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CHAPTER 0

Introduction en francais

0.1 Introduction

De nombreuses situations font intervenir la notion de communication ainsi que des restric-
tions sur cette communication. C’est le cas lorsque I'on pense a des informations militaires,
des communications médicales, des normes morales, des jeux, etc. Dans certaines des ces
situations, il se peut qu’existent des structures pour penser et organiser le droit de communi-
quer. Dans 'armée, par exemple, une telle structure est assez simple, et facile & comprendre:
plus on est haut-placé dans la hiérarchie militaire, plus on a le droit de savoir et moins on a
I’autorisation de dire. En effet, un général a acces a de nombreuses informations secretes sans
avoir le droit de les divulguer a ses soldats, alors qu’un soldat peut donner toutes les informa-
tions qu’il possede (il se peut méme qu’il doive les donner) sans avoir acces a de nombreuses
autres. Le champ médical est un exemple ou des restrictions plus subtiles empéchent un pa-
tron d’avoir acces a des données médicales d’un de ses travailleurs, alors qu’un docteur devrait
pouvoir y avoir acces. Souvent, ces structures sont présentées sous la forme d’un ensemble
de régles informelles, ensemble qui peut étre incomplet et méme contradictoire, laissant la
justice décider ce qu’il convient de faire en cas de conflits.

Mais il n’existe pas de cadre général pour analyser ce genre de situations. L’objectif
de ce mémoire est d’apporter quelques éléments, dans le champ de la logique, pour une
meilleure compréhension de la notion de ‘droit de savoir’, éléments qui pourraient nous aider a
comprendre et répondre aux problémes pour lesquels cette notion rentre en jeu. On concentre
notre réflexion sur la partie informative de la communication (et non sur sa forme), ce qui

amene notre sujet central a la notion de ‘droit de donner une information’.

0.1.1 Qu’est-ce que la logique?

La logique est I’étude formelle de l'argumentation humaine. En un sens, elle peut étre
considérée comme 1’étude du raisonnement humain (si l'on considére que les arguments
traduisent le raisonnement interne inclus dans une communication entre personnes). Son but
est d’obtenir des résultats formels (et sans ambiguités). Pourtant, le langage naturel (dans
lequel sont formés les arguments) est particulierement ambigii, chaque mot ayant différents
sens possibles et chaque concept ayant différentes interprétations dans un méme langage.

Pour former une théorie logique, il est donc nécessaire de modéliser une partie seulement
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du raisonnement, en suivant des conditions prédéterminées. C’est ce qui se passe dans le
fameux syllogisme suivant, attribué & Aristote': “Tous les hommes sont mortels. Socrate
est un homme. Donc Socrate est mortel.” En effet, il suppose que les notions de mortalité,
d’homme, est d’‘étre’ sont sans ambiguités. Ca pourrait paraitre acceptable dans ce cas précis,
mais cette autre phrase qui a la méme structure, et qui est assez connue également, montrera
que ce n’est pas si évident en général: “Les oiseaux volent. Tweety le manchot est un oiseau.

72l est inexact que que tous les oiseaux volent’ pourrait me rétorquer

Donc Tweety vole
un lecteur avisé, et nous pourrions étre d’accord. Mais le point important est qu’il existe une
ambiguité dans le langage naturel concernant ces concepts: lorsque l'on dit que les oiseaux
volent, entend-on ‘toujours’? ‘Généralement’? ‘Dans toute situation normale’? Si un aigle
se casse une de ses ailes, est-ce que ¢a rend inexact le fait que ‘les aigles volent’?

Par conséquent, pour créer une théorie logique, nous devons définir un langage exempt de
toute ambiguité, et une interprétation déterministe de ses formules. ‘Interpréter une formule’
signifie ici ‘dire si une formule est vraie ou fausse dans un contexte donné’. Notez que rien
ne nous oblige a considérer la valeur de vérité comme une fonction biniare: vrai ou faux. Qui
plus est, dans notre conception de la réalité certains concepts ne sont pas binaires: je mesure
1m76, suis-je grand? Certaines diraient que oui, d’autres que non, mais notre compréhension
commune nous menerait plutot a dire que je suis assez grand, mais pas trés grand. Certaines
théories logiques (voir par exemple [Dubois and Prade, 1988]) permettent de considérer ce
genre de concepts dont la valeur de vérité est a la fois qualitative et quantitative. Dans cette
these, tous les concepts (abstraits) que 'on considére ne peuvent étre que vrais ou faux (et
certainement pas les deux a la fois).

Nous pouvons alors représenter le monde par une liste de tout ce qui est vrai (le reste étant
faux). Une telle liste serait impossible & obtenir si ’on veut considérer toutes les propriétés
du monde (et combien y en a-t-il7), mais dans des situations données il est possible de se

limiter & un nombre fini de propriétés intéressantes et ne considérer que celles-1a.

Alex Brune

Figure 1: Un modele booléen des enfants lunatiques
Les propositions suivantes sont vraies dans ce modele : Gp,G¢

Voyons un exemple: voici quatre enfants, Alex, Brune, Cha et Dan. Nous ne nous

Nous n’avons aucune référence pour affirmer que cette phrase est effectivement d’Aristote, et la notion de
syllogisme dans les écrits d’Aristote est probablement plus proche de: ‘Si tous les hommes sont mortels et si
tous les grecs sont des hommes, alors tous les grecs sont mortels’.

2Dans Pexemple classique, en francais, Tweety est souvent un pingouin. Mais il se trouve que les pingouins
volent (!) ce qui enleve l'effet escompté de cet exemple
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intéressons qu’a leur humeur, considérée comme binaire: ils sont joyeux ou tristes. Par
contre elle peut ne pas étre statique: de fait, ces enfants sont lunatiques, leur humeur change
tout le temps!

Notre langage est basé sur les propositions suivantes: Alex_est_joyeux (Ga),
Brune_est_joyeuse (Gg), Cha_est_joyeuse (G¢) et Dan_est_joyeuse (Gp)3. Mises ensem-
ble, elles forment ’ensemble des propositions atomiques du langage, noté PROP. Donc,
PROP = {G4,Gp,Gc,Gp}.

11 est alors possible de représenter le monde réel par une liste des valeurs de vérité (vrai ou
faux) des propositions (prises dans 1’ensemble PROP). La figure 1 donne un exemple d’une
telle représentation, appelée modeéle propositionnel booléen.

Il y a différents mondes possibles, ici exactement seize. Ils sont représentés dans la figure

2.
@I :GA
GD: :GAaGD
Go: : G, Ge
Gc,Gp : :Ga,Go,Gp
GB: :GAaGB
Gp,Gp : :Ga,GB,Gp
GBaGC: :GAaGBvGC
Gp,Go,Gp : :Ga,Gp,Ge,Gp

Figure 2: Enfants lunatiques: tous les mondes possibles

Ces mondes possibles sont la base de la représentation du monde réel avec des modalités
(qui peuvent étre de temps, de croyance, de connaissance, de résultats d’actions etc.). De telles

représentations sont introduites dans le chapitre suivant, a travers la modalité de connaissance.

3Le ‘G’ vient de P’anglais ‘Good’
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Il y a un double lien entre la logique et I'informatique. D’un coté, les théories informatiques
donnent a la logique des résultats techniques importants, comme des algorithmes déterministes
qui peuvent prouver qu’une formule est vraie dans un contexte donné, ou dans tout contexte
possible. Le temps nécessaire a 'obtention d’une telle réponse, en fonction de la taille de
la formule initiale, peut aussi étre obtenu. Nous présenterons dans ce travail des résultats
théoriques de ce type. Une introduction a ceux-ci est proposée dans la section 0.2.2.

D’un autre coté, les théories logiques peuvent donner aux informaticiens des méthodes
utiles pour résoudre des problémes concrets. Un exemple a la mode est le SUDOKU: un
algorithme classique peut étre tres long a écrire, alors qu’une procédure formalisant dans un

langage logique les propriétés qu’il faut satisfaire est tres simple a développer.

0.1.2 Apercgu général

Je crois que la recherche scientifique devrait faire un effort permanent pour étre accessible au
plus grand nombre. Il est clair que tout travail scientifique n’est pas forcément compréhensible
par tout le monde, par contre chaque chercheur peut faire tout son possible pour donner des
éléments qui rendent au moins une partie de son travail compréhensible a des personnes
extérieures a son champ de recherche. Il me semble que c’est particulierement vrai pour
une theése de doctorat qui synthétise plusieurs années de travail, avec une taille finale non-
imposée et qui pourrait étre lue par des lecteurs novices (famille, amis...). Le chapitre 2 est
donc consacré a la présentation des notions basiques de la logique modale, dans le contexte de
I’étude de la connaissance. Certaines de ces notions sont cependant beaucoup plus générales et
peuvent étre utilisées pour tout type de logique modale. Ce chapitre est traduit intégralement
en frangais ci apres. J’espeére que ¢a incitera les lecteurs non initiés a s’intéresser aux éléments
basiques de la logique modale.

Des travaux plus développés en logiques épistémique, dynamique et déontique sont
présentés dans le chapitre 3. On y situe également notre travail dans le cadre de la recherche
actuelle, et on y présente des données nécessaires a la présentation ultérieure de nos travaux.
On discute également quelques principes qu’il nous faut suivre pour une bonne compréhension
des notions liées au ‘droit de savoir’.

Dans un travail de plusieurs mois sur un sujet donné, de nombreuses questions paralleles
apparaissent et demandent & étre résolues. Les chapitres 4 et 5 présentent les travaux qui
ont suivi ce processus. En effet, le chapitre 4 traite du concept de croyance objective, une
notion intermédiaire entre la connaissance et la croyance, et présente des résultats techniques
qui completement ceux de [Hommersom et al., 2004]. Quant au chapitre 5, il présente un
travail collectif ([Agotnes et al., 2010]) sur la capacité d’un groupe d’agents & communiquer
une information.

Les chapitres 6 et 7 présentent le résultat le plus important de cet essai: une formalisation

du ‘droit de dire’. Le premier présente cette notion dans le contexte d’une communication
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publique, id est dans des situations ou tout échange d’information est public, et pour laquelle
les restrictions sur cette communication sont indépendantes de la nature de ’agent qui com-
munique. Dans ce formalisme, il est impossible de déterminer qui est en train de parler, la
seule chose qui compte est ce qui est dit. La présentation est basée sur un exemple: la belote.

Le second généralise la premiere proposition, en donnant une formalisation qui inclut
des permissions individuelles et qui considere des communications privées aussi bien que
publiques.

Le dernier chapitre conclut ces travaux et ouvre la voie a des perspectives futures. En effet,
ce travail est un premier pas dans une voie inachevée qu’il s’agit de poursuivre, en généralisant

cette formalisation ou en analysant différentes situations qui utilisent ces concepts.

0.2 Logiques modales pour la représentation de la connais-

sarce

Qu’est-ce que cela veut dire que quelqu’un sait quelque chose? Est-il seulement possible que
quelque chose soit su? Ces questions ne sont pas nouvelles, elles ont été étudiées au moins
depuis les philosophes grecs (voir [Plato, BC]) et forment le champ de I’Epistémologie, 1’étude
de la connaissance. Plusieurs siécles apres Platon, [Hintikka, 1962] a proposé une analyse
logique formelle de la connaissance dans un contexte multi-agent. Son formalisme, comme
nous allons le voir, utilise la sémantique des mondes possibles. Depuis lors, des logiques
épistémiques ont été utilisées dans de nombreux champs d’étude, comme l'intelligence artifi-
cielle, ’économie, la linguistique ou 'informatique théorique, en se concentrant sur les aspects
multi-agents (donc sur Uinteraction entre agents, qui peuvent étre des étres humains ou des
systeémes informatiques) bien plus que sur la compréhension philosophique de la connaissance.

Il est possible dans ce formalisme de raisonner sur ce que 1’on sait, sur ce qu’un agent sait
de la connaissance d’un autre, sur ce qui constitue I’ensemble des connaissances partagées par

les agents. Mais comment le formalisme de Hintikka représente-t-il cette connaissance?
0.2.1 Représentation de la connaissance

Langage de la logique épistémique

Tout d’abord, il nous faut définir proprement notre langage de la logique épistémique, noté L,
en partant d’un ensemble dénombrable d’agents AG et d’un ensemble dénombrable d’atomes
propositionnels PROP. Dans 'exemple présenté dans le premier chapitre, on considere
AG = {a,b,c,d} pour Alex, Brune, Cha et Dan, e¢ PROP = {Ga,Gp,Gc,Gp}. Voici

alors quelques formules exprimables dans notre langage:
Kp(G4): “Brune sait qu’Alex est joyeux”

(Go) — K. (Ge): ‘Si Cha est joyeuse, alors elle le sait”
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Ky(Gp vV ~Gp): “Brune sait que Dan est joyeuse ou triste”
-Geo N Ky (Ge): “Cha est triste est Alex sait qu’elle est joyeuse”.
Plus formellement, voici comment les formules du langage sont construites:

Definition 0.1 (Le Langage L) L’ensemble Lo (AG, PROP) de formules épistémiques

est obtenu a partir de AG et PROP en itérant indéfiniment les opérations suivantes:

pour tout p € PROP, p est une formule,

L (“fauz”) est une formule,

si @ est une formule alors —¢ (“non ¢”) est une formule,

si @ est une formule et si Y est une formule alors (¢ V) (“p ou1”) est une formule,

si @ est une formule alors pour tout agent a € AG, K;p (“i sait que p”) est une formule.

Dans le cas ou les ensembles d’atomes (PROP) et d’agents (AG) sont clairs nous les

omettons. Cette définition peut étre écrite de facon plus concise de la maniére suivante?:

Definition 0.2 (Le langage L) Le langage Lo basé sur un ensemble dénombrable
d’agents AG et sur un ensemble dénombrable d’atomes propositionnels PROP est défini de

la facon suivante:

pu=plL-p|(p1Ve2)| Kip
ou i € AG et p € PROP.
On ajoute les abréviations suivantes:
e T (“vrai”) est une abréviation de =L
o (0 A1) (“pet 1)) est une abréviation de =(—¢ V 1))
e (p — ) (“p implique ¥") est une abréviation de (—¢ V )
o (v 1)) (“p est équivalent & ") est une abréviation de ((¢ — ¥) A (Y — ¢))
° Aigo (“i envisage ¢”) est une abréviation de —=K;—¢. On dit que K; est le dual de K.

Comme indiqué plus haut, -Go A K(G¢) (lire “Cha est triste et Alex sait qu’elle est
joyeuse”) est une formule du langage. Ceci explicite le fait que toute les formules appartenant
au langage ne sont pas forcément intuitivement vraies. Mais personne n’a dit que toutes les
formules exprimables étaient vraies. De fait, on n’a pas pour l'instant défini comment évaluer

la valeur de vérité d’une formule épistémique. Faisons-le maintenant.

4Cette description formelle d’un langage est inspirée par la grammaire classique en informatique baptisée
Backus-Naur Form (BNF). On l'utilise dans cet essai pour décrire des langages formels.
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Sémantique des mondes possibles

D’abord, nous considérons qu’il existe une interprétation objective du monde réel,
indépendamment de qui le regarde. Cette interprétation est une liste des valeurs de vérité de
tous les faits objectifs dans ’état courant. Si nous appelons propositions ces faits objectifs,
on comprend aisément que cette représentation du monde n’est autre qu'un modele propo-
sitionnel Booléen, tel qu’introduit dans le chapitre 0.1. Dans notre exemple, il s’agit d’une
liste des humeurs de tous les enfants.

Le manque de connaissance peut alors étre vu comme un doute sur lequel des états pos-
sibles est ’état courant. Hintikka représente le monde épistémique (c’est a dire le monde et
la connaissance de chaque agent) par un graphe ou les noeuds sont des représentations de
mondes possibles (donc des modeles propositionnels) et une arréte, idexée par un agent i,
représente le fait que I'agent ¢ ne sait pas si I’état courant est I'un ou l'autre des mondes
reliés par cette arréte. Réciproquement, on dit que ¢ sait une assertion ¢ si ¢ est vraie dans
tous les états reliés a 1’état courant par une arréte indexée par i. Voici une représentation

d’une situation dans laquelle Brune ne connait pas 'humeur de Cha:

l« ————Brune

Figure 3: Modele épistémique

La figure 4 donne une représentation plus complete de ce genre de situations épistémiques:
Alex connalt sa propre humeur mais ne connait pas celle de Dan, et il sait que Dan connait

sa propre humeur mais pas la sienne a lui. Et Dan est consciente de ¢a, etc.

Figure 4: Un autre modele épistémique

On omet dans cette figure les arrétes réflexives (celles qui pointent un monde vers lui-

méme) qui représentent le fait que les enfants envisagent le monde réel comme une possibilité,
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ce qui est considéré toujours vrai en logique épistémique.
Avant de définir ces notions proprement, voici une définition plus précise de ce qu’est un
modele:

Definition 0.3 (Modele de Kripke) Etant donné un ensemble dénombrable d’agents AG
et un ensemble dénombrable d’atomes propositionnels PROP, un modéle de Kripke est un

tuple M = (S, R, V) ou:
e S est un ensemble dont les éléments sont appelés “mondes” ou “états”,

e V : PROP — 25 est une fonction de valuation qui attribue & chaque proposition p

l’ensemble V (p) des mondes dans lesquels p est considérée vraie, et

e R ={R;}icac avec pour tout i € AG, R; C S x S est une fonction binaire sur S.

On appelle modele pointé un modeéle de Kripke M, s accompagné d’un de ses états.

{ pa piqy

Q

012 —a— 021

\
/ \ AN
102\ @ c/120
AN A /

201 —a— 210

Figure 5: Quelques exemples de modeles de Kripke

La figure 5 donne deux représentations plus classiques de situations épistémiques a l’aide
de modeles de Kripke. Le premier modele représente le doute d’un agent a concernant p alors
que ¢ est su par 'agent. Le second, explicité (en anglais) & la page 45, est une représentation
de I'état épistémique suite a la distribution de trois cartes 0, 1 et 2 parmi trois joueurs a,b et
c. Les arrétes réflexives sont omises une fois de plus dans ce second dessin.

Ces modeles nous permettent d’interpréter des phrases qui traitent de la vérité d’un fait
objectif, de la connaissance qu’ont les agents a propos de ces faits, et de la connaissance des

agents concernant ce genre de phrases.

Definition 0.4 (Relation de satisfaisabilité pour L) Soit M un modéle. On définit
la relation de satisfaisabilité = : S x Lo — {0,1} par récurrence sur la structure de ¢° de
la facon suivante:

(On note M, s = ¢, qui se lit “p est vraie dans l’état s du modéle M”, si |= (s,p) =1 et
M, s £ o, qui se lit “p est faur dans l’état s du modéle M7, si |= (s,¢) = 0)

5Cette notion est présentée en détail dans la remarque 0.7
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pour tout s € S, M,s=p ssi s € V(p)

pour tout s € S, M,s = L

pour tout s € S, M,s = - ssi M, s =

pour tout s € S, M,s |= 11 Vg ssi (M, s =11 ou M, s = 19)

e pour tout s € S, M, s = K ssi pour tout t € S tel que sRit, M,t =

On dit que ¢ est valide dans le modéle M, et on note M |= ¢, si pour tout s € S, M, s = .
On dit que ¢ est valide si pour tout modéle M, M |= ¢, c’est a dire si ¢ est valide dans tout

état de tout modeéle. Enfin, on note [p]m U'ensemble des mondes s du modéle M tels que

M, s = .

Caractérisation de la connaissance

Nous avons affirmé, dans la définition 0.1, que 'on pouvait interpréter K;p par “l’agent
1 sait ¢”. Comme nous 'avons expliqué en introduction de ce chapitre, cette affirmation,
pour étre raisonnable, doit étre suivie d’arguments qui rendent la sémantique appropriée a
I'interprétation de la connaissance. Examinons les validités données par la sémantique, et
celles que l'on devrait s’assurer d’avoir pour représenter une conception, méme idéalisée, de
la connaissance.

Avant tout, la sémantique de Kripke, présentée dans la définition 0.4, impose que nos
agents, qui sont capables de savoir, ont une capacité de déduction sans limite. Pourquoi?
Supposez que, dans un état donné d’un modele donné, un agent i sache que 1) est vrai et que
1 implique . Alors les formules ¢ et v — ¢ sont satisfaites dans tout état envisagé par
i, et donc ¢ y est satisfaite aussi (car cet état est un modele propositionnel). En d’autres

termes, les formules suivantes sont valides pour tous 9, ¢ dans le langage et tout agent ¢
(Kip NK(p — ) — Kip. (K)

Ca pourrait sembler simuler raisonnablement la capacité de déduction d’'un agent rationnel.
Mais elle implique, par exemple, que tout agent “connait” toutes les tautologies, c’est a dire
toutes les phrases qui sont toujours vraies. Or, bien que vous soyez probablement rationnel-le-,

pouvez vous affirmer “savoir” que la formule suivante est tautologique?
(pVvt) = s)A (g u) V(pVEA=S)A((gAu)V (mg A ) — (gV (v AuA (v — 1))

Il est aussi largement accepté que si un agent sait quelque chose, alors cette chose est

vraie. Autrement dit, les formules suivantes sont valides:

Kip — o. (T)
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Il s’agit la d’une différence importante entre “connaissance” et “croyance”, bien
que nous ne puissions pas résumer la connaissance a de la croyance vraie (voir
[Burnyeat and Barnes, 1980]). Les logiques de la croyance nient souvent ce principe de vérité
de la croyance, et en assument un plus faible: la cohérence. En effet, on considere alors que si
un agent croit quelque chose, il ne croit pas en méme temps sa négation. Cela pourrait étre
traduit dans I'un de ces principes équivalents entre eux (et qui restent vrais dans le cas de la
connaissance):

Ki(p — _‘Ki_‘SO 3 —\KiJ_ (D)

On attribue également & la connaissance une introspection positive et négative. Autrement
dit, on considere que si un agent sait quelque chose alors il sait qu’il le sait et, ce qui est plus
fort encore, que s’il ignore quelque chose alors il sait qu’il 'ignore. C’est la une supposition
tres forte: savez-vous réellement quelle est I’ensemble de vos connaissances? Et pouvez vous
énoncer la liste de tout ce que vous ignorez? Si l’on accepte ces propriétés, alors on accepte

la validités des formules suivantes, pour tout ¢ dans le langage:
Kip — KiK;p (4)

Ko — KiK. (5)

Une derniere notion qu’il nous faut introduire est celle de connaissance commune. Alex et
Cha sont des habitués du Poker (comme vous le verrez, nos enfants lunatiques aiment jouer
aux cartes). Alex connait les régles du jeu. Il sait aussi que Cha connait les regles — sans
quoi il serait tenté de tricher. Mais il sait également que Cha sait qu’il connait les regles —
et il peut donc supposer qu’elle ne tentera pas de tricher. On pourrait continuer a faire des
phrases de ce type... En fait, les regles du jeu sont connaissance commune.

Plus formellement, la connaissance commune de ¢ est 'abréviation syntaxique d’une con-
jonction infinie de formules. Soit G un ensemble d’agents, alors la connaissance commune par

les agents de G de la formule ¢ est:

CKgy := /\ /\ K ... .K;,p
neNiy,...in€G

Comme nous le verrons, cette notion est tres importante lorsque 1’on considere un appren-
tissage collectif: si Brune et Alex apprennent quelque chose ensemble, et s’ils peuvent voir
que cet apprentissage est mutuel, alors I'information apprise devient connaissance commune.

Voir [van Ditmarsch et al., 2009] pour plus de détails.

0.2.2 Notions techinques classiques en logique modale

Il se peut que ce chapitre soit plus difficile & comprendre pour un lecteur novice, et qu’il soit

parfaitement redondant pour un expert. Mais il semble important de définir et d’expliquer
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correctement les notions d’informatique qui sont utiles en logique. Ces notions ne se limitent
pas a I’étude de la connaissance, au contraire la majorité d’entre elles sont communes a tous
les champs de la logique modale. Nous les présenterons toutefois en utilisant le langage et la

sémantique de la logique épistémique.
Propriétés du langage
Commengons par des notions basiques concernant la syntaxe de langages logiques.

Definition 0.5 (Taille d’une formule) FEtant donnée une formule ¢ d’un langage L on

appelle taille de ¢, noté |¢|, le nombre de symboles qui constituent .

Definition 0.6 (Sous-formule) Pour toute formule ¢ € L on définit Sub(p) 'ensemble

des sous-formules de ¢ en fonction de la forme de la formule ¢:

o Sub(p) = {p}

o Sub(L) = {1}

o Sub(—¢) = {—} U Sub(y)

o Sub(p1 V pa2) = {1V 2} U Sub(i1) U Sub(pz2)
o Sub(Kqtp) = {Ka} U Sub(y).

Si 1 € Sub(p) on dit que ¢ est une sous-formule de .

On peut prouver que Sub(y) est bien définie par récurrence sur la taille de .

Remark 0.7 (Récurrecne “sur la structure de ¢”) Dorénanvant,  “prouver  (resp.
définir) une propriété P(p) par récurrence sur la structure de ¢” signifie “prouver (resp.
définir) P(y) pour tout ¢p € PROP U {L} et prouver (resp. définir) P(y) en admettant
Uhypothése de récurrence suivante: P(1) est vraie (resp. définie) pour toute sous-formule 1)

de 7. 1l s’agit d’une récurrence a travers l’ordre partiel ‘étre sous formule de’.

Le langage que l'on étudie ici ne peut exprimer quun nombre limité de notions. En
ajoutant un opérateur modal (donc un nouveau symbole) a un langage donné, sans changer
la sémantique des symboles précédemment introduits, le langage obtenu peut clairement ex-
primer au moins ce que pouvait exprimer ’ancien, et peut-étre plus. Précisons ce concept

d’expressivité d’'un langage.

Definition 0.8 (Expressivité d’un langage) FEtant donnés deux langages L1 et Lo et une
classe de modéles C, L1 est au moins aussi expressif que Lo par rapport a C ssi pour toute
formule ¢ de L1 il existe une formule v de Lo qui lui soit équivalente. Autrement dit, pour tout

modele M de C, [p]m = []m: le domaine de satisfaisabilité de ¢ dans M en considérant la
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sémantique de L1 est le méme que le domaine de satisfaisabilité de ¥ dans M en considérant
la sémantique de Lo.

Voici deux fagons standards de déterminer que L1 est au moins aussi expressif que Lo:
o Lo forme un sous-langage de L1

o il existe une traduction telle que toute formule de Lo est logiquement équivalente a sa

traduction dans L.

Le langage Ly est dit plus expressif que Lo par rapport a C si L1 est au moins aussi
expressif que Lo et Lo nest pas au moins aussi expressif que Ly (cette notion est un ordre
partiel).

Une maniére standard de déterminer que Lo n’est pas au moins aussi expressif que L1 est
de mettre en évidence une formule ¢ de Ly et deux modéles de C (M, s) et (M',s") tels que
@ est vraie dans (M, s) et fausse dans (M',s"), alors que toute formule ¢ de Lo est vraie
dans (M, s) ssi 1 est vraie dans (M',s"). On dit dans ce cas que le langage L1, mais pas le

langage Lo, peut distinguer les modeéles (M, s) et (M’,s).
Une derniere définition utile concernant les langages:

Definition 0.9 (Substitution) Soit L(PROP) un langage récursivement énumérable basé
sur un ensemble dénombrable d’atomes propositionnels PROP, soient o, v, 41,%s,... €
L(PROP) et soient p,p1,p2,... € PROP

e On note ©(v/p) la formule de L obtenue en remplagant dans ¢ toute occurence de p

par .

o On étend la notation précédente a la substitution simultanée d’une suite (finie ou infinie)
P12, - p(¥1/p1,¢2/p2, ...

Propriétés des modeles

Voyons quelques propriétés sémantiques de la logique modale, autrement dit quelques pro-
priétés des modeles que 1'on considere. D’abord, tous les modeles considérés ici sont des
modeles de Kripke, auxquels vient s’ajouter évenutellement une relation supplémentaire (qui
peut étre entre des mondes et des ensembles de mondes, ou bien entre des mondes et des
relations). Rappelons que de tels modeles, présentés dans la définition 0.3, sont composés
d’un ensemble d’états, de relations binaires sur cet ensemble et d’une valuation qui attribue a
chaque proposition un sous-ensemble de mondes (ceux ou la proposition est considérée vraie).
On peut donc les voir comme des graphes orientés ayant pour noeuds des modeles booléens
(c’est & dire une liste des valeurs de vérité des différents atomes propositionnels). Rappelons
également que cette définition impose la validité de la formule K pour tout opérateur qui

suit la sémantique présentée dans la définition 0.4. Un sous-modéle d’'un modele M donné
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est composé d’un sous-ensemble de ’ensemble d’états de M, et d’une structure qui est la

restriction de la structure initiale sur ce sous-ensemble. Plus formellement:

Definition 0.10 (Sous-modele) Soit M = (S,V, (R;)icac) un modéle de Kripke. On dit
alors que le modéle M' = (S, V', (R.)icac) est un sous-modele de M s’il satisfait les condi-

tions suitvantes:
e S'CS
e pour tout p € PROP et tout s' € S', s € V'(p) ssi s’ € V(p)
e pour tout i € AG et tous (s1,s2) € S" x 5’, s1R.sy ssi s1R;s2

Rappelons la notion de cléture transitive d’un ensemble de relations, dans le contexte des

modeles de Kripke.

Definition 0.11 (Cloture transitive) Soit R = {R;}icac un ensemble de relations bi-
naires sur un ensemble donné S. On appelle cloture transitive de R la relation binaire R*

telle que pour tous s,s’ € S il existe n € N et sg,81,...,5, € S tels que:
e sp=s5¢ets,=s
e pour tout k € {0,...,n — 1} il existe i € AG tel que spR;Sk11.

On peut constater qu'un modele peut ne pas étre connere, c’est a dire qu’il peut ar-
river qu'un sous-ensemble d’états du modele n’ait aucune relation avec un autre. Dans ces

conditions, un sous-modele particulier peut se révéler utile:

Definition 0.12 (Composante connexe - sous-modéle engendré) Soit M = (S,V,R)
un modele et s € S. On appelle composante connexe induite par s dans M [’ensemble
S ={s € S| sR*s'}. On appelle sous-modele engendré de M, s le sous-modéle M’ de M

basé sur la composante connexe induite par s dans M.

La composante connexe de s dans M est donc I’ensemble des états qui sont reliés a s dans
le modele. Cette notion est utile car le sous-modele engendré d’un modele pointé M, s est
équivalent a M, s par rapport au langage L.;: une formule qui est vraie dans I'un est aussi
vraie dans l'autre. C’est ce qu’affirme la proposition 0.15, en disant que les deux modeles
sont bisimilaires.

La bisimulation est une notion classique, en logique modale, de similarités entre structures
(voir [Blackburn et al., 2001]). On l'utilise souvent dans cet essai, sur des exemples ou pour

des preuves. Présentons-la en détails:

Definition 0.13 (Bisimulation) Soient deux modéles M = (S, R, V) et M' = (S, R, V).
Une relation non-vide R C S x S est appelée bisimulation entre M et M’ si pour tous s € S
et s € S tels que (s,s') € R on a :
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atoms pour tout p € PROP: s € V(p) ssi s’ € V'(p);

forth pour tout i € AG et tout t € S: si sR;t alors il existe un t' € S tel que s'Rit' et
(t,t') € R,

back pour tout i € AG et tout t' € S': si SRit' alors il existe un t € S tel que sR;t et
(t,t') € R.

On note (M, s)=—=(M',s") ssi il existe une bisimulation entre M et M’ reliant s et s, et

on dit alors que les structures de Kripke pointées (M, s) et (M’,s") sont bisimilaires.

Notons que la bisimulation est une relation d’équivalence. C’est une notion importante
car elle caractérise le fait que deux modeles sont modalement équivalent, c’est a dire qu’ils

satisfont les mémes formules de L;:

Proposition 0.14 Soient deux modéles M = (S,R,V) et M' = (S',R', V'), et soit une
formule ¢ € L¢;. Pour tout s € S et tout s’ € S, si (M, s)=—=(M',s") alors M, s |= ¢ ssi
M8 = .

La preuve de cette proposition apparait par exemple dans [Fagin et al., 1995]. En particulier,
la proposition suivante implique qu'un modele satisfait les mémes formules que son sous-

modele engendré.

Proposition 0.15 Soit M, sy un modéle pointé. Il est bisimilaire a son sous-modéle en-

gendré.

Proof Soit M’ = (5, R/, V') le sous-modele engendré de M, sg. Soit R la relation binaire
entre S et S’ définie de la maniere suivante: sRs’ ssi s = 5.
On va montrer que R est une bisimulation entre M, sg et M’, s5. D’abord, il est clair que

s0Msg. Pour tout s € S on a que
atoms pour tout p € PROP: s € V(p) ssi s € V/(p) (par la définition 0.10);

forth pour tout i € AG et tout t € S: si sR;t, alors t € S’ et sR;t par la définition 0.10, et
tRt;

back pour tout i € AG et tout ¢t € S’: si sR;t, alors sR;t par la définition 0.10, et t9Rt.

O

Introduisons maintenant un autre type de relation d’équivalence, qui est une sorte de
généralisation de la bisimulation. L’idée est de considérer comme équivalents deux états d’un
modele donné qui satisfont les formules d’un sous-ensemble donné du langage. Nous obtenons

la notion de filtration:



0.2. LOGIQUES MODALES POUR LA REPRESENTATION DE LA CONNAISSANCE15

Definition 0.16 (Filtration) Soit M = (S,~;, V) un modéle et I' un ensemble de formules
clos pour la sous-formule (id est si une formule appartient a l’ensemble, toutes ses sous-
formules y apparaissent également). Soit «~rp la relation binaire sur S définie, pour tous
s,t €8S, par:

semsrt ssi pour tout @ €T (M, s = ¢ sst M,t = @)

Notons que e~ est une relation d’équivalence. On appelle filtration de M a travers I'
(ou simplement filtration de M) le modeéle MY = (ST, ~F V1) ou:

e S'=5/...

e pour tous |s|, [t| € ST, |s| ~F |t| ssi pour tout K;p €T, (M, s |= Kip iff M, t = K;p)

o UT () — 0sipgl
v { V(p)/ o 5i pET)

Une derniere remarque qui a son importance: dans la classe de tous les modeles de Kripke,
il se peut que des sous-classes particulieres soient utiles. On les définit en fonction des
propriétés de ses relations binaires (réflexivité, transitivité, symétrie, sérialité, euclidianité,

équivalence). Rappelons qu'une relation binaire R sur un ensemble S est dite:
e réflexive si pour tout s € S, (s,s) € R

e transitive si pour tous s,t,u € S, ((s,t) € R et (t,u) € R) implique que (s,u) € R)

symétrique si pour tous s,t € S, ((s,t) € R implique que (t,s) € R)

sérielle si pour tout s € S, il existe t € S tel que (s,t) € R

euclidienne si pour tous s,t,u € S, ((s,t) € R et (s,u) € R) implique que (t,u) € R)

d’équivalence si elle est réflexive, transitive et symétrique.

Comme nous le verrons dans le paragraphe suivant, ces propriétés des modeles correspondent

a des propriétés de la sémantique que 1’on a présenté au paragraphe 0.2.1. Plus précisément:
e L’axiome de vérité (noté T) correspond a la réflexivité
e L’axiome de cohérence (noté D) correspond a la sérialité
e L’introspection positive (notée 4) correspond & la transitivité
e L’introspection négative (notée 5) correspond & euclidianité

Rappelons que tous les modeles satisfont 1’axiome noté K. On appelle donc KT (resp. KD,
K45, etc.) la classe des modeles reflexifs (resp. seriels, transitifs et euclidiens, etc.). S5 est

une abréviation de KT'45 et correspond a la classe des modeles pour lesquels les relations
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binaires sont des relations d’équivalence. Pour tout n € N et pour toute classe de modeles C,
on note C, la classe de modeles qui appartiennent a C et contiennent exactement n relations
binaires.

En particulier, S5,, est la classe des modeles de Kripke qui ont n relation qui sont toutes

d’équivalence:

Definition 0.17 (Modele épistémique) Un modéle de Kripke M = (S,{R;}icac,V) est

dit épistemique si pour tout i € AG, R; est une relation d’équivalence sur S.

Axiomatisation

Etant donnée une syntaxe (id est une langage), une classe de modele ot on souhaite
linterpréter (c’est a dire une classe de situations, un contexte), on aimerait pouvoir car-
actériser les formules qui sont vraies dans ce contexte. Autrement dit, quelles sont les pro-
priétés d’une formule qui garantissent qu’elle va étre vraie dans n’importe quelle situation
d’un contexte donné? La question n’est pas seulement d’étre capable de déterminer quelles
sont les formules valides, mais aussi d’avoir une justification du fait qu’elles le sont, une
preuve.

La notion d’axziomatisation a été développée dans ce but. Informellement, une axioma-
tisation est une description finie de schémas d’axiomes (considérés comme théorémes, donc
prouvés) et de regles qui permettent de déduire des nouveaux théorémes a partir d’anciens.
Plus précisément, une axiomatisation A est un ensemble de schémas d’axiomes (toute formule
ayant la méme structure que le schéma est un axiome et est donc —par principe— un théoreme)

et un ensemble de regles (appelées régles d’inférences).

T Vérité

(ANB)— A ; (ANB)— B Simplification

A—(AVB) ; B— (AVB) Addition

A— (B— A Conservation

(A—- B)— ((A— (B— (C))— (A— (C)) Syllogisme hypothétique (SH)
(A-B)—((A—-C)— (A= (BANQ))) Composition
(A—-C)—(B—C)—((AvB)—0(0)) Disjonction

-—A— A Tiers exclus

(A— B) — ((A— —-B) — —A) Cohérence

A partir de A et de A — B, déduire B Modus Ponens (MP)

Table 1: Regle et axiomes de la logique propositionnelle

La table 1 est un exemple d’axiomatisation avec neuf schémas d’axiomes et une regle
d’inférence (le modus ponens). Elle axiomatise la logique propositionnelle. On appelle
preuve de ¢ une séquence finie de formules {¢1,...,9,} telle que ¥, = ¢ et pour tout
i € {1,...,n} ou bien 9; est une instance d’un schéma d’axiome ou bien elle est obtenue a

partir de {t1,...,1;_1} en utilisant une regle d’inférence. S’il existe une preuve de ¢ on dit
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que ¢ est un théoreme et 'on note 4 ¢, ou simplement - . Plus généralement, si ¢ peut
étre prouvée en ajoutant a A4 un ensemble S de formules considérées comme des axiomes
supplémentaires, on note alors S F 4 .

Notons qu’une preuve peut étre longue. La table 2 donne un exemple de preuve d’un

théoréme de la logique propositionnelle en utilisant I’axiomatisation A.

L1: F@WAe)—v Simpli fication
L2: F(WAp)— Simpli fication
L3: Fo— (Vo) Addition
L4: Fop—(pVh) Addition
Ls: F@W—=®Vve)—=(vAe)— W — (VE))) Conservation
L6: F(p—=(pVO) = ((WAp)—(p—(pVH))) Conservation
L7: F@Ae)— (¥ — (Vo)) L3, L5, MP
L8: F(WAp)—(p—(pVh)) L4, L6, MP
L9: F((WAe) =) = (v Ae) = (@ = @ VO) = (¥Ae) = (¥ V) SH
L10: F(@A9) — @) — (B A9) — (9 — (pV0) — (b A @) — (pV0))) SH
L11: F @ Ag) — (V) L1, L7, L9, MP
L12: F(Ag) — (pV0) L2, L8, L10, MP
L13: FO— (v Vo) Addition
L14: FO0— (pV0) Addition
L15: F(@Ag) — V) — (0= (6V0) = (B A@) V) — (V) Disjonction
L16: F (¥ A@)— (V) — (00— (pVO) = {((WA@)VE) — (pV0))) Disjonction
L17: F (W AQ)VO) — (V) L11, L13, L15, MP
L18: F((YA@)VO) — (pV0) L12, L14, L16, MP
L19: F((WwA@)VEO) — (V) —

(AR VO = (V) = (¥ A@) VO — (¥ VO)A(pV0))) Composition
L20: F (@ Ap)VE) — (VO A(pVH)) L17, L18, L19, MP

Table 2: Preuve de la distributivité de V sur A en utilisant une axiomatisation de type Hilbert

Etant donnée une axiomatisation, nous aimerions prouver qu’elle correspond & l'intuition
que les théoréemes sont exactement les formules vraies. Plus précisément, on aimerait prouver
qu’elle est correcte (c’est a dire que tout théoreme est valide) et qu’elle est compleéte (c’est a
dire que toute formule valide est un théoreme).

La complétude est une propriété puissante qui garantit qu’on peut prouver tout ce qui
est vrai. Cest cette propriété que [Godel, 1951] a montré étre fausse dans le cas de langages
plus expressifs, en particulier 'arithmétique. Toutes les vérités mathématiques ne sont donc
pas démontrables! Mais un tel résultat peut étre satisfait pour les logiques modales. De fait,
I’axiomatisation A est correcte et compléte pour la logique booléenne, par rapport a la classe
des modeles booléens.

De plus, il a été prouvé que l'axiomatisation présentée dans la table 3 est correcte et
complete pour la logique K par rapport a la classe de tous les modeles de Kripke, autrement
dit toute formule du langage modal est un théoreme ssi elle est valide dans tous les modeles
de Kripke.

Qui plus est, en utilisant la méme axiomatisation agrémentée des axiomes additionnels
D, T, 4 ou 5 (ou toute combinaison de ceux-ci) on obtient une axiomatisation correcte et

complete par rapport a la classe de modeles KD, KT, K4, K5 (ou celle issue de la combinaison
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PL Axiomes de la logique propositionnelle
K(A— B) — (KA — KB) Axiome K
A partir de A déduire KA Nécessitation

A partir de A et de A — B, déduire B Modus Ponens

Table 3: Axiomes et regles de la logique modale

correspondante). Voir [Chellas, 1980] pour plus de détails.

Pour prouver la complétude d’une axiomatisation on utilise souvent la notion de modéle
canonique. Nous sortirions du cadre de cette thése en essayant de donner une définition
générale de ce concept. La définition 0.19 donne donc une définition locale, suffisante dans le

contexte de cet essai. Nous définissons d’abord la notion d’ensemble maximal consistant:

Definition 0.18 (Ensemble maximal consistant) Soit £ un langage et A une aziomati-

sation de ce langage. Un ensemble S C L est dit:

e inconsistant si a partir des formules de S il est possible de déduire 1L en utilisant A
(ie. Sta 1)

e consistant sinon

e maximal consistant s’l est consistant et pour tout ¢ € L\ S, SU{p} est inconsistant

Definition 0.19 (Modéle canonique pour les logiques épistémiques) Soit A une des
logiques qui peuvent étre trouvées dans cette these, définie a partir d’un ensemble dénombrable
d’atomes propositionnels PROP et un ensemble dénombrables d’agents AG, dont le langage
L 4 est basé sur des modalités épistémiques {K;}icag (dans le chapitre 4, ‘K’ est remplacé
par ‘B’). Le modele canonique de A est le modéle de Kripke M¢ = (5S¢, R¢, V) défini de la

facon suivante:
o S¢={x|x est un ensemble maximal consistant pour l’aziomatisation A}

o R¢ = {Rf}icac ot pour tout i € AG, R est la relation binaire sur S° suivante:
R¢ ={(x,y) € 8¢ x S¢| K;(x) C y} en notant K;(x) = {¢ | Kip € x}

e pour tout p € PROP, V¢(p) ={x | p € x}.

La plupart des preuves de complétude par rapport a une classe de modeles donnée utilise
cette double nature du modele canonique. En effet, nous souhaitons prouver dans ces situa-
tions que toute formule valide est un théoreme de la logique. On commence donc par définir
le modele canonique de fagon analogue a la dénfinition 0.19, on prouve qu’il s’agit bien d’un
modele, et qu’il appartient a la classe de modeles considérée. Si ’on prend alors une formule
valide, elle est valide en particulier dans le modele canonique (car on vient de prouver que

c’est un modele). Mais une formule valide du modele canonique est un théoreme. Pourquoi?
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Car sa négation n’appartient a aucun ensemble maximal consistant, ce qui implique, comme
nous aurons a le prouver, qu’elle n’appartient a aucun ensemble consistant. Si elle n’est con-
sistante avec rien, c’est que cette formule est une contradiction, ce qui signifie que la formule
initiale, qui est la négation d’une contradiction intrinseque, est un théoréeme. En résumé, ceci
démontrerait que toute formule valide est un théoreme, autrement dit que toute formule vraie

est démontrable.

Décidabilité et classes de complexité

Certains résultats de cette theése relevant de la notion de complexité, nous en présentons dans
ce paragraphe les éléments basiques.

Commengons par la décidabilité: on dit qu'un probleme donné est décidable s’il existe
une méthode automatique pour obtenir la réponse correcte a toute instance du probleme.
Nous pourrions appliquer cette notion & des problemes de la vie courante. Par exemple ‘A
est-il plus grand que B’ est un probleme décidable: il est possible de mesurer. En effet si
je veux tester si Alex (A) est plus grand que Brune (B) je peux appliquer ma méthode et
obtenir la bonne réponse. Au contraire ‘A est plus chanceux que B’ semble étre un probleme
indécidable.

Plus formellement, en informatique, un probleme est dit décidable s’il existe une algo-
rithme déterministe qui termine en répondant correctement oui ou non a toute instance du
probleme. Certains problemes particuliers sont connus pour étre indécidables, ’exemple le
plus connu étant probablement le probleme du domino (ou probleme du pavage). L’objectif
y est de savoir 8’il est possible de paver une grille infinie en utilisant un ensemble fini donné
de pavé colorés (dont chacun peut étre utilisé autant de fois que l'on veut), en suivant les
régles du domino. Un brique de Wang (Cf. [Wang, 1961]) est un carré dont chaque c6té a
une couleur choisie dans un ensemble fini de couleurs. On dit qu’un ensemble S de briques
de Wang peut paver le plan si des copies de briques de S peuvent étre placées, chacune & une
position de la grille, de telle sorte que les cotés contigus de deux briques adjacentes soient de
la méme couleur. On peut utiliser de multiples copies de chaque brique, sans limitation sur
le nombre. Si l'on accepte de pouvoir pivoter ou réfléchir les briques alors n’importe quelle
brique de Wang peut a elle seule paver le plan. La question de savoir si un pavage existe pour
un ensemble de briques de Wang donné n’est intéressant que dans le cas ot nous n’autorisons
aucune rotation ni réflexion, donc lorsque 'orientation de la brique est fixée. Par exemple,
pensez-vous qu’il est possible de paver le plan avec I’ensemble de briques de Wang présenté
Figure 0.2.27

Ce probleme de décision a été posé pour la premiere fois en 1961 par Wang dans
[Wang, 1961] ou il prouve qu’il est indécidable. Ca ne veut pas dire que l'on ne peut ja-
mais savoir si un ensemble de briques donné permet de paver le plan. De fait, il a été prouvé

qu’il existe un algorithme qui dit ‘oui’ en temps fini si le pavage est possible. Mais il est
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Figure 6: Une instance du probleme du pavage

impossible d’étre str d’avoir une réponse en temps fini: I’algorithme proposé peut ne jamais

répondre lorsque le pavage est impossible.

Il est possible de prouver qu’un probleme donné est indécidable en codant le probleme du
pavage. On traduit alors notre probleme de telle sorte que pour chaque instance de celui-ci,
sa traduction est une instance du probléme du pavage (c’est & dire un ensemble de briques).
Ainsi, si le probleme était décidable alors le probleme du pavage le serait lui aussi.

Mais a vrai dire les problemes décidables nous intéressent davantage! On les classifie
par la complexité de ’algorithme correspondant. En effet, on dit qu’un probleme est dans
P ¢’ peut étre décidé par un algorithme déterministe dont ’exécution requiert un temps
polynomial en la longueur de l'instance du probleme. On dit qu'un probléme est dans
EXPTIME si 'exécution de l'algorithme correspondant requiert un temps exponentiel en
la taille de l'instance. On dit qu’il est dans NP (resp. NEXPTIME) si lalgorithme corre-
spondant est non-déterministe, et qu’il est dans PSPACFE s’il requiert un temps exponentiel
mais n’utilise qu'un espace polynomial. Parler d’algorithme est ici abusif (surtout dans le
cas non déterministe), la définition rigoureuse utilise la notion de machine de Turing (voir
[Papadimitriou, 1994]).

On appelle EXPTIME la classe des problemes qui sont dans EXPTIME, et ainsi de
suite pour les autres classes de complexité. Nous savons que P C NP C PSPACE C
EXPTIME C NEXPTIME. Nous savons également que P # EXPTIME, mais le fait
de savoir si oui ou non P = NP est un probléeme resté non-résolu qui pourrait vous rapporter
un million de dollars (si toutefois vous le résolviez).

On dit qu'un probleme P est N P-difficile si tout probleme dans NP peut-étre réduit
a P. Plus formellement, P est N P-difficile si pour tout probleme QQ dans NP il existe une
traduction tr exécutable en temps polynomial telle que pour toute instance i de Q, Q réponde
oui & i si et seulement si P répond oui & tr(i). On définit de la méme maniere les notions
PSPAC E-difficile , EX PTIM E-difficile, NEX PTIM E-difficile, etc. Si un probleme est
dans NP et est N P-difficile, on dit qu’il est N P-complet (et de méme pour les autres classes
de complexité).

Pour une définition plus rigoureuse de cette classification (qui implique d’expliquer en

détails ce qu’est une machine de Turing), se reporter a [Papadimitriou, 1994].

En logique en général, et dans cette these en particulier, étant donnés un langage L avec sa
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sémantique et une classe de modeles C ou ’on souhaite I'interpréter, on étudie deux probléemes
classiques: le probleme de satisfaisabilité (SAT') et le probleme du model checking (MC'). Ils

peuvent étre définis de la facon suivante:

MC: Etant donnés une formule ¢ de £, un modele fini M € C et un monde s de M, ¢

est-elle satisfaite dans s?

SAT: Etant donnée une formule ¢ de L, ¢ est-elle satisfaite dans un certain modele M de

la classe C?

Une sémantique raisonnable assure que le probleme du model checking est décidable (et
appartient a une classe de complexité assez faible). En effet, c¢’est un minimum que d’étre
capable d’évaluer en temps fini si une formule est satisfaite ou non dans une situation donnée.

Le probleme SAT pour la logique propositionnelle et celui pour la logique épistémique
(avec les axiomes de S5) sont N P-complets, et ce probleme est PSPACFE-complet pour
d’autres logiques modales. Il est indécidable pour certains langages plus expressifs, comme la
logique du premier ordre par exemple, ou le langage Ly, présenté dans le paragraphe 3.1.2.

Etant donnée une logique, le probleme SAT est important pour des motifs théoriques: il
répond a la question de savoir si une formule fait sens, s’il existe une situation ou elle est
vraie. On dira donc qu'un langage est décidable (resp. N P-complet, EX PT1M E-difficile,
etc.) si son probleme SAT est décidable (resp. NP-complet, EX PTIM E-difficile, etc.).

La réponse a ce probleme n’impose pas que soit donné un modele qui satisfait la formule
, mais dans certains cas nous aimerions également pouvoir construire ce modele. On répond

alors au probleme de la construction du modele:

Construction du modele: Etant donnée une formule ¢ de £, exhiber un modele M satis-

faisant .

Une méthode célebre de construction de modeles utilise la notion de tableaux analytiques.
Une telle méthode est présentée dans le paragraphe 6.6 pour le langage exprimant la connnais-

sance, les annonces publiques et la permission de donner une information.






