assessing less attribute
values. During evaluation, assessors could access the source page of the
attribute or other sources (Web search, dictionary) to make their decision.
Attributes were shown in alphabetical order to avoid any bias.

To evaluate the performance of our attribute retrieval approach we had
to assess different runs of our approach and state of the art approaches.
Initially, we used different combinations of relevance features. Then, we an-
alyzed the impact of the filters and the retrieval performance across different
search situations. To end, we had to assess the performance of state of the
art techniques. Because there are far too many retrieved attributes and
runs, we could not assess all of them. Instead, we assessed top 30 attributes
from each run on a fixed dataset of queries. This is enough to estimate
precision at rank with rank<30.

We built a dataset of classes and instances to use as queries. This was
done as it follows. First, we choose a set of classes and then 10 instances
per class. To choose instances and classes, we used sampling to avoid biases.
5 participants had to write down 10 classes each. Classes could be broad
(e.g. Countries) or specific (French speaking countries). We sampled 20
classes out of the 50. This is a reasonable amount as in state of the art
approaches [174], 194, 28] 188, 135], the number of assessed classes varies
from 2-25 classes.

Similarly for each selected class, we asked the 5 participants to write
down 10 instances. Sampling and removing duplicates we obtained 10 in-
stances per class. This is the list of classes: rock bands, laptops, ameri-
can universities, hotels, software, british army generals, chancellors of Ger-
man, American films, IR papers, SLR cameras, novels, Nirvana songs, Nis-
san vehicles, programmable calculators, countries, drugs, companies, cities,
painters, mobile phones. The entire dataset can be found in the appendix.

6.4 Results

This section is about experimental results. Initially, we analyze the perfor-
mance of the three filters. Then we analyze the performance of instance
attribute retrieval which is the core element in our approach. This involves
an analysis on the impact of filters and features for relevance ranking. Then,
we analyze results by task namely attribute value retrieval, class attribute
retrieval and reinforced attribute retrieval. Then, we show results on recall
and comparison with state of the art.

6.4.1 Performance of filtering

Before analyzing the performance of the filters we analyzed all retrieved
tables for all instances in our dataset. We found that only 16.9% of the
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’ Horizontal H Vertical H
prec. | recall prec. | recall
yes 0.50 | 0.82 yes 0.38 | 0.81
no 0.98 | 0.94 no 0.98 | 0.95

Table 6.2: Precision and recall for the relational filter

Horizontal H Vertical H

prec. | recall prec. | recall
yes 0.96 | 0.95 yes 0.76 | 0.89
no 0.63 | 0.70 no 0.87 | 0.73

Table 6.3: Precision and recall for the header filter in relational tables

tables had more than one row and more than one column. Within the 3000
tables that were assessed only 23% were considered relational. We can thus
estimate a concentration of 3.9% relational tables within the entire set of
tables in the retrieved Web pages. Now, we will analyze the effect of the
filters.

Relational filter: The relational filter is the first filter applied on the
retrieved tables. This filter correspond to two different classifiers, one for
relational tables that are oriented horizontally and another classifier for re-
lational tables that are oriented vertically. The performance of these filters
is shown in table 6.2

We tuned classification for high recall over positives. The classifier of
relational tables oriented horizontally retains 82% of the true positives and
it filters out 94% of the true negatives. Similarly, the classifier of relational
tables oriented vertically retains 81% of the true positives and it filters out
95% of the true negatives. After this filtering step, we will have about 45% of
relational tables within our corpus out of an initial estimated concentration
of about 3.9%.

Header filter: The header filter is applied on the output of the rela-
tional filter. In table[6.3], we show the performance of this filter. We observed
that most of the horizontally oriented relational tables have headers. They
usually have two to three columns and are easier to classify. The header
classifier for relational tables oriented horizontally retains 95% of the true
positives with a precision of 96%. Although the header classifier of relational
tables oriented vertically is less performant, it retains 89% of the true pos-
itives with a precision of 76%. After this filtering step, about 87.5% of the
relational tables will have headers and 71% of the tables without headers
will be removed. Results on both filters are similar to the ones obtained
by Cafarella et al. [37], although they are not directly comparable because
they use another dataset.

Attribute line filter: The attribute line filter is applied on the output
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of the header filter. As well as the other filters, the attribute line filter is
tuned for recall over positives. The performance of this filter is shown in
table This filter retains 95% of the correct attribute lines, while it filters
out about 55% of the incorrect attribute lines. It clearly helps in filtering
out useless attribute lines at the cost of 5% of correct attribute lines.

prec. | recall
yes 0.56 | 0.95
no 0.69 | 0.55

Table 6.4: Precision and recall for the attribute line filter in relational tables

In the next section, we will discuss on the effectiveness of the filters and
the relevance features for the attribute retrieval task.

6.4.2 Impact of the relevance features on attribute retrieval

To determine the best ranking function ¢(a,i) we tried many different com-
binations of features. The number of runs we experimented is too big for us
to enumerate all results. Indeed, if we suppose that the linear combination
of features uses equal coefficients on all features and we just enumerate the
possible combinations of features, we will have 2°—1 = 54+104+10+5+1 = 31
different runs i.e. one features at a time (5 runs), two features at a time (10
runs), three features at a time (10 runs), 4 features at a time (5 runs) and
all features at once (1 run). We will instead quickly resume the results.

First, we ranked using one feature at a time. The features that worked
best in terms of precision are the DPBedia feature, Wikipedia feature and
table match followed by search hits counts and document rank. After test-
ing different runs, we observed that all the features can contribute to the
performance of the ranking function. The best performance we obtained
uses a simple linear combination with equal coefficients for all features. We
aknowledge that light improvement is possible if we vary coefficients. For
the sake of simplicity, all results shown here are obtained with the simple
linear combination.

Performance of the best run is shown in figure [6.3] It shows precision
at rank averaged over all instance queries. At rank 10, we have a precision
of about 83% i.e. within the top 10 attributes about 8.3 are relevant. At
rank 20 we have a precision of about 72%. Because retrieving attributes is
presumably more difficult than retrieving documents, we can assume that
these results are promising.

6.4.3 Impact of filters on attribute retrieval

In table we show the performance of our approach with and without
the filters. Symbol * after the results of the first row indicates statistical
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Figure 6.3: Precision at rank for instance attribute retrieval

significance using a paired t-test at p < 0.05 (all filters against no filters).

We can see that all filters have a positive impact in the ranking as well as
the relational and header filter. In fact, combining all three filters provides
the best performance. However, results are encouraging with and without
the filters. We can confirm one more time that ranking by relevance features
works well.

| Approach | p@1 [ p@10 | p@20 | p@30 |
All filters 0.94* | 0.83*% | 0.72* | 0.61*
Attribute line filter 0.90 | 0.82 | 0.70 | 0.61
Header and relat. filter | 0.89 | 0.83 | 0.70 | 0.59
No filters 0.84 | 0.81 | 0.68 | 0.59

Table 6.5: The impact of filters

6.4.4 Performance by search situation

In this section, we analyze the performance of different search situations. We
start with attribute value retrieval following with class attribute retrieval
and reinforced attribute retrieval.

Performance of attribute value retrieval

The above results concern only attribute names. We will introduce here
some of our work on attribute values. Given a set of candidate attribute
lines, we can rank attribute values in different ways. An easy way to rank
is the following. First, we rank attribute lines with ¢(a,i). Then, if the
attribute line has two rows (or columns), we use the second cell as attribute
value. If the instance name appears ortogonally with some cell (except the
first) in the attribute line, we select this cell as the attribute value for the
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attribute. Otherwise, we consider that the attribute value is the union of
all cells (except the first). We call this attribute as multi-value. This simple
method was shown to acquire correctly attribute values for 66% of relevant
attributes in our dataset. These promising results will be completed by a
complete analysis of attribute values retrieval in future work.

The rest of the results will concern relevance assessments on attribute
names.

Performance of class attribute retrieval

Figure shows precision at rank for class attribute retrieval when we
represent the class as a set of 10 instances. We retrieve attributes for each
of the 10 instances of the class and we rank with the function ¢(a, I) defined
in section for the second problem. As expected, results are better than
for instance attribute retrieval. We have precision of 0.95 at rank 10, a
precision of 0.84 at rank 20 and a precision of 0.77 at rank 30. For the same
problem, if we use 5 instances per class, we obtain precision 0.89 at rank
10, precision 0.76 at rank 20 and precision 0.66 at rank 30. In general, we
noticed that class attribute retrieval performance improves with the increase
of available instances.

0.97
0.77
p
0.58
5 10 15 20 25 30
Rank

Figure 6.4: Precision at rank for class attribute retrieval

We also analyzed results class by class. Figure [6.5] shows precision at
rank 30 by class. We can see that attribute retrieval can vary across classes.
For some classes in our dataset, performance is lower such as for “drugs”
and “programmable calculators”, while for others precision remains high
such as for “british army generals”, “chancelors”, “countries”. The quality
of attribute retrieval by class depends on the quality of attribute retrieval for
every instance of the class. Results are relatively heterogeneous. Some in-
stances are ambiguous. For some others, returned search results are slightly
relevant. For some instances or class of instances, there is more tabular
data than for other within search results. Furthermore, for some classes
there exist more relevant attributes than for others.
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Figure 6.5: Precision at rank 30 by class

Performance of reinforced attribute retrieval

To reinforce instance attribute retrieval, for each target instance we use the
9 other instances of the same class. Attributes are ranked combining both
¢(a,i) and ¢(a,l;) as described earlier. The intuition is that the other
instances can provide additional evidence of relevance for attributes.

In figure we can see the impact of reinforcement on instance attribute
retrieval. The lower curve corresponds to instance attribute retrieval without
reinforcement, while the upper curve corresponds to the reinforced attribute
retrieval. We can see that reinforcement improves significantly resultsﬂ

0.78
P
— ho reinforcement
0.58 . reinforced
5 10 15 20 25 30
Rank

Figure 6.6: The impact of reinforcement

We can conclude that having multiple instances of the same class helps
attribute retrieval for instance queries. We can explain this phenomena
due to the fact that similar instances have similar attributes. Promoting
common attributes has a positive impact on retrieval.

5The significance of the improvement was validated using a paired t-test with p < 0.05
for P@Q10, P@20, P@30.
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6.4.5 Estimating recall

To estimate in a reasonable time the recall of our method, we select 4 classes
from our dataset namely “SLR cameras”, “countries”, “companies”, “Nissan
vehicles” which are also met in Wikipedia and DBpedia. For all instances of
these classes, our assessors evaluated all retrieved attributes (the ones that
are not filtered out).

’ \ cameras | countries | companies \ vehicles \ average

# retrieved attributes 689 1253 804 925 918

# relevant attributes 303 213 160 347 256

Table 6.6: Retrieved and relevant attributes by class and average

The number of retrieved and relevant attributes are shown in table|6.6| by
class and average. We found an average of 918 distinct candidate attributes
per class (SLR cameras 689, countries 1253, companies 804, vehicles 925).
Among them, there are on average 256 relevant attributes per class (cameras
303, countries 213, companies 160, vehicles 347). This is a considerable
amount of relevant attributes and it shows the potential of our method. It
confirms that tables are a good source for attributes and that our filters
keep a high concentration of relevant attributes.

We repeated a similar experiment for the same classes using Wikipedia
and DBPedia. For each class, we randomly selected 10 instances which had
to have a Wikipedia page or be present in DBPedia. We then extracted
attributes which are either present in DBPedia or in Wikipedia infoboxes
for each instance. We found an average of 25 distinct relevant attributes per
class (cameras 8, countries 38, companies 37, vehicles 18). We observe that
although Wikipedia and DBPedia are quality and huge sources of informa-
tion, they have a much lower recall than our method.

6.4.6 Comparison with state of the art

We also compared our approach to the ones based on lexico-syntactic rules
[28, 194], [174], 136] Lexico-syntactic rules are common for attribute extrac-
tion. We tested the lexico-syntactic extraction rules in our retrieval frame-
work with our dataset. Concretely, we use the patterns “A of I” and “I’s
A” as done in [136}, [I74]. We collect candidate attributes for 10 instances of
all classes.

To compare we used the class attribute retrieval approach (problem 2).
We use top 50 search results for all instances of our dataset as extraction
seed for both techniques. The attributes extracted by the lexico-syntactic
extraction method are ranked with the same scoring (excluding table match
score which does not apply to lexico-syntactic rules).
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Results are shown in table Our method performs significantly better
with 61% of of relevant attributes at rank 30 against 33% for the lexico-
syntactic rules. We recall that symbol * after the results indicates statistical
improvement using a paired t-test (p < 0.05).

’ Approach H p@1 ‘ p@10 ‘ p@20 \ p@30 ‘
Our approach 0.94*% | 0.83*% | 0.72* | 0.61*
Lexico-syntactic rules | 0.46 | 0.48 | 0.43 | 0.33

Table 6.7: Comparison with lexico-syntactic scores

We also compared both approach in term of recall, by considering only
the 4 classes used to estimate recall. Lexico-syntactic rules have a lower
recall, too. For each class, lexico-syntactic rules identify 55 candidate at-
tributes on average. Among these there are about 24 relevant attributes per
class (against 256 for our approach).

We can conclude that lexico-syntactic rules work well for certain ap-
plications such as queries, but they do not work well for long documents,
especially in terms of precision.

6.5 Conclusions

In this chapter, we present an approach for Web-scale attribute retrieval
using relational HTML tables. Our approach integrates multiple features.
Some of them are used to build filters to detect relational tables, the presence
of headers and conform attribute lines. Other features are combined for
relevance ranking.

All three filters prove their effectiveness. After applying the relational
filter, we have about 45% of relational tables instead of an initial estimated
concentration of about 3.9% of the initial corpus. The header filter if applied
to relational tables, it retains 87.5% of the ones with headers, while about
71% of the tables without headers are removed. Similarly, the attribute line
filter retains 95% of the correct attribute lines, while it filters out about 55%
of the incorrect attribute lines. We can say that filters have a high recall
over true positives and they filter out a huge amount of useless data.

