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bureau et amis François et Nadine pour... tout, et Bilal, Fahima, Marwa, Mounira, Srdjan,
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Chapter 0

Introduction en français

0.1 Introduction

De nombreuses situations font intervenir la notion de communication ainsi que des restric-

tions sur cette communication. C’est le cas lorsque l’on pense à des informations militaires,

des communications médicales, des normes morales, des jeux, etc. Dans certaines des ces

situations, il se peut qu’existent des structures pour penser et organiser le droit de communi-

quer. Dans l’armée, par exemple, une telle structure est assez simple, et facile à comprendre:

plus on est haut-placé dans la hiérarchie militaire, plus on a le droit de savoir et moins on a

l’autorisation de dire. En effet, un général a accès à de nombreuses informations secrètes sans

avoir le droit de les divulguer à ses soldats, alors qu’un soldat peut donner toutes les informa-

tions qu’il possède (il se peut même qu’il doive les donner) sans avoir accès à de nombreuses

autres. Le champ médical est un exemple où des restrictions plus subtiles empêchent un pa-

tron d’avoir accès à des données médicales d’un de ses travailleurs, alors qu’un docteur devrait

pouvoir y avoir accès. Souvent, ces structures sont présentées sous la forme d’un ensemble

de règles informelles, ensemble qui peut être incomplet et même contradictoire, laissant la

justice décider ce qu’il convient de faire en cas de conflits.

Mais il n’existe pas de cadre général pour analyser ce genre de situations. L’objectif

de ce mémoire est d’apporter quelques éléments, dans le champ de la logique, pour une

meilleure compréhension de la notion de ‘droit de savoir’, éléments qui pourraient nous aider à

comprendre et répondre aux problèmes pour lesquels cette notion rentre en jeu. On concentre

notre réflexion sur la partie informative de la communication (et non sur sa forme), ce qui

amène notre sujet central à la notion de ‘droit de donner une information’.

0.1.1 Qu’est-ce que la logique?

La logique est l’étude formelle de l’argumentation humaine. En un sens, elle peut être

considérée comme l’étude du raisonnement humain (si l’on considère que les arguments

traduisent le raisonnement interne inclus dans une communication entre personnes). Son but

est d’obtenir des résultats formels (et sans ambigüıtés). Pourtant, le langage naturel (dans

lequel sont formés les arguments) est particulièrement ambigü, chaque mot ayant différents

sens possibles et chaque concept ayant différentes interprétations dans un même langage.

Pour former une théorie logique, il est donc nécessaire de modéliser une partie seulement

1



2 CHAPTER 0. INTRODUCTION EN FRANÇAIS

du raisonnement, en suivant des conditions prédéterminées. C’est ce qui se passe dans le

fameux syllogisme suivant, attribué à Aristote1: “Tous les hommes sont mortels. Socrate

est un homme. Donc Socrate est mortel.” En effet, il suppose que les notions de mortalité,

d’homme, est d’‘être’ sont sans ambigüıtés. Ça pourrait parâıtre acceptable dans ce cas précis,

mais cette autre phrase qui a la même structure, et qui est assez connue également, montrera

que ce n’est pas si évident en général: “Les oiseaux volent. Tweety le manchot est un oiseau.

Donc Tweety vole”2. ‘Il est inexact que que tous les oiseaux volent’ pourrait me rétorquer

un lecteur avisé, et nous pourrions être d’accord. Mais le point important est qu’il existe une

ambigüıté dans le langage naturel concernant ces concepts: lorsque l’on dit que les oiseaux

volent, entend-on ‘toujours’? ‘Généralement’? ‘Dans toute situation normale’? Si un aigle

se casse une de ses ailes, est-ce que ça rend inexact le fait que ‘les aigles volent’?

Par conséquent, pour créer une théorie logique, nous devons définir un langage exempt de

toute ambigüıté, et une interprétation déterministe de ses formules. ‘Interpréter une formule’

signifie ici ‘dire si une formule est vraie ou fausse dans un contexte donné’. Notez que rien

ne nous oblige à considérer la valeur de vérité comme une fonction biniare: vrai ou faux. Qui

plus est, dans notre conception de la réalité certains concepts ne sont pas binaires: je mesure

1m76, suis-je grand? Certaines diraient que oui, d’autres que non, mais notre compréhension

commune nous mènerait plutôt à dire que je suis assez grand, mais pas très grand. Certaines

théories logiques (voir par exemple [Dubois and Prade, 1988]) permettent de considérer ce

genre de concepts dont la valeur de vérité est à la fois qualitative et quantitative. Dans cette

thèse, tous les concepts (abstraits) que l’on considère ne peuvent être que vrais ou faux (et

certainement pas les deux à la fois).

Nous pouvons alors représenter le monde par une liste de tout ce qui est vrai (le reste étant

faux). Une telle liste serait impossible à obtenir si l’on veut considérer toutes les propriétés

du monde (et combien y en a-t-il?), mais dans des situations données il est possible de se

limiter à un nombre fini de propriétés intéressantes et ne considérer que celles-là.

Alex Brune Cha Dan

Figure 1: Un modèle booléen des enfants lunatiques
Les propositions suivantes sont vraies dans ce modèle : GB , GC

Voyons un exemple: voici quatre enfants, Alex, Brune, Cha et Dan. Nous ne nous

1Nous n’avons aucune référence pour affirmer que cette phrase est effectivement d’Aristote, et la notion de
syllogisme dans les écrits d’Aristote est probablement plus proche de: ‘Si tous les hommes sont mortels et si
tous les grecs sont des hommes, alors tous les grecs sont mortels ’.

2Dans l’exemple classique, en français, Tweety est souvent un pingouin. Mais il se trouve que les pingouins
volent (!) ce qui enlève l’effet escompté de cet exemple
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intéressons qu’à leur humeur, considérée comme binaire: ils sont joyeux ou tristes. Par

contre elle peut ne pas être statique: de fait, ces enfants sont lunatiques, leur humeur change

tout le temps!

Notre langage est basé sur les propositions suivantes: Alex est joyeux (GA),

Brune est joyeuse (GB), Cha est joyeuse (GC) et Dan est joyeuse (GD)3. Mises ensem-

ble, elles forment l’ensemble des propositions atomiques du langage, noté PROP . Donc,

PROP = {GA, GB , GC , GD}.

Il est alors possible de représenter le monde réel par une liste des valeurs de vérité (vrai ou

faux) des propositions (prises dans l’ensemble PROP ). La figure 1 donne un exemple d’une

telle représentation, appelée modèle propositionnel booléen.

Il y a différents mondes possibles, ici exactement seize. Ils sont représentés dans la figure

2.

∅ : : GA

GD : : GA, GD

GC : : GA, GC

GC , GD : : GA, GC , GD

GB : : GA, GB

GB , GD : : GA, GB , GD

GB , GC : : GA, GB , GC

GB, GC , GD : : GA, GB , GC , GD

Figure 2: Enfants lunatiques: tous les mondes possibles

Ces mondes possibles sont la base de la représentation du monde réel avec des modalités

(qui peuvent être de temps, de croyance, de connaissance, de résultats d’actions etc.). De telles

représentations sont introduites dans le chapitre suivant, à travers la modalité de connaissance.

3Le ‘G’ vient de l’anglais ‘Good’
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Il y a un double lien entre la logique et l’informatique. D’un côté, les théories informatiques

donnent à la logique des résultats techniques importants, comme des algorithmes déterministes

qui peuvent prouver qu’une formule est vraie dans un contexte donné, ou dans tout contexte

possible. Le temps nécessaire à l’obtention d’une telle réponse, en fonction de la taille de

la formule initiale, peut aussi être obtenu. Nous présenterons dans ce travail des résultats

théoriques de ce type. Une introduction à ceux-ci est proposée dans la section 0.2.2.

D’un autre côté, les théories logiques peuvent donner aux informaticiens des méthodes

utiles pour résoudre des problèmes concrets. Un exemple à la mode est le SUDOKU: un

algorithme classique peut être très long à écrire, alors qu’une procédure formalisant dans un

langage logique les propriétés qu’il faut satisfaire est très simple à développer.

0.1.2 Aperçu général

Je crois que la recherche scientifique devrait faire un effort permanent pour être accessible au

plus grand nombre. Il est clair que tout travail scientifique n’est pas forcément compréhensible

par tout le monde, par contre chaque chercheur peut faire tout son possible pour donner des

éléments qui rendent au moins une partie de son travail compréhensible à des personnes

extérieures à son champ de recherche. Il me semble que c’est particulièrement vrai pour

une thèse de doctorat qui synthétise plusieurs années de travail, avec une taille finale non-

imposée et qui pourrait être lue par des lecteurs novices (famille, amis...). Le chapitre 2 est

donc consacré à la présentation des notions basiques de la logique modale, dans le contexte de

l’étude de la connaissance. Certaines de ces notions sont cependant beaucoup plus générales et

peuvent être utilisées pour tout type de logique modale. Ce chapitre est traduit intégralement

en français ci après. J’espère que ça incitera les lecteurs non initiés à s’intéresser aux éléments

basiques de la logique modale.

Des travaux plus développés en logiques épistémique, dynamique et déontique sont

présentés dans le chapitre 3. On y situe également notre travail dans le cadre de la recherche

actuelle, et on y présente des données nécessaires à la présentation ultérieure de nos travaux.

On discute également quelques principes qu’il nous faut suivre pour une bonne compréhension

des notions liées au ‘droit de savoir’.

Dans un travail de plusieurs mois sur un sujet donné, de nombreuses questions parallèles

apparaissent et demandent à être résolues. Les chapitres 4 et 5 présentent les travaux qui

ont suivi ce processus. En effet, le chapitre 4 traite du concept de croyance objective, une

notion intermédiaire entre la connaissance et la croyance, et présente des résultats techniques

qui complètement ceux de [Hommersom et al., 2004]. Quant au chapitre 5, il présente un

travail collectif ([Ågotnes et al., 2010]) sur la capacité d’un groupe d’agents à communiquer

une information.

Les chapitres 6 et 7 présentent le résultat le plus important de cet essai: une formalisation

du ‘droit de dire’. Le premier présente cette notion dans le contexte d’une communication
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publique, id est dans des situations où tout échange d’information est public, et pour laquelle

les restrictions sur cette communication sont indépendantes de la nature de l’agent qui com-

munique. Dans ce formalisme, il est impossible de déterminer qui est en train de parler, la

seule chose qui compte est ce qui est dit. La présentation est basée sur un exemple: la belote.

Le second généralise la première proposition, en donnant une formalisation qui inclut

des permissions individuelles et qui considère des communications privées aussi bien que

publiques.

Le dernier chapitre conclut ces travaux et ouvre la voie à des perspectives futures. En effet,

ce travail est un premier pas dans une voie inachevée qu’il s’agit de poursuivre, en généralisant

cette formalisation ou en analysant différentes situations qui utilisent ces concepts.

0.2 Logiques modales pour la représentation de la connais-

sance

Qu’est-ce que cela veut dire que quelqu’un sait quelque chose? Est-il seulement possible que

quelque chose soit su? Ces questions ne sont pas nouvelles, elles ont été étudiées au moins

depuis les philosophes grecs (voir [Plato, BC]) et forment le champ de l’Epistémologie, l’étude

de la connaissance. Plusieurs siècles après Platon, [Hintikka, 1962] a proposé une analyse

logique formelle de la connaissance dans un contexte multi-agent. Son formalisme, comme

nous allons le voir, utilise la sémantique des mondes possibles. Depuis lors, des logiques

épistémiques ont été utilisées dans de nombreux champs d’étude, comme l’intelligence artifi-

cielle, l’économie, la lingüıstique ou l’informatique théorique, en se concentrant sur les aspects

multi-agents (donc sur l’interaction entre agents, qui peuvent être des êtres humains ou des

systèmes informatiques) bien plus que sur la compréhension philosophique de la connaissance.

Il est possible dans ce formalisme de raisonner sur ce que l’on sait, sur ce qu’un agent sait

de la connaissance d’un autre, sur ce qui constitue l’ensemble des connaissances partagées par

les agents. Mais comment le formalisme de Hintikka représente-t-il cette connaissance?

0.2.1 Représentation de la connaissance

Langage de la logique épistémique

Tout d’abord, il nous faut définir proprement notre langage de la logique épistémique, noté Lel ,

en partant d’un ensemble dénombrable d’agents AG et d’un ensemble dénombrable d’atomes

propositionnels PROP . Dans l’exemple présenté dans le premier chapitre, on considère

AG = {a, b, c, d} pour Alex, Brune, Cha et Dan, et PROP = {GA, GB , GC , GD}. Voici

alors quelques formules exprimables dans notre langage:

Kb(GA): “Brune sait qu’Alex est joyeux”

(GC) −→ Kc(GC): ‘Si Cha est joyeuse, alors elle le sait”
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Kb(GD ∨ ¬GD): “Brune sait que Dan est joyeuse ou triste”

¬GC ∧Ka(GC): “Cha est triste est Alex sait qu’elle est joyeuse”.

Plus formellement, voici comment les formules du langage sont construites:

Definition 0.1 (Le Langage Lel) L’ensemble Lel (AG,PROP ) de formules épistémiques

est obtenu à partir de AG et PROP en itérant indéfiniment les opérations suivantes:

• pour tout p ∈ PROP , p est une formule,

• ⊥ (“faux”) est une formule,

• si ϕ est une formule alors ¬ϕ (“non ϕ”) est une formule,

• si ϕ est une formule et si ψ est une formule alors (ϕ ∨ ψ) (“ϕ ou ψ”) est une formule,

• si ϕ est une formule alors pour tout agent a ∈ AG, Kiϕ (“i sait que ϕ”) est une formule.

Dans le cas où les ensembles d’atomes (PROP ) et d’agents (AG) sont clairs nous les

omettons. Cette définition peut être écrite de façon plus concise de la manière suivante4:

Definition 0.2 (Le langage Lel) Le langage Lel basé sur un ensemble dénombrable

d’agents AG et sur un ensemble dénombrable d’atomes propositionnels PROP est défini de

la façon suivante:

ϕ ::= p | ⊥ | ¬ϕ | (ϕ1 ∨ ϕ2) | Kiϕ

où i ∈ AG et p ∈ PROP.

On ajoute les abréviations suivantes:

• > (“vrai”) est une abréviation de ¬⊥

• (ϕ ∧ ψ) (“ϕ et ψ”) est une abréviation de ¬(¬ϕ ∨ ¬ψ)

• (ϕ −→ ψ) (“ϕ implique ψ”) est une abréviation de (¬ϕ ∨ ψ)

• (ϕ←→ ψ) (“ϕ est équivalent à ψ”) est une abréviation de ((ϕ −→ ψ) ∧ (ψ −→ ϕ))

• K̂iϕ (“i envisage ϕ”) est une abréviation de ¬Ki¬ϕ. On dit que K̂i est le dual de Ki.

Comme indiqué plus haut, ¬GC ∧ Ka(GC) (lire “Cha est triste et Alex sait qu’elle est

joyeuse”) est une formule du langage. Ceci explicite le fait que toute les formules appartenant

au langage ne sont pas forcément intuitivement vraies. Mais personne n’a dit que toutes les

formules exprimables étaient vraies. De fait, on n’a pas pour l’instant défini comment évaluer

la valeur de vérité d’une formule épistémique. Faisons-le maintenant.
4Cette description formelle d’un langage est inspirée par la grammaire classique en informatique baptisée

Backus-Naur Form (BNF). On l’utilise dans cet essai pour décrire des langages formels.
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Sémantique des mondes possibles

D’abord, nous considérons qu’il existe une interprétation objective du monde réel,

indépendamment de qui le regarde. Cette interprétation est une liste des valeurs de vérité de

tous les faits objectifs dans l’état courant. Si nous appelons propositions ces faits objectifs,

on comprend aisément que cette représentation du monde n’est autre qu’un modèle propo-

sitionnel Booléen, tel qu’introduit dans le chapitre 0.1. Dans notre exemple, il s’agit d’une

liste des humeurs de tous les enfants.

Le manque de connaissance peut alors être vu comme un doute sur lequel des états pos-

sibles est l’état courant. Hintikka représente le monde épistémique (c’est à dire le monde et

la connaissance de chaque agent) par un graphe où les noeuds sont des représentations de

mondes possibles (donc des modèles propositionnels) et une arrête, idexée par un agent i,

représente le fait que l’agent i ne sait pas si l’état courant est l’un ou l’autre des mondes

reliés par cette arrête. Réciproquement, on dit que i sait une assertion ϕ si ϕ est vraie dans

tous les états reliés à l’état courant par une arrête indexée par i. Voici une représentation

d’une situation dans laquelle Brune ne connâıt pas l’humeur de Cha:

Brune

Cha Brune Cha Brune

Figure 3: Modèle épistémique

La figure 4 donne une représentation plus complète de ce genre de situations épistémiques:

Alex connâıt sa propre humeur mais ne connâıt pas celle de Dan, et il sait que Dan connâıt

sa propre humeur mais pas la sienne à lui. Et Dan est consciente de ça, etc.

Dan

Alex

Dan

Alex

Figure 4: Un autre modèle épistémique

On omet dans cette figure les arrêtes réflexives (celles qui pointent un monde vers lui-

même) qui représentent le fait que les enfants envisagent le monde réel comme une possibilité,
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ce qui est considéré toujours vrai en logique épistémique.

Avant de définir ces notions proprement, voici une définition plus précise de ce qu’est un

modèle:

Definition 0.3 (Modèle de Kripke) Etant donné un ensemble dénombrable d’agents AG

et un ensemble dénombrable d’atomes propositionnels PROP , un modèle de Kripke est un

tuple M = (S,R, V ) où:

• S est un ensemble dont les éléments sont appelés “mondes” ou “états”,

• V : PROP −→ 2S est une fonction de valuation qui attribue à chaque proposition p

l’ensemble V (p) des mondes dans lesquels p est considérée vraie, et

• R = {Ri}i∈AG avec pour tout i ∈ AG, Ri ⊆ S × S est une fonction binaire sur S.

On appelle modèle pointé un modèle de Kripke M, s accompagné d’un de ses états.

p, qa a ¬p, q a

012 a

b

021

b

102

c

a

b

120

201 a

c

210

c

Figure 5: Quelques exemples de modèles de Kripke

La figure 5 donne deux représentations plus classiques de situations épistémiques à l’aide

de modèles de Kripke. Le premier modèle représente le doute d’un agent a concernant p alors

que q est su par l’agent. Le second, explicité (en anglais) à la page 45, est une représentation

de l’état épistémique suite à la distribution de trois cartes 0, 1 et 2 parmi trois joueurs a,b et

c. Les arrêtes réflexives sont omises une fois de plus dans ce second dessin.

Ces modèles nous permettent d’interpréter des phrases qui traitent de la vérité d’un fait

objectif, de la connaissance qu’ont les agents à propos de ces faits, et de la connaissance des

agents concernant ce genre de phrases.

Definition 0.4 (Relation de satisfaisabilité pour Lel) Soit M un modèle. On définit

la relation de satisfaisabilité |= : S × Lel −→ {0, 1} par récurrence sur la structure de ϕ5 de

la façon suivante:

(On note M, s |= ϕ, qui se lit “ϕ est vraie dans l’état s du modèle M”, si |= (s, ϕ) = 1 et

M, s 6|= ϕ, qui se lit “ϕ est faux dans l’état s du modèle M”, si |= (s, ϕ) = 0)

5Cette notion est présentée en détail dans la remarque 0.7
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• pour tout s ∈ S, M, s |= p ssi s ∈ V (p)

• pour tout s ∈ S, M, s 6|= ⊥

• pour tout s ∈ S, M, s |= ¬ψ ssi M, s 6|= ψ

• pour tout s ∈ S, M, s |= ψ1 ∨ ψ2 ssi (M, s |= ψ1 ou M, s |= ψ2)

• pour tout s ∈ S, M, s |= Kiψ ssi pour tout t ∈ S tel que sRit, M, t |= ψ

On dit que ϕ est valide dans le modèle M, et on note M |= ϕ, si pour tout s ∈ S, M, s |= ϕ.

On dit que ϕ est valide si pour tout modèle M, M |= ϕ, c’est à dire si ϕ est valide dans tout

état de tout modèle. Enfin, on note [[ϕ]]M l’ensemble des mondes s du modèle M tels que

M, s |= ϕ.

Caractérisation de la connaissance

Nous avons affirmé, dans la définition 0.1, que l’on pouvait interpréter Kiϕ par “l’agent

i sait ϕ”. Comme nous l’avons expliqué en introduction de ce chapitre, cette affirmation,

pour être raisonnable, doit être suivie d’arguments qui rendent la sémantique appropriée à

l’interprétation de la connaissance. Examinons les validités données par la sémantique, et

celles que l’on devrait s’assurer d’avoir pour représenter une conception, même idéalisée, de

la connaissance.

Avant tout, la sémantique de Kripke, présentée dans la définition 0.4, impose que nos

agents, qui sont capables de savoir, ont une capacité de déduction sans limite. Pourquoi?

Supposez que, dans un état donné d’un modèle donné, un agent i sache que ψ est vrai et que

ψ implique ϕ. Alors les formules ϕ et ψ −→ ϕ sont satisfaites dans tout état envisagé par

i, et donc ϕ y est satisfaite aussi (car cet état est un modèle propositionnel). En d’autres

termes, les formules suivantes sont valides pour tous ψ,ϕ dans le langage et tout agent i

(Kiψ ∧Ki(ψ −→ ϕ)) −→ Kiϕ. (K)

Ça pourrait sembler simuler raisonnablement la capacité de déduction d’un agent rationnel.

Mais elle implique, par exemple, que tout agent “connâıt” toutes les tautologies, c’est à dire

toutes les phrases qui sont toujours vraies. Or, bien que vous soyez probablement rationnel-le-,

pouvez vous affirmer “savoir” que la formule suivante est tautologique?

(((p ∨ t)→ s) ∧ (q ↔ u)) ∨ ((p ∨ t ∧ ¬s) ∧ ((q ∧ u) ∨ (¬q ∧ ¬u))) −→ (q ∨ (v ∧ u ∧ (v −→ ⊥)))

Il est aussi largement accepté que si un agent sait quelque chose, alors cette chose est

vraie. Autrement dit, les formules suivantes sont valides:

Kiϕ −→ ϕ. (T)
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Il s’agit là d’une différence importante entre “connaissance” et “croyance”, bien

que nous ne puissions pas résumer la connaissance à de la croyance vraie (voir

[Burnyeat and Barnes, 1980]). Les logiques de la croyance nient souvent ce principe de vérité

de la croyance, et en assument un plus faible: la cohérence. En effet, on considère alors que si

un agent croit quelque chose, il ne croit pas en même temps sa négation. Cela pourrait être

traduit dans l’un de ces principes équivalents entre eux (et qui restent vrais dans le cas de la

connaissance):

Kiϕ −→ ¬Ki¬ϕ ; ¬Ki⊥ (D)

On attribue également à la connaissance une introspection positive et négative. Autrement

dit, on considère que si un agent sait quelque chose alors il sait qu’il le sait et, ce qui est plus

fort encore, que s’il ignore quelque chose alors il sait qu’il l’ignore. C’est là une supposition

très forte: savez-vous réellement quelle est l’ensemble de vos connaissances? Et pouvez vous

énoncer la liste de tout ce que vous ignorez? Si l’on accepte ces propriétés, alors on accepte

la validités des formules suivantes, pour tout ϕ dans le langage:

Kiϕ −→ KiKiϕ (4)

¬Kiϕ −→ Ki¬Kiϕ. (5)

Une dernière notion qu’il nous faut introduire est celle de connaissance commune. Alex et

Cha sont des habitués du Poker (comme vous le verrez, nos enfants lunatiques aiment jouer

aux cartes). Alex connâıt les règles du jeu. Il sait aussi que Cha connâıt les règles – sans

quoi il serait tenté de tricher. Mais il sait également que Cha sait qu’il connâıt les règles –

et il peut donc supposer qu’elle ne tentera pas de tricher. On pourrait continuer à faire des

phrases de ce type... En fait, les règles du jeu sont connaissance commune.

Plus formellement, la connaissance commune de ϕ est l’abréviation syntaxique d’une con-

jonction infinie de formules. Soit G un ensemble d’agents, alors la connaissance commune par

les agents de G de la formule ϕ est:

CKGϕ :=
∧

n∈N

∧

i1,...,in∈G

Ki1 . . .Kinϕ

Comme nous le verrons, cette notion est très importante lorsque l’on considère un appren-

tissage collectif: si Brune et Alex apprennent quelque chose ensemble, et s’ils peuvent voir

que cet apprentissage est mutuel, alors l’information apprise devient connaissance commune.

Voir [van Ditmarsch et al., 2009] pour plus de détails.

0.2.2 Notions techinques classiques en logique modale

Il se peut que ce chapitre soit plus difficile à comprendre pour un lecteur novice, et qu’il soit

parfaitement redondant pour un expert. Mais il semble important de définir et d’expliquer
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correctement les notions d’informatique qui sont utiles en logique. Ces notions ne se limitent

pas à l’étude de la connaissance, au contraire la majorité d’entre elles sont communes à tous

les champs de la logique modale. Nous les présenterons toutefois en utilisant le langage et la

sémantique de la logique épistémique.

Propriétés du langage

Commençons par des notions basiques concernant la syntaxe de langages logiques.

Definition 0.5 (Taille d’une formule) Etant donnée une formule ϕ d’un langage L on

appelle taille de ϕ, noté |ϕ|, le nombre de symboles qui constituent ϕ.

Definition 0.6 (Sous-formule) Pour toute formule ϕ ∈ Lel on définit Sub(ϕ) l’ensemble

des sous-formules de ϕ en fonction de la forme de la formule ϕ:

• Sub(p) = {p}

• Sub(⊥) = {⊥}

• Sub(¬ψ) = {¬ψ} ∪ Sub(ψ)

• Sub(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ Sub(ψ1) ∪ Sub(ϕ2)

• Sub(Kaψ) = {Kaψ} ∪ Sub(ψ).

Si ψ ∈ Sub(ϕ) on dit que ψ est une sous-formule de ϕ.

On peut prouver que Sub(ϕ) est bien définie par récurrence sur la taille de ϕ.

Remark 0.7 (Récurrecne “sur la structure de ϕ”) Dorénanvant, “prouver (resp.

définir) une propriété P (ϕ) par récurrence sur la structure de ϕ” signifie “prouver (resp.

définir) P (ψ) pour tout ψ ∈ PROP ∪ {⊥} et prouver (resp. définir) P (ϕ) en admettant

l’hypothèse de récurrence suivante: P (ψ) est vraie (resp. définie) pour toute sous-formule ψ

de ϕ”. Il s’agit d’une récurrence à travers l’ordre partiel ‘être sous formule de’.

Le langage que l’on étudie ici ne peut exprimer qu’un nombre limité de notions. En

ajoutant un opérateur modal (donc un nouveau symbole) à un langage donné, sans changer

la sémantique des symboles précédemment introduits, le langage obtenu peut clairement ex-

primer au moins ce que pouvait exprimer l’ancien, et peut-être plus. Précisons ce concept

d’expressivité d’un langage.

Definition 0.8 (Expressivité d’un langage) Etant donnés deux langages L1 et L2 et une

classe de modèles C, L1 est au moins aussi expressif que L2 par rapport à C ssi pour toute

formule ϕ de L1 il existe une formule ψ de L2 qui lui soit équivalente. Autrement dit, pour tout

modèleM de C, [[ϕ]]M = [[ψ]]M: le domaine de satisfaisabilité de ϕ dansM en considérant la
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sémantique de L1 est le même que le domaine de satisfaisabilité de ψ dansM en considérant

la sémantique de L2.

Voici deux façons standards de déterminer que L1 est au moins aussi expressif que L2:

• L2 forme un sous-langage de L1

• il existe une traduction telle que toute formule de L2 est logiquement équivalente à sa

traduction dans L1.

Le langage L1 est dit plus expressif que L2 par rapport à C si L1 est au moins aussi

expressif que L2 et L2 n’est pas au moins aussi expressif que L1 (cette notion est un ordre

partiel).

Une manière standard de déterminer que L2 n’est pas au moins aussi expressif que L1 est

de mettre en évidence une formule ϕ de L1 et deux modèles de C (M, s) et (M′, s′) tels que

ϕ est vraie dans (M, s) et fausse dans (M′, s′), alors que toute formule ψ de L2 est vraie

dans (M, s) ssi ψ est vraie dans (M′, s′). On dit dans ce cas que le langage L1, mais pas le

langage L2, peut distinguer les modèles (M, s) et (M′, s′).

Une dernière définition utile concernant les langages:

Definition 0.9 (Substitution) Soit L(PROP ) un langage récursivement énumérable basé

sur un ensemble dénombrable d’atomes propositionnels PROP , soient ϕ,ψ, ψ1, ψ2, . . . ∈

L(PROP ) et soient p, p1, p2, . . . ∈ PROP

• On note ϕ(ψ/p) la formule de L obtenue en remplaçant dans ϕ toute occurence de p

par ψ.

• On étend la notation précédente à la substitution simultanée d’une suite (finie ou infinie)

p1, p2, . . .: ϕ(ψ1/p1, ψ2/p2, ...)

Propriétés des modèles

Voyons quelques propriétés sémantiques de la logique modale, autrement dit quelques pro-

priétés des modèles que l’on considère. D’abord, tous les modèles considérés ici sont des

modèles de Kripke, auxquels vient s’ajouter évenutellement une relation supplémentaire (qui

peut être entre des mondes et des ensembles de mondes, ou bien entre des mondes et des

relations). Rappelons que de tels modèles, présentés dans la définition 0.3, sont composés

d’un ensemble d’états, de relations binaires sur cet ensemble et d’une valuation qui attribue à

chaque proposition un sous-ensemble de mondes (ceux où la proposition est considérée vraie).

On peut donc les voir comme des graphes orientés ayant pour noeuds des modèles booléens

(c’est à dire une liste des valeurs de vérité des différents atomes propositionnels). Rappelons

également que cette définition impose la validité de la formule K pour tout opérateur qui

suit la sémantique présentée dans la définition 0.4. Un sous-modèle d’un modèle M donné
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est composé d’un sous-ensemble de l’ensemble d’états de M, et d’une structure qui est la

restriction de la structure initiale sur ce sous-ensemble. Plus formellement:

Definition 0.10 (Sous-modèle) Soit M = (S, V, 〈Ri〉i∈AG) un modèle de Kripke. On dit

alors que le modèle M′ = (S′, V ′, 〈R′
i〉i∈AG) est un sous-modèle de M s’il satisfait les condi-

tions suivantes:

• S′ ⊆ S

• pour tout p ∈ PROP et tout s′ ∈ S′, s′ ∈ V ′(p) ssi s′ ∈ V (p)

• pour tout i ∈ AG et tous (s1, s2) ∈ S′ × S′, s1R
′
is2 ssi s1Ris2

Rappelons la notion de clôture transitive d’un ensemble de relations, dans le contexte des

modèles de Kripke.

Definition 0.11 (Clôture transitive) Soit R = {Ri}i∈AG un ensemble de relations bi-

naires sur un ensemble donné S. On appelle clôture transitive de R la relation binaire R∗

telle que pour tous s, s′ ∈ S il existe n ∈ N et s0, s1, . . . , sn ∈ S tels que:

• s0 = s et sn = s′

• pour tout k ∈ {0, . . . , n − 1} il existe i ∈ AG tel que skRisk+1.

On peut constater qu’un modèle peut ne pas être connexe, c’est à dire qu’il peut ar-

river qu’un sous-ensemble d’états du modèle n’ait aucune relation avec un autre. Dans ces

conditions, un sous-modèle particulier peut se révéler utile:

Definition 0.12 (Composante connexe - sous-modèle engendré) Soit M = (S, V,R)

un modèle et s ∈ S. On appelle composante connexe induite par s dans M l’ensemble

S′ = {s′ ∈ S | sR∗s′}. On appelle sous-modèle engendré de M, s le sous-modèle M′ de M

basé sur la composante connexe induite par s dans M.

La composante connexe de s dansM est donc l’ensemble des états qui sont reliés à s dans

le modèle. Cette notion est utile car le sous-modèle engendré d’un modèle pointé M, s est

équivalent à M, s par rapport au langage Lel : une formule qui est vraie dans l’un est aussi

vraie dans l’autre. C’est ce qu’affirme la proposition 0.15, en disant que les deux modèles

sont bisimilaires.

La bisimulation est une notion classique, en logique modale, de similarités entre structures

(voir [Blackburn et al., 2001]). On l’utilise souvent dans cet essai, sur des exemples ou pour

des preuves. Présentons-la en détails:

Definition 0.13 (Bisimulation) Soient deux modèles M = (S,R, V ) et M′ = (S′,R′, V ′).

Une relation non-vide R ⊆ S×S′ est appelée bisimulation entre M etM′ si pour tous s ∈ S

et s′ ∈ S′ tels que (s, s′) ∈ R on a :
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atoms pour tout p ∈ PROP : s ∈ V (p) ssi s′ ∈ V ′(p);

forth pour tout i ∈ AG et tout t ∈ S: si sRit alors il existe un t′ ∈ S′ tel que s′R′
it
′ et

(t, t′) ∈ R;

back pour tout i ∈ AG et tout t′ ∈ S′: si s′R′
it
′ alors il existe un t ∈ S tel que sRit et

(t, t′) ∈ R.

On note (M, s)←→(M′, s′) ssi il existe une bisimulation entre M et M′ reliant s et s′, et

on dit alors que les structures de Kripke pointées (M, s) et (M′, s′) sont bisimilaires.

Notons que la bisimulation est une relation d’équivalence. C’est une notion importante

car elle caractérise le fait que deux modèles sont modalement équivalent, c’est à dire qu’ils

satisfont les mêmes formules de Lel :

Proposition 0.14 Soient deux modèles M = (S,R, V ) et M′ = (S′,R′, V ′), et soit une

formule ϕ ∈ Lel . Pour tout s ∈ S et tout s′ ∈ S′, si (M, s)←→(M′, s′) alors M, s |= ϕ ssi

M′, s′ |= ϕ.