CHAPTER 1

Introduction

Many situations involve communication and some kind of restrictions on this communication.
This is the case when we think about military information, medical communication, moral
norms, games, etc. In some situations, we may have structures to think about and organize
the right to communicate in such situations. In the army, for example, such a structure is
quite simple and easy to understand: the higher you are in the hierarchy, the more you may
know and the less you are allowed to say. Indeed, a general can know any secret information
but have no right to reveal it to his soldiers, while a soldier can give any information he wants
(and may have to give the information he has) without having the right to access most of
the information. As another example, in the medical field, more subtle restrictions prevent a
boss from getting one of his workers’ medical information, while a doctor may have access to
it. Often such structures are presented as an informal and incomplete set of rules, that may
be contradictory (and let the justice decide what should be done in case of conflict).

But we have no general framework to analyze such situations. The aim of this dissertation
is to make some progress, in the field of logic, in the understanding of the notion of ‘right to
say’, progress that may help us understand and answer problems that involve such a notion.
We focus on the informative part of communication (and not on its form) leading our topic

to the notion of ‘right to give a piece of information’.

1.1 What is Logic?

Logic is the formal study of human arguments. In a way it can be considered as the study
of human reasoning (if we consider arguments as the translation of internal reasoning in
a human communication). Its aim is to get formal unambiguous results about it. Yet,
natural language (in which are formed arguments) is particularly ambiguous, every word
having different possible meanings and each concept having different interpretations in a
same language. To form a logical theory, it is thus necessary to model a part of the reasoning,
following predetermined conditions. This is what happens in the following famous syllogism,
attributed to Aristotle’: “All men are mortal. Socrates is a man. Therefore, Socrates is
mortal.” Indeed, he supposes that the notion of mortality, man and ‘being’ have no ambiguity.

It may be acceptable, but another sentence with the same structure, which is also quite

1We have no references to affirm that this sentence is actually from Aristotle, and the notion of syllogism
in Aristotle’s writings is nearer to: ‘If all men are mortal and all Greeks are men, then all Greeks are mortal’.

23
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famous, shows the reader that it is not that obvious: “All birds fly. Tweety the penguin is a
bird. Therefore Tweety flies”. ‘It is wrong that all birds fly’, may answer the reader, and we
could agree. But the interesting point is that there is an ambiguity in natural language on
concepts: when we say that all birds fly, do we mean ‘generally’? ‘In every normal condition’?
‘In every condition’? If an eagle breaks one of its wings, does that make wrong the fact that
‘eagles fly’?

Therefore, to form a logical theory, we need to define a formal unambiguous language and
a deterministic interpretation of its formulas. ‘To interpret’ a formula means here ‘to say if
it is true or false in the given context’. Nothing obliges us to consider the truth value as
a binary function: true or false. Indeed, in our conception of reality some concepts are not
binary: T am 1m76 tall, am I tall? Some would agree, others wouldn’t, but it would be nearer
to our common comprehension to say that I am rather tall, but not that much. Some logical
theories (see for example [Dubois and Prade, 1988]) allow to consider this kind of concepts,
which truth value is at the same time qualitative and quantitative. In this thesis, all the
(abstract) concepts we consider can only be true or false (and not even both at the same
time).

A representation of the world can thus be a list of all what is true. Such a big list may be
impossible to get if we want to consider all the properties of the world (how many are they?),
but in actual situations we can limit them to properties of interest and consider only these
ones.

As an example, here are four children, Alex, Brune, Cha and Dan. We are interested only
in their emotions, considered as binary: they feel good or bad. This may not be static: they
are moody children, so these emotions are always changing.

We base our language on the following propositions: — Alex_feels_good (G,),
Brune_feels_good (Gg), Cha_feels_good (G¢) and Dan_feels_good (Gp). Together they
forms the set of atomic propositions of the language, noted PROP = {G4,Gp,Gc,Gp}.

We then represent the actual world as a list of the truth values (true or false) of the
propositions (taken from the set PROP). Figure 1.1 gives an example of such a representation,

called Boolean model.

Alex Dan

Figure 1.1: A boolean model for the moody children
The following propositions are true in this model : Gp,G¢

As they are moody, there are many possible worlds, exactly sixteen of them. They are

represented in Figure 1.2.
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Figure 1.2: Moody children: all the possible worlds

These possible worlds are the basis of the representation of the actual world with modalities
(such as time, belief, knowledge, result of actions, etc.). Such representations are introduced

in the following chapter, using the notion of knowledge.

The link between logic and computer science is twofold. On one hand, computer science
gives to logical theories important technical results, as deterministic algorithms that prove
that a formula is true in a given context, or in every context. Also the time necessary to
get such answer, in function of the size of the formula, can be proved. We will present in
this work such kind of results. An introduction to them for the novice reader is proposed in
Section 2.2.

On the other hand, logical theories give to computer scientists useful methods to solve
actual problems. A fashionable example is the SUDOKU game: a classical algorithm may be
extremely long to write, but a procedure formalising in a logical language the properties that

have to be satisfied is quite easy to develop.



26 CHAPTER 1. INTRODUCTION

1.2 Outline

I think that scientific research should be permanently concerned about being accessible to a
large majority of people. Clearly, not every scientific work can be understood by everybody,
but every researcher can do her possible to give the elements of comprehension that allow
someone out of his field to understand at least part of the work. It is particularly true for
a PhD thesis that synthesizes years of work, with a non-imposed final size and that may be
read by novice readers (friends, family,...). Chapter 2 is thus dedicated to present the basic
notions of modal logic, in the context of the study of knowledge. Yet, some of these notions
are much more general and can be used for any kind of modal logic.

More advanced frameworks of epistemic, dynamic and deontic logics are presented in
Chapter 3. In this chapter we situate our work in the current research world and present
some resources that we use in our proposals. We also discuss some principles that we may
follow to correctly understand the notions linked to the ‘right to say’.

While working during months on a given topic, many parallel questions rise and require
an answer. Chapters 4 and 5 present the work that followed this process. Indeed, Chapter
4 deals with the concept of objective belief, a notion between knowledge and belief. It also
presents technical results that complete a work proposed by [Hommersom et al., 2004]. As for
Chapter 5, it presents a common work (published in [Agotnes et al., 2010]) on the capacity
of a group of agents to communicate information.

Chapters 6 and 7 present the most important result of this dissertation: a formalization of
the ‘right to say’. The former presents this notion in the context of public communication, i.e.
in situations in which every communication is made publicly, and in which the restrictions to
these communications are not dependent on the nature of the agent communicating. Indeed,
in this framework, there is no agency that would allow us to say who is speaking, the only thing
that matters is what is said. The report is based on an example, namely the french card game
‘la Belote’. The latter generalizes the first proposal, giving a framework including individual
permissions for the agents communicating, and considering private communications, as well
as public ones.

The last chapter concludes and opens toward further work. Indeed, this thesis is a work
in progress that may be continued, in generalizing the framework or in analyzing different

situations using such concepts.



CHAPTER 2
Modal Logic for the Representation
of Knowledge

What does it mean that someone knows something? Can anything be known? These questions
are not new, have been studied at least since the Greek philosophers (see [Plato, BC]) and form
the field of Epistemology, the study of Knowledge. Some centuries after Plato, [Hintikka, 1962]
proposed a formal logical analysis of knowledge in a multi-agent situation. His formalism,
as we will see, uses the semantics of the possible worlds. Since then, epistemic logics have
been used in various fields, such as artificial intelligence, economics, linguistics or theoretical
computer sciences, focusing on the multi-agent aspects (interaction between agents, that can
be human or computing systems) much more than on the philosophical understanding of
knowledge.

You can then reason about what you know, about what your adversary knows, or about
what makes part of the set of knowledge that is shared by all the agents. But how would

Hintikka’s formalism represent this knowledge?

2.1 Representation of Knowledge

2.1.1 The Language of Epistemic Logic

First of all, we need to define properly our language of epistemic logic, noted L., starting
from a countable set of agents AG and a countable set of propositional atoms PROP. In the
example presented in Chapter 1, we consider AG = {a, b, ¢,d} for Alex, Brune, Cha and Dan,
and PROP = {G4,Gp,Gc,Gp}. Here are some examples of formulas we can express in our

language:
Kp(G4): “Brune knows Alex feels good”
(Ge) — K. (G¢): “If Cha feels good, she knows it”
Ky(Gp V —Gp): “Brune knows Dan feels good or bad”
-Ge N Kq.(Ge): “Cha feels bad and Alex knows Cha feels good”.
More formally, here is the way in which the formulas are constructed:

27
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Definition 2.1 (The Language L) The set Lo (AG, PROP) of epistemic formulas is 0b-
tained from AG and PROP by iterating indefinitely the following operations:

e for allp € PROP, p is a formula,

1 (“falsum”) is a formula,

e if p is a formula then —¢ (“not ¢”) is a formula,

o if v is a formula and v is a formula then (o V) (“p orv”) is a formula,

e if v is a formula then for all agent i € AG, K;p (“i knows that ¢”) is a formula.

e Nothing else is a formula except what can be constructed using these rules finitely many

times.

We often consider that the sets of atoms (PROP) and agents (AG) are clear or irrelevant,

and we omit them. This definition can be written in the following shorter form!:

Definition 2.2 (The Language L) The language L over a countable set of agents AG

and a countable set of propositional atoms PROP is defined as follows:

pu=p|Lop|(p1Ve)| Kig
where 1 € AG and p € PROP.

We add some abbreviations:

e T (“true”) abbreviates —.L

(p A1) (“p and ¥”) abbreviates —(—p V =)

o (¢ — 1) (“p implies ¥”) abbreviates (- V 1)

o (p 1) (“p is equivalent to ¥”) abbreviates ((¢ — ) A (¥ — ¢))

° Km (“i considers ¢ possible”) abbreviates = K;—p. We say that IAQ is the dual of K;.

As we see, "G N K,(Gp) (read “Cha feels bad and Alex knows she feels good”) is a
formula of the language, thus not all the formulas belonging to the language are intuitively
true. But nobody said that every expressible formula had to be true. In fact, we did not

define how to evaluate the truth value of an epistemic formula. Hence the following.

!This formal way to describe languages is inspired by the classical grammar in computer sciences called
Backus-Naur Form (BNF). Hereafter we shall use this notation to describe formal languages.
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2.1.2 The Possible Worlds Semantics

First, we assume that there exists an interpretation of the real world, independently of who
is looking at it. This interpretation is a list of the truth values of all objective facts in the
current state of affairs. If we call propositions these objective facts, we understand easily
that this representation of the world is nothing else than a Boolean propositional model, as
introduced in Chapter 1. In our example, it would be a list of the emotions of the moody
children.

The lack of knowledge can thus be seen as an uncertainty about which is the current state
of affairs. Hintikka represents thus the epistemic world (i.e. the world and the knowledge
of all the agents) as a graph where a node is a representation of a possible world (i.e. a
propositional model) and an edge, which is indexed by an agent a, represents the fact that
agent a does not know if the current state of affairs is one or the other node linked by the
edge. Reciprocally, we say that a knows a sentence ¢ if ¢ is true in all the state of affairs
linked by edges to the current one. Here is a representation of a situation in which Brune

does not know Cha’s mood.

l« ———Brune

Figure 2.1: Epistemic model

Figure 2.2 gives a more complete representation of this kind of epistemic situations: Alex
knows his own feelings and does not know Dan’s ones, and he knows that Dan knows her

feelings but not his ones. And Dan knows this fact, etc.

Figure 2.2: Epistemic model

We omit here the reflexive arrows that represent the fact that the children consider possible

the actual world, which is considered always true.
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Before defining these notions properly later, we define more precisely what a model is:

Definition 2.3 (Kripke model) Given a countable set of agents AG and a countable set
of propositional atoms PROP, a Kripke model is a tuple M = (S, R, V') where:

e S is a set, each of its elements being called “world” or “state”,

e V: PROP — 25 is a waluation function that assigns to any propositional atom p the

set of worlds V(p) in which p is considered true, and
e R ={R;}icag with for alli € AG, R; C S x S is a binary relation on S.

(M, s), a Kripke model joint with one of its states is called pointed model.
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Figure 2.3: Some examples of Kripke models

Figure 2.3 gives two more classical representations of epistemic situations with Kripke
models. The first model represents the uncertainty of agent a about p while ¢ is known.
The second one, explained in page 45, is a representation of a card deal, with a set of three
cards 0, 1 and 2 dealt to three players a, b and c. In the second one, the reflexive arrows are
omitted again.

These models allow us to interpret sentences that speak about truth of an objective fact,

knowledge of agents about these facts, and knowledge of agents about this kind of sentences.

Definition 2.4 (satisfiability relation for L) Let M be a model. We define the satisfi-
ability relation = : S x Lo — {0, 1} inductively on the structure of p? in the following way:
(We note M, s = ¢, read “p is true in the state s of the model M”, if = (s,¢) = 1 and
M, s = o, read “p is false in the state s of the model M7, if |= (s,¢) = 0)

forallse S, M,skE=piff s€V(p)
forallse S, M,s - L

forallse S, M,;s = iff M, s =

2This notion is presented in detail in Remark 2.7
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forall s € S, M,s =11 Vg iff (M, s =11 or M,s = 1)

forall s € S, M,s = Kt iff for all t such that sR;it, M,t |=

We say that ¢ is valid in the model M, noted M |= ¢ if for all s € S, M,s = ¢. We say
that o is valid if for all models M, M |= ¢, i.e. if ¢ is valid in any state of any model. We
note [p]am the subset of S composed by the states s such that M, s = .

2.1.3 Characterisation of Knowledge

We claimed, in Definition 2.1, that we could read K,p as “agent a knows that ¢”. As said
in Section 2, this claim, to be reasonable, needs to be followed by some arguments that make
this semantics appropriate to speak about knowledge. Let us examine the validities given by
the semantics, and the validities we should enforce to model a maybe idealized conception of
knowledge.

First of all, the Kripke semantics, presented in Definition 2.4, imposes that our agents,
who are able to know, have an absolute capacity of deduction. Why? Suppose that, in a
given state of a given model , an agent ¢ knows ¢ and knows that v implies ¢. Then 3 and
1) — (p are satisfied in any state that i considers possible, thus ¢ is satisfied there also. In

other words, the following formulas are valid, for all v, ¢ in the language:
(Kiy A Ki(p — ) — K. (K)

This could appear a reasonable simulation of the capacity of deduction of a rational agent.
But it implies, for example, that every agent “knows” every boolean tautology, i.e. every
sentence that is always true. But even if the reader is probably rational, could he say that he

‘knows’ that the following formula is a tautology?
(((pVt) = s)A(gou)V((pVEA=s)A((gAu)V (mgA-u))) — (qV (v AuA (v — 1))

It is also widely accepted that if an agent knows something then it is true. Thus the
following formulas are valid:
Kip — . (T)

There clearly lies one difference between “knowledge” and “belief”, though we cannot reduce
knowledge to true belief (see [Burnyeat and Barnes, 1980]). Logics of belief usually avoid this
principle of truth of belief, but use a deeper one: coherence. Indeed, we usually consider that
if you believe something you do not believe its negation. This would be translated into one

of the following equivalent principles (that remain true in the case of knowledge):

Kip — —Ki—p ;KL (D)
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We also accept that knowledge obeys positive and negative introspection. In other words,
we consider that if an agent knows something, she knows that she knows it, and, which is
more, if she does not know something, then she knows she does not. This implication is very
strong: do you actually know what is your “knowledge base”? And do you know the entire
list of what you do not know? If we accept these properties, we accept the validity of the

following formulas, for all ¢ in the language:
Kip — KiK;p (4)

—Kip — Ki~K;p. (5)

A last notion that we may introduce is the notion of common knowledge. Alex and Cha
are used to play Poker (as you shall see, our moody children like to play cards). Alex knows
the rules of the game. He also knows Cha knows the rules — if it were not the case, he could
try to cheat. But he also knows Cha knows that he knows the rules — and therefore he can
suppose she will not try to cheat. We could continue making sentences of this form... In fact,
the rules of the game are common knowledge.

Formally, the common knowledge of ¢ is the syntactic abbreviation of an infi-
nite conjunction of formulas. Let G be a set of agents, therefore C'Kgp abbreviates
/\neN /\z‘l,...,z‘neG Kiy o K, .

As we shall see, this notion is very important when considering public learning: if Brune
learns something together with Alex, and if each one can see that this learning is mutual, there-
fore the information learned becomes common knowledge. See [van Ditmarsch et al., 2009]

for more details.

2.2 Classical Technical Notions in Modal Logic

This chapter may be harder to understand for the novice reader and may again be per-
fectly redundant for the expert. But it seems important to define and explain correctly the
computer-science notions that are relevant in studies of logic. These notions are not restricted
to the study of knowledge, on the contrary the majority of them are very common in all the
fields of modal logic. Nevertheless, we shall present these notions using the language and

semantics of epistemic logic.

2.2.1 Properties of the Language

Let us start with very basic notions regarding syntax in logical languages.

Definition 2.5 (Length of a formula) Given a formula ¢ of a language L we call length
of ¢, noted ||, the number of symbols that constitute .
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Definition 2.6 (Subformula) For all formula ¢ € L. we define Sub(y) the set of subfor-
mulas of ¢ depending of the form of p:

e Sub(p) = {p}

o Sub(Ll)={l}

o Sub(—p) = {~¢} U Sub(¢)

o Sub(p1 V pa) = {1 V pa} U Sub(t1) U Sub(es)
o Sub(Kup) = {K;jth} U Sub(1)).

If ¢ € Sub(y) we say that 1 is a subformula of .

We can prove that Sub(p) is well defined by induction on the length of .

Remark 2.7 (Induction “on the structure of ¢”) From now on, “prove (resp. define)
a property P(y) by induction on the structure of ¢” means “prove (resp. define) P(v) for all
1 € PROPU{ L} and prove (resp. define) P(y) admitting the following Induction Hypothesis
(IH): P(v) is true (resp. defined) for all subformula ¢ of ¢”.

The language studied here can express limited notions. If you add a modal operator (i.e. a
new symbol) to a given language, without changing the semantics of the previous symbols,
the language you obtain can clearly express at least the concepts that could be expressed by
the previous language, and maybe more. Let us precisely describe this concept of expressivity

of a language.

Definition 2.8 (Expressivity of a language) Given languages L1 and Lo and a model
class C, L1 is at least as expressive as Lo with respect to C iff for every Li-formula ¢ there
is a equivalent Lo-formula v. In other words, for every C-model M, [e]jm = [W]m: the
denotation of ¢ in M with respect to the Li-semantics is the same as the denotation of v in
M with respect to the Lo-semantics.

Two standard ways to determine that L1 is at least as expressive as Lo are:

o Lo form a sublanguage of L1

e there is a translation (reduction) from Lo to L1 such that every Lo-formula is logically

equivalent to its transalation in L.

The language L1 is more expressive than Lo with respect to C if L1 is at least as expressive
as Lo, but Lo is not at least as expressive as L1 (the notion is a partial order).

The standard way to determine that Lo is not at least as expressive as L1 is that there
are an L1-formula ¢ and two C-models (M, s) and (M',s") such that ¢ is true in (M, s) and
false in (M',s"), but any Lo-formula 1 is true in (M, s) iff ¥ is true in (M',s"). We then
also say that the language L1, but not Lo, can distinguish between the models (M, s) and
(M) §).
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A last useful definition about languages:

Definition 2.9 (Substitution) Let L(PROP) be a recursively enumerable language based
on a countable set of atomic propositions PROP, @, ,11,109,... € L(PROP) and
p,p1,p2,... € PROP

e We denote asp(v/p) the L formula obtained from ¢ by replacing every occurrence of p
m @ by V.

o We extend the previous notation to simultaneous substitution for the infinite sequences
pb1,p2,. ../ Sa(qbl/plv 1/}2/[)27 )

2.2.2 Properties of Models

Let us now see some semantical properties of modal logic, in other words some properties
of the models we consider. First of all, the models we consider in all this work are Kripke
models, possibly augmented with an additional relation (that can be between a world and
set of worlds or between a world and relations). Let us recall that such models, defined in
Definition 2.3, are composed of a set of states, binary relations on this set, and a valuation
that assigns to any propositional atom a subset of states (those in which the proposition is
true). Thus we can see them as oriented graphs where the nodes are boolean models (i.e. a
truth value for any propositional atom). Note that this definition imposes the validity of the
formula K for any operator which follows the semantics presented in Definition 2.4. Indeed,
if K;9 N K;i(p — ¢) is true in a state s of a model M, then it means that for all states ¢
linked to s by R;, they satisfy both ¢ and v — . As they are boolean models, we conclude
that they all satisfy ¢, QED.

A submodel of a given model M is composed of a subset of the states of M, and a structure

that is the restriction of the initial structure on the obtained subset. More formally:

Definition 2.10 (Submodel) Let M = (S,V, (R;)icac) be a Kripke model. Then we call a
submodel of M a model M" = (5", V', (R})icac) satisfying the following:

e S'CS

e for allp € PROP and all ' € S', s € V/(p) iff s € V(p)

e foralli € AG and all (s1,s2) € 8" x S, s1R}sa iff s1Ris2

Recall the notion of transitive closure of a set of relations in the context of Kripke model.

Definition 2.11 (transitive closure) Let R = {R;}icac be a set of binary relations over
a set S. We call transitive closure of R the binary relation R* such that for all s,s’ € S there

erist n € N and sg, $1,...,5, € S satisfying:

e so=sand s, = s
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o for all k €{0,...,n— 1} there exists i € AG such that siR;Sk11.

We can now observe that a model may not be connected, i.e. it may happen that one
subset of states has no relation with another. In these conditions, a particular submodel

comes to be relevant:

Definition 2.12 (Connected component - Generated submodel) Let M = (S,V,R)
be a model and s € S. We call connected component induced by s in M the set 8" = {s' €
S | sR*s'}. We call generated submodel of M, s the particular submodel M’ of M based on

the connected component induced by s.

The connected composant of s in M is thus the set of all the states linked to s in M. This
notion is useful as the generated submodel of a model M is equivalent to M with respect to
the language L.: a formula that is true in one is also true in the other. This is statuted by
Proposition 2.15, saying that the two models are bisimilar.

Bisimulation is a well-known notion of structural similarity (see [Blackburn et al., 2001])
that we use frequently in examples and proofs. It sometimes says that two models are modally

equivalent. Let us present it in details:

Definition 2.13 (Bisimulation) Let two models M = (S,R,V) and M' = (S",R', V') be
given. A non-empty relation R C S x S is a bisimulation between M and M’ iff for all s € S
and s € S" with (s,s’) € R:

atoms for allp € PROP: s € V(p) iff & € V'(p);

forth for all i € AG and all t € S: if sR;t, then there is a t' € S’ such that 'Rt and
(t,t') € R;

back for all i € AG and all t' € S': if SRit’, then there is a t € S such that sR;t and
(t,t') € R.

We write (M, s)=—= (M, s') iff there is a bisimulation between M and M’ linking s and s,

and we then say the pointed Kripke structures (M, s) and (M',s") are bisimilar.

Note that bisimuation is an equivalence relation. Bisimulation is an important notion
because it characterizes the fact that two models are modally equivalent, i.e. satisfy the same

formulas of L:

Proposition 2.14 Let two models M = (S,R,V) and M' = (S',R',V') be given. Let
@ € L be a formula. For all s € S and for all ' € S, if (M, s)—=—=(M’,s’) then M,s = ¢
iff M, s = .

The proof of this proposition can be found for example in [Fagin et al., 1995]. In particular,

we obtain with the following proposition that a model satisfies the same formulas as its

generated submodel.
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Proposition 2.15 Let M, sy be a pointed model. It is bisimilar to its generated submodel.

Proof Let M’ = (S',R’, V') be the generated submodel of M,sy. Let R be the binary
relation between S and S’ defined in the following way: sRs’ iff s = §'.

We show that 2R is a bisimulation between M, sy and M’, sg. First, clearly soPRsg. For
all s € S’

atoms for all p € PROP: s € V(p) iff s € V'(p) (by Definition 2.10);
forth for all i € AG and all ¢t € S: if sR;t, then t € S" and sR]t by Definition 2.10, and ¢Rt;
back for all i € AG and all t € S’: if sR;t, then sR;t by Definition 2.10, and t9Rt.

O

We introduce another kind of equivalence relation, that is a form of generalization of
bisimulation. The idea is to consider as equivalent two states of a given model that satisfy
all the formulas of a particular subset of the language. We then introduce the useful notion

of filtration:

Definition 2.16 (filtration) Let M = (S,~;, V) be a model and let T be a set of formulas
closed under subformulas. Let «~1 be the relation on S defined, for all s,t € S, by:

semspt iff forallp €T (M,s = ¢ iff Mt = @)

Note that «~rp is an equivalence relation. We call the filtration of M through T' (or
simply the filtration of M) the model MY = (ST, ~F V1) where:

e S'=5/...

e for all |s|,[t| € ST, |s| ~F |t| iff for all K;p € T, (M, s | Kip iff M,t = K;p)

o V() — 0if pgl
Vi) {v<p>/w if per)

An important last remark: in the entire class of all Kripke models, some particular sub-
classes may be useful. We define them according to the properties of its binary relations
(reflexivity, transitivity, symmetry, seriality, euclidianity, equivalence). Recall that a binary

relation R over a set S is
e reflexive if for all s € S, (s,s) € R
e transitive if for all s,t,u € S, ((s,t) € R and (f,u) € R) implies (s,u) € R)
e symmetric if for all s,¢ € S, ((s,t) € R implies (t,s) € R)

e serial if for all s € S, there exists t € S such that (s,t) € R
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e cuclidean if for all s,t,u € S, ((s,t) € R and (s,u) € R) implies (¢,u) € R)
e an equivalence relation if it is reflexive, transitive and symmetric.

As we will see in the following section, these properties of the models ‘correspond’ to the

axioms we presented in Section 2.1.3 . More precisely,
e Truth (noted T) corresponds to reflexivity
e Coherence (noted D) corresponds to seriality
e Positive introspection (noted 4) corresponds to transitivity
e Negative introspection (noted 5) corresponds to euclideanicity

Recall that all the models satisfy the implication noted K. We thus call KT (resp. KD, K45,
etc.) the class of reflexive models (resp. serial models, transitive and euclidian models, etc.).
S5 abbreviates KT'45 and corresponds to the class of models for which R is an equivalence
relation. For all n € N and for C a class of models, we call C,, the class of models that belongs
to C and contains exactly n binary relations.

In particular, S5,, is the class of Kripke model that have n relations that are equivalence:

Definition 2.17 (Epistemic model) A Kripke model M = (S,{R;}icac,V) is called an

epistemic model if for all i € AG, R; is an equivalence relation over S.

2.2.3 Axiomatization

Given a syntax (i.e. a language), a class of models where to interpret it (i.e. a class of
concrete situations, a context) and semantics (i.e. an interpretation of the language in the
contexts), we would like to characterize formulas that are true in this context. What are
the properties of a formula that guarantee that it will be true in every situation of a given
context? The question is not only to be able to determine which are the valid formulas, but

to get an explanation of why they are true, and a proof of it.

T Truth

(ANB)— A ; (ANB)— B Simplification

A—(AVvB) ; B—(AVB) Addition

A— (B— A) Conservation

(A—- B)—((A— (B— (C))— (A— ()) Hypothetical syllogism (HS)
(A-B)—=((A—-C)—(A— (BANC(C))) Composition
A—-C)—(B—-C)—((AvB)—0) Disjunction

-—A— A Excluded middle

(A— B) — ((A— -B) - -A) Coherence

From A and A — B, infer B Modus Ponens (MP)

Table 2.1: Propositional logic, axioms and rule
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The notion of aziomatization has been developed for this purpose. Informally, an axioma-
tization is a finite description of axiom schemata and rules that allows to derive deterministi-
cally all the formulas we consider as theorems of the logic. More precisely, an axiomatization
A is a set of axiom schemata (i.e. each formula that has the same structure of the schemata
is an axiom and then is —by principle— a theorem) and a set of rules (called inference rules).
Table 2.1 is an example of axiomatization, with nine axiom schemata and one inference rule.
,Un} of for-
mulas such that 1, = ¢ and for all i € {1,...,n} either ¢; is an instantiation of an axiom or
is obtained from {11, ...
@ is a theorem and we note 4 ¢, or simply - ¢. More generally, if ¢ can be proved adding

It axiomatizes propositional logic. We call proof for ¢ a finite sequence {1, ..
,¥;—1} using an inference rule. If there is a proof for ¢ we say that
to A a set of formulas S considered as additional atoms, we note it S 4 .

Note that a proof may be quite long. Table 2.2 gives an example of a theorem’ proof in

propositional logic.

Ll1: F@Ap)—¢ Simpli fication
L2: F(WAe)—p Simpli fication
L3: ki — (Vo) Addition
L4: Fop—(pVh) Addition
L5: F@p—@Vve)—(vAe)— (¥ — (V) Conservation
L6: F(p—(pVO) = ((bAp)—(p— (pVh))) Conservation
LT: F@WAe) — W — (¥V0)) L3, L5, MP
L8: F(WAe)— (p— (pVH)) L4, L6, MP
L9: F (AR — 1) = (@ Ag) = (b — BV 0) = (B A) — (V) HS
L10: F((¥Ae) =) = (WAe) = (p—=(pV0) = (¥ Ag) = (V) HS
L11: F @A) — (V0 L1, L7, L9, MP
L12: F(WAg) — (pV0) L2, L8, L10, MP
L13: FO— (v V) Addition
L14: FO— (pV0) Addition
L15: F((WwAe)— @VE)—((0— (V) — (wAp)VE) — (YV0))) Disjunction
L16: (@A) = (pV0) = (0= (pV0) = (v Ap)VE) = (pV0)) Disjunction
L17T: F((hAg) V) — (hV6) L11, L13, L15, MP
L18: F((WA@) V) — (pV0) L12, L14, L16, MP
L19: F({((wA@)VEO) — (V) —

(@A) VE) = (V) = (v AQ)VE) — (¥ VO)A(pVH))) Composition
L20: F((wAp)VE)— (VO A(pV)) L17, L18, L19, M P

Table 2.2: Proof for the distributivity of V over A using Hilbert-style axiomatization

Given an axiomatization, we may want to prove that it corresponds to the intuition that
the theorems are the always true formulas. More precisely, we may want to prove that it is
sound (i.e. every theorem is a validity) in all considered models and complete (i.e. every
valid formula is a theorem).

Completeness is a powerful property that guarantees that all that is true can be proved.
This is the property that [Godel, 1951] proved to be wrong for more expressive languages, in
particular arithmetic. But such a result may be satisfied for modal logics. In fact, Hilbert-
style axiomatization for propositional logic is proved to be sound and complete in all Boolean

models.
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What is more, it has been proved that the axiomatization presented in Table 2.3 is sound
and complete with respect to all Kripke models, i.e. that a formula is a theorem of modal

logic iff it is valid in all Kripke models.

PL Axioms of Prop. Logic as in Table 2.1
K;(A— B) — (KA — KB) Axiom K

From A infer K;A Necessitation

From A and A — B, infer B Modus Ponens

Table 2.3: Modal logic, axioms and rules

Moreover, using the same axiomatization with additional axioms D, T, 4 or 5 (or any
combination of them) we obtain a sound and complete axiomatization with respect to the
corresponding class of models KD, KT, K4, K5 (or the corresponding combination). See
[Chellas, 1980] for details.

To prove completeness, we often use the notion of canonical model. Trying to give a
general definition of this concept would lead us out of our purpose. Definition 2.19 gives thus
a local definition, that is sufficient in the context of this thesis. We first introduce the notion

of maximal consistent set:

Definition 2.18 (Maximal consistent set) Let a language £ and an azxiomatization for

this language A be given. A set S C L is said to be:
e inconsistent if from the formulas of S it is possible to derive 1 using A (i.e. Sk4 L)
e consistent otherwise

e maximal consistent if it is consistent and for all p € L\ S, SU {p} is inconsistent

Definition 2.19 (Canonical model for epistemic logics) Let A be one of the logics that
can be found in this thesis, defined over a countable set of propositional atoms PROP and a
countable set of agents AG, which language L 4 is based on the epistemic modalities {K;}ic ac
(in chapter 4, symbol ‘K’ is replaced by ‘B’). The canonical model of A is the Kripke model
M = (8¢, R, V) defined as follows:

o S¢={z |z is a mazimal consistent set of the axiomatization of A}

o R¢ = {RS}icag with for all i € AG, R{ is the following binary relation over S€:
R = {(z,y) € 5° x §° | Ki(w) € y} where Ki(2) = { | Kig € o}

o for allp € PROP, V¢(p) ={z |p € x}.

Most of the proofs of completeness with respect to a given class of models use the double
nature of the canonical model. Indeed, in such proofs we want to show that any valid formula

is a theorem of the logic. Therefore, we first define the canonical model in a similar way as in
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Definition 2.19, prove that it 4s a model, and that it belongs to the corresponding class. We
then take a valid formula which, as valid in every model, is valid in the canonical model. But
a valid formula of the canonical model is a theorem. Why? Because, its negation does not
belong to any maximal consistent set, which implies, as we would have to prove, that it does
not belong to any consistent set. And if it cannot be consistent with anything, then it is an
intrinsic contradiction, which means that the initial formula, its negation, is a theorem. To
sum it up, this would prove that every valid formula is a theorem, which means that every

true formula is provable.

2.2.4 Decidability and Classes of Complexity

Some of the results of this thesis being related with the notion of problem complexity, we
present briefly in this section the basic notions of this concept.

Decidability is the first useful notion: informally we say that a given problem is decidable
if there is an automatic method to find the correct answer for every instance of the problem.
We could imagine a comparison with real-life problems. For example ‘Is A taller than B’ is
a decidable problem: it is possible to measure. Indeed if I want to test if Alex (A) is taller
than Brune (B) I can apply my method and get the good answer. But ‘Is A more lucky than
B’ seems to be an undecidable problem.

More formally, in computer science, a problem is said decidable if there exists a deter-
ministic algorithm which ends answering correctly yes or no to every instance of the problem.
Some particular problems are known to be undecidable. The most famous example is proba-
bly the Domino problem (also known as the Tiling problem). The purpose is to know if it is
possible to tile an infinite grid using a given finite set of reproducible coloured tiles, following
the condition of the domino game. A Wang tile (cf. [Wang, 1961]) is a unit square with each
edge colored from a finite set of colors. A set S of Wang tiles is said to tile a planar grid if
copies of tiles from S can be placed, one at each grid position, such that abutting edges of
adjacent tiles have the same color. Multiple copies of any tile may be used, with no restriction
on the number. If we allow the tiles to be rotated or reflected, any single Wang tile can tile
the plane by itself. The question of whether such a tiling exists for a given set of tiles is
interesting only in the case where we do not allow rotation or reflection, thus holding tile
orientation fixed. For example, do you think it is possible to tile the plane with the following
set of Wang tiles?

This decision problem was first posed in 1961 by Wang in a seminal paper ([Wang, 1961])
and has been proved to be undecidable. That does not mean that you can never decide if a
given set allow to tile the plane. In fact it has been proved that there is an algorithm that
says yes in finite time if the tiling is possible. But the algorithm proposed before may never
answer in the case where the tiling is not possible.

One way to show that a given problem is undecidable is by encoding the tiling problem
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Figure 2.4: An instance of the domino problem

into it. We translate our problem so that for every instantiation of it, its translation is an
instantiation of the Tiling problem (i.e. every finite set of tiles). Therefore if the given
problem were decidable, so would be the Tiling problem.

But we are more interested in decidable problems! Those are classified by the complexity
of the relative algorithm. Indeed, we say that a problem is in P if it can be decided by
a deterministic algorithm which execution requires a time polynomial on the length of the
given problem. We say that a problem is in FEXPTIME if the execution of the relative
algorithm requires a time exponential on the length of the input. We say that it is in NP
(resp. NEXPTIME) if the corresponding algorithm is non deterministic, and that it is in
PSPACE if it requires only polynomial space.

We call EXPTIME the class of problems that are in EXPTIME, and so on for the
other classes of complexity. It is a known fact that P C NP C PSPACE C EXPTIME C
NEXPTIME. 1t is also known that P # EX PTIME, but to know if P = NP or not is an
open problem that may yield you one million dollars (if you solve it).

We say that a problem A is N P-hard if every NP problem can be reduced to A. More
formally, A is N P-hard if for every problem B in NP there is a translation ¢r computable
in polynomial time such that for all instances i of B, B answers yes to i if and only if A
answers yes to tr(i). We define in the same way PSPAC E-hardness , EX PT1M E-hardness,
NEXPTIM E-hardness, etc. If a problem is in NP and is N P-hard, we say that it is
N P-complete (and so on for the other complexity classes).

For a more rigorous definition of this classification (which requires to explain what a
Turing machine is), the reader may look at [Papadimitriou, 1994].

In logic in general and hereafter in particular, given a language L together with its se-
mantics and a class C of models where to interpret it, two classical problems are studied: the
problem of Satisfiability (SAT') and the problem of the model checking (MC'). They can be
defined in the following way:

MC: Given a formula ¢ of £ and a finite model M € C, is ¢ satisfied in a world of M?
SAT: Given a formula ¢ of L, is ¢ satisfied in a model M of the class C?

Reasonable semantics ensure that the problem of the model checking is decidable (and

with a low class of complexity). Indeed, a requirement we may demand to such semantics is
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to be able to evaluate in finite time if a formula is satisfied or not in a given finite model.
The SAT problem for propositional logic and epistemic logic (with the S5 axioms and only
one agent) is N P-complete, and it is PSPAC E-complete for some other modal logics. It
is undecidable for some more expressive languages, as first order logic for example, or the
language L, presented in Section 3.1.2.

Given a logic, the SAT problem is important at a theoretical level: it answer to the
question if a given formula makes sense. Therefore, we say that a language is decidable
(resp. N P-complete, EX PTIM E-hard, etc.) if the SAT problem is decidable (resp. N P-
complete, EX PTIM E-hard, etc.). The answer to this problem does not require to give a
concrete model where the formula ¢ is satisfied, but in some cases we would like to construct

such a model. In this case, we find an answer to the problem of the model construction:
Model Construction: Given a formula ¢ of £, give a model M satisfying ¢.

A well known method of model construction uses analytic tableaux. One such method is
presented in Section 6.6 for a language expressing knowledge, announcements and permission

to give a piece of information.



CHAPTER 3

State of Art

In this chapter we present some of the works that inspired us in developing our formalisms.
Indeed, to understand the notion of “right to communicate a piece of information” some
notions have to be clarified from the start. We would like to precisely define what we mean
by “communication”, which notion of “right” we shall use, and if previous works tried to
merge these notions.

The first part of this chapter is thus dedicated to the logics of knowledge and communi-
cation, called Dynamic Epistemic Logics tackling also the concept of Knowability: what can
be known? Some gaps appear and justify the works presented in the chapters 4 and 5.

We present in a second part the basic ideas of deontic logics, the logics of obligation,
permission and prohibition, before seeing in a third section which works tried to merge both

fields in a formalism of the right to communicate.

3.1 Dynamic Epistemic Logics

3.1.1 Public Announcement Logic

Consider an example involving our moody children: Brune and Alex reached the final round

of the Texas Hold’em Poker game (Cha and Dan, in a bad mood, let them play alone). Texas

Figure 3.1: Texas Hold’em

43
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Hold’em is a very fashion-conscious variant of classical poker in which each player gets five
cards from a set of fifty-two. At the end of the deal each one will have two cards in his/her
hand, and five cards will be face up on the table. Each player is then able to form her hand,
which is composed by the best 5-cards combination using his own cards and the five cards
shared with her adversaries. This variant of classical poker makes the game more interesting
because the uncertainty about the cards of your adversary is not total, some of them being
common knowledge to all players.

But not all the cards are dealt at the beginning, and the structure of the deal makes the
game even more interesting. Indeed, each player first receives her two cards and a round of
bets starts. Then three cards are dealt face up (‘the flop’),then a fourth (‘the turn’) and a
fifth (‘the river’), the three of these deals being followed by a round of bets. Each of these
deals can be seen as an announcement to all players that one card is part of the common
final hand. This announcement is public, in the sense that everybody knows it takes places,
and everybody knows everybody knows it, and so on... In fact, it is common knowledge
(cf. Section 2.1.3) that it takes place. Clearly, this announcement will change the state
of knowledge of the agents about the world, though it does not change the factual world
(because the deal was fixed before the game started, and no actions that are part of the
game can change it). After this announcement, the players will eliminate from the deals they
considered possible the ones in which the revealed card wasn’t on the table. But also, as the
announcement is public, they know that nobody consider these deals possible anymore, so
they will eliminate them from the representation they have of the state of knowledge of the
other agents. And they know that the other agents know that no other agent consider those
deals possible anymore... They are erased from the common representation of the world!

This is the basic idea of Public Announcement Logic, that was first introduced by

[Plaza, 1989]. Let us introduce its language and semantics:

Definition 3.1 (Syntax of L,q) The language of public announcement logic Ly, over a
countable set of agents AG and a countable set of propositional atoms PROP is defined as

follows:
pu=p|L]-p|e1Ver | Kig| e
where i € AG and p € PROP.
The boolean and epistemic parts of the language are read as usual (See Chapter 2) and [¢1]p2

is read ‘after the public announcement of 1, ¥ is true’.

This language is interpreted in the same models than L.; in the following way.

Definition 3.2 (Semantics of £,q and restricted model) Let M be a model and let s
be a state of S. The satisfiability relation M, s |= ¢ is defined inductively on the structure of

© as follows:

M, sEpiffs€V(p)
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M,s e L
M, s == iff M,s
M, s B 1 Vb iff (M, s =1 or M, s |=12)
M, s = Kb iff for all t such that sRit, M.t = 1)
M, s |= [W]x iff (M, s = implies M|, s |= x)

where M|y = (S',R', V') is the update (or restriction) of a model M after the public an-
nouncement of 1, defined as:

o 5= [¢lm ={s € SIM,s £ )
e V(p)=V(p)NS for allp e PROP

e foralli, R, = R;N (5" x5

Remark 3.3 This definition looks incorrect, because it uses the satisfiability relation to define
the restricted model, and vice versa. But to define the restricted model, we only need the
definition of the satisfiability relation for a subformula v of the initial one, and thus for all
subformulas of v. The definition is thus well-founded by induction on the structure of the
formula.

Here is, as an example, the representation of a simple deal of cards between three of our
children:

201 —— 210

Figure 3.2: Deal of three cards between three agents
Actual state ‘012’ represents the deal in which Alex has 0, Brune 1 and Cha 2.

Cha, Alex and Brune have one card each, dealt from a set of three cards only, {0,1,2}.
They know that these are the dealt cards, though they don’t know the actual deal in which
Alex has 0, Brune 1 and Cha 2. The propositional atoms are of the form X; with X € {0, 1,2}
and ¢ € {a, b, c}. We read for example 2, as ‘Alex has 2’. We labelled the states of the models

so that the name of a state makes clear the deal it represents. The actual state, for example,
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is called ‘012’. The model of Figure 3.2 represents this epistemic situation. We call this model
M.,. We omitted reflexive arrows in each state for each of our three children.
What happens now if Alex announces publicly that he does not have the 17 The result

appears in Figure 3.3.

M: 012 —a— (021 M[(=14) 012 —a- 021

SN SN ,
102/ a \b¢ \120 S \
N\
b\ / 201 ~a- 210

201 —— 210

Figure 3.3: Alex announces: “I don’t have the 1”

As we said before, the result of this public announcement is that the states in which
1, was true are erased from the model. This comes from the strong property of public
announcement: not only everybody learns its content, but the states for which it was false
before the announcement are not conceivable anymore.

After the announcement, Cha knows what is the exact distribution, in other words
M,012 = (=14)Kc(04 A 1y A 2.). Brune does not know which it is, but she knows Cha
knows it: M, 012 = (=14) Kp(K(0g A1y A20) V Ke(24 A1y AO)).

Remark 3.4 (Moore Sentences) We said ‘its content was true before the announcement’,
and this use of the past may appear as superfluous. Indeed, we could believe that after an
announcement of v, ¢ is still true and the receiver of the message knows that p. But this is
not true in general, because a formula may become false after it has been announced. We call
this an unsuccessful update. Let us see an example.

Suppose the reader you are does not know what is a Moore sentence. If you are not used
to epistemic logics this may be the case. Then let me say to you the following: ‘“You don’t
know that Moore sentences are unsuccessful updates but they are!”.

This sentence was true before my announcement, indeed Moore sentences were actually
unsuccessful updates and you didn’t know that. But now you do! (Though you may not see
what precisely is a Moore sentence, if you believe me you know at least that it is an unsuc-
cessful update, because I told you so). Therefore this sentence was true before I announced
it, and it became false after. We call Moore sentences this kind of formulas, of the form
p A —K;p, presented by [Hintikka, 1962]. For more information about Moore sentences, see
[van Ditmarsch and Kooi, 2006]

Properties: One first (and surprising) property is that L£,q is not more expressive than

L. This comes from the following two principles:
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e announcements cannot change the objective state of the world (they only change the

knowledge of the agents about it)

e an announcement teaches something to an agent iff she knows that this announcement

(if possible) would teach it to her

More formally, we define (by induction on the structure of ¢) the following translation ¢r

from L4 to L such that any S5,-model valid, for all ¢ € L4, tr(p) «— .

o tr(p) =p
° tT(J_) =1
o tr(—p) = —tr(yp)

o tr(y V) = tr(y) Vir(p)

o tr(K;p) = K;tr(y)

o tr([ylp) = tr(¢y) —p

o tr([y]L) = ~tr(¢)

o tr([Y]mp) = tr(y) — —tr([Y]p)

o tr([Yl(pr V @2)) = tr({dler) vV tr([¢]e2)

o tr([Y]Kip) = tr(v) — Kitr([Y]p)

The same idea gives us an axiomatization PAL for this language. Indeed, we need only to
take the axiomatization for S5, augmented with the reduction axioms corresponding to the
last five equalities (see table 3.1).

Nevertheless, Public Announcement Logic is not only a beautiful way of thinking about
epistemic logic, it has some interesting properties. Indeed, L,y is proved to be exponen-
tially succinct on unrestricted structures ([Halpern and Moses, 1992, Lutz, 2006]), and inter-
esting complexity results have been given, even when we consider common knowledge (see
[Lutz, 2006] for details).

Public announcement logic have been widely studied and extended. The next two sections

present two of those extensions that are useful to our work.

3.1.2 What Is Knowable? - Arbitrary Public Announcement Logic

Arbitrary public announcement logic [Balbiani et al., 2008] has been developed to tackle the
problem of what is called ‘knowability’ in Philosophy. In [Fitch, 1963], Fitch addresses the
question whether what is true can become known. As we saw with Moore sentences, this is

not true in general. Furthermore Fitch’s Paradox ([Fitch, 1963]) ensures that if every truth
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instantiations of propositional tautologies

Ki(p — ¢) — (Kip — K;y) distribution (of knowl. over impl.)
Kip — ¢ truth

Kip — K;K;p positive introspection

-Kip — Ki~K;p negative introspection

[plp <— (¢ — p) atomic permanence

[p] = —— (p — =[p]Y) announcement and negation
(] (¥ A x) «— ([e]Y A [e]x) announcement and conjunction
[P Ky «—— (p — K;[p]¥) announcement and knowledge
[o][¥]x < [p A [e]¥]x announcement composition
From ¢ and ¢ — 4, infer ¢ modus ponens

From ¢, infer K;p necessitation of knowledge
From ¢, infer [¢]¢ necessitation of announcement

Table 3.1: PAL axioms and rules

can be known then every truth is actually known. An overview of the different studies on
Fitch’s paradox can be found in [Brogaard and Salerno, 2004].

Public announcement logic is not expressive enough to face this notion. The main idea
of the work presented in this chapter is to add a quantified modality to £, and to interpret
‘knowable’ as ‘known after some announcement’.

Therefore, the language L, extends L,, with an additional inductive construct [y,

read ‘after any possible announcement, ¢ becomes true’. In other words:

Definition 3.5 (Syntax of Lgpu) The language of arbitrary public announcement logic
Lapar over a countable set of agents AG and a countable set of propositional atoms PROP is
defined as follows:

pu=plL=p|e1Vea| Kipllpilpz | Op
where 1 € AG and p € PROP.

We denote by ¢ the dual of [, id est O := —[I—y: ‘there is some announcement after
which ¢ is true’. Therefore ¢ would be ‘knowable’ if (K ). We interpret this language in
the same class of models, the epistemic models. The interpretation of this new modality [J

(the other ones remaining identical) is :
M,s EOp iff forall ¥ € Lo : M, s | [¢]e.

This logic has many interesting properties, most of them proved in [Balbiani et al., 2007]
or [Balbiani et al., 2008]:

o L,pal is strictly more expressive than L.

e [ has the S4 properties, that is for all ¢, ¢ € Lgpa:
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L EO(@AY) «— O Ay
2. EOp — 0
3. Ep — Oy
4. | ¢ implies | Oep.
e Mac-Kinsey (MK) and Church-Rosser (CR) formulas are valid for OJ, that is for all
© € Lapal:
MK: = O0p — Oy
CR: E 0Op — OOy

e For all p € Lypa1, KOy — UK, is valid, but not the converse.

e There is a finite axiomatization for £, that is shown to be sound and complete. The

axioms and inference rules involving arbitrary announcement are:

Op — [¢]p where ¢ € L
From ¢, infer Oy
From ¢ — [0][p]ep, infer ¢ — [9]0¢ where p € ©, UBOy U O,

where ©, denotes the set of atoms occurring in a formula .

e Unfortunately, £,,q is shown to be undecidable by encoding the tiling problem into the
S AT-problem for APAL (see [French and van Ditmarsch, 2008]).

3.1.3 Not All Announcements Are Public and Made by an Omniscient
Agent - Action Model Logic

Two gaps appear in the previous work to those willing to use logic to consider multi-agent
systems, or only situations that involve different persons. First, if not any truth can nec-
essarily be known, in the formalisms we presented until now any truth can be announced.
But if announcements can be made by actual agents (and not only by an omniscient one),
it appears clearly that for an agent to be able to say truthfully something, she has at least
to know it, condition not always satisfied. Second, communication is not limited to public
announcements: there are private announcements between two agents or inside a group of
agents, other agents may see that a communication is taking place or not, etc...

[Baltag and Moss, 2004] propose the following formalism, called action model logic, that
generalises public announcement logic, including many kinds of informative events®. An event
is not only a formula publicly announced, but represents the uncertainty of the different agents

about the announcement that is actually taking place. Follows an example.

"We use the terminology of “event” instead of “action” that supposes a notion of will that we do not have.
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Return to the situation presented in Figure 3.2. Suppose that Cha shows her card to
Brune. Alex does not know which card she is showing, but he can see she shows her card,
so he knows that Brune and Cha know which card it is. Baltag et al. suggest the following
epistemic event model. Each state is a deterministic epistemic event, with a precondition

that ensures that it is executable. As for epistemic models, a link indexed by an agent

the representation of the event is the following:

sh2: K.2.

IS

between two events means that agent ¢ cannot distinguish these two events. In our example
a a

sh0 : K.0.
shl: K.1.

Figure 3.4: Cha shows her card to Brune

There are three possible events corresponding to the fact that Cha shows her card to Brune.
The two girls know that Cha showed 2, and Alex consider two possible events (Cha showing
1 or Cha showing 2). The third one (Cha showing 0) is also in their collective imagination.
Indeed, Cha can imagine that Alex does not have 0, and leading him to consider posible
that Cha shows her 0. Each of those events has a precondition (that is Cha having 0, 1 or 2
respectively). In each case Brune and Cha know exactly which event is taking place. All of
that is common knowledge between the three agents (because the event in itself is public).
What would be the result of such a complex event on our initial model is presented in figure
3.5.
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Figure 3.5: Result of the event
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After this example, we shall define precisely this formalism.

Definition 3.6 (Event Model) An epistemic event model over a countable set of agents AG
is a triple € = (E, — aq, pre) where E is a set (of simple events), — ag= {—i| i € AG}
is a AG-indexed family of binary relations on E and pre: E — L.