The attribute retrieval approach is shown to perform well. We could
observe that the approach has a high recall in terms of queries that can be
answered and attributes that can be retrieved. Furthermore, ranking shows
encouraging results in terms of precision. We could also show promising
results when we experimented with three different uses namely attribute
value retrieval, class attribute retrieval and reinforced retrieval.

Furthermore, we compare our approach to state of the art techniques. It
is shown that it outperforms lexico-syntactic rules for the same purpose in
terms of precision and recall. As well, we show that this approach has a high
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coverage (recall) even when compared to quality sources such as DBPedia
and Wikipedia.

The above proves that our attribute retrieval results are encouraging.
In chapters[7] and [0}, we will see how attributes can contribute to aggregate
search results differently. For future work, we foresee the completion of
the attribute retrieval framework with other recall-oriented or precision-
oriented techniques. We believe that relations between classes, instances
and attributes need to be further explored. As well, we will explore more
on the issue of attribute value retrieval.

To conclude, this work proves that we can perform online attribute re-
trieval at Web-scale, while we can improve precision through ranking and
validation techniques. As next step, we need to show how attribute retrieval
will affect relational aggregated search. In the next chapter, we leave be-
hind the attribute retrieval problems and we focus on result aggregation
i.e. the construction of adequate answers composed of classes, instances and
attributes.



Chapter 7

Result aggregation: Building
useful tabular results

7.1 Introduction

In this chapter, we investigate on result aggregation for relational aggregated
search. We have seen in the previous chapter that we can retrieve success-
fully attributes for instances and classes. Here, we focus on the assembly of
instances and attributes for answering relational queries with a special focus
on class queries.

Result aggregation is relatively simple for attribute and instance queries.
For attribute queries, we can simply return candidate attribute values ranked
by relevance. For instance queries, result aggregation is slightly more dif-
ficult. We need to return relevant attributes, but we also need to select
the most important /representative attributes. The task becomes even more
complex for class queries. We need to select and assemble important in-
stances and attributes. Both the order of instances and attributes can affect
the quality of the aggregated result. Because result aggregation for class
queries is complex and it includes some of the issues met for other types of
queries, we will focus in this chapter on class queries.

To illustrate the issues of result aggregation for class queries, we will
list some examples using tables in figure Let them be candidate results
for the class query “French cities”. Each row corresponds to an instance
and each column corresponds to an attribute. The first three tables contain
obvious problems. Table A has some irrelevant attributes (e.g. email) and
some useless attributes such as (e.g. yellow cards, golf players). Table B
contains irrelevant cities (e.g. London) and some less representative cities
such as Castres, Mulhouse, Roscoff. On the other hand, in table C we have
issues for the attribute values. Most of the attribute values are missing.
Table D is clearly more coherent and useful than the previous ones. It con-
tains important (representative) class instances and important and relevant

97
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Country Yellow cards Golf players Email
Paris France 2 2000 paris@france.fr
Marseille France 3 1541
Roscoff France NA 21
Mulhouse France 5 56 A
Population | Region Area Mayor
London 7,825,000 London 1,572.1 km? Boris Johnson
Roscoff 3,705 6.19 km? Joseph Seité
Castres 44 823 Midi-Pyrénées | 457 km? Pascal Bugis
B Mulhouse 110,514 Alsace 22.18 km? Jean Rottner
Metro Population | Airport Area Metro Area
Paris 11,899,544 CDG, Paris Orly | 2,723 km? 14,518.3 km?
Roscoff NA 6.19 km?
Castres 98,17 km?
Mulhouse 22.18 km? C
Population | Region Area Mayor
Paris 2,211,297 |lle de France 2,723 km? | Bertrand Delanoé&
Marseille 851,420 Provence 240 km?2 Jean-Claude Gaudin
Nantes 283,025 Pays de la Loire | 65 km? Jean-Marc Ayrault
D | Toulouse 437,715 Midi-Pyrénées | 118 km? Pierre Cohen

Figure 7.1: Examples of tabular result representation for class attribute
queries

attributes with their values. The above examples are chosen to show that
the quality of the aggregated search results depends on the quality of the
instances, attributes and attribute values. Ideally, instances and attributes
do not only have to be relevant but also important (representative) for the
query (class in this case) and attribute values should be present and correct.

In this chapter, we define an approach that performs instance selection
and attribute ranking for the construction of tabular results for class queries.
The approach includes different weights on instances and attributes which
indicate their utility to the query. We tested different combinations of the
weights to measure and compare their impact on quality of the final re-
sults. In the next sections we will describe our approach following with the
experimental setup and results.
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7.2 Result aggregation approach

We have seen in the previous section that not all instances and attributes
are equally important for a given query. In this section, we propose a result
aggregation approach for relational aggregated search that can take into ac-
count for issues listed in the first section. To simplify the experimental setup
we will suppose that candidate instances are relevant. This will enable us to
focus more on novel issues that were not dealt in the previous chapter such
as missing attribute values and the importance of attributes and instances.

Our approach is composed of two main steps (i) instance selection and
(i) attribute ranking. The first step provides the set of instances which will
be used in the final result. For the given instances, we rank the attributes
with respect to different weights trying to avoid missing values and promot-
ing presumed important attributes. This setup allows us to test different
rankings on attributes for different selections of instances.

To model our problem, we define different weights/scores on instances
and attributes which will estimate the utility of these elements for the final
result. These weights can be used to select and rank attributes and instances
for result aggregation. We define weights on instances and attributes to fall
in the interval [0,1] and we assume that p,(z) > p,(y) indicates that x is
more useful than y for the query q. We set p,(z) = 0 when z is irrelevant
for the query gq.

In our approach, we will test three different ways to select instances and
three different ways to rank attributes. We will test the different combina-
tions to see the impact of our weights in the quality of result aggregation.
In the next sections, we propose the different weighting scores for instance
selection and attribute ranking. Then, we show our experiments to test the
utility of our weights for result aggregation.

7.2.1 Instance selection

We will define three ways to select instances which derive from simple hy-
potheses:

e TH1: Instances with many attributes are likely to be important. In-
deed, if we can associate an instance with many attributes, it indicates
that many authors use this instance. As well, these instances will likely
contribute to fill a tabular result if we consider class queries i.e. more
attributes means less empty cells.

e TH2: Largely used and referenced instances are important. This hy-
pothesis relies on the idea that a popular instance (though largely
used) is likely important.

The above statements are just hypotheses and they will have to be val-
idated through experimentation. Using these hypotheses, we define three
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ways to select instances. Each selection relies on a weight p.(i) on a given
instance ¢ for a class c:

e Maxy: The first weight is derived from hypothesis IH1. Each in-
stance 7 is scored with respect to the number of attributes it has nor-
malized by the maximal number of attributes across all instances in
the class.

|attributes(i)]
mazjcr|attributes(j)|

pe(i) = (7.1)

where |attributes(i)| and |attributes(j)| are respectively the number
of attributes of 7 and j and I is the set of instances of the class.

e Linky: We define a second weight relying on the second hypothesis
(IH2) and state of the art approaches in TREC entity ranking track
[20, 21]. The score we use is defined for instances that are found
in Wikipedia. More concretely, the instance weight is defined using
Wikipedia incoming links (in) to the instance Wikipedia page and
outgoing links out from the instance Wikipedia page. This is similar
to the work in [I79]. Concretely, we have:

L in(i) + out(7)
pe(i) = mazjer(in(j) + out(j)) (7.2)

where [ is the set of instances of the class.

A similar score can be defined even for instances that are not present
in Wikipedia. We need an estimation of the pages that refer to i and
an estimation of important instances surrounding . We will not define
another score, because in our experimental setup, we will use instances
that are found in Wikipedia.

e Shorty: We also define a third weight which decreases with the num-
ber of attributes an instance has. This opposite of the “maxy” weight.
This weight is not supported by our hypotheses, but we will use it to
test result aggregation with instances that have few attributes. For
these instances the risk of having many empty cells in the final result
is higher.

In the experimental setup, we will use the three selections of instances
to influence the ranking of attributes. This is done to test if the notion of
important instance relates to the notion of important attribute.
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7.2.2 Attribute ranking

In this section, we define weights on attributes based on an intuitive initial
formula:

pe(a) = Z(p@-(a) - pe(7)) (7.3)
with:

e pc(a) - the weight of the attribute a for the class ¢
e p;(a) - the weight of the attribute a for the instance i

e p.(i) - the weight of the instance for the class ¢

We recall that for irrelevant attributes the weight is fixed to zero. When
the attribute is relevant, its weight will will be the sum of weights across
multiple instances of the class.

To estimate weights on attributes, we use two different hypothesis:

e AH1: An important attribute is likely to repeat frequently in a class
(frequency.) The intuition is that an attribute which is frequent across
the instances of a class is likely to be important as most authors choose
to use it.

e AH2: An important attribute is present even when the instance has
few attributes (participation) i.e. the attribute weight is disproportional
to the number of attributes the instance has. The intuition here is
that if an instance is represented with just few attributes and if an
attribute a is among them, then a is likely an important attribute.

The three weights we define will be named with respect to above hy-
potheses.

e Frequency: This weighting function is defined based on hypothesis
AH1. Let class frequency (cf(a,c)) be the frequency of attribute a
in instances of class ¢. The frequency weight corresponds to cf(a,c)
normalized on the maximum frequency i.e. |instances(c)|, the number
of known instances for the class ¢. The frequency weight will be:

pela) = 00

= 7 7.4
linstances(c)| (74)

This formula is equivalent to using equation with p.(i) = 1 for all
instances and pq(2) = 1 if the attribute a is met within the attributes
of 4.
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e Participation: The “participation” weighting function is defined based
on hypothesis AH2. We set p;(a) = WM where |attributes(i)|
indicates the number of attributes of i. The weight of an attribute
a of i is therefore disproportinal to the number of attributes 7 has.
Replacing p;(a) in equation we obtain:

Pc(a) = Z W 'Pc(i) (7-5)

e Frequency and participation: In the third weighting function we
combine the two above formulas (frequency and participation) in one.
We define the weight as:

. cflac)
Pa(i) = >oaeicf(aj.0) (7.6)
We have that
e
wlo) =3 = g v (7)

7.3 Experimental setup

We test our result aggregation approach on tabular results built for class
queries. Our experimental setup is described in three steps. First, we present
a dataset of queries (classes). Second, we present the different combinations
of weights that were evaluated. Third, we present the human assessment
deployment.

7.3.1 Dataset

To experiment our weighted result aggregation, we used 30 class queries se-
lected randomly from DBPedia. The classes are listed in table Only one
constraint was imposed: classes had to have between 20 and 100 instances
within DBPedia. For every class, we retrieved its instances within DBPedia
and for every class instance we retrieve their attributes.

7.3.2 Tables

For every query we built tabular results containing 5 instances and 10 at-
tributes per instance. Figure shows how the result looks like (we do not
show 10 attributes because they do not fit well in one snapshot).

We construct 9 different tables per query to investigate on the effective-
ness of different attribute weights and for a possible correlation of attribute
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Table 7.1: Class queries of the evaluation dataset

1. Colour 16. Seas

2. Albums produced by Mick Ronson | 17. Manga of 1999

3. Archipelagos of Indonesia 18. English Journalists

4. Castles in Poland 19. Towns in Utah

5. European Union Member States 20. Burgess Shale Fossils

6. Defunct Agencies of the United | 21. Countries bordering the Atlantic

States government Ocean

7. Programmable calculators 22. Computing acronyms

8. Stoner rock musical groups 23. Tropical fruit

9. Academics of the University of Kent | 24. Actors from Los Ange-
les/California

10. Turkish Riviera 25. G20 Nations

11. Radiocontrast agents 26. Adventure novels

12. Nissan vehicles 27. Ports and harbours of New Zealand

13. Australian World War I battalions | 28. Poker companies

14. Number one debut singles 29. Markup languages

15. VIA Rail stations in Ontario 30. Chancelors

importance and instance importance. More precisely, we always show the
same instances in all 9 tables for a given query, but we vary the attributes
using the different ways to weigh that we defined. The instances correspond
to the top 5 ones using the “maxy” selection, while attributes are ranked
with respect to the 3 attribute weightings and 4 possible instance weightings.

The first attribute ranking is derived from the first weighting function
namely “frequency”. The two other weights “participation” and “partici-
pation and frequency” demand for an estimation of p.(i). We estimate it
through instance selection weights. We use one random selection of the in-
stances and three selections using “maxy”, “shorty” and “linky” weights to
rank top 5 instances. p(7) is set to 1 if the instance is within the selected
instances and 0 otherwise. The combination of the 4 selections and the two
attribute weighting functions makes 8 more possible ways to rank attributes.

Our goal is to compare the quality of the produced tables to derive the
impact of each weighting function on the quality of results as well as the
impact of instance weights to attribute weights.

7.3.3 Evaluation

Tables have been assessed from 4 volunteering participants from our insti-
tute. For each query, the assessor had to tell which table he/she prefers.
Participants assessed disjoint sets of queries i.e. each assessor judge 7-8
queries and each query was judged by one assessor.