La preuve de cette proposition apparâıt par exemple dans [Fagin et al., 1995]. En particulier,

la proposition suivante implique qu’un modèle satisfait les mêmes formules que son sous-

modèle engendré.

Proposition 0.15 Soit M, s0 un modèle pointé. Il est bisimilaire à son sous-modèle en-

gendré.

Proof Soit M′ = (S′,R′, V ′) le sous-modèle engendré de M, s0. Soit R la relation binaire

entre S et S′ définie de la manière suivante: sRs′ ssi s = s′.

On va montrer que R est une bisimulation entreM, s0 etM′, s0. D’abord, il est clair que

s0Rs0. Pour tout s ∈ S′ on a que

atoms pour tout p ∈ PROP : s ∈ V (p) ssi s ∈ V ′(p) (par la définition 0.10);

forth pour tout i ∈ AG et tout t ∈ S: si sRit, alors t ∈ S′ et sR′
it par la définition 0.10, et

tRt;

back pour tout i ∈ AG et tout t ∈ S′: si sRit, alors sRit par la définition 0.10, et tRt.

�

Introduisons maintenant un autre type de relation d’équivalence, qui est une sorte de

généralisation de la bisimulation. L’idée est de considérer comme équivalents deux états d’un

modèle donné qui satisfont les formules d’un sous-ensemble donné du langage. Nous obtenons

la notion de filtration:
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Definition 0.16 (Filtration) SoitM = (S,∼i, V ) un modèle et Γ un ensemble de formules

clos pour la sous-formule ( id est si une formule appartient à l’ensemble, toutes ses sous-

formules y apparaissent également). Soit !Γ la relation binaire sur S définie, pour tous

s, t ∈ S, par:

s!Γt ssi pour tout ϕ ∈ Γ : (M, s |= ϕ ssi M, t |= ϕ)

Notons que !Γ est une relation d’équivalence. On appelle filtration de M à travers Γ

(ou simplement filtration de M) le modèle MΓ = (SΓ,∼Γ
i , V Γ) où:

• SΓ = S/!Γ

• pour tous |s|, |t| ∈ SΓ, |s| ∼Γ
i |t| ssi pour tout Kiϕ ∈ Γ, (M, s |= Kiϕ iff M, t |= Kiϕ)

• V Γ(p) =

{
∅ si p 6∈ Γ

V (p)/!Γ
si p ∈ Γ)

Une dernière remarque qui a son importance: dans la classe de tous les modèles de Kripke,

il se peut que des sous-classes particulières soient utiles. On les définit en fonction des

propriétés de ses relations binaires (réflexivité, transitivité, symétrie, sérialité, euclidianité,

équivalence). Rappelons qu’une relation binaire R sur un ensemble S est dite:

• réflexive si pour tout s ∈ S, (s, s) ∈ R

• transitive si pour tous s, t, u ∈ S, ((s, t) ∈ R et (t, u) ∈ R) implique que (s, u) ∈ R)

• symétrique si pour tous s, t ∈ S, ((s, t) ∈ R implique que (t, s) ∈ R)

• sérielle si pour tout s ∈ S, il existe t ∈ S tel que (s, t) ∈ R

• euclidienne si pour tous s, t, u ∈ S, ((s, t) ∈ R et (s, u) ∈ R) implique que (t, u) ∈ R)

• d’équivalence si elle est réflexive, transitive et symétrique.

Comme nous le verrons dans le paragraphe suivant, ces propriétés des modèles correspondent

à des propriétés de la sémantique que l’on a présenté au paragraphe 0.2.1. Plus précisément:

• L’axiome de vérité (noté T) correspond à la réflexivité

• L’axiome de cohérence (noté D) correspond à la sérialité

• L’introspection positive (notée 4) correspond à la transitivité

• L’introspection négative (notée 5) correspond à l’euclidianité

Rappelons que tous les modèles satisfont l’axiome noté K. On appelle donc KT (resp. KD,

K45, etc.) la classe des modèles reflexifs (resp. seriels, transitifs et euclidiens, etc.). S5 est

une abréviation de KT45 et correspond à la classe des modèles pour lesquels les relations
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binaires sont des relations d’équivalence. Pour tout n ∈ N et pour toute classe de modèles C,

on note Cn la classe de modèles qui appartiennent à C et contiennent exactement n relations

binaires.

En particulier, S5n est la classe des modèles de Kripke qui ont n relation qui sont toutes

d’équivalence:

Definition 0.17 (Modèle épistémique) Un modèle de Kripke M = (S, {Ri}i∈AG, V ) est

dit épistemique si pour tout i ∈ AG, Ri est une relation d’équivalence sur S.

Axiomatisation

Etant donnée une syntaxe (id est une langage), une classe de modèle où on souhaite

l’interpréter (c’est à dire une classe de situations, un contexte), on aimerait pouvoir car-

actériser les formules qui sont vraies dans ce contexte. Autrement dit, quelles sont les pro-

priétés d’une formule qui garantissent qu’elle va être vraie dans n’importe quelle situation

d’un contexte donné? La question n’est pas seulement d’être capable de déterminer quelles

sont les formules valides, mais aussi d’avoir une justification du fait qu’elles le sont, une

preuve.

La notion d’axiomatisation a été développée dans ce but. Informellement, une axioma-

tisation est une description finie de schémas d’axiomes (considérés comme théorèmes, donc

prouvés) et de règles qui permettent de déduire des nouveaux théorèmes à partir d’anciens.

Plus précisément, une axiomatisation A est un ensemble de schémas d’axiomes (toute formule

ayant la même structure que le schéma est un axiome et est donc –par principe– un théorème)

et un ensemble de règles (appelées règles d’inférences).

> Vérité
(A ∧B)→ A ; (A ∧B)→ B Simplification
A→ (A ∨B) ; B → (A ∨B) Addition
A→ (B → A) Conservation
(A→ B)→ ((A→ (B → C))→ (A→ C)) Syllogisme hypothétique (SH)
(A→ B)→ ((A→ C)→ (A→ (B ∧ C))) Composition
(A→ C)→ ((B → C)→ ((A ∨B)→ C)) Disjonction
¬¬A→ A Tiers exclus
(A→ B)→ ((A→ ¬B)→ ¬A) Cohérence
A partir de A et de A→ B, déduire B Modus Ponens (MP)

Table 1: Règle et axiomes de la logique propositionnelle

La table 1 est un exemple d’axiomatisation avec neuf schémas d’axiomes et une règle

d’inférence (le modus ponens). Elle axiomatise la logique propositionnelle. On appelle

preuve de ϕ une séquence finie de formules {ψ1, . . . , ψn} telle que ψn = ϕ et pour tout

i ∈ {1, . . . , n} ou bien ψi est une instance d’un schéma d’axiome ou bien elle est obtenue à

partir de {ψ1, . . . , ψi−1} en utilisant une règle d’inférence. S’il existe une preuve de ϕ on dit
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que ϕ est un théorème et l’on note `A ϕ, ou simplement ` ϕ. Plus généralement, si ϕ peut

être prouvée en ajoutant à A un ensemble S de formules considérées comme des axiomes

supplémentaires, on note alors S `A ϕ.

Notons qu’une preuve peut être longue. La table 2 donne un exemple de preuve d’un

théorème de la logique propositionnelle en utilisant l’axiomatisation A.

L1 : ` (ψ ∧ ϕ) → ψ Simplification
L2 : ` (ψ ∧ ϕ) → ϕ Simplification
L3 : ` ψ → (ψ ∨ θ) Addition
L4 : ` ϕ → (ϕ ∨ θ) Addition
L5 : ` (ψ → (ψ ∨ θ)) → ((ψ ∧ ϕ) → (ψ → (ψ ∨ θ))) Conservation
L6 : ` (ϕ → (ϕ ∨ θ)) → ((ψ ∧ ϕ) → (ϕ → (ϕ ∨ θ))) Conservation
L7 : ` (ψ ∧ ϕ) → (ψ → (ψ ∨ θ)) L3, L5, MP
L8 : ` (ψ ∧ ϕ) → (ϕ → (ϕ ∨ θ)) L4, L6, MP
L9 : ` ((ψ ∧ ϕ) → ψ) → ((ψ ∧ ϕ) → (ψ → (ψ ∨ θ)) → ((ψ ∧ ϕ) → (ψ ∨ θ))) SH
L10 : ` ((ψ ∧ ϕ) → ϕ) → ((ψ ∧ ϕ) → (ϕ → (ϕ ∨ θ)) → ((ψ ∧ ϕ) → (ϕ ∨ θ))) SH
L11 : ` (ψ ∧ ϕ) → (ψ ∨ θ) L1, L7, L9, MP
L12 : ` (ψ ∧ ϕ) → (ϕ ∨ θ) L2, L8, L10, MP
L13 : ` θ → (ψ ∨ θ) Addition
L14 : ` θ → (ϕ ∨ θ) Addition
L15 : ` ((ψ ∧ ϕ) → (ψ ∨ θ)) → ((θ → (ψ ∨ θ)) → (((ψ ∧ ϕ) ∨ θ) → (ψ ∨ θ))) Disjonction
L16 : ` ((ψ ∧ ϕ) → (ϕ ∨ θ)) → ((θ → (ϕ ∨ θ)) → (((ψ ∧ ϕ) ∨ θ) → (ϕ ∨ θ))) Disjonction
L17 : ` ((ψ ∧ ϕ) ∨ θ) → (ψ ∨ θ) L11, L13, L15, MP
L18 : ` ((ψ ∧ ϕ) ∨ θ) → (ϕ ∨ θ) L12, L14, L16, MP
L19 : ` (((ψ ∧ ϕ) ∨ θ) → (ψ ∨ θ)) →

((((ψ ∧ ϕ) ∨ θ) → (ϕ ∨ θ)) → (((ψ ∧ ϕ) ∨ θ) → ((ψ ∨ θ) ∧ (ϕ ∨ θ))) Composition
L20 : ` ((ψ ∧ ϕ) ∨ θ) → ((ψ ∨ θ) ∧ (ϕ ∨ θ)) L17, L18, L19, MP

Table 2: Preuve de la distributivité de ∨ sur ∧ en utilisant une axiomatisation de type Hilbert

Etant donnée une axiomatisation, nous aimerions prouver qu’elle correspond à l’intuition

que les théorèmes sont exactement les formules vraies. Plus précisément, on aimerait prouver

qu’elle est correcte (c’est à dire que tout théorème est valide) et qu’elle est complète (c’est à

dire que toute formule valide est un théorème).

La complétude est une propriété puissante qui garantit qu’on peut prouver tout ce qui

est vrai. C’est cette propriété que [Gödel, 1951] a montré être fausse dans le cas de langages

plus expressifs, en particulier l’arithmétique. Toutes les vérités mathématiques ne sont donc

pas démontrables! Mais un tel résultat peut être satisfait pour les logiques modales. De fait,

l’axiomatisation A est correcte et complète pour la logique booléenne, par rapport à la classe

des modèles booléens.

De plus, il a été prouvé que l’axiomatisation présentée dans la table 3 est correcte et

complète pour la logique K par rapport à la classe de tous les modèles de Kripke, autrement

dit toute formule du langage modal est un théorème ssi elle est valide dans tous les modèles

de Kripke.

Qui plus est, en utilisant la même axiomatisation agrémentée des axiomes additionnels

D, T, 4 ou 5 (ou toute combinaison de ceux-ci) on obtient une axiomatisation correcte et

complète par rapport à la classe de modèles KD,KT,K4,K5 (ou celle issue de la combinaison
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PL Axiomes de la logique propositionnelle
K(A −→ B) −→ (KA −→ KB) Axiome K
A partir de A déduire KA Nécessitation
A partir de A et de A→ B, déduire B Modus Ponens

Table 3: Axiomes et règles de la logique modale

correspondante). Voir [Chellas, 1980] pour plus de détails.

Pour prouver la complétude d’une axiomatisation on utilise souvent la notion de modèle

canonique. Nous sortirions du cadre de cette thèse en essayant de donner une définition

générale de ce concept. La définition 0.19 donne donc une définition locale, suffisante dans le

contexte de cet essai. Nous définissons d’abord la notion d’ensemble maximal consistant:

Definition 0.18 (Ensemble maximal consistant) Soit L un langage et A une axiomati-

sation de ce langage. Un ensemble S ⊆ L est dit:

• inconsistant si à partir des formules de S il est possible de déduire ⊥ en utilisant A

( i.e. S `A ⊥)

• consistant sinon

• maximal consistant s’il est consistant et pour tout ϕ ∈ L \ S, S ∪ {ϕ} est inconsistant

Definition 0.19 (Modèle canonique pour les logiques épistémiques) Soit A une des

logiques qui peuvent être trouvées dans cette thèse, définie à partir d’un ensemble dénombrable

d’atomes propositionnels PROP et un ensemble dénombrables d’agents AG, dont le langage

LA est basé sur des modalités épistémiques {Ki}i∈AG (dans le chapitre 4, ‘K’ est remplacé

par ‘B’). Le modèle canonique de A est le modèle de Kripke Mc = (Sc,Rc, V c) défini de la

façon suivante:

• Sc = {x | x est un ensemble maximal consistant pour l’axiomatisation A}

• Rc = {Rc
i}i∈AG où pour tout i ∈ AG, Rc

i est la relation binaire sur Sc suivante:

Rc
i = {(x, y) ∈ Sc × Sc | Ki(x) ⊆ y} en notant Ki(x) = {ϕ | Kiϕ ∈ x}

• pour tout p ∈ PROP , V c(p) = {x | p ∈ x}.

La plupart des preuves de complétude par rapport à une classe de modèles donnée utilise

cette double nature du modèle canonique. En effet, nous souhaitons prouver dans ces situa-

tions que toute formule valide est un théorème de la logique. On commence donc par définir

le modèle canonique de façon analogue à la dénfinition 0.19, on prouve qu’il s’agit bien d’un

modèle, et qu’il appartient à la classe de modèles considérée. Si l’on prend alors une formule

valide, elle est valide en particulier dans le modèle canonique (car on vient de prouver que

c’est un modèle). Mais une formule valide du modèle canonique est un théorème. Pourquoi?
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Car sa négation n’appartient à aucun ensemble maximal consistant, ce qui implique, comme

nous aurons à le prouver, qu’elle n’appartient à aucun ensemble consistant. Si elle n’est con-

sistante avec rien, c’est que cette formule est une contradiction, ce qui signifie que la formule

initiale, qui est la négation d’une contradiction intrinsèque, est un théorème. En résumé, ceci

démontrerait que toute formule valide est un théorème, autrement dit que toute formule vraie

est démontrable.

Décidabilité et classes de complexité

Certains résultats de cette thèse relevant de la notion de complexité, nous en présentons dans

ce paragraphe les éléments basiques.

Commençons par la décidabilité: on dit qu’un problème donné est décidable s’il existe

une méthode automatique pour obtenir la réponse correcte à toute instance du problème.

Nous pourrions appliquer cette notion à des problèmes de la vie courante. Par exemple ‘A

est-il plus grand que B’ est un problème décidable: il est possible de mesurer. En effet si

je veux tester si Alex (A) est plus grand que Brune (B) je peux appliquer ma méthode et

obtenir la bonne réponse. Au contraire ‘A est plus chanceux que B’ semble être un problème

indécidable.

Plus formellement, en informatique, un problème est dit décidable s’il existe une algo-

rithme déterministe qui termine en répondant correctement oui ou non à toute instance du

problème. Certains problèmes particuliers sont connus pour être indécidables, l’exemple le

plus connu étant probablement le problème du domino (ou problème du pavage). L’objectif

y est de savoir s’il est possible de paver une grille infinie en utilisant un ensemble fini donné

de pavé colorés (dont chacun peut être utilisé autant de fois que l’on veut), en suivant les

règles du domino. Un brique de Wang (Cf. [Wang, 1961]) est un carré dont chaque côté a

une couleur choisie dans un ensemble fini de couleurs. On dit qu’un ensemble S de briques

de Wang peut paver le plan si des copies de briques de S peuvent être placées, chacune à une

position de la grille, de telle sorte que les côtés contigus de deux briques adjacentes soient de

la même couleur. On peut utiliser de multiples copies de chaque brique, sans limitation sur

le nombre. Si l’on accepte de pouvoir pivoter ou réfléchir les briques alors n’importe quelle

brique de Wang peut à elle seule paver le plan. La question de savoir si un pavage existe pour

un ensemble de briques de Wang donné n’est intéressant que dans le cas où nous n’autorisons

aucune rotation ni réflexion, donc lorsque l’orientation de la brique est fixée. Par exemple,

pensez-vous qu’il est possible de paver le plan avec l’ensemble de briques de Wang présenté

Figure 0.2.2?

Ce problème de décision a été posé pour la première fois en 1961 par Wang dans

[Wang, 1961] où il prouve qu’il est indécidable. Ca ne veut pas dire que l’on ne peut ja-

mais savoir si un ensemble de briques donné permet de paver le plan. De fait, il a été prouvé

qu’il existe un algorithme qui dit ‘oui’ en temps fini si le pavage est possible. Mais il est
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Figure 6: Une instance du problème du pavage

impossible d’être sûr d’avoir une réponse en temps fini: l’algorithme proposé peut ne jamais

répondre lorsque le pavage est impossible.

Il est possible de prouver qu’un problème donné est indécidable en codant le problème du

pavage. On traduit alors notre problème de telle sorte que pour chaque instance de celui-ci,

sa traduction est une instance du problème du pavage (c’est à dire un ensemble de briques).

Ainsi, si le problème était décidable alors le problème du pavage le serait lui aussi.

Mais à vrai dire les problèmes décidables nous intéressent davantage! On les classifie

par la complexité de l’algorithme correspondant. En effet, on dit qu’un problème est dans

P s’il peut être décidé par un algorithme déterministe dont l’exécution requiert un temps

polynomial en la longueur de l’instance du problème. On dit qu’un problème est dans

EXPTIME si l’exécution de l’algorithme correspondant requiert un temps exponentiel en

la taille de l’instance. On dit qu’il est dans NP (resp. NEXPTIME) si l’algorithme corre-

spondant est non-déterministe, et qu’il est dans PSPACE s’il requiert un temps exponentiel

mais n’utilise qu’un espace polynômial. Parler d’algorithme est ici abusif (surtout dans le

cas non déterministe), la définition rigoureuse utilise la notion de machine de Turing (voir

[Papadimitriou, 1994]).

On appelle EXPTIME la classe des problèmes qui sont dans EXPTIME, et ainsi de

suite pour les autres classes de complexité. Nous savons que P ⊆ NP ⊆ PSPACE ⊆

EXPTIME ⊆ NEXPTIME. Nous savons également que P 6= EXPTIME, mais le fait

de savoir si oui ou non P = NP est un problème resté non-résolu qui pourrait vous rapporter

un million de dollars (si toutefois vous le résolviez).

On dit qu’un problème P est NP -difficile si tout problème dans NP peut-être réduit

à P. Plus formellement, P est NP -difficile si pour tout problème Q dans NP il existe une

traduction tr exécutable en temps polynomial telle que pour toute instance i de Q, Q réponde

oui à i si et seulement si P répond oui à tr(i). On définit de la même manière les notions

PSPACE-difficile , EXPTIME-difficile, NEXPTIME-difficile, etc. Si un problème est

dans NP et est NP -difficile, on dit qu’il est NP -complet (et de même pour les autres classes

de complexité).

Pour une définition plus rigoureuse de cette classification (qui implique d’expliquer en

détails ce qu’est une machine de Turing), se reporter à [Papadimitriou, 1994].

En logique en général, et dans cette thèse en particulier, étant donnés un langage L avec sa
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sémantique et une classe de modèles C où l’on souhaite l’interpréter, on étudie deux problèmes

classiques: le problème de satisfaisabilité (SAT ) et le problème du model checking (MC). Ils

peuvent être définis de la façon suivante:

MC: Etant donnés une formule ϕ de L, un modèle fini M ∈ C et un monde s de M, ϕ

est-elle satisfaite dans s?

SAT: Etant donnée une formule ϕ de L, ϕ est-elle satisfaite dans un certain modèle M de

la classe C?

Une sémantique raisonnable assure que le problème du model checking est décidable (et

appartient à une classe de complexité assez faible). En effet, c’est un minimum que d’être

capable d’évaluer en temps fini si une formule est satisfaite ou non dans une situation donnée.

Le problème SAT pour la logique propositionnelle et celui pour la logique épistémique

(avec les axiomes de S5) sont NP -complets, et ce problème est PSPACE-complet pour

d’autres logiques modales. Il est indécidable pour certains langages plus expressifs, comme la

logique du premier ordre par exemple, ou le langage Lapal présenté dans le paragraphe 3.1.2.

Etant donnée une logique, le problème SAT est important pour des motifs théoriques: il

répond à la question de savoir si une formule fait sens, s’il existe une situation où elle est

vraie. On dira donc qu’un langage est décidable (resp. NP -complet, EXPTIME-difficile,

etc.) si son problème SAT est décidable (resp. NP -complet, EXPTIME-difficile, etc.).

La réponse à ce problème n’impose pas que soit donné un modèle qui satisfait la formule

ϕ, mais dans certains cas nous aimerions également pouvoir construire ce modèle. On répond

alors au problème de la construction du modèle:

Construction du modèle: Etant donnée une formule ϕ de L, exhiber un modèle M satis-

faisant ϕ.

Une méthode célèbre de construction de modèles utilise la notion de tableaux analytiques.

Une telle méthode est présentée dans le paragraphe 6.6 pour le langage exprimant la connnais-

sance, les annonces publiques et la permission de donner une information.





Chapter 1

Introduction

Many situations involve communication and some kind of restrictions on this communication.

This is the case when we think about military information, medical communication, moral

norms, games, etc. In some situations, we may have structures to think about and organize

the right to communicate in such situations. In the army, for example, such a structure is

quite simple and easy to understand: the higher you are in the hierarchy, the more you may

know and the less you are allowed to say. Indeed, a general can know any secret information

but have no right to reveal it to his soldiers, while a soldier can give any information he wants

(and may have to give the information he has) without having the right to access most of

the information. As another example, in the medical field, more subtle restrictions prevent a

boss from getting one of his workers’ medical information, while a doctor may have access to

it. Often such structures are presented as an informal and incomplete set of rules, that may

be contradictory (and let the justice decide what should be done in case of conflict).

But we have no general framework to analyze such situations. The aim of this dissertation

is to make some progress, in the field of logic, in the understanding of the notion of ‘right to

say’, progress that may help us understand and answer problems that involve such a notion.

We focus on the informative part of communication (and not on its form) leading our topic

to the notion of ‘right to give a piece of information’.

1.1 What is Logic?

Logic is the formal study of human arguments. In a way it can be considered as the study

of human reasoning (if we consider arguments as the translation of internal reasoning in

a human communication). Its aim is to get formal unambiguous results about it. Yet,

natural language (in which are formed arguments) is particularly ambiguous, every word

having different possible meanings and each concept having different interpretations in a

same language. To form a logical theory, it is thus necessary to model a part of the reasoning,

following predetermined conditions. This is what happens in the following famous syllogism,

attributed to Aristotle1: “All men are mortal. Socrates is a man. Therefore, Socrates is

mortal.” Indeed, he supposes that the notion of mortality, man and ‘being’ have no ambiguity.

It may be acceptable, but another sentence with the same structure, which is also quite

1We have no references to affirm that this sentence is actually from Aristotle, and the notion of syllogism
in Aristotle’s writings is nearer to: ‘If all men are mortal and all Greeks are men, then all Greeks are mortal ’.

23
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famous, shows the reader that it is not that obvious: “All birds fly. Tweety the penguin is a

bird. Therefore Tweety flies”. ‘It is wrong that all birds fly’, may answer the reader, and we

could agree. But the interesting point is that there is an ambiguity in natural language on

concepts: when we say that all birds fly, do we mean ‘generally’? ‘In every normal condition’?

‘In every condition’? If an eagle breaks one of its wings, does that make wrong the fact that

‘eagles fly’?

Therefore, to form a logical theory, we need to define a formal unambiguous language and

a deterministic interpretation of its formulas. ‘To interpret’ a formula means here ‘to say if

it is true or false in the given context’. Nothing obliges us to consider the truth value as

a binary function: true or false. Indeed, in our conception of reality some concepts are not

binary: I am 1m76 tall, am I tall? Some would agree, others wouldn’t, but it would be nearer

to our common comprehension to say that I am rather tall, but not that much. Some logical

theories (see for example [Dubois and Prade, 1988]) allow to consider this kind of concepts,

which truth value is at the same time qualitative and quantitative. In this thesis, all the

(abstract) concepts we consider can only be true or false (and not even both at the same

time).

A representation of the world can thus be a list of all what is true. Such a big list may be

impossible to get if we want to consider all the properties of the world (how many are they?),

but in actual situations we can limit them to properties of interest and consider only these

ones.

As an example, here are four children, Alex, Brune, Cha and Dan. We are interested only

in their emotions, considered as binary: they feel good or bad. This may not be static: they

are moody children, so these emotions are always changing.

We base our language on the following propositions: Alex feels good (GA),

Brune feels good (GB), Cha feels good (GC) and Dan feels good (GD). Together they

forms the set of atomic propositions of the language, noted PROP = {GA, GB , GC , GD}.

We then represent the actual world as a list of the truth values (true or false) of the

propositions (taken from the set PROP ). Figure 1.1 gives an example of such a representation,

called Boolean model.

Alex Brune Cha Dan

Figure 1.1: A boolean model for the moody children
The following propositions are true in this model : GB , GC

As they are moody, there are many possible worlds, exactly sixteen of them. They are

represented in Figure 1.2.
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∅ : : GA

GD : : GA, GD

GC : : GA, GC

GC , GD : : GA, GC , GD

GB : : GA, GB

GB , GD : : GA, GB , GD

GB , GC : : GA, GB , GC

GB, GC , GD : : GA, GB , GC , GD

Figure 1.2: Moody children: all the possible worlds

These possible worlds are the basis of the representation of the actual world with modalities

(such as time, belief, knowledge, result of actions, etc.). Such representations are introduced

in the following chapter, using the notion of knowledge.

The link between logic and computer science is twofold. On one hand, computer science

gives to logical theories important technical results, as deterministic algorithms that prove

that a formula is true in a given context, or in every context. Also the time necessary to

get such answer, in function of the size of the formula, can be proved. We will present in

this work such kind of results. An introduction to them for the novice reader is proposed in

Section 2.2.

On the other hand, logical theories give to computer scientists useful methods to solve

actual problems. A fashionable example is the SUDOKU game: a classical algorithm may be

extremely long to write, but a procedure formalising in a logical language the properties that

have to be satisfied is quite easy to develop.
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1.2 Outline

I think that scientific research should be permanently concerned about being accessible to a

large majority of people. Clearly, not every scientific work can be understood by everybody,

but every researcher can do her possible to give the elements of comprehension that allow

someone out of his field to understand at least part of the work. It is particularly true for

a PhD thesis that synthesizes years of work, with a non-imposed final size and that may be

read by novice readers (friends, family,...). Chapter 2 is thus dedicated to present the basic

notions of modal logic, in the context of the study of knowledge. Yet, some of these notions

are much more general and can be used for any kind of modal logic.

More advanced frameworks of epistemic, dynamic and deontic logics are presented in

Chapter 3. In this chapter we situate our work in the current research world and present

some resources that we use in our proposals. We also discuss some principles that we may

follow to correctly understand the notions linked to the ‘right to say’.

While working during months on a given topic, many parallel questions rise and require

an answer. Chapters 4 and 5 present the work that followed this process. Indeed, Chapter

4 deals with the concept of objective belief, a notion between knowledge and belief. It also

presents technical results that complete a work proposed by [Hommersom et al., 2004]. As for

Chapter 5, it presents a common work (published in [Ågotnes et al., 2010]) on the capacity

of a group of agents to communicate information.

Chapters 6 and 7 present the most important result of this dissertation: a formalization of

the ‘right to say’. The former presents this notion in the context of public communication, i.e.

in situations in which every communication is made publicly, and in which the restrictions to

these communications are not dependent on the nature of the agent communicating. Indeed,

in this framework, there is no agency that would allow us to say who is speaking, the only thing

that matters is what is said. The report is based on an example, namely the french card game

‘la Belote ’. The latter generalizes the first proposal, giving a framework including individual

permissions for the agents communicating, and considering private communications, as well

as public ones.

The last chapter concludes and opens toward further work. Indeed, this thesis is a work

in progress that may be continued, in generalizing the framework or in analyzing different

situations using such concepts.



Chapter 2

Modal Logic for the Representation

of Knowledge

What does it mean that someone knows something? Can anything be known? These questions

are not new, have been studied at least since the Greek philosophers (see [Plato, BC]) and form

the field of Epistemology, the study of Knowledge. Some centuries after Plato, [Hintikka, 1962]

proposed a formal logical analysis of knowledge in a multi-agent situation. His formalism,

as we will see, uses the semantics of the possible worlds. Since then, epistemic logics have

been used in various fields, such as artificial intelligence, economics, linguistics or theoretical

computer sciences, focusing on the multi-agent aspects (interaction between agents, that can

be human or computing systems) much more than on the philosophical understanding of

knowledge.

You can then reason about what you know, about what your adversary knows, or about

what makes part of the set of knowledge that is shared by all the agents. But how would

Hintikka’s formalism represent this knowledge?

2.1 Representation of Knowledge

2.1.1 The Language of Epistemic Logic

First of all, we need to define properly our language of epistemic logic, noted Lel , starting

from a countable set of agents AG and a countable set of propositional atoms PROP . In the

example presented in Chapter 1, we consider AG = {a, b, c, d} for Alex, Brune, Cha and Dan,

and PROP = {GA, GB , GC , GD}. Here are some examples of formulas we can express in our

language:

Kb(GA): “Brune knows Alex feels good”

(GC) −→ Kc(GC): “If Cha feels good, she knows it”

Kb(GD ∨ ¬GD): “Brune knows Dan feels good or bad”

¬GC ∧Ka(GC): “Cha feels bad and Alex knows Cha feels good”.

More formally, here is the way in which the formulas are constructed:

27
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Definition 2.1 (The Language Lel) The set Lel (AG,PROP ) of epistemic formulas is ob-

tained from AG and PROP by iterating indefinitely the following operations:

• for all p ∈ PROP , p is a formula,

• ⊥ (“falsum”) is a formula,

• if ϕ is a formula then ¬ϕ (“not ϕ”) is a formula,

• if ϕ is a formula and ψ is a formula then (ϕ ∨ ψ) (“ϕ or ψ”) is a formula,

• if ϕ is a formula then for all agent i ∈ AG, Kiϕ (“i knows that ϕ”) is a formula.

• Nothing else is a formula except what can be constructed using these rules finitely many

times.

We often consider that the sets of atoms (PROP ) and agents (AG) are clear or irrelevant,

and we omit them. This definition can be written in the following shorter form1:

Definition 2.2 (The Language Lel) The language Lel over a countable set of agents AG

and a countable set of propositional atoms PROP is defined as follows:

ϕ ::= p | ⊥ | ¬ϕ | (ϕ1 ∨ ϕ2) | Kiϕ

where i ∈ AG and p ∈ PROP.

We add some abbreviations:

• > (“true”) abbreviates ¬⊥

• (ϕ ∧ ψ) (“ϕ and ψ”) abbreviates ¬(¬ϕ ∨ ¬ψ)

• (ϕ −→ ψ) (“ϕ implies ψ”) abbreviates (¬ϕ ∨ ψ)

• (ϕ←→ ψ) (“ϕ is equivalent to ψ”) abbreviates ((ϕ −→ ψ) ∧ (ψ −→ ϕ))

• K̂iϕ (“i considers ϕ possible”) abbreviates ¬Ki¬ϕ. We say that K̂i is the dual of Ki.

As we see, ¬GC ∧ Ka(GB) (read “Cha feels bad and Alex knows she feels good”) is a

formula of the language, thus not all the formulas belonging to the language are intuitively

true. But nobody said that every expressible formula had to be true. In fact, we did not

define how to evaluate the truth value of an epistemic formula. Hence the following.

1This formal way to describe languages is inspired by the classical grammar in computer sciences called
Backus-Naur Form (BNF). Hereafter we shall use this notation to describe formal languages.
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2.1.2 The Possible Worlds Semantics

First, we assume that there exists an interpretation of the real world, independently of who

is looking at it. This interpretation is a list of the truth values of all objective facts in the

current state of affairs. If we call propositions these objective facts, we understand easily

that this representation of the world is nothing else than a Boolean propositional model, as

introduced in Chapter 1. In our example, it would be a list of the emotions of the moody

children.

The lack of knowledge can thus be seen as an uncertainty about which is the current state

of affairs. Hintikka represents thus the epistemic world (i.e. the world and the knowledge

of all the agents) as a graph where a node is a representation of a possible world (i.e. a

propositional model) and an edge, which is indexed by an agent a, represents the fact that

agent a does not know if the current state of affairs is one or the other node linked by the

edge. Reciprocally, we say that a knows a sentence ϕ if ϕ is true in all the state of affairs

linked by edges to the current one. Here is a representation of a situation in which Brune

does not know Cha’s mood.

Brune

Cha Brune Cha Brune

Figure 2.1: Epistemic model

Figure 2.2 gives a more complete representation of this kind of epistemic situations: Alex

knows his own feelings and does not know Dan’s ones, and he knows that Dan knows her

feelings but not his ones. And Dan knows this fact, etc.

Dan

Alex

Dan

Alex

Figure 2.2: Epistemic model

We omit here the reflexive arrows that represent the fact that the children consider possible

the actual world, which is considered always true.
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Before defining these notions properly later, we define more precisely what a model is:

Definition 2.3 (Kripke model) Given a countable set of agents AG and a countable set

of propositional atoms PROP , a Kripke model is a tuple M = (S,R, V ) where:

• S is a set, each of its elements being called “world” or “state”,

• V : PROP −→ 2S is a valuation function that assigns to any propositional atom p the

set of worlds V (p) in which p is considered true, and

• R = {Ri}i∈AG with for all i ∈ AG, Ri ⊆ S × S is a binary relation on S.