The main idea is that ‘simple’ events are deterministic events, that is that any observer
can deduce the impact of one event on one state. Uncertainty about which deterministic event
is actually taking place is added to the concept of simple event, creating an event model. The
event model thus created is independent from the actual state model, and the uncertainty
about which event is taking place is thus independent from the uncertainty that agents may
have about the actual state of the world. Each simple event can be executed only in the
states where its precondition is true. As they are epistemic and deterministic events, we can

consider that the precondition is the information carried by the event itself.

We define the model obtained from an initial one by executing an event model:

Definition 3.7 (Resulting model) Let M = (S, R, V) be a state model and € = (E, — aa
,pre) be an event model. The model resulting from M by application of the event model £ is

the following: M ® & = (S',R', V") with
o S"={(s,e)|se€S,e€ FE and M,s = pre(e)}
o (s1,e1)R(s2,e2) iff (s1Ris2 and e; —; €3)
o (s,e) e V'(p) iff ((s,e) € S and s € V(p))

As we will see in further examples, event model logic allows us to add a notion of agency
to announcements. Indeed, in public announcement logic, any announcement is made by an
exterior agent, let us say the modeler herself. Such an announcement is commonly known to
be truthful by the whole set of agents. Such a condition on announcements is a serious limit
to model situations in which agents communicate.

Here are different kinds of private communication using event models. In these models,
agent a is the agent speaking, and the information he gives is ¢, as the information exchanged

is of the form K,p “agent a knows ¢”:

AG.
Public announcement:

AG AG,
Hidden announcement to b: AG\{a,b}



92 CHAPTER 3. STATE OF ART

Visible private announcement: AG\{a,b}

AG

AO\{ab) - AC\{@0)

A

AG, AG,
Idem with Common Knowledge on subject: K.p Ag\{a’b}

Let us define precisely the syntax and semantics of DEL:

Definition 3.8 (Lgmni) The language of action model logic Lgm; over a countable set of
agents AG and a countable set of atoms PROP, given an epistemic event model & =

(E,— aq,pre) is defined as follows

pu=plLl-p|e1Ver | Kigllae
where i € AG and p € PROP and a € E.

[a]p is read ‘after any execution of action a, ¢ becomes true. We note (a) the dual of [a], id est
(a)p = —[a]—¢p. We interpret this language in the class of all Kripke models, an event model
& being given. Using Definition 3.7 we can precise the interpretation of this new modality [a]

(the other ones remaining identical):
M, s = [a]p iff (M, s = pre(a) impliess M ® &, (s,a) = ¢).

The following Definition details how to consider the succession of two epistemic events:

Definition 3.9 Let A = (A, —4, pre?) and B = (B, —5, preB) be two events models over
a same set of agents AG. Then we define A® B = C = (C, —C, pre®) where

e U=AX%xB
e for alli € AG and all (a,b),(a',b') € C: (a,b) —¢ (a',V) iff (a — @’ and b —B V)

o for all (a,b) € C, pre(a,b) = pre(a) A (a)pre(b).

3.1.4 Objective Beliefs

Turn back to the Texas Hold’em poker game of Alex and Brune. We saw how cards are dealt,
until five shared cards are put on the table. Each player is then able to define her own hand,
composed of the best 5-cards combination between the two cards of her game and the five

shared cards on the table. The order of the combinations is the following, from the least to
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the best: high cards, one pair, two pairs, three of a kind, straight, flush, full house, four of a
kind (‘poker’) and straight flush?.

Though our two players do not know the value of the cards that will be on the table, this
value is fixed from the beginning of the game and cannot be modified by any action of the
players. They can only update their beliefs about these objective facts.

In such a situation, the player can be wrong about the belief of the other player (“Alex
believes Brune believes she has the winning hand”), but their beliefs regarding to the cards
dealt on the table are true beliefs. We present in this section a framework proposed by
[Hommersom et al., 2004] that allows us to express this notion of objectivity of some beliefs,
that ensures that such an objective belief is true. We first first define the language of this

logic:

Definition 3.10 (Syntax of L) The language of the logic of objective beliefs L., over a
countable set of agents AG and a countable set of propositional atoms PROP is defined as

follows:

pu=p|L]=p|e1Vee|Bip
where i € AG and p € PROP.

By is read “agent i believes that ¢”. We use the usual abbreviations, in particular
BZ«p := - B;—p (“agent i considers possible that ¢”). We say that a formula of L, is boolean
if there is no occurrence of the operator of belief in it. We interpret semantically this language
on Kripke models M = (S, R, V), the satisfiability relation M, s |= ¢ being defined just as

usual. More precisely:
e M sEpiff pe V(s),

o M s L,

M, s = —piff not M, s | o,

M,s b= @V iff Mys o or M,s =1,

M, s |= By iff for all t € S, sR;t implies M, t = .

The notion of validity upon a model or a class of models is defined as usual. These definitions
are exactly the same as the equivalent definitions for epistemic logic. The difference appears
when considering the properties of the models. Indeed, we do not interpret L;,,-formulas in

55, models but in the class Cy of transitive, euclidian and o-serial models, defined as follows:

Definition 3.11 (O-serial model) We say that a Kripke model M = (S,R,V) is o-serial
if for all s € S, there exists t € S such that sR;it and V(s) = V(t). We call Cy the class of

models that are transitive, euclidian and o-serial.

2The entire set of rules can be found, for example, in http://en.wikipedia.org/wiki/Texas_hold_'em.
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Indeed, this class of models bring the property we expect for objective belief: an agent
cannot believe a false propositional formula. Therefore, she may not know which is the actual
state, but she always consider possible a state in which the objective facts have the same

truth value as in the actual one, ¢.e. a state that has the same valuation.

3.1.5 Partial Conclusion

In this section, we presented different works that use epistemic logic, the logic of knowledge,
to express dynamic situations. The most used is the notion of public announcement, exchange
of information between the modeler and the whole set of agents. Though Action Model Logic
gives us a framework that allows to speak about private announcement, some more notions

should be improved in order to tackle the problem of ‘the right to say’:

e What kind of information is given? We presented the distinction between beliefs and
objective beliefs. What kind of technical result can we get? Can we add to this logic the
notion of arbitrary announcement, like in £L4,,? We explore these questions in Chapter
4.

e Who is speaking? Is information given by an individual agent or is it given by a group
of agents? How can we formalize the notion of group announcement? This is the topic
of Chapter 5.

3.2 Deontic Logics

Dynamic epistemic logics are a good starting point to understand the notion of ‘right to say
something’: if the content of the speech is the relevant element that determines the right,
then ‘to say something’ can be interpreted as ‘to give a piece of information’. But the notion
of ‘right’ still has to be interpreted formally.

Deontic logic gives formal interpretations to the notions linked to permission and obli-
gation. ‘Must’, ‘permitted’, ‘optional’, ‘ought’, ‘should’, ‘obligatory’, ‘might’, or ‘forbidden’
are classical notions that deontic logic tries to formalize. Obviously, one cannot pretend to
give a unique interpretation of these notions: they may in particular depend on the kind of
obligation they express (moral, hierarchical, political...), but also on the nature of the object
of such obligation. Indeed, this subject may be a state of affair or a given action. The former
would be represented by formulas of the form Fy, where ¢ is a formula of the language,
which says that a situation in which ¢ is true is forbidden; the latter by some F'a where «
represents an action — and how to represent such notions? — and not a formula.

We present in Section 3.2.1 classical deontic logic, which is a modal logic with a similar
language than epistemic logic’s but with another interpretation. In this standard theory,

the deontic modalities are applied to formulas. In section 3.2.2 we present the logics of
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permissions, for which obligation and prohibition are applied to actions, opening the way to

what is our proposal, presented in Chapters 6 and 7.

3.2.1 Standard Deontic Logic

Like many logics, the classical deontic logic is rooted in Antiquity and the Middle Ages, e.g.,
in the Obligatio game/procedure (see [Boh, 1993]). This game, that can be seen as a logical
game of counterfactual reasoning (see [Spade, 1982]) or some kind of training on thesis defence
(see [Spade, 1992]), is based on arguments that have to follow some rules. Obligationes are
not deontic thoughts, they are not obligations, but they led to thought on deontic concepts
because they carried the idea of rules and thus of obligations in a formal frame.

Since then, deontic logics have been developed on a twofold way, both non-modal and
modal, namely [Mally, 1926] and [von Wright, 1951]. Let us present briefly the Standard
Deontic Logic based on von Wright work, and its limitations in our context.

Standard Deontic Logic (SDL) is a modal logic whose operators formalize the following

basic notions:
e it is obligatory that ¢ : O¢p
e it is permitted that p: Py
e it is forbidden that ¢: Fp

e it is omissible that ¢: OMe.

it is indifferent (or optional) that ¢: Ip.

It is built upon propositional logic. In this standard framework, all these modalities can be
expressed using only one of them, typically the first one, obligation. This framework is a

normal KD logic.

Syntax, Semantics and Properties
Definition 3.12 (Syntax of Lsq;) The language of the standard deontic logic Lsq; over a

countable set of propositional atoms PROP is defined as follows, where p € PROP:

pu=p|L|-@|e1Ves|Op.

We use the classical propositional abbreviations and define the following ones: Py := =O-p,
Fy:=0-p, OMy = -0¢p, Iy :==0p A -0O-p.
We interpret this language on the class of serial Kripke models, using the possible world

semantics. That implies the following properties

e E0(p — ) — (Op — OY)
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We call SDL the normal KD axiomatization of this logic summed up in Table 3.2.

instantiations of propositional tautologies
O(p — ¢) — (Op — OY) distribution

PT or =Op VvV -0-p
From ¢ and ¢ — 9 infer ¥
From ¢ infer O¢p

D
modus ponens
necessitation

Table 3.2: Axiomatization SDL

SDL is sound and complete with respect to the class of serial models (where we interpret

language) (see [Chellas, 1980]).

Moreover, it has been proved (see for example [Blackburn et al., 2001]) that:

e L4 is decidable, and the decision procedure is PSPACE-complete

e The model checking problem for L,y is

Classical Paradoxes

(cit

1.

._.
e

© XN e N

in P

Standard deontic logic is famous for its ‘paradoxes’. Here are some of the most known

ed from [Meyer et al., 1994]):

Empty normative system

Ross’ paradox

No free choice permission

Penitent’s paradox

Good Samaritan paradox

Chrisholm paradox

Forreseter’s paradox of gentle murder
Conflicting obligations

Derived obligations

Deontic detachment

=0T
FOp — O(p V)

= P(pV ) — PpV Py

EFo— F(p A1)

E ¢ — 1 implies = Op — O

F (O AO(p = ¥) A(mp = 20Y) A—p) — L
=1 — ¢ implies |= (Fo A (¢ — OY) Ap) — L
= Op — =0~

FOp — Oy — ¢)

= (O(p) AO(p — ) — OY

The normal modal interpretation of deontic concepts imposes these validities, perceived by

deontic logicians as paradoxes. But that comes in our mind from a erroneous interpretation

of the subjects of the obligation, that are in this formalism propositions and not actions.

For example, the strangeness of the second validity is often illustrated by the following

example: ‘if you are obliged to read a letter, you are obliged to read it or to burn it’. It is

clearly a counterintuitive sentence. But the example supposes that ¢ and ¢ are actions (‘to

burn the letter’) while they are actually propositions. A better example would thus be ‘if
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the letter must be red, then it must be red or green’. It is still a strange sentence, but its
strangeness does not come from the implication, but from the fact that the color of the letter
is obligatory...

In the same way, here are some sentences that reveal the claimed nature of paradox of

each validity:

3. If someone is allowed to hit his dog, he is allowed to hit his dog or his boss.

4. If someone is forbidden to commit a crime, he is forbidden to commit a crime and to

repent.

5. The doctor operates her wounded patient implies that the patient is wounded, thus if
it is obliged that the doctor operates her wounded patient then it is obliged that the

patient is wounded

6. You are obliged to go to a party; it is obliged that, if you go, you tell you are coming;
if you do not go, you are obliged not to tell you are coming. In this situation, we can

affirm that you go to the party!

7. One is forbidden to murder; still, if one murders someone, one has to do it gently; more-

over, a gentle murder implies a murder. But in this situation murders are impossible!
8. There are no conflicting obligations (sic)

9. If a child is obliged to brush her teeth, then it is obliged that if martians exist the child
brushes her teeth.

10. Same as 5.

As we can see, all these paradoxes come essentially from the fact that it seems that deontic
norms are applied to actions, while they actually applied to formulas. To be able to formalize
concepts of obligation in a context of acting agents we need some kind of dynamic modality
that represents actions, as in our proposals (Sections 6 and 7). The next section presents

some of those already existing frameworks.

3.2.2 Dynamic Logics of Permission

As we have seen, to dynamic logicians (and in particular to dynamic epistemic ones), obliga-
tions and permissions clearly apply to actions. It seems thus strange that people associate
those with static observations, and ‘confuse’ the non-deterministic choice between two actions
with the disjunction of two propositions. For deontic logic this frame of mind was reset by
John-Jules Meyer with his different approach to deontic logic (see [Meyer, 1988]), an approach
that was later followed up by [van der Meyden, 1996], the starting point for some proposals

in this thesis.
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Both of these works are adaptations of propositional dynamic logic (PDL) presented in
[Fischer and Ladner, 1979]: PDL allows to represent at the same time the truth value of
propositions (i.e. objective facts) and the effect of actions on them. In other words, we can
model in the same framework static situations and dynamic transitions.

In the language L4 we distinguish assertions (that describe states of facts) from actions
(that describe transitions between states of facts). The set of actions is inductively constructed

over a countable set of atomic actions Act in the following way:
az=aloflaUup

where a is an atomic action. Action «; (0 describes the succession of action « and action 3,
action o U 3 is the non-deterministic choice between those two actions. Figure 3.6 gives an
example of model of PDL, that we define afterwards. In this example Brune initially receives

a letter from Cha, and we look at Brune’s possible actions.

answer

answer

burn

answer

Figure 3.6: Brune actions while receiving a letter from Cha

Brune has three possible actions read, answer and burn. Therefore ‘read; answer’ corre-
sponds to the fact that she reads the letter and then answers to her friend, ‘read U burn’ the
fact that she does one of the two actions.

Now that the notion of action is introduced, we define the language £,q; as the following

set of assertions over the set of actions and a countable set of propositional atoms PROP by
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the following:
pu=plLl-pleve|lae

We read [a]p as “It is necessary that after executing a, ¢ is true”. Its dual, (o) = =[a]-p
can be read as “There is an execution of « after which ¢ is true”.

Here are some examples of formulas we can express in this language:
e [read]letter_is_open: ‘after Brune having read the letter, it is open’

o (readUburn)(letter_is_openVletter_is_burnt): there is an action between read and burn

that Brune can do, and after having executed it the letter is open or burnt.
Actually, £,4 admits two more constructions of action:

e the test of ¢, noted ?, that cannot be executed if ¢ is false and has no effect if ¢ is

true.
e the iterated execution o noted o*. The number of executions is chosen nondeterminis-
tically, i.e. o :=T?U () U (a;0)U (a0 ;0)U...

A model of PDL is a Kripke model (S, V,R) where R = {Ry}acact- Figure 3.6 gives an
example of such a model, with Act = {read, burn, answer}. From the set R of binary relations
we can construct a binary relation R, for every action a by induction on the structure of «

in the following way:

e for all a € Act, R, is already defined

for all ¢ € Lpgi, Ry?» = {(s,s) | s € S and M, s =}

Rap = {(s,t) € S? | u € S s.t. (s,u) € R, and (u,t) € Rg}

RaUB =R, U Rg

Ry = {(s,t) € S? | Jtg,...,t, € Sst. s =tg, t = t,, andforall 0 < i < n —
1, (ti,tiy1) € Ra}

The semantics of the dynamic operator [«] is thus defined in the following way:
e for all action a, M, s = [a]p iff for all t € S, sR,t implies M, t = ¢

The following is an equivalent definition of the semantics of this dynamic operator, by

induction on the structure of the action considered:
e for all a € Act, M, s |= [a]p iff for all t € S, sR,t implies M, t |= ¢
o forally € Lpg, M,s = [Yleif M,s =y — ¢

e M,s = [o; Blp iff M, s = [o][Ble
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e M,s=[aUflpiff M,s = [a]e A By
The definition for the iterated execution of o may thus be understood in the following way:
o M,s = o] iff M, s =pAlo]lar]e

The basic idea of Meyer was to add to PDL a special atom wviol (or its negation perm)
to the set PROP of propositional atoms. Thus, we would say that an action is permitted if
its execution does not lead to a state of violation, i.e. a state where wviol is true. Formally,
Pa := [a]-wviol. We could have considered another kind of permission, which is weaker:
P’ := (a)—wiol. In this case, we consider that action « is permitted if there is at least one
execution of « that does not lead to a state of violation.

Figure 3.7 illustrates this framework in the same example of Brune acting after having
received a (love) letter from Cha. In the figure violations states are marked by a big V. As
depicted in the figure, we consider that both ‘burning the letter’ and ‘answering it (without
having read it)’ lead to a violation state. We consider also that if Brune, after having read
the letter, answers NO then the resulting state violates the rule. We consider in this situation
the action answer := answer_Y ES U answer_NO

Here are some formulas that are true in the initial state using the notation P for the

strong permission and P’ for the weak one :

e P(read): ‘Brune is permitted to read Cha’s letter’

e —P(burn)A—P(answer): ‘Brune is neither permitted to burn Cha’s letter nor to answer
it (without having first read it)’

e (read)(P'(answer) A ~P(answer)): ‘After having read Cha’s letter, Brune is weakly
-but not strongly- permitted to answer it’. Indeed, there is an execution of answer

(namely answer_Y ES) that is permitted, but not all (answer_NO is not).

e (burn)P(answer): ‘After having burnt the letter, Brune is allowed to answer it’

Van der Meyden noted a limit in Meyer’s work: an action is permitted or not depending
exclusively on its resulting state of affairs. This may seam reasonable, but it brings about
some counterintuitive implications, as highlighted by this last example. In fact, it would
validate the following sentence: “If after having burnt the letter Brune is allowed to answer
it, then Brune has the right to burn the letter and then answer it”. Indeed, it would be
translated by the following: (burn)Panwer — P(burn ;answer). This is clearly a validity
of Meyer’s models, inasmuch as the resulting state of affairs after executing burn and then
answer is the same as the state of affairs resulting from the execution of (burn;anwer). If
the reader is not convinced that this result is counter-intuitive, the more famous following
example should definitely convince her: “If after shooting the president one has the right to

remain silent then one has the right to shoot the president and then remain silent”.
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answer.Y

answer

burn

answer

Figure 3.7: Considering states of violation for Brune’s actions

To solve this problem, Van der Meyden proposed to label transitions (i.e. the atomic
actions) instead of worlds (i.e. the resulting state of affairs). Formally, Van der Meyden’s
logic is an adaptation of PDL in which the models contain a special set P C S x Act x S.
P is the set of permitted transitions: a triple (s,a,s’) is in P iff the transition labelled by a
from s to s’ is permitted. The same example as before is represented in this framework by
Figure 3.8. The plain (and green) transitions are the permitted ones, the dotted (and red)

are the ones that are not in P.

The syntax of this language contains the following construct {(c, ¢) which means “there
is a way to execute action o which is permitted and after which ¢ is true”. In the example,
in the initial situation, we have {(read, T) and {¢((read;answer), T). He also introduces a
weak form of obligation O(c, ¢). The meaning of O(«, ) is “after any permitted execution of
a, @ is true”. This formalization allows to consider situations in which two different actions

that end in the same state of affairs are not permitted in the same way. Section 7.3 presents
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ans Y ES,

answer

Figure 3.8: Considering labelled transition for Brune’s actions

an example of such a situation.

3.3 Permission and Epistemic Actions

To formalize the notion of ‘right to say’ we are particularly interested in frameworks that
consider the permission on epistemic events, as presented in Section 3.1. Such frameworks
already exist.

[van Benthem et al., 2009] (see also [Hoshi, 2008]) propose a logic for protocols in dynamic
epistemic logic that can be interpreted as a logic for permitted events — and in particular
permitted announcements. A protocol is a set of sequences of events, and an announcement
is an example of such an event; “being in the protocol” can therefore be understood as “being
permitted to be said”. One purpose of this publication was to merge epistemic temporal

logic - [Parikh and Ramanujam, 2003] - with dynamic epistemic logic - [Baltag et al., 1998,



3.3. PERMISSION AND EPISTEMIC ACTIONS 63

van Ditmarsch et al., 2007]. The axiomatization of the language with added protocols is
facilitated by the translation of the latter into the former.

We only present what [van Benthem et al., 2009] call the forest generated by a pointed
epistemic model (M, s) and sequences of announcements. It corresponds to all the models
we may obtain from the initial epistemic model by applying the considered announcements.
In fact, the announcements considered are pointed event models (see Definition 3.6), and we
face sequences of such epistemic events. We call protocol a prefix-closed set of such sequences.
We call history a set consisting of such sequences preceded by a state in the epistemic model
wherein they are executed. For example, given an initial state s, and say a sequence of
first ¢! and then ¢! as allowed according to protocol, we write s for that history: the
announcements in sequence are simply written one after the other.

Relative to a protocol II we can construct a temporal epistemic model My that contains
the initial model and all the models obtained from it by applying a sequence of epistemic
events belonging to II. We can then express the following: ‘in the context (M, s), given the
protocol I and after having past the history h (that starts from s), it is permitted to say
after which ¢ is true’. It would be translated by My, h = ()¢ and the semantics gives us
the following: My, h = () iff:

e Mm,h=1
o W =hipeTl

L4 Mn,h/ l: ©.

[Aucher et al., 2010] also propose to merge deontic concepts with epistemic ones. They
start from the Epistemic Deontic Logic (EDL) which language contains an epistemic op-
erator K - as in FL - and a deontic one O - as in SDL -. Note that it is a single-agent
framework. We can thus express, for example OKo A KO-K1 : ‘It is obligatory that the
agent knows ¢ and the agent knows it is obligatory that she does not know ’. In fact, fol-
lowing [Castaneda, 1981], they distinguish formulas depending on whether they are within or
without the scope of deontic operators. In order to skip details, just assume that the deontic
operators apply to the knowledge of the agent: if p is an atomic proposition, we can express
OKp (‘the agent is obliged to know p’) but not Op (‘it is obligatory that p’). They call P (for
permitted) the dual operator of O: Py := =O-p. They interpret this language in models in
which there is an S5-relation Ry for the epistemic operator, and a K D-relation Rp for the
deontic operator.

Therefore, they call epistemic norm a formula of the form ¢ — Oy or ¥ — Py and
privacy policy a set of epistemic norms. A pointed FDL-model is said compliant with a given
privacy policy if all the epistemic norms it contains are satisfied in the given state of the

model.
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From there, they develop a new logic called Dynamic Epistemic Deontic Logic (DEDL)
adding to the language of EDL a dynamic operator [send ¢| (in fact there is also another op-
erator [prom ] that we skip here). It is a dynamic epistemic operator that can be understood
as the announcement (by the modeler) of ¢. They can thus express for example the following:
[send p|(Kp AN OKq): ‘after the announcement of p, the agent knows p and it is obligatory
that she knows ¢’. In this logic, they propose to formalize the notion of ‘right to say’ in the
following way: it is permitted to announce something if the result of such an announcement
is compliant with the given privacy policy. We denote as P! such a permission to announce
¢ (and no more to know ¢). Therefore, let PP be a privacy policy and / PP the conjunction
of all the epistemic norms appearing in PP, then we have Egpr, Py! «— [send ¢](/\ PP).

Yet, these two frameworks have limitations that justify to develop our proposal (See
Chapters 6 and 7). Comparisons between our work and theirs are proposed in Section 6.5.2.
for [van Benthem et al., 2009] and in Section 8.1 for [Aucher et al., 2010].



CHAPTER 4

Logics of Objective Beliefs

4.1 Introduction

The Logic of Objective Beliefs (LOB) has been presented in section 3.1.4. We saw that ‘ob-
jective belief’ is a useful notion to formalize situations in which some information is observed
by the agents. If an agent believes something about such observation, then it is true. As we
saw, a typical situation is the Texas Hold’em Poker: some cards are known to be seen by
the agents nd some others are revealed publicly on the table. In this section, we present new
results regarding this framework, while extending it with some useful notions. Let us enter

inside the game!

After the initial deal and the flop, the players have to bet three times; each bet is followed
by the deal of an additional card. During these bets, even if she thinks her hand is losing,
Brune could try to bluff. She would not do it if she thinks that Alex is certain to have the
winning hand. In this framework, we would like to represent the fact that an agent believes

something (“I have the winning hand”) whatever she may observe later.

Let us suppose that, while cheating, Alex sees Brune’s hand without her knowing. He
would have a serious advantage on his opponent. In particular, he knows who has the winning
hand, and he can deduce if his opponent is sure or not that her hand is the winning one. How
could we represent an update function that allows to distinguish between the deal of a card

and a cheating access to new information?

This section, which principal results have been published in french in
[Balbiani and Seban, 2008], complete these requirements. We first present the Logic of
Objective Beliefs with an update function expressible in this logic, with a slightly different
semantics from [Hommersom et al., 2004]. We can express sentences like ¢ After the flop
deal, Brune considers possible that she has a losing hand” or “Alex believes that if the
river is the ace of spades, he will have a winning hand”. Secondly, we present the concept
of arbitrary update of objective beliefs. We can thus express, for example, the following:
“Brune can learn something that will let her know she has the winning hand, but whatever
Alex learns about the deal, he would still consider possible that Brune considers possible she

has the losing hand”.

65
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4.2 Some Properties of the Logic of Objective Beliefs

First we present the following axiomatization LOB of this logic, according to the intuition we
have about objective beliefs, then we show that this axiomatization is sound and complete

on a certain class of models.

(CPL) axioms of classical propositional logic,
(K) Bi(p — ¢) — (Bip — Biv),

(4) Bip — B;Bigp,

(5) Bip — BiBip,

(Thoot) if @ is boolean, then B;p — .

As we exposed before, axioms (4) and (5) express the introspective character of belief: “if
agent i believes that ¢, then she believes that she believes that ¢” and “if agent i considers
possible that ¢, then she believes that she considers possible that ¢”, for any formula ¢.
The axiom (Tpe) expresses the objective dimension of the belief: for any boolean formula
¢ (i.e. ¢ corresponds to an objective fact) “if agent i believes that ¢, then ¢”. In other
words, we consider that the beliefs of the agents regarding the real world are consistent with
it. It corresponds to the property of o-seriality. The theorems of LOB are all the formulas

deductible from the axioms using the following deduction rules:
(MP) if ¢ is a theorem and ¢ — 1 is a theorem then v is a theorem,
(GD) if ¢ is a theorem then B;y is a theorem.

Following [Hommersom et al., 2004], we consider the class Cy of models M = (S, R,V) in
which for every agent ¢, R; is transitive, euclidian and o-serial. This notion of o-seriality has
been presented in Definition 3.11.

Proposition 4.1 shows soundness and completeness of logic LOB with respect to the class

of models Cp, a result that does not appear in [Hommersom et al., 2004].

Proposition 4.1 Let ¢ € Ly, Then ¢ is a theorem of LOB iff ¢ is valid in any model of
the class Cy.

Proof To show soundness (i.e. the direct implication), it is sufficient to show that axioms
are valid and that the inference rules preserve validity. First, we show that o-serial models
validate schema Tp,,;. Indeed, let M be an o-serial model and let s be a state of M. Then
if M,s = Bjp, then there exists ¢t € S such that (1) sR;t and (2) V(s) = V(¢). (1) implies
that M, = ¢. Combined with (2), recording that ¢ is boolean, we obtain that M, s = ¢.
Second, as we saw in section 2.2, axioms (CPL), K, 4 and 5 are valid in the class of transitive
and euclidian Kripke models. Third, (M P) and (GD) preserves validity by definition of the
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semantics. Indeed, let M be a model of Cy. On one hand if M = ¢ and M = —p V ¢ then
M = 9. On the other hand, if M = ¢ then for all s € S and all ¢ € S such that sR;t, we
have M,t |= ¢. Therefore for all s € S, M,s = B;p. Consequently M = B;p. We obtain
the wanted result.

Let us now prove completeness (i.e. the indirect implication). We define the canonical
model Mf, = (5 R{,V°) in the classical way (cf. Definition 2.19). Recall in particular
that for all maximal consistent sets z,y € S¢ and for all agent i, zR;y iff B;(z) C y, where

Bi(z) = {¢ | Bip € x}. Let us see that the canonical model is in the class Cp:

e it is transitive: Let z,y, z be such that zR;y and yR;z, i.e. B;(z) C y and B;(y) C z.
It is enough to show that B;(x) C B;(y). Therefore, take ¢ € B;(x) then B;p € x thus
B;B;p € x and B;p € B;(x) which leads to B;p € y i.e. ¢ € B;(y).

e it is euclidean: We use axiom 5, or rather its contrapositive BiBigo — B;p. Let x,y, 2
be such that xR;y and zR;z, i.e. Bij(x) C y and B;(z) C z. It is enough to show that
B;(y) C z. Therefore, let ¢ € B;(y) then B;p € y thus B,Bigo € z. Indeed, if it were
not the case, then B;—B;p € x and thus —B;p € y which is false. Thus BZ‘BZ'QO € x and
by axiom 5 B;p € z, which means that ¢ € B;(z). With B;(z) C z we obtain ¢ € z
Q.E.D.

e it is o-serial: Let x € S® and let y° = B;(z)U{p € PROP | p € xz}. y° is a consistent set.
Suppose the opposite, then there exist ¢1,...¢, € B;(z) and p1,...pm € N PROP
such that = (@1 A. . AR APIA. .. ADp) — L, thus - =1 V- V=9, Vapr Ve - -Vap,, and
F Bi(—p1V- V=9, V=p1 V- - -V =Dy, ). Combining with the fact that B;(p1A... Apy,) € x
we obtain that B;(—p1 V- --V —py,) € x which implies that —p; V- - -V —p,, € z by axiom
Thoot, & contradiction with respect to the hypothesis. So y° is consistent, it can thus
be extended to a maximal-consistent set of formulas y (using a classical Lindenbaum
lemma proof), that includes B;(z) and PROP Nz as y° did. Therefore, zR;y and for
all pe PROP, y € V(p) iff z € V(p). We obtain the wanted result.

Now it is sufficient to prove that for all formula ¢ € Lj, M7 ,,x |= ¢ iff ¢ € 2. Thus, as
Mj, is a model, a formula that is valid is a validity of this model. It is then in any maximal
consistent set of the theory, which proves that it is a theorem. We prove this truth lemma in a
classical way, by induction on the structure of . This proof is exactly the same as the proof
for the logic K (see [Fagin et al., 1995]). Let us analyse the specific induction case where
¢ = Bi1.

(=) Suppose that (1) M7 ,,x = Bjyp. Thus K;(x) U {—} is not consistent, and it
has a finite subset {¢1,...,¢n, 7%} which is not consistent. Therefore, by propositional
reasoning, - ¢1 — (¢2 — (... = (¢n — ¥)...)). Hence, using the necesitation rule, we

obtain - K;(p1 — (p2 — (.. — (¢n — ¥)...))). Using axiom K n times we get the following;:
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F Ki(p1 — (Kip2 — (... — (Kipn — Kitp)...))). Using that {¢1,...,¢n} C Ki(z) we have
that K;¢ € x, Q.E.D.

(<) If BjYp € x then ¢ € Bi(z). Now, for all y € S¢ s.t. zR{y we have B;(z) C y. Thus
for all y € S¢s.t. xRy, ¢ €y, i.e. Mf .,y = by IH. Therefore, M7, x |= B;i.

O

Consider the formula B;T. This formula is valid in any model M = (S, R, V) where R; is
serial for agent ¢ € AG . Therefore, LC'O is an extension of the logic K D45 4 obtained by
replacing schema (T}00) by axiom EiT. The inclusion of K D454 in LCO is a strict one if
PROP # (). To show this, we associate to any subset X of PROP, the logic LCOx obtained
by replacing schema (Thoor) by (T5,;): “Bip — ¢ for all ¢ boolean and based on X”. The
function X —— LCOx is clearly strictly increasing: each added atom gives new theorems.
Furthermore, LCO = LCOprop and K D454 = LCOy.

We use in the following sections the notion of bisimulation presented in Section 2.2. Indeed,

in this logic as in K, the following proposition is true:

Proposition 4.2 Let M = (S,R,V), M' = (5", R, V') two models of the class Cy and let
sp € 5, sy € S be two states. If (M, so) == (M, s) then (M, so) = ¢ iff (M, sp) = ¢ for
any formula ¢ € L.

The proof of this proposition can be found in [Hommersom et al., 2004].

4.2.1 Decidability and Complexity:

We prove in this paragraph that the logic of objective beliefs is PSP AC E-complete, a notion
presented in Section 2.2. We prove first that this logic has the finite-model property.

Proposition 4.3 Let ¢ € L, be a formula. If ¢ is satisfied in a model of Cy then ¢ is
satisfied in a finite model of Cy.

We do not prove it here, but the proof is very similar to (in fact identical to a part of) the
proof of Proposition 6.32. Indeed, we take a model that satisfies ¢, and we take its filtration
(see Definition 2.16) through the set of all subformulas of ¢. See the proof of Proposition
6.32 for details.

Proposition 4.4 If |AG| > 2, the problem of satisfiability of L, with respect to Cy is decid-
able and PSPACE-hard.

Proof  This proof is largely inspired from the equivalent proof for K D45, in
[Halpern and Moses, 1992]. Recall that a quantified Boolean formula (QBF) can be written in
the following form: A = Q1p1Q2p2 - . . Qmpm A’ where for all 7, Q; € {V,3} and A’ is a Boolean
formula whose primitive propositions are among p1,...,pmn. Recall that the problem of de-
ciding whether a QBF is true or not is PSPACE-complete [Stockmeyer and Meyer, 1973].
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We get our result by proving that, given a QBF A we can construct a Lj,,-formula 4
such that 14 is satisfiable in Cy iff A is true. Take a QBF A of the previous form. We
call Ay = Qaops...QmpmA’ and more generally Ay := Qri1pri1--- QmpmA’. Therefore
A=@Qip1Ar = Qip1Q2p2 - . Qrpr Ak

The formula 4 we construct enforces the existence of a binary tree-like model, in which
each leaf represents a distinct truth assignment to the primitive propositions py,...,pm. Our
primitive propositions are the p;’s and additional dp,...,d,,, where, intuitively, d; denotes
the fact that we already did at least j consecutive assignments of p;’s values. In other words,
d; is true in the nodes of depth at least j. For technical reasons that we present later, the
link between a node of depth i and a node of depth i+ 1 is a succession of two arrows (one for
agent 1 and the other for agent 2) with an intermediate node which is exactly identical to its
antecedent. An example of such a model is given in figure 4.1. We then define the following

Lop-formulas:

e depth captures the intended relation between the d;’s:

m

depth = /\(di — di_1)

=1

e determined says, intuitively, that the truth value of the proposition p; is determined at
depth ¢ in the tree. If p; is true (resp. false) in a node s of depth j > 4, then it is true

(resp. false) in all the nodes that are under s:

m

determined := /\(dZ — ((pZ — BlBQ(dz‘ — pz)) AN (—\pi — BlBQ(di — —\pl))))
=1

e branching4 says that for any node of depth i, if the truth value of p;y; is quantified
universally (resp. existentially) in A, it is possible to find two successor nodes (resp.
one successor node) at depth i + 1 such that p;; is true at one and false at the other

(resp. pi+1 has the expected truth value):

/\ ((di A ~dip1 — (B1Ba(dig1 A =disa A pi1) A BiBa(dis1 A =diga A =pig1))A
{1:Qit1=V}

/\ ((di A ~dip1 — (B1Ba(dig1 A ~diso A pis1) V BiBa(dig1 A =diga A —pig1)).
{#:Qi+1=3}

Finally,

A = dg A —dy A (B1Bo)™(depth A determined A branchinga A (dy, — A')).
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We can now prove that 14 is satisfiable in Cy iff A is true. First, we show that if A is true
then 14 is satisfied by the model My,, corresponding to the requirements explained before.
We describe now such a model starting from an initial state sg satisfying only dp. In this
description, we call “node of depth i a node satisfying all the d; with j < 4 and no other.
Furthermore, if a node s has depth i, we call “successor” of s a node s’ of depth ¢ + 1 such
that s(Ry o R2)s’, with an intermediate node that is identical to s.

Now, if Q1 =V, sp has two successors s|' and s;7', p; being satisfied in the first and
not being satisfied in the second. If @; = 3, we construct a unique successor s, p; being
satisfied in it iff A;(T /p1) is true. Then we reproduce this process for the new created states,
considering as A the actualized formula A;(T /p;) if p; is satisfied and A;(L/p1) if p; is not
satisfied, and maintaining in every further state the valuation of p.

In other words, for all i, if (); = V, each node of depth ¢ has two successors, p; being
satisfied in the first and not being satisfied in the second. If (); = 3, each node of depth
i node has a unique successor, p; being satisfied iff A;(*1/p1,... %i—1 /pi—1,pi := T) is true
(where *j, corresponds to the actual valuation assigned to py).

We then end the model taking for each relation R; its reflexive-symmetric closure. An
example of such a model is given in Figure 4.1. Note that such a model is in Cy as every

relation is an equivalence relation.

do 1@ 1(Z)
dl zi :
7N /N
ds D1, p;/ Y101 | p22/ \2(2)
N S

/N /N
W N e

D1, D2, D3 D1, P2 D1, D3 P1 | P2,DP3 P2 P30

Figure 4.1: Possible models M, , for A = 3p;VpaVps A’
One of these models, in its upper state, satisfies 14 if A = 3p1VpoVp3A’ is true. The left one
if A1(T /p1) is true, the right one if A;(L/p;1) is true.

Now suppose that A is satisfiable, we get My, so |= ¥4 by construction. Indeed, dy A —dy
is satisfied in sg, and depth A branchinga is clearly satisfied in all the model. To see that
determined is a validity of the model, note that by a unique arrow R; o Rs from a node s,
we cannot reach a node of depth higher or equal to the depth of s that is not a successor of
s. Finally, we have to see that d,, — A’ is a validity of M,,,, which means exactly that if
the value of each p; is fixed, arbitrarily if (); = V and choosing the right one if @); = 3, the
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A’ corresponding to this choice is a true boolean proposition. That exactly means that A is
true.

Conversely, suppose that a model M = (S, V,{R1, R2}) in Cp such that M, s |= ¥4 exists.
Given a state t € 5, let A; be the QBF that results by starting with Qji1pj41-.. QmpmA’
and replacing all occurrence of p; in A’, with ¢ < j, by T if t € V(p) and by L otherwise.
Note that A} = A and that A!, corresponds to A’ where each atomic proposition has been
replaced by its valuation in ¢. Now we have M,s | (B1B2)"(d,, — A’). Thus if (s,t) €
(R o Ry)™ and M,t |= d,,, then Al is true. With the fact that M |= By Ba(branchinga)
and an easy induction on j, we can prove that for all t € S, if (s,t) € (R o Ry)™ 7 and
Mt = dpm—j AN ~dpm—jq1 then the QBF Afn—j is true. In particular, since M, s = dg A —dj,
Aj = A is true.

O

Proposition 4.5 The problem of satisfiability of L,y with respect to Cy is in PSPACE.

This proof is identical to the similar proof of the PSPACE complexity of the problem of
satisfiability of the logic K [Halpern and Moses, 1992]. It uses a notion of tableau that gen-
eralises the notion of propositional tableau. Such a tableau method is proposed for another

logic in Section 6.6. The idea of the proof is the following;:

e First, we show that this logic has the tree-model property. That means that if a formula
is satisfiable, it is satisfied in a tree-like model. More precisely, we prove that a formula
is satisfiable iff the tableau method terminates and allow to construct such a tree-like
model. It would take at most a time exponential in the size of the formula ¢ that is
satisfied.

e Second, we show that such a model has a depth that is polynomial in the size .

e Third, we construct this tableau depth first, in other words we construct the tree-like
tableau branch by branch. Once a branch constructed, we examine if it can satisfy the

formula. If it does not, we just forget it a pass to the following branch.

In this way we obtain an algorithm that solves the problem in exponential time and polynomial

space.
Proposition 4.6 The problem of the model checking of L., with respect to Cy is in P.

Proof To prove it, just recall that the problem of the model checking of the language of
modal logic with respect to all Kripke models is in P (see [Gradel and Otto, 1999]). As the
language is the same, it remains true if we take the particular class of models Cgp.

O
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4.2.2 Adding Update

Let us now tackle the question of updating objective beliefs. What happens in a given model
if a group of agents learns that a boolean formula is satisfied? To answer this question, we first

present the framework proposed by [Hommersom et al., 2004], showing some new properties.

Definition 4.7 Let M = (S,R,V) be a model, ¢ a boolean formula and G C AG a finite
group of agents. The update of M by ¢ and G is the model U, (M) = (S, R, V") defined

in the following way:
e 5'=5x{0,1},
e (z,a)R](y,b) iff one of the following conditions is satisfied :
—a=0,b=0 and xRy,
—a=1b=1, 2Ry, (M,y) E ¢ andicq,
—a=1,b=0,zRy and i € G.
o V'(z,a) =V(x).

In the case where G = () we obtain that U, g(M) satisfies (x,a)R;(y,b) iff (xRiy and b = 0).

Clearly this update is an informative event, i.e. an event that does not change the valuation
of the propositional atoms but only the knowledge that agents may have about the situation.
It is thus equivalent to an action model, as presented in Section 3.1.3. Figure 4.2 presents

this action model:

G
AG\G
AG\G
-

Figure 4.2: Action model equivalent to the update U, (M) for objective beliefs

Here are some properties of the result of the operation &/ on a model. These properties
justify the choice of this operation I/ to model the update of an objective belief by a group

of agents.

Proposition 4.8 Let M = (S, R, V) be a model of the class Cy, ¢ be a boolean formula and
G C AG be a group of agents. For all s € S, if (M,s) |= ¢ then the submodel of U, q(M)

generated from (s,1) is a model of the class Cyp.
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In other words, the class Cy is stable by the application of operation U.

Proposition 4.9 Let M = (S, R, V) be a model of the class Cy, ¢ be a boolean formula and
G C AG be a group of agents. For all s € S and all i € AG,

o forie G, (Uy,a(M),(s,1)) E Bip
o forigG, (u@,G(M)7(S7 1)) ): By iff (M,S) ': Bip.

In other words, the agents of group G believe the formula appearing in the update is true;
the other agents believe it only if they already believed it before the update was made.
The proof of the two previous propositions is a simple verification and can be found in
[Hommersom et al., 2004]. The two following propositions say that updating by the boolean
constant T or updating by any formula for an empty set of agents change nothing to any
agent beliefs. This is quite intuitive! More precisely, they assert that such update gives a
model bisimilar to the initial one. The notion of bisimulation, denoted <——, is introduced in
Definition 2.13.

Proposition 4.10 Let M = (S,R,V) be a model of the class Cy, ¢ be a boolean for-
mula, sg € S be a state of the model and G C AG be a group of agents. Then
(U‘r@(M),(So,l)):)(M,So).

Proof Let R be the binary relation between S x {0,1} and S defined in the following way:
(s,a)Rs iff s =4

We show that PR is a bisimulation between the sub-model of Ut (M) generated from
(s0,1) and the sub-model of M generated from sy. First, clearly (sg,1)Msg. Now for all
a € {0,1}, all s € S (i.e. for all situation such that (s,a)Rs)

atoms for all p € ©: (s,a) € V(p) iff s € V/(p) (by Definition 4.7);

forth for all i € AG and all (t,b) € S x {0,1}: if (s,a)R;(t,b), then sR;t by Definition 4.7,
with (¢, b)Rt;

back for all i € AG and all t € S: if sR;t, then we distinguish two cases:

e if a = 0 then (s,0)R;(t,0), with (¢,0)Rt
e if @ = 1 then two cases again:
— if i ¢ G then (s,1)R;(t,0)
— if ¢ € G then (s,1)R;(t,1), because M, t = T.

In all cases we obtained b € {0, 1} such that (s,a)R;(t,b), with again (t,b)Rt.
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Proposition 4.11 Let M = (S, R, V) be a model of the class Cy, ¢ be a boolean formula and
so € S be a state of the model. Then (U, (M), (s0,1)) == (M, s0).

Proof It is easy to prove it in the same way as for Proposition 4.10, with the same relation
R.
O

Proposition 4.12 Let M = (S, R, V) be a model of the class Cy, v, be boolean formulas,
sg € S be a state of the model and G C AG be a group of agents. If (M,so) E ¢ and

(M, s0) = b then (Up,a(Up,a(M)), ((50,1), 1)) = Uppp,c (M), (s0,1))-

Two successive updates are thus equivalent to a unique one.
Proof It is easy to prove it in the same way as for Proposition 4.10, with the following
binary relation R between (S x {0,1}) x {0,1} and S x {0,1}:

e ((s,a),b)R(t,c) iff s=t, a=candb=c.
(]

Proposition 4.13 Let M = (S, R, V') be a model of the class Cy, ¢ and ¢ be boolean formulas,
so € S be a state of the model and G, H C AG be groups of agents. If (M,so) = ¢ and
(M, s0) = ¥ then Uy, g (Upc(M)), ((s0,1), 1)) = Uyp,c(Uyp,(M)), ((50,1),1)).

Therefore, if we consider two successive updates, the order is not important.
Proof It is easy to prove it in the same way as for Proposition 4.10, with the following
relation R over (S x {0,1}) x {0,1}:

e ((s,a),b)R((t,c),d) iff s=t,a=dand b=c.
(]

Proposition 4.14 Let M = (S, R, V) and M' = (S’, R, V') be models of the class Cy, ¢ be a
boolean formula, so € S and s; € S’ be states of these models and G C AG be a group of agents.
If (M, s0) = ¢ and (M, sg) == (M, sp,) then (Up,c(M), (s0,1)) = Up,c(M'), (s(,1)).

In other words, the bisimilarity between two models remains after the update of these models
by a same formula for a same group of agents.

Proof If we call R the bisimulation between the submodel of M generated from sy and
the submodel of M’ generated from sj,, then it is easy to verify that the binary relation RU
between S x {0,1} and S’ x {0, 1} defined as follow is a bisimulation:

o (5,0)RY(s',d’) iff uRu' and a = d'.

The last but not the least:
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Proposition 4.15 Let M = (S, R,V') be a model of the class Cy, 1 be a boolean formulas,
so € S be a state of the model and G C AG be a group of agents. If M,sy = 1 then
(Ud,’g(./\/l), (80, 0)):’(/\/(, 80).

Recall that after the update, the agents that are not in G believe that (sg,0) is the actual
state. Therefore this proposition claims that the beliefs of agents that are not in G' do not
change after the update.

Proof It is easy to prove it in the same way as for Proposition 4.10, with the following
relation R between S x {0,1} and S

o (s,a)Z(t)iff s=tand a=0.

4.3 Update of Objective Beliefs

4.3.1 Syntax and Semantics

LOB only uses the modal operators B;. Therefore, it cannot express update of beliefs. If
we look again to our Texas Hold’em example, with only the notion of belief in our language,
how can we express the fact that after a card is dealt, on the table all the agents update
their beliefs? In this section, we propose new operators that, added to LOB, give us the
possibility to analyse dynamics of the update of objective beliefs. We adapt the framework
proposed by [Hommersom et al., 2004] to propose the Logic of Update of Objective Beliefs
(LUOB) which language contains, besides the operators B;, operators of the form [¢, G| for
any boolean formula ¢ and any group of agents G C AG. We then present new results of
expressivity and decidability /complexity.

As we just said, the language of LUOB (Ly,p) over a countable set of propositional atoms
PROP and a countable set of agents AG is defined inductively as follow:

pu=p| L@ |1V |Bip|[¥,Gle

where p € PROP, i € AG, G C AG and ¢ € L.
We understand [1), G|y as “after the agents of the group G learn 1, ¢ is true”, so these
operators introduce an idea of update. Therefore, we generalize the satisfiability relation

presented in Section 3.1.4 in the following way:

o M,s = [¢,Glpiff (M,s = ¢ implies Uy c(M), (s,1) E ¢).

Once again, the notion of bisimilarity is useful in this framework, as two bisimilar models

satisfy the same formula. More precisely:
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Proposition 4.16 Let M = (S,R,V), M' = (5',R', V') be two models and sy € S, s, € S’
be two states of these models. If (M, sg) == (M, s() then (M, so) = ¢ iff (M, s) = ¢ for
every formula ¢ € Liyop-

Proof It can be proved by an easy induction on the structure on .

Therefore, we obtain the following:

Proposition 4.17 Let M be a model, s be a state of M, 11,12 € Ly and G1,G2 C AG.
1. M, s |= [1, Gale iff M, s =1 — 4o
2. M, s = [, Gil[v2, Galp «— [z, Ga][t1, Gi]ep.

This proposition asserts that two successive updates are interchangeable.
Proof

1. M, s = [1, Gl iff (M, s = 4 implies Uy, ¢, (M), (s,1) = 1b2). But by definition
of the update, (s,1) has the same valuation of s. Therefore, as 1 is a propositional

formula, M, s = [¢1, G1|g iff (M,s | 1 implies M,s | o) Q.E.D.

2. M, s = i1, Gil[Yha, Golp
iff M, s =11 implies Uy, ¢, (M), (s,1) = [th2, Galp
T M, s b= b1 mplies (M, s = implies Uy, g, Uy 6y (M), ((5,1), 1) b= ) (by 1)
iff M, s =11 Ao implies Uy, q, Uy, a1 (M)), ((5,1),1) = ¢
iff M, s =11 Ao implies Uy, ¢, (Uypy,co(M)), ((5,1),1) = ¢ (Prop. 4.13 and 4.16)
iff M, s | [12, Go][¢1, Gi]p (conversely)

O

Definition 4.18 Let ¢1,...,¢, € Ly, G1,...,G, C© AG be given. For every model M =
(S,R,V) and every state of the model s € S, we write UP, (M) = Uy, &, (... Uy, G, (M))...)
and UPp(M,s) =UP(M), ((s,1),...,1).

Note that the formulas 41, ..., %, and the groups G1,...,G, are supposed to be clear in
this definition. This definition comes from the interchangeability of successive updates that
allows to omit the order in a multiple update. More precisely, by propositions 4.13 and 4.16,
the order in such a succession of updates is not important when considering the satisfaction

of a formula. Therefore using the semantics and Proposition 4.17.2 we obtain the following;:

Proposition 4.19 Let M = (S,R,V) be a model, let s € S, let ¥n,...,¢n € Ly and let
Gi,...,G, C AG. Then for every Ly, p-formula ¢ we have:

M, s [¥1,G1]. .. [Un, Gule iff (M, s =11 A ... Ay, implies UP (M, s) E ¢)

Another interesting result of Corollary of Proposition 4.16 is the following;:
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Proposition 4.20 Let M = (S, R, V') be a model of the class Cy, 1 be a boolean formulas,
so € S be a state of the model and G C AG be a group of agents. If M, sg = ¢ then for all

© € Liyop we have Uy (M), (s0,0) = ¢ iff M, so = ¢.

Proof It is a translation of Proposition 4.15 through proposition 4.16.

O
This proposition asserts that, if the update concerns a formula satisfied in sg, then a formula
of L0 is satisfied in (sg,0) after the update iff it was satisfied before. We get the following

result concerning the belief of the agents after un update.

Proposition 4.21 Let M be a model, s be a state of M, G C AG a group of agents,
i € AG\G, and ) € Ly. Therefore, if M, s |= ¢ then Uy (M), (s,a) = Bip iff M, s = B;p.

Proof We pose Uy (M) = (S, R/, V).
Up,c(M), (s,a) | Bip
iff for all (¢,b) € " s.t. (s,a)R;(t,b) we have Uy (M), (t,0) = ¢
iff for all t € S s.t. sR;t we have Uy (M), (t,0) = ¢
(because if i ¢ G then (s,a)R;(t,b) iff sR;t and b = 0).
iff for all t € S s.t. sR;t we have M, t |= ¢ (by Proposition 4.20)
iff M,s = Bip

4.3.2 Axiomatization and Completeness

Here are the axioms of LUOB.