In addition, for every query we asked assessors to evaluate for relevance
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Family Order Class Kingdom| Genus Division
P AT arrales MMaznoliids o Farsea
Avocado  |[Frtittlaumsesse [Ratitilaveales o o penotiis | | EatiteParsea
Entité:B: lioid EntitéFPoal=s . . Ananas e .
Pi rr'e Eatits B " Entita G ..., |[Entité:Monocots [Entité:Plantas Entits:Ananas [Entité: Angiosparms
s Entité:Asterids e . Solanum o .
Eggplant Entité:2olanaceas Entité-Solanales Entité:Evdicots [Entité:Plantas Entité-Solanum [Entité: Angiosparms
Entité:Lythraczas Em?[ E.:RGS‘HE. - ,_||Entits:Plant Enn.ta:?tm{:a Entité Flowsring_plant
Pomegranate EntitéMagncliopsida Punica
B Entité-Musaceas g::?:?‘“‘bﬂ?f EntitéMonocots  |[Entité:Plantas||EntitéMusa_%28zenus?28 [Entité: Angiosparms
anana & o

Figure 7.2: Examples of tabular result to be assessed

all attributes that were used in the tables. This is done because there exist
few attributes which are retrieved through DBPedia that are not relevant for
users, which are mostly useful internally to DBPedia. We used these assess-
ments to see if our weighting functions could filter out irrelevant attributes.
The evaluation interface for attributes looks like in figure [7.3

,*‘.} Towns_in_Utah
| |

Select the relevant attributes for the given query/class

[7] elevation m [C] elevation (m) [C] mapsize ] unit pref [] latm [ area total sq mi [C] blank info [T] area total
[T hasPhotoCollection [C] population total [~ map caption [”] blank name [[] subdivision name [| area land sq
[C] image skyline [C] latd [C] population density km [C] blank] info ] comment 7] reference [[] lats [ longd

[C] population as of [C] area water sqmi [”| population density (/sqkm) ] Image [7] longs [] utc offset DST
[C] image caption [C] established date [”] named for [C] established tifle [C] homepage [ imagesize [ founder
[ lats [ latd ] wordnet type [] longs [] longm [[] lat NS [Tl long EW [l long d [[] lat m [T Website
[T Aug Hi °F [C] Dec Precip inch [] Jun Hi °F [[] Oct REC Hi °F [[] Feb REC Hi °F [[] Jan Lo °F [

Figure 7.3: Example of the attribute assessment evaluation interface

7.4 Results

In table we compare the impact of the attribute weights on the user
preferences for the aggregated tables. The results show how often a table
generated respectively with the ‘frequency”, “participation”, ‘frequency and
participation” weights are preferred by the user (in percentage). The ta-
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bles generated with “frequency and participation” weighting function were
more frequently prefered by assessors (60% of the cases). In second position,
we find the “participation” weighting function. We can conclude that both
“frequency” and “participation” weights are important, although “partici-
pation” is more important than “frequency”.

Table 7.2: Impact of attribute weights
Frequency | Participation | Freq&Particip
Selection percentage 7.5% 32.5% 60.0%

In table[7.3] we compare the impact of the instance weights on the quality
of tables. The results show how often a table with weights derived from
the “random”, “shorty”, “maxy” or “linky” selection are preferred by the
user (in percentage). The tables built ranking with the “linky” weight are
the most frequently prefered by assessors (41.8% of the cases). This means
that promoting presumably important instances produces better tables even
better than promoting the attributes of the visualized table (“maxy”). As
well, we observe that promoting the attributes of the instances with few
attributes (“shorty” selection) has a negative impact. These instances are
presumably less important or their impact increases the amount of empty
cells.

Table 7.3: Impact of instance selection
Random | Shorty | Maxy | Linky
Selection percentage | 16.6% 8.3% | 33.3% | 41.8%

We will now show the impact of weighted ranking on the distribution of
relevant attributes. This is a preliminary study, but results are interesting.
In figure we show precision at rank 10 (P@10) for the attributes ranked
using the three attribute weights in the presence of a random selection of
instances. We can observe that there are surprisingly many irrelevant at-
tributes on the top 10 attributes, but this is mostly due to the fact that
many instances had less than 10 attributes. Though, for some classes it was
impossible to have more that 5 relevant attributes at once. An interesting
observation is that the weighting functions that work best are the same ones
that produce preferable tables.

Table 7.4: Impact of attribute prefences on relevance P@Q10
Frequency | Participation | Freq&Particip
pPa@10 0.53 0.58 0.58

Figure shows the impact of the instance weighting functions on the
distribution of relevant attributes. We see that “linky” instance weight helps
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to have more relevant attributes on top (P@10), followed by “maxy” and
“shorty”. The only surprise is the “shorty” weight function which produces
more relevant attributes than random selection of instances given that the
tables with “shorty” ranking of instances are less preferred than tables with
random instances. This can be easily explained through the fact that tables
generated with the “shorty”’ selection can contain a lot of missing values.
In general, we can confirm that the quality of the tables depends on the
number of relevant attributes.

Table 7.5: Impact of instance selection on relevance P@Q10
Random | Shorty | Maxy | Linky
pPa@1o 0.58 0.583 | 0.595 | 0.595

7.5 Conclusions

We propose an approach for result aggregation in the context of relational
aggregated search with a special focus on class queries. Our approach can
take into account for different issues such as relevance and importance (an
attribute/instance should be representative for the query), missing attribute
values, etc. These issues are modeled through weights in different scoring
functions. We promote attributes that have an important “participation”
in the instances and a frequent appearance in the class. We also promote
instances which are “popular” or instances that have many attributes. Re-
sults show that the weighting function can affect significantly the quality of
tabular results for class queries.

For future work, we will experiment result aggregation with other vari-
ables. In particular, we would like to compare the impact of different rele-
vance scores. In this chapter, we experimented with attributes and instances
from DBPedia to avoid an excess in variables in the experimental setup.



Chapter 8

Lists of instances and set
expansion

8.1 Introduction

In this chapter, we present an approach that enables to massively extract
lists of instances. These lists were already shown useful to reinforce attribute
retrieval. They have also been shown useful for querying by examples [184]
91], query suggestion [84], etc. Indeed, classes, instances and attributes are
the main actors in relational aggregated search. The more we can identify
and relate, the more information needs can be answered. The work we
will present in this chapter is mainly about acquiring related instances to
increase the extractable relational knowledge.

To identify instances of the same class, it is common to rely on the
class i.e. we need to know the instance’s class which will be associated
with the other instances. For instance, to relate “Germany”, “Italy” and
“France”, it is needed to pass through their class acquisition. Typically, this
is done through lexico-syntactic rules [74] or existing knowledge bases such
as DBPedia, Wikipedia, Wordnet [16], [75].

Binding the instance with a class name can be seen as a constraint,
because this is not always possible and easy. One instance can belong to
several classes (e.g Hotel California can match a song and a hotel). The
named entity itself can be ambiguous (e.g Mr.Jones can refer to different
persons, but also to a song). Moreover, it is difficult (see impossible) to
agree on a common taxonomy of classes and we cannot enumerate a priori
all possible classes.

Our approach follows a different paradigm with the goal of increasing
the recall of relational data (both relations and extracts). We do not use
any class acquisition technique, but we extract sets of instances in groups.
We call these groups of anonymous class as siblings’ set or siblings’ lists.
To illustrate, “South Africa; Mezico; Uruguay; France” is an example of

107
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“siblings’ set”. These instances can be classified as “countries” but also as a
“qualified teams for the FIFA 2010 World Championship”. Even if the class
cannot be named univocally, the set itself incorporates most of the class’
semantics.

We use HTML lists as source for siblings’ set extraction. This is done
for some reasons:

e HTML lists can contain siblings’ sets
e HTML lists are easy to parse
e There are many HTML lists in the Web

Nevertheless, there are some drawbacks with HT'ML lists. They are often
used for their stylistic visualization rather than for a list semantics. We can
often find them used for navigation menus, layout design, etc. Furthermore,
the HTML language allows syntactic errors. Some tags are erroneous, some
are not closed well. We keep into account for all these issues in this work.

The approach we propose is domain independent and applicable at large
scale. Our contribution in this direction can be summarized with these
points:

¢ We introduce the notion of siblings’ set and we situate it in the context
of relational aggregated search

e We identify a rich source for extracting massively siblings’ sets within
HTML lists.

o We analyze HTML lists and different features that might be discrimi-
native for a domain-independent identification of siblings’ sets

e We implement a domain-independent classifier that allows to auto-
matically extract siblings’ set from HTML lists

e We show one possible use of siblings’ sets namely set expansion (query-
ing by example)

This chapter is structured as follows. First, we focus on the extraction of
siblings’ lists. We present our approach, experimental setup following with
results. We end this chapter with conclusions.

8.2 Mining for siblings’ list

Our approach is mainly about mining the HTML lists to learn extract sib-
lings’ sets. We describe it through multiple steps. First, we describe the
parsing process. Then, we list some “easy to identify” heuristics to filter
out useless data. At this stage, we build a random dataset, which we use
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to analyze the quality of non filtered HTML lists as well as to identify dis-
criminative features. The dataset and the features are then used to train a
classifier for automatic extraction of siblings’ sets. Below, we detail these
steps.

8.2.1 Parsing and filtering

Parsing: We consider only HTML lists i.e. lists within the respective
HTML tags < OL >, < UL > and < DL >. The first tag represents
ordered lists, while the others are unordered lists. Each list item is denoted
by the < LI > tag. The content of each item is within the opening and the
corresponding closing tag as the content of each list is within the opening
and the corresponding closing tag.

Filtering: Sometimes, it is not possible to parse correctly an HTML
list. This is due to errors in the HTML structure both because of human
or machine-generation coding. We could find a lot of tags which were not
closed and tags which are miss-used. Our parsing is able to correct some of
this errors. When not possible, it filters out the list.

At the same time, we filter out a large number of lists which were very
probably not interesting for our study. This is done through heuristics. Some
of these heuristics are easy to intuitive, for some others it was necessary to
analyze data in advance. Concretely, we use the following heuristics to filter.
We remove:

e lists with empty items
e lists with less than 3 items

e lists with items of less than 3 characters

e lists with the average length in characters of the items less than 4
characters

e lists with the longest element longer than 40 characterd]

e lists with the average length in characters of the items greater than 32
characterd?

After the parsing and filtering step, we analyzed the result of this process
in a sample of 1000 documents. We found about 3.4 lists per page and about
5.7 items per list. We also notice that the length of the lists varies a lot,
where the longest list has 466 items. We observe that in average 85% of the
HTML lists do not pass the filtering process. This is initial evidence that
many of the HTML lists are used for layout-design and other purposes.

chosen by observations
Zchosen by observations
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8.2.2 Mining and extracting

To analyze the potential of HTML lists for massive extraction of siblings’
sets, we use a labelled dataset of HTML lists randomly taken from a corpus
of documents. These lists will be helpful to estimate the distribution of
siblings’ sets. This will also be used to mine for useful features that can
help extracting siblings’ lists. Below, list the features that we use in our
study followed by a list of potentially useful features (future work):

e Links (anchors): Many Web Designers often use lists to show nav-
igation options (menus), to propose related links or simply for adver-
tisement links. This is very frequent and one can expect to find fewer
lists of instances within these cases. It is common to expect links
(anchors) within the item of such lists. This is why we studied the
influence of links in the quality of lists.

e Frequencies: In analogy with term frequency in a document (¢f) or
the document frequency (df), we define the item frequency (if) for
lists as in how many lists an item is found in the lists of the collection.
We study if such a frequency has a role in the quality of lists. For
instance menu items can be very frequent such as “Home”.

e Ordered versus unordered: It is interesting to study whether there
are more lists of instances within ordered or unordered lists.

e Item count: Another feature we studied is the influence of the num-
ber of items. Are short lists more probable to contain instances of the
same type or longer ones behave better?

e Other features to consider: The above analysis helps to analyze
the distribution of siblings’ lists in HT'ML list with respect to specific
features of HTML lists. These features might not be enough for an
optimal classification of siblings’ list. Here we list some other features
that can be used. They can be linguistic, domain specific, collection
specific and so on.

For each of the terms in a list item, it is possible to generate specific
features using collection statistics or external sources such as WordNet.
A promising idea is the use of statistical functions [176] [44] such as the
Pointwise Mutual Information (PMI) which estimate the relationship
among two or more items based on the co-occurrences of their terms.

It is also interesting to consider other domain independent features
such as the presence of punctuation, the presence of verbs, the position
of the list in the table, etc. In this work we limit to the specific features
of HTML lists. We want to show their utility and their limits.
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After analyzing the distribution of siblings’ list with respect to each fea-
ture, we devise an automatic classifier to extract siblings’ lists. All selected
features are domain-independent and common for HTML lists. They are
listed in table They include list length, the list type (ordered or not),
the item length in terms of characters, item frequency and the presence of
links. The presence of links is passed as two different features, one indi-
cating the presence of at least one link in the list items, another indicating
if all items are linked. The values are transformed into real numbers and
normalized when necessary.

Table 8.1: The features used for classification
Feature | Description

Type Is the list ordered?

Length The number of items of the list

NoLinks | There is no anchors at all in the list
AllLinks | All items in the list have anchors (links)
MaxIF The item with the maximal item frequency

AvglF The average item frequency

MinIF The item with the minimal item frequency

Longest | The maximal length in characters of an item
AvgLgth | The average length in character of items

We rely on a SVM classifier, because it works well in the presence of
few features. Here, kernel functions can map the input dimensions into a
higher dimensional space which allows to classify data which are not easy
to separate in their hyper-space.

We use the open source LIBSVM library [42], which provides support
vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR)
and distribution estimation (one-class SVM). These three types of classifi-
cation can be used with 4 types of kernels namely the radial based function,
the sigmoid function, linear combination and polynomial combination.

8.3 Experimental setup

We used the QUAERdﬂ corpus which contains pages extracted from the
Web. It counts about 1 million and a half Web pages, which are in French
language. The collection is a subset of the index of Exalead Search Engine{ﬂ
Even if our goal is to generalize our experimental results, we are aware that

3QUAERO is a project among French and German public and private research
organizations aiming to promote research and industrial innovation on technologies
for automatic analysis and classification of multimedia and multilingual documents,
http://www.quaero.org

‘http://www.exalead.com
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this number is not large enough with respect to the size of the Web and that
there might not be the same distribution of lists in French language as for
other languages.

To evaluate the quality of the HTML lists in terms of presence of siblings’
list we use human assessors. We are aware that there exist various auto-
matic classifiers such as the Standford NERE| [59], ABNERH [157], etc. for
instances, but we opted for human classification because automatic classifiers
do not work well for all classes and instances (we aim a domain independent
approach).

We relied on 5 human partipants which assessed 2000 lists randomly
selected. Assessors are all from our institute in the domains of Information
Retrieval and Information Systems. It is easier to provide such a task to
experts of these domains, because they are familiar with the concepts of
named entity, relation and class. Consequently, less training time is needed
for assessors and better assessments can be obtained. In fact, we are not
interested in knowing whether an average human can identify instances,
more than identifying them correctly.