(M, s), a Kripke model joint with one of its states is called pointed model.

p, qa a ¬p, q a

012 a

b

021

b

102

c

a

b

120

201 a

c

210

c

Figure 2.3: Some examples of Kripke models

Figure 2.3 gives two more classical representations of epistemic situations with Kripke

models. The first model represents the uncertainty of agent a about p while q is known.

The second one, explained in page 45, is a representation of a card deal, with a set of three

cards 0, 1 and 2 dealt to three players a, b and c. In the second one, the reflexive arrows are

omitted again.

These models allow us to interpret sentences that speak about truth of an objective fact,

knowledge of agents about these facts, and knowledge of agents about this kind of sentences.

Definition 2.4 (satisfiability relation for Lel) Let M be a model. We define the satisfi-

ability relation |= : S ×Lel −→ {0, 1} inductively on the structure of ϕ2 in the following way:

(We note M, s |= ϕ, read “ϕ is true in the state s of the model M”, if |= (s, ϕ) = 1 and

M, s 6|= ϕ, read “ϕ is false in the state s of the model M”, if |= (s, ϕ) = 0)

for all s ∈ S, M, s |= p iff s ∈ V (p)

for all s ∈ S, M, s 6|= ⊥

for all s ∈ S, M, s |= ¬ψ iff M, s 6|= ψ

2This notion is presented in detail in Remark 2.7
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for all s ∈ S, M, s |= ψ1 ∨ ψ2 iff (M, s |= ψ1 or M, s |= ψ2)

for all s ∈ S, M, s |= Kiψ iff for all t such that sRit, M, t |= ψ

We say that ϕ is valid in the model M, noted M |= ϕ if for all s ∈ S, M, s |= ϕ. We say

that ϕ is valid if for all models M, M |= ϕ, i.e. if ϕ is valid in any state of any model. We

note [[ϕ]]M the subset of S composed by the states s such that M, s |= ϕ.

2.1.3 Characterisation of Knowledge

We claimed, in Definition 2.1, that we could read Kaϕ as “agent a knows that ϕ”. As said

in Section 2, this claim, to be reasonable, needs to be followed by some arguments that make

this semantics appropriate to speak about knowledge. Let us examine the validities given by

the semantics, and the validities we should enforce to model a maybe idealized conception of

knowledge.

First of all, the Kripke semantics, presented in Definition 2.4, imposes that our agents,

who are able to know, have an absolute capacity of deduction. Why? Suppose that, in a

given state of a given model , an agent i knows ψ and knows that ψ implies ϕ. Then ψ and

ψ −→ ϕ are satisfied in any state that i considers possible, thus ϕ is satisfied there also. In

other words, the following formulas are valid, for all ψ,ϕ in the language:

(Kiψ ∧Ki(ψ −→ ϕ)) −→ Kiϕ. (K)

This could appear a reasonable simulation of the capacity of deduction of a rational agent.

But it implies, for example, that every agent “knows” every boolean tautology, i.e. every

sentence that is always true. But even if the reader is probably rational, could he say that he

‘knows’ that the following formula is a tautology?

(((p ∨ t)→ s) ∧ (q ↔ u)) ∨ ((p ∨ t ∧ ¬s) ∧ ((q ∧ u) ∨ (¬q ∧ ¬u))) −→ (q ∨ (v ∧ u ∧ (v −→ ⊥)))

It is also widely accepted that if an agent knows something then it is true. Thus the

following formulas are valid:

Kiϕ −→ ϕ. (T)

There clearly lies one difference between “knowledge” and “belief”, though we cannot reduce

knowledge to true belief (see [Burnyeat and Barnes, 1980]). Logics of belief usually avoid this

principle of truth of belief, but use a deeper one: coherence. Indeed, we usually consider that

if you believe something you do not believe its negation. This would be translated into one

of the following equivalent principles (that remain true in the case of knowledge):

Kiϕ −→ ¬Ki¬ϕ ; ¬Ki⊥ (D)
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We also accept that knowledge obeys positive and negative introspection. In other words,

we consider that if an agent knows something, she knows that she knows it, and, which is

more, if she does not know something, then she knows she does not. This implication is very

strong: do you actually know what is your “knowledge base”? And do you know the entire

list of what you do not know? If we accept these properties, we accept the validity of the

following formulas, for all ϕ in the language:

Kiϕ −→ KiKiϕ (4)

¬Kiϕ −→ Ki¬Kiϕ. (5)

A last notion that we may introduce is the notion of common knowledge. Alex and Cha

are used to play Poker (as you shall see, our moody children like to play cards). Alex knows

the rules of the game. He also knows Cha knows the rules – if it were not the case, he could

try to cheat. But he also knows Cha knows that he knows the rules – and therefore he can

suppose she will not try to cheat. We could continue making sentences of this form... In fact,

the rules of the game are common knowledge.

Formally, the common knowledge of ϕ is the syntactic abbreviation of an infi-

nite conjunction of formulas. Let G be a set of agents, therefore CKGϕ abbreviates
∧

n∈N

∧
i1,...,in∈G Ki1 . . .Kinϕ.

As we shall see, this notion is very important when considering public learning: if Brune

learns something together with Alex, and if each one can see that this learning is mutual, there-

fore the information learned becomes common knowledge. See [van Ditmarsch et al., 2009]

for more details.

2.2 Classical Technical Notions in Modal Logic

This chapter may be harder to understand for the novice reader and may again be per-

fectly redundant for the expert. But it seems important to define and explain correctly the

computer-science notions that are relevant in studies of logic. These notions are not restricted

to the study of knowledge, on the contrary the majority of them are very common in all the

fields of modal logic. Nevertheless, we shall present these notions using the language and

semantics of epistemic logic.

2.2.1 Properties of the Language

Let us start with very basic notions regarding syntax in logical languages.

Definition 2.5 (Length of a formula) Given a formula ϕ of a language L we call length

of ϕ, noted |ϕ|, the number of symbols that constitute ϕ.
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Definition 2.6 (Subformula) For all formula ϕ ∈ Lel we define Sub(ϕ) the set of subfor-

mulas of ϕ depending of the form of ϕ:

• Sub(p) = {p}

• Sub(⊥) = {⊥}

• Sub(¬ψ) = {¬ψ} ∪ Sub(ψ)

• Sub(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ Sub(ψ1) ∪ Sub(ϕ2)

• Sub(Kiψ) = {Kiψ} ∪ Sub(ψ).

If ψ ∈ Sub(ϕ) we say that ψ is a subformula of ϕ.

We can prove that Sub(ϕ) is well defined by induction on the length of ϕ.

Remark 2.7 (Induction “on the structure of ϕ”) From now on, “prove (resp. define)

a property P (ϕ) by induction on the structure of ϕ” means “prove (resp. define) P (ψ) for all

ψ ∈ PROP ∪{⊥} and prove (resp. define) P (ϕ) admitting the following Induction Hypothesis

(IH): P (ψ) is true (resp. defined) for all subformula ψ of ϕ”.

The language studied here can express limited notions. If you add a modal operator (i.e. a

new symbol) to a given language, without changing the semantics of the previous symbols,

the language you obtain can clearly express at least the concepts that could be expressed by

the previous language, and maybe more. Let us precisely describe this concept of expressivity

of a language.

Definition 2.8 (Expressivity of a language) Given languages L1 and L2 and a model

class C, L1 is at least as expressive as L2 with respect to C iff for every L1-formula ϕ there

is a equivalent L2-formula ψ. In other words, for every C-model M, [[ϕ]]M = [[ψ]]M: the

denotation of ϕ in M with respect to the L1-semantics is the same as the denotation of ψ in

M with respect to the L2-semantics.

Two standard ways to determine that L1 is at least as expressive as L2 are:

• L2 form a sublanguage of L1

• there is a translation (reduction) from L2 to L1 such that every L2-formula is logically

equivalent to its transalation in L1.

The language L1 is more expressive than L2 with respect to C if L1 is at least as expressive

as L2, but L2 is not at least as expressive as L1 (the notion is a partial order).

The standard way to determine that L2 is not at least as expressive as L1 is that there

are an L1-formula ϕ and two C-models (M, s) and (M′, s′) such that ϕ is true in (M, s) and

false in (M′, s′), but any L2-formula ψ is true in (M, s) iff ψ is true in (M′, s′). We then

also say that the language L1, but not L2, can distinguish between the models (M, s) and

(M′, s′).
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A last useful definition about languages:

Definition 2.9 (Substitution) Let L(PROP ) be a recursively enumerable language based

on a countable set of atomic propositions PROP , ϕ,ψ, ψ1, ψ2, . . . ∈ L(PROP ) and

p, p1, p2, . . . ∈ PROP

• We denote asϕ(ψ/p) the L formula obtained from ϕ by replacing every occurrence of p

in ϕ by ψ.

• We extend the previous notation to simultaneous substitution for the infinite sequences

p1, p2, . . .: ϕ(ψ1/p1, ψ2/p2, ...)

2.2.2 Properties of Models

Let us now see some semantical properties of modal logic, in other words some properties

of the models we consider. First of all, the models we consider in all this work are Kripke

models, possibly augmented with an additional relation (that can be between a world and

set of worlds or between a world and relations). Let us recall that such models, defined in

Definition 2.3, are composed of a set of states, binary relations on this set, and a valuation

that assigns to any propositional atom a subset of states (those in which the proposition is

true). Thus we can see them as oriented graphs where the nodes are boolean models (i.e. a

truth value for any propositional atom). Note that this definition imposes the validity of the

formula K for any operator which follows the semantics presented in Definition 2.4. Indeed,

if Kiψ ∧Ki(ψ −→ ϕ) is true in a state s of a model M, then it means that for all states t

linked to s by Ri, they satisfy both ψ and ψ −→ ϕ. As they are boolean models, we conclude

that they all satisfy ϕ, QED.

A submodel of a given modelM is composed of a subset of the states ofM, and a structure

that is the restriction of the initial structure on the obtained subset. More formally:

Definition 2.10 (Submodel) LetM = (S, V, 〈Ri〉i∈AG) be a Kripke model. Then we call a

submodel of M a model M′ = (S′, V ′, 〈R′
i〉i∈AG) satisfying the following:

• S′ ⊆ S

• for all p ∈ PROP and all s′ ∈ S′, s′ ∈ V ′(p) iff s′ ∈ V (p)

• for all i ∈ AG and all (s1, s2) ∈ S′ × S′, s1R
′
is2 iff s1Ris2

Recall the notion of transitive closure of a set of relations in the context of Kripke model.

Definition 2.11 (transitive closure) Let R = {Ri}i∈AG be a set of binary relations over

a set S. We call transitive closure of R the binary relation R∗ such that for all s, s′ ∈ S there

exist n ∈ N and s0, s1, . . . , sn ∈ S satisfying:

• s0 = s and sn = s′
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• for all k ∈ {0, . . . , n − 1} there exists i ∈ AG such that skRisk+1.

We can now observe that a model may not be connected, i.e. it may happen that one

subset of states has no relation with another. In these conditions, a particular submodel

comes to be relevant:

Definition 2.12 (Connected component - Generated submodel) Let M = (S, V,R)

be a model and s ∈ S. We call connected component induced by s in M the set S′ = {s′ ∈

S | sR∗s′}. We call generated submodel of M, s the particular submodel M′ of M based on

the connected component induced by s.

The connected composant of s inM is thus the set of all the states linked to s inM. This

notion is useful as the generated submodel of a model M is equivalent to M with respect to

the language Lel : a formula that is true in one is also true in the other. This is statuted by

Proposition 2.15, saying that the two models are bisimilar.

Bisimulation is a well-known notion of structural similarity (see [Blackburn et al., 2001])

that we use frequently in examples and proofs. It sometimes says that two models are modally

equivalent. Let us present it in details:

Definition 2.13 (Bisimulation) Let two models M = (S,R, V ) and M′ = (S′,R′, V ′) be

given. A non-empty relation R ⊆ S×S′ is a bisimulation betweenM andM′ iff for all s ∈ S

and s′ ∈ S′ with (s, s′) ∈ R:

atoms for all p ∈ PROP : s ∈ V (p) iff s′ ∈ V ′(p);

forth for all i ∈ AG and all t ∈ S: if sRit, then there is a t′ ∈ S′ such that s′R′
it
′ and

(t, t′) ∈ R;

back for all i ∈ AG and all t′ ∈ S′: if s′R′
it
′, then there is a t ∈ S such that sRit and

(t, t′) ∈ R.

We write (M, s)←→(M′, s′) iff there is a bisimulation between M and M′ linking s and s′,

and we then say the pointed Kripke structures (M, s) and (M′, s′) are bisimilar.

Note that bisimuation is an equivalence relation. Bisimulation is an important notion

because it characterizes the fact that two models are modally equivalent, i.e. satisfy the same

formulas of Lel :

Proposition 2.14 Let two models M = (S,R, V ) and M′ = (S′,R′, V ′) be given. Let

ϕ ∈ Lel be a formula. For all s ∈ S and for all s′ ∈ S′, if (M, s)←→(M′, s′) then M, s |= ϕ

iff M′, s′ |= ϕ.

The proof of this proposition can be found for example in [Fagin et al., 1995]. In particular,

we obtain with the following proposition that a model satisfies the same formulas as its

generated submodel.
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Proposition 2.15 Let M, s0 be a pointed model. It is bisimilar to its generated submodel.

Proof Let M′ = (S′,R′, V ′) be the generated submodel of M, s0. Let R be the binary

relation between S and S′ defined in the following way: sRs′ iff s = s′.

We show that R is a bisimulation between M, s0 and M′, s0. First, clearly s0Rs0. For

all s ∈ S′

atoms for all p ∈ PROP : s ∈ V (p) iff s ∈ V ′(p) (by Definition 2.10);

forth for all i ∈ AG and all t ∈ S: if sRit, then t ∈ S′ and sR′
it by Definition 2.10, and tRt;

back for all i ∈ AG and all t ∈ S′: if sRit, then sRit by Definition 2.10, and tRt.

�

We introduce another kind of equivalence relation, that is a form of generalization of

bisimulation. The idea is to consider as equivalent two states of a given model that satisfy

all the formulas of a particular subset of the language. We then introduce the useful notion

of filtration:

Definition 2.16 (filtration) Let M = (S,∼i, V ) be a model and let Γ be a set of formulas

closed under subformulas. Let !Γ be the relation on S defined, for all s, t ∈ S, by:

s!Γt iff for all ϕ ∈ Γ : (M, s |= ϕ iff M, t |= ϕ)

Note that !Γ is an equivalence relation. We call the filtration of M through Γ (or

simply the filtration of M) the model MΓ = (SΓ,∼Γ
i , V Γ) where:

• SΓ = S/!Γ

• for all |s|, |t| ∈ SΓ, |s| ∼Γ
i |t| iff for all Kiϕ ∈ Γ, (M, s |= Kiϕ iff M, t |= Kiϕ)

• V Γ(p) =

{
∅ if p 6∈ Γ

V (p)/!Γ if p ∈ Γ)

An important last remark: in the entire class of all Kripke models, some particular sub-

classes may be useful. We define them according to the properties of its binary relations

(reflexivity, transitivity, symmetry, seriality, euclidianity, equivalence). Recall that a binary

relation R over a set S is

• reflexive if for all s ∈ S, (s, s) ∈ R

• transitive if for all s, t, u ∈ S, ((s, t) ∈ R and (t, u) ∈ R) implies (s, u) ∈ R)

• symmetric if for all s, t ∈ S, ((s, t) ∈ R implies (t, s) ∈ R)

• serial if for all s ∈ S, there exists t ∈ S such that (s, t) ∈ R



2.2. CLASSICAL TECHNICAL NOTIONS IN MODAL LOGIC 37

• euclidean if for all s, t, u ∈ S, ((s, t) ∈ R and (s, u) ∈ R) implies (t, u) ∈ R)

• an equivalence relation if it is reflexive, transitive and symmetric.

As we will see in the following section, these properties of the models ‘correspond’ to the

axioms we presented in Section 2.1.3 . More precisely,

• Truth (noted T) corresponds to reflexivity

• Coherence (noted D) corresponds to seriality

• Positive introspection (noted 4) corresponds to transitivity

• Negative introspection (noted 5) corresponds to euclideanicity

Recall that all the models satisfy the implication noted K. We thus call KT (resp. KD, K45,

etc.) the class of reflexive models (resp. serial models, transitive and euclidian models, etc.).

S5 abbreviates KT45 and corresponds to the class of models for which R is an equivalence

relation. For all n ∈ N and for C a class of models, we call Cn the class of models that belongs

to C and contains exactly n binary relations.

In particular, S5n is the class of Kripke model that have n relations that are equivalence:

Definition 2.17 (Epistemic model) A Kripke model M = (S, {Ri}i∈AG, V ) is called an

epistemic model if for all i ∈ AG, Ri is an equivalence relation over S.

2.2.3 Axiomatization

Given a syntax (i.e. a language), a class of models where to interpret it (i.e. a class of

concrete situations, a context) and semantics (i.e. an interpretation of the language in the

contexts), we would like to characterize formulas that are true in this context. What are

the properties of a formula that guarantee that it will be true in every situation of a given

context? The question is not only to be able to determine which are the valid formulas, but

to get an explanation of why they are true, and a proof of it.

> Truth
(A ∧B)→ A ; (A ∧B)→ B Simplification
A→ (A ∨B) ; B → (A ∨B) Addition
A→ (B → A) Conservation
(A→ B)→ ((A→ (B → C))→ (A→ C)) Hypothetical syllogism (HS)
(A→ B)→ ((A→ C)→ (A→ (B ∧ C))) Composition
(A→ C)→ ((B → C)→ ((A ∨B)→ C)) Disjunction
¬¬A→ A Excluded middle
(A→ B)→ ((A→ ¬B)→ ¬A) Coherence
From A and A→ B, infer B Modus Ponens (MP)

Table 2.1: Propositional logic, axioms and rule
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The notion of axiomatization has been developed for this purpose. Informally, an axioma-

tization is a finite description of axiom schemata and rules that allows to derive deterministi-

cally all the formulas we consider as theorems of the logic. More precisely, an axiomatization

A is a set of axiom schemata (i.e. each formula that has the same structure of the schemata

is an axiom and then is –by principle– a theorem) and a set of rules (called inference rules).

Table 2.1 is an example of axiomatization, with nine axiom schemata and one inference rule.

It axiomatizes propositional logic. We call proof for ϕ a finite sequence {ψ1, . . . , ψn} of for-

mulas such that ψn = ϕ and for all i ∈ {1, . . . , n} either ψi is an instantiation of an axiom or

is obtained from {ψ1, . . . , ψi−1} using an inference rule. If there is a proof for ϕ we say that

ϕ is a theorem and we note `A ϕ, or simply ` ϕ. More generally, if ϕ can be proved adding

to A a set of formulas S considered as additional atoms, we note it S `A ϕ.

Note that a proof may be quite long. Table 2.2 gives an example of a theorem’ proof in

propositional logic.

L1 : ` (ψ ∧ ϕ) → ψ Simplification
L2 : ` (ψ ∧ ϕ) → ϕ Simplification
L3 : ` ψ → (ψ ∨ θ) Addition
L4 : ` ϕ → (ϕ ∨ θ) Addition
L5 : ` (ψ → (ψ ∨ θ)) → ((ψ ∧ ϕ) → (ψ → (ψ ∨ θ))) Conservation
L6 : ` (ϕ → (ϕ ∨ θ)) → ((ψ ∧ ϕ) → (ϕ → (ϕ ∨ θ))) Conservation
L7 : ` (ψ ∧ ϕ) → (ψ → (ψ ∨ θ)) L3, L5, MP
L8 : ` (ψ ∧ ϕ) → (ϕ → (ϕ ∨ θ)) L4, L6, MP
L9 : ` ((ψ ∧ ϕ) → ψ) → ((ψ ∧ ϕ) → (ψ → (ψ ∨ θ)) → ((ψ ∧ ϕ) → (ψ ∨ θ))) HS
L10 : ` ((ψ ∧ ϕ) → ϕ) → ((ψ ∧ ϕ) → (ϕ → (ϕ ∨ θ)) → ((ψ ∧ ϕ) → (ϕ ∨ θ))) HS
L11 : ` (ψ ∧ ϕ) → (ψ ∨ θ) L1, L7, L9, MP
L12 : ` (ψ ∧ ϕ) → (ϕ ∨ θ) L2, L8, L10, MP
L13 : ` θ → (ψ ∨ θ) Addition
L14 : ` θ → (ϕ ∨ θ) Addition
L15 : ` ((ψ ∧ ϕ) → (ψ ∨ θ)) → ((θ → (ψ ∨ θ)) → (((ψ ∧ ϕ) ∨ θ) → (ψ ∨ θ))) Disjunction
L16 : ` ((ψ ∧ ϕ) → (ϕ ∨ θ)) → ((θ → (ϕ ∨ θ)) → (((ψ ∧ ϕ) ∨ θ) → (ϕ ∨ θ))) Disjunction
L17 : ` ((ψ ∧ ϕ) ∨ θ) → (ψ ∨ θ) L11, L13, L15, MP
L18 : ` ((ψ ∧ ϕ) ∨ θ) → (ϕ ∨ θ) L12, L14, L16, MP
L19 : ` (((ψ ∧ ϕ) ∨ θ) → (ψ ∨ θ)) →

((((ψ ∧ ϕ) ∨ θ) → (ϕ ∨ θ)) → (((ψ ∧ ϕ) ∨ θ) → ((ψ ∨ θ) ∧ (ϕ ∨ θ))) Composition
L20 : ` ((ψ ∧ ϕ) ∨ θ) → ((ψ ∨ θ) ∧ (ϕ ∨ θ)) L17, L18, L19, MP

Table 2.2: Proof for the distributivity of ∨ over ∧ using Hilbert-style axiomatization

Given an axiomatization, we may want to prove that it corresponds to the intuition that

the theorems are the always true formulas. More precisely, we may want to prove that it is

sound (i.e. every theorem is a validity) in all considered models and complete (i.e. every

valid formula is a theorem).

Completeness is a powerful property that guarantees that all that is true can be proved.

This is the property that [Gödel, 1951] proved to be wrong for more expressive languages, in

particular arithmetic. But such a result may be satisfied for modal logics. In fact, Hilbert-

style axiomatization for propositional logic is proved to be sound and complete in all Boolean

models.
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What is more, it has been proved that the axiomatization presented in Table 2.3 is sound

and complete with respect to all Kripke models, i.e. that a formula is a theorem of modal

logic iff it is valid in all Kripke models.

PL Axioms of Prop. Logic as in Table 2.1
Ki(A −→ B) −→ (KA −→ KB) Axiom K
From A infer KiA Necessitation
From A and A→ B, infer B Modus Ponens

Table 2.3: Modal logic, axioms and rules

Moreover, using the same axiomatization with additional axioms D, T, 4 or 5 (or any

combination of them) we obtain a sound and complete axiomatization with respect to the

corresponding class of models KD,KT,K4,K5 (or the corresponding combination). See

[Chellas, 1980] for details.

To prove completeness, we often use the notion of canonical model. Trying to give a

general definition of this concept would lead us out of our purpose. Definition 2.19 gives thus

a local definition, that is sufficient in the context of this thesis. We first introduce the notion

of maximal consistent set:

Definition 2.18 (Maximal consistent set) Let a language L and an axiomatization for

this language A be given. A set S ⊆ L is said to be:

• inconsistent if from the formulas of S it is possible to derive ⊥ using A ( i.e. S `A ⊥)

• consistent otherwise

• maximal consistent if it is consistent and for all ϕ ∈ L \ S, S ∪ {ϕ} is inconsistent

Definition 2.19 (Canonical model for epistemic logics) Let A be one of the logics that

can be found in this thesis, defined over a countable set of propositional atoms PROP and a

countable set of agents AG, which language LA is based on the epistemic modalities {Ki}i∈AG

(in chapter 4, symbol ‘K’ is replaced by ‘B’). The canonical model of A is the Kripke model

Mc = (Sc,Rc, V c) defined as follows:

• Sc = {x | x is a maximal consistent set of the axiomatization of A}

• Rc = {Rc
i}i∈AG with for all i ∈ AG, Rc

i is the following binary relation over Sc:

Rc
i = {(x, y) ∈ Sc × Sc | Ki(x) ⊆ y} where Ki(x) = {ϕ | Kiϕ ∈ x}

• for all p ∈ PROP , V c(p) = {x | p ∈ x}.

Most of the proofs of completeness with respect to a given class of models use the double

nature of the canonical model. Indeed, in such proofs we want to show that any valid formula

is a theorem of the logic. Therefore, we first define the canonical model in a similar way as in
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Definition 2.19, prove that it is a model, and that it belongs to the corresponding class. We

then take a valid formula which, as valid in every model, is valid in the canonical model. But

a valid formula of the canonical model is a theorem. Why? Because, its negation does not

belong to any maximal consistent set, which implies, as we would have to prove, that it does

not belong to any consistent set. And if it cannot be consistent with anything, then it is an

intrinsic contradiction, which means that the initial formula, its negation, is a theorem. To

sum it up, this would prove that every valid formula is a theorem, which means that every

true formula is provable.

2.2.4 Decidability and Classes of Complexity

Some of the results of this thesis being related with the notion of problem complexity, we

present briefly in this section the basic notions of this concept.

Decidability is the first useful notion: informally we say that a given problem is decidable

if there is an automatic method to find the correct answer for every instance of the problem.

We could imagine a comparison with real-life problems. For example ‘Is A taller than B’ is

a decidable problem: it is possible to measure. Indeed if I want to test if Alex (A) is taller

than Brune (B) I can apply my method and get the good answer. But ‘Is A more lucky than

B’ seems to be an undecidable problem.

More formally, in computer science, a problem is said decidable if there exists a deter-

ministic algorithm which ends answering correctly yes or no to every instance of the problem.

Some particular problems are known to be undecidable. The most famous example is proba-

bly the Domino problem (also known as the Tiling problem). The purpose is to know if it is

possible to tile an infinite grid using a given finite set of reproducible coloured tiles, following

the condition of the domino game. A Wang tile (cf. [Wang, 1961]) is a unit square with each

edge colored from a finite set of colors. A set S of Wang tiles is said to tile a planar grid if

copies of tiles from S can be placed, one at each grid position, such that abutting edges of

adjacent tiles have the same color. Multiple copies of any tile may be used, with no restriction

on the number. If we allow the tiles to be rotated or reflected, any single Wang tile can tile

the plane by itself. The question of whether such a tiling exists for a given set of tiles is

interesting only in the case where we do not allow rotation or reflection, thus holding tile

orientation fixed. For example, do you think it is possible to tile the plane with the following

set of Wang tiles?

This decision problem was first posed in 1961 by Wang in a seminal paper ([Wang, 1961])

and has been proved to be undecidable. That does not mean that you can never decide if a

given set allow to tile the plane. In fact it has been proved that there is an algorithm that

says yes in finite time if the tiling is possible. But the algorithm proposed before may never

answer in the case where the tiling is not possible.

One way to show that a given problem is undecidable is by encoding the tiling problem
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Figure 2.4: An instance of the domino problem

into it. We translate our problem so that for every instantiation of it, its translation is an

instantiation of the Tiling problem (i.e. every finite set of tiles). Therefore if the given

problem were decidable, so would be the Tiling problem.

But we are more interested in decidable problems! Those are classified by the complexity

of the relative algorithm. Indeed, we say that a problem is in P if it can be decided by

a deterministic algorithm which execution requires a time polynomial on the length of the

given problem. We say that a problem is in EXPTIME if the execution of the relative

algorithm requires a time exponential on the length of the input. We say that it is in NP

(resp. NEXPTIME) if the corresponding algorithm is non deterministic, and that it is in

PSPACE if it requires only polynomial space.

We call EXPTIME the class of problems that are in EXPTIME, and so on for the

other classes of complexity. It is a known fact that P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆

NEXPTIME. It is also known that P 6= EXPTIME, but to know if P = NP or not is an

open problem that may yield you one million dollars (if you solve it).

We say that a problem A is NP -hard if every NP problem can be reduced to A. More

formally, A is NP -hard if for every problem B in NP there is a translation tr computable

in polynomial time such that for all instances i of B, B answers yes to i if and only if A

answers yes to tr(i). We define in the same way PSPACE-hardness , EXPTIME-hardness,

NEXPTIME-hardness, etc. If a problem is in NP and is NP -hard, we say that it is

NP -complete (and so on for the other complexity classes).

For a more rigorous definition of this classification (which requires to explain what a

Turing machine is), the reader may look at [Papadimitriou, 1994].

In logic in general and hereafter in particular, given a language L together with its se-

mantics and a class C of models where to interpret it, two classical problems are studied: the

problem of Satisfiability (SAT ) and the problem of the model checking (MC). They can be

defined in the following way:

MC: Given a formula ϕ of L and a finite model M∈ C, is ϕ satisfied in a world of M?

SAT: Given a formula ϕ of L, is ϕ satisfied in a model M of the class C?

Reasonable semantics ensure that the problem of the model checking is decidable (and

with a low class of complexity). Indeed, a requirement we may demand to such semantics is



42 CHAPTER 2. MODAL LOGIC FOR THE REPRESENTATION OF KNOWLEDGE

to be able to evaluate in finite time if a formula is satisfied or not in a given finite model.

The SAT problem for propositional logic and epistemic logic (with the S5 axioms and only

one agent) is NP -complete, and it is PSPACE-complete for some other modal logics. It

is undecidable for some more expressive languages, as first order logic for example, or the

language Lapal presented in Section 3.1.2.

Given a logic, the SAT problem is important at a theoretical level: it answer to the

question if a given formula makes sense. Therefore, we say that a language is decidable

(resp. NP -complete, EXPTIME-hard, etc.) if the SAT problem is decidable (resp. NP -

complete, EXPTIME-hard, etc.). The answer to this problem does not require to give a

concrete model where the formula ϕ is satisfied, but in some cases we would like to construct

such a model. In this case, we find an answer to the problem of the model construction:

Model Construction: Given a formula ϕ of L, give a model M satisfying ϕ.

A well known method of model construction uses analytic tableaux. One such method is

presented in Section 6.6 for a language expressing knowledge, announcements and permission

to give a piece of information.



Chapter 3

State of Art

In this chapter we present some of the works that inspired us in developing our formalisms.

Indeed, to understand the notion of “right to communicate a piece of information” some

notions have to be clarified from the start. We would like to precisely define what we mean

by “communication”, which notion of “right” we shall use, and if previous works tried to

merge these notions.

The first part of this chapter is thus dedicated to the logics of knowledge and communi-

cation, called Dynamic Epistemic Logics tackling also the concept of Knowability : what can

be known? Some gaps appear and justify the works presented in the chapters 4 and 5.

We present in a second part the basic ideas of deontic logics, the logics of obligation,

permission and prohibition, before seeing in a third section which works tried to merge both

fields in a formalism of the right to communicate.

3.1 Dynamic Epistemic Logics

3.1.1 Public Announcement Logic

Consider an example involving our moody children: Brune and Alex reached the final round

of the Texas Hold’em Poker game (Cha and Dan, in a bad mood, let them play alone). Texas

Figure 3.1: Texas Hold’em

43
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Hold’em is a very fashion-conscious variant of classical poker in which each player gets five

cards from a set of fifty-two. At the end of the deal each one will have two cards in his/her

hand, and five cards will be face up on the table. Each player is then able to form her hand,

which is composed by the best 5-cards combination using his own cards and the five cards

shared with her adversaries. This variant of classical poker makes the game more interesting

because the uncertainty about the cards of your adversary is not total, some of them being

common knowledge to all players.

But not all the cards are dealt at the beginning, and the structure of the deal makes the

game even more interesting. Indeed, each player first receives her two cards and a round of

bets starts. Then three cards are dealt face up (‘the flop’),then a fourth (‘the turn’) and a

fifth (‘the river ’), the three of these deals being followed by a round of bets. Each of these

deals can be seen as an announcement to all players that one card is part of the common

final hand. This announcement is public, in the sense that everybody knows it takes places,

and everybody knows everybody knows it, and so on... In fact, it is common knowledge

(cf. Section 2.1.3) that it takes place. Clearly, this announcement will change the state

of knowledge of the agents about the world, though it does not change the factual world

(because the deal was fixed before the game started, and no actions that are part of the

game can change it). After this announcement, the players will eliminate from the deals they

considered possible the ones in which the revealed card wasn’t on the table. But also, as the

announcement is public, they know that nobody consider these deals possible anymore, so

they will eliminate them from the representation they have of the state of knowledge of the

other agents. And they know that the other agents know that no other agent consider those

deals possible anymore... They are erased from the common representation of the world!

This is the basic idea of Public Announcement Logic, that was first introduced by

[Plaza, 1989]. Let us introduce its language and semantics:

Definition 3.1 (Syntax of Lpal) The language of public announcement logic Lpal over a

countable set of agents AG and a countable set of propositional atoms PROP is defined as

follows:

ϕ ::= p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | Kiϕ | [ϕ1]ϕ2

where i ∈ AG and p ∈ PROP .

The boolean and epistemic parts of the language are read as usual (See Chapter 2) and [ϕ1]ϕ2

is read ‘after the public announcement of ψ1, ψ2 is true’.

This language is interpreted in the same models than Lel in the following way.

Definition 3.2 (Semantics of Lpal and restricted model) Let M be a model and let s

be a state of S. The satisfiability relation M, s |= ϕ is defined inductively on the structure of

ϕ as follows:

M, s |= p iff s ∈ V (p)
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M, s 6|= ⊥

M, s |= ¬ψ iff M, s 6|= ψ

M, s |= ψ1 ∨ ψ2 iff (M, s |= ψ1 or M, s |= ψ2)

M, s |= Kiψ iff for all t such that sRit, M, t |= ψ

M, s |= [ψ]χ iff (M, s |= ψ implies M|ψ, s |= χ)

where M|ψ = (S′,R′, V ′) is the update (or restriction) of a model M after the public an-

nouncement of ψ, defined as:

• S′ = [[ψ]]M = {s ∈ S|M, s |= ψ}

• V ′(p) = V (p) ∩ S′ for all p ∈ PROP

• for all i, R′
i = Ri ∩ (S′ × S′)

Remark 3.3 This definition looks incorrect, because it uses the satisfiability relation to define

the restricted model, and vice versa. But to define the restricted model, we only need the

definition of the satisfiability relation for a subformula ψ of the initial one, and thus for all

subformulas of ψ. The definition is thus well-founded by induction on the structure of the

formula.