(LOB) the axioms of the logic of objective beliefs,
(R1) [4,Glp — (¥ — p),

(R2) [¢,G]L — (¥ — 1),

(R3) [¥,Glnp —— (¥ — o, Gly),

(R4) [¢.Gl(eVX) — [, Gl V [¥,Glx,

(R5) [¢,G]Bip «— (¥ — Bi[t), Glp) when i € G,
(R6) [¢, G]Bip «— (1) — Bjp) when i & G.

Axioms (R1), (R2), (R3), (R4), (R5) and (R6) have an easy interpretation, similar to the
one for PAL. Just as L, is not more expressive than L, the fact that these axioms are
reduction axioms implies that the language Lj,.p is not more expressive than L;,. LUOB
theorems are all the formulas deducible from these axioms, using the inference rules (M P)

and (GD) and the following inference rule:
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(GU) if 9 is a theorem then [p, G is a theorem.

As Proposition 4.27 states, these axioms and inference rules give a sound and complete ax-
iomatization for the language L., with respect to the class Cyp. But we first introduce a

translation from Ly, to Lyp:

Definition 4.22 For all ¢ € Liyop, we define 7([Y1, G1] ... [Yn, Gnl, ) € Liop for all n € N,
all Y1,...,0n € Ly and all Gy, ...,G, C AG inductively on the structure of the formula ¢

in the following way:
o 7([Y1, Gl .. [¥n, Gulsp) = Y1 A A — p,
o 7([01,G1] .. [thn, Gul, L) =1 Ao Athy, — L,
o T([Y1,G1]. .. [Un, Gul, ) = Y1 A Ay — 27 ([1, Gh] - [, Gal),

o 7([th1,G1] ... [Yn, Gl 0V @) = 7([Yh1, G1] . .. [¥n, Gulo) V T([th1, G1] . . . [Yn, Grl¥'),

o 7([¢1,G1] ... [Yn,Grn], Bip) = V1 A.. . Ay, — BT (1 ) where p is the sequence obtained
from [¢1,G1] ... [n, G| eliminating all the [, G| such that i ¢ G,

o 7([¢1,Gil ... [¥n, Gl [¢, Glp) = 7([1, Gi] - - [¢on, Gl[90, G, ).

We show that in Proposition 4.26 that for all ¢ € Ly, E ¢ «— 7(0,¢). To do so, we

need the two following lemmas:

Lemma 4.23 Letn € N, ¥1,...,9, € Ly and G1,...,G, € AG. Let p be defined as in
Definition 4.22 and for every model M and every state s, let UP,(M,s) be defined as in
Definition 4.19. Then for all 0 € Ly, all i € AG,

if M,s =1 A ... Ay, then (M, s |= Bi(p 0) iff UPL(M,s) = Bif)

Proof Let m be the number of groups G}, containing ¢. We have 0 < m < n. By Proposition
4.13 we can suppose, without loss of generality, that i € Gy iff & < m. Now, we call
UPm(M,s) = Up, c, (- Uy, G (M) ... ((5,1),...,1). We pose UPp(M) = (8™, R", V")
and UPpy, (M) = (8™, R™, V™).
Now UP,(M,s) = B;0

it UP,(M,s) = B;f (by Proposition 4.21 applied m — n times)

iff for all t € S™ such that sR"t, UPy(M),t =0

iff forallte Ss.t. sRit and M,t =1 A... Ay, UPm(M,t) =6

iff for all ¢ such that sR;t, M,t = u 6 (by Proposition 4.19)

iff M,s = Bi(n )

O

Lemma 4.24 Let ¢ € Lyop. Then for alln € N, all G1,...,Gp C AG, all Yn, ... 0, € Lyy:
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Lo r([n, Gi] - [, Gl @) IS (1 |+ [ [+ 60+ @) x @],
2. 7([t1,G1] ... [¥n, Grl, @) < [¥1,G1] ... [tn, Gplp is valid in all models of the class Co.

Remark 4.25 First we remark that o1 Ao A ... AN, — 1 is an abuse of notation. In
fact, we should write (—(=(...=(=(=11 V —1h2) V-1h3) ...V —y,) V ). Therefore we have :
N——

n—2 n—2
|1 Ao Ao Ay — | = |1 |+t [ |+ 6(n—1) + || +4
< |l +o 4[] +6n+ ]9

Proof

1. We prove it by induction on the structure of ¢, noting x = ([v)1, G1] .. . [¥n, Gr], ). We
note by a ‘IJ’ the use of Remark 4.25 in this proof.

base case ¢ = p or L: It is a direct application of Remark 4.25.
inductive cases: let us suppose that it is true for 6 and ¢’.

o o==0:|700) [ <T (|| +. 4[| +6n0) + [7([¥1, Gl [0, Gnl, 0) | + 1
<am) ([ Y1 [+t [P +6n) + (|1 +.cod [ +6n+]0]) x[0]+1
=(vil+...Hln|+6n+[0)x (0] +1)—|0[+1

([ +. +[Un+b6n+[0])x (0] +1)

I+ Al Un+06n+[o])x(el)

=0v0 [ T(x) [=[ T([W1,G1l . [¥n, Gul,0) | + | 7([¥1,GH] ... [¥n, Gl 0') [ +3

amy (V1| +ooo+ 6n+[0)x [0 + (1 |[+...4 6n+[0[)x|0]+3

(| +...+6n+]0|+]0]+3) x(|0]|+]|0]+3)

([ +. .+ vnl+6n+]e])x(e])

=Bif: | 70) [ <T ([ |+ o4 [ | +6n) + | 7(u,0) [+ 1

VAN/A

INCININS

L%
S+ o+ a4+ 6n) + [7([¢1,Gi]... [y, Gn],0) [+ 1
Sumy (1] +o o+ [P [+6n) + (|1 |+ o+ n |60+ [0]) x[0]+1
=1+l +6n+]0)x(0] +1)—[0]+1
S|+t |+6n+0)x (6] +1)
S+ +lgnf[+6n+]e])x(el)

= [, GlO: | 7(x) | =| 7([¢b1, G1] - - . [thn, G (¢, G, 0) |

amy (Y14 |+ [+ 6(n+1) +[0]) x[0]
=+ A+ [nl+6n+[0)) x[0]+(¢[+6)x][0]
(1l +. [ n[+6n+[0))x(0]+][y]+6)
[+ n[+6n+]e])x(el)

V/ANRS

<
<

2. We prove it by induction on the structure of ¢, noting x := [¢1, G1] ... [tn, Gy]e. Asin
Proposition 4.19, we write UP (M, s) for Uy, ., (... Uy, ¢, (M)) ..., ((s,1),...,1). We
note by a ‘(x)’ the use of Proposition 4.19 in this proof.



80 CHAPTER 4. LOGICS OF OBJECTIVE BELIEFS
o p=p
M, s |=7([¢1,Gi] - [¥n, Gnl, D)
it M,sEYv1A...AY, —Dp
iff M,skE1Y1 A... A\, implies M,s = p
iff M,s =1 A... Ay, implies UP(M, s) = p (the valuation is unchanged)
iff M, s = [1,Gi]. .. [0, Gulp by (%)
e = | :identical
o p=0:
Mis b (91,1l [ Gal,0)
iff M,skE1 A... Ay, implies M, s = =7 ([1,G1] ... [¢n, Gy, 0)
iff M,s =1 A... Ay, implies M, s B~ [11,G1] ... [, Gn)6 (by IH)
iff M,s kY1 A... ANy, implies UP(M, s) = —0 by (x)
iff M,s = [¢1,Gi]... [¢n, Gn]=0 by (%) again
e p=0V0:similar
e v = B;0:
M,s = ({1, Gh] ... [tn, Gul, BiB)
iff M,s k=11 A... ANy, implies M, s = BiT(u ,0)
ifft M,skEv1A... AN, implies for all t € S s.t. sRit, M,t = 7(u ,0)
iff M,s k=11 A... A\, implies for all t € S s.t. sRit, M,t = p 0 (by IH)
iff M,skE=1v1A... ANy, implies M, s = B;(u 0)
ifft M,s =11 A... Ay, implies UP(M, s) = B;# (by Lemma 4.23)
iff M,s k= [1,G1]. .. [Yn, Gn]Bi0
* v =[1,Glo:
M,s (91, G1] . [Yn, Gl [, G16)
ifft M, s = 7([Y1, Gl .. [¢n, Gal[¥), G], 0)
iff M,s =i A... A, Atp implies M, s = [th1, G1] ... [thn, Gp] [0, G]0 (by TH)
iff M,skEY1 A... ANy, A implies UP (M, s) = 6 by (x)
iff M,s = [¢1,G1]... [¢n, GnlO by (x) again

Hence the following:

Proposition 4.26

o [7(0.0) | <l

o 7(0, ) <« ¢ is valid in all models of the class Cy.

In particular, we showed that Lj,,; is not more expressive that L£;,,. The translation above

sets that every formula of Ly, is equivalent to a formula of L;,;. We can now prove the

completeness of the given axiomatization.
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Proposition 4.27 Let ¢ € Liyop. @ is a LUOB theorem iff ¢ is valid in every model of the

class Cyp.

Proof For the soundness, by Proposition 4.1, it is sufficient to show soundness of the additive
axioms and inference rules. The soundness of the rule GU is evident and the soundness of
the axioms is given by Proposition 4.26.

Let us now prove completeness. We define the canonical model Mj, , = (5S¢ R{,V°) in
the classical way (cf. Definition 2.19). Its membership to the class Cy can be proved as in the
proof of Proposition 4.1.

Now it is sufficient to prove that for all formula ¢ € Lpop, Mf, T E @ iff ¢ € . We
prove this truth lemma by induction on the structure of ¢. This proof is identical to the
proof of Proposition 4.1 for the base case and the first inductive cases. In particular, we
have already shown that for all ¢ € Loy, MJ, ., 2 = ¢ iff ¢ € x. Let us analyse the specific
induction case where ¢ = [¢, G]x:

o Mz =4, Glx
ifft M€ x = 7([¢, G]x by Proposition 4.26
iff 7([¢0, G]x) € x because 7([v), G]x) € Lo
iff [¢, G]x € = by axioms R1, ..., R6.

4.3.3 Decidability and Complexity

In this section, we give some technical results on LUOB. First, LUOB has the finite model

property. In other words:

Proposition 4.28 Let v € Ly,op- If @ is satisfied in a model of the class Cy then ¢ is satisfied
in a finite model of the class Cy.

Proof By propositions 4.3 and 4.26. More precisely, if ¢ is satisfied in Cy then 7(¢) is satisfied
in Cy (Proposition 4.26). Thus 7(¢p) is satisfied in a finite model of Cy (Proposition 4.3) which
implies that ¢ is satisfied in a finite model of Cy (Proposition 4.26 again).

O
This proposition implies that the problem of satisfiability of L. is decidable. We also have
the decidability of the problem of the model checking. More precisely:

Proposition 4.29 The problem of satisfiability of Loy s PSPACE-complete.

Proposition 4.30 The problem of model checking for Ly, with respect to Cy is in P.

Proof The first is a corollary of propositions 4.4 and 4.5 and the second a corollary of
Proposition 4.6 through the translation 7, using the first property of Proposition 4.26.
O
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4.4 Arbitrary Update of Objective Beliefs

4.4.1 Syntax and Semantics

With LUOB we could express and understand situations in which agents update their objec-
tive beliefs about the world, as in poker. However, if we limit our language to the operators we
have (B; and [¢, G]) it is impossible to express the notion of arbitrary update. For example,
we would like to say “Alex believes that whatever the agents learn in the future of the game,
he will still believe his hand is winning”. This notion of arbitrary update should be added to
our language, with a new modal operator. We propose in this section such operators inspired
from [Balbiani et al., 2007]. In addition to LUOB gives us the Logic of Arbitrary Update of
Objective Beliefs (LAUOB). These additional operators are of the form [?, G] for any group
of agents G C AG, with the following reading for [7, GJi: “whatever group G agents learn,
1 is true”. These operators then introduce the wanted notion of arbitrary update. Let us
define more precisely the language of LAUOB L4u0p over PROP and AG as follow:

pu=p| L@ |1V | Bip|[¥,Gle|[?,Gle

where p € PROP, i € AG, G C AG and ¢ € L.
We then generalize the satisfiability relation, for the same models of the class Cp, in the

following way:
e (M,s) E [?,G]p iff for every boolean formula 9, (M, s) = [¢, G]e.
Here again, bisimulation is a useful notion, as two bisimilar models satisfy the same formulas:

Proposition 4.31 Let M = (S,R,V), M' = (5", R, V') be two models and sy € S, s, € S’
be two states of these models. If (M, sg) == (M, s;) then (M, so) = ¢ iff (M, s() = ¢ for
any formula ¢ € Ligyuon-

This proposition can easily be showed by induction on the structure of .
Proposition 4.32 The following formulas are valid in all models of the class Cy :
(T) [7,Gle — o,

4) [7,Gle = [7,GI[7, G,

(CR) (7,G)[?, H]p — [7, H|(?,G) .

First, remark that the formulas of the form [?,G U H|p — [?,G][?, H]¢ are not all
valid in any model of the class Cp. For example, the formula [?,{7,j}](Bip — B;iBjp) —
[7,{i}][?,{j}](Bip — B;B;p) is not valid in the model presented in Figure 4.3 (that belongs
to the class Cp).
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L . .
il 10P 0] o® P 2]

Figure 4.3: Two counter-examples in one model

In fact, if ¢ and j learn p together (i.e. if the update is public), as described by the first
part of the formula, they will believe (correctly) that the other believes p. However, if they
learn p privately, one after the other, as described by the second part of the formula, they
will not update anything about the other agent beliefs.

Also remark that the formulas of the form [?,G|(?,H)p — (7, H)[?,G]y are not valid
in any model of the class Cy either. For example, the formula [?,{i}](?,{j})(Bip & B;jp) —
(7, {i 17, {i}](Bip ® Bjp) — where the operator & denotes the exclusive disjunction— is not
valid in this very model. Indeed, whatever ¢ learns about the value of p, j can learn something
so that one and only one of the two agents believes that p. But it is not true that one of the
agents can learn something so that whatever the other learns one and only one of the two

agents will believe that p.

Proof (of Proposition 4.32) Let M = (S, R, V) be a model of the class Cy, s € S be a
state of the model and ¢ € L., be a formula.
(T): Suppose that (M,s) = [?,G]e and (M, s) = . Then, (M,s) = [T,G]e. Therefore,
(Ut ¢(M),(s,1)) = ¢. By Proposition 4.10, the submodel of Ut (M) generated from (s, 1)
and the submodel of M generated from s are bisimilar. This is in contradiction with Propo-
sition 4.31.
(4):  Suppose that (M,s) E [7,Gle and (M,s) ¥ [?,G][?,G]e.  Then,
there exists a boolean formula t; such that (M,s) [ [i1,G][?,Gle. Therefore,
(M,s) = Y1 and Uy, (M), (s,1)) = [7,Gle. Then, there exists a boolean formula
¥y such that (Uy, g(M),(s,1)) = [, Gle. Therefore, (Uy, a(M),(s,1)) = 1o and
Uy Uy, (M), ((s,1),1)) = ¢. By Proposition 4.12, the submodel of Uy, ¢ Uy, c(M))
generated from ((s, 1),1) and the submodel of Uy, ry,.c (M) generated from (s, 1) are bisimi-
lar. This is in contradiction with Proposition 4.31.
(CR): Suppose that (M,s) = (7,G)[?,H]p and (M,s) o[, HI(?,G)e.
Then there exists a boolean formula ; such that (M,s) E (¢¥1,G)[?,H]p and a
boolean formula 1y such that (M,s) [ |2, H|(?,G)p. Therefore, (M,s) = 1,
U (M), (5,1) £ [Hlp, (Mys) £t Upa(M), (1) F (,G)p.  Thus,
Upn (M), (5,1)) | 2, Uit Ui, M), (5,1, 1) b 9, Uy ir(M), (5,1)) b= @1 and
(Uyp,.c(Uypy (M), ((s,1),1)) ¥~ ¢. By Proposition 4.13, the submodel of Uy, iUy, c(M))
1),1) and the submodel of Uy, Uy, 1 (M)) generated from ((s,1),1) are

bisimilar. This is in contradiction with Proposition 4.31.

generated from ((s,
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4.4.2 Axiomatization and Completeness
Here are LAUOB axioms:

(LUOB) LUOB axioms

(50) [7,Gl(¥ — x) = ([7, Gl — [7, G]x),

(S1) [7,Glp — [, Glp, where § € L.

The axiom S1 has a simple interpretation. If after whatever group G of agents learn, ¢
becomes true, then for any boolean formula v, after group G of agents learn ¢, ¢ becomes
true . However, it is not sufficient to ensure completeness of LAUOB for the class Cy. In

order to obtain this result, we have to add the following inference rules:
(GAU) if ¢ is a theorem then [?, G]y is a theorem,
(X) if 6([¢), Glyp) is a theorem for all ¥ € L, then O([?, Gp) is a theorem.

In the inference rule X, 0 represents a necessity form. Necessity forms were introduced by

[Goldblatt, 1982] and are similar to the notion of admissible form. More precisely:

Definition 4.33 (Necessity form for Liguon) A necessity form is an element of the set

defined inductively as follows:
e f is a necessity form,
o if 0 is a necessity form then for every formula ¢ € Liguop, (¢ — 0) is a necessity form,
e if 0 is a necessity form then for every agent i € AG, B;0 is a necessity form.

e if 0 is a necessity form then for every 1 € L, and every group G C AG, [¢,G]0 is a

necessity form.

Note that t appears exactly once in every necessity form. Now for every mecessity form 6
and for every formula ¢ € Liguon, O(p) denotes the formula obtained from 6 by replacing the

unique occurrence of § in 6 by .

Proposition 4.34 and 4.39 establish the soundness and the completeness of LAUOB with

respect to the class of models Cy

Proposition 4.34 Let ¢ € Lig0p be a formula. Then ¢ is a theorem of LAUOB only if ¢

is valid in every model of the class Cy.

Proof It is sufficient to show soundness of the additive axioms and inference rules. It is
evident for S0, S1 and GAU. We show soundness of the rule X. Suppose that 6([7, Glp) is
not valid, i.e. there exists a pointed model M, s such that M,s = —0([?, G]¢). Therefore
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there exists ¢ € L, such that M,s = —6([¢), G]p). Hence, 8([1), G]y) is not valid for this
particular +, which implies that it is not true that for all ¢ € L, 8([¢, G]p) is valid.
[l
We define now the canonical model for this LAUOB. It is a different notion than the
notion of canonical model we saw until now. This difference comes from the infinitary nature
of the inference rule (X). Let us see it in details:

A set x of formulas is called a theory if it satisfies the following conditions:
e 1 contains the set of all theorems;
e 1 is closed under the rule of modus ponens and the rule (X).

Obviously, the least theory is the set of all theorems whereas the greatest theory is the set of
all formulas. The latter theory is called the trivial theory. A theory x is said to be consistent
if 1 & 2. Let us remark that the only inconsistent theory is the set of all formulas. We shall
say that a theory z is maximal if for all formulas ¢, ¢ € x or ¢ € . We abbreviate mct for
maximal consistent theory.

Let x be a set of formulas. For every ¢ € Liguop, every ¥ € Ly, every ¢ € AG and every
G C AG we define:

o v+ ={X€E Lo | p = x €}

e Bix = {X € Liguob ‘ Bix € SC}

o [¢,Glz = {x € Liguov | [, G]x € z}
b [?’ G}x = {X € Liauob ’ [?7G]X € $}

Lemma 4.35 Let x be a theory, ¢ € Ligyop, ¥ € Ly, © € AG and G C AG . Then x + ¢,
Bz, [¢,Glx and [?,G|x are theories. Moreover x + ¢ is consistent iff ¢ & x.

Proof

e = + ¢ is a theory.
First, let us prove that x + ¢ contains the set of all theorems, by proving a useful
property: © C x + . Let x € x, we know that x — (¢ — x) is a theorem. By modus
ponens we then have that x € x + ¢.

Now let us prove that x 4 ¢ is closed under modus ponens. Let x1, x2 be formulas such
that x1 € x + ¢ and x1 — x2 € x + ¢. Thus ¢ — x1 € x and ¢ — (x1 — x2) € z. But
then ¢ — x2 € z.

Third, let us prove that z+ ¢ is closed under (X). Let @ be a possibility form and 1 be a
formula such that 6([¢), G]x) € z+¢ for all ¢ € L. It follows that ¢ — 6([¢), G]x) €
for all ¢ € L. Since x is a theory, then ¢ — 6([?, G]x) € z. Consequently, 8([?,G]x) €
x + . It follows that x + ¢ is closed under (X).
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e B;x is a theory.

First, let us prove that B;x contains the set of all theorems. Let 1 be a theorem. By the
necessitation of knowledge, B;v is also a theorem. Since x is a theory, then B;y € .
Therefore, ¢ € B;x. It follows that B;x contains the set of all theorems. Second, let us
prove that B;z is closed under modus ponens. Let v, ¥ be formulas such that ¢ € B;x
and ¢ — x € K,x. Thus, Bjtp € x and B;(v — x) € z. Since Bjtp — (B;(¢v — x) —
Bix) is a theorem and x is a theory, then B;jip — (B;(¢v — x) — Bjx) € x. Since x
is closed under modus ponens, then B;x € x. Hence, x € B;z. It follows that Bz
is closed under modus ponens. Third, let us prove that B;x is closed under (X). Let
0 be a necessity form, G C AG be a group of agents and ¢ be a formula such that
0([v,Glyp) € Bx for all v € L. It follows that B;(68([¢),Gly)) € x for all ¢ € L.
Since x is a theory, then B;6([¢, G|y)) € x. Consequently, 0([¢), Glp) € B;x. It follows
that B;z is closed under (X).

o [¢, G|z and [7, G]z are theories.
We obtain this result with the same proof than the previous one, considering that this

two modal operators satisfy the axiom (K) and the necessitation rule.

e Finally, z+ ¢ is consistent only if ~¢ & = (because ¢ € x+ ). Reciprocally, L € (x+¢)
implies that (¢ — L) € = and this implies that -y € z.

O

Lemma 4.36 (Lindenbaum lemma) Let x be a consistent theory. There exists a maximal

consistent theory y such that x C y.

Proof Let ¢q,p1,... be a list of the set of all formulas. We define a sequence yo, y1, ... of
consistent theories as follows. First, let ygp = x. Second, suppose that, for some n > 0, y,
is a consistent theory containing x that has been already defined. If y, + ), is inconsistent
and ¥, + —, is inconsistent then, by lemma 4.35, =, € y, and ~—y, € y,. Since —p, —
(==, — 1) is a theorem, then -, — (——p, — L) € y,. Since y, is closed under modus
ponens, then | € y,: a contradiction. Hence, either y, + ¢, is consistent or y, + -, is
consistent. If y, + @, is consistent then we define y,+1 = yn + ¢n. Otherwise, ~p, € y, and
we consider two cases.

Either ¢,, is not a conclusion of (X). Then, we define y,4+1 = yn.

Or ¢, is a conclusion of (X). In this case, let 0([?,Gi]x1), ..., O([?,Gk]xx) be all the
representations of ¢, as a conclusion of (X). Such representations are necessarily finitely
many because there is a finite number of modal operators of the form [?,G] in ¢,. We define
the sequence 30, . .. ,y,’j of consistent theories as follows. First, let 42 = y,. Second, suppose
that, for some i < k, ' is a consistent theory containing y, that has been already defined.

Then it contains =0([?, G1]x1) = ¢n. Since v, is closed under (X), then there exists a formula
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Y € L, such that 0([¢, G1]x1) is not in y¥. Then, we define y5 = yi +-0([1), G1]x1). Now,
we put yni1 = y*. Finally, we define y = yo U y; U.... Clearly if y is a theory then it is a

maximal consistent theory such that x C y. Let us then prove that it is a theory.
1. It contains the set of all theorems because x C y

2. It is closed under modus ponens. Indeed, if {x, (x — ¢)} C y then there exists n € N
such that {x,(x — ¢)} € yn. Thus, y, being a theory, we obtain ¢ € y, and then

pYey.

3. It is closed under (X) by construction: suppose that 8([¢),G]|x) € y for all ¢ € L.
Let us call ¢,, the formula it represented by 6([?, G]x). We want to show that ¢, € y.
Suppose the opposite, -, € y. This means that -y, € ¥y, by construction, i.e.
=0([?,G]x) € yn. Therefore there exists a 1) € Ly such that —0([¢, G]x) € yn+1 by

construction again. This is a contradiction, considering that y,4+1 C y.

O
The canonical model of LAUOB is the structure M, = (W€ R¢, V¢) defined as follows:
e W€ is the set of all maximal consistent theories ;
e For all agents i, R; is the binary relation on W¢ defined by zR;y iff B;x C y;
e For all atoms p, V¢(p) = {x € W |p € x}.
Proposition 4.37 The canonical model of LAUOB is a model of the class Cyp.
Proof Identical to the proof of Proposition 4.1.
O

Proposition 4.38 (Truth lemma) Let ¢ be a formula in Ligey. Then for all mazimal
consistent theories x, for all n € N, for all 11,...,¢, € Ly and all G1,...,G, € AG such
that Y1 A ... Ny €z, for all ¢ € Ligyon:

UPR(MC,x) | ¢ iff [1h1,G1]. .. [¢n, Gulp € .

Proof The proof is by induction on the structure of ¢. The base case follows from the

definition of V. The Boolean cases are trivial. It remains to deal with the modalities.

e v = B;x : Let pu be the sequence obtained from [, G1]... s, Gy] eliminating all
the [, G] such that i ¢ G. Without loss of generality, we consider that pu =
[¥1,G1] ... [Ym, Gm] with 0 < m < n.

UP (M x) [~ Bix
ifft UPp (M x) = Bix (by Proposition 4.21)
iff there exists a mct y such that Ry, 1 A ... Ay, € y and UP,, (M y) E x
iff (1) there exists a mct y s.t. Bix Cy and [¢1,G1]. .. [¥m, Gnlx € y (by IH).
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Now, (1) is equivalent to (2) : [¢1,G1] ... [Ym, Gm]Bix & .

Indeed, if [¢1,G1] ... [¥m, Gm]Bix € x then B;[¢1,G1] ... [Ym, Gm]x € x by Axiom R5,
and thus [¢1,G1] ... [m, Gm]x € y for any mct y such that Bz C y.

Conversely, if [¢1,G1] ... [Vm, Gm]Bix & x then B;[t1,G1]. .. [Ym, Gm]x € x by Axiom
R5. Let y = Bjx + —[11,G1] ... [m, Gm]x. The reader may easily verify that y is a
consistent theory. By Lemma 4.36, there is a maximal consistent theory z such that
y C z. Hence, Bixz C z and [¢1,G1] ... [Ym,Gn]x € z Q.E.D.

We end this case by noting that [¢1,G1]...[¢Ym,Gn]Bix ¢ x is equivalent to
[¥1,G1] ... [Vn, Gn]Bix € x by axiom R6.

o ¢ =[,G]x: UP,(MC,2) |= [, G]x
it UpaUPR(M), (... (2,1),...,1) = x
iff UP,1(MC 2) = x (with an evident notation)
iff [1/)1, Gl] e [¢na Gn][¢, G]QO € x by IH

e p=[7.Glx: UP,(M" x) = [7,G]x
iff for all ¢ € Ly, UPp(MC, ) |= [, G]x
iff for all ¥ € Ly, UP,(MC, z) =1 implies Uy g(UPL(MC, 2)) = X
iff for all ¢ € Ly, [Y1,G1]. .. [Yn, GplY € x implies Uy, ¢(UP, (M, x)) = x by TH
iff forall ¢ € Ly, 1 A...¥y AN € x (recall Y € Ly;) implies UPp1(MC, ) = x
iff for all ¢ € Ly, 1 A...¢p Atp € x implies [11,G1] ... [thn, Gyl[Y), G]x € x by IH
Y €xand [¢1,Gi]... [¢,G]x € x
Y ¢ xand [1,Gq]... [, G]x € x
ifft 1 AL 9, € x implies for all ¢ € Ly, [1,G1]. .. [thn, Gil[¢,Glx €
iff Y1 AL apy € o implies for all ¥ € Ly, [¢1,G1] ... [n, GR][7,Glx € x (by (X))

iff for all v € Ly, Y1 A ... ¢, € x implies {

O

Theorem 4.39 The aziomatization LAUOB is sound and complete with respect to the class
of models Cy.

Proof Soundness has been proved in Proposition 4.34.

Let ¢ € Ligu0p be a a valid formula, then it is valid in the canonical model. Therefore by
Proposition 4.38 it is in every maximal consistent theory. Hence, it is a theorem of LAUOB.
Indeed, if it were not the case, then there would exists a consistent theory x such that
—p € x. Therefore, by Lemma 4.36 there exists a mct y such that x C y. Therefore - € y.
Contradiction.

O

Clearly, Li.0p is at least as expressive as Ly,05. However is Lg,0p more expressive than
Lior? To answer this question, we consider the formula x := (7,{7,j})(Bip A =B;B;p) and
the models M and M, (members of Cy) presented in Figure 4.4.
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Figure 4.4: Distinguishing L4405 from Lyep

We let the reader see that (Mg, 11) = (7,{4,5})(Bip A =B;jB;p) and (M,1)
(7,{4,7})(Bip N =B;jB;p). Let us suppose that y is equivalent to a formula X' € L.
Then x’ would be satisfied in the same way in every model composing any couple of bisimilar
models with respect to the language restricted to the atoms appearing in x’. Let us take an
atom ¢ that does not appear in x’. Thus (Mg, 11) and (M, 1) are bisimilar with respect to
the language restricted to the atoms appearing in x’. Then the formula y is not equivalent
to any formula of Lj,,5. That means that L4y is more expressive than L., (it contains at
least x in extra).

Neither we have results on the finite model property of this logic, nor on the complexity

of the problem of satisfiability. But we get the following:

Proposition 4.40 The problem of the model checking of Liuor with respect to Cy is
PSPACE-complete.

Proof This proof is analogous to the proof of the complexity of the model checking of Ly
with respect to the models of Mgs (Theorem 5.33). See Section 5 to get more details.
O

4.5 Case Study

We examine the situation presented in Figure 4.5. Brune and Alex are in a Poker final face to
face. Brune gets a pair of Kings in her hand. She knows it is a very good game. Alex has the
ace of spades, and another spades. When Brune proposes her bet, Alex checks to see what
will happen. The game becomes particularly interesting when, as for this example, several
players have a good hand and imagine easily to have the winning one.

Let us specify our language in this case. We pose AG = {a,b} for Alex and Brune, and
PROP ={VC;|V €{1,2,3,4,....J,Q,K},C € {#%,90,),8},i € AGU{t}}U{P,}. We read
VC; by ‘the present deal gives the card of value V' and color C to i”. When i is ¢ (for table),
or to be more readable when ¢ is missing, it means that the card is (or will be) dealt on
the table. ®, means that Alex has the winning hand (following poker rules). We abbreviate
by .= D,
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Figure 4.5: Brune wins with a “poker”

We consider the initial poker model Mp . All possible deals are considered (as states of
the model). Any agent can distinguish two states if and only her own cards are different. More
precisely, we pose Mp = (S,V,{R;}icaq). Thus, we have: S = {(cq,cp, {p°, 0%, 0"}, 0%, p°) |
c; = {p},p?}, the propositions appearing are all different and the pl, are of VC, form }. Also,
for every proposition p, V(p) is the set of deals in which p appears. Finally, R; links two states
if and only if the ¢; is identical in both deals. Note that we have (52) x (3°) x (38) x 45 x 44 =
5.56 x 10'3 different possible deals. Therefore this is a gigantic model of fifty million of millions
of states.

This representation clearly has some limits. A poker player probably does not repre-
sent herself all the possible deals; she would rather think in terms of probability to win.
Nevertheless, this probability corresponds to a simplified representation of this huge model.
Furthermore, a poker game includes other kinds of communicative acts besides announce-
ments, that give information on the players’ intentions or feelings. These communicative acts
are probably the heart of the game, and we cannot formalize them here. Yet, our position is
not to propose a formalism that contains all the characteristics of poker, but only the aspects
linked to the notion of objective belief that are clearly part of this game.

We examine two different situations, presented in Figure 4.6, situations in which the initial
cards received by Brune (¢,) are different, but the other cards (dealt to Alex and dealt on
the table) are identical. Alex has the ace and the 9 of spades. In the first case (d;) Brune
has a pair of Kings (diamonds and clubs), in the second (dz) she has a pair of 2 (diamonds
and hearts). In both cases, the cards dealt on the table are first the 7, the 2 and the King of
spades, then the King of hearts and eventually the 9 of diamonds.

In both contexts, we use the following abbreviations:

o FILOP =T N28NK&H
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Figure 4.6: Two deals: d; and do

e TURN := FLOP N KQ
o RIVER :=TURN N9

Here are some formulas that are true in this model, in the first context (Brune having a

pair of Kings)

o Mp,dy = (FLOP,{a,b})(B,78 N B,B,7#) : After the flop, Alex believes that the 7 of

spades is dealt on the table, and that Brune believes the same fact.

e Mp,di = (FLOP,{a,b})By[RV,{a,b}|®,: After the flop, Brune believes that if the

King of hearts is dealt, she will have the winning hand.

e Mp,dy = (TURN,{a,b})By®;: After the turn, Brune believes she has the winning
hand
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What is the difference between the two situations? In both cases, both players have a very
good hand (Alex has a flush and Brune either a poker or a full house). In both cases also,
Brune has the winning hand. The difference is that at some moment of the game (here after

the turn), Brune will be sure that she has the winning hand. In other (formal) words:
o Mp,dy ): <?7 {aa b}>(Bb(I)b A Ba_‘Bbq)b)
o Mp,dy = [7,{a,b}](®p A ~By®y)

Now let us consider the possibility that a player cheats by looking at the other player’s
hand. With that possibility, for the deal di, Alex could learn that Brune believes that she
has the winning hand. While for the deal dy he could learn instead that she does not have

the information that she has the winning hand:
o Mp,dy = (?,a)(B,Bp®y)
o Mp,dy = (?,a)B,(Pp A 2 Bp®y)
In this second case he could be tempted to try a bluff. But Brune may cheat as well.

In that case she would know that she has a winning hand, but Alex may never get this

information, whatever he could learn afterwards (even by cheating):

o Mp,ds ): (?,b>(Bb(I)b N [?,a]Ba—\Bb(I)B)



CHAPTER 5

Group Announcement Logic

The previous sections worked on the kind of information that is given during a communica-
tion. The following one deals with the results a group of agents can achieve by announcing
something: agents of the group G can obtain ¢ if they each of them can do a (simultaneous)
announcement such that after such announcements ¢ becomes true.

[van Benthem, 2004] and [Balbiani et al., 2007] suggested an interpretation of the stan-
dard modal diamond where ¢ means “there is an announcement after which ¢” (see Section
3.1). This was in a setting going back to the Fitch-paradox (see [Brogaard and Salerno, 2004]).
The new interpretation of the diamond ¢ in the Fitch setting firstly interprets ¢ as ‘some-
time later, ¢’, and secondly specifies this temporal specification as what may result of a
specific event, namely a public announcement: ‘after some announcement, ¢’. In other
words, the semantics is: Q¢ is true if and only if (1))¢ is true for some v; the expression
() stands for ‘¢ is true and after ¢ is announced, ¢ is true.” There are some restrictions
on . The resulting arbitrary announcement logic is axiomatisable and has various pleas-
ing properties (see [Balbiani et al., 2007], and for more detail the extended journal version
[Balbiani et al., 2008]). Arbitrary announcement logic makes no assumption on the interpre-
tation of Oy about who makes the announcement, or indeed whether or not the announcement
can be truthfully made by anyone. In the current chapter we investigate a variant of arbi-
trary announcement logic. Instead of Q¢ we use a more specific operator, namely (G)¢. Here
G is a subgroup of all agents that simultaneously make truthful public announcements, i.e.,
announcements of formulas they know. In other words, let G = {1,...,k}, then: (G)y is true
if and only if there exist formulas 1, ..., 9, such that (Kj11 A ... Kgig)e is true; now, the
expression (K191 A ... Kgg)e stands for K19y A ... Kgty is true and after agents 1,...,k,
simultaneously announce 1, ..., %, then ¢ is true’. Note that the remaining agents, not in-
cluded in the set G of k agents, are not involved in making the announcement, although they
are aware of that action happening. The resulting logic is called Group Announcement Logic
(GAL). Informally speaking, (G)¢ expresses the fact that coalition G has the ability to make
 come about. Logics modelling the coalitional abilities of agents have been an active area of
research in multi-agent systems in recent years, the most prominent frameworks being Pauly’s
Coalition Logic ([Pauly, 2002]) and Alur, Henzinger and Kupferman’s Alternating-time Tem-
poral Logic ([Alur et al., 2002]). The main constructs of these logics are indeed of the form
(G)p with the intuitive meaning that coalition G can achieve . In this chapter we investigate

these notions when the actions that can be performed are truthful public announcements.

93
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Section 5.1 defines group announcement logic, presents various interaction axioms between
the different modalities that express intuitive properties of such joint announcements, and
the axiomatization. Section 5.2 is entirely devoted to expressivity matters, and Section 5.3
to model checking. The relation between group announcement logic and various notions of
group ability, including knowledge ‘de re’ and knowledge ‘de dicto’, is discussed in detail in
Section 5.4, which is followed by a more applied Section 5.5 that embeds these observations
into security protocols for two agents (sender and receiver) in the presence of a finite number
of eavesdroppers intercepting all communications between them. Most of this chapter has
been published in [Agotnes et al., 2010].

5.1 Group Announcement Logic

The main construct of the language of Group Announcement Logic (GAL) is (G)p, intuitively
meaning that there is some announcement the group G can truthfully make after which ¢
will be true. Such a simultaneous announcement may sound like a lot of unintelligible noise.
But in fact it merely means a joint public action—not necessarily involving talking. We later
find ways to model subsequent announcements as sequences of simultaneous actions, making

the basic semantic idea even less appear as shouting in groups.

5.1.1 Language

The language L4 of GAL over a set of propositions PROP and a set of agents AG is defined
by extending the language L, of PAL (introduced in Section 3.1.1) with a new operator [G]
for each coalition G:

Definition 5.1 (Language)

eu=p|L| @ |1V | Kipl[pi]ez | [Gle

where i € AG is an agent, G C AG is a set of agents and p € PROP. We write (G)p for
the dual =[G~ and (i) for ({i})p. For the subset of atoms occurring in a formula ¢ we,

again, write ©,.

We adopt the standard definition for the notion of subformula.

5.1.2 Semantics

The interpretation of formulas in a pointed Kripke structure is defined by extending the

definition for PAL (see Definition 3.2) with a clause for the new operator:

Definition 5.2 (Semantics of GAL)

M, s =[Gl iff for every set {; i € G} C Lo, M, s = [Nieq Kitile
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We get the following meaning for the dual (G)y := =[G]—y:
M, s = (G)y iff there exists a set {1; : i € G} C L such that M, s = (\;cq Kiti)e

If we write this out in detail, we get: M, s = (G)yp iff there exists a set {¢); : i € G} C Ly
such that M, s = \,;cq Kithy and M| A\, Kithi, s |= .

Observe that (G) quantifies only over purely epistemic formulas. The reason for this is
as follows. First, in the semantics of (G)y the formulas v; in A;c; Ki®); cannot be unre-
stricted L4q formulas, as that would make the definition circular: such a 1); could then be
the formula (G)y itself that we are trying to interpret. We therefore avoid quantifying over
formulas containing (G) operators. However, as public announcement logic is equally expres-
sive as epistemic logic within the class of all models ([Plaza, 1989]), the semantics obtained
by quantifying over the fragment of the language without (G) operators is the same as the
semantics obtained by quantifying only over epistemic formulas.

As usual, a formula ¢ is valid on M, notation M = ¢, iff M,s = ¢ for all s in the
domain of M; and a formula ¢ is valid, |= ¢, iff M = ¢ for all M. The denotation of ¢ on
M, notation [¢]r is defined as {s € S | M, s |= ¢}. The set of validities of the logic is called

GAL (group announcement logic).

Proposition 5.3 Let two models M = (S,R,V) and M' = (8',R',V') be given. Let
@ € Lyq be a formula. For all s € S and for all s € S', if (M, s)==(M',s") then M,s = ¢
iff M',s" = .

Proof The proof is by induction on the number n of group announcement modality that
appear in the formula. If n = 0, it is the epistemic case, already underlined in Proposition
2.14. Now let us suppose that it is true for all formula with at most n—1 group announcement
operators and let us prove for any formula with at most n by induction on the structure of
. The base case is by the the main IH, the boolean cases are trivial. For the epistemic
modality, as in [Fagin et al., 1995], we use the back and forth conditions in the definition of
bisimulation. It remains to deal with the group announcement modality:
M, s = (G

iff ~there exists 11,...,9n € Lg such that M, s = (A\;c4q Kivi)e

iff there exists t1,...,9, € L such that M',s" |= (\;c 4 Kitbi)@ by the main TH

it M s E(G)yp

5.1.3 Logical Properties

To sharpen the intuition about the logic we mention some relevant validities, with particular
attention to interaction between group announcement and epistemic modal operators. Ex-
amples are = [G]y — [G][G]e (Corollary 5.6), = (G)[G]e — [G]{(G)¢ (Corollary 5.12), and
K;[ilp <« [i]K;p (Proposition 5.13).
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Elementary validities

Proposition 5.4

1. (G)p — p and (G)—p — —p. (atomic propositions do not change value)
2. (D) < ¢ and [@](p — P (the empty group is powerless)
3 (Kt A- - NGy — ({5 by

4.0 — (G (truth axiom)

The easy proofs are ommited. They use the following ideas:
1. In public announcement logic, and its ‘derivatives’, factual truths never change value.
2. The conjunction of an empty set of formulas is, as usual, taken to be a tautology.

3. Obvious (note that 9;,,...,1;, are purely epistemic formulas).

W

. If all agents announce ‘true’, nothing changes to the system.

An announcement by the empty group (the second property above) corresponds to a “clock
tick”, a dynamic transition without informative effect. We could also see this as “nobody says
a thing” (and this now happens...). In fact you could even see this as ‘everybody says true’,
an announcement by the public (as in the fourth property): in other words, the group of all

agents have the option not to exercise their power.

Sequences of group announcements Intuitively, (G)¢ means that G' can achieve a situ-
ation where ¢ is true in “one step”, by making a joint announcement. One can easily imagine
situations where it could be interesting to reason about what a group can achieve by making
repeated announcements, i.e., by a sequence of announcements, one after the other, or a com-
munication protocol. A general example is a conversation over an open channel. We want to
express that “there is some sequence, of arbitrary length, of announcements by G which will
ensure that ¢ becomes true”.

For arbitrary public announcement logic (APAL), the validity of the principle Oy —
00 follows from the simple observation that a sequence of two announcements v and x is
equivalent to the single announcement of 9 A [)]x (see [Plaza, 1989]). Less obvious is that
[G]e — [G][G]ep is also valid, because now we have to show that two conjunctions of known

formulas are again such a conjunction.

Proposition 5.5 = [GU H|p — [G][H]p

Proof The diamond version (G)(H)p — (G U H)y of this validity makes clear that
the requirement is that two successive announcements respectively by the agents in G

simultaneously and in H simultaneously can also be seen as a single announcement by the
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agents in G U H simultaneously. Let us prove how it can be done. Consider two successive
announcements /\;c; Kip; and /\ ;o K;v;. Let a Kripke structure M and a state s in M
be given such that M, s = A;cq Kipi, and similarly ;o K;9; is true in state s in the
restriction of M to the A\, o K;pi-states: M|\,cq Kivi,s B N\jen Kjb;-

Then we have:

M, s = (Niea Ki90i></\jeH Kj1;)0
only if M, s = (Aieq Kivi A [/\gEG Kgpg] /\jeH Kj;)0

only if M, s = (A\ieq Kipi A /\ieH\G KT A [/\gEG Kg‘Pg](/\jeH Kjp; A /\jeG\H K;T))0
because for any agent i, K;T is a valid formula

only if M, s (Aicgun(Kivi N[ Ngjea Kopgl Kithi))0
with Vi € H\G, p; =T and Vj € G\H, ¢; = T.

only if M, s = </\ieGUH(Kz'90i A ((/\geG Kgpg) — Ki[/\geG Kgpglthi)))o
by a reduction axiom of PAL

only if M,s ': </\i€GUH Kip; A /\ieGUH<(/\j€G Kj‘Pj) — Ki[/\jeG Kj‘Pj]wi»a
by distributing the A

only if M, s = (Nicgun Kivi N Nicgun KilNjeq Kjvilvi)0
because A\ jea Kjp; is assumed true in the left conjunct of the announcement.

only if M, s = (Nicqun Kilwi N [\jeq Kjpjli)b-

Corollary 5.6 = [G]e — [G][G]e

We thus get exactly the property alluded to above:

Corollary 5.7 M, s = (G)y iff there is a finite sequence of announcements by agents in G

after which ¢ is true.

In Section 5.5 we discuss a security protocol example involving sequences of announcements.
Note that our result does not mean that sequences of announcements can simply be replaced
by a single announcement: whether agents are willing to do an announcement may depend
on the postconditions of such announcements. These may be known to be satisfied after each
announcement in the sequence, but not known to be satisfied initially after the entire sequence.

These matters will be discussed in great detail later.
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Church-Rosser We prove that for all groups G' and H of agents, for every formula ¢ € L4,
(G)[H]p — [H](G)p is a valid formula. The principle is fairly intuitive: it says that when in
a given epistemic state group G or group H make a group announcement, there are additional
announcements by group H (after G’s announcement) and group G (after H’s announcement),
in order to reach a new common state of information. Unfortunately, its proof is rather
involved. This is because group announcements implicitly quantify over all propositional
variables in the language. Towards the proof, we first define the group-announcement depth
d(p) of a formula ¢:

Let p € PROP, ,1,2 € Lgg, © € N, and G C N be given; then d(p) = 0; d(—v) =
d(Kb) = d(@); (b1 Aiz) = d([ae) = maa(d(r), d(¥2)); and d([Glv) = d() + 1. The

following lemma holds for any number k, but we will only use it for k¥ < |AG]|.

Lemma 5.8 Let Q = {q;}ien+ € PROP be pairwise distinct primitive propositions, for some
k € N let by,...,0; be epistemic formulas such that for i =1 toi =k, ©p, NQ = 0 and let
@ € Lga be such that ©,NQ = 0.
> =q)(6 .0 .
For all & € Ly, define { V=1 /q1, - Ok /qks 1/ Qev1, @2/ D2, )

V% = Y(qrr1/ 015 Grr2/q2; )
Then, for all structures M = (S, ~1,...,~yn, V) there is a valuation function V' : PROP —

25 such that

1. [plm = [elmr

2. for all Y € Ly,

o [¥]m = [¥*]m
o [¥lm =" Im

3. f07’ all i S ]{3, [[QZ]]M’ = [[92]]/\4/ = [[07,]]./\/[

where M’ = (S, ~1,...,~p, V).

V'(p)=V(p), forallp ¢ Q
Proof We define V' as: ¢ V'(q;) = [0:i]m, for all i <k
V'(qk+i) = V(gi), forall i > 1
Items 2 and 3 follow directly from the definition of V/. We prove item 1 by induction on

the structure of ¢, by showing the somewhat stronger following property P(y):
for all submodels M, of M, and for all states s € M,: M,,s = iff M, s = p.

Base case: p =p € PROP. M,,s = p ifft M/, s = p follows directly from the definition
of V'. We also have that M., s = L iff M/,sE L

Inductive cases: Let us suppose that the property P is true for all eventual 1, 11 and )2,
and let us prove it for formulas ¢ of the form —, 1 A 19, K;1b and [¢1]1p2. In fact, let M,
be a submodel of M :
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—h: M, s |: )

iff M., s~y

i M, I o (by TH)
iff M., s k= .

Y1 AN pa: My, s = b1 Ao
iff (My,s E 1 and M., s = 1)
f(MLys v and ML, s = ) (by TH)
iff M;,S ):¢1A¢2.
Kip: M, s = Ky
iff forallt~;s, M,tEY
iff forallt~is, M)t} (by IH and as ~; = ~})
it M, sE K.

[V1]h2: M, s = [1]1)2

iff

iff

(M., s =11 implies M|, s = 1)
ifft (M., s =1 implies (My]11), s = 12)(using TH twice)
(M',; s |= 1 implies M |41, s |= 12)

(using TH again for v, and that V’ on the restriction is the restriction of V)

iff M, s = [1h1]ye.

(G
Ma,s = (G
only if there are x1,...,X|g| in L such that M., s = (A Kix:)
only if there exists {x;} C L¢ s.t. My, s = A\ Kixi and M, |(A Kixi),s E ¢
only if there exists {x;} s.t My, s = (A Kixi)™® and (M. |(A Kixi))',s = ¢ (by IH)
only if there exists {x;} s.t ML|(A Kixi)~% s E ¢ (*%)
only if there are x1,...,X|g| in L such that M’y s = (A Kix; *)¢
only if M., s = (G)y.
Mius (@
only if there are x1,...,x|q| in L such that M's, s = (A Kixi)
only if there exists {x;} C L¢ s.t. M'y, s = N\ Kixi and M, |(A Kixi), s E ¥
only if there exists {x;} s.t. My, s = (A Kixi)® and (M,|(A Kix:)®)',s =¥ (*%)
only if there are x1,...,X|g| in Le such that M. |(A Kix:)®, s = ¢ (by IH)
only if there are x1,...,X|g| in L such that M., s = (A Kix{)y
only if M., s = (G).

In (**) we have used (the already shown) property 2 for epistemic formulas.

O

Proposition 5.9 Let k > 0, ¢ and x be Lyq-formulas and G = {i1,...,i,} be a set of
agents. If M, s |= (G)¢Y A x and p1,...,pi, € PROP\(©y U®,), then there is a M" different
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from M only on the valuation of the atoms of PROP\(©4U®©y) such that M",s = (K;p1 A
o NG )Y A X

Proof We use the previous lemma twice:

1. Let @ be PROP\(0,U©O,) and ¢; be p; for alli <k, 0; be T for all i < k and ¢ be (G)v.
By Lemma 5.8, there is V'’ such that V'(p;) = S and [(G)Y A x]ar = [(G)Y A x]m- As
M, s = (G A x, we have that M’ s = (G)¢) A x. Therefore there are 7,...,7; in Ly
such that M', s |= (A;cq Kimi)1 A x. Without loss of generality, we can assume that for

all 4,7, pi ¢ O, Indeed, for all i, p; is equivalent to T in M’ therefore we can replace
7; by 7(T/pi)-

2. Let Q be PROP\(©y U O, UlJ;c; ), k = |G|, ¢; be p; for all i <k, 0; be 7; for
all i < k and ¢ be (\;c KiTi)¥ A x. By Lemma 5.8, there is V" such that (with M”
as M except for valuation V") [(A Kimi)¥ A xJmr = [N\ KiTi)¥ A x]ame and for all
i <k, [pidmr = [mlamer = [milame- As M s = (Njeq Kimi)d A x (by the first item),
the first property implies that M”, s |= (A, Kii)1) A x. The second one implies that
M" = N Kip; — N\ Ki7i. We now have that M”, s |= (\,cq Kipi)¥ A x.

O
A generalization of Proposition 5.9 indirectly proves the soundness of a derivation rule
in the axiomatization of GAL. Here, we need Proposition 5.9 to prove the validity of the

generalized Church-Rosser schema. But first here is a useful remark:

Remark 5.10 Let M,s be a pointed model, p € PROP and i € AG. If M,s = K;p, then
for all ¢ € L such that M, s = ¢ we have M|y, s = K;p.