Each assessor was shown the same instructions, which were first tested
for comprehensibility i.e. other assessors were asked whether the stated in-
structions and definitions were clear and unambiguous. The final guidelines
included the definition of named entity, examples of instances and examples
of lists of instances of the same type.

The task of the assessor consists mainly in checking if a given list is a
siblings’ set of instances or not. The question was simplified to the assessors.
The answer is “yes” when:

e all list items are instances
e the instances belong to the same class

Otherwise the answer is “no”.

The assessor was told that the named entity should be the entire list
item and not simply present in the item. For lists longer than 5, one wrong
element was marked as acceptable (e.g. France, Germany, Italy, Spain,
Albania, Others).

The interface the assessor had to interact with shows the list and the
“yes/no” question on the top of a Web page, followed by the source page
below. This is clearly useful as no one knows all about all instances. In
difficult cases, which were very rare, assessors could use search engines.

Shttp://nlp.stanford.edu/ner /index.shtml
Shttp://pages.cs.wisc.edu/ bsettles/abner/
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8.4 Experimental results

In this section, we provide our analysis on the labelled dataset, the impact
of each feature on the distribution of siblings’ sets. Then, we focus on the
performance of our classifier.

8.4.1 Distribution of siblings’ sets

From 2000 assessed lists only 165 of them were judged as lists of instances
of the same type. This is only 8.25% of them. If we consider that we
filtered 85% of the lists and that there are 3.4 lists per page, it is possible
to estimate for our dataset that there are at least 3.99 siblings’ lists each
hundred documents. This is a small proportion, but it is a strong indicator
that the Web with its size is a rich mine for extracting siblings’ lists.

In fact, with the above estimation, if we consider 1 billion documents, we
can expect 40 million siblings’ lists and if we consider an estimation of the
number of indexed pages in 2009 which is 22.3 billion&ﬂ we can expect to
extract about 892,000,000 siblings’ lists which is huge and would be probably
the largest collection of useful lists ever collected.

To validate this estimation, it might be necessary to repeat the same
experiment with a larger dataset, at least one order of magnitude. As well,
it will be interesting to check whether language and cultural differences affect
the use of lists and their quality.

8.4.2 Mining by feature

Below we consider some important features which can help to detect subsets
with larger percentage of siblings’ lists. This is useful to understand which
features are discriminative and for future work to design adequate classifiers.

Links (anchors): When it comes to links, we distingush 3 cases. The
first one is lists where all items have links (“all links” case). The second
case is lists where at least one item has no links (“some links” case). In
the third case, we consider only lists which do not have any link at all (“no
links” case).

The result are shown in table[8.2l The first column shows the case. The
second column shows how many lists from our filtered sample share fall in
each class, followed by a percentage relative to the size of the sample. The
percentages are useful to understand how frequent lists of each type are.

The results show that the lists where all items have links are less probable
to be siblings’ sets. Among lists with at least one item which is not linked
there are 17.5% which are siblings’ lists, while if there are no links at all the
results are even better (22.5%).

"Taken from http://www.worldwidewebsize.com/ on October 2009
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Table 8.2: Quality and number of lists for link related features

Set Siblings’ lists % | Number of lists
All lists 8.2% 59756

All items linked 7.5% 53441 (85.6%)
Some links 17.5% 6345 (10.6%)
No links 22.5% 1750 (2.9%)

Although among lists with all items with links only 7.5% are siblings’
lists, we cannot neglect this subset. They represent about 85.6% of the
lists of our list dataset, which makes this set a very important seed to find
siblings’ lists.

Item frequencies: Table [8.3| shows the items which are the most fre-
quent in lists. As one can see, these are mostly items that help navigation,
but not instances. In fact, most of them appear mostly with links.

We observed that if a list has an item which repeats very frequently with
links, the list is less probable to be qualitative. For instance, among lists
where there exist an item that has a frequency (if) above 160 timesﬁ, the
percentage of good lists is only 3.2%. If we consider the average of the item
frequency over all list items, we observe that among lists with an average
item frequency above 40 timesﬂ only 0.7% are qualitative.

There are surprisingly a lot of lists with a maximal item frequency above
160 (24273 lists about 40.6%) and average item frequency above 40 (27131
lists about 45.4%). The above statistics can be very useful to filter out
potentially useless lists leaving a subcollection with almost two times better
quality.

On the other hand, focusing on lists for which all items appear only once,
we found 40% of siblings’ lists, which is much above the dataset’s average.

Table 8.3: The most frequent items in the lists of our dataset

Name English translation | Frequency
Accueil Home 3887
Forum Forum 1819
Contact Contact 1506
Recherche Search 1448
Musique Music 1291
Inscription Subscription 1246
Accueil forums | Forums home 980

Ordered versus unordered lists: It is interesting to study whether
there are more lists of instances within ordered or unordered lists. The first

8chosen by observations
9chosen by observations
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interesting observation is that there are much more unordered lists in the
web than ordered ones. In facts, in our dataset we observed that ordered
lists represented only 0.4% of the entire set.

Therefore, the quality of the entire set of assessed lists is almost deter-
mined from the quality of the unordered lists. We had to demand assessors
to judge specifically ordered lists as the number of assessed ordered lists was
very low.

The result is surprising. About 60% of the ordered lists are siblings’
lists. Although, there is only 277 of them within the 59756 lists, the result
is encouraging as the quality is much higher than for unordered lists. This
can be explained by the fact that ordered lists are closer to the traditional
meaning of list and are less frequently used for layout design.

Item count: Another feature we studied is the influence of the number
of items. Are short lists more probable to contain instances of the same type
or longer ones behave better? The graphic in figure shows the obtained
results per value.

The results are shown for the range of 3 to 16 items. The later values
are not shown in the graphic as there are not many assessed lists for the
remaining values.

We distinguish 4 ranges that behave differently. The range 3-6 has an
average quality of 6.8%. The range 7-9 has an average quality of 12.5%.
The range 10-15 has an average quality of 4%, while if there are more than
15 items the average quality is 15%.

The results tell that there are twice as many quality lists in the range
7-9 with respect to the range 3-6. It also tells that there are more quality
lists for long lists (more than 15 items).

% siblings sets
w2 s

)
)

0 — -
3 4 5 § 7 & 9 W 11 12 13 4 15 16
list length

Figure 8.1: % of siblings’ lists with respect to the list length

8.4.3 Extracting siblings’ lists through classification

In this section we propose a binary classification for HTML lists, which aims
to detect if a list is a siblings’ set or not.
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We tested all three types of SVM classifiers (vector classification, regres-
sion and distribution estimation) with the 4 kernels (radial based function,
sigmoid function, linear combination and polynomial combination). In each
case, different combinations of features were also input to see if there are
feature combinations which are more discriminative than others.

To validate results a 3 fold cross-validation is used. This consists in
dividing the dataset in 3 subsets, where 2 are used for training and 1 for
testing. The choice of the test set is then altered three times and the clas-
sifiers performance is better estimated by an average of the three turns. As
measures, we use precision and recall for both the positive class (siblings’
set) and negative set (other lists).

It is impossible to show all the obtained results for all combinations of
features and configurations. If the classifier answers always “yes” it obtains
a 100% recall for the siblings’ sets, but a low precision. In table[8.4] we show
4 interesting cases to compare. We take a always-yes answering classifier
and an always-no answering classifier. We put them aside with two well
performing classifiers, one that performs particularly well in precision and
another that obtains good recall at the cost of precision loss.

Table 8.4: Precision and recall of the classification

Positive Negative
Classifier Prec. | Recall | Prec. | Recall
Always Yes 8.25% | 100% - 0%
Always No - 0% 91.75% | 100%
C-SVC[H] 57.1% | 18.1% | 91.5% | 98.4%
ONE-CLASS "% | 14.0% | 44.7% | 92.2% | 71.0%

Our results vary in terms of precision and recall. It is possible to have a
100% recall, but the precision remains low. Reasonable results for precision
and recall are obtained with the third (C-SVC) and the forth classifier (ONE-
CLASS).

The third classifier is used with a classical configuration and it uses all
the listed features. It obtains encouraging results if we consider that there is
a relatively low concentration of siblings’ lists. The forth classifier performs
better in terms of recall. This can be due to the fact, that this type of
classifier works well for detecting outliers.

The results remain encouraging as we address a domain independent
massive extraction of lists of instances of the same type. Training sets
of instances with their classes as well as other state of the art techniques
in named entity extraction can be integrated in such a system to improve

15Features considered: all
SFeatures considered: presence of links, the type of list (ordered or not) and the item
frequency
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precision and recall while remaining in the context of a massive extraction.
We also believe that the introduction of new features and especially the PMI
measure will significantly improve results. These results show the benefits
and limits of HTML list specific features.

8.5 Conclusions

In this chapter we propose an investigation for a massive and domain-
independent extraction of lists of instances of the same class (siblings’ sets).
Instead of using class acquisition, we automatically classify list of candidate
instances into siblings’ sets. This approach is tested with HT'ML lists from
the Web.

Our experimental results are interesting. We show that about 8.25%
of the HTML lists in our randomly selected dataset are siblings’ sets. If
our estimation is validated and can be generalized to the Web, using an
estimation of the size of the Web, we can estimate to have more 892 million
lists of instances of the same type, which corresponds to billions of instances.

The identification of such a huge collection of instances of the same type
is only one part of the contribution. Further analysis on our assessed lists is
used to understand which features are more discriminative for siblings’ sets.

The observations are used to build automatic binary classifation to de-
tect lists of instances. The performance of the classifier varies with respect
to the features used and the chosen configuration. We obtain 57.1% of preci-
sion and 18.1% of recall if we bias precision. We obtain 14% of precision and
44.7% recall if we bias recall. These results can be further improved with
the integration of new features such as Web-scale term correlation statistics.
We also believe that adapting this work for online retrieval will improve per-
formance. The encouraging result is that these huge collection of instances
exists and it is precious for future exploitation.
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Chapter 9

Completing relational
aggregated search and
prototypes

9.1 Introduction

In this chapter, we present different prototypes we could build applying
our research on relational aggregated search. We also introduce some new
investigation of ours on different sub-problems which can complete relational
aggregated search. This work is particularly interesting because we highlight
different components of RAS systems. We can see this as a journey towards
the composition (construction) of completer relational aggregated search
systems. Our overall contributions is summarized below:

e Querying: We list different ways to query a relational aggregated
search system (section[9.2)). This includes structured queries and nat-
ural language queries.

e More retrieval: We extend the experimented retrieval approaches
with some light retrieval techniques for relational aggregated search
(section [9.3). In particular, we describe some of our research on at-
tribute value retrieval and passage retrieval.

e Result aggregation: We show different ways to put together infor-
mation in the context of relational aggregated search (section .

e Flexible relational aggregated search: We show a simple proto-
type where we can deal with different types of queries at the same
type. Each query type is answered with the corresponding preferred
result aggregation (section .

119
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Class Instances

countries
1. France 2. kkaly
3. Germany 4. Spain
5. USA 6. Australia
7. South Africa 8. Albania
9. Tunisia 10.

revoir | Help

Please insert a class name and at least 4 instances e_g. class countries | instances France, Italy, Spain, Albania

Prev queries: SIG IRIT Actors music albums
Adjctives Animals Country
sites formula 1 drivers american universitias

Figure 9.1: The class query issued as through multiple text boxes

We present our prototypes starting from their components. First, we fo-
cus on the querying language. Second, we show briefly how to retrieve other
types of content such as attribute values, passages and images. After show-
ing these elements, we describe the prototypes one by one and we illustrate
with examples. Each of these prototypes has its own result aggregation.

9.2 Querying

As we mentioned earlier in our framework, we distinguish three types of
queries namely class queries, attribute queries and instance queries. We
define different ways to write each of these queries. We end with a unified
approach to write all these queries in quasi-natural language.

e Class queries: Class queries can be input in natural language such
as “countries” or “European countries”’; but we will use multiple in-
stances to represent class queries, because we did not deal in our pro-
totypes with instance retrieval. Though, we try two different ways
to input class queries. The first one consists of dedicated text boxes
which allow up to 10 instances (see figure we input a name for the
class just for logging purposes). The second option is through a set of
instances separated by commas (see figure . This allows illimited
number of instances, although it is less intuitive for some users.

e Attribute queries: We use two different ways to input attribute
queries. The first option is through two different text boxes as shown
in figure 9.3l This way, there is no confusion between the attribute
name and the instance. The second option is through natural language
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France. Germany, ltaly. Spain, USA, Australia | savaoir | Help

Figure 9.2: The class query issued as instances separated by commas

e.g. “president of France”, “GDP of UK”, “author of Iliad” (see figure
. The main issue with this approach is that sometime the instance
name itself can contain the word “of”. For example, “wind of change”
corresponds to a song and “wind” is not an attribute of “change”. To
avoid this kind of issues, we allow the use of brackets to delimitate
instances when the query can be interpreted ambiguously. Though,
we can write “album of (wind of change)”.

Attribute  president

of instance France Search | Help

Figure 9.3: The attribute query issued through two text boxes

president of France] savoir | Help

Figure 9.4: The attribute query entered through natural language

e Instance queries: Instance queries are the easiest, because they do
not need to be decomposed into smaller subqueries. The only problem
we meet with instance queries comes when the query can be of what-
ever type. In the next section, we propose a more flexible querying
approach which allows to input the three types of query (class query,
instance query and attribute query) through one unique text box.

e Untyped relational queries: What happens if we do not know the
type of query that is being issued? The ideal solution is to deter-
mine their type at query time, but this is not trivial. Alternatively,
we propose a simple approach that allows inputing the three types
of relational queries. If the query contains the word “of” outside of
brackets, then we consider the query as an attribute query. If the query
contains items separated by commas, then we consider the query as a
class query. Otherwise the query is an instance query. Ambiguous en-
tities (the ones that contain the word “of”) have to be surrounded by
brackets. We can also query for an attribute across multiple instances
if we separate instances by commas after the term “of”. The below
examples will illustrateﬂ

The quotes are not part of the query. They are used to separate queries from each
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— attribute queries: “capital of Argentina”, “population of Los An-
geles”, “album of (Wind of change)”, “GDP of Italy, France,
Germany”

— instance queries: “France”, “Los Angeles”, “(Wind of change)”

— class queries: “Italy, France, Germany”, “Always somewhere,
(Wind of change), Holiday”

9.3 More retrieval: attribute values, passages and
images

In this section, we show some investigation we did to integrate into the re-
lational framework content of other types except of classes, instances and
attributes. In particular, we focus on attribute value retrieval, passage re-
trieval and image retrieval which are built on top of Yahoo! BOSS API
search results. They are described below.