Here is, as an example, the representation of a simple deal of cards between three of our

children:

012 a

b

021

b

102

c

a

b

120

201 a

c

210

c

Figure 3.2: Deal of three cards between three agents
Actual state ‘012’ represents the deal in which Alex has 0, Brune 1 and Cha 2.

Cha, Alex and Brune have one card each, dealt from a set of three cards only, {0, 1, 2}.

They know that these are the dealt cards, though they don’t know the actual deal in which

Alex has 0, Brune 1 and Cha 2. The propositional atoms are of the form Xi with X ∈ {0, 1, 2}

and i ∈ {a, b, c}. We read for example 2a as ‘Alex has 2’. We labelled the states of the models

so that the name of a state makes clear the deal it represents. The actual state, for example,
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is called ‘012’. The model of Figure 3.2 represents this epistemic situation. We call this model

M∗. We omitted reflexive arrows in each state for each of our three children.

What happens now if Alex announces publicly that he does not have the 1? The result

appears in Figure 3.3.

M: 012 a

b

021

b

102

c

a

b

120

201 a

c

210

c

¬1a!

M|(¬1a) : 012 a

b

021

201 a

c

210

Figure 3.3: Alex announces: “I don’t have the 1 ”

As we said before, the result of this public announcement is that the states in which

1a was true are erased from the model. This comes from the strong property of public

announcement: not only everybody learns its content, but the states for which it was false

before the announcement are not conceivable anymore.

After the announcement, Cha knows what is the exact distribution, in other words

M, 012 |= 〈¬1a〉Kc(0a ∧ 1b ∧ 2c). Brune does not know which it is, but she knows Cha

knows it: M, 012 |= 〈¬1a〉Kb(Kc(0a ∧ 1b ∧ 2c) ∨Kc(2a ∧ 1b ∧ 0c)).

Remark 3.4 (Moore Sentences) We said ‘its content was true before the announcement’,

and this use of the past may appear as superfluous. Indeed, we could believe that after an

announcement of ϕ, ϕ is still true and the receiver of the message knows that ϕ. But this is

not true in general, because a formula may become false after it has been announced. We call

this an unsuccessful update. Let us see an example.

Suppose the reader you are does not know what is a Moore sentence. If you are not used

to epistemic logics this may be the case. Then let me say to you the following: ‘ ‘You don’t

know that Moore sentences are unsuccessful updates but they are!”.

This sentence was true before my announcement, indeed Moore sentences were actually

unsuccessful updates and you didn’t know that. But now you do! (Though you may not see

what precisely is a Moore sentence, if you believe me you know at least that it is an unsuc-

cessful update, because I told you so). Therefore this sentence was true before I announced

it, and it became false after. We call Moore sentences this kind of formulas, of the form

p ∧ ¬Kip, presented by [Hintikka, 1962]. For more information about Moore sentences, see

[van Ditmarsch and Kooi, 2006]

Properties: One first (and surprising) property is that Lpal is not more expressive than

Lel . This comes from the following two principles:
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• announcements cannot change the objective state of the world (they only change the

knowledge of the agents about it)

• an announcement teaches something to an agent iff she knows that this announcement

(if possible) would teach it to her

More formally, we define (by induction on the structure of ϕ) the following translation tr

from Lpal to Lel such that any S5n-model valid, for all ϕ ∈ Lpal , tr(ϕ)←→ ϕ.

• tr(p) = p

• tr(⊥) = ⊥

• tr(¬ϕ) = ¬tr(ϕ)

• tr(ψ ∨ ϕ) = tr(ψ) ∨ tr(ϕ)

• tr(Kiϕ) = Kitr(ϕ)

• tr([ψ]p) = tr(ψ) −→ p

• tr([ψ]⊥) = ¬tr(ψ)

• tr([ψ]¬ϕ) = tr(ψ) −→ ¬tr([ψ]ϕ)

• tr([ψ](ϕ1 ∨ ϕ2)) = tr([ψ]ϕ1) ∨ tr([ψ]ϕ2)

• tr([ψ]Kiϕ) = tr(ψ) −→ Kitr([ψ]ϕ)

The same idea gives us an axiomatization PAL for this language. Indeed, we need only to

take the axiomatization for S5n augmented with the reduction axioms corresponding to the

last five equalities (see table 3.1).

Nevertheless, Public Announcement Logic is not only a beautiful way of thinking about

epistemic logic, it has some interesting properties. Indeed, Lpal is proved to be exponen-

tially succinct on unrestricted structures ([Halpern and Moses, 1992, Lutz, 2006]), and inter-

esting complexity results have been given, even when we consider common knowledge (see

[Lutz, 2006] for details).

Public announcement logic have been widely studied and extended. The next two sections

present two of those extensions that are useful to our work.

3.1.2 What Is Knowable? - Arbitrary Public Announcement Logic

Arbitrary public announcement logic [Balbiani et al., 2008] has been developed to tackle the

problem of what is called ‘knowability’ in Philosophy. In [Fitch, 1963], Fitch addresses the

question whether what is true can become known. As we saw with Moore sentences, this is

not true in general. Furthermore Fitch’s Paradox ([Fitch, 1963]) ensures that if every truth
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instantiations of propositional tautologies
Ki(ϕ −→ ψ) −→ (Kiϕ −→ Kiψ) distribution (of knowl. over impl.)
Kiϕ −→ ϕ truth
Kiϕ −→ KiKiϕ positive introspection
¬Kiϕ −→ Ki¬Kiϕ negative introspection
[ϕ]p←→ (ϕ −→ p) atomic permanence
[ϕ]¬ψ ←→ (ϕ −→ ¬[ϕ]ψ) announcement and negation
[ϕ](ψ ∧ χ)←→ ([ϕ]ψ ∧ [ϕ]χ) announcement and conjunction
[ϕ]Kiψ ←→ (ϕ −→ Ki[ϕ]ψ) announcement and knowledge
[ϕ][ψ]χ←→ [ϕ ∧ [ϕ]ψ]χ announcement composition
From ϕ and ϕ −→ ψ, infer ψ modus ponens
From ϕ, infer Kiϕ necessitation of knowledge
From ϕ, infer [ψ]ϕ necessitation of announcement

Table 3.1: PAL axioms and rules

can be known then every truth is actually known. An overview of the different studies on

Fitch’s paradox can be found in [Brogaard and Salerno, 2004].

Public announcement logic is not expressive enough to face this notion. The main idea

of the work presented in this chapter is to add a quantified modality to Lpal and to interpret

‘knowable’ as ‘known after some announcement’.

Therefore, the language Lapal extends Lpal with an additional inductive construct �ϕ,

read ‘after any possible announcement, ϕ becomes true’. In other words:

Definition 3.5 (Syntax of Lapal) The language of arbitrary public announcement logic

Lapal over a countable set of agents AG and a countable set of propositional atoms PROP is

defined as follows:

ϕ ::= p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | Kiϕ | [ϕ1]ϕ2 | �ϕ

where i ∈ AG and p ∈ PROP .

We denote by ♦ the dual of �, id est ♦ϕ := ¬�¬ϕ: ‘there is some announcement after

which ϕ is true’. Therefore ϕ would be ‘knowable’ if ♦(Kϕ). We interpret this language in

the same class of models, the epistemic models. The interpretation of this new modality �

(the other ones remaining identical) is :

M, s |= �ϕ iff for all ψ ∈ Lel :M, s |= [ψ]ϕ.

This logic has many interesting properties, most of them proved in [Balbiani et al., 2007]

or [Balbiani et al., 2008]:

• Lapal is strictly more expressive than Lpal .

• � has the S4 properties, that is for all ϕ,ϕ ∈ Lapal :
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1. |= �(ϕ ∧ ψ)←→ �ϕ ∧�ψ

2. |= �ϕ −→ ϕ

3. |= �ϕ −→ ��ϕ

4. |= ϕ implies |= �ϕ.

• Mac-Kinsey (MK) and Church-Rosser (CR) formulas are valid for �, that is for all

ϕ ∈ Lapal :

MK: |= �♦ϕ −→ ♦�ϕ

CR: |= ♦�ϕ −→ �♦ϕ

• For all ϕ ∈ Lapal , Ka�ϕ −→ �Kaϕ is valid, but not the converse.

• There is a finite axiomatization for Lapal that is shown to be sound and complete. The

axioms and inference rules involving arbitrary announcement are:

�ϕ −→ [ψ]ϕ where ψ ∈ Lel

From ϕ, infer �ϕ

From ψ −→ [θ][p]ϕ, infer ψ −→ [θ]�ϕ where p 6∈ Θψ ∪Θθ ∪Θϕ

where Θϕ denotes the set of atoms occurring in a formula ϕ.

• Unfortunately, Lapal is shown to be undecidable by encoding the tiling problem into the

SAT -problem for APAL (see [French and van Ditmarsch, 2008]).

3.1.3 Not All Announcements Are Public and Made by an Omniscient

Agent - Action Model Logic

Two gaps appear in the previous work to those willing to use logic to consider multi-agent

systems, or only situations that involve different persons. First, if not any truth can nec-

essarily be known, in the formalisms we presented until now any truth can be announced.

But if announcements can be made by actual agents (and not only by an omniscient one),

it appears clearly that for an agent to be able to say truthfully something, she has at least

to know it, condition not always satisfied. Second, communication is not limited to public

announcements: there are private announcements between two agents or inside a group of

agents, other agents may see that a communication is taking place or not, etc...

[Baltag and Moss, 2004] propose the following formalism, called action model logic, that

generalises public announcement logic, including many kinds of informative events1. An event

is not only a formula publicly announced, but represents the uncertainty of the different agents

about the announcement that is actually taking place. Follows an example.

1We use the terminology of “event” instead of “action” that supposes a notion of will that we do not have.
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Return to the situation presented in Figure 3.2. Suppose that Cha shows her card to

Brune. Alex does not know which card she is showing, but he can see she shows her card,

so he knows that Brune and Cha know which card it is. Baltag et al. suggest the following

epistemic event model. Each state is a deterministic epistemic event, with a precondition

that ensures that it is executable. As for epistemic models, a link indexed by an agent i

between two events means that agent i cannot distinguish these two events. In our example

the representation of the event is the following:

sh2 : Kc2c a

a

sh0 : Kc0c

a

sh1 : Kc1c

Figure 3.4: Cha shows her card to Brune

There are three possible events corresponding to the fact that Cha shows her card to Brune.

The two girls know that Cha showed 2, and Alex consider two possible events (Cha showing

1 or Cha showing 2). The third one (Cha showing 0) is also in their collective imagination.

Indeed, Cha can imagine that Alex does not have 0, and leading him to consider posible

that Cha shows her 0. Each of those events has a precondition (that is Cha having 0, 1 or 2

respectively). In each case Brune and Cha know exactly which event is taking place. All of

that is common knowledge between the three agents (because the event in itself is public).

What would be the result of such a complex event on our initial model is presented in figure

3.5.

012 a

b

021

b

sh2 : Kc2c

a,b,c

a

a

sh0 : Kc0c

a,b,c

a

102

c
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b

120 ⊗ sh1 : Kc1c

a,b,c
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c
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c

012 a 021
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c

a 120

201 a

c

210

c

Figure 3.5: Result of the event
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After this example, we shall define precisely this formalism.

Definition 3.6 (Event Model) An epistemic event model over a countable set of agents AG

is a triple E = (E,−→AG, pre) where E is a set (of simple events), −→AG= {−→i| i ∈ AG}

is a AG-indexed family of binary relations on E and pre : E −→ Lel .

The main idea is that ‘simple’ events are deterministic events, that is that any observer

can deduce the impact of one event on one state. Uncertainty about which deterministic event

is actually taking place is added to the concept of simple event, creating an event model. The

event model thus created is independent from the actual state model, and the uncertainty

about which event is taking place is thus independent from the uncertainty that agents may

have about the actual state of the world. Each simple event can be executed only in the

states where its precondition is true. As they are epistemic and deterministic events, we can

consider that the precondition is the information carried by the event itself.

We define the model obtained from an initial one by executing an event model:

Definition 3.7 (Resulting model) LetM = (S,R, V ) be a state model and E = (E,−→AG

, pre) be an event model. The model resulting from M by application of the event model E is

the following: M⊗E = (S′,R′, V ′) with

• S′ = {(s, e) | s ∈ S, e ∈ E and M, s |= pre(e)}

• (s1, e1)R′
i(s2, e2) iff (s1Ris2 and e1 −→i e2)

• (s, e) ∈ V ′(p) iff ((s, e) ∈ S′ and s ∈ V (p))

As we will see in further examples, event model logic allows us to add a notion of agency

to announcements. Indeed, in public announcement logic, any announcement is made by an

exterior agent, let us say the modeler herself. Such an announcement is commonly known to

be truthful by the whole set of agents. Such a condition on announcements is a serious limit

to model situations in which agents communicate.

Here are different kinds of private communication using event models. In these models,

agent a is the agent speaking, and the information he gives is ϕ, as the information exchanged

is of the form Kaϕ “agent a knows ϕ”:

Public announcement: Kaϕ

AG

Hidden announcement to b: Kaϕ

AG

AG\{a,b} >

AG
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Visible private announcement: Kaϕ

AG

AG\{a,b}

AG\{a,b}

Kaϕ1

AG

AG\{a,b}.

Kaϕn

AG

Idem with Common Knowledge on subject: Kaϕ

AG

AG\{a,b} Ka¬Kaϕ

AG

Let us define precisely the syntax and semantics of DEL:

Definition 3.8 (Laml) The language of action model logic Laml over a countable set of

agents AG and a countable set of atoms PROP , given an epistemic event model E =

(E,−→AG, pre) is defined as follows

ϕ ::= p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | Kiϕ | [a]ϕ

where i ∈ AG and p ∈ PROP and a ∈ E.

[a]ϕ is read ‘after any execution of action a, ϕ becomes true. We note 〈a〉 the dual of [a], id est

〈a〉ϕ := ¬[a]¬ϕ. We interpret this language in the class of all Kripke models, an event model

E being given. Using Definition 3.7 we can precise the interpretation of this new modality [a]

(the other ones remaining identical):

M, s |= [a]ϕ iff (M, s |= pre(a) implies M⊗E , (s, a) |= ϕ).

The following Definition details how to consider the succession of two epistemic events:

Definition 3.9 Let A = (A,−→A, preA) and B = (B,−→B, preB) be two events models over

a same set of agents AG. Then we define A⊗ B = C = (C,−→C , preC) where

• C = A×B

• for all i ∈ AG and all (a, b), (a′, b′) ∈ C: (a, b) −→C
i (a′, b′) iff (a −→A

i a′ and b −→B
i b′)

• for all (a, b) ∈ C, pre(a, b) = pre(a) ∧ 〈a〉pre(b).

3.1.4 Objective Beliefs

Turn back to the Texas Hold’em poker game of Alex and Brune. We saw how cards are dealt,

until five shared cards are put on the table. Each player is then able to define her own hand,

composed of the best 5-cards combination between the two cards of her game and the five

shared cards on the table. The order of the combinations is the following, from the least to
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the best: high cards, one pair, two pairs, three of a kind, straight, flush, full house, four of a

kind (‘poker’) and straight flush2.

Though our two players do not know the value of the cards that will be on the table, this

value is fixed from the beginning of the game and cannot be modified by any action of the

players. They can only update their beliefs about these objective facts.

In such a situation, the player can be wrong about the belief of the other player (“Alex

believes Brune believes she has the winning hand”), but their beliefs regarding to the cards

dealt on the table are true beliefs. We present in this section a framework proposed by

[Hommersom et al., 2004] that allows us to express this notion of objectivity of some beliefs,

that ensures that such an objective belief is true. We first first define the language of this

logic:

Definition 3.10 (Syntax of Llob) The language of the logic of objective beliefs Llob over a

countable set of agents AG and a countable set of propositional atoms PROP is defined as

follows:

ϕ ::= p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | Biϕ

where i ∈ AG and p ∈ PROP .

Biϕ is read “agent i believes that ϕ”. We use the usual abbreviations, in particular

B̂iϕ := ¬Bi¬ϕ (“agent i considers possible that ϕ”). We say that a formula of Llob is boolean

if there is no occurrence of the operator of belief in it. We interpret semantically this language

on Kripke models M = (S,R, V ), the satisfiability relation M, s |= ϕ being defined just as

usual. More precisely:

• M, s |= p iff p ∈ V (s),

• M, s 6|= ⊥,

• M, s |= ¬ϕ iff not M, s |= ϕ,

• M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ,

• M, s |= Biϕ iff for all t ∈ S, sRit implies M, t |= ϕ.

The notion of validity upon a model or a class of models is defined as usual. These definitions

are exactly the same as the equivalent definitions for epistemic logic. The difference appears

when considering the properties of the models. Indeed, we do not interpret Llob-formulas in

S5n models but in the class C0 of transitive, euclidian and o-serial models, defined as follows:

Definition 3.11 (O-serial model) We say that a Kripke model M = (S,R, V ) is o-serial

if for all s ∈ S, there exists t ∈ S such that sRit and V (s) = V (t). We call C0 the class of

models that are transitive, euclidian and o-serial.

2The entire set of rules can be found, for example, in http://en.wikipedia.org/wiki/Texas hold ’em.
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Indeed, this class of models bring the property we expect for objective belief: an agent

cannot believe a false propositional formula. Therefore, she may not know which is the actual

state, but she always consider possible a state in which the objective facts have the same

truth value as in the actual one, i.e. a state that has the same valuation.

3.1.5 Partial Conclusion

In this section, we presented different works that use epistemic logic, the logic of knowledge,

to express dynamic situations. The most used is the notion of public announcement, exchange

of information between the modeler and the whole set of agents. Though Action Model Logic

gives us a framework that allows to speak about private announcement, some more notions

should be improved in order to tackle the problem of ‘the right to say’:

• What kind of information is given? We presented the distinction between beliefs and

objective beliefs. What kind of technical result can we get? Can we add to this logic the

notion of arbitrary announcement, like in Lapal? We explore these questions in Chapter

4.

• Who is speaking? Is information given by an individual agent or is it given by a group

of agents? How can we formalize the notion of group announcement? This is the topic

of Chapter 5.

3.2 Deontic Logics

Dynamic epistemic logics are a good starting point to understand the notion of ‘right to say

something’: if the content of the speech is the relevant element that determines the right,

then ‘to say something’ can be interpreted as ‘to give a piece of information’. But the notion

of ‘right’ still has to be interpreted formally.

Deontic logic gives formal interpretations to the notions linked to permission and obli-

gation. ‘Must’, ‘permitted’, ‘optional’, ‘ought’, ‘should’, ‘obligatory’, ‘might’, or ‘forbidden’

are classical notions that deontic logic tries to formalize. Obviously, one cannot pretend to

give a unique interpretation of these notions: they may in particular depend on the kind of

obligation they express (moral, hierarchical, political...), but also on the nature of the object

of such obligation. Indeed, this subject may be a state of affair or a given action. The former

would be represented by formulas of the form Fϕ, where ϕ is a formula of the language,

which says that a situation in which ϕ is true is forbidden; the latter by some Fα where α

represents an action – and how to represent such notions? – and not a formula.

We present in Section 3.2.1 classical deontic logic, which is a modal logic with a similar

language than epistemic logic’s but with another interpretation. In this standard theory,

the deontic modalities are applied to formulas. In section 3.2.2 we present the logics of
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permissions, for which obligation and prohibition are applied to actions, opening the way to

what is our proposal, presented in Chapters 6 and 7.

3.2.1 Standard Deontic Logic

Like many logics, the classical deontic logic is rooted in Antiquity and the Middle Ages, e.g.,

in the Obligatio game/procedure (see [Boh, 1993]). This game, that can be seen as a logical

game of counterfactual reasoning (see [Spade, 1982]) or some kind of training on thesis defence

(see [Spade, 1992]), is based on arguments that have to follow some rules. Obligationes are

not deontic thoughts, they are not obligations, but they led to thought on deontic concepts

because they carried the idea of rules and thus of obligations in a formal frame.

Since then, deontic logics have been developed on a twofold way, both non-modal and

modal, namely [Mally, 1926] and [von Wright, 1951]. Let us present briefly the Standard

Deontic Logic based on von Wright work, and its limitations in our context.

Standard Deontic Logic (SDL) is a modal logic whose operators formalize the following

basic notions:

• it is obligatory that ϕ : Oϕ

• it is permitted that ϕ: Pϕ

• it is forbidden that ϕ: Fϕ

• it is omissible that ϕ: OMϕ.

• it is indifferent (or optional) that ϕ: Iϕ.

It is built upon propositional logic. In this standard framework, all these modalities can be

expressed using only one of them, typically the first one, obligation. This framework is a

normal KD logic.

Syntax, Semantics and Properties

Definition 3.12 (Syntax of Lsdl) The language of the standard deontic logic Lsdl over a

countable set of propositional atoms PROP is defined as follows, where p ∈ PROP :

ϕ ::= p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | Oϕ.

We use the classical propositional abbreviations and define the following ones: Pϕ := ¬O¬ϕ,

Fϕ := O¬ϕ, OMϕ := ¬Oϕ, Iϕ := ¬Oϕ ∧ ¬O¬ϕ.

We interpret this language on the class of serial Kripke models, using the possible world

semantics. That implies the following properties

• |= O(ϕ −→ ψ) −→ (Oϕ −→ Oψ)
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• |= Oϕ −→ Pϕ

• If |= ϕ then |= Oϕ.

We call SDL the normal KD axiomatization of this logic summed up in Table 3.2.

instantiations of propositional tautologies
O(ϕ −→ ψ) −→ (Oϕ −→ Oψ) distribution
P> or ¬Oϕ ∨ ¬O¬ϕ D
From ϕ and ϕ −→ ψ infer ψ modus ponens
From ϕ infer Oϕ necessitation

Table 3.2: Axiomatization SDL

SDL is sound and complete with respect to the class of serial models (where we interpret

the language) (see [Chellas, 1980]).

Moreover, it has been proved (see for example [Blackburn et al., 2001]) that:

• Lsdl is decidable, and the decision procedure is PSPACE-complete

• The model checking problem for Lsdl is in P

Classical Paradoxes

Standard deontic logic is famous for its ‘paradoxes’. Here are some of the most known

(cited from [Meyer et al., 1994]):
1. Empty normative system |= O>

2. Ross’ paradox |= Oϕ→ O(ϕ ∨ ψ)

3. No free choice permission |= P (ϕ ∨ ψ)↔ Pϕ ∨ Pψ

4. Penitent’s paradox |= Fϕ→ F (ϕ ∧ ψ)

5. Good Samaritan paradox |= ϕ→ ψ implies |= Oϕ→ Oψ

6. Chrisholm paradox |= (Oϕ ∧O(ϕ→ ψ) ∧ (¬ϕ→ ¬Oψ) ∧ ¬ϕ)→ ⊥

7. Forreseter’s paradox of gentle murder |= ψ → ϕ implies |= (Fϕ ∧ (ϕ→ Oψ) ∧ ϕ)→ ⊥

8. Conflicting obligations |= Oϕ→ ¬O¬ϕ

9. Derived obligations |= Oϕ→ O(ψ → ϕ)

10. Deontic detachment |= (O(ϕ) ∧O(ϕ→ ψ))→ Oψ

The normal modal interpretation of deontic concepts imposes these validities, perceived by

deontic logicians as paradoxes. But that comes in our mind from a erroneous interpretation

of the subjects of the obligation, that are in this formalism propositions and not actions.

For example, the strangeness of the second validity is often illustrated by the following

example: ‘if you are obliged to read a letter, you are obliged to read it or to burn it’. It is

clearly a counterintuitive sentence. But the example supposes that ψ and ϕ are actions (‘to

burn the letter’) while they are actually propositions. A better example would thus be ‘if
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the letter must be red, then it must be red or green’. It is still a strange sentence, but its

strangeness does not come from the implication, but from the fact that the color of the letter

is obligatory...

In the same way, here are some sentences that reveal the claimed nature of paradox of

each validity:

3. If someone is allowed to hit his dog, he is allowed to hit his dog or his boss.

4. If someone is forbidden to commit a crime, he is forbidden to commit a crime and to

repent.

5. The doctor operates her wounded patient implies that the patient is wounded, thus if

it is obliged that the doctor operates her wounded patient then it is obliged that the

patient is wounded

6. You are obliged to go to a party; it is obliged that, if you go, you tell you are coming;

if you do not go, you are obliged not to tell you are coming. In this situation, we can

affirm that you go to the party!

7. One is forbidden to murder; still, if one murders someone, one has to do it gently; more-

over, a gentle murder implies a murder. But in this situation murders are impossible!

8. There are no conflicting obligations (sic)

9. If a child is obliged to brush her teeth, then it is obliged that if martians exist the child

brushes her teeth.

10. Same as 5.

As we can see, all these paradoxes come essentially from the fact that it seems that deontic

norms are applied to actions, while they actually applied to formulas. To be able to formalize

concepts of obligation in a context of acting agents we need some kind of dynamic modality

that represents actions, as in our proposals (Sections 6 and 7). The next section presents

some of those already existing frameworks.

3.2.2 Dynamic Logics of Permission

As we have seen, to dynamic logicians (and in particular to dynamic epistemic ones), obliga-

tions and permissions clearly apply to actions. It seems thus strange that people associate

those with static observations, and ‘confuse’ the non-deterministic choice between two actions

with the disjunction of two propositions. For deontic logic this frame of mind was reset by

John-Jules Meyer with his different approach to deontic logic (see [Meyer, 1988]), an approach

that was later followed up by [van der Meyden, 1996], the starting point for some proposals

in this thesis.
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Both of these works are adaptations of propositional dynamic logic (PDL) presented in

[Fischer and Ladner, 1979]: PDL allows to represent at the same time the truth value of

propositions (i.e. objective facts) and the effect of actions on them. In other words, we can

model in the same framework static situations and dynamic transitions.

In the language Lpdl we distinguish assertions (that describe states of facts) from actions

(that describe transitions between states of facts). The set of actions is inductively constructed

over a countable set of atomic actions Act in the following way:

α ::= a | α; β | α ∪ β

where a is an atomic action. Action α; β describes the succession of action α and action β,

action α ∪ β is the non-deterministic choice between those two actions. Figure 3.6 gives an

example of model of PDL, that we define afterwards. In this example Brune initially receives

a letter from Cha, and we look at Brune’s possible actions.

answer

read

answer

burn

answer

Figure 3.6: Brune actions while receiving a letter from Cha

Brune has three possible actions read, answer and burn. Therefore ‘read; answer’ corre-

sponds to the fact that she reads the letter and then answers to her friend, ‘read ∪ burn’ the

fact that she does one of the two actions.

Now that the notion of action is introduced, we define the language Lpdl as the following

set of assertions over the set of actions and a countable set of propositional atoms PROP by



3.2. DEONTIC LOGICS 59

the following:

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ψ | [α]ϕ

We read [α]ϕ as “It is necessary that after executing α, ϕ is true”. Its dual, 〈α〉ϕ := ¬[α]¬ϕ

can be read as “There is an execution of α after which ϕ is true”.

Here are some examples of formulas we can express in this language:

• [read]letter is open: ‘after Brune having read the letter, it is open’

• 〈read∪burn〉(letter is open∨letter is burnt): there is an action between read and burn

that Brune can do, and after having executed it the letter is open or burnt.

Actually, Lpdl admits two more constructions of action:

• the test of ϕ, noted ϕ?, that cannot be executed if ϕ is false and has no effect if ϕ is

true.

• the iterated execution α noted α∗. The number of executions is chosen nondeterminis-

tically, i.e. α∗ := >? ∪ (α) ∪ (α ; α) ∪ (α ; α ; α) ∪ . . .

A model of PDL is a Kripke model (S, V,R) where R = {Ra}a∈Act. Figure 3.6 gives an

example of such a model, with Act = {read, burn, answer}. From the setR of binary relations

we can construct a binary relation Rα for every action α by induction on the structure of α

in the following way:

• for all a ∈ Act, Ra is already defined

• for all ψ ∈ Lpdl , Rψ? = {(s, s) | s ∈ S and M, s |= ψ}

• Rα;β = {(s, t) ∈ S2 | ∃u ∈ S s.t. (s, u) ∈ Rα and (u, t) ∈ Rβ}

• Rα∪β = Rα ∪Rβ

• Rα∗ = {(s, t) ∈ S2 | ∃t0, . . . , tn ∈ S s.t. s = t0, t = tn, and for all 0 6 i 6 n −

1, (ti, ti+1) ∈ Rα}

The semantics of the dynamic operator [α] is thus defined in the following way:

• for all action α, M, s |= [α]ϕ iff for all t ∈ S, sRαt implies M, t |= ϕ

The following is an equivalent definition of the semantics of this dynamic operator, by

induction on the structure of the action considered:

• for all a ∈ Act, M, s |= [a]ϕ iff for all t ∈ S, sRat implies M, t |= ϕ

• for all ψ ∈ Lpdl , M, s |= [ψ?]ϕ iff M, s |= ψ −→ ϕ

• M, s |= [α; β]ϕ iff M, s |= [α][β]ϕ
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• M, s |= [α ∪ β]ϕ iff M, s |= [α]ϕ ∧ [β]ϕ

The definition for the iterated execution of α may thus be understood in the following way:

• M, s |= [α∗]ϕ iff M, s |= ϕ ∧ [α][α∗]ϕ

The basic idea of Meyer was to add to PDL a special atom viol (or its negation perm)

to the set PROP of propositional atoms. Thus, we would say that an action is permitted if

its execution does not lead to a state of violation, i.e. a state where viol is true. Formally,

Pα := [α]¬viol. We could have considered another kind of permission, which is weaker:

P ′α := 〈α〉¬viol. In this case, we consider that action α is permitted if there is at least one

execution of α that does not lead to a state of violation.

Figure 3.7 illustrates this framework in the same example of Brune acting after having

received a (love) letter from Cha. In the figure violations states are marked by a big V . As

depicted in the figure, we consider that both ‘burning the letter’ and ‘answering it (without

having read it)’ lead to a violation state. We consider also that if Brune, after having read

the letter, answers NO then the resulting state violates the rule. We consider in this situation

the action answer := answer Y ES ∪ answer NO

Here are some formulas that are true in the initial state using the notation P for the

strong permission and P ′ for the weak one :

• P (read): ‘Brune is permitted to read Cha’s letter’

• ¬P (burn)∧¬P (answer): ‘Brune is neither permitted to burn Cha’s letter nor to answer

it (without having first read it)’

• 〈read〉(P ′(answer) ∧ ¬P (answer)): ‘After having read Cha’s letter, Brune is weakly

-but not strongly- permitted to answer it’. Indeed, there is an execution of answer

(namely answer Y ES) that is permitted, but not all (answer NO is not).

• 〈burn〉P (answer): ‘After having burnt the letter, Brune is allowed to answer it’

Van der Meyden noted a limit in Meyer’s work: an action is permitted or not depending

exclusively on its resulting state of affairs. This may seam reasonable, but it brings about

some counterintuitive implications, as highlighted by this last example. In fact, it would

validate the following sentence: “If after having burnt the letter Brune is allowed to answer

it, then Brune has the right to burn the letter and then answer it”. Indeed, it would be

translated by the following: 〈burn〉Panwer −→ P (burn ; answer). This is clearly a validity

of Meyer’s models, inasmuch as the resulting state of affairs after executing burn and then

answer is the same as the state of affairs resulting from the execution of (burn; anwer). If

the reader is not convinced that this result is counter-intuitive, the more famous following

example should definitely convince her: “If after shooting the president one has the right to

remain silent then one has the right to shoot the president and then remain silent”.
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answer Y ES

answer NO

read

answer

burn

answer

Figure 3.7: Considering states of violation for Brune’s actions

To solve this problem, Van der Meyden proposed to label transitions (i.e. the atomic

actions) instead of worlds (i.e. the resulting state of affairs). Formally, Van der Meyden’s

logic is an adaptation of PDL in which the models contain a special set P ⊆ S ×Act × S.

P is the set of permitted transitions: a triple (s, a, s′) is in P iff the transition labelled by a

from s to s′ is permitted. The same example as before is represented in this framework by

Figure 3.8. The plain (and green) transitions are the permitted ones, the dotted (and red)

are the ones that are not in P .

The syntax of this language contains the following construct ♦(α,ϕ) which means “there

is a way to execute action α which is permitted and after which ϕ is true”. In the example,

in the initial situation, we have ♦(read,>) and ♦((read; answer),>). He also introduces a

weak form of obligation O(α,ϕ). The meaning of O(α,ϕ) is “after any permitted execution of

α, ϕ is true”. This formalization allows to consider situations in which two different actions

that end in the same state of affairs are not permitted in the same way. Section 7.3 presents
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ans Y ES

ans NO

read

answer

burn

answer

Figure 3.8: Considering labelled transition for Brune’s actions

an example of such a situation.

3.3 Permission and Epistemic Actions

To formalize the notion of ‘right to say’ we are particularly interested in frameworks that

consider the permission on epistemic events, as presented in Section 3.1. Such frameworks

already exist.

[van Benthem et al., 2009] (see also [Hoshi, 2008]) propose a logic for protocols in dynamic

epistemic logic that can be interpreted as a logic for permitted events – and in particular

permitted announcements. A protocol is a set of sequences of events, and an announcement

is an example of such an event; “being in the protocol” can therefore be understood as “being

permitted to be said”. One purpose of this publication was to merge epistemic temporal

logic - [Parikh and Ramanujam, 2003] - with dynamic epistemic logic - [Baltag et al., 1998,
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van Ditmarsch et al., 2007]. The axiomatization of the language with added protocols is

facilitated by the translation of the latter into the former.