Proposition 5.11 (Church-Rosser Generalized) For any G,H C AG: = (G)[H]p —
[H|(G) -

Proof Suppose the contrary: Let M be a model, s a state of M, p € L, and G, H C AG
two groups of agents such that M,s = (G)[H]e A (H)[G]—¢. Then, using Proposition 5.9
twice, for |G| = k and |H| = K/, we know that there are {p;};cc and {q;}icy subsets of ©
and M’ differing from M only on the valuation of the p;, g; such that

M s = (N Kipi)[Ho A ( )\ Kigi)[G-g -
e i€H

In particular,

M s = (N K[\ Kiaile A (N Kig) [\ Kipil-g -

i€G 1€ i€H i€G



5.1. GROUP ANNOUNCEMENT LOGIC 101

Note that (A;cq Kipi) and (\;c g Kiqi) are conjunctions of known facts. Using Remark 5.10

we know that they remain true after further announcements. So we have

M s F:</\A33piA /\AK}%>¢/W</\AR%piA /\ Kiqi)~p

ieG 1€H 1€G 1€H

from which directly follows a contradiction.

Corollary 5.12 (Church-Rosser) = (G)[G]y — [G](G)¢

We cannot in general reverse the order of G and H in Proposition 5.11. A simple coun-

terexample is the following model, where b cannot distinguish between two states but a can.

0.p 1.ﬁp

We now have that M,0 = (a)[b]Kpp A (a)[b]|-Kpp because M,0 = (K.p)[b]Kpp A
(Ko T)[b]=Kpp. Therefore (G)[H]|p — [G|(H)p is not valid if G = {a} and H = {b}.

More validities Just as for Church-Rosser, one would like to know whether the APAL
validity 0@ — Oy has a GAL generalization. We know that there exists G, H C N such
that the schema [G|(H)p — (H)[G]p is not valid. A counterexample is the following model M
(Figure 5.1) , i.e. for G = {a} and H = {b}, with ¢ = (K KppV KpK.q) N-(K Kpyp A K Koq).

p,q a -P,q

*11 ®01

b b
p,7q a -p,q
®10 ®00

Figure 5.1: Counter-example of the validity of MacKinsey formula in GAL

o asserts that a knows b knows p or b knows a knows ¢, but not both facts at the same
time. Here we have M, 11 = [a](b)p A [b](a)—p. Indeed, in this state, a can teach ¢ to b and b
can teach p to a. Thus, depending on what one agent does (to teach or not the corresponding
fact), the other can decide whether teaching or not her knowledge. If both or none of them
decide to teach her knowledge then ¢ will be true, if only one does it then ¢ will be false.
The second agent speaking is the one who decides!

We do not know whether [G(G)p — (G)[G]yp is valid.

For arbitrary announcement logic we have that K;ly — OK;p, but not the other way

round. Now, we can do more.
Proposition 5.13 For arbitrary i € AG and G C AG:

1. = Kililp — [i]Kip
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2. = K;[Gle — [G|Kip (but not the other way round)
Proof

1. For every model M and every state s, we have
M, s = Kililp
iff for all ¢ € S such that sR;t, M,t = [i]e
iff for all ¢ € L, for all ¢ s.t. sR;t, M,t = [K;v]p
iff  for all ¢» € Ly, for all t s.t. sR;t, M,t = K;1 implies M|K;),t = ¢
iff for all ¥ € Ly, for all ¢ s.t. sR;t, M, s = K;v implies M|K;1,t = ¢
iff for all ¥ € L, M, s = K implies that for all ¢ s.t. sR;t, M|Kj,t = ¢
it M,s = [i]K;
2. For every model M and every state s, we have
M, s E K;[Glp
only if for all t € S such that sR;t, M,t =[Gy
only if for all ¢y,...,%, € L, for all t s.t. sR;t, M,t |= [/\jE{l,u.,n} Kjvjle
only if for all {¢);} C L, all t s.t. sR;t, M,t = \ K;v; implies M| \ K;9;,t = ¢
only if for all {¢;} C L, all t s.t. sR;t, M,t = A\ K;1; implies M| A\ K;9;,t = ¢
only if for all {¢;} C L, M, s = A\ K;1; implies that
for all t s.t. sR;t, M,t = \ K;v; implies M| A\ K;v;,t = ¢
only if M, s = [G]K;
[l
Finally, a rather puzzling property on the interaction between the announcements and
knowledge by two agents. The intuition behind it is that announcements wherein you can

make another agent learn facts even in the face of your own uncertainty, are rather rare.
Proposition 5.14 For any atomic proposition p € PROP: = (a)Kpp < (b)Kp.

Proof Assume M, s = (a)Kpp. Then there is a ¢, € L such that M, s |= (K,1,) Kpp. This
formula is equivalent to Ky, A (Katq — Kp[Kaa]p) and thus to Kg1pq A Kp(Kathe — p)—as
pis an atom. Let us note M’ = M|K,(Ky1, — p) and let us proof that M’, s = K,p. Indeed,
let t € M’ s.t. t € R}, (x) (in the restricted model) and let us prove that M’,t = p. But we
have (1) M,t = Ky(Kq.q — p) and (2) t € Rq(z) (in the non-restricted model). But (1)
implies that M, t E Ky, — p and (2) implies that M, t = K., (because M, s = Kaibg).
Then M, t = p, and thus M',t = p.

[l

We now proceed to a more systematic treatment of validities.

5.1.4 Axiomatization

The following is a sound and complete axiomatization of group announcement logic.
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Definition 5.15 (GAL axioms and rules)

instantiations of propositional tautologies

Ki(p — ¢) — (Kip — K;v) distribution (of knowl. over impl.)
Kip — ¢ truth (T)

Kip — K;K;p positive introspection (4)

-Kip — Ki—~K;p negative introspection (5)

[¢lp «— (¢ — p) atomic permanence

(] — (p — —[p]®) announcement and negation

[p](¥ V x) — ([l V [¢]x) announcement and disjunction

(o] Kith —— (¢ — Ki[p]W) announcement and knowledge
[o][¥]x < [¢ A [e]¥]x announcement composition

(Gl — [Nicq Kivilp where 1; € L¢;  group announcement

From ¢ and ¢ — 1, infer ¢ modus ponens

From o, infer K;p necessitation of knowledge

From o, infer [¢]¢ necessitation of announcement
From o, infer [G]p necessitation of group announcement

From n([NiecKitilx) for all {¢i}ica C Ley,  deriving group announcement / RV ([G])
infer n([G]x)

Our axiomatization of GAL is based on the standard S5 axioms for the epistemic operators
K;, the standard reduction axioms for the public announcement operators [¢], and some
additional axioms and derivation rules involving group announcement operators. These are
the axiom group and specific announcement, and the derivation rules necessitation of group
announcement and deriving group announcement. A formula ¢ € L4 is derivable, notation
F ¢, iff ¢ belongs to the least set of formulas containing GAL axioms and closed with respect
to the derivation rules.

The axiom [Glo — [A;cq Kitbile, where 9; € L, is obviously valid in all structures.
Also the validity of “from ¢, infer [G]¢” will be obvious. The derivation rule deriving group
announcement R*([G]) is used to introduce group announcement operators in derivations. In
this rule, 0 is a necessity form for L4, definable in the same way as in Definition 4.33 (but
with a different language): # is a necessity form; if n is a necessity form and and ¢ is in £y
then (¢ — m) is a necessity form; if n is a necessity form and ¢ is in L4 then [¢]n is a
necessity form; if i is a necessity form then K;n is a necessity form.

In this section we show completeness of GAL with respect to the class of epistemic models.
But first the following:

Proposition 5.16 (Soundness) Let ¢ € Lgq. Then ¢ is a theorem of GAL only if ¢ is

valid in every epistemic model.
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Proof The only difficult result is the soundness of the rule R*(G) in the class of epistemic
models. We thus show it by induction on the structure of the necessity form 1. The base

case comes from the definition of the semantics. Let us look at the inductive cases:

o = K;n': for all {¢}icq C Lo, M, s = Kin' ([NieaKii]x)
iff for all {wi}ieG C £617 and all SRZ't, M,t ): "7/<[/\ieGKiwi]X)
iff for all sR;t, M,t = n'([G]x) by IH
i M,s = Ky ((Gly)

e n =9 —mn'" foral {¢}icc C Lo, M,sE ¢ — n'([NecKithi]x)

iff if M, s = then for all {¢);}icq C Lo, M, s =1’ ([Niec Kithi]x)

iff if M,s = ¢ then M,s =n'([G]x) by IH

iff M,s k=9 —n'([Gx)
o n=[pln": for all {¢s}icc C Let, M, s = [0 ([NeaKiti]X)

iff if M, s |= ¢ then for all {¢);}icq C Lo, Mg, s = n'([NecKitilx)

iff if M,s | ¢ then M|y, s = n/'([G]x) by IH

iff M, s k= [o]n'([G]x)

O

The proof of completeness of the axiomatization is very similar to the proof of completeness

of the axiomatization LAUOB presented in Section 4.4.2. We follow its progress.

A set z of formulas is called a theory if it satisfies the following conditions:
e 1 contains the set of all theorems;
e 1 is closed under the rule of modus ponens and the rule R¥([G]).

Again, a theory x is said to be consistent if 1 ¢ x, maximal if for all formulas ¢, ¢ € x or
- € z. For all formulas ¢ we note z + ¢ = {1): ¢ — ¢ € x}. For all agents i, let K;x = {¢:
K;p € z}. For all formulas ¢, let [p]z = {¢: [¢]y € z}.

Lemma 5.17 Let x be a theory, ¢ be a formula, and a be an agent. Then x + ¢, K;x and

[plz are theories. Moreover x + ¢ is consistent iff ~p & x.

Proof Identical to proof of Proposition 4.35, by substituting B; by K; and ‘[¢), G] with
e Ly’ by ‘(] with ¢ € L.
O

Lemma 5.18 (Lindenbaum lemma) Let x be a consistent theory. There exists a maximal

consistent theory y such that x C y.

Proof Identical to the proof of Lemma 4.36 by substituting

[ ] Bl by K,L



5.1. GROUP ANNOUNCEMENT LOGIC 105

o ‘[¢,G] with ¥ € L, by ‘[¢] with ¥ € L’
e [7,G] by [G] and

e ‘there exists ¢ € L, such that [, G|’ by ‘there exist 11,...,9|q € L such that
A\ Kithi]g’
O

The canonical model of L4 is the structure M, = (W¢, ~¢, V) defined as follows:
e V¢ is the set of all maximal consistent theories;

e For all agents i, ~; is the binary (equivalence) relation on W defined by = ~; y iff
Kz = Kiy;

e For all atoms p, V¢(p) is the subset of W€ defined by = € V¢(p) iff p € z.

Clearly, ‘=" is an equivalence relation, therefore ~; also is. It then has the same properties
than the relation R; of an epistemic model, and that fact ensures that the canonical model of
L gq1 is an epistemic model. Note that, because of Axioms T, 4 and 5, K;z = Ky iff K;x C y.

We now prove a truth lemma for £, using a very special induction. Note that this prop-
erty (and its proof) is quite different from the truth lemma appearing in [Agotnes et al., 2010].
The property was not correctly proved in this paper indeed. To obtain a correct one, here

are three definitions we shall use:

Definition 5.19 The degree of a Lyq-formula is defined inductively in the following way:
for all p € PROP, all i € AG, all G C AG and all ¢, p1,p2 € Lgg : deg(p) = deg(L) =
0, deg(~yp) = deg(Kip) = deg(p), degp1 V o2 = maz(deg(y1),deg(p2)), deg([p1]p2) =
deg(p1) + deg(p2) + 2, deg([Gly) = deg(p) + 2.

Definition 5.20 Let < be the following binary relation on N X N X Ly
K <k,
(K'.n',¢") < (k,n, @) iff ¢ or (K =k and n’ < n) where Sub(ip) is the
or (k' =k and n’ =n and ¢' € Sub(p))
set of strict subformulas of ¢ (i.e. subformulas of ¢ different from ¢ itself).

Note that < is a well-founded partial order on N x N x L44. In fact, it is the lexicographical

order based on the orders < and ‘being a subformula’. Here are some examples:
e (0,108, ) < (1,0, ) because 0 < 1
e (0,0, (pA—q) — (G)[plg) < (0,1,p) because 0 < 1
e (10,10,p) < (10,10,p A q) because p is a subformula of p A gq.

Now the following:
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Definition 5.21 (II(k,n,p)) For all (k,n,¢o) € N x N x Ly we define the property
I(k,n,):  forall ,...,9n € Lga, if n + deg(1) + ... + deg(¢p) + deg(p) < k then
forallx € We, Mc,x |= (1) ... (Un)p iff (1) ... (Yn)p € x.

This complex definition is useful to prove the following truth lemma by induction on (k,n, )

following the order we just defined. We are now able to establish the truth lemma for Lg4:
Proposition 5.22 (Truth lemma) For all (k,n, ) € N x N x Ly, I(k,n,¢).
To prove it, we first consider the following lemma:s:

Lemma 5.23 For all (k,n,¢) € N x N x Ly, if for all (K',n',¢") < (k,n,¢) we have
(K, n', "), then (k,n, T).

Proof Let ¢1,...,1, € Lyy, be such that n + Xdeg(v;) + deg(p) < k and x € W*, we want
to show that M¢,x = (1) ... ()T iff (1) ... (V)T € z. If n =0, M.,z E T is always
true, and so is T € x. Suppose then that n > 1.
Hence we have: M.,z = (Y1) ... (¢¥n) T
M,z |= 1 1 € x by I(k,0,v1)

o M.,z = (h1)2 o (1)h2 € x by II(k, 1,12) if and only

M,z | (Y1) -« (Pn-1)¥n (Y1) ... (Yn—1)¥n € x by TI(k,n — 1,p)

if (1) ... (Yy)T € x.

We used that for all i < n, we have n + deg(y1) + ... + deg(¢;) < n+deg(v1) + ...+
deg(¢n) + deg(p) < k

O

Proof (of Proposition 5.22) Let us prove it by induction on (k,n, ). Suppose that for all
(K',n',¢") < (k,n, @) we have TI(k’,n’, ¢'). Let us prove II(k,n,¢) by reasoning on the form
of ¢. Note that by Lemma 5.23 we can already use that II(k,n, T).

Let 41,...,%n € Lgq be such that n + Xdeg(v;) + deg(yp) < k and x € W*¢

o p=p: Me,x = (¥1) ... (Yn)p
iff Mg,z = (Y1) ... (¥n)T and M.,z = p by the semantics
ifft (Y1) ... (Yn)T € 2 by H(k,n, T) and p € x by definition of the valuation V¢

ifft (Y1)... (Yn)pex

° o= Me,x = (Y1) .. (¢hn) X
iff M,z = (1) ... (¥n)T and M,z = (¢1) ... () x by the semantics
(note that n + Xdeg(¢i) + deg(x) = n + Xdeg(vs) + deg(—x) < k)
iff (Y1) (Yn)x €
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e p=x1VXx2: Me,z = (1) (¥n) (X1 V x2)

iff  Me,z |= (1) ... (n)x1 or Me, @ = (¢1) ... (¥n)x2 by the semantics

it (1) .. (n)x1 € @ by II(k,m, x1) or (1) ... (¢¥n)x € 2 by II(k, n, x2)
(note that n + Xdeg(1;) + deg(x:) < n+ Xdeg(;) + deg(p) < k)

iff (1) .. (Pn) (X1 V x2) €2

e o = K;x: First remark that we can prove II(k,n,—x) as in the first second case,

considering that Sub(K;x) = Sub(—).

Now suppose that M.,z = (1) ... () K;x, therefore we have the two following prop-

M,z = (1) - () T
for all y € W€, if 2Ry then M.,y = [¥1]... [¥n]x
The first implies that (¢1)...(¢Y,)T € z by II(k,n, T). Now suppose, towards a

contradiction, that (¢1)...(Yn)Kix ¢ x. Then [¢1]...[¢n]-K;x € z and using

(1) ... ()T € x we obtain (Y1) ... ()~ K;x € x and thus —K;[¢1]... [Y,]x € =.
Let yo = Kix + —=[t1] ... [¥n]x, yo is thus a consistent theory, that can be extended,

erties:

by Lemma 5.18, to a maximal consistent theory y. Therefore, xR;y and we obtain

M,y E (1] ... [¥n]x or equivalently M.,y [~ (1) ... {(¢Yn)—x. By I(k,n,—y), this
implies that (¢1) ... (¢yn)—x ¢ y. Contradiction.

Conversely, suppose that (1) ... (¢Yn)K;x € x. In particular (¢1)...(¢,)T € x and
M,z = (1) ... (¥n)T by I(k,n, T). We also have K;[¢1]...[n]x € z. Suppose to-
wards a contradiction that M.,z = (1) ... (¥n)Kix. Then M.,z = (¢1) ... (¢¥n)—Kix.
Therefore, there exists y € W¢ such that xRfy and M.,y = (¢1)...{(¢n)~x. By
II(k,n,—x) we obtain (¢1)...(¢Yn)—x € y. Now, Mez = Ki[thi]...[¢n]x and
zR;y implies M,y = [¢1]... [n]x. With Me,y = (W1) ... (¥,) T we get M,y =
(1) ... (¢p)x. By I(k,n,x) this implies that (¢1) ... (,)x € y. Contradiction.

¢ = [¢]x: Here we have n + Ydeg(v;) + deg(v) + deg(x) + 2 < k (x).

We first prove (I): Mc,z = (1) ... (Un)(W)—x i (1) ... (W) {(W)—-x € z. Indeed, as
(k—1,n+1,-x) < (k,n, ) we have Il(k—1,n+1, —x). Moreover, (n+1)+ (Xdeg(v;)+
deg(¥)) + deg(=x) < k —1 by ().
Now M, x |= (1) ... (¥n)[¥]x
o [ Moz T
Mo,z = (1) ... (n) (¥) X
(V1) ... ()T € x by IlI(k,n, T)
(1) - (Un) (W)X ¢ @ by (1)
iff (Y1) .. (Un)Y]x €@

¢ = [G]x: Here we have n + Xdeg(¢;) + deg(x) + 2 < k (xx).

We first prove (II): for all w’l,...,w"Gl € Loy, Me,z = (1) - (Un)(Nieq Kii) X
iff (1) ... () (Nieq Kitki)—x € x. Indeed, as (k —1,n + 1,-x) < (k,n,¢) we have

iff
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II(k—1,n41,-x). Moreover, (n+ 1)+ (Xdeg(1);) +deg(\;cq Kit;)) +deg(—x) < k—1
by (#x) and observing that deg(\,;cq Kit;) = 0.
Now Mo,z |= (1) - (¢n)[G]x

Mo,z = (1) (n) T

Muw 7 (1) - (o) (G) =X

1ff{ AY)T € x by II(k,n, T)
for all ¢1, e ,w | € Lety Me,x e (1) - (Un)(Niea Kiti) X
o { (V1) ... ()T €x
for all 1/)1, ... 7¢\G\ € Lo, (Y1) -+ (Un){(Nica Kil)—x ¢ = by (II)
o { (V1) ... ()T €x
for all wl, g € Ley [1] - - [Un][Aiee Kiti]x € @ by maximality
{< ()T €2
[tha] .- [¢n][G]x € =
L -the R™([G])-cloture of x for the direct implication
considering

-Axiom group announcement for the indirect one

iff (1) ... (¥n)[Glx € .
(]

Theorem 5.24 The axiomatization GAL is sound and complete with respect to the class of

models Cy.

Proof Soundness has been proved in Proposition 5.16.

Let ¢ € Ly be a a valid formula, then it is valid in the canonical model. Therefore
by Lemma 5.22 it is in every maximal consistent theory. Hence, it is a theorem of GAL.
Indeed, if it were not the case, then there would exists a consistent theory x such that
= € . Therefore, by Lemma 5.18 there exists a mct y such that x C y. Therefore —p € y.
Contradiction.

O

5.2 Expressivity

The notion used in this section have been introduced in Section 2.8. Known results are that
L is equally expressive as Ly, ([Plaza, 1989]), that in the single-agent situation Lgpq is
equally expressive as L, and that in the multi-agent situation Ly, is more expressive than
Lyq ([Balbiani et al., 2007]). In this section we demonstrate that in the single-agent situation
L a1 is equally expressive as L., and that in the multi-agent situation L4, is more expressive
than L., and L, is not more expressive than L£,,q. We conjecture that £, is not as least

as expressive as (multi-agent) Lgal-

Proposition 5.25 For a single agent L g4 is equally expressive as Lo and Lyq-



5.2. EXPRESSIVITY 109

Proof Let a be the unique agent. For all ¢ in Ly we have that |= [a]lp < ¢. In fact, in
the single agent situation, the restriction of a pointed model (M, s) to a-equivalence class
is the submodel generated from (M, s) (see Definition 2.12). Thus it is bisimilar to (M, s)
(Proposition 2.15), from which directly follows that = [a]p «— ¢.

O

Theorem 5.26 Ifn > 2, then Ly is more expressive than Lo and Lpg.

Proof L,y is obviously at least as expressive as L. For the strictness part, consider the
formula (b) K,p. Assume that there is an EL formula 1) equivalent to (b) K,p. Formula 1) can
only contain a finite number of atoms. Let ¢ be an atom not occurring in 1. Consider the

following models M and M’ where a and b have common knowledge of their ignorance of p.

b !
M: g Y P : M pg a4  _p—q
* * ) *11 ®00
b b
—-p,q a p,7q
®1 —  ®0

Figure 5.2: Distinguishing L4 from £

It is easy to see that M,1 £ (b)K,p, but that M’ /11 | (Kuq)K,p, and thus that
M’/ 11 = (b)Kgp. On the other hand, (M, 1) and (M’,11) are bisimilar with respect to
the epistemic language not including atom ¢, thus ¥ cannot distinguish between these two

pointed models. Therefore, 1) cannot be equivalent to (b) K,p.
O

Theorem 5.27 L, is not at least as expressive as Lopal-

Proof Consider the L,,q-formula ¢(K.p A ~KpK,p), and suppose there is an equivalent
Lgq-formula x. Assume an atomic proposition ¢ not occurring in x. We prove that the
pointed models (M, 10) and (M?,10) presented below cannot be distinguished by any L£gq-
formula y, whereas O(K,p A KK, p) is true in the former but false in the latter, thus again
deriving a contradiction.

The crucial insight is that in L£yq, unlike in £4,4, the only definable model restrictions of
M., 10 are the four models displayed below. And to make the formula O(K,p A —KpKyp) true
in M, 10, one needs to be able to define the restriction to domain {11,10,00}. The formal
proof is by induction on the structure of v, and is formulated in terms also involving other
points of other model restrictions of M; of that proof we only give the formal proposition

and for state 10 the inductive cases for announcement and for group announcement.
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M: a4 a  pg Mb: pa
11 ®o1 *11
b b b
p,7q a -p,q p,7q
®0 — %00 ®10
M et & eTPa Mab: LoeP 4

Figure 5.3: Distinguishing L from Lgq

Let ¥ € Lyq with g € ©,. Then:

M0y o MY1I0EY < M11EYy (i)
MP 10y & MLI0EY o MU 11y (i)
M0y & MY0EY & M, 01y (i)

Inductive case announcement:

e M,10 = [x]¢
iff M, 10 = x implies M|y, 10 = o )
M, 10 = o if M,00 =

iff M, 10 implies
= X imp { MP?,10 |= 9 otherwise

M 10 E ¢ if M,00 E x (%)

iff M%, 10 implies
= tmp { M 10 |= 4 otherwise

iff M?,10 = x implies M®|x, 10 = ¢
iff M, 10 [= [x]¢.

*: By induction hypothesis: M|x = M if M, 00 |= x, and M|y = M® otherwise.
**; By induction hypothesis: M?|x = M? if M% 00 |= x, and M?|x = M otherwise.

Inductive case group announcement (there are four different coalitions):

o M,10 = [0]v
iff M, 10 =4

o M, 10 |= [a]t)
if M, 10 |= 1) and M®, 10 = 1
i M@, 10 = 1 (by IH)
iff M@, 10 = [t
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e M, 10 |= [b]y)
iff M, 10 |= ¢ and M®,10 = o
iff M?,10 = ¢ and M, 10 =+ (by IH)
iff M 10 |= [b]y

e M,10 k= [a, b]y
iff M, 10 =+ and M?,10 |= ¢ and M 10 |= ¢ and MP?, 10 |= 1
iff M?,10 = ¢ and M, 10 = ¢ (by IH)
iff M?,10 k= [a, b]y

Conjecture 5.28 L, is not at least as expressive as Lgq.

Thus, we conjecture that the two logics are incomparable when it comes to expressivity. The
following gives an idea for a possible proof, discussed together with Barteld P. Kooi, even if
it does not succeed for now.

Sketch of proof : Let 5 = (a)Kypp be a Lgq-formula. We already know, by Proposition
5.14, that it is equivalent to a = (a) Kpp A (b) Kop. The idea of the proof is to show a class of
pairs of models M, My, . (¢, € PROP) such that

1. for all ¢,r € PROP, Mgy, pqr |= ~a and M}, ., pqr = o
2. for all ¢ € Lgpq, there exists ¢,7 € PROP such Mg, pqr |= ¢ iff M;’T,qu Fe

Then the formula o would distinguish any such pair of models, and no L g4-formula would
be able to distinguish all of them, so L,,, would not be more expressive than Lgq. Our
proposal was the following:

Formally, M} = {S, ~a,~, V} with S = {pgr € {0,1}*} (and S’ = S\{000}). The valu-
ation of p, g and r is defined by the name of the state, and is () for any atom in PROP\{p, q,r}.
Now for all s,t € S*, s ~q tiff (M,,s F q¢ — piff M t = q — p)and s ~ tiff

(M s Er — pift Myt =1 — p).

q7T7

In particular, we have ./\/l;r,pqr = Ki.(¢g — p) N Ky(r — p)

Clearly, 1) is true. Indeed, M, pgr |= [a]Ky(—pA—=gA—r) and M, pgr |= (K, (=qV p)) Kyp.

Now to prove 2) it would be enough to prove that

(x) for all p € Lopa{p}, for all g,7 € ©, My, pgr = ¢ iff M ., pgr = .

Indeed, let ¢ be an L4pq-formula, then let us call PROP, = {q1,...qn} the atomic proposi-
tions appearing in ¢, and let ¢, be atomic propositions that are not in PROP,. We define
©* = ¢(¥q;, 1 /q;) and then consider Mg, and M; . We have that M, , = ¢ «— ¢* and
M, | o —— ¢ with ¢* € Lopa{p}. (*) is then sufficient to prove 2).
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Mar = /(ﬁpﬂqr) Q—'p—'qﬁr
|
(pogry o pﬂqw)/ 1%
(ﬁp‘q’r‘) (ﬁp(‘ﬂ")
L (bgr) g
and Mg, = (ﬂp‘ﬂqr)
(pﬁqr)/ ***** (pﬂq‘ﬂ")
(=pqr) (=pg-r)
L (pg—r) -

Figure 5.4: Trying to distinguish L4 from L4

Unfortunately, (x) is false. The mistake came from the will to obtain a pair of models not
able to distinguish x = K,p V Kpp V O(Kp A ~Kpp) A Q(—Kyp A Kpp) which seemed to be a
reasonable translation for (a) Kpp. Indeed (a) Kpp means that after some a’s announcement b
knows p. Indeed, if a knows p she can announce it, if b knows p then a can announce nothing,
b will still know p. Now if none of the two agents know p but still (a) Kpp is true, then some
a’s announcement could teach p to b (without a learning anything about p). By Proposition
5.14 the converse would also be true. Well M, and M,

(and in fact probably none of the L,pq-formula of K-degree 1), but it can distinguish some

cannot actually distinguish y

L gpai-formulas. For example the following one, which is true in M, pgr and not in M, pgr:
Ko0(Kap AD(Ko=p «—— Kyp))

However, in spite of the mistake, we think that this may be a good starting point to find
bigger classes of pairs of models, able to distinguish every Ly, -formula from (a)Kp. We
would thus get an infinite set {C;};en of such classes of pairs, such that each class C; is able

to distinguish (a)Kpp from any L,pq-formula of K-degree i.
O

Now consider a very special model class 9,, namely the class where an agent g has the
identity relation on all models (there may be other agents). It is clear that the announcement

made by g has the property that Kyp «— ¢: everything true is known by g. Therefore Q¢
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in APAL is equivalent to (g)y in GAL (ignoring a further translation downward in ¢). If we
restrict the model class of the logic to M,, we say that a super agent g exists. This makes

clear that:

Proposition 5.29 If a super agent g exists, GAL is at least as expressive as APAL.

Proof Given a ¢ € L,,q, replace every occurrence of [0 in ¢ by [g]. The resulting formula
is in L4q and it is equivalent to the initial one in every epistemic model.
O

5.3 Model Checking

If a given system can be modeled as a finite model, one would like to verify if a given property
written in a language for specifying desired properties of systems holds in the finite model. We
speak of the model checking problem, an area of automated deduction that has been addressed
for almost all logical languages, for example modal logic in [Gradel and Otto, 1999], temporal
logic in [Clarke et al., 1999], etc. There is a need, on the theoretical side, to provide a sound
mathematical basis for the design of algorithms devoted to the model checking problem.

Hence, the question arises whether the following decision problem is decidable:
input: a finite structure M = (S, ~1,...,~p, V), a state x € S and a formula ¢ € L4,
output: determine whether ¢ is satisfied at = in M.

This decision problem, denoted (MIC(GAL)) is a variant of the well-known model checking
problem. If one restricts to formulas ¢ € L., then the above decision problem is known
to be P-complete. The notion of a formula like [{1,...,n}]y being satisfied in a structure
M = (8,~1,...,~y,V) at state z € S relies on the satisfiability of all (infinitely many)
formulas like [K1p1 A ... A Kypn]e at @ where ¢1,..., 0, € L. In Theorem 5.31 we show
that (MC(GAL)) is in PSPACE and in Theorem 5.32 we show that it is PSPACE-hard.

5.3.1 Preliminary Results

Let Znq be the greatest bisimulation relation on M. Note that Z,, is an equivalence relation
on S. For all s € S, let ||s|| be the equivalence class of s modulo Z,(. The bisimulation
contraction of M is the structure ||[M|| = (S’,~,...,~], V') such that:

o 5" =S|z, i.e. the quotient of S modulo Zxy
o |[s|| ~ ||t]| iff there exist v,w € S such that sZyw, tZpw and v ~; w

e V'(p) =V®)lzpm

The following proposition will be obvious, because:
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e the bisimulation contraction is bisimilar to the original structure;
e bisimilar structures have the same logical theory[Blackburn et al., 2001];
e public announcement and group announcement are bisimilation preserving operations.

Proposition 5.30 For all ¢ € Lyy, |[M],||z| = ¢ iff M,z = ¢.

In M| = (5, ~,....,~, V'), every ||s|| € S” can be distinguished by a pure epistemic

formula from all other (non-bisimilar) states. Let us call iy the characteristic formula of

/

[s] in M’. Thus, for any i € {1,...,n}, KW[[S]] characterizes the class of equivalence for ~7.

Hence, for any ¢ € {1,...,n}, each union C'; of classes of equivalence for ~/ is distinguished

from all other (non-bisimilar) states by a pure epistemic formula of the form K;p;. Therefore,

"

a pure epistemic formula of the form A, K;p; defines a restriction M"” = (8", ~7,... ~7

, V") where §” = N;cqC’;. We call such a restriction a definable restriction.

5.3.2 Model Checking Algorithm

Proposition 5.31 (MC(GAL)) is in PSPACE.

Proof Since APTIME = PSPACE (see [Chandra et al., 1981]), it suffices to prove that
(MC (GAL)) is in APTIME. Let us consider the alternating algorithm 1 given on page
115. This algorithm takes as input a finite model M, a state s in M, a formula ¢ in L, and
bin {0,1}. It stops with a reject iff either b = 0 and M, s = @ or b = 1 and M, s [~ ¢ whereas
it stops with an accept iff either b = 0 and M, s [~ ¢ or b = 1 and M, s |= ¢. Its execution
depends primarily on (¢, b). Each case is either existential or universal. For example, the case
(p1 V p2,1) is existential. It is an accepting case iff for some ¢’ € {1, 2}, the case (¢, 1)
is accepting, thus corresponding to the fact that 1 V s is true at s in M iff for some ¢’ €
{p1,02}, ¢ is true at s in M. As well, the case (1 V p2,0) is universal. It is an accepting
case iff for every ¢’ € {p1,p2}, the case (¢/,0) is accepting, thus corresponding to the fact
that ¢1 V @9 is false at s in M iff for every ¢’ € {¢1, p2}, ¢ is false at s in M. Cases labelled

with (-) are both existential and universal.

Obviously,
e sat(M,s,p, 1) accepts iff M, s = ¢,
o sat(M,s,p, 1) rejects iff M, s = ¢,
o sat(M, s, p,0) accepts iff M, s £ p,

e sat(M,s,p,0) rejects iff M, s = .
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Algorithm 1 sat(M, s, ¢, b)

case (p,b) of

() (p,1): if s € V(p) then accept else reject;
(p,0): if s € V(p) then reject else accept;
(L,1): reject;
(L,0): accept;
(
(

-’ 1): sat(M, s, ¢, 0);
—¢’,0): sat(M, s, ¢’ 1);

) (¢1V p2,1): choose ¢’ € {1, p2}; sat(M, s, ¢', 1);

) (01 V 2,0): choose @' € {1, g2} sat(M. s, ',0);
V) (K;¢',1): choose t € ~; (s); sat(M,t, ¢, 1);

) (K;¢',0): choose t € ~; (s); sat(M,t,¢',0);

([p1]e2,1): compute the yp1-definable restriction M = (S, ~1,...,~p, V') of M;
if s € S’ then sat(M’, s, p2,1) else accept;

() ([¢1]p2,0): compute the ¢1-definable restriction M’ = (S, ~1, ..., ~p, V') of M;
if s € S then sat(M’, s, p2,0) else reject;

(V) ([G]e,1): Compute || M]|, choose a definable restriction M” = (8", ~, ... ~" V")
of [M]| s.t. S” = NjeC; where C; are unions of classes of equivalence for
~e

i
if s € S” then sat(M”,s,p, 1) else accept;
(3) (|G)e,0): Compute ||M]], choose a definable restriction M” = (S~ ..., ~! V")
of [|[M]| s.t. S” = NjeaCi where C; are unions of classes of equivalence for
.
i
if s € 5" then sat(M",s,p,0) else reject;
end case

The only difficult case is ([G]p,1). Computing [|M]| is easy and by Proposition 5.30 we
have that M,s = (G)p iff ||[M]||,]s|| E (G)p. Then we just have to prove it in the case
where || M| = M. Let us suppose it, and let us see that, if there is a definable restriction
M = (8"~ o~ V) of M osuch that S” = NieeC; where C; are unions of classes of
equivalence for ~;, if also s € S” and M",s = ¢, then M, s = (G)p. Let us then suppose
the first part of the implication.

M is supposed to be bisimulation-contracted, then we know that for all s € M, there is
s € Lgqi, s.t. for all t € M, M,t |= ¢, iff s = t. It implies that s € S” iff (for all i € G,
s € G;) iff M,s F Niea(Viec, pt) which is equivalent to M, s = A;cq Ki(Viee, p1)- That
means that M” = M| A\;cq Ki(V e, 1) and then M, s = (A;cq Ki(Vee, 91))¢ (because
s € 8" and M" s = ). We obtain M, s = (G)e.

Since sat can be implemented in polynomial time, (MC (GAL)) is in APTIME.

Proposition 5.32 (MC(GAL)) is PSPACE-hard.

Proof We prove that (MC(GAL)) is PSPACE-hard. Let ¥ = Q121...QrzrP (21, ..., 1)
be an entry of the problem QBF-SAT:
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e Q1,...,Qr e {V,3}

e 11,..,x are Boolean variables

o O(z1q,...,21) is a Boolean formula

We associate to ¥ a model My, = (Wi, Ri,..., Rg, V), aworld € Wy, and a formula

(W) € Lgq such that the following property (Py) is true:

=W iff Mg,z = ¢(9)

-----

{p;,p%,...,p,;,p,j} be the set of atoms, with V(p,”)={(z;,0)} and V(p;r):{(a:l,l)}. Let
Rz’ = Wm;k X Wm;k

Ry = {(s,s) such that s € W,.;.}
scient and that ¢ assumes this fact)

1,9 € AG and let us define { (We remark that g is omni-

i

Ml;k : P1 ¢(21,0) Py o(22,0) : ( . ) ¢ P, ¢(@k0) ————— %o

7 o(@1,1) Py o(w2,1) — (...) L pt(mkl)

Figure 5.5: A model to prove the hardness of MC(GAL)
R; is assumed to be reflexive, symmetrical and transitive, and R, reflexive

We now define some formulas:
foralll e {1,....k},q = Kz(p; A Kiﬁpf) Vv IAQ(pl+ A K;—p; ) and r; = sz;r A [A(lpf

Intuitively, M  |= 7 means that (x;,0) and (z;, 1) are still possible worlds of the model (i.e.
the truth value of ; is not fixed) and M, j |= ¢ means that one and only one of (z;,0) and
(x7,1) is still a possible world (i.e. we have fixed the value of z;).
We can now define the equivalence recursively:

let 1y = @(Kipf, ... ,KipZ), suppose 1; is defined for some [ < k, then

et = Kilgll@ Ao Aot A1t A oo A — ) i Qi =V
1= g :
Ki<g>(q1 N e ANt ANT—i41 N\ .. AT A T,Z)l) if Ql-i—l =

Finally, ¥(¥) = 9.
Example: If U = Va32oVe3P (a1, 22, x3) then:

V(W) = Kilgl(q1 Ar2 Ars — Ki(g) (a1 A g2 Ars AKG[gl(ar A e Ags — @(KapT ..., Kip)))))
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Intuitively, K;[g](q1 A r2 A T3 — ¢) means ‘After having fixed the value of x; only, ¢’ and
Ki<g>(q1 A1y A3 A @) as ‘There is a way of fixing the value of x; only, such that ¢’. We can
now prove = ¥ < My, x = (V) by induction on k. The induction is quite technical, but
the intuition is that something is true after having fixed the value of k£ + 1 boolean variables
if and only if it is true after having fixed the value of the first k£ variables, added the final one
and then fixed its value. More precisely:

Base case: k= 1:

U = Qix1P(x1), and Mj : P o(#1,0) — To

)
. 7
i

pir .(11 ’1)

o If Q1 =V then = VU iff (F ®(T) and = ®(L))
i (gt oo FO(Kipf) and g 1 o = O(Kip)))
iff My, | Kilgl(ar — @(Kip})) ie. Mu,a = ()

e Else, Q1 =Jand = ¥ iﬁA (E®(T) or =@(L)) )
iff ( P o NS @(Kip;r) O pi o NS @(sz;r))
iff M,z = Ki(g)(q1 A ®(K;pl)) ie. My, z = (P)

Inductive case: k — k + 1:

Suppose that (Py) is true, and let us note: ¥ = Q121...QrrkQrr1Tkr1P (21, ..., Ty Tp11)-
We pose U (z1) = Qoza..QrrrQr i1k 1P(21, ..., Tk, Tpy1) and we have = U o= QiU (xy).
Thus:

o If Q1 =V then = W iff (= ¥(T) and = ¥(L))

iff Moy, @ = 9(8(T)) and Moy, @ b= 9 (W(L)) (by TH)

iff Mygor,2 b= Kilgl(qu Ara Ao Arger — (O (Kp))))

with ¢* obtained by replacing any succession g2 A ... by g1 Aga A ...
o If Q = 3 then = U iff (= ¥(T) or = U(L))

iff Maygir, @ = 9(8(T)) or Moy, z = ¢(¥(L)) (by IH)

iff M1,z b= Kilg) (g Ara A Argan A (U (Kp))))

We conclude:

Theorem 5.33 (MC(GAL)) is PSPACE-complete.

We observe that our results also extend to APAL: the model checking problem for arbi-

trary public announcement logic is also PSPACE-complete. A relevant detail in the proof of
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Proposition 5.32 is that it involves an omniscient agent g, and that the role of [g] is in APAL
played by O, and that of (g) by ¢. (See also the expressivity result involving g, Proposition
5.29.)

5.4 Announcements and Ability

Our initial intuitive interpretation of a formula of the form (C)p was that coalition C has the
ability to make ¢ come about by making some public announcement. We now have a better
understanding of group announcement logic; let us discuss to what extent that intuition is
precise.

Recent work on strategy logics have illuminated the fact that there are many subtly
different notions of ability in the context of incomplete information (see [Jamroga, 2003,
Jamroga and van der Hoek, 2004, Agotnes, 2006] or [Jamroga and Agotnes, 2007] for a
recent summary). For example, does ability entail knowledge of ability? In
[Jamroga and Agotnes, 2007, p. 433] three levels of ability in general strategy logics are
discussed. We now discuss counterparts of these in the special context of truthful public
announcements. In general strategy logics, such as ATL or STIT, agents and coalitions can
perform arbitrary state-transforming actions. In our setting the actions are truthful announce-
ments, and there is thus an intimate relationship between knowledge and ability. There are
two main questions of interest related to the mentioned different variants of ability here: are
they indeed different in this special context, and are they expressible in the logical language
of GAL?

5.4.1 Singleton Coalitions

For simplicity we first consider a singleton coalition {a}. What does it mean that agent a has
the ability to make a goal ¢ come about by making a public announcement? Let us begin

with the weakest form of ability.

Being able to, but not necessarily knowing it The formula (a)p means that there is
something which a knows, and if the fact that a knows it is announced, ¢ is a consequence.
However, it might be the case that a doesn’t know this, i.e., that K,{(a)y is not true. As an
example, first observe that (K,1)¢ — K,(K,1)¢ is not a principle of public announcement

logic. As a counter-example take state s of the following model

and take ¥, = T and ¢ = p. However, this does not mean that a cannot achieve ¢ in
all her accessible states by some other announcements (possibly different ones in different
states). But in group announcement logic, we have in the model above that s = (a)p (a can

announce K, T), but t i~ (a)p and thus, s = =K, {a)p. So, (a)p — K,{a)y is not a principle
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of group announcement logic. This is a first illustration of the fact that we must be careful
when using the term “ability”: in some (but not necessarily all) circumstances it might be
counter-intuitive to say that a has the ability to make ¢ come about, when she is not aware
that she is; when she cannot discern between the actual situation and a situation in which

she does not have this ability.

Being able to, knowing that, but not knowing how Consider the following model M

(some model updates are also shown):

M: M|K1p: M|Kq :
.;pvq .;‘pvq

, 2 2

- 2‘ 1 P.q .P7ﬁq 2 .p7q 1 .p,q 1 P.q
.€7 q .qu .t7 v s t .€7q .t7

and let
¢ = Koq A (~Kap V K1 (Kap A ~Kaq))

If we take the current state to be s, we have a situation where 1 is able to make ¢ come
about and where she in addition knows this; a stronger type of ability than in the example
above. Formally: s = (1), because s = (K1q)p, and t = (1)¢ because t = (Kip)p. Thus,
s = K1(1)p. However, we argue, it might still be counter-intuitive to say that 1 can make ¢
come about in this situation. The reason is that she has to use different announcements
in indiscernible states. Observe that s = (Kip)—¢ and t = (Kiq)—¢: while the same
announcements can be made in both states, they don’t have the same consequences. In
fact, there exists no single announcement agent 1 can make which will ensure that ¢ will
be true in both s and ¢. To see this, we can enumerate the possible models resulting from
1 making an announcement in s or ¢t. Because such a model must include 1’s equivalence
class {s,t}, there are four possibilities. First, the starting model itself (e.g., 1 announces a
tautology), in which ¢ does not hold in s. Second, the model where only state u is removed
(e.g., 1 announces K1p), in which ¢ does not hold in s (as we saw above). Third, the model
where only state v is removed (e.g., 1 announces K1q), in which ¢ does not hold in ¢ (as we
saw above). Fourth, the model where both u and v are removed, in which ¢ holds in neither
s nor t.

Since agent 1 cannot discern state s from state ¢, she has the ability to make ¢ come
about only in the sense that she depends on guessing the correct announcement. In other
words, she can make ¢ come about, knows that she can make ¢ come about, but does not

know how to make ¢ come about.

Being able to, knowing that, knowing how Thus, we can formulate a strong notion of

the ability of a to achieve ¢ by public announcements: there exists a formula v such that a
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knows 1 and in any state a considers possible, (K,1)¢ holds.

Compare this version of ability, “there is an announcement which a knows will achieve
the goal”, with the previous version above, “a knows that there is an announcement which
will achieve the goal”. We can call these notions, respectively, knowing de re and knowing de
dicto that the goal can be achieved, following [Jamroga and van der Hoek, 2004] who use the
same terminology for general strategy logics, after the corresponding notion used in quantified

modal logic. In our framework these notions are more formally defined as follows:

Knowledge de dicto: Agent i knows de dicto that she can achieve the goal ¢ in state s of
model M iff

Vit~ s I € Lo (M) | (Kih)y (5.1)

Knowledge de re: Agent i knows de re that she can achieve the goal ¢ in state s of model

M iff
W € Lo Vit~ s (M, 1) = (Kith)p (5.2)

Note, however, that it is not prima facie clear that there is a distinction between these
notions in GAL, because of the intimate interaction between knowledge and possible actions
(announcements), but the model and formula above show that there indeed is.

We have seen how to express knowledge de dicto. In the most popular general strat-
egy logics such as ATL, where actions are not necessarily truthful announcements, extended
with epistemics, knowledge de re is not expressible. Several recent works have focussed on
extending such logics in order to be able to express knowledge de re and other interaction prop-
erties between knowledge and ability : see [Jamroga and van der Hoek, 2004, Agotnes, 2006,
Jamroga and Agotnes, 2007, Broersen, 2008]. In the special case of GAL, however, it turns
out that knowledge de re in fact is already expressible (in the single agent case, at least), as

the following proposition shows.
Proposition 5.34
1. Knowledge de dicto (5.1) is expressed by the formula K;{(i)p

2. Knowledge de re (5.2) is expressed by the formula (i) K;

Proof
1. Immediate.

2. Let M be a model and s a state in M.
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Agent i knows de re that she can achieve ¢

iff J¢ e Ly, (M,s = Kip and Vit € S (if s ~; t then M, t = (K)p))

iff Fpely (M,sE Kipand Vi € S (if s ~; t then M|K;,t = ¢))
(since M, s = K;1 and s ~; t implies that M, t = K;v)

iff J e Ly, (M,s = Kip and Vit € [Kip], MK, t = p)

iff J e Ly, (M,sE Kb and Vi € [Kh], (if s ~; t then M|K;9,t = ¢))

it Jy e Loy((M,s) E Kipp and M|K;p, s = Kip)

iff (M,s) = (i) K,

O
Thus, ¢ knows de re that she can achieve ¢ iff she can achieve the fact that she knows .
This depends crucially on the fact that by “achieve” we mean achieve by truthful public
announcements; it is not true if we allow general actions. As an illustration of the latter case,
take the following example. An agent ¢ is in front of a combination lock safe. The agent does
not know the combination. The available actions correspond to dialling different codes. The
agent is able to open the safe, (i)open, because there is a successful action (dial the correct
code). She knows de dicto that she can open the safe, K;(i)open, because this is true in
all the states she considers possible (a possible state correspond to a possible correct code).
But she does not know de re that she can open the safe, because there is no code that will
open the safe in all the states she considers possible. However, (i) K;open does hold: there
is some action she can perform (dial the correct code) after which she will know that the
safe is open. In GAL, the fact that (i) K;p expresses (5.2) is a result of the inter-dependence
between knowledge and actions (announcements) and the S5 properties of knowledge. The

following are some properties of knowledge de dicto and de re in GAL.
Proposition 5.35 The following are valid.

1. K;(iYyp — (i)p. Knowledge de dicto of ability implies ability; if you know that you can

do it then you can do it.

2. (YKo — Ki(i)p. Knowledge de re implies knowledge de dicto; if you know how to do

it you know that you can do it.

3. (YKo « K;(i)K;p. Knowledge de re holds iff knowledge of knowledge de re holds; you
know how to do it iff you know that.

Proof The first point is immediate from reflexivity of the accessibility relations. The second
point is also immediate; let ¢ be fixed by (5.2). For the third point, the direction to the left
is immedate by point 1, so consider the direction to the right. Assume that M, s = (i) K;p,
i.e., that (5.2) holds. Let u ~; s. We must show that 3 € L Vt ~; u (M, t) E (K)ep.
Let ¢ be as in (5.2), and let ¢ ~; u. By transitivity of ~; we have that ¢ ~; s, and thus that

(M, t) = (Kip)p by (5.2).
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O

On first sight the expression (i) K;¢ of knowledge de re might seem to suffer from a similar
problem as the expression of “mere” ability of the first type we discussed above, (i), namely
that while ¢ has the ability to make ¢ come about she does not necessarily know this (de
dicto). However, as the last point in the proposition above shows, if 1 is of the special form
K;p (for the same agent i), then ability does in fact imply knowledge of ability. In every
circumstance where you can achieve a state where you know ¢, you know that you can.

As illustrated above, the other direction of the second property in Prop. 5.35 does not
hold; knowledge de dicto does not imply knowledge de re. Given our expressions of these two

properties, we thus have that
K; (i) — (i) K;p is not valid

— that you know that you can achieve ¢ does not necessarily mean that you can achieve a

state where you know ¢.

5.4.2 More Than One Agent

In the case of more than one agent, there are even more subtleties. In particular, what does
it mean that a group knows how to achieve something, i.e., knows which joint announcement
will be effective? That everybody knows it? That they have common knowledge of it?

In [Jamroga and van der Hoek, 2004] it is argued that the answer depends on the situa-
tion. It might be the case that the agents have common knowledge (although they then need
some resolution mechanism for cases when there are more than one effective announcement,
in order to coordinate); that every agent knows the effective announcement; that the agents
have distributed knowledge about the effective announcement and thus can pool their knowl-
edge together to find out what they should do; that a particular agent (the “leader”) knows
the effective announcement and can communicate it to the others.

In GAL we do not have distributed or common knowledge in the language, but “everybody
knows” can be defined: Egyp = \,co Kip, where G is a coalition. The following generalisation
of (5.2) says that in state s coalition G can make a truthful announcement which all the

members of G know will achieve the goal ¢:

Heitica C La V(t,s) € |~ (M) ()\ Kibig (5.3)

i€G i€G

However, while the single agent case (5.2) is expressed by (i) Ky, it is not in general the
case that (5.3) is expressed by (G)Eg¢. The following is a counter-example. Let M and ¢

be the following model and formula.
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p,—q
o
1.t
.qu
—P,q
®y
p=pAq

Let G = {1,2}. It is easy to see that group G in s does not know de re that they can achieve ¢
in the sense of (5.3): it would imply, for instance, that it is possible to make an announcement
in state ¢ which at the same time eliminates state ¢ — which is impossible. However, (1,2)Egp
holds in s — {1, 2} can announce Kip A Kagq.

Let us consider distributed and common knowledge. Assume for a moment that the
language is extended with operators C and D¢ where G is a coalition, such that M, s = Dy
iff for all (s,t) € ;e ~i M, t =@ and M, s |= Cgy iff for all (s,t) € ~g* M,t |= ¢, where
~@g" is the reflexive transitive closure of | J;c; ~i. The following version of (5.3) says that in

s, G can make a truthful announcement which G distributively know will achieve the goal (:

Hitiec C La VEES <(3,t) € ~i= M) = (A Ki¢i>§0> (5.4)
i€ 1€G
Contrary to the case for “everybody knows”, this property is in fact expressed by the analogue
to the expression for the single-agent case. This can be shown similarly to Prop. 5.35 — observe
that (s,t) € (e and M, s = \,;cq Kitbi implies that M, t |= A\, oo Kii:

Proposition 5.36 The property (5.4) is expressed by the formula (G)Dgp.