9.3.1 Attribute value retrieval

We present two techniques to retrieve attribute values for an attribute query.
In the previous chapters, we have seen a simple technique to extract attribute
values during attribute retrieval. This technique has a 66% precision on at-
tribute values. But sometimes, the attribute we are interested in is not
retrieved by instance attribute retrieval. Here, we propose two simple tech-
niques to retrieve the attribute value of a given attribute and instance. The
first method simply extends attribute retrieval on tables. The second tech-
nique targets pure text.

Attribute value retrieval from tables: To increase chances of finding
an attribute value, we use as retrieval seed a set of documents retrieved on
queries derived from the attribute name and instance. Let a be the attribute
name and 7 instance. We issue as queries “a” “” (including quotes). Quotes
are used to guarantee a precise match with the instance and attribute name.
As well, we issue the same query without quotes, because sometimes the
same instance can be found with different names. The retrieved seed will be
composed of results on both queries. Then, we apply the same extraction
and scoring as described previously in attribute retrieval.

Attribute value retrieval from text: Our second attribute value
retrieval method relies on two hypothesis. First, the attribute value (if
present) can be found close in text with the attribute name. Second, the
document should be relevant for the instance. Though, we use as seed a set
of top documents retrieved on the queries ¢, a 7, “a” “i” and “a of i” where
a and 7 are respectively the targeted attribute name and instance.

other.
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As candidate values, we consider terms or consecutive terms near oc-
currence of the attribute name a. These candidates are scored on different
features including: distance from a, frequency of each term, presence of
stop words, presence of punctuation, etc. Although this method is not yet
mature, it shows encouraging results.

9.3.2 Passage retrieval

Passage retrieval [86, 150} 182 [109] is not easy in general, which can be
explained from the lack of success in Web search. Nevertheless, passage
retrieval can be successful in conjnction with other information retrieval
techniques such as attribute retrieval. In this section, we propose a simple
approach to extract and rank passages. The approach is far from state of
the art, but it integrates useful thoughts from relational aggregated search.

In particular, we interest in instance-passage relations, which will be
identified through retrieval and mining. We make some analogy between
attributes and passages. They can both have a name (title for passages),
but passages content is usually longer than attribute values. Similarly to
attributes, we assume that common passage titles will repeat across similar
instances. We also assume that passages from Wikipedia are more qualita-
tive than others.

Our approach combines different heuristics defined on the passage length,
the query match on the title and on the body of the passage. Passages are
ranked through a simple score calculated by our heuristics 5(p). If multiple
instances are available, we average over the rest of the instances to provide
reinforcement to ranking as done with attributes.

Even if this is ongoing work, our main goal here is to show that passages
fit well in the relational aggregated search framework.

9.3.3 Image retrieval

We integrate results from image retrieval through the Yahoo! BOSS API.
Images are frequently useful for named entities [I70]. Even when they are
not relevant, they are not very harmful when they are not the primary target
of search.

9.4 Result aggregation and prototypes

In this section, we will list the various prototypes we developed to play
with relational aggregated search. They allow us to illustrate the utility of
RAS. In particular, they include different ways to aggregate results. They
prove that relational aggregated search is possible and results are promising,.
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The prototypes can be accessed in the address http://www.irit.fr:8080/
force/

To start with in figure [9.5] we show the main menu we use to access
all developed prototypes. All prototypes are named with French verbs that
end in “oir”. There is no specific reason behind the name choice, except it
sounds good. The “valoir”, “pouvoir” and “revoir” prototypes correspond
respectively to retrieval through attribute queries, instance queries and class
queries. The prototype “savoir” integrate all of these queries into one flex-
ible relational aggregated search system. All prototypes are tuned with a
light configuration to allow a reasonable answer delay (seconds to maximum
1-2 minutes). We will next briefly describe the first 4 prototypes.

FORCE

FORCE is another way of conceiving Web search.

Force retrieves attributes (features), passages, images and assembles them together.

sawvQir :flexible relational aggregated search
valoir :attribute queries -> values
pOuvOir :instance queries -> attributes, passages, images

reVoir - class queries -> instances, attributes, images

Figure 9.5: The main menu used to access all developed prototypes

9.4.1 Prototype “valoir”

“Valoir” is an prototype dedicated to attribute queries. Queries are input
through two text boxes, one for the attribute name and one for the instance.
The candidate attribute values are retrieved from tables and pure text using
the methods described earlier in section We show to the user the top
three attributes retrieved from each method. The user can ask for more
results if he wants.

A result example is given in figure The query is “president of
France”. In this case, attribute retrieval from tables (top 3 results) seems
working better. We prefer keeping ambiguous results, because we want to
clearly identify the contribution of each technique.

In the image, we can also see the search results that were used to retrieve
the attribute values. The returned values can come from one or multiple
different documents. In future work we want to introduce links within the
results to easily access the source result of each extract. Source results

2The prototypes will soon move from Yahoo! BOSS API to Microsoft’s Bing API
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Results for "president of France "':

sarkozy

nicolas sarkozy
nicolas

nicolas sarkozy

first ladies

eduard shevardnadze

Sources:

http:/ /en.wikipedia.org /wiki/President_of_France
http:/ /en wikipedia.org /wiki/Micolas_Sarkozy
http:/ /en.academic.ru/dic.nsf/enwiki/ 15278
http:/ fwww.wordig.com/definition /President_of_France
http: / /www_trueknowledge.com/q /who_is_the_president_of_france_2010
http:/ /'www worldlingo.com/ma/enwiki/en/President_of_France
http:/ /www_bonjourlafrance.com/france-facts /president-of-france_htm
http: | fwww . wikinfo.org/index.php/President_of_France
http:/ /wn_com/President_of_France
http:/ /topics.europeanvoice.com/topic/about/Presidents+of+France

Figure 9.6: The “valoir” result on the query “president of France”

are also shown in other prototypes, but we will ommit them in the next
examples.

9.4.2 Prototype “pouvoir”

“Pouvoir” is an prototype dedicated to instance queries. Queries do not
need any special parsing or multiple text boxes. They are simple input in
natural language. In this prototype, we combine three types of content in
the answer namely attributes, images and passages. On top we place top
retrieved attributes. The user can click on the attribute names to view
their values. Another option is to show values right away. The second line
contains 3 images retrieved with Yahoo! BOSS. Then, we list in two columns
passages.

Figures and show results of this prototype respectively for the
queries “Ireland” and “Pink Panther”. We can see that for these queries all
types of content contribute with different relevant aspects. The final result
looks indeed as a document, although it was generated automatically.

9.4.3 Prototype “revoir”

“Revoir” is a prototype dedicated to class queries. Queries are input through
as a set of instances in a dedicated querying form that can take up to 10
instances (see figure [0.1)). The result is a table of instances, attributes and
their values. Here, we use the attribute retrieval method described in chapter
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internet tid

time zane

Culture

It is probable that Ireland was first occupied by Neolithic

peaple, users of flint, and then by the small, dark, warlike
people from the Mediterranean, users of bronze, who are
known in legend as the Firbolgs. Later came the Picts, also

an immigrant people of the Bronze Age. Extensive traces of

Economy

The economy of Ireland has been traditionally agricultural
Since the mid-19350s, however, the country's industrial base
has expanded, and now mining, manufacturing,
construction, and public utilities account for approximately
37% of the gross domestic product and agriculture for only

t about 12%. P

History
Demographics

The earliest inhabitants--people of a mid-5tone Age

culture--arrived about 6000 BC. About 4,000 years later,

The population of Ireland since 1603 showing the

tribes from southern Europe arrived and established a high

s Ealk consequence of the (Note: figures before 1841 are
Meolithic culture, leaving behind gold ornaments and huge

contemporary estimates)
stone monuments. The Bronze Age people, who arrived

during the next 1,000

Figure 9.7: The “pouvoir” result on the query “Ireland”

[l but with a light configuration to avoid long answering delay.

In figure we can see the result on the query “music albums”. Here,
we issued the query through 7 instances which are well-known albums. We
use the word album after each instance to avoid ambiguity. We can see
that retrieved attribute names are relevant, while their values are somehow
messy. This is the case because at this stage we are experimenting with
attribute values. This interface is not at its final stage. We present multiple
candidate values to see if ranking of values works well.

9.4.4 Prototype “savoir”

“Savoir” is the most complete of our prototypes. It accepts all three types of
relational queries and it proposes a tailored solution for each type of query.
Queries are input in quasi-natutal language (see section for untyped
relational query). This querying convention allows to determine the query
type through simple parsing. For each query type, we trigger the adequate
solution.

To have results presented in a uniform format, we use a table which has
instance names as columns and attribute names as rows. If the query is
an attribute query, the user will be presented the retrieved values within a
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Lytton — Simone Clouseau - Princess Dala
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studio

- Sir Charles Lytton - Inspector Jacques Clouseau - George

Lytton — Simone Clouseau - Princess Dala

Inspector Jacques Clouseau

A bumbling simpleton who believes himself to be a detective A bumbling simpleton who believes himself to be a detective
genius. Inexplicably speaks in with a ludicrous French

accent, while other characters in the films speak English in

whatever accent is normal for the actor playing the part.

It

genius. Inexplicably speaks in with a ludicrous French

accent, while other characters in the films speak English in

whatever accent is normal for the actor playing the part.
(Clouseau's accent is far less pronounced in the early films; (Clouseau's accent is far less pronounced in the early films;

14

Figure 9.8: The “pouvoir” result on the query “Pink Panther”

American Life album

electronica , rock , dan

lwarner maverick , warner bros

4:38;5:05]1[458;4:24;409;3:38;
1

Image genre label length recorded
49:39 409:39 | | [ 4:58 ; 4:24; 4.09;
pop , electronica , rock , dan pop , maverick , warner bros. | maverick 3:38;4:39;4:49;4:54;3:50;4:33; |june 2002

History album

pop , r&b , new jack swing , h | r&b , pop ||

rock , dance , urb

epic epic

71:39 (disc 1) 77:06 (disc 2) | 71:39

september 1994

Nevermind album

grunge | grunge rock: alternative

dgc | dgc geffen

42:38 42:38 | |[5:01 ;4:15;3:39;
3:04 ;417 ;2:57,2:22 ;344 2:37 ;
3:32;3:16;3:51]

may?june 1991

invincible album

r&b , pop , dance-pop[1] | r&b , pop rock

, electronic | r&b , pop , dance-p

epic | motown , epic , legacy | epic ardent

recordsforefront record | epic

7708 | 77085238 |77:08|1[6:26;
5:09 ;446 ;529449 ;5:39 ;440 ;
3:18; 4:24 ; 4:33 ;5:05 ; 4:24 ; 5- ;]

october 1997

reload album

rock | other | heavy metal | rock hard rock

, heavy metal | rock

gut/v2 | gut/v2 elektra | gut/v2 | elektra

62:36 | 75 min 56 sec | 62:36 76:07
62:36 || [3:37 ; 2:58 ; 3:25 ; 3:58 ;
3:26;3:39;3:31;3:48;3:18; ;]

1998-1999

the score album

hip hop , soul , reggae hip hop , soul ,
reggae

ruffhouse , columbia | warner ruffhouse ,
columbia

73:32 73:32

june-november 1995

the wall album

progressive rock , rock opera | r&b | disco
, funk , dance pop progress

harvest records /emi records

61:09 | 42:16 81:09 | | [ 6:04 ; 3:40 ;
5:14;4:39; 4:05 ; 3:05;3:37 ; 4:29 ;
3:48 ; 3:41]

january?november 1979

Figure 9.9: The “revoir” result on the query “music albums” issued through

class instances

simple table headed by the instance name and the attribute name. Instance
queries are answered with attributes and their values and few images. Class
queries are answered similarly, but their table has multiple columns, one per
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France

sarkozy
nicolas sarkozy
nicolas

nicolas sarkozy
first ladies

president:

eduard shevardnadze

Figure 9.10: The “savoir” result on the query “president of France”
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Figure 9.11: The “savoir” result on the query “Mac Book Pro”
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Figure 9.12: The “savoir” result on the query “mobile phones” issued as
instances separated by commas
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instance.

In figure [9.10] we see how results look like for attribute queries. Figure
shows results for the instance query “Mac Book Pro”, while figure
[0.12] show results for the class query “mobile phones” issued through three
instances (we reduced the result on the third instance, because it did not
fit into the page.). We can see that result presentation is relatively uniform
and readable.

We believe that these results are encouraging.

9.5 Conclusions

In this chapter, we have shown 4 prototypes of relational aggregated search.
The first three are dedicated to one type of query respectively to attribute
queries, instance queries and class queries. The forth prototype allows all
three types of queries and answers each type of query with the appropriate
designated solution. We can see this chapter as a prototype oriented trip
within relational aggregated search. During this trip, we highlight issues and
possible solutions. The combination of all solutions is a relational aggregated
search system with encouraging performance.
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Chapter 10

Interest and evaluation of
cross-vertical aggregated
search

10.1 Introduction

Cross-vertical aggregated search can be seen as a special case of federated
search. The interest (advantages, novel issues) of this research direction
remains to be explored. The work presented in this chapter targets at the
same time interest and evaluation of cross-vertical aggregated search. We
consider different ways to collect relevance assessments in this context trying
to determine the advantages of cross-vertical aggregated search. The goals
are multiple. On one side we want to study why and how multiple and
diverse sources can be useful. On the other side, we want to identify the
best ways to capture this utility.

We found that there are two types of relevance assessments that are used
in literature for cvAS. In [14], 104, 108, human judges (assessors) are given
a query and they have to assign to it to one or more vertical intents if they
find so. A query has a vertical intent is there exists a vertical search that is
likely to answer the query. In this kind of setup, assessors do not know the
real need behind the queries and they are not shown any concrete results
from search engines. We say that we have “relevance by intent assessments”
on “short text queries”.