We only present what [van Benthem et al., 2009] call the forest generated by a pointed

epistemic model (M, s) and sequences of announcements. It corresponds to all the models

we may obtain from the initial epistemic model by applying the considered announcements.

In fact, the announcements considered are pointed event models (see Definition 3.6), and we

face sequences of such epistemic events. We call protocol a prefix-closed set of such sequences.

We call history a set consisting of such sequences preceded by a state in the epistemic model

wherein they are executed. For example, given an initial state s, and say a sequence of

first ψ! and then ϕ! as allowed according to protocol, we write sψϕ for that history: the

announcements in sequence are simply written one after the other.

Relative to a protocol Π we can construct a temporal epistemic model MΠ that contains

the initial model and all the models obtained from it by applying a sequence of epistemic

events belonging to Π. We can then express the following: ‘in the context (M, s), given the

protocol Π and after having past the history h (that starts from s), it is permitted to say ψ

after which ϕ is true’. It would be translated by MΠ, h |= 〈ψ〉ϕ and the semantics gives us

the following: MΠ, h |= 〈ψ〉ϕ iff:

• MΠ, h |= ψ

• h′ = hψ ∈ Π

• MΠ, h′ |= ϕ.

[Aucher et al., 2010] also propose to merge deontic concepts with epistemic ones. They

start from the Epistemic Deontic Logic (EDL) which language contains an epistemic op-

erator K - as in EL - and a deontic one O - as in SDL -. Note that it is a single-agent

framework. We can thus express, for example OKϕ ∧ KO¬Kψ : ‘It is obligatory that the

agent knows ϕ and the agent knows it is obligatory that she does not know ψ’. In fact, fol-

lowing [Castaneda, 1981], they distinguish formulas depending on whether they are within or

without the scope of deontic operators. In order to skip details, just assume that the deontic

operators apply to the knowledge of the agent: if p is an atomic proposition, we can express

OKp (‘the agent is obliged to know p’) but not Op (‘it is obligatory that p’). They call P (for

permitted) the dual operator of O: Pϕ := ¬O¬ϕ. They interpret this language in models in

which there is an S5-relation RK for the epistemic operator, and a KD-relation RO for the

deontic operator.

Therefore, they call epistemic norm a formula of the form ψ −→ Oϕ or ψ −→ Pϕ and

privacy policy a set of epistemic norms. A pointed EDL-model is said compliant with a given

privacy policy if all the epistemic norms it contains are satisfied in the given state of the

model.
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From there, they develop a new logic called Dynamic Epistemic Deontic Logic (DEDL)

adding to the language of EDL a dynamic operator [send ϕ] (in fact there is also another op-

erator [prom ϕ] that we skip here). It is a dynamic epistemic operator that can be understood

as the announcement (by the modeler) of ϕ. They can thus express for example the following:

[send p](Kp ∧ OKq): ‘after the announcement of p, the agent knows p and it is obligatory

that she knows q’. In this logic, they propose to formalize the notion of ‘right to say’ in the

following way: it is permitted to announce something if the result of such an announcement

is compliant with the given privacy policy. We denote as Pϕ! such a permission to announce

ϕ (and no more to know ϕ). Therefore, let PP be a privacy policy and
∧

PP the conjunction

of all the epistemic norms appearing in PP , then we have |=EDL Pϕ!←→ [send ϕ](
∧

PP ).

Yet, these two frameworks have limitations that justify to develop our proposal (See

Chapters 6 and 7). Comparisons between our work and theirs are proposed in Section 6.5.2.

for [van Benthem et al., 2009] and in Section 8.1 for [Aucher et al., 2010].



Chapter 4

Logics of Objective Beliefs

4.1 Introduction

The Logic of Objective Beliefs (LOB) has been presented in section 3.1.4. We saw that ‘ob-

jective belief’ is a useful notion to formalize situations in which some information is observed

by the agents. If an agent believes something about such observation, then it is true. As we

saw, a typical situation is the Texas Hold’em Poker: some cards are known to be seen by

the agents nd some others are revealed publicly on the table. In this section, we present new

results regarding this framework, while extending it with some useful notions. Let us enter

inside the game!

After the initial deal and the flop, the players have to bet three times; each bet is followed

by the deal of an additional card. During these bets, even if she thinks her hand is losing,

Brune could try to bluff. She would not do it if she thinks that Alex is certain to have the

winning hand. In this framework, we would like to represent the fact that an agent believes

something (“I have the winning hand”) whatever she may observe later.

Let us suppose that, while cheating, Alex sees Brune’s hand without her knowing. He

would have a serious advantage on his opponent. In particular, he knows who has the winning

hand, and he can deduce if his opponent is sure or not that her hand is the winning one. How

could we represent an update function that allows to distinguish between the deal of a card

and a cheating access to new information?

This section, which principal results have been published in french in

[Balbiani and Seban, 2008], complete these requirements. We first present the Logic of

Objective Beliefs with an update function expressible in this logic, with a slightly different

semantics from [Hommersom et al., 2004]. We can express sentences like “ After the flop

deal, Brune considers possible that she has a losing hand” or “Alex believes that if the

river is the ace of spades, he will have a winning hand”. Secondly, we present the concept

of arbitrary update of objective beliefs. We can thus express, for example, the following:

“Brune can learn something that will let her know she has the winning hand, but whatever

Alex learns about the deal, he would still consider possible that Brune considers possible she

has the losing hand”.

65
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4.2 Some Properties of the Logic of Objective Beliefs

First we present the following axiomatization LOB of this logic, according to the intuition we

have about objective beliefs, then we show that this axiomatization is sound and complete

on a certain class of models.

(CPL) axioms of classical propositional logic,

(K) Bi(ϕ→ ψ)→ (Biϕ→ Biψ),

(4) Biϕ→ BiBiϕ,

(5) B̂iϕ→ BiB̂iϕ,

(Tbool) if ϕ is boolean, then Biϕ→ ϕ.

As we exposed before, axioms (4) and (5) express the introspective character of belief: “if

agent i believes that ϕ, then she believes that she believes that ϕ” and “if agent i considers

possible that ϕ, then she believes that she considers possible that ϕ”, for any formula ϕ.

The axiom (Tbool) expresses the objective dimension of the belief: for any boolean formula

ϕ (i.e. ϕ corresponds to an objective fact) “if agent i believes that ϕ, then ϕ”. In other

words, we consider that the beliefs of the agents regarding the real world are consistent with

it. It corresponds to the property of o-seriality. The theorems of LOB are all the formulas

deductible from the axioms using the following deduction rules:

(MP ) if ϕ is a theorem and ϕ→ ψ is a theorem then ψ is a theorem,

(GD) if ϕ is a theorem then Biϕ is a theorem.

Following [Hommersom et al., 2004], we consider the class C0 of models M = (S,R, V ) in

which for every agent i, Ri is transitive, euclidian and o-serial. This notion of o-seriality has

been presented in Definition 3.11.

Proposition 4.1 shows soundness and completeness of logic LOB with respect to the class

of models C0, a result that does not appear in [Hommersom et al., 2004].

Proposition 4.1 Let ϕ ∈ Llob . Then ϕ is a theorem of LOB iff ϕ is valid in any model of

the class C0.

Proof To show soundness (i.e. the direct implication), it is sufficient to show that axioms

are valid and that the inference rules preserve validity. First, we show that o-serial models

validate schema Tbool. Indeed, let M be an o-serial model and let s be a state of M. Then

if M, s |= Biϕ, then there exists t ∈ S such that (1) sRit and (2) V (s) = V (t). (1) implies

that M, t |= ϕ. Combined with (2), recording that ϕ is boolean, we obtain that M, s |= ϕ.

Second, as we saw in section 2.2, axioms (CPL), K, 4 and 5 are valid in the class of transitive

and euclidian Kripke models. Third, (MP ) and (GD) preserves validity by definition of the



4.2. SOME PROPERTIES OF THE LOGIC OF OBJECTIVE BELIEFS 67

semantics. Indeed, let M be a model of C0. On one hand if M |= ϕ and M |= ¬ϕ ∨ ψ then

M |= ψ. On the other hand, if M |= ϕ then for all s ∈ S and all t ∈ S such that sRit, we

have M, t |= ϕ. Therefore for all s ∈ S, M, s |= Biϕ. Consequently M |= Biϕ. We obtain

the wanted result.

Let us now prove completeness (i.e. the indirect implication). We define the canonical

model Mc
lob = (Sc, Rc

i , V
c) in the classical way (cf. Definition 2.19). Recall in particular

that for all maximal consistent sets x, y ∈ Sc and for all agent i, xRiy iff Bi(x) ⊆ y, where

Bi(x) = {ϕ | Biϕ ∈ x}. Let us see that the canonical model is in the class C0:

• it is transitive: Let x, y, z be such that xRiy and yRiz, i.e. Bi(x) ⊆ y and Bi(y) ⊆ z.

It is enough to show that Bi(x) ⊆ Bi(y). Therefore, take ϕ ∈ Bi(x) then Biϕ ∈ x thus

BiBiϕ ∈ x and Biϕ ∈ Bi(x) which leads to Biϕ ∈ y i.e. ϕ ∈ Bi(y).

• it is euclidean: We use axiom 5, or rather its contrapositive B̂iBiϕ −→ Biϕ. Let x, y, z

be such that xRiy and xRiz, i.e. Bi(x) ⊆ y and Bi(x) ⊆ z. It is enough to show that

Bi(y) ⊆ z. Therefore, let ϕ ∈ Bi(y) then Biϕ ∈ y thus B̂iBiϕ ∈ x. Indeed, if it were

not the case, then Bi¬Biϕ ∈ x and thus ¬Biϕ ∈ y which is false. Thus B̂iBiϕ ∈ x and

by axiom 5 Biϕ ∈ x, which means that ϕ ∈ Bi(x). With Bi(x) ⊆ z we obtain ϕ ∈ z

Q.E.D.

• it is o-serial: Let x ∈ Sc and let y◦ = Bi(x)∪{p ∈ PROP | p ∈ x}. y◦ is a consistent set.

Suppose the opposite, then there exist ϕ1, . . . ϕn ∈ Bi(x) and p1, . . . pm ∈ x ∩ PROP

such that ` (ϕ1∧. . .∧ϕn∧p1∧. . .∧pm) −→ ⊥, thus ` ¬ϕ1∨∙ ∙ ∙∨¬ϕn∨¬p1∨∙ ∙ ∙∨¬pm and

` Bi(¬ϕ1∨∙ ∙ ∙∨¬ϕn∨¬p1∨∙ ∙ ∙∨¬pm). Combining with the fact that Bi(ϕ1∧. . .∧ϕn) ∈ x

we obtain that Bi(¬p1∨∙ ∙ ∙∨¬pm) ∈ x which implies that ¬p1∨∙ ∙ ∙∨¬pm ∈ x by axiom

Tbool, a contradiction with respect to the hypothesis. So y◦ is consistent, it can thus

be extended to a maximal-consistent set of formulas y (using a classical Lindenbaum

lemma proof), that includes Bi(x) and PROP ∩ x as y◦ did. Therefore, xRiy and for

all p ∈ PROP , y ∈ V (p) iff x ∈ V (p). We obtain the wanted result.

Now it is sufficient to prove that for all formula ϕ ∈ Llob , Mc
lob, x |= ϕ iff ϕ ∈ x. Thus, as

Mc
lob is a model, a formula that is valid is a validity of this model. It is then in any maximal

consistent set of the theory, which proves that it is a theorem. We prove this truth lemma in a

classical way, by induction on the structure of ϕ. This proof is exactly the same as the proof

for the logic K (see [Fagin et al., 1995]). Let us analyse the specific induction case where

ϕ = Biψ.

(⇒) Suppose that (1) Mc
lob, x |= Biψ. Thus Ki(x) ∪ {¬ψ} is not consistent, and it

has a finite subset {ϕ1, . . . , ϕn,¬ψ} which is not consistent. Therefore, by propositional

reasoning, ` ϕ1 → (ϕ2 → (. . . → (ϕn → ψ) . . .)). Hence, using the necesitation rule, we

obtain ` Ki(ϕ1 → (ϕ2 → (. . .→ (ϕn → ψ) . . .))). Using axiom K n times we get the following:



68 CHAPTER 4. LOGICS OF OBJECTIVE BELIEFS

` Ki(ϕ1 → (Kiϕ2 → (. . . → (Kiϕn → Kiψ) . . .))). Using that {ϕ1, . . . , ϕn} ⊆ Ki(x) we have

that Kiψ ∈ x, Q.E.D.

(⇐) If Biψ ∈ x then ψ ∈ Bi(x). Now, for all y ∈ Sc s.t. xRc
iy we have Bi(x) ⊆ y. Thus

for all y ∈ Sc s.t. xRiy, ψ ∈ y, i.e. Mc
lob, y |= ψ by IH. Therefore, Mc

lob, x |= Biψ.

�

Consider the formula B̂i>. This formula is valid in any model M = (S,R, V ) where Ri is

serial for agent i ∈ AG . Therefore, LCO is an extension of the logic KD45AG obtained by

replacing schema (Tbool) by axiom B̂i>. The inclusion of KD45AG in LCO is a strict one if

PROP 6= ∅. To show this, we associate to any subset X of PROP , the logic LCOX obtained

by replacing schema (Tbool) by (TX
bool): “Biϕ → ϕ for all ϕ boolean and based on X”. The

function X 7−→ LCOX is clearly strictly increasing: each added atom gives new theorems.

Furthermore, LCO = LCOPROP and KD45AG = LCO∅.

We use in the following sections the notion of bisimulation presented in Section 2.2. Indeed,

in this logic as in K, the following proposition is true:

Proposition 4.2 Let M = (S,R, V ), M′ = (S′, R′, V ′) two models of the class C0 and let

s0 ∈ S, s′0 ∈ S′ be two states. If (M, s0)←→(M′, s′0) then (M, s0) |= ϕ iff (M′, s′0) |= ϕ for

any formula ϕ ∈ Llob .

The proof of this proposition can be found in [Hommersom et al., 2004].

4.2.1 Decidability and Complexity:

We prove in this paragraph that the logic of objective beliefs is PSPACE-complete, a notion

presented in Section 2.2. We prove first that this logic has the finite-model property.

Proposition 4.3 Let ϕ ∈ Llob be a formula. If ϕ is satisfied in a model of C0 then ϕ is

satisfied in a finite model of C0.

We do not prove it here, but the proof is very similar to (in fact identical to a part of) the

proof of Proposition 6.32. Indeed, we take a model that satisfies ϕ, and we take its filtration

(see Definition 2.16) through the set of all subformulas of ϕ. See the proof of Proposition

6.32 for details.

Proposition 4.4 If |AG| > 2, the problem of satisfiability of Llob with respect to C0 is decid-

able and PSPACE-hard.

Proof This proof is largely inspired from the equivalent proof for KD45n in

[Halpern and Moses, 1992]. Recall that a quantified Boolean formula (QBF) can be written in

the following form: A = Q1p1Q2p2 . . . QmpmA′ where for all i, Qi ∈ {∀, ∃} and A′ is a Boolean

formula whose primitive propositions are among p1, . . . , pm. Recall that the problem of de-

ciding whether a QBF is true or not is PSPACE-complete [Stockmeyer and Meyer, 1973].
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We get our result by proving that, given a QBF A we can construct a Llob-formula ψA

such that ψA is satisfiable in C0 iff A is true. Take a QBF A of the previous form. We

call A1 := Q2p2 . . . QmpmA′ and more generally Ak := Qk+1pk+1 . . . QmpmA′. Therefore

A = Q1p1A1 = Q1p1Q2p2 . . . QkpkAk.

The formula ψA we construct enforces the existence of a binary tree-like model, in which

each leaf represents a distinct truth assignment to the primitive propositions p1, . . . , pm. Our

primitive propositions are the pi’s and additional d0, . . . , dm, where, intuitively, dj denotes

the fact that we already did at least j consecutive assignments of pi’s values. In other words,

dj is true in the nodes of depth at least j. For technical reasons that we present later, the

link between a node of depth i and a node of depth i+1 is a succession of two arrows (one for

agent 1 and the other for agent 2) with an intermediate node which is exactly identical to its

antecedent. An example of such a model is given in figure 4.1. We then define the following

Llob-formulas:

• depth captures the intended relation between the dj ’s:

depth :=
m∧

i=1

(di −→ di−1)

• determined says, intuitively, that the truth value of the proposition pi is determined at

depth i in the tree. If pi is true (resp. false) in a node s of depth j > i, then it is true

(resp. false) in all the nodes that are under s:

determined :=
m∧

i=1

(di −→ ((pi −→ B1B2(di −→ pi)) ∧ (¬pi −→ B1B2(di −→ ¬pi))))

• branchingA says that for any node of depth i, if the truth value of pi+i is quantified

universally (resp. existentially) in A, it is possible to find two successor nodes (resp.

one successor node) at depth i + 1 such that pi+1 is true at one and false at the other

(resp. pi+1 has the expected truth value):

∧

{i:Qi+1=∀}

((di ∧ ¬di+1 −→ (B̂1B̂2(di+1 ∧ ¬di+2 ∧ pi+1) ∧ B̂1B̂2(di+1 ∧ ¬di+2 ∧ ¬pi+1))∧

∧

{i:Qi+1=∃}

((di ∧ ¬di+1 −→ (B̂1B̂2(di+1 ∧ ¬di+2 ∧ pi+1) ∨ B̂1B̂2(di+1 ∧ ¬di+2 ∧ ¬pi+1)).

Finally,

ψA := d0 ∧ ¬d1 ∧ (B1B2)
m(depth ∧ determined ∧ branchingA ∧ (dm −→ A′)).
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We can now prove that ψA is satisfiable in C0 iff A is true. First, we show that if A is true

then ψA is satisfied by the model MψA
corresponding to the requirements explained before.

We describe now such a model starting from an initial state s0 satisfying only d0. In this

description, we call “node of depth i” a node satisfying all the dj with j 6 i and no other.

Furthermore, if a node s has depth i, we call “successor” of s a node s′ of depth i + 1 such

that s(R1 ◦R2)s′, with an intermediate node that is identical to s.

Now, if Q1 = ∀, s0 has two successors sp1
1 and s¬p1

1 , p1 being satisfied in the first and

not being satisfied in the second. If Qi = ∃, we construct a unique successor s1, p1 being

satisfied in it iff A1(>/p1) is true. Then we reproduce this process for the new created states,

considering as A the actualized formula A1(>/p1) if p1 is satisfied and A1(⊥/p1) if p1 is not

satisfied, and maintaining in every further state the valuation of p1.

In other words, for all i, if Qi = ∀, each node of depth i has two successors, pi being

satisfied in the first and not being satisfied in the second. If Qi = ∃, each node of depth

i node has a unique successor, pi being satisfied iff Ai(∗1/p1, . . . ∗i−1 /pi−1, pi := >) is true

(where ∗k corresponds to the actual valuation assigned to pk).

We then end the model taking for each relation Ri its reflexive-symmetric closure. An

example of such a model is given in Figure 4.1. Note that such a model is in C0 as every

relation is an equivalence relation.
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Figure 4.1: Possible models MψA
for A = ∃p1∀p2∀p3A

′

One of these models, in its upper state, satisfies ψA if A = ∃p1∀p2∀p3A
′ is true. The left one

if A1(>/p1) is true, the right one if A1(⊥/p1) is true.

Now suppose that A is satisfiable, we getMψA
, s0 |= ψA by construction. Indeed, d0∧¬d1

is satisfied in s0, and depth ∧ branchingA is clearly satisfied in all the model. To see that

determined is a validity of the model, note that by a unique arrow R1 ◦ R2 from a node s,

we cannot reach a node of depth higher or equal to the depth of s that is not a successor of

s. Finally, we have to see that dm −→ A′ is a validity of MψA
, which means exactly that if

the value of each pi is fixed, arbitrarily if Qi = ∀ and choosing the right one if Qi = ∃, the
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A′ corresponding to this choice is a true boolean proposition. That exactly means that A is

true.

Conversely, suppose that a modelM = (S, V, {R1, R2}) in C0 such thatM, s |= ψA exists.

Given a state t ∈ S, let At
j be the QBF that results by starting with Qj+1pj+1 . . . QmpmA′

and replacing all occurrence of pi in A′, with i < j, by > if t ∈ V (p) and by ⊥ otherwise.

Note that At
0 = A and that At

m corresponds to A′ where each atomic proposition has been

replaced by its valuation in t. Now we have M, s |= (B1B2)m(dm −→ A′). Thus if (s, t) ∈

(R1 ◦ R2)m and M, t |= dm then At
m is true. With the fact that M |= B1B2(branchingA)

and an easy induction on j, we can prove that for all t ∈ S, if (s, t) ∈ (R1 ◦ R2)m−j and

M, t |= dm−j ∧ ¬dm−j+1 then the QBF At
m−j is true. In particular, since M, s |= d0 ∧ ¬d1,

As
0 = A is true.

�

Proposition 4.5 The problem of satisfiability of Llob with respect to C0 is in PSPACE.

This proof is identical to the similar proof of the PSPACE complexity of the problem of

satisfiability of the logic K [Halpern and Moses, 1992]. It uses a notion of tableau that gen-

eralises the notion of propositional tableau. Such a tableau method is proposed for another

logic in Section 6.6. The idea of the proof is the following:

• First, we show that this logic has the tree-model property. That means that if a formula

is satisfiable, it is satisfied in a tree-like model. More precisely, we prove that a formula

is satisfiable iff the tableau method terminates and allow to construct such a tree-like

model. It would take at most a time exponential in the size of the formula ϕ that is

satisfied.

• Second, we show that such a model has a depth that is polynomial in the size ϕ.

• Third, we construct this tableau depth first, in other words we construct the tree-like

tableau branch by branch. Once a branch constructed, we examine if it can satisfy the

formula. If it does not, we just forget it a pass to the following branch.

In this way we obtain an algorithm that solves the problem in exponential time and polynomial

space.

Proposition 4.6 The problem of the model checking of Llob with respect to C0 is in P .

Proof To prove it, just recall that the problem of the model checking of the language of

modal logic with respect to all Kripke models is in P (see [Gradel and Otto, 1999]). As the

language is the same, it remains true if we take the particular class of models C0.

�
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4.2.2 Adding Update

Let us now tackle the question of updating objective beliefs. What happens in a given model

if a group of agents learns that a boolean formula is satisfied? To answer this question, we first

present the framework proposed by [Hommersom et al., 2004], showing some new properties.

Definition 4.7 Let M = (S,R, V ) be a model, ϕ a boolean formula and G ⊆ AG a finite

group of agents. The update of M by ϕ and G is the model Uϕ,G(M) = (S′, R′, V ′) defined

in the following way:

• S′ = S × {0, 1},

• (x, a)R′
i(y, b) iff one of the following conditions is satisfied :

– a = 0, b = 0 and xRiy,

– a = 1, b = 1, xRiy, (M, y) |= ϕ and i ∈ G,

– a = 1, b = 0, xRiy and i 6∈ G.

• V ′(x, a) = V (x).

In the case where G = ∅ we obtain that Uϕ,∅(M) satisfies (x, a)R′
i(y, b) iff (xRiy and b = 0).

Clearly this update is an informative event, i.e. an event that does not change the valuation

of the propositional atoms but only the knowledge that agents may have about the situation.

It is thus equivalent to an action model, as presented in Section 3.1.3. Figure 4.2 presents

this action model:

ϕ

G

G>

AG

AG\G

AG\G

¬ϕ

Figure 4.2: Action model equivalent to the update Uϕ,G(M) for objective beliefs

Here are some properties of the result of the operation U on a model. These properties

justify the choice of this operation U to model the update of an objective belief by a group

of agents.

Proposition 4.8 Let M = (S,R, V ) be a model of the class C0, ϕ be a boolean formula and

G ⊆ AG be a group of agents. For all s ∈ S, if (M, s) |= ϕ then the submodel of Uϕ,G(M)

generated from (s, 1) is a model of the class C0.
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In other words, the class C0 is stable by the application of operation U .

Proposition 4.9 Let M = (S,R, V ) be a model of the class C0, ϕ be a boolean formula and

G ⊆ AG be a group of agents. For all s ∈ S and all i ∈ AG,

• for i ∈ G, (Uϕ,G(M), (s, 1)) |= Biϕ

• for i 6∈ G, (Uϕ,G(M), (s, 1)) |= Biϕ iff (M, s) |= Biϕ.

In other words, the agents of group G believe the formula appearing in the update is true;

the other agents believe it only if they already believed it before the update was made.

The proof of the two previous propositions is a simple verification and can be found in

[Hommersom et al., 2004]. The two following propositions say that updating by the boolean

constant > or updating by any formula for an empty set of agents change nothing to any

agent beliefs. This is quite intuitive! More precisely, they assert that such update gives a

model bisimilar to the initial one. The notion of bisimulation, denoted ←→, is introduced in

Definition 2.13.

Proposition 4.10 Let M = (S,R, V ) be a model of the class C0, ϕ be a boolean for-

mula, s0 ∈ S be a state of the model and G ⊆ AG be a group of agents. Then

(U>,G(M), (s0, 1))←→(M, s0).

Proof Let R be the binary relation between S × {0, 1} and S defined in the following way:

(s, a)Rs′ iff s = s′.

We show that R is a bisimulation between the sub-model of U>,G(M) generated from

(s0, 1) and the sub-model of M generated from s0. First, clearly (s0, 1)Rs0. Now for all

a ∈ {0, 1}, all s ∈ S (i.e. for all situation such that (s, a)Rs)

atoms for all p ∈ Θ: (s, a) ∈ V (p) iff s ∈ V ′(p) (by Definition 4.7);

forth for all i ∈ AG and all (t, b) ∈ S × {0, 1}: if (s, a)Ri(t, b), then sRit by Definition 4.7,

with (t, b)Rt;

back for all i ∈ AG and all t ∈ S: if sRit, then we distinguish two cases:

• if a = 0 then (s, 0)Ri(t, 0), with (t, 0)Rt

• if a = 1 then two cases again:

– if i 6∈ G then (s, 1)Ri(t, 0)

– if i ∈ G then (s, 1)Ri(t, 1), because M, t |= >.

In all cases we obtained b ∈ {0, 1} such that (s, a)Ri(t, b), with again (t, b)Rt.

�
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Proposition 4.11 LetM = (S,R, V ) be a model of the class C0, ϕ be a boolean formula and

s0 ∈ S be a state of the model. Then (Uϕ,∅(M), (s0, 1))←→(M, s0).

Proof It is easy to prove it in the same way as for Proposition 4.10, with the same relation

R.

�

Proposition 4.12 Let M = (S,R, V ) be a model of the class C0, ϕ,ψ be boolean formulas,

s0 ∈ S be a state of the model and G ⊆ AG be a group of agents. If (M, s0) |= ϕ and

(M, s0) |= ψ then (Uψ,G(Uϕ,G(M)), ((s0, 1), 1))←→(Uϕ∧ψ,G(M), (s0, 1)).

Two successive updates are thus equivalent to a unique one.

Proof It is easy to prove it in the same way as for Proposition 4.10, with the following

binary relation R between (S × {0, 1})× {0, 1} and S × {0, 1}:

• ((s, a), b)R(t, c) iff s = t, a = c and b = c.

�

Proposition 4.13 LetM = (S,R, V ) be a model of the class C0, ϕ and ψ be boolean formulas,

s0 ∈ S be a state of the model and G,H ⊆ AG be groups of agents. If (M, s0) |= ϕ and

(M, s0) |= ψ then (Uψ,H(Uϕ,G(M)), ((s0, 1), 1))←→(Uϕ,G(Uψ,H(M)), ((s0, 1), 1)).

Therefore, if we consider two successive updates, the order is not important.

Proof It is easy to prove it in the same way as for Proposition 4.10, with the following

relation R over (S × {0, 1})× {0, 1}:

• ((s, a), b)R((t, c), d) iff s = t, a = d and b = c.

�

Proposition 4.14 LetM = (S,R, V ) andM′ = (S′, R′, V ′) be models of the class C0, ϕ be a

boolean formula, s0 ∈ S and s′0 ∈ S′ be states of these models and G ⊆ AG be a group of agents.

If (M, s0) |= ϕ and (M, s0)←→(M′, s′0) then (Uϕ,G(M), (s0, 1))←→(Uϕ,G(M′), (s′0, 1)).

In other words, the bisimilarity between two models remains after the update of these models

by a same formula for a same group of agents.

Proof If we call R the bisimulation between the submodel of M generated from s0 and

the submodel of M′ generated from s′0, then it is easy to verify that the binary relation RU

between S × {0, 1} and S′ × {0, 1} defined as follow is a bisimulation:

• (s, a)RU (s′, a′) iff uRu′ and a = a′.

�

The last but not the least:
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Proposition 4.15 Let M = (S,R, V ) be a model of the class C0, ψ be a boolean formulas,

s0 ∈ S be a state of the model and G ⊆ AG be a group of agents. If M, s0 |= ψ then

(Uψ,G(M), (s0, 0))←→(M, s0).

Recall that after the update, the agents that are not in G believe that (s0, 0) is the actual

state. Therefore this proposition claims that the beliefs of agents that are not in G do not

change after the update.

Proof It is easy to prove it in the same way as for Proposition 4.10, with the following

relation R between S × {0, 1} and S

• (s, a)Z(t) iff s = t and a = 0.

�

4.3 Update of Objective Beliefs

4.3.1 Syntax and Semantics

LOB only uses the modal operators Bi. Therefore, it cannot express update of beliefs. If

we look again to our Texas Hold’em example, with only the notion of belief in our language,

how can we express the fact that after a card is dealt, on the table all the agents update

their beliefs? In this section, we propose new operators that, added to LOB, give us the

possibility to analyse dynamics of the update of objective beliefs. We adapt the framework

proposed by [Hommersom et al., 2004] to propose the Logic of Update of Objective Beliefs

(LUOB) which language contains, besides the operators Bi, operators of the form [ψ,G] for

any boolean formula ψ and any group of agents G ⊆ AG. We then present new results of

expressivity and decidability/complexity.

As we just said, the language of LUOB (Lluob) over a countable set of propositional atoms

PROP and a countable set of agents AG is defined inductively as follow:

ϕ ::= p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | Biϕ | [ψ,G]ϕ

where p ∈ PROP , i ∈ AG, G ⊆ AG and ψ ∈ Lpl .

We understand [ψ,G]ϕ as “after the agents of the group G learn ψ, ϕ is true”, so these

operators introduce an idea of update. Therefore, we generalize the satisfiability relation

presented in Section 3.1.4 in the following way:

• M, s |= [ψ,G]ϕ iff (M, s |= ψ implies Uψ,G(M), (s, 1) |= ϕ).

Once again, the notion of bisimilarity is useful in this framework, as two bisimilar models

satisfy the same formula. More precisely:



76 CHAPTER 4. LOGICS OF OBJECTIVE BELIEFS

Proposition 4.16 Let M = (S,R, V ), M′ = (S′, R′, V ′) be two models and s0 ∈ S, s′0 ∈ S′

be two states of these models. If (M, s0)←→(M′, s′0) then (M, s0) |= ϕ iff (M′, s′0) |= ϕ for

every formula ϕ ∈ Lluob .

Proof It can be proved by an easy induction on the structure on ϕ.

�

Therefore, we obtain the following:

Proposition 4.17 Let M be a model, s be a state of M, ψ1, ψ2 ∈ Lpl and G1, G2 ⊆ AG.

1. M, s |= [ψ1, G1]ψ2 iff M, s |= ψ1 −→ ψ2

2. M, s |= [ψ1, G1][ψ2, G2]ϕ←→ [ψ2, G2][ψ1, G1]ϕ.

This proposition asserts that two successive updates are interchangeable.

Proof

1. M, s |= [ψ1, G1]ψ2 iff (M, s |= ψ1 implies Uψ1,G1(M), (s, 1) |= ψ2). But by definition

of the update, (s, 1) has the same valuation of s. Therefore, as ψ2 is a propositional

formula, M, s |= [ψ1, G1]ψ2 iff (M, s |= ψ1 implies M, s |= ψ2) Q.E.D.

2. M, s |= [ψ1, G1][ψ2, G2]ϕ
iff M, s |= ψ1 implies Uψ1,G1(M), (s, 1) |= [ψ2, G2]ϕ

iff M, s |= ψ1 implies (M, s |= ψ2 implies Uψ2,G2(Uψ1,G1(M)), ((s, 1), 1) |= ϕ) (by 1.)

iff M, s |= ψ1 ∧ ψ2 implies Uψ2,G2(Uψ1,G1(M)), ((s, 1), 1) |= ϕ

iff M, s |= ψ1 ∧ ψ2 implies Uψ1,G1(Uψ2,G2(M)), ((s, 1), 1) |= ϕ (Prop. 4.13 and 4.16)

iff M, s |= [ψ2, G2][ψ1, G1]ϕ (conversely)

�

Definition 4.18 Let ψ1, . . . , ψn ∈ Lpl , G1, . . . , Gn ⊆ AG be given. For every model M =

(S,R, V ) and every state of the model s ∈ S, we write UPn(M) = Uψn,Gn(. . . (Uψ1,G1(M)) . . .)

and UPn(M, s) = UPn(M), ((s, 1), . . . , 1).

Note that the formulas ψ1, . . . , ψn and the groups G1, . . . , Gn are supposed to be clear in

this definition. This definition comes from the interchangeability of successive updates that

allows to omit the order in a multiple update. More precisely, by propositions 4.13 and 4.16,

the order in such a succession of updates is not important when considering the satisfaction

of a formula. Therefore using the semantics and Proposition 4.17.2 we obtain the following:

Proposition 4.19 Let M = (S,R, V ) be a model, let s ∈ S, let ψ1, . . . , ψn ∈ Lpl and let

G1, . . . , Gn ⊆ AG. Then for every Lluob-formula ϕ we have:

M, s |= [ψ1, G1] . . . [ψn, Gn]ϕ iff (M, s |= ψ1 ∧ . . . ∧ ψn implies UPn(M, s) |= ϕ)

Another interesting result of Corollary of Proposition 4.16 is the following:
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Proposition 4.20 Let M = (S,R, V ) be a model of the class C0, ψ be a boolean formulas,

s0 ∈ S be a state of the model and G ⊆ AG be a group of agents. If M, s0 |= ψ then for all

ϕ ∈ Lluob we have Uψ,G(M), (s0, 0) |= ϕ iff M, s0 |= ϕ.