The situation for common knowledge is, however, similar to that of “everybody knows”.
The following version of (5.4) says that in s G can make a truthful announcement which G

commonly know will achieve the goal ¢:

Hehitica C Lo Vivg™s (M,1) (N Kibi)e (5.5)
i€G
The model M, formula ¢ and coalition G = {1,2} above is a counterexample showing that
(5.5) is not expressed by (G)Cgp: (5.5) does not hold in state s, but M, s = (G)Cgep.
Summing up, it can be argued that all of the different notions of ability discussed in this
section are useful. For example, in different contexts it might be useful to reason about what

an agent can achieve by guessing the right actions to perform, while in others what she can
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achieve by identifying the correct actions with certainty. It is, however, of vital importance to

discriminate between these different notions, for example in the analysis of security protocols.

5.5 Security Protocols

Consider a sender and a receiver who attempt to communicate a secret to each other without
an eavesdropper learning it. A very powerful eavesdropper is one that intercepts all com-
munications. This creates the setting where sender, receiver, and eavesdropper are three
agents that can be modelled in a multi-S5 system and where all communications are public
announcements by sender and receiver. One specific example of such a setting is known as
the Russian Cards Problem (see [van Ditmarsch, 2003]). The setting is one where a pack of
all different cards are distributed over the three ‘players’, where every player only knows his
own cards, where sender and receiver have an informational advantage over the eavesdropper
because they hold more cards, and where the ‘secrets’ that should not be divulged are about
card ownership. Posed as a riddle it looks as follows—Alex and Brune are sender and receiver,

Cha the eavesdropper:

From a pack of seven known cards 0, 1,2, 3,4, 5,6 Alex and Brune each draw three
cards and Cha gets the remaining card. How can Alex and Brune openly (publicly)
inform each other about their cards, without Cha learning from any of their cards
who holds it?

To simplify matters, assume that Alex has drawn {0, 1,2}, that Brune has drawn {3,4,5}
and that Cha therefore has card 6, as in Figure 5.6.

Figure 5.6: Three moody children playing in the Russian cards problem

The initial Kripke model D describing this setting consists of all possible card deals (val-
uations). In that model an epistemic class for an agent can be identified with the hand of

cards of that agent. For example, given that Alex holds {0, 1,2}, he cannot distinguish the
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four deals—allow us to use some suggestive notation—012.345.6, 012.346.5, 012.356.4, and
012.456.3 from one another.

Given that all announcements that can be made by a player are known by that player,
they consist of unions of equivalence classes for that player and can therefore be identified

with sets of alternative hands for that player. One solution is where

Alex says “My hand of cards is one of 012,034,056, 135,246” after which Brune
says “My hand of cards is one of 345,125,024.”

The last is equivalent in that information state to Brune saying “Cha has card 6.” Alex and
Brune in fact execute a protocol here, not in the sense of sets of sequences of announcements
but in the sense of functions from local states of agents to nondeterministic choice between
announcements. For example, Alex is executing “given cards i, j, k, the first of my five hands
is that actual hand ijk; the second of my five hands to announce is ikl where k,[ are chosen
from the five remaining cards; the third is ¢mn where m,n are the remaining two cards; etc...;
shuffle the hands before announcing them.”

We can describe this solution in logic. Agent a stands for Alex, b for Brune, and ¢ for Cha.
Let g; stand for ‘agent ¢ holds card ¢’ and let kim; stand for k; Al; Am;. The information and
safety requirements are as follows — the conjunction in the formula suggests a conjunction
over all hands of cards, ‘Cha does not learn any card’ means ‘Cha does not learn the ownership

of any card except her own card.’

Alex learns Brune’s cards Niji(igky — Kqijks) (one)
Brune learns Alex’s cards Niji(ijka — Kyijka) (two)
Cha does not learn any card /\2:0((% — 2 K.qo) A (qy — —Keqp))  (three)

These requirements should hold throughout the model after protocol completion (i.e., they
should be common knowledge between Alex and Brune). The safety requirement should be
satisfied both at the end and in all intermediate stages: after any announcement that forms
part of such a protocol.

All protocols are finite, because the model is finite and all informative announcements
result in proper model restriction. But it is unclear how long such protocols need to be.
The above solution was of length two, but settings that require strictly longer protocols are
also known. The uncertain but finite length cannot be described in public announcement
logic, but it can be described in group announcement logic. The diamond in (ab)y refers to
arbitrarily finite length protocols taking place between sender a and receiver b in the presence

of other agents, such as the eavesdropper, as was discussed in Section 5.1.3.

Let us see how this works for the length-two protocol above that solves the Russian Cards
Problem. First, we model the solution in public announcement logic. In the solution, first
Alex announces 012,V034,V056,V135,V246, (alez). Then Brune announces 345,V 125,V 024
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(brune). After these two announcements the solution requirements are satisfied. This can now
be described in various ways: as a sequence of two announcements by different agents, as a
sequence of two simultaneous announcements by Alex and Brune, or as a single announcement

by Alex and Brune.

D, 012.345.6 = (Kyalex)(Kpbrune)(one A two A three)
D,012.345.6 = (Kalex N KpyT)(K,T N Kpbrune)(one A two A three)
D,012.345.6 = (K (alex A [Kqalex N KyT)T) A Kp(T N [Kgalex A KT |brune))(one A two A three)

The last one implies that we have, in this case:
D, 012.345.6 |= (ab)(one A two A three)

Given that we should be able to realize the three postconditions after any execution of the
underlying protocol, and regardless of the initial card deal, the existence of a successful

protocol to realize them can be expressed all at once by the model validity
D = (ab)(one A two A three)
or in other words
“(ab)(one A two A three) is valid in the initial model for card deals” (5.6)

In principle, we can now model check this formula in that model, thus establishing that a
secure exchange is possible under the uncertainty conditions about card ownership in a fully

automated way.

We have so far overlooked one aspect of the meaning of announcements executing such
protocols. The security requirement three should be an invariant: its validity throughout
the model should be preserved after every good announcement. In this particular case we
can enforce that, because its negation is a positive formula: if it is ever not preserved, then
it is lost forever afterwards. Therefore, it suffices to guarantee it after the execution of the

protocol. Thus the above expression also incorporates that invariance.

One must be careful when interpreting the meaning of the existence of sequences of an-
nouncements. If we can replace the two successive announcements: Alex says “My hand
of cards is one of 012,034,056, 135,246” after which Brune says “My hand of cards is one
of 345,125,024, by a single one, does that not mean that all protocols can be reduced to
length 1?7 And what would in this case that single simultaneous announcement be? Well: as
both agents are announcing facts and not knowledge, their single announcement is simply the
conjunction of their successive announcements. As the second one for Alex and the first one

for Brune was ‘true’ (vacuous), this means that they could simultaneously have made their



5.5. SECURITY PROTOCOLS 127

successive announcements: Alex says “My hand of cards is one of 012,034, 056, 135, 246" and
simultaneously Brune says “My hand of cards is one of 345,125,024”. Unfortunately, even
though this indeed solves the problem, the agents do not know the public consequences of
their joint action merely from the public consequences of their individual part in it. This
situation was discussed in the previous section: there is a simultaneous announcement by
Alex and Brune which will achieve the goal, but Alex and Brune do not know that their
respective announcements will achieve the goal — they will not achieve the goal in all the
states they consider possible. A different execution of the protocol for Alex, when he holds
cards {0, 1,2}, is the announcement “My hand of cards is one of 012, 035, 046, 134, 256”. From
that with Brune’s above announcement Cha can deduce straightaway that the card deal is
012.345.6. And, obviously, Brune does not know whether Alex is going to announce the origi-
nal or the alternative set of five hands, or any of many others. In epistemic terms,we can sum
up our achievements for this security setting as follows, also using the discussion and results
of Section 5.4.

D E (ab)(one A two A three) (5.7)

D [~ (ab) Kq(one A two A three) (5.8)

D = (ab) Kp(one A two A three) (5.9)

D = (a) K4 (two A three A (b) Kp(one A two A three)) (5.10)

Recall (Proposition 5.34.2) that a formula of the form (i) K;p expresses the fact that agent 4
knows de re that she can achieve ; that she can make an announcement that will ensure that
 is true in any state that i considers possible. Thus, the last formula above, (5.10), expresses
the fact that there is an announcement that Alex can make after which Brune has learnt his
cards and Cha remains ignorant, no matter which of the four card deals Alex considers possible
is the actual one, and such that Brune then can make an announcement after which all three
requirements hold. Thus, it is rational for Alex to make that announcement, and for Brune
to make a proper counter-announcement in the resulting state. Unlike the property (5.6),

(5.10) shows that Alex and Brune know how to execute a successful protocol.






CHAPTER 6
Permission and Public

Announcements

Consider an art school examining works at an exhibition. A student is supposed
to select one of the displayed works and is then permitted to make a number
of intelligent observations about it, sufficient to impress the examiners with the
breadth of her knowledge. Now in such cases it never hurts to be more informative
than necessary, in order to pass the exam, but a certain minimum amount of
intelligent information has to be passed on. This particular museum has both
the Night Watch by Rembrandt and Guernica by Picasso on display in the same
room! You pass the exam if you observe about the Night Watch that a big
chunk of a meter or so is missing in the left corner, that was cut off in order to
make the painting fit in the Amsterdam Townhall (a1), and that the painter was
Rembrandt van Rijn (ag). Clearly, this is not a very difficult exam. You also
pass the exam if you make two of the three following observations: that Guernica
depicts the cruelties of the Spanish Civil war (by), that it is painted in black and
white and not in colour (b2), and that the painter was Pablo Picasso (b3). It is not
permitted to make observations about different paintings at the same time, so any
conjunction of a;’s and b;’s is not permitted: it would amount to bad judgement if
you cannot focus on a single painting. You are obliged to make two observations
about the Rembrandt and in that case say nothing about the Picasso, or to make
at least two of the three possible observations about the Picasso and in that case
say nothing about the Rembrandt. We can treat the permissions and obligations

in this setting in an extension of public announcement logic.

To formalize the concept of “having the permission to say” we extend Plaza’s public
announcement logic [Plaza, 1989] with a modal operator P of permission, where Py expresses
that it is permitted to say (i.e., announce) .

Our proposal can be seen as an adaption of the dynamic logic of permission pro-
posed by [van der Meyden, 1996]. Van der Meyden’s proposal was later elaborated on by
[Pucella and Weissman, 2004]). In Van der Meyden’s work, O(«, ) means “there is a way
to execute o which is permitted and after which ¢ is true.” We treat the particular case

where actions are public announcements. Thus, for « in van der Meyden’s {(«, ¢) we take

129
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an announcement 1! such that ¢(¢!, ¢) now means “there is a way to execute the announce-
ment 1 which is permitted and after which ¢ is true.” The executability precondition for an
announcement (‘truthful public announcement’) is the truth of the announcement formulas,
therefore, the latter is equivalent to “1 is true and it is permitted to announce 1, after which
¢ is true”. This suggests an equivalence of {(v!, p) with, in our setting, Py A (1))p, but our
operator behaves slightly different. This is because we assume that if you have the permission
to say something, you also have the permission to say something weaker, and because our
binary permission operator allows update of permissions after an announcement.

[van der Meyden, 1996] also introduces a weak form of obligation. The meaning of O(«, ¢)
is “after any permitted execution of «, o is true”. Similarly, we also introduce an obligation
operator Oy, meaning “the agents are obliged to announce @.”

This chapter further relates to the extension of public announcement logic with protocols
by [van Benthem et al., 2009, Wang et al., 2009]. In their approach, one cannot just announce
anything that is true, but one can only announce a true formula that is part of the protocol,
i.e., that is the first formula in a sequence of formulas (standing for a sequence of successive
announcements) that is a member of a set of such sequences called the protocol. In other
words, one can only announce permitted formulas.

In the setting of informative actions like announcements we leave the beaten track for
permission in one important aspect. Cha is given permission by her parents to invite uncle
Jean for her 8th birthday party with his children friends and for a delightful canoe trip on
the river Rhone, but not for the family dinner afterwards. When seeing uncle Jean, she only
mentions the canoe trip but not the children’s party. She does not mention the family dinner.
Has she transgressed the permissions given? Of course not. Permission to say p A ¢ implies
permission to say only ¢. She has also not transgressed the permission if she were not to invite
him at all. Permission to say p A ¢ implies permission to say nothing, i.e., to say the always
true and therefore uninformative statement T. Similarly, an obligation to say ¢ entails the
obligation for anything entailed by ¢. If you are obliged to say p/Agq you are also obliged to say
q. Now saying q does not therefore mean you have fulfilled the original obligation of pAgq, you
have only partially fulfilled the entailed weaker obligation of ¢. It may be worth to already
point out as this stage that the weakening of announcement formulas is unrelated to Ross’s
Paradox (see [Ross, 1941]): this is about the obligation to do one of two possible actions—the
alternative to that in public announcement logic would be the obligation to make one of two
possible announcements (announcement of) ¢ and (announcement of) v, completely different
from the obligation to make an announcement of (the disjunctive formula) ¢ V1. As we saw
in Section 3.2, in dynamic epistemic logics, there is a clear distinction between actions and
formulas. We comment the validity of the classical deontic paradoxes in Section 6.5.1.

We present first the syntax and the semantics of our logic, continue with various validi-
ties and semantics observations, and conclude with the completeness of the axiomatization

and the decidability of the problem of satisfiability. After that we present an example in
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detail: the card game La Belote. We conclude with some observations relating to stan-
dard deontic logical topics, and a more detailed comparison of our proposal with the rele-
vant dynamic logical literature, i.e. with [van der Meyden, 1996, Pucella and Weissman, 2004,
van Benthem et al., 2009].

Most parts of this chapter have been published in the Journal of Philosophical Logic
([Balbiani and Seban, 2011]).

6.1 The Logic of Permission and Obligation to Speak

6.1.1 Syntax

The logic POPAL of permitted announcements is an extension of the multi-agent epistemic

logic of public announcements ([Plaza, 1989]).

Definition 6.1 (Language Lpopar) The language Lyopa over a countable set of agents AG

and a countable set of propositional atoms PROP is defined as follows:

@ == p|L|—l V o|Kip|[Y]e|P(1, ¢) |0, ¢)

where i € AG and p € PROP. The language Lyoe 15 the fragment without announcement
construct []p, the language Lpq is the fragment without O and P, and the language L is

the fragment restricted to the Boolean and epistemic operators.

The intuitive reading of K;p is “agent i knows that ¢ is true” whereas [¢]¢ is read as “after
announcing 1, it is true that ¢”. We read P(, ) as “(¢ is true and) after announcing 1, it
is permitted to announce ¢”. Similarly, O(1), ¢) stands for “(3 is true and) after announcing
W, it is obligatory to announce ¢”. Note that announcements are assumed to be public and
truthful. Definitions by abbreviation of other Boolean operators are standard. Moreover, we

define by abbreviation:

o (V)¢ =[] -e;
e Pp:=P(T,p);
o Op :=0(T,).

Formula Py stands for “It is permitted to announce ¢” and Oy stands for “It is obligatory
to announce ¢” (the semantics also entails the truth of ¢, in both cases); (1)p stands for “4
is true and after announcing 1, ¢ is true.” Note the difference with [¢]p: “if 1 is true, then

? The latter is vacuously true if the announcement cannot be

after announcing it, ¢ is true.
made.
The degree deg of a formula is a concept that will be used in the completeness proof, in

Section 6.2.2. It keeps count of the number of P and O operators in a given formula.



132 CHAPTER 6. PERMISSION AND PUBLIC ANNOUNCEMENTS

Definition 6.2 (Degree) The degree of a formula ¢ € Lpopa s defined inductively on the

structure of ¢ as follows:

() =0 deg(1Vp2) = max(deg(ir), deg(2))
(L) =20 deg([4]p) = deg(¥) + deg(y)
deg(—y) = deg(y) deg(P(¥,p)) = deg(y)+deg(p) +1
deg(Kyp) = deg(y) deg(O(,p)) = deg(¥)+ deg(p) +1

This is therefore not the usual modal degree function, that counts K; operators. For all

formulas ¢ € Lpopar, deg(p) = 0 iff ¢ does not contain any occurrence of P or O iff ¢ € L.

6.1.2 Semantics

The models of our logic are Kripke models with an additional permission relation P between
states and pairs of sets of states, that represents, for each state, the announcements that are

permitted to be done in this state.

Definition 6.3 (Permission Kripke Model) Given a set of agents AG and a set of atoms
PROP, permission Kripke models have the form M = (S,{~;}icag,V,P) with S a non-
empty set of states, for each i € AG, ~; an equivalence relation between states of S, valuation
function V. mapping propositional atoms to subsets of S, and P C S x 2% x 25 such that if
(s,5',5") € P then s € S” and S" C 5.

If the equivalence relation ~; holds between states s,t € S, this means that, as far as
agent ¢ is concerned, s and ¢ are indiscernible. The membership of (s,5’,5”) in P can be
interpreted as follows: in state s, after an announcement that restricts the set of possible
states to S’, a further announcement in S’ that restricts that set to S” is permitted. We will
explain this in more detail after giving the semantics.

We simultaneously define the restriction My, of a model M after the public announcement
of 1, and the satisfiability relation |=. In the definitions we use the abbreviation [¢]r =
{s € S| M,s = }. If no ambiguity results, we occasionally write [¢] instead of [)] .

Definition 6.4 (Restricted model) For any model M and any ¢ € Lyopar, we define the
restriction My, = (Sy, N?, Vi, Py) where:

o Sy = [¥]m
o for all i, N? =~ N (S¢ X Sw)

e for all p € PROP, Vy(p) = V(p) N Sy,

o Py=1{(s,5,8")€P|secSy S C8yS" C Sy}
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Definition 6.5 (Satisfiability relation) Let M be a model and let s be a state of S. The
satisfiability relation |= is defined inductively on the structure of p:

M, sEpiff s€V(p)

M, s L

M, s |= 1 iff M, s =

M, s =1V iff (M, s =41 or M, s |= 1)

M, s = Ky iff for all t ~; s, M,t =1

M, s = [Wlx iff (M,s == My, s = x)

M, s |= P(,x) ilf for some (s, []m, 5") € P, 8" € [{$)x]m
M, s = O, x) ilf for all (s, [Y]m, 5") € P, " € [(@)x]m-

For all ¢ € Lpopar, M |= @ iff for all s € S, M, s |= ¢; and = ¢ iff for all models M we
have M |= .

We do not impose that S” and S” are denotations of formulas in the language for (s, S’,5")
to be in P. This semantics is thus more general than the intuitive one for “having the
permission to say”. Indeed, if S’ or S” do not correspond to a restriction of S made by
an announcement, then (s,S5’,5”) € P does not correspond to some announcement being
permitted.

The semantics of P (1, x) expresses that after announcement of 1 it is permitted to an-
nounce a y weaker than the restriction given in the relation P. If the S” in (s, [¢], S”) is the
denotation of some [(¢))¢], we get that after announcement of 1) it is permitted to announce

a x weaker than (implied by) ¢.

Remark 6.6 For any finite list of formulas o = (o1, ...,0,) we can define M, by a direct in-
duction on the length of o. Similarly, for every ¢ € Lpopa we abbreviate [o]p = [o1] ... [op]e.
This will be particularly useful in Section 6.6.

We shall make another important observation before going ahead. In Proposition 6.7 we
notice that L,op, may be reduced to a language with a unary operator Py that we would
read simply ‘it is permitted to say ¢’. We get the equivalence of their expressivity through
the translation P(1, ¢) := (1) Pp. We prove this result after discussing it a while.

The language with unary operator (let us call it Ejlwpal
venience with respect to Lyope. Its advantage is that it is easier to read and to translate into

) has an advantage and an incon-

natural language: sentences such as ‘after the announcement of 1 it is permitted to say ¢’ are

quite boring and not intuitive. Its inconveniences are on one hand that the unary nature of
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its operators is farther to the semantics made of triplets that we just saw, on the other hand
that technical results are more difficult to obtain, because the language cannot be reduced
to a language without announcements. In the following chapter we decided to use a kind of
language with unary operator, but in this one let us use binary ones.

As we show now, both languages are expressively equivalent, and the reader may prefer
to translate binary operators into unary ones using the translation P (v, ¢) := (1) P used in

the following proof.

Proposition 6.7 The language L,opq 15 expressively equivalent to the language [,Zlmpal.

1
popal?

of the former, considering that the Py and Op are defined by the following abbreviations

Proof Clearly, Ly, is at least as expressive as £ indeed the latter is a sublanguage

Py := P(T,¢) and Op := O(T,¢). To prove the equivalence, it is thus sufficient to prove
that for all 1, ¢ € Lpopal, = P, ) «— ()P(T,¢) and = O, ) «— ()O(T,p). We
refer to proposition 6.9 to see that = [¢Y]P(T,¢) «— (¥ — P(¢,p)) and = [¢]O(T,¢) «—
(v — O(¥,¢)). It remains to prove that = P(1,p) — ¢ (and idem for O). But by
definition of 7, if (s, [¥]m,S”) € P then s € [)]pm. Then we have the wanted result.

(]

6.1.3 Example: Art School

Consider the example presented in the introduction. In an art school examination you are
asked to “describe precisely one (and only one) of the presented pictures”. There are two
distinct sets of intelligent observations to make (modelled as atomic propositional variables):
A ={ay,a2}, B = {b1,be,b3}, with AU B = PROP. The domain of discourse consists of

— 2PROP

all possible valuations S , in the actual state s all atoms are in fact true, and our

student is in fact an omniscient agent g (i.e. ~,= idg) that can announce anything she likes.
The set P is given as P = {(s, [ T], [a1 Aaz2]), (s, [ T], [b1 Ab2]), (s, [ T], [b1 Ab3]), (s, [T], [b2 A
bs]), (s, [T], [b1 A b2 Abs])}. Note that [T] = S. We now have that

e It is permitted to say a1 (M,s = P(T,a1)), because (s,[T], [a1 A az]) € P and [a; A
az] C [(T)a1]am (where [(T)ai]am = Jar]m): it is permitted to say something weaker
than a1 A as.

e It is not permitted to say a; A by (M,s = =P(T,a1 A b2)) because the denotation of

that formula is not contained in either of the members of the set P.

e It is not obligatory to say a1 (M,s = O(T,aq)), because it is permitted to say by A ba,
and [[al]] Z [[bl VAN bg]]

e It is obligatory to say ob:= (a1 A ag2) V (b1 Ab2) V (ba Abs) V (b1 Abs) as all members of

‘P are stronger.
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This last obligation is also the strongest obligation in this setting. It is, e.g., also obligatory
to say a1 V by Vby (M,s = O(T,a; Vb1 Vb)) because this is weaker than ob. However, as
already mentioned, this does not mean that a student has fulfilled her obligation when saying
ay V by V by - she then only fulfills part of her obligation (and will therefore fail the exam!).
We observe that our intuition of what an obligation is corresponds to the strongest obligation
under our definition—reasons to prefer the current definition are technical, such as getting

completeness right. A different definition, nearer to our intuition, is proposed in Chapter 7.

6.1.4 Valid Principles and Other Semantic Results

The O and P operators are not interdefinable. This is because the obligation to say ¢ means
that anything not entailing ¢ may not be permitted to say, and not only that it is not
permitted to say —p. As an example, consider the following two models that have the same
domain S = {s1, s2}, the same valuation V' (p) = {s1}, the same epistemic relation ~;= 5 x S,
but that differ on the permission relation: M = (S,V,~;,P) and M’ = (S,V, ~;, P') where
P ={(s1,95,{s1}), (s2,5,5)} and P" = {(s1,5,{s1}), (51,5, 5), (s2,5,5)}.

Let £

popal
satisfy the same formulas in that language: for all k£ € {1,2} and all ¢ € /J;Opal, (M,si E v

be the language without the obligation operator O. The models M and M’

ifft M’,s; = ¢). The proof is obvious for all inductive cases of ¢ except when ¢ takes
shape P(1,¢). In that case, observe from the semantics of P and the given relations P and
P’ that only formulas of type P(T,2) (or simply P(yp2)) can be true in these models, as
the second argument of all triples in P and P’ is the entire domain S. Further these two
properties: first anything that is true in s; is permitted to be said, formally for all ¢ € L,opai,
M, s1 E ¢ < P(p) and M',s1 = ¢ < P(p). Second anything that is permitted to be said
in sy is a validity of the model, formally for all ¢ € Lpopa, M,s2 = P(¢) — (¢ < T) and
M s3 = P(p) = (¢ < T). So M and M' are modally equivalent in £ ,. On the other
hand, as (s,S,5) is not in P we have that M, s; = O(T,p) but M';s; = -O(T,p), so the

models are not modally equivalent in L,,,,. We conclude that:

Proposition 6.8 £;opal is strictly less expressive than Lpopai-

The standard validities for public announcement logic are preserved in this extension
of the logic with permission and obligation (for details, see a standard introduction like
[van Ditmarsch et al., 2007]):

o =[Wp— (¥ —0p)

o E[]L e

o = [Ylp < (v — —[Y]e)

o = [¥l(e1 V) < ([¥]erV [Wlp2)
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o = [YlKip — (¥ — Ki[{]op)
o = [Vn][Ye]p < [(1)a]p

For example, [¢]p < (¢» — p) says that p is true after announcement of ¢ iff 1) implies
p (is true). As @ is the condition to be able to make the announcement, this principle
merely says that an announcement cannot change the valuation of atoms. Of course, for
other formulas than atoms we cannot get rid of the announcement that way. A typical
counterexample (the Moore-sentence) is that (p A ~K;p) — (p A ~K;p) is a trivial validity
whereas [p A = K;p](p A —K,;p) is false, because whenever p A =K;p can be announced, p is
known afterwards: K;p.

Additional to the principles for public announcement logic, two principles address how to

treat a permission or obligation operator after an announcement.

Proposition 6.9
For all pE POPAL7 all wv 807w17¢27 P1,p2 € Epopal-'

1. E [ P(2, ) < (Y1 — P((Y1)Y2,9))
2. =[]0, @) < (b1 — O((Y1)12, ¢))

Proof For all M, all s € § and all ¥1,%2, ¢ € Lyopa We have:

1. (=) Suppose that M,s E [1]P(¢2,¢) and s € [¢1]Jpm. Then for some S”
[(W2)elmy, - (s, WQ]]Mwl’S,/) € Py,. This implies that for some S”
[P0 (@2)elms (s, (1), ) € Py, de. for some S" C [ (vha))elm,
(s, [{(¥1)¥2] r, 8”) € P. Finally M, s |= P((¢h1)12, @)

(<) Suppose that M, s = (1 — P((¢1)12, ). If M, s [~ 1)1 then obviously M, s |=
[1] P (12, ¢). Otherwise s € [Y1]am and M, s = P({(¢1)12, ). Therefore, there
exists S” C [({(¢1)12)@]m such that (s, [(¢1)a]am,S”) € P. Thus s € [¢1]m,
S" C [(W2)plm,, and (s, [¥2]rm,, . S") € Py,. Finally M, s |= [11] P (2, ¢).

C
C

2. (=) Suppose that M, s [= [11]O(12, ¢) and s € [¢p1]m. Then for all (s, [t2] a1, . S”) €
Py 8" C [(2)@lm,, - This implies that for all (s, [(¢1)v2]ar, S”) € Py,, S” C
[(1) (b2l ie. for all (s, [(Y1)vo]m, 5") € P, 8" C [(¢1)(vh2)p]ar. Finally
M, s |= O((¢1)th2, @).

(<) Suppose that M, s = (1 — O((Y1)12, ). If M, s = 11 then obviously M, s =
[1]O (2, ). Otherwise s € [1]m and M, s = O({(¥1)1a, p). Therefore, for all
(s, [(¥1)102] m, S”) € P we have S” C [{({(¢1)1p2)p]m. Thus s € [1p1]m and for all
(8, [¥2lmy, - S") € Py, we have S” C [(¥h2)@]rm,, - Finally M, s = [{1]O(¢2, ¢).
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O

For example, principle [¢1|P(¢2,¢) < (Y1 — P({(¢1)12,¢)) of Proposition 7.18 says
the following: “(After announcing i1 we have that (Vo is true and after announcing o
it is permitted to announce ¢)) iff (On condition that 11 is true ((1)2 is true and after
announcing (Y1)1y it is permitted to say ¢)).”

Using the meaning of the public announcement operator, the right part is the same as
“On condition that vy is true, after announcing 1, 9 is true and after then announcing s
it is permitted to say ¢.” Which gets us back to the left part of the original equivalence.

Another validity of the logic spells out that equivalent announcements lead to equivalent

permissions.

Proposition 6.10 For all models M and all formulas ¥, 0, ¢’ € Lpopar: If M = (¢ «——
V) A ([l — [¢]¢) then M = P(, ) — P, ¢') and M = O, 9) — O, ¢).

Proof For all ¢,9',p,¢" € Lopopar, it M E (@ «— ¢) and M |E (¥)p — ()¢, then
[Y]m = [¥' ] and [(W)p]a € [{(')¢ - Tt implies that for all (s, [¢]am, S”) € P, we have

(s, [¥'Ia, §7) € Prand if 5" C [(¢)¢] then S C [{)'¢'].
O

We continue with a proposition on allowed logical compositions of permitted and obliged

announcements.

Proposition 6.11 For all 1, ¢, 1,902 € Lyopal:

1. ): (O(Q/)a 501) A O(¢» (102)) A O(wv P1 A 302)
2. ): (PW, ng) A O(wv 902)) — P(¢7 P1 A 902)

3. = (Y AO@W, @) A=P(1h, ) < (p A=P(), T))

Proof For all models M and all state s € S we have

1. M,s E O, 1) A O, p9) iff for all (s,[¢],S”) € P, 8" C [()p1] & S” C
[()pa] iff for all (s, [¢],5") € P, " C [(W)pr] N [{¥)p2] = [(¥) (1 A p2)] if M, s =
O, o1 A p2).

2. Suppose M, s |= P(¢, 1) A O(t), p2). Then for some (s, [¢], S") € P, 5" C [(¢¥)¢1]
and for all (s, [¢],S") € P, S C [{(¢)p2]. Thus, for some (s,[¢],S") € P, §" C

[(yp1] N [(W)w2] = [(¥) (w1 A 1be)], which is equivalent to M, s = P(1, o1 A p2).

3. M, s EvANO(, ) A=P(1, ¢) if and only if M, s |= 1 and for all (s, [¢],S”) € P, §" C
[(¥)¢] and S” € [(¢)¢]. This is equivalent to M, s |= ¢ and the fact that there is no
S” such that (s, [¢],S”) € P, which means that M, s =1y A =P (1), T).
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O
We also have that if ¢ is permitted, then any ¢ V 9 is also permitted (namely anything
weaker than ¢ is also permitted) and similarly, if ¢ is obligatory, than any ¢ V v is also
obligatory. In the example in the previous section we already illustrated that this notion
of weakened obligation is not intuitive—one might rather see the announcement of ¢ V 1 as
something towards fulfilling an obligation. The weakened permission of ¢V we find intuitive
in the setting of permitted announcements. Unlike in the Ross Paradox [Ross, 1941], note
that this is not a choice between two different announcements, but the single announcement
of a disjunction.

Proposition 6.9 suggests the following translation tr :Lpopa — Lpoei:

Definition 6.12 (the translation tr) We define tr(y) by induction on the complexity of

@ as follows:

o tr(p)=p

o tr(l)=1

o tr(—yp) = —tr(y)

o tr(y V) =tr(y) Vir(p)

o tr(K;p) = Ktr(y)

o tr(P(1, ) = P(tr(y), tr(y))

o tr(O(¥,¢)) = O(tr(v), tr(y))

o tr([¢lp) = tr(¢y) —p

o tr([y]L) = —tr(y)

o tr([1h]~p) = tr(y) — —tr([]e)

o tr([Yl(p1 V @2)) = tr([Pler) V ir([¢]e2)

o tr([Y|Kip) = tr() — Kitr([d]p)

o tr([Yn]lalp) = tr([(¥1)ia]p)

o tr([th1] P (2, ) = tr(h1) — P(tr({¢1)2), tr(¢))
tr([$1]O(Y2, ) = tr(ir) — O(tr((Y1)v2), tr(p))

An elementary proof by induction on the structure of ¢, using Proposition 6.9, now

delivers:
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Proposition 6.13 For all ¢ € Lpopar, = ¢ «—— tr(yp).

In other words, adding public announcements to a logical language with permitted and
obligatory announcement does not increase the expressivity of the logic.

Finally, we need to show a property of the degree function: for all ¢ € Lpopa, II(p) :
deg(tr(y)) = deg(p). This property will be used in the completeness proof. To prove it, we

first introduce a preliminary lemma:

Lemma 6.14 For all ¥,v" € Lyopal,
1. deg(y) < deg([¢]Y') and deg(tr(¢)) < deg(tr([¢]¢))

2. deg((h)') = deg([¢]¥') and deg(tr((¢)y")) = deg(tr([¢]y"))
Proof

1. By a simple induction on the structure of v'.

2. Let us look at the second one, the first being similar and easier:
deg(tr(()y')) = deg(tr(=[y]-¢')) = deg(~tr([¢]-v"))
= deg(tr([¢]=')) = deg(tr(v) — ~tr([¥]Y'))
= maz(deg(tr(y)), deg(~tr([¢]Y'))) = maz(deg(tr(v)), deg(tr([]y")))
= deg(tr([v]¢')) by 1.

Lemma 6.15 For all § € Lyopq: for all ¢ € Lpopar, if IL()) then I1([4]0) and T1(0).

Proof Let us prove it by induction on the structure of §. We denote by =* the equalities
that come from II(v)).

Base cases

—0 =p: let ¥ € Lyopq be such that II(v))

[ deg(tr([Y]p))
= deg(tr(v) — p)
= maz(deg(tr(1)), deg(p))
= deg(tr(y))
—* deg(1))
= deg([v]p)

0 = L: let ¢ € Lyopas be such that II(1))

[ deg(tr([y]1))
= deg(—tr(1)))
I([¢]L) § = deg(tr(v))  and II(L) {
=* deg(v)
[ = deg([¥]1)

deg(tr(p))
= deg(p)

and TI(p) {

deg(tr(L))
= deg(L)
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Inductive cases: let us suppose that for all ¢, II(¢)) implies II([¢)]x) and II(x) for all x that
are subformula of . We denote by = the equalities that come from II([?)]x) and by

=rm2 the ones that come from II(x).

o 0 =—x:let Y€ Lyopy be such that II(v))

deg(tr([¢¥]=x))

= deg(tr(¢)) — —tr([¥]x))

= maz(deg(tr(1)), deg(tr([¢)]x)))
=71 maz(deg(y), deg([¢]x))

= deg(¥) + deg(x)

= deg([]-x)

e 0 = K;x : Identical

deg(tr(—x

and II(—x) ¢ = deg(tr(x
=rH2 deg
= deg(—

e 0=x1Vx2:let ¥ € Lyppy be such that II(1))

deg(tr([¥](x1 V x2)))
= deg(tr([¢]x1) V tr([¢]x2)) deg(tr(x1V x2))
= maz(deg(tr([v]x1)), deg(tr([¢]x2))) and 4 = deg(tr(x1) V tr(x2))
=rm maz(deg([¢¥]x1), deg([¢]x2)) =1m2 maz(deg(x1), deg(x2))
= deg () + max(deg(x1), deg(x2)) = deg(x1 V x2)
| = deg([¢](x1V x2))

e 0 =P, x):let ¢ € Lyopa be such that II()). We denote by =9 the equalities

that comes from Lemma 6.14

[ deg(tr([W]P(W/, X))

= deg(tr(v) — P(tr((¥)¥'), tr(x)))

= maz(deg(tr(v)), deg(P(tr((¥)¢'), tr(x))))

=* maz(deg(v), deg(tr((¥)¢')) + deg(tr(x)) + 1)

—I@Hl maz(deg(y), deg((¥)') + deg(tr(x)) + 1)
= deg((V)¥') + deg(tr(x)) + 1

=01 deg(yp) + deg(¥') + deg(x) +

| = deg([W]P(', )

( deg(tr(P(Y',x)))
= deg(P(tr(y"), tr(x)))
and II(P(¢/, x)) ¢ = deg(tr(¢')) + deg(tr(x)) + 1
=1m2 deg(y’) + deg(x) + 1
[ = deg(P(¥',x))

= O/, x) : Identical

([P, ) <<
(

o 0= [¢]x: let ¥ € Lyppa be such that II(¢))
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[ deg(tr([¥][¢']x))
= deg(tr([{(1)y']x)) by definition
=rm1 deg([(¥)¥']x)
I([¢][¢']x) § because II({1)y’) (by IH1) and then TI([(¢)¥']x)
= deg((¢)¥') + deg(x)
= deg(y) + deg(y') + deg(x)

= deg([V][¢']x)
deg(tr X
and 1)) {0 (10) ,
=rm1 deg([¢']x) because I1(¢)") by TH2
O
Therefore we have:
Proposition 6.16 For all ¢ € Lpopa, (@) : deg(tr(e)) = deg(yp).
Proof Since II(T), the previous proposition guarantees this one.
O

6.2 Axiomatization

We define the axiomatization POPAL and prove its soundness and completeness. Let
POPAL be the least set of formulas in our language that contains the axiom schemata
and is closed under the inference rules in Table 6.1. We write Fpopar ¢ for ¢ € POPAL.

The axiom of ‘obligation and prohibition’ and the inference rule of ‘substitution’ deserve
some explanation. This last inference rule simply express the fact that the announcements of
two equivalent formulas give the same result, and that if announcing ¢ gives more information
than announcing ', if the first is permitted then the second also is. This intuition has been
explained in the introduction of this chapter. Axiom ‘obligation and prohibition’ is a quite
complicated way to express the intuitive implication O(1, ¢) — P(1,): everything that is
obligatory to be said is also permitted to be said. In fact, this last property is not valid in our
models, because it may happen that the set P is empty. In this case, nothing is permitted
(not even the fact to say nothing), and thus everything is obligatory. This axiom allows
to consider such borderline cases. If we want to avoid them, we can consider the class of
models in which for all ¥, 1 — P(3, T) is valid, that we call ‘permissive models’. In these
models ‘obligation and prohibition’ is equivalent to O(¢), ) — P(1, ). Moreover we have
the following:

Remark 6.17 Let M, s be a pointed model, and let x € Lpopar- If M, s |= P(¢, x)V-0(1, x)
then for all ¢ € Lpopa we have M, s = O(¢, ¢) — P(1, ¢).
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all instances of propositional tautologies

Ki(Y — ¢) — (K — K;p) distribution
Kip — ¢ truth
KiSO — K;K;p positive introspection
iy — Ki—Kp negative introspection

[ Ip < (Y — p) atomic permanence
[Y]L < = ann. and false
[Y]=p < (v — =[]e) ann. and negation
[V](p1 V @2) = ([¥]p1 V [1]p2) ann. and disjunction
[V Kip < (Y — Ki[{]p) ann. and knowledge
WHH%]@ = [(P)19a]ep ann. composition
WP, ) « (v — P()Y', 9)) ann. and permission
[0, @) « (v — O((V)Y', ) ann. and obligation

P, ¢ ) (V) permission and truth

o(T,T)
(@ W ©1) NO(W, 92)) < O(Y, o1 A @2) obligations composition
(P(1, 1) NO(1),p2)) — P, 01 A 2) obligation and permission comp.
(W ANOW, ) N=P(1,p)) « (W AN=P(p, T)) obligation and prohibition
From ¢ and ¢ — 9 infer ¢ modus ponens
From ¢ infer K;p necessitation of K;
From ¢ infer [¢]¢ necessitation of announcement

From (¢ «— ') A (() — (¢')¢) infer
(P, ) — P, ¢")) and (O, ) — O(¢',¢')) substitution

Table 6.1: Axiomatization of POPAL

We define the consistency and the maximality of a set z of formulas as usual: = is POPAL-
consistent iff for all nonnegative integers n and for all formulas ¢1,...,0, € z, 7(P1 A ... A

¢vn) € POPAL whereas x is maximal iff for all formulas ¢, ¢ € x or —¢ € x.
6.2.1 Soundness
Proposition 6.18 POPAL is sound on the class of all permission Kripke models.

Proof By Propositions 6.9, 6.10 and 6.11.

Note that we have in particular that

Proposition 6.19 For all ¢ € Lpopaisbpopa, © < tr(e).

6.2.2 Completeness

To prove the completeness result, we use a classical method through the canonical model. To

do so, we first define the following:
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Definition 6.20 Let S¢ be the set of all Fpopar-mazximal consistent sets, x € S€¢, and
Y € Lypopar- We define Ay, :={y € S° [ (Y)x €y for all O(4, x) € x}.

How to interpret such a set Aj? A t-maximal consistent set y is in Aj, if it contains (¢)¢

for every announcement ¢ that is obligatory in x after the announcement of .
Remark 6.21 By Remark 6.17, we get that if P(¢, T) € x then :
o v € Aj. Indeed we then have O, ) € x only if P(¢,¢) € x only if (Y)p € x.
e for all formula x € Lpopar, O, x) — P(¥,x) € .
It is also the case if, for some formula p € Lpopar, P(¢, 1) € x or mO(h, 1) € x.
We are now able to define the canonical model for POPAL:

Definition 6.22 (Canonical Model)
The canonical model M = (5S¢, ~§, V¢, P°) is defined as follows:

e S5€ is the set of all Fpopar-mazximal consistent sets
e for anyp e PROP, V¢(p)={x € S°|pex}
o = ~¢y iff Kjx = Ky, where Kijx = {p|K;p € x}

o P¢ = {(x,58,5") : AP(,p) € x| S  ={ye S :p ey}, S ={ye S : WY €
g} AT} U {(25,5") : 3 A -0, p) €3 8 = {y eS¢ p ey}, 8" = AT},

The definition of P¢ requires some explanation. The main idea is that we put in P¢ the
triplets (z, 5, S”) such that S” is as big as possible (i.e. corresponds to the least restriction).
For that purpose, considering that S’ corresponds to the announcement of 1, two kinds of

transitions (x,S’,5”) (i.e. two kinds of announcements) are in P¢:

1. if some P(1,¢) € x, we take for S” the expression of ¢ A A x; where the x; are such
that O(1, x;) € z: as every restriction in P¢ has to restrict more than every restriction

corresponding to the y;, then S” is the least restriction that insure that P(v, @) € .

2. if some —~O(3), p)) € x, we take for S” the set Aj, which is the biggest set we can take

to insure that the obligations in x are satisfied.

Proposition 6.23 The canonical model is a model.

Proof The set of states and the valuation are clearly well defined, and as the equality is an

c

equivalence relation between sets of formulas, ~§ is an equivalence relation. P¢ is a set of

triplets of the expected form, the only thing we have to verify is that for every (z, 5", S”) € P¢,
we have z € §” C §'. Indeed, let (z,S5,5") € P¢, thus there are two possibilities:
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1. There exists a P(), ) € x such that S' ={ye S°:¢yp cy}and " ={yec S°: (Y)p €

y} N Aj. In this case, clearly S” C S because for all y € S, () € y only if ¢ € y.
Now z € {y € S¢: (¢)¢ € y} comes from the axiom ‘permission and truth’ considering
that P(1, ) € z. It remains to show that = € A%, which is proved by Remark 6.21.

There exists a (1 A =O(), ¢)) € x such that S' ={y € S°:¢ €y} and §" = {y € S
YO(¢, x) € x, (¢)x € y}. In this case, S” C S’ comes from the fact that [¢]O(T, T) € x,
and thus ¢ € z implies that O(¢), T) € z. Therefore if y € S” then ()T € y, which
means that y € S’. Now to show that = € S” let us consider O(v, x) € x and let us show
that (¢)x € x. Indeed, by Remark 6.21, =O(1), ¢) € x implies O(¢, x) — P(¢, x) € =z,
with O(¢,x) € = we get P(1,x) € x by ‘modus ponens’, and finally (¢¥)x € x by

‘permission and truth’.

O

In the canonical model, a state is a set of formulas. The link between the fact that a

formula ¢ is in a set x and the fact that M z = ¢ is given by the Truth Lemma. In the

proof of the Truth Lemma, we need the following

Lemma 6.24 For any x € M and any ¥, p, o, B € Lyoer,

1. 4if A C{y : (V) € y}, then Oy, ¢) € z,
2. if P(a,B) € x and {y : (a)B € y} N AZ C {y : (a)p € y}, then P(a,p) € x
Proof

1. By hypothesis, any maximal consistent set that contains (¢)x for all O(¢,x) € =

contains also ()¢, thus {()x : O, x) € x} U {[t)]-¢} is inconsistent. By definition,
it has a finite subset {(¥)x1,..., {(¥)xn, [¢]7¢} that is inconsistent. Thus F (¢)x1 A
AN X — (), Le E(¥) Axi — (¥)¢ and then F O(¥, A xi) — O(¢, ¢) by
the inference rule of substitution. By axiom ‘obligations composition’ O(¢, A x;) € =,

and by ‘modus ponens’ O(v, ¢) € x.

. By hypothesis, any maximal consistent set that contains («) and («)x for all O(«, x) €

x contains also (a)¢. Thus {{(a)B}U{(a)x : O(a, x) € 2} U{[a]¢} is inconsistent. By
definition, this set has a finite subset {{a)3, (a)x1, ..., (@) Xxn, @@} that is inconsistent.
Thus - ({(a)B A {(a)x1 A ... A{a)xn) — (a)p, ie. F (a)(BAAxi) — (a)¢ and then
FP(a, BANXi) — P(a, ). O(a, A\ xi) € z is true by axiom ‘obligation composition’
and P(a, ) € x by hypothesis. Thus P(a, 8 A A xi) € z is true by axiom ‘obligation

and permission comp.’. Finally, P(«,¢) € x by ‘modus ponens’.
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Proposition 6.25 (Truth Lemma for Lyoe) For all ¢ € Ly, we have:

I(p) : forallze S Mz Eviffpex
Proof The proof is by induction on the degree of .

Base case If deg(p) = 0 then ¢ € L, and II(p) is a known result (See Proposition 4.1 or
[Blackburn et al., 2001] or [Fagin et al., 1995] for details). Note that (5¢, ~§,V°) is the

classical canonical model for L,;.

Induction steps Let k£ € N, let us suppose that II(¢) is true for all ¢ € Ly, such that
deg(y) < k.

Note that it follows that II(7)) is true for all ¥ € Lp,,q such that deg(v) < k. Indeed,
for all such 9, for all z € S¢, M x =¥ iff M z |=tr(¢) iff tr(y) € x iff Y € .

Let ¢ be such that deg(¢) < k+1 and let us reason by induction on the structure of .

e v = p;L;;01 V o Kjip:  See the proof of the truth lemma for L. in
[Blackburn et al., 2001] or [Fagin et al., 1995].

o ¢ =P, x):
(=) Suppose that M€, x = P(v, x). This implies that M€, x = v (and thus ¢ € x
by IH) and that there exists S” C [(¢))x]me such that (z, [¢] e, S”) € PC.

Now, there are two possibilities:

— There exists P(a,8) € = st. (x)[Y]me = {y € S¢: a € y} and " =
{y € S¢: (a)B € y} N AZ. In this case S” C [(¥)x]me by hypothesis, and
[{)xIme = [{a)x]me by (x). Thus S” C [(@)x]me. By lemma 6.24.2, with
P(a, 8) € x, this implies that P(«,x) € x by substitution rule. By (x) again
we obtain that P(1, ) € x.

— There exists “O(a, 8) € x s.t. [Y]me ={y € S¢: a € y}and S” = AZ. On one
hand, this implies that - 1) «— « and then —O(v, ) € x by substitution rule.
On the other hand, with the fact that S” C [())x]me we obtain, by lemma
6.24.1, that O(¢), x) € z. Now, if we suppose P (¢, x) ¢ x then —=P(¢, T) € x
by Remark 6.21. Therefore, using the fact that ¢ € z,we obtain O(v, 3) € x by
the same Remark. This leads to a contradiction which proves that P(1, x) € =.

(<) If P(¢, x) € x then let us define " = [y me and S” = [(¢)x] N Aj,. We obtain
(x,5",5") € P¢ by definition of P¢. Therefore, as S” C [(¥)x] = [tr((¥)x)],
Me,z = P, x)-

* =0V, x):
(<) Suppose that O, x) € x and M.,z [~ O(¢, x). Thus M.,z = ¢ otherwise
we would have M.,z = O(¢, x). Now M.,z = O(¢, x) implies that there exists
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(x, [¥],S") € P such that S” Z [(¥))x]. That is impossible, because by definition
S” C A3 C [{¥)x]-

(=) Suppose that O(¢, x) € = and M.,z = O(¢, x). Then =O(¢), x) € x and,
by definition of P¢, (z, [¢], A7) € P But then M.,z = O(3), x) leads to Aj, C
[{(x)x] by the semantics. Now, if we prove that [(¥))x] = {y : (¢)x € y} we obtain
O(¢,x) € z by Lemma 6.24.1. It would lead to a contradiction and then to the
wanted result. Now [(¢)x] = [tr({(¢)x)] by Proposition 6.13. [tr({(¢¥)x)] = {y :
tr((¥)x) € y} by IH (because tr((1))x) € Lyoer and deg(tr({¥)x)) < k). Finally,
{y :tr((¥)x) € y} ={y : (¥)x € y} by Proposition 6.19.

O

Proposition 6.26 POPAL is sound and complete with respect to the class of all permission
Kripke models.

Proof The soundness has been shown in Proposition 6.18. By Proposition 6.25 we can show

the completeness with respect to the class of all permission Kripke models. Indeed, for all
P e ['popal:
Feo=Ftrlp)= M Etrlp) = Firlp) = Fe

6.3 Decidability

We prove in this section that POPAL is decidable by proving a small model property. To
do so, we use a filtration method, extending the notion of filtration introduced in Definition

2.16. We first introduce to notions that are useful in this method:

Definition 6.27 (Closed set) Let X C Lp,. We shall say that X is closed if the following

properties are satisfied:

o X is closed under subformulas

o for all P(,¢) € X, tr((¢)p) € X

o for all O, ) € X, tr((v)p) € X

Definition 6.28 Let M = (S,~;, V,P) be a model and T be a closed set of formulas. Let
«~sp be the relation on S defined, for all s,t € S, by:

sempt iff Voel : (M,skE g iff Mt E )
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Note that e~ is an equivalence relation. For all s € S, let us denote by |s|r (or simply
|s|]) the equivalence class of s with respect to «wp; and for S" C S”, we write «wp(S’) for
{t€S|3se S :sempt}.

We can now generalize the notion of filtration in the context of permission models:

Definition 6.29 (Filtration) We call the filtration of M through I (or simply the filtration
of M) the model M' = (S*',~F, VI PY) where:

e ST =5/...
o |s| ~F |t] iff for all Kip € T, (M, s = Kip iff M,t = Kip)
] Tr
e vy ={ VI PEr
V(p)/eor if p€T)
o PU' = {(Js],S,5?): there exists t € |s| and S” C S st. S"/en. = S? and

(t,U(Ss), ") € P}

In this definition, S! is a set of equivalence classes, and |JS' is the set of all states that

are represented by an element of S'. Here is a useful lemma:

Lemma 6.30 Let I' C Ly be a finite closed set. For any model M, its filtration MF

contains at most 2™ nodes, where m = Card(T").

Proof Let M be a model. Let g : ST — 2" be defined by g(|s|) = {¢» € T : M,s = ¢}. Tt

follows from the definition of «wp that g is well-defined and injective. Thus the size of ST is
at most 2™.

O

The epistemic relations of a model and their filtrations over a set I' are linked by the

following property:

Proposition 6.31 Let M be a model and let T' be a closed set of formulas. Then for all
s, t €8, forallpel:

1. s~it=|s| ~F |t
2. |s| ~FJt| and Kip € T and M, s = Kip = M, t = .
Proof

1. Let s,t € S such that s ~; t, and let K;p € T'. Then we have M, s = K;p iff for all
u ~; s, M,ul= @ iff for allu ~; t, M,u = ¢ iff M,t = K. Then by definition of ~}

we obtain |s| ~% [t].