In [166, 168], Sushmita et al. investigate some of the advantages of
cross-vertical aggregated search interfaces. They show that cross-vertical
AS increases the quantity and diversity of relevant results accessed by users.
Here, human assessors are shown results from each source being used and
queries are associated with a description of the information need. We say
that we have relevance by content assessments on queries with a fixed in-
formation need (fixed need queries). Until now, there exist no studies that

133



134 CHAPTER 10. EVALUATION OF CVAS

relate or compare the two types of relevances (by intent and by content).
As well, the impact of the fixed information need with respect to the short
query (free to interpret) has not been studied in the context of cross-vertical
aggregated search.

Our goal in this work is to reconsider the evaluation of the interest of AS,
by exploiting both relevance by intent and by content, and by using queries
with or without fixed information need. Our research questions include:

e What is a relevant source?

e How realistic are relevance by intent assessments and relevance by
content assessments?

e Depending on the evaluation setup, which is the distribution of rele-
vant sources?

e Which is the contribution of vertical searches to traditional Web search?

e Why can two or more sources be complementary at the same time?
Are different sources complementary to each other?

e How should we setup evaluation of cross-vertical aggregated search?

Some of these questions have already been examined in literature (see
sections 5.6/ and [5.2| for details). Our aim is to revisit interest and evaluation
of cross-vertical aggregated search by exploiting two types of relevance (by
intent and content) and two types of queries (fixed need and short query).
For this purpose we conducted a study with many human participants. We
examined four search situations where we vary the type of relevance and the
type of query.

This chapter is structured as follows. Sections and introduce
our study setup and its results. In section we provide discussion about
the results and we give some thoughts about the evaluation of cvAS.

10.2 Experimental setup

We built a study which involves relevance assessments collected through hu-
man participants. The goal is to determine the advantages of cross-vertical
aggregated search as well as the evaluation issues. We aim to investigate on
the notion of source relevance and the ways to capture it.

Our study is composed of 4 tasks which involve real participants evalu-
ating relevance across 9 different sources. We consider two types of source
relevance (by intent or content) and two types queries (with or without a
fixed information). The two types of relevance and the two types of queries
are defined below.
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10.2.1 Definition of source relevance

Intuitively, a relevant source is the one that can provide useful information
for an information need. In this context, source relevance is different from
search result relevance. A source might be relevant for a query even if no
relevant results exist for this query. We can define source relevance with one
of the following statements:

- Definition 1 - Relevance by intent: a source is relevant for a query
if it makes sense to issue this query to this source (i.e. there can be a user
intent to use this source). The source does not even have to be concrete.
For instance, the abstract source “image search” is relevant for the query
“Eiffel tower photos”. Relevance assessment does not depend on the quality
of any search engine.

- Definition 2 - Relevance by content: a source is relevant for a
query if it contains relevant results for the query. The source has to be an
existing search engine and relevance assessment depends on the quality of
the source and the availability of relevant results for the query.

10.2.2 Queries

We randomly sampled 100 queries from the Million Query Track in TREC
2007 [40], which contains itself queries extracted from search engine logs.
This is done for the following reasons. First, choosing manually queries or
writing down ourselves queries can bias results. Second, we could not find
a collection of query logs free to use, which would be the ideal solution.
The choice of the Million Query Track can be a bias as queries are likely
to have textual intent[ﬂ However, this is not a major issue as our goal is
to compare evaluation dimensions rather than the real distribution of query
intents. Selected queries are listed in the appendix.

In the following, we distinguish among short-text query and query
with fixed need. A short-text query corresponds to a query as it is pro-
vided by TREC (1 to 3 words). We associated to each query a detailed
description (a TREC-like textual description) corresponding to what we
considered as relevant for this information need. This is what we call query
with fixed need.

10.2.3 Sources and participants

We consider 9 sources: 8 vertical searches and Web search. The sources
had to be diverse with minimal intersection. Most of them are common
well known vertical search engines. They were chosen for two main reasons.
First, they have already been used in state of the art approaches [14] 166,
167]. Second, we could find a free API for the source. The list of sources

IThere is at least one match in the GOV?2 collection.
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is the following: Web search, Video search, Image search, News search,
Maps (geographic search), Wikipedia search, Product search, Answer search,
Definitions.

For evaluating relevance by content, we used the following real sources:

e Yahoo! BOSS to get results for Web, image, news, answers and
Wikipedia,

e API-s offered by Google Maps, Tuveo, E-Bay and Bing for geographic
search, videos, products and definitions respectively.

The study was conducted with 33 participants belonging to our research
institute with 14 master students, 14 PhD students, 6 lecturers and 1 engi-
neer. There were 13 women and 22 men.

Each participant had to fill a questionnaire before the test to collect data
on participants and their experience with search. Another questionnaire was
to be filled after the test where the participant is asked questions about the
task and his test.

10.2.4 Evaluation interface

When evaluating relevance by content, we use a simple way to show search
results which corresponds to an unblended search approach. This is done for
the following reasons. First, we do not propose any aggregation algorithm
that ranks results of different sources. Second, we want participants to access
results from all sources without favoring any source. Results are shown in 9
panels (see figure forming a 3x3 square. Each panel is labeled by its
source and contains only results from that source (vertical search or Web
search). To avoid biases, sources are shown in a random order for each
query.

Participants might be skeptical about results coming from one source or
they might expect results in one source and not in another accordingly to the
issued query. To avoid this kind of bias results are shown in a homogeneous
manner and the participants are instructed to view results from all sources.
The study is conceived to produce no bias among sources except of the
results quality itself.

The number of results per source to be shown is chosen based on the
visualization space and the comprehensibility of the results. For geographic
search, only one result is shown in the map. The panel for images is filled
with 9 images. For the rest of the sources 3 results are shown for each.
It was possible to show 9 videos, but videos are not as self explanatory as
images. Showing a title with some description is more informative.

Figure presents an example of the interface shown to participants
for the query “Eiffel Tower”.
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Figure 10.1: The interface for evaluating relevance by content with the re-
sults for the query “Eiffel tower”

10.2.5 Tasks description

We evaluated 4 search configurations named here tasks, each one corre-
sponding to one type of relevance and one type of queries.

e Task 1: short-text query, relevance by intent
e Task 2: short-text query, relevance by content
e Task 3: fixed need, relevance by intent

e Task 4: fixed need, relevance by content

Those tasks are detailed below.

Task 1

This task is similar to evaluation in [14], [104), 108]. In this task, the par-
ticipants have to decide for each short-text query which sources are likely
to be relevant (relevance by intent). In other terms, they have to choose
in which sources they expect to have useful results for that query. They
are free to have all possible interpretations for the query. If they do not
get any interpretation for the query they have to say so. Table shows
an example for the query “London Tower”. Different sources such as Web,
Wikipedia and images can be relevant.
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Query: London Tower
Video ‘Web Image News Map
No Yes Yes No Yes
Wiki | Product | Answers | Definition
Yes No No No

Table 10.1: Example of relevant and irrelevant sources for the query “London
Tower”

Task 2

In this task, each short-text query is submitted to the 9 vertical searches.
Participants are shown results from all sources (if some results exist for the
considered source) in the interface presented in section This task is
not meant to evaluate the way of presenting results (through the interface),
but the utility of each source in the context of limited visualization space as
well as the utility of the whole combination of sources and results.

A source is considered relevant if it returns at least one relevant result,
whatever the interpretation of the query. The participant is indicated to
view results from all sources, even if he has an interpretation in his mind
and even if he does not expect relevant results for a given source.

Task 3

Here the participants are given a fixed need query (with the description of
the information need that could have triggered the query). Using both the
query and the information need, they have to choose the sources they guess
to be relevant (relevance by intent).

Task 4

In this last task, the participants are also given a description of the infor-
mation need that could have triggered the query as well as they are shown
results from each source. This task is closer to traditional IR evaluation.
As for Task 2, a source is considered relevant if it introduces at least one
relevant result (relevance by content).

The participants are also asked to tell which is the most useful source for
the information need. If they can choose one, they have to tell if they find
this source enough for the information need. This allows us to investigate
deeper the advantages of AS.

10.2.6 Task deployment

All tasks except the second involve 10 participants with 30 queries each.
The second task involved 30 participants with 10 queries each. We limited



10.3. RESULTS 139

the number of queries, because this task takes longer time than the other
tasks. A participant who participated in all tasks would evaluate 100 queries.
Tasks were designed to have every query assessed by exactly 3 participants,
therefore we have 300 queries assessed by task.

10.3 Results

In this section we first discuss the results concerning the interest of cross-
vertical aggregated search and then we compare evaluation results by con-
sidering different types of relevance and queries.

Before giving these results, we list in the following section the notations
we used.

10.3.1 Notation

In the figures, graphs and tables of this section, we will use the following
abbreviation for the sources: video for video search, web for web search, wiki
for Wikipedia, map for geographic search, prod for product search, image for
image search, def for definitions, qa for answer search. We will use Ul,
U2, U3 and U4 to refer respectively to task 1, task 2, task 3 and task 4 of
our study. Furthermore, we need some definitions. Let ¢ be the ith query
assessed by participant u. Let @ be the set of all ¢i' in a task, @) = 300 for
each task.

Finally, let Q(s;) be the set of ¢} for which the source s; is considered
relevant.

10.3.2 Interest of cross-vertical aggregated search

The first question we try to answer is whether it is worth aggregating results
from different vertical search engines in the context of Web search. Before
getting to the heart of this question, we first define the average relevance
of a source s as the proportion of queries for which s was relevant. Rele-
vance might be assessed by intent or content depending on the task being
considered. We will denote it as R(s) and it corresponds to:

-9

Results here will be discussed according to the goals mentioned at the
beginning of section [10.2

Table lists the average relevance of sources with respect to the dif-
ferent tasks. The same data is also shown in figure to ease comparison
between different sources. We can see that the Web source is the most
relevant and definitions source is the less relevant whatever the considered
relevance or query type. If we order sources by average relevance, we notice

(10.1)
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Figure 10.2: Relevance of sources based on U1l (top left), U2(top right),
U3(bottom left) and U4(bottom right)

Video | Web | Image | News | Map | Wiki | Prod | QA | Def | Total

Ur| 015 | 0.74 | 0.31 0.09 | 0.11 | 0.31 | 0.13 | 0.14 | 0.09 | 2.11

U2 | 046 | 0.89 | 0.55 0.15 | 0.11 | 0.65 | 0.24 | 0.60 | 0.07 | 3.74

Us | 012 | 0.81 | 0.19 0.03 | 0.08 | 0.18 | 0.12 | 0.19 | 0.06 | 1.81

Uj | 024 | 0.83 | 0.26 0.06 | 0.07 | 0.50 | 0.15 | 0.48 | 0.02 | 2.64

Table 10.2: Comparative table of the average relevance of sources with re-
spect to tasks

that not all tasks produce the same ranking. However all 4 tasks confirm
that relevance is sparse across all sources.

We also compare the relevance of vertical searches with Web search with
respect to the number of queries that can be answered respectively by Web
search and the union of all verticals. Let A be the set of all sources, web be
the Web search, V' be the set of all verticals (V=A-web). We will say that
R(A) represents the proportion of queries where there is at least one relevant
source, R(V') represents the proportion of queries where there is at least one
relevant vertical. We also denote as R(web, V) the proportion of queries
where the Web search is relevant alone (no relevant vertical) and R(V, web)
the proportion of queries where there is at least one relevant vertical but
Web search is considered irrelevant. Results are shown in table [[0.3] The
last column corresponds to an average over all tasks.

We notice (in row R(A) of the table) that about 98% of queries have
at least one relevant source. Web search is relevant for about 82% of
queries, while 78% of queries have at least one relevant vertical. Further-
more, Web search is relevant alone (no relevant vertical) for only about
19% of queries. The interesting result comes from the last raw of the table
where for about 16% of the queries have at least one relevant vertical with-
out having Web search as relevant. We can draw the following conclusions.
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Study Ul | U2 | U3 | U4 | avg
R(A) 0.99 | 1.00 | 0.99 | 0.97 | 0.98
R(web) | 0.74 | 0.89 | 0.81 | 0.83 | 0.82
R(V) 0.75 | 0.92 | 0.66 | 0.79 | 0.78
R(web, V) | 0.24 | 0.08 | 0.31 | 0.17 | 0.19
R(V,web) | 0.25 | 0.11 | 0.18 | 0.13 | 0.16

Table 10.3: Duration and agreement by task

Vertical sources can answer many queries. Mostly they are rele-
vant at the same time with Web search, but they can also present
relevant results when Web search fails to.

Let us now examine if many sources can be relevant at the same time
and if sources are complementary with each other. Concretely, we want to
analyze how often multiple sources are considered relevant and when this is
the case we want to see if multiple relevant sources provide same information
(same results) or they return different results for a given query.

Before discussing deeply this question, we first counted the number of
queries that have more than one relevant source. We found 155 queries for
task 1, 251, 134 and 215 for tasks 2, 3 and 4 respectively. There are also
some queries with 4, 5, 6 even 7 relevant sources. The average number of
relevant sources per query and per task is in fact listed in the last column of
table It is respectively 2.11, 3.74, 1.81 and 2.64 for the tasks U1, U2,
U3 and U4. We can therefore conclude that many queries match more
than one relevant source.

10.3.3 Complementary sources?

An important part of our analysis was spent to understand the reasons of
having more than one relevant source for a given query. We identified three
major reasons: (1) The query is ambiguous. (i7) The query is broad, though
the information need is composed of multiple aspects (e.g. visit France can
demand for maps, images, Web, etc. ). (iii) Two different sources can return
the same information. Although we chose a diverse set of sources, there are
cases when two different sources present the same information. The most
frequent is Web search which can intersect with all other sources.