Proof It is a translation of Proposition 4.15 through proposition 4.16.

�

This proposition asserts that, if the update concerns a formula satisfied in s0, then a formula

of Lluob is satisfied in (s0, 0) after the update iff it was satisfied before. We get the following

result concerning the belief of the agents after un update.

Proposition 4.21 Let M be a model, s be a state of M, G ⊆ AG a group of agents,

i ∈ AG\G, and ψ ∈ Lpl . Therefore, ifM, s |= ψ then Uψ,G(M), (s, a) |= Biϕ iffM, s |= Biϕ.

Proof We pose Uψ,G(M) = (S′,R′, V ′).

Uψ,G(M), (s, a) |= Biϕ

iff for all (t, b) ∈ S′ s.t. (s, a)R′
i(t, b) we have Uψ,G(M), (t, b) |= ϕ

iff for all t ∈ S s.t. sRit we have Uψ,G(M), (t, 0) |= ϕ

(because if i /∈ G then (s, a)R′
i(t, b) iff sRit and b = 0).

iff for all t ∈ S s.t. sRit we have M, t |= ϕ (by Proposition 4.20)

iff M, s |= Biϕ
�

4.3.2 Axiomatization and Completeness

Here are the axioms of LUOB.

(LOB) the axioms of the logic of objective beliefs,

(R1) [ψ,G]p←→ (ψ → p),

(R2) [ψ,G]⊥ ←→ (ψ → ⊥),

(R3) [ψ,G]¬ϕ←→ (ψ → ¬[ϕ,G]ϕ),

(R4) [ψ,G](ϕ ∨ χ)←→ [ψ,G]ϕ ∨ [ψ,G]χ,

(R5) [ψ,G]Biϕ←→ (ψ → Bi[ψ, G]ϕ) when i ∈ G,

(R6) [ψ,G]Biϕ←→ (ψ → Biϕ) when i 6∈ G.

Axioms (R1), (R2), (R3), (R4), (R5) and (R6) have an easy interpretation, similar to the

one for PAL. Just as Lpal is not more expressive than Lel , the fact that these axioms are

reduction axioms implies that the language Lluob is not more expressive than Llob . LUOB

theorems are all the formulas deducible from these axioms, using the inference rules (MP )

and (GD) and the following inference rule:
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(GU) if ψ is a theorem then [ϕ,G]ψ is a theorem.

As Proposition 4.27 states, these axioms and inference rules give a sound and complete ax-

iomatization for the language Lluob with respect to the class C0. But we first introduce a

translation from Lluob to Llob :

Definition 4.22 For all ϕ ∈ Lluob , we define τ([ψ1, G1] . . . [ψn, Gn], ϕ) ∈ Llob for all n ∈ N,

all ψ1, . . . , ψn ∈ Lpl and all G1, . . . , Gn ⊆ AG inductively on the structure of the formula ϕ

in the following way:

• τ([ψ1, G1] . . . [ψn, Gn], p) = ψ1 ∧ . . . ∧ ψn → p,

• τ([ψ1, G1] . . . [ψn, Gn],⊥) = ψ1 ∧ . . . ∧ ψn → ⊥,

• τ([ψ1, G1] . . . [ψn, Gn],¬ϕ) = ψ1 ∧ . . . ∧ ψn → ¬τ([ψ1, G1] . . . [ψn, Gn]ϕ),

• τ([ψ1, G1] . . . [ψn, Gn], ϕ ∨ ϕ′) = τ([ψ1, G1] . . . [ψn, Gn]ϕ) ∨ τ([ψ1, G1] . . . [ψn, Gn]ϕ′),

• τ([ψ1, G1] . . . [ψn, Gn], Biϕ) = ψ1∧ . . .∧ψn → Biτ(μ ϕ) where μ is the sequence obtained

from [ψ1, G1] . . . [ψn, Gn] eliminating all the [ψ,G] such that i /∈ G,

• τ([ψ1, G1] . . . [ψn, Gn], [ψ, G]ϕ) = τ([ψ1, G1] . . . [ψn, Gn][ψ, G], ϕ).

We show that in Proposition 4.26 that for all ϕ ∈ Lluob , |= ϕ ←→ τ(∅, ϕ). To do so, we

need the two following lemmas:

Lemma 4.23 Let n ∈ N, ψ1, . . . , ψn ∈ Lpl and G1, . . . , Gn ⊆ AG. Let μ be defined as in

Definition 4.22 and for every model M and every state s, let UPn(M, s) be defined as in

Definition 4.19. Then for all θ ∈ Lluob , all i ∈ AG,

if M, s |= ψ1 ∧ . . . ∧ ψn then (M, s |= Bi(μ θ) iff UPn(M, s) |= Biθ)

Proof Let m be the number of groups Gk containing i. We have 0 6 m 6 n. By Proposition

4.13 we can suppose, without loss of generality, that i ∈ Gk iff k 6 m. Now, we call

UPm(M, s) = Uψ1,G1(. . . (Uψm,Gm(M)) . . . , ((s, 1), . . . , 1). We pose UPn(M) = (Sn,Rn, V n)

and UPm(M) = (Sm,Rm, V m).

Now UPn(M, s) |= Biθ

iff UPm(M, s) |= Biθ (by Proposition 4.21 applied m− n times)

iff for all t ∈ Sm such that sRm
i t, UPm(M), t |= θ

iff for all t ∈ S s.t. sRit and M, t |= ψ1 ∧ . . . ∧ ψm, UPm(M, t) |= θ

iff for all t such that sRit, M, t |= μ θ (by Proposition 4.19)

iff M, s |= Bi(μ θ)
�

Lemma 4.24 Let ϕ ∈ Lluob . Then for all n ∈ N, all G1, . . . , Gn ⊆ AG, all ψ1, . . . ψn ∈ Lpl :
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1. | τ([ψ1, G1] . . . [ψn, Gn], ϕ) |6 (| ψ1 | + . . . + | ψn | + 6n + | ϕ |) × | ϕ |,

2. τ([ψ1, G1] . . . [ψn, Gn], ϕ)↔ [ψ1, G1] . . . [ψn, Gn]ϕ is valid in all models of the class C0.

Remark 4.25 First we remark that ψ1 ∧ ψ2 ∧ . . . ∧ ψn → ψ is an abuse of notation. In

fact, we should write (¬(¬(. . .¬(
︸ ︷︷ ︸

n−2

¬(¬ψ1 ∨ ¬ψ2)∨¬ψ3) . . . ∨ ¬ψn︸ ︷︷ ︸
n−2

) ∨ ψ). Therefore we have :

| ψ1 ∧ ψ2 ∧ . . . ∧ ψn → ψ | = | ψ1 | + . . . + | ψn | + 6(n− 1) + | ψ | +4

6 | ψ1 | + . . . + | ψn | + 6n + | ψ |.

Proof

1. We prove it by induction on the structure of ϕ, noting χ = ([ψ1, G1] . . . [ψn, Gn], ϕ). We

note by a ‘�’ the use of Remark 4.25 in this proof.

base case ϕ = p or ⊥: It is a direct application of Remark 4.25.

inductive cases: let us suppose that it is true for θ and θ′.

• ϕ = ¬θ : | τ(χ) | 6� (| ψ1 | + . . . + | ψn | + 6n) + | τ([ψ1, G1] . . . [ψn, Gn], θ) | + 1

6(IH) (| ψ1 | + . . . + | ψn | + 6n) + (| ψ1 | + . . . + | ψn | + 6n + | θ |) × | θ | + 1

= (| ψ1 | + . . . + | ψn | + 6n + | θ |)× (| θ | + 1) − | θ | + 1

6 (| ψ1 | + . . . + | ψn | + 6n + | θ |)× (| θ | + 1)

6 (| ψ1 | + . . . + | ψn | + 6n + | ϕ |)× (| ϕ |)

• ϕ = θ∨θ′ : | τ(χ) |=| τ([ψ1, G1] . . . [ψn, Gn], θ) | + | τ([ψ1, G1] . . . [ψn, Gn], θ′) | + 3

6(IH) (| ψ1 | + . . . + 6n + | θ |)× | θ | + (| ψ1 | + . . . + 6n + | θ′ |)× | θ′ | + 3

6 (| ψ1 | + . . . + 6n + | θ | + | θ′ | + 3) × (| θ | + | θ′ | + 3)

6 (| ψ1 | + . . . + | ψn | + 6n + | ϕ |)× (| ϕ |)

• ϕ = Biθ: | τ(χ) | 6� (| ψ1 | + . . . + | ψn | + 6n ) + | τ(μ, θ) | + 1

6 (| ψ1 | + . . . + | ψn | + 6n) + | τ([ψ1, G1] . . . [ψn, Gn], θ) | + 1

6(IH) (| ψ1 | + . . . + | ψn | + 6n) + (| ψ1 | + . . . + | ψn | + 6n + | θ |) × | θ | + 1

= (| ψ1 | + . . . + | ψn | + 6n + | θ |)× (| θ | + 1)− | θ | + 1

6 (| ψ1 | + . . . + | ψn | + 6n + | θ |)× (| θ | + 1)

6 (| ψ1 | + . . . + | ψn | + 6n + | ϕ |)× (| ϕ |)

• ϕ = [ψ,G]θ: | τ(χ) | =| τ([ψ1, G1] . . . [ψn, Gn][ψ, G], θ) |

6(IH) (| ψ1 | + . . . + | ψn | + | ψ | + 6(n + 1) + | θ |) × | θ |

= (| ψ1 | + . . . + | ψn | + 6n + | θ |) × | θ | + (| ψ | + 6) × | θ |

6 (| ψ1 | + . . . + | ψn | + 6n + | θ |)× (| θ | + | ψ | + 6)

6 (| ψ1 | + . . . + | ψn | + 6n + | ϕ |)× (| ϕ |)

2. We prove it by induction on the structure of ϕ, noting χ := [ψ1, G1] . . . [ψn, Gn]ϕ. As in

Proposition 4.19, we write UP(M, s) for Uψn,Gn(. . . (Uψ1,G1(M)) . . . , ((s, 1), . . . , 1). We

note by a ‘(∗)’ the use of Proposition 4.19 in this proof.
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• ϕ = p:

M, s |= τ([ψ1, G1] . . . [ψn, Gn], p)

iff M, s |= ψ1 ∧ . . . ∧ ψn → p

iff M, s |= ψ1 ∧ . . . ∧ ψn implies M, s |= p

iff M, s |= ψ1 ∧ . . . ∧ ψn implies UP(M, s) |= p (the valuation is unchanged)

iff M, s |= [ψ1, G1] . . . [ψn, Gn]p by (∗)

• ϕ = ⊥ : identical

• ϕ = ¬θ:

M, s |= τ([ψ1, G1] . . . [ψn, Gn],¬θ)

iff M, s |= ψ1 ∧ . . . ∧ ψn implies M, s |= ¬τ([ψ1, G1] . . . [ψn, Gn], θ)

iff M, s |= ψ1 ∧ . . . ∧ ψn implies M, s 6|= [ψ1, G1] . . . [ψn, Gn]θ (by IH)

iff M, s |= ψ1 ∧ . . . ∧ ψn implies UP(M, s) |= ¬θ by (∗)

iff M, s |= [ψ1, G1] . . . [ψn, Gn]¬θ by (∗) again

• ϕ = θ ∨ θ′ : similar

• ϕ = Biθ:

M, s |= τ([ψ1, G1] . . . [ψn, Gn], Biθ)

iff M, s |= ψ1 ∧ . . . ∧ ψn implies M, s |= Biτ(μ , θ)

iff M, s |= ψ1 ∧ . . . ∧ ψn implies for all t ∈ S s.t. sRit, M, t |= τ(μ , θ)

iff M, s |= ψ1 ∧ . . . ∧ ψn implies for all t ∈ S s.t. sRit, M, t |= μ θ (by IH)

iff M, s |= ψ1 ∧ . . . ∧ ψn implies M, s |= Bi(μ θ)

iff M, s |= ψ1 ∧ . . . ∧ ψn implies UP(M, s) |= Biθ (by Lemma 4.23)

iff M, s |= [ψ1, G1] . . . [ψn, Gn]Biθ

• ϕ = [ψ,G]θ:

M, s |= τ([ψ1, G1] . . . [ψn, Gn], [ψ,G]θ)

iff M, s |= τ([ψ1, G1] . . . [ψn, Gn][ψ,G], θ)

iff M, s |= ψ1 ∧ . . . ∧ ψn ∧ ψ implies M, s |= [ψ1, G1] . . . [ψn, Gn][ψ, G]θ (by IH)

iff M, s |= ψ1 ∧ . . . ∧ ψn ∧ ψ implies UP(M, s) |= θ by (∗)

iff M, s |= [ψ1, G1] . . . [ψn, Gn]θ by (∗) again

�

Hence the following:

Proposition 4.26

• | τ(∅, ϕ) | ≤ | ϕ |2,

• τ(∅, ϕ)↔ ϕ is valid in all models of the class C0.

In particular, we showed that Lluob is not more expressive that Llob . The translation above

sets that every formula of Lluob is equivalent to a formula of Llob . We can now prove the

completeness of the given axiomatization.



4.3. UPDATE OF OBJECTIVE BELIEFS 81

Proposition 4.27 Let ϕ ∈ Lluob . ϕ is a LUOB theorem iff ϕ is valid in every model of the

class C0.

Proof For the soundness, by Proposition 4.1, it is sufficient to show soundness of the additive

axioms and inference rules. The soundness of the rule GU is evident and the soundness of

the axioms is given by Proposition 4.26.

Let us now prove completeness. We define the canonical model Mc
luob = (Sc, Rc

i , V
c) in

the classical way (cf. Definition 2.19). Its membership to the class C0 can be proved as in the

proof of Proposition 4.1.

Now it is sufficient to prove that for all formula ϕ ∈ Lluob , Mc
luob, x |= ϕ iff ϕ ∈ x. We

prove this truth lemma by induction on the structure of ϕ. This proof is identical to the

proof of Proposition 4.1 for the base case and the first inductive cases. In particular, we

have already shown that for all ϕ ∈ Llob ,Mc
luob, x |= ϕ iff ϕ ∈ x. Let us analyse the specific

induction case where ϕ = [ψ,G]χ:

• Mc, x |= [ψ,G]χ

iff Mc, x |= τ([ψ,G]χ by Proposition 4.26

iff τ([ψ,G]χ) ∈ x because τ([ψ,G]χ) ∈ Llob

iff [ψ,G]χ ∈ x by axioms R1, . . . , R6.

�

4.3.3 Decidability and Complexity

In this section, we give some technical results on LUOB. First, LUOB has the finite model

property. In other words:

Proposition 4.28 Let ϕ ∈ Lluob . If ϕ is satisfied in a model of the class C0 then ϕ is satisfied

in a finite model of the class C0.

Proof By propositions 4.3 and 4.26. More precisely, if ϕ is satisfied in C0 then τ(ϕ) is satisfied

in C0 (Proposition 4.26). Thus τ(ϕ) is satisfied in a finite model of C0 (Proposition 4.3) which

implies that ϕ is satisfied in a finite model of C0 (Proposition 4.26 again).

�

This proposition implies that the problem of satisfiability of Lluob is decidable. We also have

the decidability of the problem of the model checking. More precisely:

Proposition 4.29 The problem of satisfiability of Lluob is PSPACE-complete.

Proposition 4.30 The problem of model checking for Lluob with respect to C0 is in P .

Proof The first is a corollary of propositions 4.4 and 4.5 and the second a corollary of

Proposition 4.6 through the translation τ , using the first property of Proposition 4.26.

�
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4.4 Arbitrary Update of Objective Beliefs

4.4.1 Syntax and Semantics

With LUOB we could express and understand situations in which agents update their objec-

tive beliefs about the world, as in poker. However, if we limit our language to the operators we

have (Bi and [ϕ, G]) it is impossible to express the notion of arbitrary update. For example,

we would like to say “Alex believes that whatever the agents learn in the future of the game,

he will still believe his hand is winning”. This notion of arbitrary update should be added to

our language, with a new modal operator. We propose in this section such operators inspired

from [Balbiani et al., 2007]. In addition to LUOB gives us the Logic of Arbitrary Update of

Objective Beliefs (LAUOB). These additional operators are of the form [?, G] for any group

of agents G ⊆ AG, with the following reading for [?, G]ψ: “whatever group G agents learn,

ψ is true”. These operators then introduce the wanted notion of arbitrary update. Let us

define more precisely the language of LAUOB Llauob over PROP and AG as follow:

ϕ ::= p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | Biϕ | [ψ,G]ϕ | [?, G]ϕ

where p ∈ PROP , i ∈ AG, G ⊆ AG and ψ ∈ Lpl .

We then generalize the satisfiability relation, for the same models of the class C0, in the

following way:

• (M, s) |= [?, G]ϕ iff for every boolean formula ψ, (M, s) |= [ψ,G]ϕ.

Here again, bisimulation is a useful notion, as two bisimilar models satisfy the same formulas:

Proposition 4.31 Let M = (S,R, V ), M′ = (S′, R′, V ′) be two models and s0 ∈ S, s′0 ∈ S′

be two states of these models. If (M, s0)←→(M′, s′0) then (M, s0) |= ϕ iff (M′, s′0) |= ϕ for

any formula ϕ ∈ Llauob .

This proposition can easily be showed by induction on the structure of ϕ.

Proposition 4.32 The following formulas are valid in all models of the class C0 :

(T ) [?, G]ϕ→ ϕ,

(4) [?, G]ϕ→ [?, G][?, G]ϕ,

(CR) 〈?, G〉[?, H ]ϕ→ [?, H ]〈?, G〉ϕ.

First, remark that the formulas of the form [?, G ∪ H]ϕ → [?, G][?, H ]ϕ are not all

valid in any model of the class C0. For example, the formula [?, {i, j}](Bip → BiBjp) →

[?, {i}][?, {j}](Bip → BiBjp) is not valid in the model presented in Figure 4.3 (that belongs

to the class C0).
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1•p i,ji,j 0•¬p i,j

Figure 4.3: Two counter-examples in one model

In fact, if i and j learn p together (i.e. if the update is public), as described by the first

part of the formula, they will believe (correctly) that the other believes p. However, if they

learn p privately, one after the other, as described by the second part of the formula, they

will not update anything about the other agent beliefs.

Also remark that the formulas of the form [?, G]〈?, H〉ϕ → 〈?, H〉[?, G]ϕ are not valid

in any model of the class C0 either. For example, the formula [?, {i}]〈?, {j}〉(Bip ⊕ Bjp) →

〈?, {j}〉[?, {i}](Bip⊕Bjp) — where the operator ⊕ denotes the exclusive disjunction— is not

valid in this very model. Indeed, whatever i learns about the value of p, j can learn something

so that one and only one of the two agents believes that p. But it is not true that one of the

agents can learn something so that whatever the other learns one and only one of the two

agents will believe that p.

Proof (of Proposition 4.32) Let M = (S,R, V ) be a model of the class C0, s ∈ S be a

state of the model and ϕ ∈ Llauob be a formula.

(T ): Suppose that (M, s) |= [?, G]ϕ and (M, s) 6|= ϕ. Then, (M, s) |= [>, G]ϕ. Therefore,

(U>,G(M), (s, 1)) |= ϕ. By Proposition 4.10, the submodel of U>,G(M) generated from (s, 1)

and the submodel of M generated from s are bisimilar. This is in contradiction with Propo-

sition 4.31.

(4): Suppose that (M, s) |= [?, G]ϕ and (M, s) 6|= [?, G][?, G]ϕ. Then,

there exists a boolean formula ψ1 such that (M, s) 6|= [ψ1, G][?, G]ϕ. Therefore,

(M, s) |= ψ1 and (Uψ1,G(M), (s, 1)) 6|= [?, G]ϕ. Then, there exists a boolean formula

ψ2 such that (Uψ1,G(M), (s, 1)) 6|= [ψ2, G]ϕ. Therefore, (Uψ1,G(M), (s, 1)) |= ψ2 and

(Uψ2,G(Uψ1,G(M)), ((s, 1), 1)) 6|= ϕ. By Proposition 4.12, the submodel of Uψ1,G(Uψ2,G(M))

generated from ((s, 1), 1) and the submodel of Uψ1∧ψ2,G(M) generated from (s, 1) are bisimi-

lar. This is in contradiction with Proposition 4.31.

(CR): Suppose that (M, s) |= 〈?, G〉[?, H ]ϕ and (M, s) 6|= [?, H ]〈?, G〉ϕ.

Then there exists a boolean formula ψ1 such that (M, s) |= 〈ψ1, G〉[?, H ]ϕ and a

boolean formula ψ2 such that (M, s) 6|= [ψ2, H ]〈?, G〉ϕ. Therefore, (M, s) |= ψ1,

(Uψ1,G(M), (s, 1)) |= [H]ϕ, (M, s) |= ψ2, (Uψ2,G(M), (s, 1)) 6|= 〈?, G〉ϕ. Thus,

(Uψ1,G(M), (s, 1)) |= ψ2, (Uψ2,H(Uψ1,G(M)), ((s, 1), 1)) |= ϕ, (Uψ2,H(M), (s, 1)) |= ψ1 and

(Uψ1,G(Uψ2,H(M)), ((s, 1), 1)) 6|= ϕ. By Proposition 4.13, the submodel of Uψ2,H(Uψ1,G(M))

generated from ((s, 1), 1) and the submodel of Uψ1,G(Uψ2,H(M)) generated from ((s, 1), 1) are

bisimilar. This is in contradiction with Proposition 4.31.

�
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4.4.2 Axiomatization and Completeness

Here are LAUOB axioms:

(LUOB) LUOB axioms

(S0) [?, G](ψ → χ)→ ([?, G]ψ → [?, G]χ),

(S1) [?, G]ϕ→ [ψ,G]ϕ, where ψ ∈ Lpl .

The axiom S1 has a simple interpretation. If after whatever group G of agents learn, ϕ

becomes true, then for any boolean formula ψ, after group G of agents learn ψ, ϕ becomes

true . However, it is not sufficient to ensure completeness of LAUOB for the class C0. In

order to obtain this result, we have to add the following inference rules:

(GAU) if ϕ is a theorem then [?, G]ϕ is a theorem,

(X) if θ([ψ,G]ϕ) is a theorem for all ψ ∈ Lpl then θ([?, G]ϕ) is a theorem.

In the inference rule X, θ represents a necessity form. Necessity forms were introduced by

[Goldblatt, 1982] and are similar to the notion of admissible form. More precisely:

Definition 4.33 (Necessity form for Llauob) A necessity form is an element of the set

defined inductively as follows:

• ] is a necessity form,

• if θ is a necessity form then for every formula ϕ ∈ Llauob , (ϕ −→ θ) is a necessity form,

• if θ is a necessity form then for every agent i ∈ AG, Biθ is a necessity form.

• if θ is a necessity form then for every ψ ∈ Lpl and every group G ⊆ AG, [ψ,G]θ is a

necessity form.

Note that ] appears exactly once in every necessity form. Now for every necessity form θ

and for every formula ϕ ∈ Llauob , θ(ϕ) denotes the formula obtained from θ by replacing the

unique occurrence of ] in θ by ϕ.

Proposition 4.34 and 4.39 establish the soundness and the completeness of LAUOB with

respect to the class of models C0

Proposition 4.34 Let ϕ ∈ Llauob be a formula. Then ϕ is a theorem of LAUOB only if ϕ

is valid in every model of the class C0.

Proof It is sufficient to show soundness of the additive axioms and inference rules. It is

evident for S0, S1 and GAU . We show soundness of the rule X. Suppose that θ([?, G]ϕ) is

not valid, i.e. there exists a pointed model M, s such that M, s |= ¬θ([?, G]ϕ). Therefore
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there exists ψ ∈ Lpl such that M, s |= ¬θ([ψ,G]ϕ). Hence, θ([ψ,G]ϕ) is not valid for this

particular ψ, which implies that it is not true that for all ψ ∈ Lpl , θ([ψ, G]ϕ) is valid.

�

We define now the canonical model for this LAUOB. It is a different notion than the

notion of canonical model we saw until now. This difference comes from the infinitary nature

of the inference rule (X). Let us see it in details:

A set x of formulas is called a theory if it satisfies the following conditions:

• x contains the set of all theorems;

• x is closed under the rule of modus ponens and the rule (X).

Obviously, the least theory is the set of all theorems whereas the greatest theory is the set of

all formulas. The latter theory is called the trivial theory. A theory x is said to be consistent

if ⊥ 6∈ x. Let us remark that the only inconsistent theory is the set of all formulas. We shall

say that a theory x is maximal if for all formulas ϕ, ϕ ∈ x or ¬ϕ ∈ x. We abbreviate mct for

maximal consistent theory.

Let x be a set of formulas. For every ϕ ∈ Llauob , every ψ ∈ Lpl , every i ∈ AG and every

G ⊆ AG we define:

• x + ϕ = {χ ∈ Llauob | ϕ→ χ ∈ x}

• Bix = {χ ∈ Llauob | Biχ ∈ x}

• [ψ, G]x = {χ ∈ Llauob | [ψ,G]χ ∈ x}

• [?, G]x = {χ ∈ Llauob | [?, G]χ ∈ x}

Lemma 4.35 Let x be a theory, ϕ ∈ Llauob , ψ ∈ Lpl , i ∈ AG and G ⊆ AG . Then x + ϕ,

Bix, [ψ, G]x and [?, G]x are theories. Moreover x + ϕ is consistent iff ¬ϕ 6∈ x.

Proof

• x + ϕ is a theory.

First, let us prove that x + ϕ contains the set of all theorems, by proving a useful

property: x ⊆ x + ϕ. Let χ ∈ x, we know that χ → (ϕ → χ) is a theorem. By modus

ponens we then have that χ ∈ x + ϕ.

Now let us prove that x + ϕ is closed under modus ponens. Let χ1, χ2 be formulas such

that χ1 ∈ x + ϕ and χ1 → χ2 ∈ x + ϕ. Thus ϕ→ χ1 ∈ x and ϕ→ (χ1 → χ2) ∈ x. But

then ϕ→ χ2 ∈ x.

Third, let us prove that x+ϕ is closed under (X). Let θ be a possibility form and ψ be a

formula such that θ([ψ,G]χ) ∈ x+ϕ for all ψ ∈ Lpl . It follows that ϕ→ θ([ψ,G]χ) ∈ x

for all ψ ∈ Lpl . Since x is a theory, then ϕ→ θ([?, G]χ) ∈ x. Consequently, θ([?, G]χ) ∈

x + ϕ. It follows that x + ϕ is closed under (X).
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• Bix is a theory.

First, let us prove that Bix contains the set of all theorems. Let ψ be a theorem. By the

necessitation of knowledge, Biψ is also a theorem. Since x is a theory, then Biψ ∈ x.

Therefore, ψ ∈ Bix. It follows that Bix contains the set of all theorems. Second, let us

prove that Bix is closed under modus ponens. Let ψ, χ be formulas such that ψ ∈ Bix

and ψ → χ ∈ Kax. Thus, Biψ ∈ x and Bi(ψ → χ) ∈ x. Since Biψ → (Bi(ψ → χ) →

Biχ) is a theorem and x is a theory, then Biψ → (Bi(ψ → χ) → Biχ) ∈ x. Since x

is closed under modus ponens, then Biχ ∈ x. Hence, χ ∈ Bix. It follows that Bix

is closed under modus ponens. Third, let us prove that Bix is closed under (X). Let

θ be a necessity form, G ⊆ AG be a group of agents and ϕ be a formula such that

θ([ψ,G]ϕ) ∈ Bix for all ψ ∈ Lpl . It follows that Bi(θ([ψ,G]ϕ)) ∈ x for all ψ ∈ Lpl .

Since x is a theory, then Biθ([ψ,G]ϕ)) ∈ x. Consequently, θ([ψ,G]ϕ) ∈ Bix. It follows

that Bix is closed under (X).

• [ψ,G]x and [?, G]x are theories.

We obtain this result with the same proof than the previous one, considering that this

two modal operators satisfy the axiom (K) and the necessitation rule.

• Finally, x+ϕ is consistent only if ¬ϕ 6∈ x (because ϕ ∈ x+ϕ). Reciprocally, ⊥ ∈ (x+ϕ)

implies that (ϕ→ ⊥) ∈ x and this implies that ¬ϕ ∈ x.

�

Lemma 4.36 (Lindenbaum lemma) Let x be a consistent theory. There exists a maximal

consistent theory y such that x ⊆ y.

Proof Let ϕ0, ϕ1, . . . be a list of the set of all formulas. We define a sequence y0, y1, . . . of

consistent theories as follows. First, let y0 = x. Second, suppose that, for some n ≥ 0, yn

is a consistent theory containing x that has been already defined. If yn + ϕn is inconsistent

and yn + ¬ϕn is inconsistent then, by lemma 4.35, ¬ϕn ∈ yn and ¬¬ϕn ∈ yn. Since ¬ϕn →

(¬¬ϕn → ⊥) is a theorem, then ¬ϕn → (¬¬ϕn → ⊥) ∈ yn. Since yn is closed under modus

ponens, then ⊥ ∈ yn: a contradiction. Hence, either yn + ϕn is consistent or yn + ¬ϕn is

consistent. If yn + ϕn is consistent then we define yn+1 = yn + ϕn. Otherwise, ¬ϕn ∈ yn and

we consider two cases.

Either ϕn is not a conclusion of (X). Then, we define yn+1 = yn.

Or ϕn is a conclusion of (X). In this case, let θ([?, G1]χ1), . . ., θ([?, Gk]χk) be all the

representations of ϕn as a conclusion of (X). Such representations are necessarily finitely

many because there is a finite number of modal operators of the form [?, G] in ϕn. We define

the sequence y0
n, . . . , yk

n of consistent theories as follows. First, let y0
n = yn. Second, suppose

that, for some i < k, yi
n is a consistent theory containing yn that has been already defined.

Then it contains ¬θ([?, G1]χ1) = ϕn. Since yi
n is closed under (X), then there exists a formula
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ψ ∈ Lpl such that θ([ψ,G1]χ1) is not in yi
n. Then, we define yi+1

n = yi
n +¬θ([ψ,G1]χ1). Now,

we put yn+1 = yk
n. Finally, we define y = y0 ∪ y1 ∪ . . .. Clearly if y is a theory then it is a

maximal consistent theory such that x ⊆ y. Let us then prove that it is a theory.

1. It contains the set of all theorems because x ⊆ y

2. It is closed under modus ponens. Indeed, if {χ, (χ −→ ϕ)} ⊆ y then there exists n ∈ N

such that {χ, (χ −→ ϕ)} ⊆ yn. Thus, yn being a theory, we obtain ϕ ∈ yn and then

ϕ ∈ y.

3. It is closed under (X) by construction: suppose that θ([ψ,G]χ) ∈ y for all ψ ∈ Lpl .

Let us call ϕn the formula it represented by θ([?, G]χ). We want to show that ϕn ∈ y.

Suppose the opposite, ¬ϕn ∈ y. This means that ¬ϕn ∈ yn by construction, i.e.

¬θ([?, G]χ) ∈ yn. Therefore there exists a ψ ∈ Lpl such that ¬θ([ψ,G]χ) ∈ yn+1 by

construction again. This is a contradiction, considering that yn+1 ⊆ y.

�

The canonical model of LAUOB is the structure Mc = (W c,Rc, V c) defined as follows:

• W c is the set of all maximal consistent theories ;

• For all agents i, Ri is the binary relation on W c defined by xRiy iff Bix ⊆ y;

• For all atoms p, V c(p) = {x ∈W c | p ∈ x}.

Proposition 4.37 The canonical model of LAUOB is a model of the class C0.

Proof Identical to the proof of Proposition 4.1.

�

Proposition 4.38 (Truth lemma) Let ϕ be a formula in Llauob . Then for all maximal

consistent theories x, for all n ∈ N, for all ψ1, . . . , ψn ∈ Lpl and all G1, . . . , Gn ⊆ AG such

that ψ1 ∧ . . . ∧ ψn ∈ x, for all ϕ ∈ Llauob :

UPn(Mc, x) |= ϕ iff [ψ1, G1] . . . [ψn, Gn]ϕ ∈ x.

Proof The proof is by induction on the structure of ϕ. The base case follows from the

definition of V . The Boolean cases are trivial. It remains to deal with the modalities.

• ϕ = Biχ : Let μ be the sequence obtained from [ψ1, G1] . . . [ψn, Gn] eliminating all

the [ψ,G] such that i /∈ G. Without loss of generality, we consider that μ =

[ψ1, G1] . . . [ψm, Gm] with 0 6 m 6 n.

UPn(Mc, x) 6|= Biχ

iff UPm(Mc, x) 6|= Biχ (by Proposition 4.21)

iff there exists a mct y such that xRiy, ψ1 ∧ . . . ∧ ψm ∈ y and UPm(Mc, y) 6|= χ

iff (1) there exists a mct y s.t. Bix ⊆ y and [ψ1, G1] . . . [ψm, Gm]χ 6∈ y (by IH).
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Now, (1) is equivalent to (2) : [ψ1, G1] . . . [ψm, Gm]Biχ 6∈ x.

Indeed, if [ψ1, G1] . . . [ψm, Gm]Biχ ∈ x then Bi[ψ1, G1] . . . [ψm, Gm]χ ∈ x by Axiom R5,

and thus [ψ1, G1] . . . [ψm, Gm]χ ∈ y for any mct y such that Bix ⊆ y.

Conversely, if [ψ1, G1] . . . [ψm, Gm]Biχ 6∈ x then Bi[ψ1, G1] . . . [ψm, Gm]χ 6∈ x by Axiom

R5. Let y = Bix + ¬[ψ1, G1] . . . [ψm, Gm]χ. The reader may easily verify that y is a

consistent theory. By Lemma 4.36, there is a maximal consistent theory z such that

y ⊆ z. Hence, Bix ⊆ z and [ψ1, G1] . . . [ψm, Gm]χ 6∈ z Q.E.D.