2. Let us suppose the first part of the implication. Since |s| ~L |t|, K;p € T and M, s =
K;p then Mt = K;p. Since ~; is reflexive M, t = .
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O

Proposition 6.31 is sufficient to prove the following;:

Proposition 6.32 (Filtration lemma) Let M be a model and let T be a closed set of for-

mulas. For all o € I we have:

(F°p) Vs €S, (M,s = iff M, |s| = ¢).
Proof By induction on the degree of ¢.

base case If deg(y) = 0 then ¢ € L, and the proof of (F°p) is done by induction on the
complexity of ¢ (see [Blackburn et al., 2001] or [Fagin et al., 1995] for details, note that

' is in particular closed under subformulas).

induction steps Let k € N. Suppose that (F°¢) is true for all 1) € L, such that deg(v) <
k. Let ¢ be such that deg(p) < k + 1 and let us reason on the structure of .

o o =p; L; ;01 Ve, Kip: See the proof of the filtration lemma in [Blackburn et al., 2001]
or [Fagin et al., 1995].

e 0 = P(1), x): Let s € S. By construction of I" we know that

{ eor([¥]m) = [¥]a and

(%) e ([()xIm) = e ([tr((@)x)]m) = [tr((@))lm = [ xdm-

(=) Suppose M,s = P(i,x). Let S” C [(¥)x]m = [tr((¥)x)]m be such that
(s,[¢¥],S") € P, and let §°° = S"/..,.. We have (by IH) that S° C [tr((¥)x)]smr
and we obtain that (|s|, [{] pr,S%°) € PL by definition of the filtration and (). Fi-
nally, MT. || = P(1, x)

(<) Suppose MU |s| &= P(y,x). Let S° C  [tr({)x)]yr be such that
(|s], [¥]pr, S°°) € PY. Then by definition of P!, there exists t € |s| and S” such
that S”/c.. = S° and (¢, [¢],S”) € P. By IH, S C [tr({(¢)x)]pr implies that
S" C tr({¥)x)]m- Therefore, M, t = P(1, x). Finally, as se~spt, M, s = P(1, x).

e o =0(1,x): Let s € S,

(=) Suppose M,s = O(p,x) and let S°° be such that
(Is], [¥] apqr, S°°) € PY, we want to show that S°° C [(¢)x]mr. By definition of
the filtration, we can construct S” such that S”/.... = S° and (t,[¢],S”) € P for
some t € [s|. Thus S” C [(¢¥)x]m, because M,t = O(¢),x) (as sewrpt). Finally
5% € L)X e by (+) and TH.

(<) Suppose M |s] = O(,x) and let S” be such that
(s,[¢¥],58") € P. We show that S” C [(¢)xJm. Let S = S”/..., then by
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definition of the filtration, (|s, [¢/] s, S%°) € PL. Thus S C [(¥)x]mr and then
S" C [()xIpmr by (x) and TH.

O

Definition 6.33 (Closure) For all ¢ € Ly, we construct the P-Closure of ¢, noted Cl(yp),

inductively on the structure of p:

° Cl(p) = {p}
o Cl(L)={Ll}
o Cl(~p) ={~p}UCl(p)

Cl(p Vo) ={P Vet UCi(y) U Cl(p)

o Cl(Kip) = {Kip}UCl(p)

CUPW, ¢)) = {P(, )} UCLY) U ClL(p) U CL(tr(()¢)).

ClO(,¢)) = {0, 9)} U CL(¢) U Cl(p) U Cl(tr({¢)¢))-

Proposition 6.34 For all ¢ € Ly, Cl(p) is well-defined and it is a finite closed set.

Proof The proof is by induction on the degree of .

base case If deg(p) = 0 then ¢ € L., and we only need to prove that Cl(¢p) is a well-defined

finite set closed under subformulas, which is straightforward.

inductive cases Let k € N, let us suppose that Cl(1)) is a well-defined finite closed set for
any 1 such that deg(y) < k. Let ¢ be such that deg(p) < k + 1 and let us reason

inductively on the structure of .

e o =p; L; ;01 V pg; Kjtp: Trivial.

o v = P(1),x) or O(¢,x): By IH, Ci(¢),Cl(x) and Cl(tr({¢)x)) are well-defined
finite closed sets, so CI(P(,x)) and Cl(O(, x)) are well-defined finite sets. We

only need to prove that they are closed, which is straightforward.

Proposition 6.35 (Finite model property)

Let ¢ € Lpoer, if ¢ is satisfiable then ¢ is satisfiable in a model containing at most 2™
nodes, where m = Card(Cl(yp)).
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Proof Suppose that M and s are such that M, s = ¢. Let I' = Cl(¢). Then by Proposition
6.32, ML, |s| = ». By Lemma 6.30, M contains at most 2™ states.
[l

Theorem 6.36 POPAL s decidable.

Proof Let ¢ € Ly,pa be a formula. The following procedure decides whether ¢ is satisfiable

or not:

1. Compute ® = tr(p)
2. Compute I' = Cl(®)

3. For all permission Kripke models M of size < 2¢974(I) check if there exists s € M such
that M, s = ®.

6.4 Extended Example: La Belote

We now consider the French card game “la Belote”. For a full description of the game, see
http://en.wikipedia.org/wiki/Belote. The game is played with four players, who form
two teams, and with 32 cards of a regular full deck of cards (the ranks 2 to 6 are eliminated).
The name of the game, “belote”, is also used in the game to designate a pair of a King and
a Queen of a trump suit.

After the deal, and after the choice of a trump suit, the first player chooses and plays a
card of her hand, followed by the other players in clockwise order. The player who played
the highest trump card or the highest of the same color as the first player’s card wins the
round and starts the next round. Except for the first player of a round, each player has to
follow suit or, if she cannot, to play trump. Moreover, when a trump has been played, it is
forbidden to play a lower trump.

The act of playing a card can be seen as the public announcement that the corre-
sponding card belonged to the corresponding player. We model the game with the set
of propositional atoms PROP expressing card ownership, namely PROP = {RC; | R €
{7,8,9,10,J,Q,K,A},C € {%,0,0,8},i € {A,B,C,D}}. An atom RC; stands for ‘player
7 holds the card with rank R of suit C’. For any suit C' and player i, we introduce the
abbreviations C; = \/p RC;, and C’fR =Vp-gRCi

A model M = (S, {~;},V,P) is called a “model of La Belote” if

1. for each state s, for any R and C, there is exactly one i such that s € V(RC;) (i.e. the
states of M are deals of cards);
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2. for any s,t € S and any i, s ~; t implies that for all R,C: s € V(RC;) iff t € V(RC;)

(i.e. each player can distinguish different cards);
3. P is constructed from (S, {~;}, V) according to the rules of the game.

The last item means that in a given deal s, for all the cards p held by an agent ¢ that are
permitted by the rules to be played, (s,5,S5,,) € P. If after p has been played by player i it
is permitted for player j to play ¢, then we also need that (s, .S,, S(m)qj) € P. And so on, for
all possible moves.

Let M be a model of La Belote. The trump suit has been selected before the game starts,
we will suppose that it is clubs. The set of atoms is partially ordered as follows (* can be one
of the players A, B,C, D). First, any trump is higher than any non-trump. But the cards are

also ordered in the following way: for non-trumps (i.e. for any C # &):

7C, < 8C, < 9C, < JC, < QC, < KC, < 10C, < AC,

For trumps:

T, < 8, < Qb < Kb, < 10, < A, < 9, < Jéh.

For more details, see the mentioned website.

We now list a number of model validities of La Belote. These formulas are valid at the
beginning of each round of the game, in other words, the models M considered below result
from any iteration of a sequence of four permitted announcements. We will call 1 the player

that opens the round, followed by 2, etc.

1-One player at once:

For all w S ‘Cpopala all ¢ 7&]1 all Di, 4 € PROPa M |: P(¢>p1) I _'P(w>QJ)

Two different players are not allowed to play simultaneously.

2-Each card is played once:
For all p € PROP, all ) € Lyopar, M = -P((p),p).

If a card has been played once, it cannot be played again.

3-Obligation to follow suit:
For all ranks R and all suits C,
M ): CQ — O(RCl,C’g).

If the player 2 can follow the suit asked by 1, she is obliged to do so.
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4-Obligation to play trump:
For all ranks R, all suit C # &, M |= & — O(RC1,C V &2).

If the player 2 can follow the suit asked by 1 or play trump, she is obliged to do so.

5-Permission to say “belote et rebelote”:

For all players i, M |= I b A Qdb; A (P(1), Q;) V P(th, K &i)) — P(1), Qdo; N K by).

If the player one is allowed to play the queen of the trump suit, she is allowed to
announce that she has the royal couple (called the “belote”). This does not mean that
she is allowed to play both cards, but playing one of them she is allowed to announce

that she also has the other one.

6-Obligation to go up at trump:

For all ¥ € Lyopq, all player i and all R, M = *i>R — O((?j))R&i_l,&fR).
This says that if the previous player played trump and if you have higher cards than
the played trump, then you are obliged to play one of them.

Figure 6.1: The moody children playing la belote

We apply these conditional rules about the permission to speak to the state (deal) s, presented
in Figure 6.1, in which each player has 2 cards. Alex starts the game. According to the rule,

our model validates the following formulas:
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e M,s = P8V )ANP(TOA) AN—PBVHANTHA):

Alex has the permission to play one of his cards, but not both.

e M,s = 0(80V4,Q0Vp):

If Alex plays the 80 card, Brune is obliged to play a card of the same suit, thus she
cannot play her K& card (rule (3)).

o M,s = P((894)Q05, Qe A Kdoe):

Cha has the permission to announce that she has both cards of the “belote” (rule (5)).

o M,s = O({((8V4)QVEB) Q¢ Adp):

The ‘go up at trump”applies if Cha plays the queen of clubs. As Dan has a unique
higher trump, she has the obligation to play it.

6.5 Comparison to the Literature

6.5.1 Classic Deontic Principles and Paradoxes

As we reviewed before, deontic logic started out with Von Wright’s operators P and O binding
formulas in expressions Py and Oy, then came Meyer’s and Van der Meyden’s mind-frame
switch to operators P and O binding actions, and finally we treated communicative actions
that are represented by the announced formulas. Recall that in our framework we treat
the obligation and permission to speak ¢ (as Py and Oy, using the abbreviation) and not
the obligation and permission that ¢. Well, if we end up with such expressions, how do its
validities relate to the standard and historical Von Wright approach? In this subsection, we
summarily treat that matter.

First, a disappointment: the P and O operators we have introduced are not normal modal
operators (the triples in the P relation rather suggest a modality with a neighbourhood-type
of semantics). They do not satisfy necessitation! A formula may be valid, but that does not
make it an obligation, or permitted; if you are not allowed to announce p nor —p, it does not
help you a great deal that p V —p is a validity!

Something else has to be underlined once again: our formalism allows to consider situations
in which nothing is permitted to be said, which is equivalent to the fact that everything is
obligatory. To avoid such borderline cases, we will often consider the class of models in which
for all v, v — P(1, T) is valid, called the ‘permissive models’. Our comments on classical
deontic paradoxes is in this context of permissive models.

Obligation distributes over conjunction (and implication), as O(p A1) «— (Op A O) is
a special case (in the case where the first argument is T) of Proposition 6.11.1. Permission
does not distribute over conjunction: we may have that p and ¢ are both permissible an-

nouncements, such that Pp and Pq are true, but not at the same time, P(p A ¢) may be false.
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This reflects that for a given Kripke model with domain S and actual state s the relation
P may contain (s, S, [p]) and (s, S, [¢q]) but not (s,S,[p A q]). However, given weakening of
permitted announcements, a valid principle indeed is P(p A ¢) — (Pp A P).

Permitted announcements are true, obligatory ones also in the permissive models: Pp —
w and Op — ¢, a principle obviously false in classic deontic logic. But one has to realize the
special reading of such implications in our setting! Py — ¢ is valid because a precondition
for a permitted announcement is the truth of the announcement formula. It does not formalize
that all permitted actions always take place. A similar slip of the deontic mind occurs
when observing that Pyo — P(¢ V 9) is valid. Doesn’t this conflict with Ross’s Paradox
[Ross, 1941]7 We addressed this matter in the introduction, let us go over the details. Ross’s
Paradox is about the reading (for permission and for obligation) that ‘to be permitted to
do a or b’ entails ‘to be permitted to do a’ and ‘to be permitted to do b’. In the setting of
permitted announcements we have to clearly distinguish the action of announcing from the
formula being announced. Permission to announce a or b indeed entails permission to perform
either announcement, and choose between them. This is a nondeterministic action. This is
different from the permission to make an announcement weaker than the announcement of a,
such as a V b. In other words, permission to announce a or b is not the same as permission to
announce a V b. Possibly, “permission to announce a or b” might be called ambiguous, as the
‘or’ may mean logical disjunction of formulas or non-deterministic choice between programs.

But once the reading has been chosen, the course is clear.

We already observed that obligation and permission are not interdefinable. In Proposition
6.8 we showed that obligation adds to the expressivity of the logic. So Oy «— —P-y is not
valid. Now, Clearly, Op — —O- is valid in the class of permissive models. The norm is
thus still considered as non-contradictory, we may want, to avoid this ‘paradox’, to include
different norms in the same framework. We leave this for further research. But then again,
even in the permissive cases, Py V P—y is not valid: there is nothing against both p and
—p being forbidden announcements at the same time! For yet another example, consider
the schema O(O¢p — ¢), formalizing the requirement that obligations are fulfilled. In our
setting, either we are in a non-permissive case and thus this obligation is satisfied, or it is
a permissive one and thus as Op — ¢ is valid, this is equivalent to the validity of OT,
which indeed is a validity (note that T is weaker than any obligatory announcement, and
that weakening holds for obligation).

A more recent development in deontic logic is the interaction between obligations and per-
missions and explicit agency (see [Chisholm, 1963, Horty, 2001]). The well-known Meinong-
Chisholm reduction of “The agent is obliged to do a” to “It is obligatory that the agent does
a” seems to have an interesting parallel in the logic of permitted announcements. In the logic
of public announcements, the announcement by agent a is typically reduced to ‘the (public)
announcement of ‘agent a knows ¢’. It is relevant to recall at this stage that public announce-

ments are supposedly made by outsiders of the system, not by agents modelled explicitly in
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the logical language. This observation can be applied in the logic of permitted and obligatory
announcements! A Meinongian turn to permitted announcements seems to interpret OK;p—
“It is obligatory that agent ¢ announces ¢” (announcements of ¢ by an agent i in the system
are known to be true by that agent, so in fact have form K;p)—as an indirect form of agency

in our logic, namely, we can let it stand for “Agent i is obliged to announce .”

6.5.2 Deontic Action Logics

For the purpose of comparing our work with the existing literature we present a variant
of the semantics for permission. Our current understanding of P(v, ) is that “after the
announcement of ¥ it is permitted to give at most the information ¢”. Any weakening of ¢
is also permitted. Instead, it was until now “after the announcement of v it is permitted to
give exactly the information ¢”. We will write P~ for that modality. It has the semantics:
for all M and s in the domain of M:

M, s |= P~ (¢, ¢) iff (s, [¢], [(¥)]) € P.

The logic with P subsumes the one with P~: let us expand a given relation P with all
supersets for the third argument of a triple in that relation: for all subsets S”” of the domain
of a given model M, if (s,5",5”) € P and S” C S, then add (s,5’,5”) to P. Call the
resulting relation P~ and let M~ be the model with P~ instead of P. On the language
without obligation, inductively define a translation e= that replaces all occurrences of P by
P=. We now have that M,s E P(¢,¢) iff M~ s &= P=(¢, ). We compare the proposal

using the operator P~ with the related works presented in Section 3.3.

The Dynamic Logic of Permission Recall the framework proposed by
[van der Meyden, 1996] and presented in Section 3.2.2.  Our semantics for P=(1),¢)
consists of the particular case where actions are public announcements. Thus, for « in Van
der Meyden’s ¢(a, ) we take an announcement ! such that (¢!, ¢) now means ‘it is

permitted to announce v, after which ¢ is true’. The precise correspondence is:

Proposition 6.37 O(p!,0) is equivalent to P=(T,¢) A (¢)0

Proof Given a model M with domain S, we can see the announcement ¢! as an atomic

action which links each state s € [p]aq to the same state s € S,. This is a permitted action

in Van der Meyden’s semantics if and only if (s, S,S,) € P. By definition, M, s = P=(T, ¢)
iff (s,5,5,) € P. The formula 6 should then hold after the permitted announcement of ¢.

O

Van der Meyden’s O(¢!,0) is found in a syntactic variant Perm(p)f in

[Pucella and Weissman, 2004]. Now, we have that P=(T, ¢) is equivalent to Perm(y). Given
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the abbreviation P(y) in our language for P=(T,¢), the correspondence is therefore very

close.

Merging Frameworks for Interaction Recall the logical language Ly, of Van Benthem
et al.’s protocol logic TPAL ([van Benthem et al., 2009]) presented in Section 3.3. We have
seen that the domain was a set of histories, a history h being a succession of announcements,

with the following semantics for the dynamic operator: My, h |= () iff

e M, hE1
o W =hyell

[ ] Mn,h/l:(p

This suggests to translate P=(1,¢) in Lpopa by [¥](p)T in Lyg. (For convenience, we
write announcements ! and ¢! instead of singleton event models with precondition ) and
¢, respectively.) Unfortunately, this translation is imprecise. Consider executing these two
announcements in a state s of an initial model M. If s¢p ¢ H then Mr,s = [¢](p)T:
after a non-permitted announcement, anything is permitted to be said, because anything
holds after a necessity-type modal operator that cannot be executed. But M, s & P=(v, p),
because (s, [¢], [(¢)¢]) is not in the P relation to validate it. In other words, in our logic
we get the full forest produced by the protocol of all truthful public announcements, but
some branches are coloured with permitted and others are coloured with not-permitted. The
Van Benthem et al. approach produces a forest restricted to the protocol (i.e., restricted to
permitted announcements only).

A more serious problem with such a translation is as follows. Our semantics allows that
if something is later permitted to be said, we are already permitted to say something now in
a different way, a consequence of the axiom “announcement and permission” [|P (¢, p) <
(v — P((Y)¢',)). (This axiom holds for P~ as well.) In TPAL this would amount
to requiring that (announcement) protocols are postfir-closed in the restricted sense that if
m'n” = 7 € 11, then there is a single announcement ¢ (combining all the announcements in
the initial 7/ part in one complex announcement) such that £ € II.

Our logic with P instead of P~ and with obligation O as well makes the comparison even
more problematic.

As we now know, the notion of “obligation to say ¢” cannot be captured only by the
negation of permission to say anything else than ¢ (except in a very radical dictatorship),
but much more by the fact that all that does not say at least ¢ is not permitted. This notion
of obligation we consider a strong point of our logic POPAL, in which it differs from known

other proposals.
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6.6 Tableaux

We introduce here a proof method for PPAL, the logic reduced to the language wihtout
obligation operator. This proof uses analytic tableaux to construct, given a formula ¢, a
model that satisfies ¢ (or prove its inconsistency if it fails). In order to do so we use notations
near to the one proposed by [Balbiani et al., 2010] for a tableau method for PAL.

6.6.1 Definitions

The ‘formulas’ appearing in the tableau are Elljpal—formulas prefixed by a natural number (n)
that stands for a possible world in the model, and by a list of formulas (o) representing

successive updates.

Definition 6.38 (Labelled formula) A labelled formula is a triple of the form (o,n,p)

L .neNandpc L]

such that: o is a (possibly empty) finite list of formulas of Eppal, ppal-

The intuition behind this notation is that (o,n, @) appears in the tableau if the state n is
still a state of the model after having announced successively the elements of the list o, and
the resulting state (after the announcements) satisfies ¢. In other words (o, n, ¢) appears in
the tableau if n € W, and M,,n = ¢. If n € W, we say that ‘n survives (the announcement)
o’

To define what is a branch in this context, we denote by £V the set of all the finite lists of

1
Eppal
for any formula vy € E;pal, ocoth=(01,...,0p,0) € LM We write e € LM to designate the

empty list. Finally, § is a countable set of formal symbols whose aim is to represent subsets

-formulas. For any list 0 = (01, ...,0,) we write hd(o) = oy, ti(c) = (01,...,0n-1), and

of the initial set of worlds in a model.

Definition 6.39 (Branch) Let § be a countable infinite set of symbols. A branch is a set of

terms t of the form:
1. “o,n,p)” (labelled formula);
2. “‘nRym” where i € AG, n,m € N;
3. “M(n,S,S")” where n € N and S, S’ € §;
4. neS” “ndgS” wheren € N and S € §;
5. “Sto”, “SHo”, “SHo” and “S Ac” where S € § and o € LM,

We denote by [O] the set of terms of the first category, [R] for the second category, [I1] for the
third, [€] for the fourth and finally [] for the fifth.

nR;m corresponds to the fact that the corresponding worlds of n and m are linked by
R in a model. II corresponds to P. The term “n € S” (“n ¢ S”) means that the world n
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belongs (does not belong) to the set represented by S. The term “S F ¢” means “all worlds
in the set represented by S survive the announcement of ¢”. The term “S - ¢” means “all
worlds which survive the announcement of ¢ are in S”. The term “S I/ ¢” means “there
exists a world n in S that does not survive the announcement of ¢”. The “S A ¢” means

“there exists a world n which survives the announcement of o and which is not in S”.

Definition 6.40 (Initial Tableau for ¢) Given a formula ¢ € Eppal, the set containing a

unique branch {(e,0,¢)} is called the initial tableau for . We represent it as To(ip).

We define now the notion of ‘tableau for ¢’. Informally, a tableau for ¢ is a set of
branches obtained from the initial tableau by applying some rules. These rules are presented
in a concise way in Table 6.2. We read them in the following way, considering a branch b of
a given tableau 7:

a1 ... A

By Y,
If the patterns aq;. .. a, are unifiable with a subset of terms of b and terms of the form
B1,...,Bp can not be found in b, then we add the instantiated instances of £1,...,03,
in b. Formally if there exists a substitution s such that s(aq),...,s(ay) € b and for
all ', {s's(51),...,5's(Bp)} € b then R1(b) = bU {s's(1),...,5's(Bp)} where ¢ is a
substitution for free variables of s(31),...,s(5p).
;... ap (R2)

ﬁl7“‘a/8p | Y155 Vr
If the patterns ag;...«, are unifiable with a subset of terms of b and no terms of the
form B1,...,Bp or v1,...,7, can be found in b, then we create one branch where we add
B1,...,Bp in b and another branch where we add ~1,...,7,. Formally if there exists a

substitution s such that s(ay),...,s(ay) € b, for all &', {s's(51),. )} € b and

s's(6
{s's(m),...,s's(vr)} € bthen R1(b) = bU{s's(B1),...,s's(Bp) }: bU{s s(’yl), oo 8's(y)}
where s’ is a substitution for free variables of S(ﬁl), ooy 8(Bp)s s(11)s - - ,s(%)

A deterministic rule (such as R1) modifies a given branch, a non deterministic one (such as
R9) makes copies of a given branch and modifies them. We give some details about the rules

appearing in Table 6.2 to make precise the understanding of this table:

e The rule (RV) means that if a node n survives the list of announcements o and satisfies
¥ V @ after the announcements, then we will consider one branch where n survives the
list of announcements o and satisfies 1 and another branch where n survives the list of

announcements o and satisfies .

e The rules (RT), (RS) and (R4) capture respectively the reflexivity, symmetry and

transitivity of the relation R;.
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e The rule (Ro) explains the mechanism of announcement. If a world n survives after the
announcement of o, where o is not the empty list, then it means the world survives after

the announcement of the tail of o and satisfies the head of o after the announcement.

e The rule (RSB) concerns the behaviour of literals (propositions or negation of propo-
sitions) towards announcements: if a literal [ is true in n after the announcements of o

then the literal [ is already true in the world n without any announcement.

e The rule (R €) is a “cut” rule and choose for all nodes n and all already used symbols

S € § whether n should belong to the set represented by S or not.

e The rule (RP) creates a new permission relation II(n, Sy, S2), S; and Sy representing
subsets of the domain. S1 F ¢ and S; 1 o ensures that S7 corresponds to the domain

of M, and Sy = 0 o ¢ ensures that Sy corresponds to a subset of [¢]aq, -

e The rule (R—P) guarantees that if a permission relation exists, it does not satisfy the

conditions that would make the announcement of ¢ permitted.

e The rule (R F) explains the meaning of S - o: if a state belongs to S it ‘survives’
after the successive announcements of o. Similarly (R ), (R /) and (R #) explains the
meaning of S 4o, S o and S Ao.

Definition 6.41 (Tableau for ¢) Given a formula ¢ € Ezl)pal we define the set Tab(yp) of

‘tableauz for ¢’ inductively as follows:

o 7o = {{(,0,9)}} is in Tab(yp)

o If T is obtained from T' € Tab(p) by applying one of the rules of Table 6.2 to one of
the branch of T', then T € Tab(y)

Definition 6.42 (Closed Tableau) Let b be a branch. We say that b is closed if it contains
(o,n, L) for some o,n. We say that a tableau T for ¢ is closed if every branch in b € T 1is

closed. We say that a tableau (resp. branch) is open if it is not closed.

Definition 6.43 (Satisfiability) The branch b is said satisfiable iff there ezists a model
M= (W,~,V,P) and a function f: N — W such that

1. for alli € AG, if (nR;n') € b then f(n) ~; f(n')
2. for all (o,n,p) € b: f(n) € Wy and M, f(n) = ¢
3. for all TI(n, Sy, S2) in b, there exists S*,S? C W such that (f(n), S, S?) € P and

if (m € Sy) is in b then f(m) € S*

(i) for all m € N, { if (m ¢ S.) is in b then f(m) ¢ S*
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(o,n, ¥ V) (o,m, =) (BA)
o) | (o) ) (o, )
(o,n, Kip) ; nRym 4 (o,n, = K;p) .
Gm o) (rom, ) e 1)
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S0y Sitfo|SiAc | Setfoop
_ I(n,S’,S")
nesings B nes D
Sto;nes SHo
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Table 6.2: Tableau rules for PPAL
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if (S« o) isin b then S* C W,

(i) for all o € £®, J (S 0) s inb then 5™ Z W
’ if (Sx 1 0) is in b then S* O W,

if (S« A0o) isin b then S* 2 W,

A tableau is said to be satisfiable if it contains a satisfiable branch.

6.6.2 Properties

We show in this section soundness and completeness of the tableau method:

Proposition 6.44 (Soundness) If p is satisfiable, then there exists no closed tableau for .

Proof It is enough to see that any tableau rule preserves satisfiability of a given tableau,
i.e if b is a satisfiable branch, then the set B of branches generated from b by applying a rule
contains a satisfiable branch.

Indeed, if ¢ is satisfiable then the initial tableau for ¢ is satisfiable. Therefore every
tableau would be satisfiable. Hence every tableau would contain an open branch (otherwise
(o,n, L) € L and thus M,, f(n) = 1) Q.E.D.

For every tableau rule we prove that it preserves satisfiability, by showing that it preserves
the three constraints of the definition of satisfiability (Definition 6.43).

e RA,RV, R-,RK,RK,RSB, R[.],R(.): We let the reader prove that conditions 1 and 2
are preserved. Similar proofs can be found in [Balbiani et al., 2010]. Furthermore [IT],
[€] and [F] do not change by applying these rules. Therefore condition 3 is clearly

preserved.

eR 1: No satisfiable branch can satisfy the conditions to apply this rule, therefore it neces-

sarily preserves satisfiability.

oRT ,R4,RS: Condition 1 is preserved by the fact that the relation in the constructed model
is an equivalence relation. Conditions 2 and 3 are preserved because only [ R] is modified

by this rule.

eRo: If f(n) € W, then f(n) € Wy, and My(,), f(n) = hd(c). Therefore condition 2 is

preserved. Conditions 1 and 3 are preserved because only [0] is modified by this rule.

eRP: Conditions 1 and 2 are preserved because [Q] and [R] are not modified by this rule.
Condition 3.i is preserved because [€] is not modified by this rule, and the sets Sp, So
created are new. For condition 3.ii recall that by hypothesis M,, f(n) = Py (and
f(n) € W,). Then there exists (f(n), S, 5?) € P such that S* = W, and S? C W,
Let us consider the II(n,S1,S2) created by the rule RP, we can easily verify that
(f(n),S',S?) € P is a good candidate to satisfy the requisites of 3.ii.
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eR—P: Conditions 1 and 2 and 3.i are preserved because [0], [R], [€] and [II] are not modified
by this rule. For condition 3.ii, by hypothesis, M7, f(n) = =Py (and f(n) € W, ) and
there exists a (f(n),S',S%) € P satisfying conditions 3.i and 3.ii. But M7, f(n) |
- Py imposes that S' W, or S 2 W, or S* € W,o,. Therefore, by choosing the

corresponding branch 3.ii is preserved by the rule.

eRe: Conditions 1, 2 and 3.ii are preserved because only [€] is modified by this rule. By
hypothesis, n is a node and S; is a letter appearing in an element of [II]. Thus by
hypothesis f(n) € W and there exists S* C W satisfying 3.i and 3.ii. Therefore either
f(n) € 8¢ and we choose n € S; in [€] or f(n) ¢ S and we choose n € S; in [€].

oRI- : Conditions 1. and 3. are evidently satisfied. The hypothesis imposes that there exists
S" C W, with f(n) € S’. Therefore f(n) € W, and M,, f(n) = T, which is condition
2.

eR- : Conditions 1. and 3. are evidently satisfied. The hypothesis imposes that there exists
S" O W, with f(n) ¢ S’. Therefore f(n) ¢ W, , which means that M, f(n) = [o]L.
Condition 2 is thus satisfied.

eRl/ : Condition 1. and 3.ii are evidently satisfied. By hypothesis, there exists S" € W,
satisfying 3.i. Therefore there exists a f(n) € S” such that M, f(n) = [o]L. Therefore

the rule preserves 2. and 3.i.

eR/ : Condition 1. and 3.ii are evidently satisfied. By hypothesis, there exists S 2 W,
satisfying 3.i. Therefore there exists f(n) € W, s.t. f(n) ¢ S’ (and M,, f(n) E T).

Therefore the rule preserves 2. and 3.1i.

O
Definition 6.45 Let b a branch and R = % a rule. We say that R is applicable
on b iff there exists a substitution s such that s(ay),...,s(a,) € b and for all substitutions s’

we have {s's(51),...,8's(Bp)} € b and {s's(m1),...,s's()} L.

Let us now prove completeness. We first need the notion of saturated tableau:

Definition 6.46 Let b a branch. We say that b is saturated under a rule R iff R is not
applicable on b.

A branch b is said saturated if and only if it is saturated under all tableau rules.

Let T be a tableau for pg. T is said saturated if and only if for all branch b € T, b is

either closed or saturated.

Proposition 6.47 If there exists an open saturated tableau for ¢q, then g is satisfiable.

In order to prove it, we require the following notion of degree of a formula:
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Definition 6.48 (Degree) We define the degree of a formula ¢ € Lpopa inductively
as follows: deg(p) = 0, deg(—p) = deg(p), deg(pr V p2) = max(deg(er),deg(p2)),
deg(Kip) = deg(p), deg([¢]p) = deg(1)) + deg(p) + 2, deg(Pyp) = deg(p) + 2.

Proof (of Proposition 6.47) Let 7' be an open saturated tableau for ¢y, and b be an
open branch of T'. b is saturated under every tableau rule. We then construct the model
M = (W, ~,V,P) with:

o W={neN]|(o,n,p) cbfor some o,p}
e for every agent i, ~;= {(n,n') | nR;n’ € b}
e for every propositional atom p, V(p) = {n € N| (g,n,p) € b}

o P ={(n,g(S1),9(%)) € W x 2V x 2W | TI(n, Sy, S3) € b}, where by definition ¢(S) =
{neN|(neS)ecb}.

First of all, it is easy to see that M is a model. In particular

e for every agent i ~; is an equivalence relation by rules RT', R4 and RS

e for every (n,S',5%) € P, n € S? by rule RII and S* C S? by rule RP with R I~ and
R .

Forallae N ke N, p € Ezl)pal, we call p(a, k, ¢) the following property:
k+Xd i)+ d < W4
V€ W, Yo = (o1,...,00), if ()4 © T 2deglo) Tdeglp)say ) ne
((01,...,0k),n,0) €D MonE
Note that p(a, k,p) is true if k + deg(y) > a (7).
For any pair of triplets (a’, k', ¢) and (a, k, ¢) in N x N x E;pal, we say that (a/, k', ¢’) <
(a,k,¢) if and only if: @’ < aor (a/ =a and k' < k) or ((¢/,k') = (a,k) and ¢' € Sub(p)). It
is a well-founded (partial) order.
Let us suppose that p(a’, k', ¢') is true for all (a’, k', ¢') < (a,k, ), and let us prove that
p(a, k, ) is true, by reasoning on the structure of . It would prove that p(a, k, ¢) is true for
: 1 1
all (a,k, ) n NxNx L . ppal>
which implies Proposition 6.49.

Let n be in W, and o1,...,01 € Eglypal be such that (x). We note o = (o1,...,0%).

and in particular that (a,0,p) is true for all a,¢ in N x £

Case ¢ = p:  First, if £ = 0 then (e,n,p) € biff n € V(p) iff M,n |= p and the result is
proved. Hence we assume that k£ > 1. Now, by hypothesis, we have ((o1,...,0%),n,p) € b,
then

n € Wy (o)
Moy, [ o
because (k — 1) + deg(o1) + - - - + deg(ok) < a. Therefore n € W,.

1. {((o1,...,0k-1),n,0%) € b (by Ro-sat), and then { by p(a,k — 1,0%)

2. (g,n,p) € b (by RSB-sat). We obtain M,n = p by definition of the valuation. Thus
Mg, n = p
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Cases ¢ = —p, T, L: Idem, using the fact that the branch is open.

Case ¢ = 1 V p2: By hypothesis, we have (o,n,¢1 V p2) € b. Thus, by RV-sat, we have

(o,n,01) € bor (o,n,02) € b. As for both i, deg(p;) < deg(p), and @; € Subf(p) we can

. n e Wy,

apply p(a, k,¢;) and thus we obtain
‘ Mo,n =1V o

Case ¢ = ¢1 N pg:  Identical, using RA-sat.

Case ¢ = K;p1: By hypothesis, we have (o, n, K;p1) € b. Therefore, on one hand we obtain

Wo
(o,m,p1) € b (by RT-sat) and thus "e (by p(a,k,¢1)). On the other hand, let

Mo‘a n ): ®Y1
m € W, be such that n ~; m, let us show that M,,m = ¢1. But by definition of ~;,

nR;m € b and thus, by RK-saturation, (o, m,p1) € b.

Case ¢ = —Kjp;: By hypothesis, we have (o,n,-K;p1) € b. By RK-sat, there exists a
m € W s.t. nRym € b and (o, m,~p1) € b. This leads to the desired result by p(a, k, —¢1).

Case ¢ = [op4+1]e1: We suppose a > 2, otherwise it is already proven by (f) because
k + deg(¢) > a. We write ¢/ = 0 o oj41. Now, by hypothesis we have (o, n, [ox+1]p1) € b,
thus by R[.]-saturation:

- either (o,n,—0k41) € b and then My, n |= —or1 by p(a — 2, k, —0op11), because
k+deg(o1) + -+ - + deg(oy) + deg(—ok+1)
< k+deg(or) + -+ - + deg(ok) + deg(oki1) + deg(p1)
=k +deg(o1) + -+ deg(ox) + deg([op+1]p1) —2 < a—2
n € Wy

- or {o,n,0,11) € b. In this case (¢/,n,p1) € b and we obtain that by
MUU n ): ®1

pla — 1,k +1,¢1) because
k+14deg(or) + -+ deg(op) + deg(opi1) + deg(1)
=k +deg(o1) + -+ + deg(oy) + deg([opt1]p1) =1 <a—1

Case ¢ = —[op11]e1:  We suppose a > 2, otherwise it is already proven by (}), because
k+deg(p) > a. We write ¢’ = o oo 1. By hypothesis we have (o, n, =[or11]p1) € b, thus by
R(.)-saturation, (o,n,o0r11) € b and (0/,n, ~p1) € b, which implies that My, n |= o1 and
Mgi,n = 0y, by pla—1,k 4+ 1,—¢p1) because

k+1+4deg(o1) + -+ deg(og) + deg(og+1) + deg(—p1)

=k+deg(o1) + -+ deg(oy) + deg(—[og+1]p1) — 1 <a— 1.
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Case ¢ = Pyp;: We suppose a > 2, otherwise it is already proven by (t), because k +
deg(p) > a. By hypothesis we have (o,n,Py;) € b, thus by RP-saturation, there is a
II(n, S1,S2) € b such that {S; 0,51 40T,S2 F0o¢;} Cb. Therefore, by construction of
P, (n,9(S1),9(S2)) € P. Let us show that g(S1) = W, and g(S2) € Wooy, -

First let m € ¢(S1), thus [m € S1] is in b and then, by R F-saturation, (o, m, T) € b. Thus
by p(a —1,k, T) we obtain m € W,, because k + deg(o1) + --- + deg(oy) < k + deg(o1) +
-+ deg(oy) + deg(Pp1) —1 < a— 1. Thus g(S1) C W,.

Second let m € ¢g(S2), thus [m € So] is in b and then, by R F-saturation, (copi,m, T) € b.

ne W,

By Ro-sat (o,m,¢1) € b and p(a, k, 1) we obtain , because k + deg(o1) +
M07 n ': ©1

-+ deg(or) +deg(p1) < k+deg(o1) + - - +deg(or) + deg(Pp1) < a. Thus ¢g(S1) € Wooy, -
Third, let m € W,. Towards a contradiction assume that m ¢ ¢g(S1). Thus [m ¢ S1] is in
b, and by R —-saturation we have that (¢, m, [0]L) € b. Therefore, by R].]-saturation iterated,

- either (¢,m,—0o1) € b and M, m |= —o; by p(a,0,—01)

- or (o1, m,~0o3) € b and M,,,m |= —o2 by p(a, 1, —0o2)

- or ((o1,...,0),m, L) € band M,,m = L by p(a—1,k, T)

In all cases, that is in contradiction with the hypothesis m € W,.

Case ¢ = —Ppj;: We suppose a > 2, otherwise it is already proven by (1), because k +
deg(yp) > a. By hypothesis we have (o,n, 7Py;) € b and we want to show that show that
for all (n,S1,5%) € P, St # [(0)T] or S? Z [(0)¢p1]. Let (n, S, S%) € P, by definition of P,
we have II(n, S, S2) € b with ¢g(S1) = S! and ¢g(S2) = S%. Thus, by R—P-saturation, either
(Sitfo)ebor (S1A0)ebor (Satfooyr)€b.

In the first case, by R I/ -saturation, there exists a m € W such that (m € S;) is in b and
(e,m,[o]L) € b. Thus m € S! and (e, m,[0] L) € b. As in the previous case, this is equivalent
to m ¢ W,. Therefore S* Z [(c)T].

In the third case we prove S Z [(0)p1] in the same way.

In the second case, by R 7 -saturation, there exists a m € W such that (m ¢ S1) isin b
and (o,m, T) € b. Thus m ¢ ¢(S1) and, by p(a — 1,k, T), m € W,. Therefore S* 2 [{(o)T].

([

We are now able to prove completeness of the tableau method:

Theorem 6.49 (Completeness) If every tableau for ¢ is open then ¢ is satisfiable.

Proof
Let Sy, called the naive strategy be the following application of the tableau rules
SN :((RV); (RK;); (RL]); (Ro); (RA); (REKG); (R(.)); (B-); (RT); (RS); (RSB); (R4); (RL);



166 CHAPTER 6. PERMISSION AND PUBLIC ANNOUNCEMENTS

(R—P); (R €); (RIL); (RP1); (RP2); (RP); (RF); (RY); (R ); (R%))* It can be called naive
because it simply applies all the rules in an arbitrarily chosen order, and then starts again.
If a rule is applicable, it is applied to one of the oldest instances that match with the
conditions of the rule (FIFO). Remark that Sy satisfies the fact that for all i > 0, if a rule
R is applicable in T; then it will be considered at some step j > i.

Now let ¢ € Ezljpal be such that for all 7 € Tab(yp), T is open. Let (7,) = Tab(y) the
(possibly infinite) list of all the tableaux for ¢ constructed by applying strategy Sy to the
initial tableau for ¢, 7o = Zo(p).

Now there are two possibilities for a given formula ¢: starting from the initial tableau for
©, either Sy ends after n steps or Sy never ends. In the first case 7, is saturated (because
no rule can be applied anymore) and it is open by hypothesis. Then it is an open saturated
tableau. By proposition 6.47 we obtain the wanted result.

In the second case, let 75, be the infinite tree representing the infinite executions of Sy for
all n € N, the nodes of depth n are the branches of 7,,. Therefore the root node is {(¢,0, ¢)}
and every node is a set containing every one of its ancestor nodes. It is a finitely branching
tree because every rule creates a finite number of branches. Therefore, as it is infinite, it has
an infinite tree-branch B.,. We prove that this is an open branch. Indeed it is an infinite
union of branches that are included one in the other for all i € N, B; C B;1. We can thus
define their limit (J .y B; and obtain By.

Now for all ¢ € N, B; is open. Therefore B, does not contain (o,n, 1) for any o,n.
Furthermore By, is saturated by construction. Therefore it is an open saturated (infinite)

branch. By Proposition 6.47 this leads to the satisfiability of .
O

6.6.3 Implementation

We first have implemented the semi-algorithm corresponding to the tableau. In order to get
a more efficient algorithm, we implement the tableau method using two modifications of the
tableau method. First, we add two additive rules RP1 and RP2:

I1(m, S1,52); {(o,n, Pp); S1 F 0351 40;S2F 0o ()D(RPl)
H(n, Sl,SQ)

II(m, S1,52); (o,n, Pp); S1 Fo;51 4o
H(?’L,Sl,S;),) N 53 |— gop

(RP2)

Table 6.3: Two additive tableau rules

The rules (RP1) and (RP2) simply subsume the rule (RP) in order to avoid cre-
ation of useless extra symbols of §. Second, we construct the models following strat-

egy Strat defined as the application of the first rule which is applicable in the follow-
ing list (RV); (RK;); (R[]); (Ro); (RA); (RK;); (R(.)); (R-); (RT); (RS); (RSB); (R4); (RL);
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(R—P); (R €); (RII); (RP1); (RP2); (RP); (RF); (R/); (R H); (RA) and then restart strategy
Strat, or quit if there is no applicable rule.

We have implemented the strategy Strat under LotrecScheme! which is a software for
rewriting terms close to the tool Lotrec (see [Gasquet et al., 2005] and [Said, 2010]). We have
written all rules of the Table 6.2. Figure 6.2 shows the implementation of rules ( Ro), (R4)
and (RP2).

A

(If L PH) A
(If {cdr L) (car L))
— {If L PHI)

:0ndiﬁ0ns:| {- (set-empty? L)) I

onditions:

(setofworlds 53)

A extra
(If L (p PHI)) 521 h:ad: II:; A LR (S3 vdash (cons 'PHI'L))
velas! P (pi & 51 53)
(piMS152) = (51 hsadv L)
(51 velash L)
(piMS152)

Figure 6.2: Rules (Ro), (R4) and (RP2)

We write (If L PHI) in the node A for (L, A, ¢). We use the primitive cdr and car of Scheme
to get respectively the tail and the head of the list L. (R4) is a graphical representation of
transitivity. All terms S F o, II(n, S1,52)... are written in an extra node called “extra”.

We adapt also the language £, in order to implement it. Thus K;¢ is written LliPHT
and [¢]p is written Ann(PSI)PHI. The other constructions (—, A, ...) are identical.

Let us see, as an example, the satisfiability of the following formula ¢ = PK1p A PK1q A
-PKi(pAq)A KyPK, (pAq) N[ EK1p]PK1(p A q). Tt expresses the possibility of the following:

e Agent 1 is permitted to say (she knows) p and (she knows) ¢ but is not permitted to
say (she knows) p A ¢ — as for Alex in the first example.

e Agent 2 imagines that Agent 1 is permitted to say p A ¢ (she may not know the rule).

e Agent 1 has the permission to say (she knows) p A ¢ after the announcement that (she

knows) p.

Figure 6.3 presents the output of LotrecScheme if we ask for a model of ¢. The actual
state is n24, in the top left of the model. The node ‘Pi’ is not a state but represents the set

"http://www.irit.fr/~Francois.Schwarzentruber/lotrecscheme/.
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n2

(F () (annD (D1 p) (p (31 (b c))))) e (625 notin $35)

(£ 0) (= (p (01 (p * 4))) (FO (p (211 (p * e} (nIf (01 (p * ))) top) (b75 notin s42)
(F 0 (02 (b (D1 (p * e))))) (r(O1 (p 4 g))) top) (f (D1 p)) top) [GOISICRE (b25 ntin s42)
(£ (p (01 o)) (0 (01 (p * an) (F 0 (01 p)) (70 (= p) ¥ (-~ al) (b75 notin s41)
(0 (p (D1 p))) (o0 e * a) (oo p) (roe py (b25in 541)
0F (01 BY) (b (1 (p A ) (O (p * o) (0 p) fOR) (a72in s28)
0F O (01 p)) (r Qe (If () top) o -ay (460 notin s29)
(10 p) (¢ () p) (nif ) (31 (0 * Q) (If () top) (a72 notin $35)
(1 ((01 6)) top) (If () top) (7 0 (= (31 (p A a))) (1 (31 p)) top) (bE3 notin 529)
(0 (01 0)) (It (1 p)) top) 7001 (= (p A ) 10 (a1 p) (a72 notin 538)
0 (FO D1 P (in s41) (in s41) {866 notin £29)
(T ({01 p)) top) fmo e (in s28) (in s28) (a72 notin s42)
(f (D1 (p @) (31 p)) top) (in £38) (in s35) (b6 notin s29)
(f (001 p)) (D1 (p A gl meEEp 71 (260 in 528)
01 (01 ) (o~ a)) {in s41) ’ (a72 notin s41)
(If (01 p) q) 1,2 a2 (kB3 in £28)
(f (01 p)) p) (nilf (£01 (p * e)) top) (a6 in s28)
(in 542) b (F ({01 q) top) (b69 in 528)
(in 523) (f O (-~ (p *a))) (f Q) (a1 q)) (b3 notin s35)
(in 535) (IO (= p) ¥ (- a))) oo g (a0 notin s35)
(in 528) [ oo i (@60 notin 538)
(in s41) (If(l(f)(() q))) If () op) Eni Ei; SZ; S§§§ (b9 notin s38)
e 1 (nif () (31 (p » g))) (<l L el (a0 notin s42)
S~ L2 {If () top) A0 (= (01 (p A Q) (pi n24 528 529) (569 notin 542
(nIf ({01 p)) top) O (¢1 (- (p A g))) (pi n24 528 s35) (63 natin s35)
b&3 (nif ({031 p)) (nlf ({011 p)) top) (169 in 541)
a0 [LEVART)] (FQ) (= (01 p))) (nlf () (01 p)) (163 notin 538)
(1t () top) (f () top) (T et e (I () (= (01 p)) (266 natin s38)
(nif (01 p)) top) (nf ({011 p3) top) MREEY (1 (= p)) (b63 natin s42)
it O (01 p)) (nif () (017 p)) 2.1 (in 29) (66 notin s42)
(0 (= (01 ) 110 (= (01 p)) (in 528) (b6 notin s41)
(001 (~p)) (I O((i:;;s; P 2.1 (aB6 in s41)
(in 528) 2,1

Figure 6.3: The output of the tableau method for PK1p A PK1g A—~PKi(p/Aq) A KyPK;, (pA
q) A [K1p|PK1(p A q)

P of permitted transitions. As for ‘extra’, it is a list of the membership (or not) of the states
of the models to the sets of states considered in ‘Pi’. The membership of a state n to a set S
is reproduced inside the state.

Let us have a look at ‘Pi’: II(n24, 528, 535) corresponds to PKip, I1(n24, 528, 529) cor-
responds to PKiq, 11(b25,.528, 538) corresponds to KyPK;, (p A q) and T1(n24, S41, S42) cor-
responds to [K1p|PK;(p A q). We explain the details of this last example.

I1(n24, 541, 542) means that in the state n24, the transition from the submodel based
on 541 to the submodel based on 542 is a permitted transition. S41 is the following set of
states: S41 = {n24,b25,a66,069} (the four states in the top of the model). Those are exactly
the states that satisfy Kip: S41 = [Kip]. Now S42 = {n24}, and n24 satisfies K1(p A q).
Therefore the restriction to S42 is stronger than the restriction to [(K1p)Ki(pAq)]. Therefore
[K1p]PK1(p A q).

Unfortunately this tableau method does not provide a terminating algorithm. For in-
stance, if you want to check if P(Klffgp) the tableau method will not terminate. But we
believe that we can tune the tableau method by adding a loop check rule in order to obtain
a terminating procedure. We guess that the loop check rule may look like: “if there are two
nodes nl and n2 containing the same formulas, and such that “nl € S” € biff “n2 € §” € b

and “II(nl,S1,52)” € b iff “II(n2,51,52)” € b then we merge the two nodes nl and n2.”
Nevertheless, this tableau method for PP AL opens perspectives in the purpose of creating
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a framework taking rules of games expressed in POPAL and building automatically artificial

agents able to reason about the corresponding game and play it.






CHAPTER 7

Private Permissions

7.1 Introduction

A medical laboratory (L) gets the results of the blood analysis of a patient called Michel
(M). This confirms that Michel does not have AIDS (A). But of course, the results could
have been different. To prevent that patients commit suicide when they learn that they are
ill, French laboratories are not allowed to inform a patient directly of the results of a blood
analysis (by email, by post, or whatever inconvenient form of impersonal or unprofessional
communication). They have to inform a doctor (D), who receives the patient in his office, and
then informs the patient. This protocol has to be followed when the patient has AIDS, but
also when he does not have AIDS, otherwise having an appointment with the doctor could
already be interpreted as confirmation of the disease, and we still get the terrible situation of
lonely people in distress, that are a suicide risk.

Our aim, in this chapter, is to be able to formalize this kind of situation in which agents
can communicate with each other, and where there are restrictions, that can be deontic, moral
or hierarchical, on these announcements.

To formalize the concept of ‘having the permission to say to somebody’ we develop here a
variant of POP AL presented in the previous chapter. Indeed, the language considered here is
an extension of Plaza’s public announcement logic ([Plaza, 1989]), which we could call ‘private
announcement logic’, with a modal operator PZ.G for permission, where Pf(p expresses that
agent 7 is allowed to say ¢ to the agents of the group G. As for POP AL, this logic can be seen
as an adaption of the dynamic logic of permission proposed by [van der Meyden, 1996], later
elaborated by [Pucella and Weissman, 2004], presented in Section 3.2. Recall that in Van der
Meyden’s work, O(«, ¢) means “there is a way to execute o which is permitted and after which
© s true”: we treat now the particular case where actions are announcements made by an
agent to a group of agents. We also introduce an obligation operator OZ-G 1, meaning that the
agent is obliged to say 1 to the group G.

Once again, there is a relation between this proposal and the extension of public an-
nouncement logic with protocols by [van Benthem et al., 2009] presented in Section 3.3. In
their approach, one cannot just announce anything that is true, but one can only announce a
true formula that is part of the protocol, i.e., that is the first formula in a sequence of formu-
las (standing for a sequence of successive announcements) that is a member of a set of such

sequences called the protocol. In other words, one can only announce permitted formulas. We
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do not have this limitation here: we can distinguish an announcement that cannot be done
(because its content is false) from an announcement that is feasible but forbidden.