We investigated further the last two reasons ((4i) and (%ii)). We exam-
ined whether the sources return mostly same results (same information) for
a query or whether they tend to return complementary information that
help to better answer the query (in that case we call these sources comple-
mentary). For this purpose, participants were asked in task 4 to select the
most relevant source (called primary source) and to tell if this source was
sufficient to satisfy the information need or if the other sources help (if they
are complementary).
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Figure 10.3: Distribution of the primary sources

Among 300 cases (10 participants x 30 queries), in 272 cases a most
useful source was selected. Figure shows the distribution of primary
sources. One notices that the Web is the most useful source half of the
times, for the other half it is the other sources that present the most useful
information. For this half, the vertical search is more directly relevant to
the information need than the Web search.

The most useful source alone was considered sufficient for the information
need 106 times (39%) and it is insufficient 166 times (61%). If the source is
not enough it is necessary to provide additional complementary information.
Apparently, this is needed quite often.

The participant was also asked to tell if he/she finds additional useful
information in other sources for his/her information need. For the 106 cases
where the most useful source was considered sufficient alone, an average of
2.13 other sources were selected as useful. We can say that the participant
found the primary enough for his information need, but at his/her surprise he
could meet more relevant information in the other sources. For the 166 cases
where the most useful source was considered insufficient alone, an average
of 2.74 other sources were selected as useful. We can expect these sources to
provide complementary information which is missing in the primary source.
Results show implicitly that cross-vertical aggregated search is
useful because often one source alone is not enough to answer
an information need, while multiple sources can complement each
other for a completer answer.

Let’s consider a relevant source s as complementary to a relevant source
p, when p is a primary source and not sufficient alone to satisfy the infor-
mation need. This is not an exact definition, but we will use it to analyze
the distribution of complementary sources. More precisely, we investigated
whether some sources are more likely to be complementary to a given source
p. Figures and show the distribution of complementary sources
respectively for the Web source and Wikipedia source. We see that the
distribution of complementary sources varies with respect to the primary
source.

For instance, the source which is more often complementary to the Web
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source is the answers source followed by Wikipedia, video search and image
search. On the other side, the source which is more often complemetary
to Wikipedia is the Web search source followed by image search and then
answers source. We can therefore say that some sources are more
likely to complete a given source.

This is just a short analysis of possible relations between primary and
complementary sources. Further investigation is needed in this direction.
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Figure 10.4: Distribution of complementary sources when the primary source
is Web search
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Figure 10.5: Distribution of complementary sources when the primary source
is Wikipedia

10.3.4 Impact of relevance and query types on evaluation

Our goal now is to compare different evaluation setups for cross-vertical ag-
gregated search. The main question here is whether these setups capture
realistically the notion of relevance. We will analyze the impact of the type
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of query (short text query versus fixed need) and type of relevance (by intent
versus bu content).

Short text query vs. fixed information need

Table shows that fixing the information need decreases the amount and
diversity of relevant sources. This can be seen comparing results from task
1 and task 3 and those of task 2 and task 4. For instance, for the query
“Hamilton County”, the information need was “I want the location of Hamil-
ton County”. For this query, in U1 we can choose images and Wikipedia as
relevant. Once fixed the information need these sources become irrelevant.

Relevance by intent versus relevance by content

Our aim here is to discuss the differences of results when considering rel-
evance by intent or by content. We found that both types of relevance
assessment contribute in identifying relevant sources. However, there are
sources that are considered relevant by intent and irrelevant by content and
vice-versa. Concretely, in 7.2% of cases a source was considered relevant
by intent (by at least one participant) in Ul and irrelevant (by content) in
U2 (from all participants). In 26.3% of cases, a source was found relevant
in U2 and irrelevant in U1l. In 7.3% of cases, a source was found relevant
in U3 and irrelevant in U4. In 19.6% of cases, a source was found relevant
in U4 and irrelevant in U3. Clearly, participants could identify more
relevant sources by content than by intent.

The above has some explications. For many queries, participants did not
have enough knowledge or they could not imagine any relevant information
in some specific source. Viewing results helps them finding additional useful
information.

On the other hand, some sources can be considered irrelevant by con-
tent because they provide no relevant results, even if the participant could
imagine something relevant by intent (U1 and U3). There can be at least
two explications. There exists nothing relevant for that query or the source
did not work well.

In order to fully understand these results, we analyzed the participants
agreement as well as time they spent assessing the results. This analysis is
described below.

Participants agreement and time

We define session duration to be the average time spent by one participant
to assess a query for all sources. The session durations are shown in table
with respect to each task. As we can expect, evaluation of relevance by
intent is 5 to 8 times faster than evaluation by content. It is 5 times faster
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when the query is just short text. It is 8 times faster when the information
need is fixed. We also observe that fixing the information need makes as-
sessments faster.

We also computed participant agreement for each task of the study. We
use Fleiss’ Kappa k, a measure for assessing the reliability between a fixed
number of participants. It is used in alternative to Cohen’s Kappa which
is used to measure agreement between exactly two participants. Depending
on the range this measure falls, we can classify agreement into 6 classes:
poor agreement (k < 0), slight agreement (k € [0,0.2]), fair agreement
(k €[0.21,0.4]), moderate agreement (k € [0.41,0.6]), substantial agreement
(k € [0.61,0.8]) and almost perfect agreement (k € [0.81,1]). Results are
shown in table The first task of the study falls in the range of fair
agreement. The others fall in the range of moderate agreement. We can see
that fixing the information need increases agreement and that agreement is
highest for evaluation by content.

The agreement level of our tasks does not affect the validity of results in
the previous sections, because low inter-assessor agreement is common in IR
evaluation. This has also been recognized in the context of major evaluation
campaigns such as TREC, INEX [100].

Study Ul | U2 | U3 | U4
Session duration (seconds) 25 | 180 | 24 | 105
Inter participant agreement | 0.36 | 0.48 | 0.46 | 0.56

Table 10.4: Duration and agreement by task

To conclude, we showed that evaluating by intent can introduce bias in
the evaluation process. Participants miss many relevant sources, which they
can identify when they access results by content. Evaluating by intent is
faster (see table , but it produces a lower participant agreement.

10.3.5 Questionnaires

In this section we analyze the answers to the questionnaires. Some of the
observations are quite interesting.

This is a summary of the pre-study questionnaires. All users are familiar
to search engines. 43% declare they usually use just one source for their
search tasks. 26% use two sources on average and 30% use three or more
sources for their search tasks. They are all familiar with vertical search
engines and they know 3 or more vertical search engines each.

In the post-questionnaire, we analyze the task difficulty. The second task
was considered the most difficult, followed by the forth, the third and the
first. We can deduct that the absence of a fixed information need makes the
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task more difficult. As well, viewing search results demands a lot of time,
though it influences the task difficulty.

We asked specific question concerning the query interpretations, ambi-
guity and complementary results. 86% of the participants of task 2 found
at least one query they could not interpret initially, but in 57% of the cases
they could find an interpretation after viewing some search results. 86%
found at least one query with more than one interpretation. Half of them
could disambiguate these queries. All users answered positively to the ques-
tion “After this study, do you believe that different search sources can be
complementary to each other”.

Finally, we asked the question “Do you believe that an aggregated search
system composed of the 9 sources provides more relevant results than Web
search engines 7”. 20% of the users answered “yes”s, 66% answered “maybe”
and 14% answered “no”. We should state that this question is not very
coherent as today major search engines implement cross-vertical aggregated
search and this may cause some confusion.

10.4 Discussion

Our study proves that cross-vertical aggregated search is not just about
coloring search results with images and videos. We could identify clear
advantages of cross-vertical aggregated search and useful tips for evaluation.
Some of the findings were already known in literature, but some others are
new.

It was already known that vertical intent is frequently present within
queries and this was confirmed in this study. It was already known that
cross-vertical aggregated search increases the diversity of relevant search
results and this was confirmed in this study. It is though interesting to
observe from this study that the vertical search engines do not fail to satisfy
the vertical intent i.e. mostly they were selected as relevant by both intent
and content.

It is also interesting to investigate the advantages of cross-vertical aggre-
gated search through comparison of the utility of traditional Web search with
utility of vertical search engines. We observed that vertical search engines
and Web search engines were often relevant at the same time, but mostly
they presented different information. Though they were useful at the same
time. Furthermore, vertical search engines were frequently found relevant
when Web search failed to return relevant results. We can conclude that
vertical search engines can play an important role in the new Web search.
They answer many queries and they complete Web search.

A further investigation concerns diversity of relevant results. We found
that many queries match more than one relevant source. We could identify
three reasons to explain the latter. First, some of our queries are ambiguous.
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Second, some sources complete each other (return different aspects of the
same need). Third, some sources return repeating information. We show
that often one source alone is not enough, while multiple sources can com-
plete each other. At our knowledge, there was no focused investigation on
the reasons behind the diversity of relevant sources.

We investigated the differences among the 4 search situations trying to
derive useful conclusions for the evaluation of cvAS. First, we notice that
fixing the information need decreases the amount and diversity of relevant
sources, but it eases the evaluation task. Less assessment time is needed
and inter-assessor agreement is higher. Second, we notice that assessing
by intent has some significant drawbacks. Assessors miss interpretations of
the query. They can identify more relevant sources when they access search
results (relevance by content). The major strength of this kind of evaluation
is assessment time which is significantly lower.

Task 1 of our study uses the same configuration as evaluation in [14] 104,
108] (short queries, relevance by intent). Although this form of evaluation is
fast, it is also the less realistic. Assessors do not know the real information
need and they often miss identifying relevant sources. On the other hand,
evaluation as done in [166, [168] is closer to traditional IR evaluation (fixed
need, relevance by content). The major drawbacks of this approach is that
it is time-consuming and that it depends on the quality of sources.

We believe that the learnings of our study can be useful for future eval-
uation of cvAS approaches.

10.5 Conclusions

In this chapter we describe our research on the interest and the evaluation
techniques for cross-vertical aggregated search. We considered both short-
text queries and fixed need queries. We also investigated for the first time
both relevance by intent and relevance by content. In each task of our study,
relevance is assessed for 100 queries across 9 sources (vertical searches and
Web search).

We could identify advantages of cross-vertical aggregated search which
were not assessed before. Furthermore comparing the 4 search situations we
could derive useful thoughts on the evaluation of cross-vertical aggregated
search.
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Chapter 11

Conclusions and future work

11.1 Conclusions

The work presented in this thesis concerns aggregated search, which we con-
sider as a third generation of information retrieval approaches. Precisely,
we distinguished three broad paradigms in the IR history namely boolean
retrieval, ranked retrieval and aggregated retrieval. Our overview of ag-
gregated search approaches shows the many different research directions.
Within them we distinguished three important general components namely
query dispatching, nugget retrieval and result aggregation. These compo-
nents are found in different instantiations of aggregated search including
approaches from question answering, information extraction, natural lan-
guage generation, federated search, etc.

Our research falls within two research directions namely: relational ag-
gregated search and cross-vertical aggregated search. Our contribution can
though be split in two parts, one per research direction. We will summarize
and conclude on our contribution for each of them.

11.1.1 Relational aggregated search

Relational aggregated search was presented as a new paradigm where re-
trieval targets information nuggets and their relations, while result is assem-
bled taking into account for relations. In this context, we investigated on
3 information nuggets (classes, instances and attributes) and their explicit
relations. Our contribution includes a large-scale approach for attribute
retrieval, a weight-based approach for result aggregation, a large-scale ex-
traction method for lists of named entities and four relational aggregated
search applications (prototypes):

Attribute retrieval: We presented an approach for Web-scale attribute
retrieval using HTML tables. Our attribute retrieval approach relies on 3
recall-oriented filters and relevance ranking. Results are promising both in
terms of precision and recall.
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Our approach was tested for 3 different attribute retrieval problems:
instance attribute retrieval, class attribute retrieval, reinforced attribute re-
trieval. In the first case, we retrieve attributes for a given instance. In the
second case, we retrieve attributes at class level. Our attribute retrieval
approach is shown to have a high recall and good precision for both prob-
lems. Experiments on reinforced attribute retrieval show that using similar
instances of the same class to reinforce instance attribute retrieval improves
significantly retrieval performance.

We also validated the utility of our filters: relational filter, header filter
and attribute line filter. In our experimental setup all filters prove their
effectiveness. They are shown to have a high recall over positives and to
filter out a reasonable amount of useless data. As well, the application
of filters is shown to have a positive impact on attribute retrieval. This
corresponds to better precision without an important loss in recall.

To resume, our attribute retrieval approach has been shown different ad-
vantages. To start with, it has a high coverage i.e. it can be applied to many
instances. Second, it works at Web scale and it has a high recall in terms
of retrieved relevant attributes. Its recall is significantly higher than quality
sources such as DBPedia and Wikipedia. Furthermore, it outperforms state
of the art techniques for the same purpose.

Result aggregation: In addition, we investigated on result aggrega-
tion for relational aggregated search. Here, we proposed a weight-based
framework for result aggregation with a focus on the construction of tabular
results for class queries. This framework contains weights for both instances
and attributes. The experimental framework confirms that weight-based
ranking of instances and attributes has an important effect on the final
quality of results. As well, we showed that result aggregation in relational
aggregated search has some unique issues that are not met in traditional
ranked retrieval.

Lists of instances: We also proposed an investigation on large-scale
extraction of lists of instances which is supposed to assist relational aggre-
gated search. In particular, we propose an alternative approach to extract
lists of instances without relying on class acquisition.

The extraction source was HTML lists from the web. Using a random
sample of HTML lists and we showed that about 8.25% of the HTML lists
in the dataset were lists of class instances. If our estimation is validated and
can be generalized to the Web, using an estimation of the size of the Web,
we can estimate to have more 892 million lists of named entities of the same
type, which corresponds to billions of named entities.

The identification of such a huge collection of named entities of the same
type is only one part of the contribution. Further analysis on our assessed
lists is used to understand which features are more discriminative for their
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extraction. In addition, we proposed an automatic extraction technique for
lists of instances that relies on these features.

Prototypes: We also showed 4 prototypes for relational aggregated
search that we build using this work. The first three are dedicated to just
one query type respectively to attribute queries, instance queries and class
queries. The forth prototype allows all three types of queries and answers
each type of query with the appropriate designated solution. Within these
approaches, we have also integrated passage and image retrieval which fit
naturally in the returned results. These approaches show that relational
aggregated search can be instantiated in different forms. At the same time,
it proved that our techniques provide encouraging results.