We end this case by noting that [ψ1, G1] . . . [ψm, Gm]Biχ 6∈ x is equivalent to

[ψ1, G1] . . . [ψn, Gn]Biχ 6∈ x by axiom R6.

• ϕ = [ψ,G]χ : UPn(Mc, x) |= [ψ,G]χ
iff Uψ,G(UPn(Mc), (. . . (x, 1), . . . , 1) |= χ

iff UPn+1(Mc, x) |= χ (with an evident notation)

iff [ψ1, G1] . . . [ψn, Gn][ψ,G]ϕ ∈ x by IH

• ϕ = [?, G]χ : UPn(Mc, x) |= [?, G]χ
iff for all ψ ∈ Lpl,UPn(Mc, x) |= [ψ,G]χ

iff for all ψ ∈ Lpl,UPn(Mc, x) |= ψ implies Uψ,G(UPn(Mc, x)) |= χ

iff for all ψ ∈ Lpl, [ψ1, G1] . . . [ψn, Gn]ψ ∈ x implies Uψ,G(UPn(Mc, x)) |= χ by IH

iff for all ψ ∈ Lpl, ψ1 ∧ . . . ψn ∧ ψ ∈ x (recall ψ ∈ Lpl ) implies UPn+1(Mc, x) |= χ

iff for all ψ ∈ Lpl, ψ1 ∧ . . . ψn ∧ ψ ∈ x implies [ψ1, G1] . . . [ψn, Gn][ψ, G]χ ∈ x by IH

iff for all ψ ∈ Lpl, ψ1 ∧ . . . ψn ∈ x implies

{
ψ ∈ x and [ψ1, G1] . . . [ψ,G]χ ∈ x

ψ /∈ x and [ψ1, G1] . . . [ψ,G]χ ∈ x

iff ψ1 ∧ . . . ψn ∈ x implies for all ψ ∈ Lpl, [ψ1, G1] . . . [ψn, Gn][ψ, G]χ ∈ x

iff ψ1 ∧ . . . ψn ∈ x implies for all ψ ∈ Lpl, [ψ1, G1] . . . [ψn, Gn][?, G]χ ∈ x (by (X))

�

Theorem 4.39 The axiomatization LAUOB is sound and complete with respect to the class

of models C0.

Proof Soundness has been proved in Proposition 4.34.

Let ϕ ∈ Llauob be a a valid formula, then it is valid in the canonical model. Therefore by

Proposition 4.38 it is in every maximal consistent theory. Hence, it is a theorem of LAUOB.

Indeed, if it were not the case, then there would exists a consistent theory x such that

¬ϕ ∈ x. Therefore, by Lemma 4.36 there exists a mct y such that x ⊆ y. Therefore ¬ϕ ∈ y.

Contradiction.

�

Clearly, Llauob is at least as expressive as Lluob . However is Llauob more expressive than

Lluob? To answer this question, we consider the formula χ := 〈?, {i, j}〉(Bip ∧ ¬BjBip) and

the models M and Mq (members of C0) presented in Figure 4.4.



4.5. CASE STUDY 89

Mq: •p,q
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00
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Figure 4.4: Distinguishing Llauob from Lluob

We let the reader see that (Mq, 11) |= 〈?, {i, j}〉(Bip ∧ ¬BjBip) and (M, 1) 6|=

〈?, {i, j}〉(Bip ∧ ¬BjBip). Let us suppose that χ is equivalent to a formula χ′ ∈ Lluob .

Then χ′ would be satisfied in the same way in every model composing any couple of bisimilar

models with respect to the language restricted to the atoms appearing in χ′. Let us take an

atom q that does not appear in χ′. Thus (Mq, 11) and (M, 1) are bisimilar with respect to

the language restricted to the atoms appearing in χ′. Then the formula χ is not equivalent

to any formula of Lluob . That means that Llauob is more expressive than Lluob (it contains at

least χ in extra).

Neither we have results on the finite model property of this logic, nor on the complexity

of the problem of satisfiability. But we get the following:

Proposition 4.40 The problem of the model checking of Llauob with respect to C0 is

PSPACE-complete.

Proof This proof is analogous to the proof of the complexity of the model checking of Lgal

with respect to the models of MS5 (Theorem 5.33). See Section 5 to get more details.

�

4.5 Case Study

We examine the situation presented in Figure 4.5. Brune and Alex are in a Poker final face to

face. Brune gets a pair of Kings in her hand. She knows it is a very good game. Alex has the

ace of spades, and another spades. When Brune proposes her bet, Alex checks to see what

will happen. The game becomes particularly interesting when, as for this example, several

players have a good hand and imagine easily to have the winning one.

Let us specify our language in this case. We pose AG = {a, b} for Alex and Brune, and

PROP = {V Ci|V ∈ {1, 2, 3, 4, . . . , J,Q,K}, C ∈ {♣,♥,♦,♠}, i ∈ AG∪{t}}∪{Φa}. We read

V Ci by ‘the present deal gives the card of value V and color C to i”. When i is t (for table),

or to be more readable when i is missing, it means that the card is (or will be) dealt on

the table. Φa means that Alex has the winning hand (following poker rules). We abbreviate

Φb := ¬Φa.
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Figure 4.5: Brune wins with a “poker”

We consider the initial poker model MP . All possible deals are considered (as states of

the model). Any agent can distinguish two states if and only her own cards are different. More

precisely, we pose MP = (S, V, {Ri}i∈AG). Thus, we have: S = {(ca, cb, {p5, p6, p7}, p8, p9) |

ci = {p1
i , p

2
i }, the propositions appearing are all different and the pj

a are of V Ca form }. Also,

for every proposition p, V (p) is the set of deals in which p appears. Finally, Ri links two states

if and only if the ci is identical in both deals. Note that we have (52
2 )× (50

2 )× (48
3 )× 45× 44 =

5.56×1013 different possible deals. Therefore this is a gigantic model of fifty million of millions

of states.

This representation clearly has some limits. A poker player probably does not repre-

sent herself all the possible deals; she would rather think in terms of probability to win.

Nevertheless, this probability corresponds to a simplified representation of this huge model.

Furthermore, a poker game includes other kinds of communicative acts besides announce-

ments, that give information on the players’ intentions or feelings. These communicative acts

are probably the heart of the game, and we cannot formalize them here. Yet, our position is

not to propose a formalism that contains all the characteristics of poker, but only the aspects

linked to the notion of objective belief that are clearly part of this game.

We examine two different situations, presented in Figure 4.6, situations in which the initial

cards received by Brune (cb) are different, but the other cards (dealt to Alex and dealt on

the table) are identical. Alex has the ace and the 9 of spades. In the first case (d1) Brune

has a pair of Kings (diamonds and clubs), in the second (d2) she has a pair of 2 (diamonds

and hearts). In both cases, the cards dealt on the table are first the 7, the 2 and the King of

spades, then the King of hearts and eventually the 9 of diamonds.

In both contexts, we use the following abbreviations:

• FLOP := 7♠ ∧ 2♠ ∧K♠
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Figure 4.6: Two deals: d1 and d2

• TURN := FLOP ∧K♥

• RIV ER := TURN ∧ 9♦

Here are some formulas that are true in this model, in the first context (Brune having a

pair of Kings)

• MP , d1 |= 〈FLOP, {a, b}〉(Ba7♠∧BaBb7♠) : After the flop, Alex believes that the 7 of

spades is dealt on the table, and that Brune believes the same fact.

• MP , d1 |= 〈FLOP, {a, b}〉Bb[R♥, {a, b}]Φb: After the flop, Brune believes that if the

King of hearts is dealt, she will have the winning hand.

• MP , d1 |= 〈TURN, {a, b}〉BbΦb: After the turn, Brune believes she has the winning

hand
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What is the difference between the two situations? In both cases, both players have a very

good hand (Alex has a flush and Brune either a poker or a full house). In both cases also,

Brune has the winning hand. The difference is that at some moment of the game (here after

the turn), Brune will be sure that she has the winning hand. In other (formal) words:

• MP , d1 |= 〈?, {a, b}〉(BbΦb ∧ B̂a¬BbΦb)

• MP , d2 |= [?, {a, b}](Φb ∧ ¬BbΦb)

Now let us consider the possibility that a player cheats by looking at the other player’s

hand. With that possibility, for the deal d1, Alex could learn that Brune believes that she

has the winning hand. While for the deal d2 he could learn instead that she does not have

the information that she has the winning hand:

• MP , d1 |= 〈?, a〉(BaBbΦb)

• MP , d2 |= 〈?, a〉Ba(Φb ∧ ¬BbΦb)

In this second case he could be tempted to try a bluff. But Brune may cheat as well.

In that case she would know that she has a winning hand, but Alex may never get this

information, whatever he could learn afterwards (even by cheating):

• MP , d2 |= 〈?, b〉(BbΦb ∧ [?, a]B̂a¬BbΦB)



Chapter 5

Group Announcement Logic

The previous sections worked on the kind of information that is given during a communica-

tion. The following one deals with the results a group of agents can achieve by announcing

something: agents of the group G can obtain ϕ if they each of them can do a (simultaneous)

announcement such that after such announcements ϕ becomes true.

[van Benthem, 2004] and [Balbiani et al., 2007] suggested an interpretation of the stan-

dard modal diamond where ♦ϕ means “there is an announcement after which ϕ” (see Section

3.1). This was in a setting going back to the Fitch-paradox (see [Brogaard and Salerno, 2004]).

The new interpretation of the diamond ♦ in the Fitch setting firstly interprets ♦ϕ as ‘some-

time later, ϕ’, and secondly specifies this temporal specification as what may result of a

specific event, namely a public announcement: ‘after some announcement, ϕ’. In other

words, the semantics is: ♦ϕ is true if and only if 〈ψ〉ϕ is true for some ψ; the expression

〈ψ〉ϕ stands for ‘ψ is true and after ψ is announced, ϕ is true.’ There are some restrictions

on ψ. The resulting arbitrary announcement logic is axiomatisable and has various pleas-

ing properties (see [Balbiani et al., 2007], and for more detail the extended journal version

[Balbiani et al., 2008]). Arbitrary announcement logic makes no assumption on the interpre-

tation of ♦ϕ about who makes the announcement, or indeed whether or not the announcement

can be truthfully made by anyone. In the current chapter we investigate a variant of arbi-

trary announcement logic. Instead of ♦ϕ we use a more specific operator, namely 〈G〉ϕ. Here

G is a subgroup of all agents that simultaneously make truthful public announcements, i.e.,

announcements of formulas they know. In other words, let G = {1, . . . , k}, then: 〈G〉ϕ is true

if and only if there exist formulas ψ1, . . . , ψk such that 〈K1ψ1 ∧ . . .Kkψk〉ϕ is true; now, the

expression 〈K1ψ1 ∧ . . .Kkψk〉ϕ stands for K1ψ1 ∧ . . .Kkψk is true and after agents 1, . . . , k,

simultaneously announce ψ1, . . . , ψk, then ϕ is true’. Note that the remaining agents, not in-

cluded in the set G of k agents, are not involved in making the announcement, although they

are aware of that action happening. The resulting logic is called Group Announcement Logic

(GAL). Informally speaking, 〈G〉ϕ expresses the fact that coalition G has the ability to make

ϕ come about. Logics modelling the coalitional abilities of agents have been an active area of

research in multi-agent systems in recent years, the most prominent frameworks being Pauly’s

Coalition Logic ([Pauly, 2002]) and Alur, Henzinger and Kupferman’s Alternating-time Tem-

poral Logic ([Alur et al., 2002]). The main constructs of these logics are indeed of the form

〈G〉ϕ with the intuitive meaning that coalition G can achieve ϕ. In this chapter we investigate

these notions when the actions that can be performed are truthful public announcements.

93
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Section 5.1 defines group announcement logic, presents various interaction axioms between

the different modalities that express intuitive properties of such joint announcements, and

the axiomatization. Section 5.2 is entirely devoted to expressivity matters, and Section 5.3

to model checking. The relation between group announcement logic and various notions of

group ability, including knowledge ‘de re’ and knowledge ‘de dicto’, is discussed in detail in

Section 5.4, which is followed by a more applied Section 5.5 that embeds these observations

into security protocols for two agents (sender and receiver) in the presence of a finite number

of eavesdroppers intercepting all communications between them. Most of this chapter has

been published in [Ågotnes et al., 2010].

5.1 Group Announcement Logic

The main construct of the language of Group Announcement Logic (GAL) is 〈G〉ϕ, intuitively

meaning that there is some announcement the group G can truthfully make after which ϕ

will be true. Such a simultaneous announcement may sound like a lot of unintelligible noise.

But in fact it merely means a joint public action—not necessarily involving talking. We later

find ways to model subsequent announcements as sequences of simultaneous actions, making

the basic semantic idea even less appear as shouting in groups.

5.1.1 Language

The language Lgal of GAL over a set of propositions PROP and a set of agents AG is defined

by extending the language Lpal of PAL (introduced in Section 3.1.1) with a new operator [G]

for each coalition G:

Definition 5.1 (Language)

ϕ ::= p | ⊥ | ¬ϕ | ϕ1 ∨ ϕ2 | Kiϕ | [ϕ1]ϕ2 | [G]ϕ

where i ∈ AG is an agent, G ⊆ AG is a set of agents and p ∈ PROP . We write 〈G〉ϕ for

the dual ¬[G]¬ϕ and 〈i〉ϕ for 〈{i}〉ϕ. For the subset of atoms occurring in a formula ϕ we,

again, write Θϕ.

We adopt the standard definition for the notion of subformula.

5.1.2 Semantics

The interpretation of formulas in a pointed Kripke structure is defined by extending the

definition for PAL (see Definition 3.2) with a clause for the new operator:

Definition 5.2 (Semantics of GAL)

M, s |= [G]ϕ iff for every set {ψi : i ∈ G} ⊆ Lel, M, s |= [
∧

i∈G Kiψi]ϕ
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We get the following meaning for the dual 〈G〉ϕ := ¬[G]¬ϕ:

M, s |= 〈G〉ϕ iff there exists a set {ψi : i ∈ G} ⊆ Lel such that M, s |= 〈
∧

i∈G Kiψi〉ϕ

If we write this out in detail, we get: M, s |= 〈G〉ϕ iff there exists a set {ψi : i ∈ G} ⊆ Lel

such that M, s |=
∧

i∈G Kiψi and M|
∧

i∈G Kiψi, s |= ϕ.

Observe that 〈G〉 quantifies only over purely epistemic formulas. The reason for this is

as follows. First, in the semantics of 〈G〉ϕ the formulas ψi in
∧

i∈G Kiψi cannot be unre-

stricted Lgal formulas, as that would make the definition circular: such a ψi could then be

the formula 〈G〉ϕ itself that we are trying to interpret. We therefore avoid quantifying over

formulas containing 〈G〉 operators. However, as public announcement logic is equally expres-

sive as epistemic logic within the class of all models ([Plaza, 1989]), the semantics obtained

by quantifying over the fragment of the language without 〈G〉 operators is the same as the

semantics obtained by quantifying only over epistemic formulas.

As usual, a formula ϕ is valid on M, notation M |= ϕ, iff M, s |= ϕ for all s in the

domain of M; and a formula ϕ is valid, |= ϕ, iff M |= ϕ for all M. The denotation of ϕ on

M, notation [[ϕ]]M is defined as {s ∈ S | M, s |= ϕ}. The set of validities of the logic is called

GAL (group announcement logic).

Proposition 5.3 Let two models M = (S,R, V ) and M′ = (S′,R′, V ′) be given. Let

ϕ ∈ Lgal be a formula. For all s ∈ S and for all s′ ∈ S′, if (M, s)←→(M′, s′) thenM, s |= ϕ

iff M′, s′ |= ϕ.

Proof The proof is by induction on the number n of group announcement modality that

appear in the formula. If n = 0, it is the epistemic case, already underlined in Proposition

2.14. Now let us suppose that it is true for all formula with at most n−1 group announcement

operators and let us prove for any formula with at most n by induction on the structure of

ϕ. The base case is by the the main IH, the boolean cases are trivial. For the epistemic

modality, as in [Fagin et al., 1995], we use the back and forth conditions in the definition of

bisimulation. It remains to deal with the group announcement modality:
M, s |= 〈G〉ϕ

iff there exists ψ1, . . . , ψn ∈ Lel such that M, s |= 〈
∧

i∈AG Kiψi〉ϕ

iff there exists ψ1, . . . , ψn ∈ Lel such that M′, s′ |= 〈
∧

i∈AG Kiψi〉ϕ by the main IH

iff M′, s′ |= 〈G〉ϕ
�

5.1.3 Logical Properties

To sharpen the intuition about the logic we mention some relevant validities, with particular

attention to interaction between group announcement and epistemic modal operators. Ex-

amples are |= [G]ϕ −→ [G][G]ϕ (Corollary 5.6), |= 〈G〉[G]ϕ→ [G]〈G〉ϕ (Corollary 5.12), and

Ki[i]ϕ←→ [i]Kiϕ (Proposition 5.13).
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Elementary validities

Proposition 5.4

1. 〈G〉p→ p and 〈G〉¬p→ ¬p. (atomic propositions do not change value)

2. 〈∅〉ϕ↔ ϕ and [∅]ϕ↔ ϕ (the empty group is powerless)

3. 〈Kj1ψj1 ∧ ∙ ∙ ∙ ∧Kjk
ψjk
〉ϕ→ 〈{j1, . . . , jk}〉ϕ

4. ϕ −→ 〈G〉ϕ (truth axiom)

The easy proofs are ommited. They use the following ideas:

1. In public announcement logic, and its ‘derivatives’, factual truths never change value.

2. The conjunction of an empty set of formulas is, as usual, taken to be a tautology.

3. Obvious (note that ψj1 , . . . , ψjk
are purely epistemic formulas).

4. If all agents announce ‘true’, nothing changes to the system.

An announcement by the empty group (the second property above) corresponds to a “clock

tick”, a dynamic transition without informative effect. We could also see this as “nobody says

a thing” (and this now happens...). In fact you could even see this as ‘everybody says true’,

an announcement by the public (as in the fourth property): in other words, the group of all

agents have the option not to exercise their power.

Sequences of group announcements Intuitively, 〈G〉ϕ means that G can achieve a situ-

ation where ϕ is true in “one step”, by making a joint announcement. One can easily imagine

situations where it could be interesting to reason about what a group can achieve by making

repeated announcements, i.e., by a sequence of announcements, one after the other, or a com-

munication protocol. A general example is a conversation over an open channel. We want to

express that “there is some sequence, of arbitrary length, of announcements by G which will

ensure that ϕ becomes true”.

For arbitrary public announcement logic (APAL), the validity of the principle �ϕ −→

��ϕ follows from the simple observation that a sequence of two announcements ψ and χ is

equivalent to the single announcement of ψ ∧ [ψ]χ (see [Plaza, 1989]). Less obvious is that

[G]ϕ −→ [G][G]ϕ is also valid, because now we have to show that two conjunctions of known

formulas are again such a conjunction.

Proposition 5.5 |= [G ∪H]ϕ −→ [G][H]ϕ

Proof The diamond version 〈G〉〈H〉ϕ −→ 〈G ∪ H〉ϕ of this validity makes clear that

the requirement is that two successive announcements respectively by the agents in G

simultaneously and in H simultaneously can also be seen as a single announcement by the
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agents in G ∪ H simultaneously. Let us prove how it can be done. Consider two successive

announcements
∧

i∈G Kiϕi and
∧

j∈H Kjψj . Let a Kripke structure M and a state s in M

be given such that M, s |=
∧

i∈G Kiϕi, and similarly
∧

j∈H Kjψj is true in state s in the

restriction of M to the
∧

i∈G Kiϕi-states: M|
∧

i∈G Kiϕi, s |=
∧

j∈H Kjψj .

Then we have:
M, s |= 〈

∧
i∈G Kiϕi〉〈

∧
j∈H Kjψj〉θ

only if M, s |= 〈
∧

i∈G Kiϕi ∧ [
∧

g∈G Kgϕg]
∧

j∈H Kjψj〉θ

only if M, s |= 〈
∧

i∈G Kiϕi ∧
∧

i∈H\G Ki> ∧ [
∧

g∈G Kgϕg](
∧

j∈H Kjψj ∧
∧

j∈G\H Kj>)〉θ

because for any agent i, Ki> is a valid formula

only if M, s |= 〈
∧

i∈G∪H(Kiϕi ∧ [
∧

g∈G Kgϕg]Kiψi)〉θ

with ∀i ∈ H\G, ϕi = > and ∀j ∈ G\H, ψj = >.

only if M, s |= 〈
∧

i∈G∪H(Kiϕi ∧ ((
∧

g∈G Kgϕg) −→ Ki[
∧

g∈G Kgϕg]ψi))〉θ

by a reduction axiom of PAL

only if M, s |= 〈
∧

i∈G∪H Kiϕi ∧
∧

i∈G∪H((
∧

j∈G Kjϕj) −→ Ki[
∧

j∈G Kjϕj ]ψi)〉θ

by distributing the ∧

only if M, s |= 〈
∧

i∈G∪H Kiϕi ∧
∧

i∈G∪H Ki[
∧

j∈G Kjϕj ]ψi〉θ

because
∧

j∈G Kjϕj is assumed true in the left conjunct of the announcement.

only if M, s |= 〈
∧

i∈G∪H Ki(ϕi ∧ [
∧

j∈G Kjϕj ]ψi)〉θ.

�

Corollary 5.6 |= [G]ϕ −→ [G][G]ϕ

We thus get exactly the property alluded to above:

Corollary 5.7 M, s |= 〈G〉ϕ iff there is a finite sequence of announcements by agents in G

after which ϕ is true.

In Section 5.5 we discuss a security protocol example involving sequences of announcements.

Note that our result does not mean that sequences of announcements can simply be replaced

by a single announcement: whether agents are willing to do an announcement may depend

on the postconditions of such announcements. These may be known to be satisfied after each

announcement in the sequence, but not known to be satisfied initially after the entire sequence.

These matters will be discussed in great detail later.
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Church-Rosser We prove that for all groups G and H of agents, for every formula ϕ ∈ Lgal,

〈G〉[H]ϕ→ [H]〈G〉ϕ is a valid formula. The principle is fairly intuitive: it says that when in

a given epistemic state group G or group H make a group announcement, there are additional

announcements by group H (after G’s announcement) and group G (after H’s announcement),

in order to reach a new common state of information. Unfortunately, its proof is rather

involved. This is because group announcements implicitly quantify over all propositional

variables in the language. Towards the proof, we first define the group-announcement depth

d(ϕ) of a formula ϕ:

Let p ∈ PROP , ψ,ψ1, ψ2 ∈ Lgal, i ∈ N , and G ⊆ N be given; then d(p) = 0; d(¬ψ) =

d(Kiψ) = d(ψ); d(ψ1 ∧ ψ2) = d([ψ1]ψ2) = max(d(ψ1), d(ψ2)); and d([G]ψ) = d(ψ) + 1. The

following lemma holds for any number k, but we will only use it for k ≤ |AG|.

Lemma 5.8 Let Q = {qi}i∈N? ⊆ PROP be pairwise distinct primitive propositions, for some

k ∈ N let θ1, . . . , θk be epistemic formulas such that for i = 1 to i = k, Θθi
∩ Q = ∅ and let

ϕ ∈ Lgal be such that Θϕ ∩Q = ∅.

For all ψ ∈ Lgal, define

{
ψα = ψ(θ1/q1, .., θk/qk, q1/qk+1, q2/qk+2, ..)

ψ−α = ψ(qk+1/q1, qk+2/q2, ..)
Then, for all structures M = (S,∼1, . . . ,∼n, V ) there is a valuation function V ′ : PROP →

2S such that

1. [[ϕ]]M = [[ϕ]]M′

2. for all ψ ∈ Lel,

• [[ψ]]M′ = [[ψα]]M

• [[ψ]]M = [[ψ−α]]M′

3. for all i ≤ k, [[qi]]M′ = [[θi]]M′ = [[θi]]M

where M′ = (S,∼1, . . . ,∼n, V ′).

Proof We define V ′ as:






V ′(p) = V (p), for all p /∈ Q

V ′(qi) = [[θi]]M, for all i ≤ k

V ′(qk+i) = V (qi), for all i ≥ 1
Items 2 and 3 follow directly from the definition of V ′. We prove item 1 by induction on

the structure of ϕ, by showing the somewhat stronger following property P (ϕ):

for all submodels M∗ ofM, and for all states s ∈M∗: M∗, s |= ϕ iffM′
∗, s |= ϕ.

Base case: ϕ = p ∈ PROP . M∗, s |= p iff M′
∗, s |= p follows directly from the definition

of V ′. We also have that M∗, s |= ⊥ iff M′
∗, s |= ⊥

Inductive cases: Let us suppose that the property P is true for all eventual ψ, ψ1 and ψ2,

and let us prove it for formulas ϕ of the form ¬ψ,ψ1 ∧ ψ2, K̂iψ and [ψ1]ψ2. In fact, let M∗

be a submodel of M :
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• ¬ψ: M∗, s |= ¬ψ

iff M∗, s 6|= ψ

iff M′
∗, s 6|= ψ (by IH)

iff M′
∗, s |= ¬ψ.

• ψ1 ∧ ψ2: M∗, s |= ψ1 ∧ ψ2

iff (M∗, s |= ψ1 and M∗, s |= ψ2)

iff (M′
∗, s |= ψ1 and M′

∗, s |= ψ2) (by IH)

iff M′
∗, s |= ψ1 ∧ ψ2.

• Kiψ: M∗, s |= Kiψ

iff for all t ∼i s , M∗, t |= ψ

iff for all t ∼′
i s , M∗

′, t |= ψ (by IH and as ∼i = ∼′
i)

iff M′
∗, s |= Kiψ.

• [ψ1]ψ2: M∗, s |= [ψ1]ψ2

iff (M∗, s |= ψ1 implies M∗|ψ1, s |= ψ2)

iff (M′
∗, s |= ψ1 implies (M∗|ψ1)′, s |= ψ2)(using IH twice)

iff (M′
∗, s |= ψ1 implies M′

∗|ψ1, s |= ψ2)

(using IH again for ψ1, and that V ′ on the restriction is the restriction of V ′)

iff M′
∗, s |= [ψ1]ψ2.

• 〈G〉ψ :

M∗, s |= 〈G〉ψ
only if there are χ1, . . . , χ|G| in Lel such that M∗, s |= 〈

∧
Kiχi〉ψ

only if there exists {χi} ⊆ Lel s.t. M∗, s |=
∧

Kiχi and M∗|(
∧

Kiχi), s |= ψ

only if there exists {χi} s.t M′
∗, s |= (

∧
Kiχi)−α and (M∗|(

∧
Kiχi))′, s |= ψ (by IH)

only if there exists {χi} s.t M′
∗|(
∧

Kiχi)−α, s |= ψ (**)

only if there are χ1, . . . , χ|G| in Lel such that M′
∗, s |= 〈

∧
Kiχ

−α
i 〉ψ

only if M′
∗, s |= 〈G〉ψ.

M′
∗, s |= 〈G〉ψ

only if there are χ1, . . . , χ|G| in Lel such that M′
∗, s |= 〈

∧
Kiχi〉ψ

only if there exists {χi} ⊆ Lel s.t. M′
∗, s |=

∧
Kiχi and M′

∗|(
∧

Kiχi), s |= ψ

only if there exists {χi} s.t. M∗, s |= (
∧

Kiχi)α and (M∗|(
∧

Kiχi)α)′, s |= ψ (**)

only if there are χ1, . . . , χ|G| in Lel such that M∗|(
∧

Kiχi)α, s |= ψ (by IH)

only if there are χ1, . . . , χ|G| in Lel such that M∗, s |= 〈
∧

Kiχ
α
i 〉ψ

only if M∗, s |= 〈G〉ψ.

In (**) we have used (the already shown) property 2 for epistemic formulas.

�

Proposition 5.9 Let k ≥ 0, ψ and χ be Lgal -formulas and G = {i1, . . . , ik} be a set of

agents. If M, s |= 〈G〉ψ ∧ χ and p1, ..., pk ∈ PROP\(Θψ ∪Θχ), then there is a M′′ different
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fromM only on the valuation of the atoms of PROP\(Θψ ∪Θχ) such thatM′′, s |= 〈Ki1p1∧

∙ ∙ ∙ ∧Kikpk〉ψ ∧ χ.

Proof We use the previous lemma twice:

1. Let Q be PROP\(Θψ∪Θχ) and qi be pi for all i 6 k, θi be > for all i 6 k and ϕ be 〈G〉ψ.

By Lemma 5.8, there is V ′ such that V ′(pi) = S and [[〈G〉ψ ∧χ]]M′ = [[〈G〉ψ ∧χ]]M. As

M, s |= 〈G〉ψ ∧ χ, we have thatM′, s |= 〈G〉ψ ∧ χ. Therefore there are τ1, . . . , τk in Lel

such thatM′, s |= 〈
∧

i∈G Kiτi〉ψ∧χ. Without loss of generality, we can assume that for

all i, j, pi /∈ Θτj . Indeed, for all i, pi is equivalent to > inM′, therefore we can replace

τj by τj(>/pi).

2. Let Q be PROP\(Θψ ∪ Θχ ∪
⋃

i∈G Θτi), k = |G|, qi be pi for all i 6 k, θi be τi for

all i 6 k and ϕ be 〈
∧

i∈G Kiτi〉ψ ∧ χ. By Lemma 5.8, there is V ′′ such that (with M′′

as M except for valuation V ′′) [[〈
∧

Kiτi〉ψ ∧ χ]]M′′ = [[〈
∧

Kiτi〉ψ ∧ χ]]M′ and for all

i ≤ k, [[pi]]M′′ = [[τi]]M′′ = [[τi]]M′ . As M′, s |= 〈
∧

i∈G Kiτi〉ψ ∧ χ (by the first item),

the first property implies that M′′, s |= 〈
∧

i∈G Kiτi〉ψ ∧ χ. The second one implies that

M′′ |=
∧

Kipi ↔
∧

Kiτi. We now have that M′′, s |= 〈
∧

i∈G Kipi〉ψ ∧ χ.

�

A generalization of Proposition 5.9 indirectly proves the soundness of a derivation rule

in the axiomatization of GAL. Here, we need Proposition 5.9 to prove the validity of the

generalized Church-Rosser schema. But first here is a useful remark:

Remark 5.10 Let M, s be a pointed model, p ∈ PROP and i ∈ AG. If M, s |= Kip, then

for all ϕ ∈ Lel such that M, s |= ϕ we have M|ϕ, s |= Kip.

Proposition 5.11 (Church-Rosser Generalized) For any G,H ⊆ AG: |= 〈G〉[H]ϕ →

[H]〈G〉ϕ.

Proof Suppose the contrary: Let M be a model, s a state of M, ϕ ∈ Lgal and G,H ⊆ AG

two groups of agents such that M, s |= 〈G〉[H]ϕ ∧ 〈H〉[G]¬ϕ. Then, using Proposition 5.9

twice, for |G| = k and |H| = k′, we know that there are {pi}i∈G and {qi}i∈H subsets of Θ

and M′ differing from M only on the valuation of the pi, qi such that

M′, s |= 〈
∧

i∈G

Kipi〉[H]ϕ ∧ 〈
∧

i∈H

Kiqi〉[G]¬ϕ .

In particular,

M′, s |= 〈
∧

i∈G

Kipi〉[
∧

i∈H

Kiqi]ϕ ∧ 〈
∧

i∈H

Kiqi〉[
∧

i∈G

Kipi]¬ϕ .
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Note that 〈
∧

i∈G Kipi〉 and 〈
∧

i∈H Kiqi〉 are conjunctions of known facts. Using Remark 5.10

we know that they remain true after further announcements. So we have

M′, s |= 〈
∧

i∈G

Kipi ∧
∧

i∈H

Kiqi〉ϕ ∧ 〈
∧

i∈G

Kipi ∧
∧

i∈H

Kiqi〉¬ϕ

from which directly follows a contradiction.

�

Corollary 5.12 (Church-Rosser) |= 〈G〉[G]ϕ→ [G]〈G〉ϕ

We cannot in general reverse the order of G and H in Proposition 5.11. A simple coun-

terexample is the following model, where b cannot distinguish between two states but a can.

0•p
b

1•¬p

We now have that M, 0 |= 〈a〉[b]Kbp ∧ 〈a〉[b]¬Kbp because M, 0 |= 〈Kap〉[b]Kbp ∧

〈Ka>〉[b]¬Kbp. Therefore 〈G〉[H]ϕ→ [G]〈H〉ϕ is not valid if G = {a} and H = {b}.

More validities Just as for Church-Rosser, one would like to know whether the APAL

validity �♦ϕ −→ ♦�ϕ has a GAL generalization. We know that there exists G,H ⊆ N such

that the schema [G]〈H〉ϕ→ 〈H〉[G]ϕ is not valid. A counterexample is the following modelM

(Figure 5.1) , i.e. for G = {a} and H = {b}, with ϕ = (KaKbp∨KbKaq)∧¬(KaKbp∧KbKaq).

•p,q
11

a

b

•¬p,q
01

b

•p,¬q
10

a •¬p,¬q
00

Figure 5.1: Counter-example of the validity of MacKinsey formula in GAL

ϕ asserts that a knows b knows p or b knows a knows q, but not both facts at the same

time. Here we haveM, 11 |= [a]〈b〉ϕ∧ [b]〈a〉¬ϕ. Indeed, in this state, a can teach q to b and b

can teach p to a. Thus, depending on what one agent does (to teach or not the corresponding

fact), the other can decide whether teaching or not her knowledge. If both or none of them

decide to teach her knowledge then ϕ will be true, if only one does it then ϕ will be false.

The second agent speaking is the one who decides!

We do not know whether [G]〈G〉ϕ→ 〈G〉[G]ϕ is valid.

For arbitrary announcement logic we have that Ki�ϕ −→ �Kiϕ, but not the other way

round. Now, we can do more.