The permissions we model here are permissions for individual agents modelled in a multi-
agent system. For example, if we have three agents a,b,c, we want to formalize that a has
permission to say p to b, but not to c. We can model permission for agents using the standard
method that agents only announce what they know: so agent a says K,p to b only. This
would leave open what ¢ learns from this interaction. The solution we chose is similar to
the semi-public announcements ([Baltag and Moss, 2004]) where agents not involved in the
communicative interaction at least are aware of the topic of conversation and of the agents
involved in it: if @ actually announces p to b, ¢ considers it possible that a announces K p to
b, or that he announces =K ,p to the same b. We also model such permissions and obligations

of individual agents towards other agents in the system, or to groups of other agents.

7.2 Logic of Permitted and Obligatory Private Announce-

ments

7.2.1 Introducing Agency and Individual Permission

The reader may recall the previous chapter to better understand the current one. Indeed, as we
will see in Proposition 7.15, the notion of permission of this logic with private announcements
can be seen as an extension of the notion of permission formalized in POPAL and presented
in Chapter 6: if the group that ‘receive’ the announcement is always the whole group of agents
AG, then any ‘private’ announcements to the group G is a public one. The analogous feature
is not true for obligation, given that we have a different intuition of obligation in this chapter.

We want to consider private announcements, i.e. informative events in which an agent
gives a piece of information that she has to another agent (or to a group of agents). Some
choices have to be made. First, we consider that the content of an announcement is true,
second we consider that the agent who is speaking can speak only about her own knowledge
(it is the only thing she can actually know to be true), third we consider that the agents
who hear the announcement believe it (and update their knowledge in consequence). This
third point implies, in our understanding, that if the receiver of the announcement is a group
then the information will be common to all its agents: anyone of them knows that any
other one modified her knowledge. These points, except maybe the second, are classical in
the field of dynamic epistemic logic ([van Ditmarsch et al., 2007]). But one characteristic of
‘private announcement’ still has to be fixed: what do the other agents learn? Indeed, the
announcement can be hidden (and the others may believe that nothing is happening), or it
may be the case that the other agents see who is communicating with who, without knowing
anything about the content of the message. They may also know both the agents involved

and the topic of the announcement, without knowing its truth value.
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In [Baltag and Moss, 2004] the authors propose a general framework to express these
different kinds of announcements. The main idea is that an announcement is represented by
a graph: its states are deterministic events (and are labelled by formulas of the language that
express the content of the messaged); a relation between two states, labeled by an agent i, is
like in Kripke models an uncertainty for these agents about which of the two messages is given.
With this formalism the previous examples of announcement can be represented as follows

(in these examples i gives the information ¢ to j, the actual event being double-surrounded):
AG,
Public announcement:

AG, AG,
Hidden announcement : Ag\{i,j}

Visible private announcement:

AG\{i,5}
AG\{3,5} " - AG\{i,5}

A

AG
Idem with known topic: AG\{i,j}

For both technical and practical reasons we restrict our formalism to the last kind of
announcements, in which both the agents involved and the topic of the message are publicly
known. In this context, we consider announcements of the type !ZGgp with o € Lo, 1 € AG
and G C AG. This formula represents the semi-private announcement by 4 to the group
G of what she knows about ¢. That can be “I know that ¢ is true”, “I don’t know if
¢ is true” (analogously to the treatment of questions in [Groenendijk and Stokhof, 1997]).
Our formalism does not use event models, announcements are simply modelled as models
restrictions, but the result of such an announcement is exactly the same as the result of the

action of the corresponding event model as described previously:

K, (AG\IP\& ~Kp

You can read this in the following way: The actual action is that agent ¢ says “I know
that ¢” and the agents in the group G know it, but every other agent that is not in G cannot
distinguish this action from agent ¢ saying “I don’t know either ¢”.

It is worth noting that every state of every model satisfies only one of the two previous
preconditions: in every state, either i knows ¢, or she does not know (. This implies that
the action of !iGgo on an epistemic model is only a copy of it with less epistemic arrows (if j

learns that ¢ knows ¢, she does not consider anymore the states in which —K;p was true).
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Note that %o is identical to !¢ K;¢ and that !$—K;¢ is the same action model but pointed
in the other state.

Such semi-public announcements can be modelled as restrictions on accessibility relations,
while keeping the entire domain intact.

In the following subsection, instead of a permission relation that is the same for all agents,
we define individual permission relations, one for each agent, and based on these structures
we propose operators (let us take the one argument version) P and Ot for “agent i is
permitted to announce whether she knows v to group G”, and “agent ¢ is obliged to announce
whether she knows 9 to group G”. The more general form of obligation is Oiézﬁ, where i has
obligations (1; =) 1, ..., to groups of agents (é =) Gy, ...,Gp.

Let us see it in details.

7.2.2 Syntax of L.,

We first define the following partial language Lyq:

Definition 7.1 (Lpra) The language of private announcement logic Ly, over PROP and
AG s defined inductively as follow:

W 2= pl L=yl v S gy
where 1 € AG, G C AG, and p € PROP
We are now able to introduce properly the syntax of our language:

Definition 7.2 The language of permitted and obligatory private announcements logic Lyopra

1s defined inductively as follows:

@ = p|L|~ple V o Kip|[\S)p| Py OFp

—

where i € AG, G C AG, p € PROP, ¢ € Lprgy, ¥ = (Y1, ...,¢n) is a tuple of Ly, -formulas
and G = (G1,...,Gp) a tuple of subsets of AG. We call Lppyq the fragment of the language
without obligation operators (and Ly is the fragment of the language without permission

and obligation operators).

The boolean operators have the classical reading, and Ky is read “agent ¢ knows that
©”. We read [I$'1]p as “after the announcement by agent 4 to the group G that (she knows)
1, where the agents not in G also consider possible that ¢ announces that she does not know
1, ¢ becomes true”, PZGQ,Z) by “i is allowed to say ¢ to the group G” and O?Jf by “i is
obliged to say ¥ to G1 or ... or ¥, to G,,”. The obligation is thus presented as a list of
allowed announcements, and the agent satisfies her obligation by announcing one of them.

This construction may seem complicated, and looks like a disjunction: is it possible to reduce
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Oié 1; to some kind of \/, OiG ‘p;7 The answer is no: the following example shows that you
can have the obligation to announce one thing or one other without having the obligation to

announce any particular one of the two.

Example 7.3

In the Cluedo game', a murder has been committed and every player has some information
about the weapon that has been used, the murderer or the room where the murder took place. A
player (A) makes a proposal: “I suggest it was Professor Plum (PP), in the library (L), with
the candlestick (C).” If another player (B) knows that this proposal is not correct, she has to
show to A one card that invalidates it (for example showing the card that says that Professor
Plum is innocent). B is thus obliged to give information to A, but she has no obligation to
give one particular information. Suppose that B knows that the three propositions PP, L and
C are false. Therefore we have (considering A = (A, A, A)) :

OX(~PP,~L,~C) A ~(OA(~PP) v OA(=L) v OA(-C)).

The following technical notation will allow us to define the notion of strong obligation:

j = e (o '
Definition 7.4 Let kn €N, fet 4 &= (Whees¥n) gy 1 0= W)
G:=(Gy,...,Gy) G = (G},...,G})

%z = wl/

We note (¢/,G') < (0,G) if (¥/,G') # (¥,G) and there exist ji,...,ji € N such that
<
Gj =G

1<ji<--<jr<nandforalle{l,.. .k} {
This notation can be understood as the fact that the announcements (formula and group) of

the first couple are announcements of the second. In particular, & < n.

We can now introduce the following useful abbreviations.
Definition 7.5
o (IFY)p = [IFY]-p

Strong obligation: O?J = Oiéz;/\ /\(1;, _‘Oi@(&/)

GN<(.,G)

1G9~ = [19%]p A ¥ =Kb]p: whatever i announces to G about her knowledge on 1,

© becomes true after the announcement

(Finite) sequence of announcements: an announcement !iGw is a sequence of announce-

ments, and if 01,09 are sequences of announcements, then o1;09 is a sequence of an-

nouncements.

For all sequences of announcements o1, o9, we define [o1; 02)p := [o1][o2]p, (01;02)¢ =

(o1){o2)¢ and [(o1;02) ¢ == [o7][05 ]

'For a complete explanation of the rules of this game: http://en.wikipedia.org/wiki/Cluedo
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o [f the tuple of groups (and announcements) are made of a unique element, we abbreviate
in the following way: OF ¢ = OEG)(QO)

The first operator is the dual of [1$'4]. As we will see, it is equivalent to [!$4]¢ with the
supplementary condition that ¢ can announce 1. The second construction, [!Z-GQ,Z)N}@, means
that whatever ¢ knows about 1, if she says it to G then ¢ becomes true. The third one
defines a stronger (and in our opinion more realistic) notion of obligation: not only a list
of announcements one of which you have to ensure, but the smallest such list. This strong
obligation will guarantee us to avoid Ross’s paradox, indeed with this interpretation if you
are (strongly) obliged to make an announcement you are not (strongly) obliged to make this
announcement or another one. The fourth definition allows us to consider every sequence of
announcements o. The fifth abbreviates the notation in the case where the considered tuples

are l-uples.

7.2.3 Semantics for £,

The models of our logic will be epistemic models augmented with an additional relation
P between states and sets of relations, that represents, for each state, the announcements
that are explicitly permitted to be done in this state. To define it properly, we need some

preliminary notions:

Definition 7.6 (AG-relation) Let AG and S be two sets. We define an AG-relation over S
(or simply AG-relation) as a set R = {R;}icac such that for all i € AG, R; is an equivalence

relation over S.

Definition 7.7 (Inclusion of AG-relations) Let R = {R;}icac and R’ = {R.}icac be

two AG-relations over S
o Wesay R' CR if for alli € AG, R, C R;.
e Foralli€ AG, we say R' C; R if R = R; and for all j € AG\{i}, R; C R;.

Remark 7.8 For all i,G € AG x 24C | we have that R' C; R only if R’ C R. Note also that

C and C; are partial orders on AG-relations, in particular, they are transitive.

We are now able to define the notion of restriction of an AG-relation:

Definition 7.9 Let M = (S,R,V) be an epistemic model over PROP and AG (cf. Defini-
tion 2.17), G C AG and ¢ € L an epistemic formula. We denote by Ric,, the AG-relation
R’ = {R;}icac such that:

e Ri=R,;

o forallj ¢ G, R;=R;
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o forallj e G, Ry ={(s,t) € Rj st. M,s = Kb iff M,t = K;p}.
Therefore we define Ma,, = (S, Rigy, V).
We underline some elements:

e We could have removed the first line R, = R;. Indeed, in both cases (i € G and i ¢ G)
the other two lines would have imposed this condition. We do not remove it to be more

explicit.
i R!G¢ SR
° M!% is still an epistemic model, as Ry, is clearly an equivalence relation.

We remark also that we can extend this notion of restriction to any L,,,-formula considering

the following semantics to interpret L,,,-formulas:

Definition 7.10 (Satisfiability relation for L,.q) Let M be a model and let s be a state
of S. The satisfiability relation M, s |= ¢ is defined inductively on the structure of ¢:

e M,skEpiffs€V(p)

o M,sl£ L

M, s = iff M,s =

M, s =1 Vb dff (M, s |41 or M, s |= 1)
M, s e Kip iff for all t ~; s, Mt =

o M,s = [9y)x iff M,s = Kb implies M!iGWS E x

where Micy, = (S, Rycy, V) with Ric,, the AG-relation R' = {R;}icac such that:
e Ri=R,;
o forallj¢G, R, =R,

o forall j € G\{i}, R} = {(s,t) € Rj s.t. M,s = Ki¢b iff M,t = Ki}.

7.2.4 Semantics for L,

We can now define the models of our logic, that are epistemic models augmented in the

following way.

Definition 7.11 A model over a countable set of atomic propositions PROP and a countable
set of agents AG is a structure M = (S, R, V,P) with

e S being a non-empty set of states
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e R being a AG-relation over S.

o V mapping every p € PROP to a subset of S

e foralliec AG, T, = {(s,R',R") : R',R" are AG-relations, s € S, R" C; R' CR}

o P ={P;}icac where for all i € AG, P; C T,.

The membership of (s,R’,R”) in P; can be interpreted as follows: in state s, after every
announcement that restricts the AG-relation to R’, every announcement of ¢ that restricts
the AG-relation to R” is ‘permitted’. Indeed, only L, -formulas can be announced, so
the definitions of restriction appearing in Definitions 7.9 and 7.10 are sufficient to define

the update of a model M after the announcement !iGw as the restriction M!cw, and the

interpretation of our logical language employing that model restriction.

Definition 7.12 (Satisfiability relation and restricted model) Let M be a model and
let s be a state of S. The satisfiability relation M, s |= ¢ is defined inductively on the structure

of p:
* M,sk=piffseV(p)

e M s~ L

M, s =~ iff M,s Ey
Mas'zwl\”h Zﬁ(Ma‘S':wl 0TM73|:¢2)
M, s = Ky iff forallt ~; s, Mt =

M, s = [!quﬁ]X iff M, s = K implies M!G¢73 E x

M, s = PZ-GX iff there exists 1 € Ly such that

1. ./\/l, S ): Kﬂp
2. [Kiv]Jm C [Kix]m and
3. (Sa RaR!GQp) € Pz

M,s = 0%G iff

1. fordllk € {1,...,|Gl}, M,s | Kipy and (S,R,R!g%k) € P;, and
2. for all (s,R,Ryu,) € P; there exists a k € {1,...,|AG|} such that Ryu, = R'_ka
and [Kix]m C [Kivr]m

where Micy, = (S, Ricy, V,P') with P = {Piticac such that for all j € AG,
PJI = {(S,Rl,RQ) S Pj s.t. R - R!%}
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The semantics of the permission operator is thus the following: we say that ¢ is allowed to
say (that she knows) x to G if there is something (¢/) that she knows, which announcement
is more informative than the announcement of y and gives a restriction that is in P;. The
intuition hard encoded in the semantics for obligation is that given two different things that
you are permitted to say, you should only have the obligation to announce the weaker of both.
This explains the part “for all (s, R, R.G \) € P; there exists a k such that R,G =R (G and

[KixIm C [Kigr]m”
do something then it should at least be permitted, and that intuition is indeed valid for the

of the definition. This also intuitively entails that if you are obhged to

given semantics of obligation: for all ¢ € Lpy: = O%p —s PCo.

But this notion of obligation still does not say what you are actually forced to say: indeed,
adding formulas to the tuple ¢ would maintain this obligation. This pushed us to define the
notion of ‘strong obligation’ as the smallest such ¢ satisfying the definiendum: M, s = Oié g

iff M,s Oiécﬁ and for all ¢’ < @, M, s b~ Oié/(g;’).

Remark 7.13 We define also M (Gt y) = (Mg )iy s and we obtain inductively M, for
i J

every finite sequence of announcements o.

What is precisely the epistemic effect of the restriction !$¢)? For every agent j € G after
the announcement of !Z-Gd) it becomes valid that j is able to distinguish the states where
knew 1) from the states where she did not know . The other agents cannot distinguish any
state they could not distinguish before, but they know that group G agents can.

Let us make another important remark.

Remark 7.14 From Definition 7.5 we obtain:

o M,s = (19)p iff M, s = Kt and Mgy, s =

e By a direct induction on n and by Remark 7.13 we obtain that for any sequence of
announcements o —' @bl,'GQ@/Jg,...;!iG”wn, we have M,s = (o)p iff (M'le s E

(19200, .15 Yp andM(% (G2 = (1303, .19y ) o and .. and My, s |=
). We abbreviate this by saying that M, s E(oyp iff M,s = (o) T and Mg, s ): ©.

7.2.5 Comparison With the Non-Agent Version

As we announced in section 7.1, except for the notion of obligation that differs in the semantics,
we can see this work as an extension of the previous work on permitted public announcement
logic presented in Chapter 6. More precisely, consider the fragment of L,oprq in which the
popral tHis

particular language, in which the announcements have the form !;401/1 (we thus abbreviate it

group that receives any announcement is the entire group of agents AG. Let us call LAC

in !;40). The important remark is that such an announcement just divides the model into two

submodels, depending on the initial valuation of K;1: Ry, is the restriction of R to [K;1)]
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and [-K;¢]. Now, for every model M = (S,R,V,P) of PPrAL we define the following
model M* = (S*,R*,V*,P*) of PPAL:

e §*=5
e R*=R
o V=V

e for every announcement !;1) we define Sy, = [K;¥)]pm. Therefore we can define S, for
every succession of announcements o by a direct induction (using Remark 7.13). Note
that R, is

o P*={(s,5,, SU!W) €5 x29%x 2% s.t. (S,RU,R01i¢) € P},

Therefore, an announcement !;7) in M has the same meaning as the public announcement
of Kt in M*: if p € Eﬁocpml we define ¢* € L,pq Where ¢* is obtained from ¢ by replacing
any occurrence of an announcement !;1 by K;v and any occurrence of PiAG@Z) by P(T,K;).

Hence the following:

Proposition 7.15 Let ¢ be a [Zﬁmel—formula. Then we have :

for every model M, and every state s € S, M,s = ¢ iff M*, s = ¢".

To prove it we need the following lemma:

Lemma 7.16 Let ¢ € (Eﬁmel)* (i.e. the fragment of Lyopa obtained by translating a

Lypprai-formula).  Therefore for every model M, every sequence of announcements o =
Liyis .3 i, such that M,s = (0)T we have (My)*,s = ¢ iff M*|K(0),s = ¢ where
K(o) = Kijj¢1,...,K; .

In particular (if n = 1) for every model M, announcements ;1) such that M, s = K\ we
have (My,y)*,s = ¢ iff M*|K), s = .

Proof We prove it by induction on the formula ¢:

Base cases: for ¢ = p by definition of V*. For ¢ = L it is trivial.

Inductive cases: Suppose that it is true for every subformula of *

o v =x,x1V X2 : direct
° v =Kjx: (Mo)"s = Kjx
iff for t € S”(=S) such that s(R[)t, (M,)*,t | x
iff for t € S such that sRt, (My)",t = x (because R™ = R’)
iff for ¢t e S such that sR;jt and M,t |= (o) T, (Ms)*,t = x
(by definition of R7)
iff for t € S such that sR;t and M,t = K, M*|K;9,t = x (by IH)
MK, s Ko
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e ¢ = (x)0: Note that ¢ is obtained by translating a Lp,n-formula, thus ¢ =
(K;x*)0* where x € Lpra1,0 € Lpprar. Now:
My, s E (K)o
iff  (Myp)*, s = Kjx™ and (Myy)*|(K;x"), s | 07
iff  M*|Ki,s = Kix* (by TH) and (My,y;1,,)", s = 0" (by IH)
iff for ¢t € S such that sRt, (My,4)*,t = x (because R™* =R')
iff for t € S such that sR;t and M, t = Kijip, (My,y)* t = x
iff for t € S such that sR;t and M,t |= Ky, M*|K;,t = x (by IH)
i M| Kabt = Ky

O
Proof (of Proposition 7.15) We prove it by induction on the structure of .
base cases (¢ =p, L): Comes from the fact that S = S* and V = V*.
induction steps Let us suppose that it is true for every subformula of :
e v =, Vo by a simple use of ITH
e ¢ = K;i: by IH using that R* =R
(We can consider in particular that the property is true for every ¥ € L)
e o = (l;1h)x: Therefore, p* = (K;v)x*. Now
M, s ): <'Zw>X
iff M,s k= K;p and My, s = x
iff M* sk Ky and (Myy)*, s = x*
iff M* s = K9 and (M)*| K9, s = x*
it M* s = (K)x*
it M=, s = ({lig)x)”
o p= PiAze
M, s | P
./\/l, S ): Kﬂ[)
iff  there exists ¢ € L s.t. < [Kivo]m C [Kix]m and
M*, S ): Kﬂﬁ
ift  there exists ¢ € L s.t. [KiY]m+ C [Kix]m+ and
(S,S, [[sz]]) S ,Pz*)
it M, s = P(T, Kix)
O

We also have a different intuition than in Chapter 6 of what ‘strong obligation’” means.

The obligation is here seen as a disjunction (the obligation to make one of the announcements

of ) but as the minimal one.
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7.2.6 Properties

First, here is a characterization of the link between a model and its reduction after an an-

nouncement:

Proposition 7.17 For all formulas ¢, all models M, all states s of the model and all se-
quences of announcements o we have: My, s = ¢ <= M,s = [07]e.

Proof Let us first prove it for a single announcement !iG@Z):
lewa sE¢
M, s |= Kb implies M, s = (19)p
{ M, s = =K1 implies M, s = ({¢=K;b)p
iff M, s = (Kip — (IF)p) A (RKip — (I =Kiv)e)
iff M, s | 19 AIS=K)p (because = ~Kj) «—— K;—~K;))

iff M, s | [Fy~]e.
By the definition of [.™*] in Definition 7.5 and by Remark 7.13 the result extends to every

iff

sequence of announcements.
]

Let us see some properties of our logic, and in particular a reduced language that is

expressively equivalent.

Proposition 7.18 For all p € PROP, all i € AG, all G C AG, all ¢ € Lpyy, and all
P, 1, P2 € ['pop'ral

L = [{§ylp — (Kip — p)

2. YL K

3. [fY]-e — (Kip — (i)

4 ELF9)e1 Vo) e (€)1 v [1F]ie2)

5. for all j € GU{i}, | [SY]K;p «— (Kip — K;[1§9]p)

6. for all j & (GU{i}), | [IEY|Kjp — (Kiy — K;(['[§4™~]p))

These equivalences need some explanation, let us see the first one. It says that p is true after
every possible announcement by i of v iff if ¢ knows v (and then he can announce it) then p
is true. This only says that an announcement cannot change the valuation.

Proof This proof is very similar to the proof of reduction of PAL (see [Plaza, 1989] for
details). Let us see the proof of the last two ones, with R’ := R!?w-

5. (=) let j € G, s € S such that M,s = [I$9¥]K;o A K;tb and t a state such that
(s,t) € Rj. We want to show that M, t |= [!$1]p. Now either M,t = - Kt and it is
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finished, or M, t |= K;9 and thus (s,t) € R; implies that s,t € R (by definition of R').
As Mg, s = Kjp we obtain that M.t | ¢ Q.E.D.

(<) let j € G, s € S such that M, s |= K AK;[!4]p and t € [K;1] a state such that
s,t) € R.. We want to show that M,c,,,t = . By definition of R/, (s,t) € R/ implies
J Y J

(s,t) € Rj, and thus M, t = [[$9]p. Ast € [K¥], M,t = [[$]p Q.E.D.

6. (=) let j & (GU{i}), s € S such that M, s = [I¥9]Kjp A K1 and t a state such that
(s,t) € Rj. We want to show that M, ¢ |= [I¢1)™~]¢. Recall that in this case R; = R
Now M, s = [!f@D]Kjgo/\Kﬂb implies that M!?w’ s = Kjp. Considering that (s,t) € R;
we obtain Mg, s = . By Proposition 7.17 this means that M, t |= [\$4™]¢ Q.E.D.

(<) let j ¢ (GU{i}), s € S such that M, s |= K A K[54~ and ¢ € [K;¢] a state
such that (s, ) € R;. We want to show that Mgyt = ¢. Recalling that R; = R,
M, s = K19~ ]p implies M, t = [[F9~]p. Thus M,t = [I$¢]p and, as t € [K],
M!?¢,t E o QE.D.

Definition 7.19 We call Lopo the following language:

~ -,

p = p| LI=ple V | Kipl(a) PFY (o) =Py |(0)OF (o) =OF
where 1 € Lo, 1 € AG, G C AG, o is a sequence of announcements and for all 1;,G; in the
tuples 1/7, C_j, we have Y; € Lo and G; € AG. It is the restriction of Lpoprar to the fragment
without announcements except a sequence before permission and obligation operators. We call

Lep the restriction of Lepo to the fragment without obligation operators.

Note that we cannot make the announcement disappear completely. This is due to the
unary nature of the permission and obligation operator (cf. discussion on page 133). But it
is possible to consider only formulas with announcements preceding exclusively permission or

obligation operators. We could also have chosen the following equivalent language:
¢ = plL=ele vl Kipl (o) PEY| 0] PE ) (0) OF | [0]OF .

Corollary 7.20 (of Proposition 7.18) L.po is expressively equivalent to Lpoprai- Leip S

expressively equivalent to Lyprar. Lo 15 expressively equivalent to Loppg.

This last language, L;p, will be used in Section 7.2.7 to prove the completeness of the given

axiomatization. To prove Corollary 7.20, we use the following translation
Definition 7.21 We definetr : Lyoprai — Leapo inductively on the structure of the formula:

e tr(L) =L and for all atom p € PROP, tr(p) =p
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o tr(=p) = ~tr(p) i tr(e V) =tr(e) Vir(y) ; tr(Kip) = Kitr(p)
o tr([IF¢lp) = Kitr(y) — p ; tr([!{¢] L) = ~Kitr(y)

tr([fy]-p) = Kitr(¥) — —tr([[F¢]p)

tr([1Fe] (o1 V g2)) = tr([iF9]er) V tr ([ Y]e2)

for all j € G, tr([§Y]K o) = Kitr(v) — K;tr([I§¢]p)

o for all k & G, tr([\Cy]|Kyp) = Kitr(1) — Kitr([/94~)e)

-,

o tr(PC) = PCtr(yh) ; tr(OS%) = OF (tr(hy), . .., tr(1hn)).

Note that it is actually true that for all ¢ € Lpoprar, tr(@) € Lepo- In fact, after any sequence
of announcements, anything else than a P or an O is reduced by the translation. Note also
that tT‘(,Cppml) = L.p and tr(ﬁpml) =Ly
Proof (of Proposition 7.20) We prove the first property, we can prove the other two
properties in the same way. Clearly Loprq is at least as expressive as L po (because the
second is included in the first). We use the translation t¢r defined in the previous definition.
We obtain the wanted result by Proposition 7.18.
O
Another interesting property of our semantics is that, without any additive assumption,

the following proposition is true:

Proposition 7.22 For all models M and all formulas 11,v2 € Ly all i,j € AG, we have
that ZfM }: Kﬂ[)l — Kﬂﬁg then M |: PiG¢1 — PZ-G¢2.

Note that this translates our intuition that: if an agent is allowed to give some information

to some group of agents, then she is also allowed to give less information to the same group.
Corollary 7.23 If we have M = K;(yy1 — 12) then M |= Pf@bl — PqupQ,

This corollary comes directly from the Kripke nature of the models, that implies that
= Ki(1 — b2) — (K1 — Kia).
Proof (of Proposition 7.22) By definition of the semantics of P and by transitivity of the
implication. More precisely: let s € S, suppose that M, s = PiG”L/Jl, we want to show that
M, s E PiGng. Then let ¢y € Lpyq be such that M, s = K¢y, M = Kjpg — K1 and
(s, R, R!?wo) € P;, the three conditions of the semantics of P. Then we can keep the first and
the third one, and replace the second, by transitivity of the implication, by M = K;vy —
Kibs. We then obtain M, s = PS1s.
O
Let us see now what are the consequences of the composition of different obligations or

permissions:
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Proposition 7.24 For every v € Lpopral, every agent i, every group G and every n-tuple J

and G of Lpoprai-formulas and groups,
1. | PE(Y) — K
2. F OzGl/? - /\ke{l,...,n} Pz‘kak

3. | 0%y — 0%

- N

4. for all permutation n, = (O?(G)n(d_f) — OlGlE) A (O?(é)n(ﬁ) — O%)

5. = P AOFp — PE( A )

Proof The first proposition comes directly from s € [K;9]a in the semantics of P, the
second one from (s, R, R!ick %) € P; in the semantics of O, the third is induced by the syntax
of O and the fourth one by the semantics of O and O.

Now the fifth one. Suppose that M, s |= Pile A OiG . Therefore there exists x € Lya
such that M, s = K;x, [KixJm C [Kiv]am and (S,R,R!glx) € P; (because M, s PiGld)).
But as M, s | O%p necessarily [K;x]m C [Kig]am- Récalling that [K;o]m N [Kiv]m =
[Ki(o Ap)a we get [Kix]m C [Ki(p Av)]aq and thus M, s |= PE(Y A )

O

7.2.7 Soundness and Completeness

In this section, we give a sound and complete axiomatization of our logic. For technical
reasons, we restrict this proposal to the language without obligation operators Lp.,. We
conjecture that a complete axiomatization for the whole logic exists, and plan to prove it in
a further work.

Let PPrAL be the axiomatization presented in table 7.1

Proposition 7.25 PPrAL is sound in all the models.

Proof The soundness of the tautologies of propositional logic, of modus ponens, of the first
four axioms of table 7.1, and of the necessitation rule for every K; comes from the fact that
for every model M = (S,V,R,P), (S,V,R) is a Kripke model where every R; € R is an
equivalence relation (see [Fagin et al., 1995] for details). From the fifth to the tenth axiom,
the soundness is proven by Propositions 7.18. Soundness of the last axiom is direct.

Let us prove soundness of the eleventh axiom. Let M be a model and s be a state
of M. Suppose that M,s = (o)P%p, then M,s = (¢)T and M,,s = P%p (with the
abbreviation proposed in Remark 7.14). By Proposition 7.24 we get M,, s E K;p. Finally,
M, s = (o) K.

Now note that the soundness of the permission inference rule has been proved in Propo-
sition 7.22 using the same Remark 7.17.

O
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all instantiations of propositional tautologies

Ki(¢Yp — ¢) — (Kitp — Kip) distribution

Kip — ¢ truth

Kip — K;K;p positive introspection
—Kip — Ki—~K;p negative introspection
[!?7/’]29 — (Kyp — p) atomic permanence
[!Z'GT/}]J— — Ky ann. and false
“?M_‘S@ — (Kip — _‘[!iGi/J]‘P) ann. and negation
199] (01 V 2) «—— (1€¢]1 V [[F])g2) ann. and disjunction

if j € GU{i}, (S| K0 «—— (Kip — K;[I$9]p) ann. and knowledge (1)
if k¢ GU{i}, [CY)|Kpp « (Kith — Kp[/$9™~]p)  ann. and knowledge (2)

(o)PEp — (0)K; rationality of permission
(0)=PCp — (o) T ann reduction

From ¢ and ¢ — 9 infer ¢ modus ponens

From ¢ infer K;p necessitation of K;

From ¢ infer [1$'4]p necessitation of announcement

From [0~](K;p — K;¢') infer [0~](PE€¢ — PF¢')  Permission rule

(2

Table 7.1: The axiomatization PPrAL

Remark 7.26 Note that we have in particular that for all ¢ € Lppral, Fppoap ¥ < tr(e).
We often use this property in the following proofs, in particular to use ¢ instead of tr(p), for

the sake of simplicity, when we need an Lqp-formula.

To prove the completeness result, we define the canonical model for PPrAL in two phases:

Definition 7.27 (Epistemic part of the canonical model) We define the following tu-
ple EMC = (5, V¢, R®) where R® = {R{}:

e 5S¢ is the set of all Fpp,ar-maximal consistent sets
e for everyp € PROP, V¢(p)={x € S°|pe€x}
o for every i € AG, xRSy iff K;x = K;y, where K;x = {¢|K;p € x}.

Therefore, EM€ is an epistemic canonical model, and the truth lemma for L£.; applies here:
for all ¢ € Ly, EMC,z |= ¢ iff ¢ € 2. Furthermore, this extends to L4 for all ¢ € Ly,
EMCx =
ifft EMC x| tr(p) by Proposition 7.18
iff ¢r(p) € x by the truth lemma for L,

ift ¢ € x by Remark 7.26
Given a formula v € £,,, we can thus define the relation Ric,, as in Definition 7.9. We

are now able to define properly the canonical model for Lq:
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Definition 7.28 (Canonical model) The canonical model M = (5S¢, R$, V¢, P°) is de-
fined as follows:

e 5S¢ is the set of all Fpp,ar-mazximal consistent sets
o for everyp € PROP, V¢(p) ={x € S° | p€ x}
o for every i € AG, xRSy iff Kix = K;y, where Kjxz = {¢|K;p € x}

o 72 ={(z,R5, Rpioy) : X € Lprat, 0 a sequence of announcements, G C AG}, and Pf =
Te\ {(x,Rg,RZ!_GX) o for some ¢ € Ly, [0™])(Kix — K) and (0)~PCy € x}

Remark 7.29 Note that to define Py in the canonical model we need to define R, and Ry
which suppose that we are able to define properly what M€ x = (o)T and M x = (o) K;x
mean . But note that for all ¥ € Lppq, M x |= 9 iff EMC x |= 1. Thus it has been done

already.
Proposition 7.30 The canonical model is a model.

Proof Indeed, S¢is a set, V¢, P{ and R{ for all < have the desired form. The only property
we have to show is that if (z,R1,R2) € Pf then Ry C; Ry. Thus, let us suppose that

(z,R1,R2) € Pf, we have o, x, G such that Ry = Rg and Ry = R

we obtain the wanted result.

16 By definition of C;

O

In the canonical model, a state is thus a set of formulas. The link between the fact that

a formula ¢ is in a set = and the fact that M¢, x |= ¢ is given by the following proposition:

Proposition 7.31 (Truth Lemma for Lep) For all ¢ € Lop we have:
() : forall x € S Mz =piff pex

Proof We prove it by induction on the number of occurrences of a P operator.

base case: If ¢ is a formula without permission, II(¢) is a known result, the canoni-
cal model considered here being an extension of the canonical model for S5 (see
[Blackburn et al., 2001] or [Fagin et al., 1995] for details).

Main induction step: Let us then suppose that II(y) is true for every formula ¢ with at
most n occurrences of a permission operator. Note that by Remarks 7.20 and 7.26 we
can suppose the result for every formula of £,,,, containing at most n occurrences of

a permission operator.

Let us now prove the wanted result for every formula with at most n + 1 occurrences of

a permission operator by induction on the structure of the formula (:
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e p = Mex | iff Mg,z ¢ iff ¢ & o (by IH) iff ) € x (by maximality

of x)

©=p1 Vs M,z Ep1 Ve iff M,z = @1 or Mo, = @aiff o1 €z or o € x
(by IH) iff o1 V o € x

¢ = K;1: Let us first suppose that K;9 € x and let y be such that zRfy, we want
to show that M.,y = 1. Indeed we have K;1 € y and then ¢ € y, which implies
(by IH) that M.,y = v.

Reciprocally, let us suppose that M., z = K;1 and that K;v ¢ x. Then K;zU{-¢}
is consistent which means that there exists a y such that *R;y and —¢ € y. By IH
we obtain M y [~ ¢ and thus M€ z |~ K;1 which is a contradiction. Thus the
hypothesis K;1 ¢ = was wrong and K;v € x.

¢ = (o) Px:

(=) By the main base case , we have that for every Lp,,-formula 0, (0)0 € «
iff M® z = (0)0 (x). Let us suppose that (0)PSx ¢ z, i.e. —(o)PPx € z by
maximality, we want to show that M¢, z & (o) P9x.

Now, either (o) T ¢ x and thus M€ x [= (o) T by IH, and then it is finished.

Or (0)T € z, and then (0)~P%x € z. Let us suppose it. To show that M,z [~
(o) PEx let us take 1) € L,q-formula such that M€ |= [o~](K;¢p — K;x) and
let us prove that (z, RS, Rfﬂ!? w) ¢ P¢. Indeed if it is true for all such ¢ we would
have M¢ x [ (o) PCx. Now, by IH we have that - [0~](K;v»p — K;X), which
means with (0)=PFx € z that (z, RS, R¢ w6y) € P; QE.D.

(<) If (0)PFx € z, then in particular (0)KFy € z (and for all ¢ € Lypra,
[0~]p € z iff (o) € x, using the axioms 5-10). Now for all ¥ € L4 such that
- [o~)(Kix — K1) we have, by the permission inference rule, that [¢~]P% €
and thus (0)P%y € z. Therefore, by definition of P¢, (x,Rg,Rg!iGX) € P¢. This
proves that M¢ z = (o) PYx.

p = (0)=PFx:

(=) Suppose that M,z = (¢)~PFx. Then (x,Rf,,RZ“iGX) ¢ P¢, i.e. there exists
a Y € Ly such that F [0~](Kix — K;¥) and (0)=PF) € z. Thus, by the
permission inference rule , we obtain that (¢)-~P%y € z.

(<) If (o)~PFx € x then, by definition of P¢, for all 1 € L, such that
[c™](K — K;x) we have (377733772§“§w) ¢ P¢. This is equivalent, by the main
base case, to the fact that for all ¢ € L, such that M¢ |= [0~](K;1p — K;x) we
have (:c,Rg,R;l!z%) ¢ P¢. That means exactly that M¢ z = (o)P%y. We also
have that (o) T € z by the last axiom, which implies that M¢ = |= (o) T by the
main base case. Therefore from M€ z = —(o) P%x we obtain M€,z = (0)=PFx

by using many times axiom ann. and negation.
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Theorem 7.32 PPrAL is sound and complete with respect to the class of all models.

Proof Soundness has been proved in Proposition 7.25. For the completeness part, let
¢ € Lypra be a valid formula. Thus we have: |= ¢ only if |= tr(y) only if M¢ |=tr(y) only if

Ftr(y) (by Proposition 7.31) only if - ¢ (by Remark 7.26).
U

7.3 Case Study: AIDS

Let us recall the case of Michel, a patient who took an AIDS test, presented in the in-
troduction. His case can be represented as in Figure 7.1 with individual permissions and

transgressions. Let us explain the visual primitives.

L. L.
L L y
) =\ Y
M § { D
D, D, LM L.M
14 N
LMD A —ALMD

Figure 7.1: AIDS example

At the top, a two-state epistemic model where neither Michel nor the doctor can distin-
guish between a state where Michel has Aids (A) and a state where he has not (—A). Instead,
the laboratory knows (there is no label L on the double links between A and —A). We see
three more of such epistemic models in the figure, on the left is the situation where the un-
certainty has been removed for the doctor but where Michel still is uncertain, on the right
is the dual where the doctor is still uncertain, but Michel knows. For the record: this is the
suicide-risk situation that we want to avoid! So getting there should not be permitted. At

the bottom, everybody knows.
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The pointed (and colored) arrows stand for the results of announcements. If they are
dotted (and red), they are not permitted, if they are plain (and green), they are permitted.

The reader may note that such a representation is not a model of POPrAL: the transi-
tions representing announcements are transitions between states and not triplets (s, R1, R2).
This is true, but we claim that such a graphical representation (much more readable) is anal-
ogous to the formal one. Indeed, the epistemic models appearing in the figure have the same
domain (set of states) as the initial one, and their relation R’ is a subrelation of the initial
one R. Furthermore, the pointed arrows (that represent announcements) start from a state
and end in the same state of a reduced model. Finally, if such a pointed arrow is indexed
by an agent a then the relation R’ in the resulting model satisfy R’ C, R. For all these
reasons, this graphic representation is identical to the formal one, that should be written in
the following (complex) way: 1 M = (S,R,V,P) where PROP = {A}, AG = {M,D, L} and

o S ={s1,82}
e R= {RM,RD,RL} with

— Ry = Rp = {(s1,51), (81, 82), (52, 52) }
— Ry ={(s1,81), (s2,82) }

o V(A)={s1}

It remains to define P properly. To do so, let us call R! the left epistemic model’s relation,
R? the right epistemic model’s one, and R? the bottom epistemic model’s one. Formally for
all i € {1,2,3}, R" = {RY,, R}, R} } with:

e R, =Ry :R,=R.=R;
o« R2=Rp: R, =R=R,
« Ry =Ry =R} =R,
We are now able to define P = {Pxs, Pp,Pr} with

L4 7)]\4 = {(817R17R1)5(827R1)R1)7(82)R27R2)5(517R2)R3)7(82)R27R3)5(517R3)R3)7
(s2, R?, R*)}

L4 PD - {(317R17R3)7 (827R17R3)7 (317R37R3)7 (827R37R3>}

hd 7DL = {(817R7R1>7(327R7R1)7(817R17R1)7(827R17R1)7(317R27R3)a(827R27R3)7
(517R37R3)7 (5277?’337—‘)’3)}

We admit that these models are quite difficult to be read by a human being. But this is
not the case for a computer, and the proposed equivalent graphical representation is useful

to do direct comments, as we do here. The reflexive arrows labelled with L in the top
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Kripke model (information state) for the laboratory show that the empty announcement, i.e.
the announcement of ‘true’, after which the same structure results, is not permitted for the
laboratory: the laboratory is obliged to say something informative. In the top information
state, it is permitted for the laboratory to announce the outcome of the test to the doctor.
This action (whether A is true, or the different action for when A is false) brings us to the left
state (plain arrows). Also, these are the only plain arrows from those states: the laboratory
is obliged to inform the doctor: M, s; = OP A and M, sy = OP-A

Apart from the reflexive arrows, two more non-permitted actions on top are: informing
Michel (go to right): M,s; = =PMA, and informing the doctor and Michel at the same
time (straight to the bottom, where everybody knows): M,s; = ﬁPI-ED’M}A. The other
connections can be similarly explained. Finally, after the violation of the laboratory informing
Michel, the laboratory is still obliged to inform the doctor, and also Michel is obliged to contact
the doctor: M, sy = (M AY(OP A A OLA) — which we could now interpret that action will
be undertaken if Michel has not contacted the doctor after the laboratory has improperly
informed him directly of the outcome of the AIDS-test. Therefore, the plain arrows from the
right to the bottom are labelled both with L and with M. Further intricacies in the reflexive

arrows on the right-hand side are left to the imagination of the reader.






CHAPTER 8

Conclusion

Situations involving norms and communication are frequent: communicative games (such as
card games), medical databases, protocols of communication, etc. However, there exists no
general framework to handle such situations. Yet such a general framework would be of great
interest from a theoretical point of view to analyse and explain such situations, and from a
practical one, to create artificial agents able to reason in terms of permission to communicate.

The field of logic may be appropriate to create such frameworks, and many logi-
cians are trying to make progress in this direction (see for example [Aucher et al., 2010,
van Benthem et al., 2009]). This mémoire is an attempt to use dynamic epistemic logics in
order to understand the notion of ‘right to say’. We may first recall what has been presented
so far.

After having introduced our work, we presented in a first part the basic notions of modal
logic for the study of knowledge. Some would disagree with the fact that such a basic pre-
sentation appears in a memoir of Ph. D. But can we pretend that scientists may not be
concerned about making readable their work? To be readable was the aim of this chapter.

We then presented the works in progress on dynamic epistemic logic (DEL), essentially
since Plaza introduced the Public Announcement Logic [Plaza, 1989], and the basic notions
of deontic logic. We saw that in the field of DEL some notions could be developed, and we
added our contribution to the building in the Chapter 4 and 5. We saw that the notion of
objectivity and group capacity (in the field of DEL) introduced in these chapters may be
useful to understand and solve problems about protocols of communication. We presented
several technical results (decidability, complexity) of the logics LAUOB and GAL introduced.

That led us to the last two chapters, which gave proposals to understand the notion of
right to say in a dynamic context, namely POPAL and POPrAL. The first of them treats the
case where the announcements are public and can be thought as external events (made by an
omniscient agent). The second generalizes the first treating a case of private announcement
(that includes public ones) and considering agency of announcements. Technical results have
also been proved.

However, much remains to be done. First of all, there are technical results we would like
to obtain in each chapter proposed here. For example, chapters 5,6 and 7 have few results
of complexity, results we consider interesting. What is the class of complexity of the SAT-
problem for POPAL (resp GAL, POPrAL)? As another example, we would also like to
extend the axiomatization of PPrAL to get one for the whole language of POPrAL.
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The tableau method for PPAL proposed in Section 6.6 could also be generalized to
the whole language L0, integrating in it the deontic operator of permission O. Another
easy extension would be to add a tableau rule (RP~) as proposed in Table 8.1 to consider
operator P~ presented in section 6.5.2. This operator may be useful if a different intuition of

permission is required. A more important extension would be to develop an analogous method

(o,n, Pyp)
II(n,S1,52); 51 F 0,8 40;S2Foop;Sedoop

(RP7)

Table 8.1: Tableau rule for P~

for POPrAL or even for a more general logic for dynamic epistemic logic and permission (cf.
Section 8.2).

Moreover, we could imagine an attempt to mix the different languages proposed in this
thesis, and consider together notions of permission, group announcements, knowledge and
update of objective beliefs.

Besides, other recent works could open ways to expand our formalism. We could con-
sider for example to expand the framework with changing permissions, as in Pucella et al.
[Pucella and Weissman, 2004]. In this context, as in the example of Section 7.3, this would
mean to define an operation that defines or modifies the permission relation P of a given
model, which could be a POPAL or a POPrAL model.

As another example, following [Cuppens et al., 2005b], it would be interesting to integrate
the notion of role in the attribution of permissions and obligations, or to consider the notion
of deadline (cf [Cuppens et al., 2005a]) that gives sense to the notion of obligation imposing
a limited time to fulfill the obligation.

Besides it would be possible to use this formalism. Therefore, there is no doubt that this
thesis opens to further researches, and an exhaustive list of all such possible technical results
or conceivable extensions seems impossible — in fact the reader may imagine a lot of them.
Yet some possible extensions of our work appears of greater interest, and we present in the

two next sections the two most important in our opinion.

8.1 Dealing with Privacy Policies

In [Aucher et al., 2010] the authors propose a formalism close to ours with the difference that
in their proposal the ‘right to say’ can be derived from the ‘right to know’. In other words,
they assume that there is a list of permissions or obligations to know that have to be satisfied.
This list defines whether an announcement is permitted or not: it is permitted if and only
if it leads to a situation that satisfies these obligations/permissions. A basic presentation of
this framework has been done in Section 3.3.

This condition (‘the permission to say is derivable from the permission to know’) does not

allow to model every situation: two different announcements that lead to the same epistemic
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situations (then that satisfy the same permissions to know) can be one permitted the other
forbidden, as far as they are announced in different situations. The situation presented
in section 7.3 is such a counter-example: we have M, A | ﬂPL{D’M}A A(MAYPPA: the
laboratory is not allowed to announce A to the doctor and Michel at the same time, but after
having informed Michel it is allowed to announce it to the doctor. These two announcements
are not permitted in the same way, and yet they lead to the same situation (the A-situation
at the bottom of Figure 7.1) — but they did not come from the same one!

But in some situations, the restrictions on announcements are derivable from a Privacy
Policy which says what each agent is allowed to know. Therefore, we would try to adapt
Aucher et al.’s notion of Privacy Policy, to model those multi-agent situations in which the
right to know is the relevant notion, deriving the permission relation P (as presented in
Chapter 7) from it. We make here a draft of such a proposal, that would avoid, in our
opinion, another limit of their work, namely that it is limited to a single 2-agents situation,
in which a sender gives information to a receiver, the latter having a perfect knowledge of
the epistemic state of the former.

Let us see a compelling example, cited from [Aucher et al., 2010]:

Consider the information about websites contacted by a user (U), which are avail-
able on a server logfile. The list of websites for each user is clearly a sensitive
information which he would not like to disclose. However, knowing which websites
have been visited is a valuable information, for example, for the configuration of a
firewall, or to make statistics. Thus it has become anonym by replacing the names
of the users with numbers by means of a hashcode (h). So even if one knows the
list of users one cannot understand who contacted which website. However, from
the association between users and numbers and between numbers and websites the
original information can be reconstructed. Therefore the mappings from the users
to the numbers (¢) and from the numbers to the websites (e) can be distributed
individually but not altogether since their association would allow to reconstruct

the mapping from the users to the websites they visited (v): ¢ A e — v.

The last sentence says that the user u is permitted to know ¢ and to know e but not to know
v. The privacy policy being the set of what is (not) permitted to be known by the agent,
it would be in this case {—P(Kywv)}: it is not permitted that U knows v. To construct our
model, presented in Figure 8.1, we start from an initial epistemic model and we define Pg as
the set of transitions such that K,v is wrong in the resulting state.

In Figure 8.1, as in Figure 7.1, double arrows represent knowledge, dotted arrows (red)
represent non-permitted announcements and plain (green) arrows permitted ones. At the top
a three-state Kripke model where the user does not know neither ¢ nor e, nor v. We see
three more of such models in the figure. On the left is the situation where the uncertainty

on ¢ has been removed, on the right is the situation in which the uncertainty on e has been
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—e, ¢,
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Figure 8.1: server example

removed. At the bottom, v is known (epistemic situation we want to forbid). Once again,
the pointed arrows stand for the results of announcements. If they are dotted, they are not
permitted, if they are plain, they are permitted. To make the figure readable, we put only
the pointed arrows for the e, c,v-states. Thus this model says that the server is allowed to
say ¢ or to say e to the user, but not to say v to her: M, (e,c,v) = P¥c A\ Pte N —Plv. After
the announcement of one of the two pieces of information e or ¢, the server is not allowed to
say to the user the other one: M, (e, c,v) = (Ye)=Plc A (¥c)—Ple .

We can thus define the notion of privacy policy in the following way: An epistemic norm
is a construction of the form pre — P;i or pre — =Pt with pre,¢ € L, and i € AG. A
privacy policy is a finite set of epistemic norms.

We interpret pre — Py (resp. pre — —FP;) by “if pre is true then i is allowed (resp.
not allowed) to get to a situation where 1) is true”. We note pre — F; := pre — O;—.

We can thus construct deterministically a POPrAL model starting from an epistemic
model and a privacy policy. Following [Aucher et al., 2010] we consider two situations: the
liberal situation considers that every situation that is not explicitly forbidden is permitted,
the dictatorial one considers that every situation that is not explicitly permitted is forbidden.

Let M = (S,V,R) be an epistemic model and PP be a privacy policy, we construct
the liberal model MY, = (S,V,R,P!) and the dictatorial one M%, = (S,V,R,P?) in the
following way: for all agent ¢ € AG,

Pf ={(s,R1,R2) | V(pre — —=Pjyp) € PP, if Mg,,s |= pre then Mg,,s = ¥}
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P = {(s,R1,R2) | A(pre — Pp) € PP, MR,,s = pre and Mg,,s =}

(2

8.2 Dynamic Epistemic Logic with Permission

Another possible further work would be to make a step forward in the way developed in
chapters 6 and 7. Indeed, we first considered only public announcements, and then a kind
of private announcements — that include public ones — in which the topic of the message and
the agents involved in the communication are publicly known. The first further step in this
work would thus be to avoid this limit by considering permission over other kinds of private
communication. In this sense, having a general framework for permission and obligation over
every epistemic action (cf. Section 3.1.3) would be a final step. How could we obtain such a
framework?

First, given an event model A, the language we may propose would extend action model
logic with additive operators P;a and O;a standing for ‘¢ is allowed to make the announcement
a’ and ‘¢ is obliged to make the announcement a’, where a € A. The models would be of
the form M = (S,R,V,P) where P is constituted by triples (s, Eq, E2). In such triples, E;
would represent the epistemic situation after a first announcement and FEs the situation after
a second one. Note that in this case, epistemic situations are not necessarily submodels of the
initial model as in chapter 6, and neither are they represented by subrelations as in chapter
7. They can be state models of any kind. Therefore we could imagine the following semantics
for the new operators:

M,s = Pa iff M,s = pre(a) implies there exists Ny, Ny such that (s, N1, Ny) € P,
Nic—=M® A, (s,a) and Noe—= M ® A, (s,a;b)

It would be quite a complex semantics. Indeed, to verify if an announcement is permitted
we would have to test the bisimilarity of the resulting state model with the ones appearing
in P. But avoiding every restriction on the structure of epistemic events, it is impossible to
fix the structure of the resulting state model. Bisimilarity is in this context the good notion
to test the epistemic result of an announcement.

Note that we would need to define the ®-closure of an event model A, to ensure that if a
and b are in A, then (a;b) € A. But such a definition (and other useful notions) are feasible.
We do not go further in this presentation, which is still a work in progress, but we think that
it could be a good starting point for a generalization of the frameworks presented in chapters
6 and 7.
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