To summarize, we introduced relational aggregated search as a promis-
ing research direction within aggregated search. We presented high-recall
approaches to extract/retrieve relational data. Their relations were shown
useful to build aggregated search results. Our experiments and prototypes
prove that relational aggregated search can be instantiated at large-scale
with promising results.

11.1.2 Cross-vertical aggregated search

In the context of cross-vertical aggregated search, we identified clear ad-
vantages of cross-vertical aggregated search and useful tips for evaluation.
Some of the findings were already known in literature, but some others are
new. For instance, it was already known that vertical intent is frequently
present within queries and this was confirmed in this study. It was already
known that cross-vertical aggregated search increases the diversity of rele-
vant search results and this was confirmed in this study.

Through our assessments, we compared the utility of traditional Web
search with utility of vertical search engines. We observed that vertical
search engines and Web search engines were often relevant at the same time,
but mostly they presented different information. In these cases, we can say
that they are both useful and non redundant. Furthermore, vertical search
engines were frequently found relevant when Web search failed to return
relevant results. We can conclude that vertical search engines can play an
important role in the context of Web search. They answer many queries and
they often complete traditional Web search.

A further investigation concerns diversity of relevant results. We found
that many queries match more than one relevant source. We identified three
reasons to explain this. First, some of our queries are ambiguous. Second,
some sources complete each other (return different aspects of the same need).
Third, some sources return repeating information. We show that often one
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source alone is not enough, while multiple sources can complete each other.
At our knowledge, there was no focused investigation on the reasons behind
the diversity of relevant sources.

We investigated the differences among the 4 relevance assessment setups
trying to derive useful conclusions for the evaluation of cvAS. First, we no-
tice that fixing the information need decreases the amount and diversity
of relevant sources, but it eases the evaluation task. Less assessment time
is needed and inter-assessor agreement is higher. Second, we notice that
assessing by intent has some important drawbacks. Assessors miss interpre-
tations of the query and they have low inter-assessor agreement. The major
strength of this kind of evaluation is assessment time which is significantly
lower.

11.2 Future work

Both relational aggregated search and cross-vertical aggregated search are
new research areas, though there is a lot of work to be done in research.
Here, we list from our perspective some important future research in short
and long term.

11.2.1 Relational aggregated search

From our perspective the most important research directions in relational
aggregated search concern relation retrieval and result aggregation. Indeed,
the more we can retrieve relations, the more we can answer and the better
we can assemble search results.

As shown in this work, relation retrieval is crucial in this type of search.
We have shown how precision oriented attribute extraction can be turned
into recall oriented attribute retrieval which enables focused and assembles
answers. By analogy, we can instantiate relation retrieval for instances,
passages, images, etc. For instance, given a class query we can retrieve its
instances which includes an “is instance of” relation. Similarly for instance
queries we can retrieve passages, images, etc. which can correspond to a “is
about” relation.

The more we can relate, the more we can aggregate. Indeed, we have seen
through examples that passages, images and attributes can be assembled in
various formats in the relational aggregated search framework. We believe
that in this direction there is a lot of work to do.

Another important issue that should be object of research in future is the
evaluation of these approaches. In fact, information retrieval is scrupuleux
when it comes to evaluation and relational aggregated search should not
represent an exception.

In the short term, we will tackle some of the issues closely related with
what we have presented in this work. We will list some of them:
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We believe that attribute retrieval from HTML tables can still be improved.
We will soon start with more focused research on attribute values.
We need here to deal with attribute values of different types, missing
values, multi-value attributes. We believe that this work will affect
the overall performance on both attribute names and values.

We also believe that attribute retrieval can take benefit from attribute
acquisition techniques that extract from pure text. We believe that
their recall is lower than the recall of HTML tables, but we might find
there attributes which are not naturally met in HTML tables.

We also foresee to extend our work with passages, images and other
types of information nuggets. In particular, we can draw some analo-
gies between attributes, passages and aspects. Attributes and passages
can both have a name (title for passages) and value (text body for
passages). We belive that the combination of attributes and passages
provides an aspect oriented representation of information, which we
want to exploit for empowering relational aggregated search.

Instance retrieval is one of the problems we list as important for relational
aggregated search, although we do not deal with in this work. This
is mostly due to insufficient time. For future work, we would like to
adapt the approach of Heart [74] for online instance retrieval. We
also would like to use contextual text around similar named entities
to capture the class name.

In this work, we focused on tabular results, although we presented other
ways to assemble relational aggregated search results through our pro-
totypes. For future work, we would like to focus on instance queries to
check if we can go beyond listing approaches. As well, we would like
to investigate on query interpretation, because we need to capture the
query type before triggering retrieval and result aggregation.

11.2.2 Cross-vertical aggregated search

From our point of view, research on cross-vertical aggregated search is its be-
ginnings. The potential of vertical searches remains to be explored and there
are many vertical search engines that are not exploited. Future approaches
should take advantage from the specific advantages of each source as well
as from their combination. From this perspective, we list two important
research directions.

First, it is important to enable flexible and sound techniques that allow
integrating results from more sources taking into account for their specifici-
ties not only in terms of query matching but also in terms of utility. The
utility of each source can be different in terms of focus, diversity, service,
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etc. Integrating a focused/specific result might not have the same bene-
fit with a broad result; integrating irrelevant images might be less harmful
than integrating irrelevant textual information, etc. Probably a taxonomy
for vertical search engines would help in this direction.

Second, two or more sources can be helpful at the same time as it was
shown in this work. The utility of multiple sources at once remains to be ex-
plored. Are there some type of queries which demand multiple sources? Are
there sources which are more likely to be complementary to a given source?
Can we go beyond ranking or block ranking? Ideally, the combination of
results from different sources should provide a complete and well-organized
answer.

In the short term, we will focus on the following issues:

We are currently investigating on approaches for flexible ranking of search
results where results can be grouped in blocks of variable size. Current
techniques demand re-training the ranking function when the block
size is changed. In the near future, we will finish our experiments
on flexible result ranking. This will involve different learning to rank
techniques, variable block sizes. We aim to prove that through few
training data, we can provide flexible result ranking which can be
varied through time. Our experiments will also include a simple setup
for relevance assessments.

We are also investigating towards contextual uses of cross-vertical aggre-
gated search. This is different from existing work which is designed
for Web search. Our intuition is that different vertical search engines
can be combined to satisfy context specific tasks where there is not
necessarily a primary source.

Last but not least within our future research directions will be evaluation.
After our study with 4 relevance assessment setups, we would like to
continue our investigation on evaluation issues. Our focus will be on
different levels of relevance and their assessment for different tasks
such as source selection and result ranking.
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Datasets

This chapter contains the queries used to test attribute retrieval and the
queries used in the evaluation-oriented study for cross-vertical aggregated
search.

A.1 Dataset for attribute retrieval evaluation

The attribute retrieval approach was tested using 200 queries corresponding
to 20 classes with 10 instances each. In this section we will provide these
queries. Below, there is the list of classes:

rock bands, laptops, American universities, hotels, software, British Army
generals, chancellors of Germany, American films, IR articles, SLR
cameras, novels, nirvana songs, nissan vehicles, programmable calcu-
lators, countries, drugs, companies, cities, painters, mobile phones

We will now enumerate the instances by class. The class name (in bold)
follows the list of instances (in italic).

Rock bands: Alice in chains, Red Hot Chili Peppers, Aerosmith, Blink
182, Green Day, Placebo, The verve, Good Charlotte, Depeche Mode,
U2

Laptops: Apple MacBook Air, Acer TravelMate 8172, Toshiba satellite
C650, Lenovo ThinkPad T410, HP Compaq Presario CQ56Z, Dell
Inspiron 15, Sony Vaio VPCZ138GG, Toshiba satellite L450, Apple
MacBook, Acer Aspire 1425P

American universities: Harvard University, Yale University, Stanford
University, Boston University, Massachusetts Institute of Technol-
ogy, Carnegie Mellon University, Cornell University, Duke University,
Emory University, Ohio State University
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Hotels: Commodore Hotel New York Glasgow International Hilton Hotel
The George Hotel Edinburgh Detroit Riverside Hotel Denver Marriott
City Center Chicago Beach Hotel Hyatt Regency Chicago Plaza Hotel
The Scotsman Hotel Ritz-Carlton Denver

Software: ObjectVision, openFIRST, OpenPilot, PrintMaster, PsyToolkit,
QuickOffice, ArgoUML, SoftwareGR, Ultamatiz, Apache Beehive

British Army generals: Henry Shrapnel, Sir William Williams, John
Moore, Henry Clinton, Thomas Gage, William Ponsonby, William
Boog Leishman, James Inglis Hamilton, Gerald Grosvenor, Stewart
Menzies

Chancelors of Germany: Otto von Bismarck, Helmut Kohl, Angela
Merkel, Georg Michaelis, Philipp Scheidemann, Lutz Graf Schwerin
von Krosigk, Hans Luther, Gerhard Schroder, Kurt Georg Kiesinger,
Prince Mazimilian of Baden

American films: FEscape from New York, Mulholland Drive, American
Psycho 2, Death Wish II, Paths of Glory, Taxi Driver, Crossfire, From
Here to Eternity, The Big Fisherman, In Old Arizona

IR papers: Learning to Rank for Information Retrieval, Opinion Mining
and Sentiment Analysis, Overview of the TREC 2004 question answer-
ing track, Incremental Clustering of Newsgroup Articles, Extracting
Product Features and Opinions from Reviews, Faceted Metadata for
Image Search and Browsing, Detecting geographic locations from web
resources, Automatic Information Organization and Retrieval, Perfor-
mance prediction of data fusion for information retrieval, Data fusion
with estimated weights

SLR cameras: Minolta Mazxzum 7000, Canon New F-1, Olympus OM-2,
Canon EOS 100, Pentax MZ-S, Pentaxr MV 1, Agfa Ambiflex, Pentax
Super-A, Canon EOS, Canon AFE-1

Novels: House of Leaves, The Blind Assassin, Harry Potter and the Goblet
of Fire, The Amber Spyglass, The Summons, Revelation Space, Lord
Brocktree, Tainted Blood, The Deadly Hunter, He Shall Thunder in
the Sky

Nirvana songs: Aero Zeppelin, Anorexorcist, In the Pines, Heart-Shaped
Bozx, Sliver, Smells Like Teen Spirit, Come as You Are, All Apologies,
Aneurysm, Drain You

Nissan vehicles: Nissan Rogue, Nissan Langley, Nissan 24058X, Nis-
san Serena, Nissan Maxima, Nissan Almera, Nissan Primera, Nissan
Qashqai, Nissan Quest, Nissan Gloria
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Programmable calculators: HP-55, Remington Rand 409, Harvard Mark
I, Sharp PC-1408, Casio FA-1, IBM 608, Monroe Epic, TI-68, UNI-
VAC 120, Sharp EL-5120

Countries: Albania, Algeria, Tunisia, Turkey, China, Canada, South
Africa, Saudi Arabia, Egypt, Australia

Drugs: Diazaborine, Acetasol, Isopropamide, Nexium, Prevacid, Prilosec,
Pantoprazole, Rabeprazole, Tamiflu, Paracetamol

Companies: Dubai Holding, Acromas Holdings, Furopapress Holding,
British Airways, Air France, City Bank, Wilkinson Sword, Royal Bank
of Scotland Group, General Motors, The Emirates Group

Cities: Abu Dhabi, Bruzelles, London, Tirana, Tunis, Instanbul, Rome,
Shangai, Sidney, Los Angeles

Painters: Sandro Botticelli, Raffaello Sanzio, Michelangelo Buonarroti,
Giotto di Bondone, Pablo Picasso, Salvador Dali, Wassily Kandinsky,
Claude Monet, Vincent van Gogh, Leonardo da Vinci

Mobile phones: Nokia €72, LG A130, Blackberry Torch, iPhone 2, Sony
Ericsson Xperia, Nokia e7, HI'C Touch, Blackberry Storm, LG Xenon,
Samsung Galaxy S

A.2 Dataset for the cross-vertical aggregated search
study

In this section, we list the queries that were used in the study about interest
and evaluation of cross-vertical aggregated search. We recall that these
queries were samples from the Million Query Track. The list of queries is as
follows:

super novae, eczema pictures, milestone herbicide, free nero 8 downloads,
work place harassment, 49 cfr 391, single mothers, finished basements,
inauguration of james madison, my web tech, social security disability
and hiv, books in braille, towa va hospital, wet swimsuit, saami stan-
dards, capital one canada, pay traffic tickets in nyc, bannack mt, nutri
shop, wvalley of the drums louisville, mordecai house, bearshare, shih
tzu for sale, men taking showers, hamilton county website, oasas ny
state, dry rub, promethazine, idaho gas taz, used car parts, newspapers,
quality of life measures, drug interactions, ford, bellingham, rio song,
john z delorean, malton art gallery, orange county health department,
poor circulation in the foot, ryan matthews, cartoon sharks, homecom-
ings financial, byrd, gad65 auto antibody, stage 1 lung cancer, 180
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poem, kirby vacuum, jack wang, mitigation, sequro social puerto rico,
satop classes mo, metre, cobb water system, musicaparaguaya, friend-
ship questionnaires, night vision video camera, playskool bus, west val-
ley city zoming, stomach pain causes, whole sale tire, wormian bones,
tang soo do, stages of photosynthesis, dwarven forge, tulalip jobs, time
and date, tim burton alice in wonderland, orange county new york
yellow pages, metal spray, directions, sts columbia, free answers to
tax questions, wichita state university, shattuck national bank, seth
unger, crape myrtle, beaches in ibiza, celebrities flashing their knick-
ers, communicable diseases, educational publishing, the family act, so
you want to be a supermodel, the bahamas drinking age, free Ting-
tones, trustees, the mechanical universe, calculating fers retirement,
transfemoral, state of michigan building codes, microsoft powerpoint
download free, twilight dress up games, off we go into the wild blue,
positional words games, broken bones, middle school algebra, remichel,
fat granny, buchanan auto auctions, ireland vacation
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