Proposition 5.13 For arbitrary i ∈ AG and G ⊆ AG:

1. |= Ki[i]ϕ←→ [i]Kiϕ
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2. |= Ki[G]ϕ −→ [G]Kiϕ (but not the other way round)

Proof

1. For every model M and every state s, we have

M, s |= Ki[i]ϕ

iff for all t ∈ S such that sRit, M, t |= [i]ϕ

iff for all ψ ∈ Lel , for all t s.t. sRit, M, t |= [Kiψ]ϕ

iff for all ψ ∈ Lel , for all t s.t. sRit, M, t |= Kiψ implies M|Kiψ, t |= ϕ

iff for all ψ ∈ Lel , for all t s.t. sRit, M, s |= Kiψ implies M|Kiψ, t |= ϕ

iff for all ψ ∈ Lel , M, s |= Kiψ implies that for all t s.t. sRit, M|Kiψ, t |= ϕ

iff M, s |= [i]Kiϕ

2. For every model M and every state s, we have

M, s |= Ki[G]ϕ

only if for all t ∈ S such that sRit, M, t |= [G]ϕ

only if for all ψ1, . . . , ψn ∈ Lel , for all t s.t. sRit, M, t |= [
∧

j∈{1,...,n} Kjψj ]ϕ

only if for all {ψj} ⊂ Lel , all t s.t. sRit, M, t |=
∧

Kjψj implies M|
∧

Kjψj , t |= ϕ

only if for all {ψj} ⊂ Lel , all t s.t. sRit, M, t |=
∧

Kjψj implies M|
∧

Kjψj , t |= ϕ

only if for all {ψj} ⊂ Lel , M, s |=
∧

Kjψj implies that

for all t s.t. sRit, M, t |=
∧

Kjψj implies M|
∧

Kjψj , t |= ϕ

only if M, s |= [G]Kiϕ

�

Finally, a rather puzzling property on the interaction between the announcements and

knowledge by two agents. The intuition behind it is that announcements wherein you can

make another agent learn facts even in the face of your own uncertainty, are rather rare.

Proposition 5.14 For any atomic proposition p ∈ PROP : |= 〈a〉Kbp↔ 〈b〉Kap.

Proof AssumeM, s |= 〈a〉Kbp. Then there is a ψa ∈ Lel such thatM, s |= 〈Kaψa〉Kbp. This

formula is equivalent to Kaψa∧ (Kaψa → Kb[Kaψa]p) and thus to Kaψa∧Kb(Kaψa → p)—as

p is an atom. Let us noteM′ =M|Kb(Kaψa → p) and let us proof thatM′, s |= Kap. Indeed,

let t ∈ M′ s.t. t ∈ R′
a(x) (in the restricted model) and let us prove that M′, t |= p. But we

have (1) M, t |= Kb(Kaψa → p) and (2) t ∈ Ra(x) (in the non-restricted model). But (1)

implies that M, t |= Kaψa → p and (2) implies that M, t |= Kaψa (because M, s |= Kaψa).

Then M, t |= p, and thus M′, t |= p.

�

We now proceed to a more systematic treatment of validities.

5.1.4 Axiomatization

The following is a sound and complete axiomatization of group announcement logic.
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Definition 5.15 (GAL axioms and rules)

instantiations of propositional tautologies

Ki(ϕ −→ ψ) −→ (Kiϕ −→ Kiψ) distribution (of knowl. over impl.)

Kiϕ −→ ϕ truth (T)

Kiϕ −→ KiKiϕ positive introspection (4)

¬Kiϕ −→ Ki¬Kiϕ negative introspection (5)

[ϕ]p←→ (ϕ −→ p) atomic permanence

[ϕ]¬ψ ←→ (ϕ −→ ¬[ϕ]ψ) announcement and negation

[ϕ](ψ ∨ χ)←→ ([ϕ]ψ ∨ [ϕ]χ) announcement and disjunction

[ϕ]Kiψ ←→ (ϕ −→ Ki[ϕ]ψ) announcement and knowledge

[ϕ][ψ]χ←→ [ϕ ∧ [ϕ]ψ]χ announcement composition

[G]ϕ −→ [
∧

i∈G Kiψi]ϕ where ψi ∈ Lel group announcement

From ϕ and ϕ −→ ψ, infer ψ modus ponens

From ϕ, infer Kiϕ necessitation of knowledge

From ϕ, infer [ψ]ϕ necessitation of announcement

From ϕ, infer [G]ϕ necessitation of group announcement

From η([∧i∈GKiψi]χ) for all {ψi}i∈G ⊂ Lel, deriving group announcement / Rw([G])

infer η([G]χ)

Our axiomatization of GAL is based on the standard S5 axioms for the epistemic operators

Ki, the standard reduction axioms for the public announcement operators [ϕ], and some

additional axioms and derivation rules involving group announcement operators. These are

the axiom group and specific announcement, and the derivation rules necessitation of group

announcement and deriving group announcement. A formula ϕ ∈ Lgal is derivable, notation

` ϕ, iff ϕ belongs to the least set of formulas containing GAL axioms and closed with respect

to the derivation rules.

The axiom [G]ϕ −→ [
∧

i∈G Kiψi]ϕ, where ψi ∈ Lel , is obviously valid in all structures.

Also the validity of “from ϕ, infer [G]ϕ” will be obvious. The derivation rule deriving group

announcement Rw([G]) is used to introduce group announcement operators in derivations. In

this rule, η is a necessity form for Lgal , definable in the same way as in Definition 4.33 (but

with a different language): ] is a necessity form; if η is a necessity form and and ϕ is in Lgal

then (ϕ → η) is a necessity form; if η is a necessity form and ϕ is in Lgal then [ϕ]η is a

necessity form; if η is a necessity form then Kiη is a necessity form.

In this section we show completeness of GAL with respect to the class of epistemic models.

But first the following:

Proposition 5.16 (Soundness) Let ϕ ∈ Lgal . Then ϕ is a theorem of GAL only if ϕ is

valid in every epistemic model.
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Proof The only difficult result is the soundness of the rule Rw(G) in the class of epistemic

models. We thus show it by induction on the structure of the necessity form η. The base

case comes from the definition of the semantics. Let us look at the inductive cases:

• η = Kiη
′: for all {ψi}i∈G ⊂ Lel, M, s |= Kiη

′([∧i∈GKiψi]χ)
iff for all {ψi}i∈G ⊂ Lel, and all sRit, M, t |= η′([∧i∈GKiψi]χ)

iff for all sRit, M, t |= η′([G]χ) by IH

iff M, s |= Kiη
′([G]χ)

• η = ϕ −→ η′: for all {ψi}i∈G ⊂ Lel, M, s |= ϕ −→ η′([∧i∈GKiψi]χ)
iff if M, s |= ϕ then for all {ψi}i∈G ⊂ Lel, M, s |= η′([∧i∈GKiψi]χ)

iff if M, s |= ϕ then M, s |= η′([G]χ) by IH

iff M, s |= ϕ −→ η′([G]χ)

• η = [ϕ]η′: for all {ψi}i∈G ⊂ Lel, M, s |= [ϕ]η′([∧i∈GKiψi]χ)
iff if M, s |= ϕ then for all {ψi}i∈G ⊂ Lel, M|ϕ, s |= η′([∧i∈GKiψi]χ)

iff if M, s |= ϕ then M|ϕ, s |= η′([G]χ) by IH

iff M, s |= [ϕ]η′([G]χ)

�

The proof of completeness of the axiomatization is very similar to the proof of completeness

of the axiomatization LAUOB presented in Section 4.4.2. We follow its progress.

A set x of formulas is called a theory if it satisfies the following conditions:

• x contains the set of all theorems;

• x is closed under the rule of modus ponens and the rule Rω([G]).

Again, a theory x is said to be consistent if ⊥ 6∈ x, maximal if for all formulas ϕ, ϕ ∈ x or

¬ϕ ∈ x. For all formulas ϕ we note x + ϕ = {ψ: ϕ→ ψ ∈ x}. For all agents i, let Kix = {ϕ:

Kiϕ ∈ x}. For all formulas ϕ, let [ϕ]x = {ψ: [ϕ]ψ ∈ x}.

Lemma 5.17 Let x be a theory, ϕ be a formula, and a be an agent. Then x + ϕ, Kix and

[ϕ]x are theories. Moreover x + ϕ is consistent iff ¬ϕ 6∈ x.

Proof Identical to proof of Proposition 4.35, by substituting Bi by Ki and ‘[ψ,G] with

ψ ∈ Lpl ’ by ‘[ψ] with ψ ∈ Lel ’.

�

Lemma 5.18 (Lindenbaum lemma) Let x be a consistent theory. There exists a maximal

consistent theory y such that x ⊆ y.

Proof Identical to the proof of Lemma 4.36 by substituting

• Bi by Ki
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• ‘[ψ,G] with ψ ∈ Lpl ’ by ‘[ψ] with ψ ∈ Lel ’

• [?, G] by [G] and

• ‘there exists ψ ∈ Lpl such that [ψ,G]ϕ’ by ‘there exist ψ1, . . . , ψ|G| ∈ Lel such that

[
∧

Kiψi]ϕ’

�

The canonical model of Lgal is the structure Mc = (W c,∼c, V c) defined as follows:

• W c is the set of all maximal consistent theories;

• For all agents i, ∼i is the binary (equivalence) relation on W defined by x ∼i y iff

Kix = Kiy;

• For all atoms p, V c(p) is the subset of W c defined by x ∈ V c(p) iff p ∈ x.

Clearly, ‘=’ is an equivalence relation, therefore ∼i also is. It then has the same properties

than the relation Ri of an epistemic model, and that fact ensures that the canonical model of

Lgal is an epistemic model. Note that, because of Axioms T , 4 and 5, Kix = Kiy iff Kix ⊆ y.

We now prove a truth lemma for Lgal using a very special induction. Note that this prop-

erty (and its proof) is quite different from the truth lemma appearing in [Ågotnes et al., 2010].

The property was not correctly proved in this paper indeed. To obtain a correct one, here

are three definitions we shall use:

Definition 5.19 The degree of a Lgal -formula is defined inductively in the following way:

for all p ∈ PROP , all i ∈ AG, all G ⊆ AG and all ϕ,ϕ1, ϕ2 ∈ Lgal : deg(p) = deg(⊥) =

0, deg(¬ϕ) = deg(Kiϕ) = deg(ϕ), degϕ1 ∨ ϕ2 = max(deg(ϕ1), deg(ϕ2)), deg([ϕ1]ϕ2) =

deg(ϕ1) + deg(ϕ2) + 2, deg([G]ϕ) = deg(ϕ) + 2.

Definition 5.20 Let � be the following binary relation on N× N× Lgal :

(k′, n′, ϕ′)� (k, n, ϕ) iff






k′ < k,

or (k′ = k and n′ < n)

or (k′ = k and n′ = n and ϕ′ ∈ Sub(ϕ))

where Sub(ϕ) is the

set of strict subformulas of ϕ ( i.e. subformulas of ϕ different from ϕ itself).

Note that � is a well-founded partial order on N×N×Lgal . In fact, it is the lexicographical

order based on the orders 6 and ‘being a subformula’. Here are some examples:

• (0, 1018, ϕ)� (1, 0, ϕ) because 0 < 1

• (0, 0, (p ∧ ¬q) −→ 〈G〉[p]q)� (0, 1, p) because 0 < 1

• (10, 10, p)� (10, 10, p ∧ q) because p is a subformula of p ∧ q.

Now the following:
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Definition 5.21 (Π(k, n, ϕ)) For all (k, n, ϕ) ∈ N × N × Lgal we define the property

Π(k, n, ϕ): for all ψ1, . . . , ψn ∈ Lgal , if n + deg(ψ1) + . . . + deg(ψn) + deg(ϕ) 6 k then

for all x ∈W c, Mc, x |= 〈ψ1〉 . . . 〈ψn〉ϕ iff 〈ψ1〉 . . . 〈ψn〉ϕ ∈ x.

This complex definition is useful to prove the following truth lemma by induction on (k, n, ϕ)

following the order we just defined. We are now able to establish the truth lemma for Lgal :

Proposition 5.22 (Truth lemma) For all (k, n, ϕ) ∈ N× N× Lgal , Π(k, n, ϕ).

To prove it, we first consider the following lemma:

Lemma 5.23 For all (k, n, ϕ) ∈ N × N × Lgal , if for all (k′, n′, ϕ′) � (k, n, ϕ) we have

Π(k′, n′, ϕ′), then Π(k, n,>).

Proof Let ψ1, . . . , ψn ∈ Lgal , be such that n + Σdeg(ψi) + deg(ϕ) 6 k and x ∈W c, we want

to show that Mc, x |= 〈ψ1〉 . . . 〈ψn〉> iff 〈ψ1〉 . . . 〈ψn〉> ∈ x. If n = 0, Mc, x |= > is always

true, and so is > ∈ x. Suppose then that n > 1.

Hence we have: Mc, x |= 〈ψ1〉 . . . 〈ψn〉>

iff






Mc, x |= ψ1

Mc, x |= 〈ψ1〉ψ2

. . .

Mc, x |= 〈ψ1〉 . . . 〈ψn−1〉ψn

iff






ψ1 ∈ x by Π(k, 0, ψ1)

〈ψ1〉ψ2 ∈ x by Π(k, 1, ψ2)

. . .

〈ψ1〉 . . . 〈ψn−1〉ψn ∈ x by Π(k, n− 1, ψn)

if and only

if 〈ψ1〉 . . . 〈ψn〉> ∈ x.

We used that for all i 6 n, we have n + deg(ψ1) + . . . + deg(ψi) 6 n + deg(ψ1) + . . . +

deg(ψn) + deg(ϕ) 6 k

�

Proof (of Proposition 5.22) Let us prove it by induction on (k, n, ϕ). Suppose that for all

(k′, n′, ϕ′)� (k, n, ϕ) we have Π(k′, n′, ϕ′). Let us prove Π(k, n, ϕ) by reasoning on the form

of ϕ. Note that by Lemma 5.23 we can already use that Π(k, n,>).

Let ψ1, . . . , ψn ∈ Lgal be such that n + Σdeg(ψi) + deg(ϕ) 6 k and x ∈W c

• ϕ = p: Mc, x |= 〈ψ1〉 . . . 〈ψn〉p
iff Mc, x |= 〈ψ1〉 . . . 〈ψn〉> and Mc, x |= p by the semantics

iff 〈ψ1〉 . . . 〈ψn〉> ∈ x by Π(k, n,>) and p ∈ x by definition of the valuation V c

iff 〈ψ1〉 . . . 〈ψn〉p ∈ x

• ϕ = ¬χ: Mc, x |= 〈ψ1〉 . . . 〈ψn〉¬χ

iff Mc, x |= 〈ψ1〉 . . . 〈ψn〉> and Mc, x 6|= 〈ψ1〉 . . . 〈ψn〉χ by the semantics

iff 〈ψ1〉 . . . 〈ψn〉> ∈ x by Π(k, n,>) and 〈ψ1〉 . . . 〈ψn〉χ /∈ x by Π(k, n, χ)

(note that n + Σdeg(ψi) + deg(χ) = n + Σdeg(ψi) + deg(¬χ) 6 k)

iff 〈ψ1〉 . . . 〈ψn〉¬χ ∈ x
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• ϕ = χ1 ∨ χ2: Mc, x |= 〈ψ1〉 . . . 〈ψn〉(χ1 ∨ χ2)
iff Mc, x |= 〈ψ1〉 . . . 〈ψn〉χ1 or Mc, x |= 〈ψ1〉 . . . 〈ψn〉χ2 by the semantics

iff 〈ψ1〉 . . . 〈ψn〉χ1 ∈ x by Π(k, n, χ1) or 〈ψ1〉 . . . 〈ψn〉χ ∈ x by Π(k, n, χ2)

(note that n + Σdeg(ψi) + deg(χi) 6 n + Σdeg(ψi) + deg(ϕ) 6 k)

iff 〈ψ1〉 . . . 〈ψn〉(χ1 ∨ χ2) ∈ x

• ϕ = Kiχ: First remark that we can prove Π(k, n,¬χ) as in the first second case,

considering that Sub(Kiχ) = Sub(¬χ).

Now suppose thatMc, x |= 〈ψ1〉 . . . 〈ψn〉Kiχ, therefore we have the two following prop-

erties:

{
Mc, x |= 〈ψ1〉 . . . 〈ψn〉>

for all y ∈W c, if xRc
iy then Mc, y |= [ψ1] . . . [ψn]χ

The first implies that 〈ψ1〉 . . . 〈ψn〉> ∈ x by Π(k, n,>). Now suppose, towards a

contradiction, that 〈ψ1〉 . . . 〈ψn〉Kiχ /∈ x. Then [ψ1] . . . [ψn]¬Kiχ ∈ x and using

〈ψ1〉 . . . 〈ψn〉> ∈ x we obtain 〈ψ1〉 . . . 〈ψn〉¬Kiχ ∈ x and thus ¬Ki[ψ1] . . . [ψn]χ ∈ x.

Let y0 = Kix + ¬[ψ1] . . . [ψn]χ, y0 is thus a consistent theory, that can be extended,

by Lemma 5.18, to a maximal consistent theory y. Therefore, xRiy and we obtain

Mc, y |= [ψ1] . . . [ψn]χ or equivalently Mc, y 6|= 〈ψ1〉 . . . 〈ψn〉¬χ. By Π(k, n,¬χ), this

implies that 〈ψ1〉 . . . 〈ψn〉¬χ /∈ y. Contradiction.

Conversely, suppose that 〈ψ1〉 . . . 〈ψn〉Kiχ ∈ x. In particular 〈ψ1〉 . . . 〈ψn〉> ∈ x and

Mc, x |= 〈ψ1〉 . . . 〈ψn〉> by Π(k, n,>). We also have Ki[ψ1] . . . [ψn]χ ∈ x. Suppose to-

wards a contradiction thatMc, x 6|= 〈ψ1〉 . . . 〈ψn〉Kiχ. ThenMc, x |= 〈ψ1〉 . . . 〈ψn〉¬Kiχ.

Therefore, there exists y ∈ W c such that xRc
iy and Mc, y |= 〈ψ1〉 . . . 〈ψn〉¬χ. By

Π(k, n,¬χ) we obtain 〈ψ1〉 . . . 〈ψn〉¬χ ∈ y. Now, Mc, x |= Ki[ψ1] . . . [ψn]χ and

xRiy implies Mc, y |= [ψ1] . . . [ψn]χ. With Mc, y |= 〈ψ1〉 . . . 〈ψn〉> we get Mc, y |=

〈ψ1〉 . . . 〈ψn〉χ. By Π(k, n, χ) this implies that 〈ψ1〉 . . . 〈ψn〉χ ∈ y. Contradiction.

• ϕ = [ψ]χ: Here we have n + Σdeg(ψi) + deg(ψ) + deg(χ) + 2 6 k (∗).

We first prove (I): Mc, x |= 〈ψ1〉 . . . 〈ψn〉〈ψ〉¬χ iff 〈ψ1〉 . . . 〈ψn〉〈ψ〉¬χ ∈ x. Indeed, as

(k−1, n+1,¬χ)� (k, n, ϕ) we have Π(k−1, n+1,¬χ). Moreover, (n+1)+(Σdeg(ψi)+

deg(ψ)) + deg(¬χ) 6 k − 1 by (∗).

Now Mc, x |= 〈ψ1〉 . . . 〈ψn〉[ψ]χ

iff

{
Mc, x |= 〈ψ1〉 . . . 〈ψn〉>

Mc, x 6|= 〈ψ1〉 . . . 〈ψn〉〈ψ〉¬χ

iff

{
〈ψ1〉 . . . 〈ψn〉> ∈ x by Π(k, n,>)

〈ψ1〉 . . . 〈ψn〉〈ψ〉¬χ /∈ x by (I)

iff 〈ψ1〉 . . . 〈ψn〉[ψ]χ ∈ x

• ϕ = [G]χ: Here we have n + Σdeg(ψi) + deg(χ) + 2 6 k (∗∗).

We first prove (II): for all ψ′
1, . . . , ψ

′
|G| ∈ Lel , Mc, x |= 〈ψ1〉 . . . 〈ψn〉〈

∧
i∈G Kiψ

′
i〉¬χ

iff 〈ψ1〉 . . . 〈ψn〉〈
∧

i∈G Kiψ
′
i〉¬χ ∈ x. Indeed, as (k − 1, n + 1,¬χ) � (k, n, ϕ) we have
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Π(k−1, n+1,¬χ). Moreover, (n+1)+(Σdeg(ψi)+deg(
∧

i∈G Kiψ
′
i))+deg(¬χ) 6 k−1

by (∗∗) and observing that deg(
∧

i∈G Kiψ
′
i) = 0.

Now Mc, x |= 〈ψ1〉 . . . 〈ψn〉[G]χ

iff

{
Mc, x |= 〈ψ1〉 . . . 〈ψn〉>

Mc, x 6|= 〈ψ1〉 . . . 〈ψn〉〈G〉¬χ

iff

{
〈ψ1〉 . . . 〈ψn〉> ∈ x by Π(k, n,>)

for all ψ′
1, . . . , ψ

′
|G| ∈ Lel , Mc, x 6|= 〈ψ1〉 . . . 〈ψn〉〈

∧
i∈G Kiψ

′
i〉¬χ

iff

{
〈ψ1〉 . . . 〈ψn〉> ∈ x

for all ψ′
1, . . . , ψ

′
|G| ∈ Lel , 〈ψ1〉 . . . 〈ψn〉〈

∧
i∈G Kiψ

′
i〉¬χ /∈ x by (II)

iff

{
〈ψ1〉 . . . 〈ψn〉> ∈ x

for all ψ′
1, . . . , ψ

′
|G| ∈ Lel , [ψ1] . . . [ψn][

∧
i∈G Kiψ

′
i]χ ∈ x by maximality

iff

{
〈ψ1〉 . . . 〈ψn〉> ∈ x

[ψ1] . . . [ψn][G]χ ∈ x

considering

(
-the Rw([G])-cloture of x for the direct implication

-Axiom group announcement for the indirect one
iff〈ψ1〉 . . . 〈ψn〉[G]χ ∈ x.

�

Theorem 5.24 The axiomatization GAL is sound and complete with respect to the class of

models C0.

Proof Soundness has been proved in Proposition 5.16.

Let ϕ ∈ Lgal be a a valid formula, then it is valid in the canonical model. Therefore

by Lemma 5.22 it is in every maximal consistent theory. Hence, it is a theorem of GAL.

Indeed, if it were not the case, then there would exists a consistent theory x such that

¬ϕ ∈ x. Therefore, by Lemma 5.18 there exists a mct y such that x ⊆ y. Therefore ¬ϕ ∈ y.

Contradiction.

�

5.2 Expressivity

The notion used in this section have been introduced in Section 2.8. Known results are that

Lel is equally expressive as Lpal ([Plaza, 1989]), that in the single-agent situation Lapal is

equally expressive as Lpal , and that in the multi-agent situation Lapal is more expressive than

Lpal ([Balbiani et al., 2007]). In this section we demonstrate that in the single-agent situation

Lgal is equally expressive as Lel , and that in the multi-agent situation Lgal is more expressive

than Lel , and Lgal is not more expressive than Lapal . We conjecture that Lapal is not as least

as expressive as (multi-agent) Lgal .

Proposition 5.25 For a single agent Lgal is equally expressive as Lel and Lpal .
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Proof Let a be the unique agent. For all ϕ in Lgal we have that |= [a]ϕ ↔ ϕ. In fact, in

the single agent situation, the restriction of a pointed model (M, s) to a-equivalence class

is the submodel generated from (M, s) (see Definition 2.12). Thus it is bisimilar to (M, s)

(Proposition 2.15), from which directly follows that |= [a]ϕ←→ ϕ.

�

Theorem 5.26 If n > 2, then Lgal is more expressive than Lel and Lpal .

Proof Lgal is obviously at least as expressive as Lel . For the strictness part, consider the

formula 〈b〉Kap. Assume that there is an EL formula ψ equivalent to 〈b〉Kap. Formula ψ can

only contain a finite number of atoms. Let q be an atom not occurring in ψ. Consider the

following models M and M′ where a and b have common knowledge of their ignorance of p.

M: •p1
a,b

•¬p
0

; M′: •p,q
11

a

b

•¬p,¬q
00

b

•¬p,q
01

a •p,¬q
10

Figure 5.2: Distinguishing Lgal from Lel

It is easy to see that M, 1 6|= 〈b〉Kap, but that M′, 11 |= 〈Kbq〉Kap, and thus that

M′, 11 |= 〈b〉Kap. On the other hand, (M, 1) and (M′, 11) are bisimilar with respect to

the epistemic language not including atom q, thus ψ cannot distinguish between these two

pointed models. Therefore, ψ cannot be equivalent to 〈b〉Kap.

�

Theorem 5.27 Lgal is not at least as expressive as Lapal .

Proof Consider the Lapal -formula ♦(Kap ∧ ¬KbKap), and suppose there is an equivalent

Lgal -formula χ. Assume an atomic proposition q not occurring in χ. We prove that the

pointed models (M, 10) and (Ma, 10) presented below cannot be distinguished by any Lgal -

formula χ, whereas ♦(Kap∧¬KbKap) is true in the former but false in the latter, thus again

deriving a contradiction.

The crucial insight is that in Lgal , unlike in Lapal , the only definable model restrictions of

M, 10 are the four models displayed below. And to make the formula ♦(Kap∧¬KbKap) true

in M, 10, one needs to be able to define the restriction to domain {11, 10, 00}. The formal

proof is by induction on the structure of ψ, and is formulated in terms also involving other

points of other model restrictions of M; of that proof we only give the formal proposition

and for state 10 the inductive cases for announcement and for group announcement.
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M: •p,q
11

a

b

•¬p,q
01

b

•p,¬q
10

a •¬p,¬q
00

Mb: •p,q
11

b

•p,¬q
10

Ma:
10•p,¬q a

00•¬p,¬q Mab:
10•p,¬q

Figure 5.3: Distinguishing Lapal from Lgal

Let ψ ∈ Lgal with q 6∈ Θψ. Then:

M, 10 |= ψ ⇔ Ma, 10 |= ψ ⇔ M, 11 |= ψ (i)

Mab, 10 |= ψ ⇔ Mb, 10 |= ψ ⇔ Mb, 11 |= ψ (ii)

M, 00 |= ψ ⇔ Ma, 00 |= ψ ⇔ M, 01 |= ψ (iii)

Inductive case announcement:

• M, 10 |= [χ]ψ

iff M, 10 |= χ implies M|χ, 10 |= ψ (*)

iff M, 10 |= χ implies

{
M, 10 |= ψ if M, 00 |= χ

Mb, 10 |= ψ otherwise

iff Ma, 10 |= χ implies

{
Ma, 10 |= ψ if M, 00 |= χ

Mab, 10 |= ψ otherwise
(**)

iff Ma, 10 |= χ implies Ma|χ, 10 |= ψ

iff Ma, 10 |= [χ]ψ.

*: By induction hypothesis: M|χ =M if M, 00 |= χ, and M|χ =Mb otherwise.

**: By induction hypothesis: Ma|χ =Ma ifMa, 00 |= χ, andMa|χ =Mab otherwise.

Inductive case group announcement (there are four different coalitions):

• M, 10 |= [∅]ψ

iff M, 10 |= ψ

• M, 10 |= [a]ψ

iff M, 10 |= ψ and Ma, 10 |= ψ

iff Ma, 10 |= ψ (by IH)

iff Ma, 10 |= [a]ψ
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• M, 10 |= [b]ψ

iff M, 10 |= ψ and Mb, 10 |= ψ

iff Ma, 10 |= ψ and Mab, 10 |= ψ (by IH)

iff Ma, 10 |= [b]ψ

• M, 10 |= [a, b]ψ

iff M, 10 |= ψ and Ma, 10 |= ψ and Mab, 10 |= ψ and Mb, 10 |= ψ

iff Ma, 10 |= ψ and Mab, 10 |= ψ (by IH)

iff Ma, 10 |= [a, b]ψ

�

Conjecture 5.28 Lapal is not at least as expressive as Lgal .

Thus, we conjecture that the two logics are incomparable when it comes to expressivity.The

following gives an idea for a possible proof, discussed together with Barteld P. Kooi, even if

it does not succeed for now.

Sketch of proof : Let β = 〈a〉Kbp be a Lgal -formula. We already know, by Proposition

5.14, that it is equivalent to α = 〈a〉Kbp∧ 〈b〉Kap. The idea of the proof is to show a class of

pairs of models Mq,r,M′
q,r (q, r ∈ PROP ) such that

1. for all q, r ∈ PROP , Mq,r, pqr |= ¬α and M′
q,r, pqr |= α

2. for all ϕ ∈ Lapal , there exists q, r ∈ PROP such Mq,r, pqr |= ϕ iff M′
q,r, pqr |= ϕ

Then the formula α would distinguish any such pair of models, and no Lapal -formula would

be able to distinguish all of them, so Lapal would not be more expressive than Lgal . Our

proposal was the following:

Formally,M∗
q,r = {S,∼a,∼b, V } with S = {pqr ∈ {0, 1}3} (and S′ = S\{000}). The valu-

ation of p, q and r is defined by the name of the state, and is ∅ for any atom in PROP\{p, q, r}.

Now for all s, t ∈ S∗, s ∼a t iff (M∗
q,r, s |= q −→ p iff M∗

q,r, t |= q −→ p) and s ∼b t iff

(M∗
q,r, s |= r −→ p iff M∗

q,r, t |= r −→ p).

In particular, we have M∗
q,r, pqr |= Ka(q −→ p) ∧Kb(r −→ p)

Clearly, 1) is true. Indeed,M, pqr |= [a]K̂b(¬p∧¬q∧¬r) andM′, pqr |= 〈Ka(¬q∨p)〉Kbp.

Now to prove 2) it would be enough to prove that

(∗) for all ϕ ∈ Lapal{p}, for all q, r ∈ Θ,Mq,r, pqr |= ϕ iff M′
q,r, pqr |= ϕ.

Indeed, let ϕ be an Lapal -formula, then let us call PROPϕ = {q1, . . . qn} the atomic proposi-

tions appearing in ϕ, and let q, r be atomic propositions that are not in PROPϕ. We define

ϕ∗ = ϕ(∀qi,⊥/qi) and then consider Mq,r and M′
q,r. We have that Mq,r |= ϕ ←→ ϕ∗ and

M′
q,r |= ϕ←→ ϕ∗ with ϕ∗ ∈ Lapal{p}. (∗) is then sufficient to prove 2).
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Mq,r = (¬p¬qr) A (¬p¬q¬r)

B(p¬qr) (p¬q¬r)

(¬pqr) (¬pq¬r)

(pqr) (pq¬r)

and M′
q,r = (¬p¬qr)

(p¬qr) (p¬q¬r)

(¬pqr) (¬pq¬r)

(pqr) (pq¬r)

Figure 5.4: Trying to distinguish Lgal from Lapal

Unfortunately, (∗) is false. The mistake came from the will to obtain a pair of models not

able to distinguish χ = Kap ∨Kbp ∨ ♦(Kap ∧ ¬Kbp) ∧ ♦(¬Kap ∧Kbp) which seemed to be a

reasonable translation for 〈a〉Kbp. Indeed 〈a〉Kbp means that after some a’s announcement b

knows p. Indeed, if a knows p she can announce it, if b knows p then a can announce nothing,

b will still know p. Now if none of the two agents know p but still 〈a〉Kbp is true, then some

a’s announcement could teach p to b (without a learning anything about p). By Proposition

5.14 the converse would also be true. Well Mq,r and M′
q,r cannot actually distinguish χ

(and in fact probably none of the Lapal -formula of K-degree 1), but it can distinguish some

Lapal -formulas. For example the following one, which is true in M, pqr and not in M′, pqr:

K̂a♦(K̂ap ∧�(Ka¬p←→ Kb¬p))

However, in spite of the mistake, we think that this may be a good starting point to find

bigger classes of pairs of models, able to distinguish every Lapal -formula from 〈a〉Kbp. We

would thus get an infinite set {Ci}i∈N of such classes of pairs, such that each class Ci is able

to distinguish 〈a〉Kbp from any Lapal -formula of K-degree i.

♦

Now consider a very special model class Mg, namely the class where an agent g has the

identity relation on all models (there may be other agents). It is clear that the announcement

made by g has the property that Kgϕ ←→ ϕ: everything true is known by g. Therefore ♦ϕ



5.3. MODEL CHECKING 113

in APAL is equivalent to 〈g〉ϕ in GAL (ignoring a further translation downward in ϕ). If we

restrict the model class of the logic to Mg, we say that a super agent g exists. This makes

clear that:

Proposition 5.29 If a super agent g exists, GAL is at least as expressive as APAL.

Proof Given a ϕ ∈ Lapal , replace every occurrence of � in ϕ by [g]. The resulting formula

is in Lgal and it is equivalent to the initial one in every epistemic model.

�

5.3 Model Checking

If a given system can be modeled as a finite model, one would like to verify if a given property

written in a language for specifying desired properties of systems holds in the finite model. We

speak of the model checking problem, an area of automated deduction that has been addressed

for almost all logical languages, for example modal logic in [Gradel and Otto, 1999], temporal

logic in [Clarke et al., 1999], etc. There is a need, on the theoretical side, to provide a sound

mathematical basis for the design of algorithms devoted to the model checking problem.

Hence, the question arises whether the following decision problem is decidable:

input: a finite structure M = (S,∼1, . . . ,∼n, V ), a state x ∈ S and a formula ϕ ∈ Lgal,

output: determine whether ϕ is satisfied at x in M.

This decision problem, denoted (MC(GAL)) is a variant of the well-known model checking

problem. If one restricts to formulas ϕ ∈ Lel , then the above decision problem is known

to be P -complete. The notion of a formula like [{1, . . . , n}]ϕ being satisfied in a structure

M = (S,∼1, . . . ,∼n, V ) at state x ∈ S relies on the satisfiability of all (infinitely many)

formulas like [K1ϕ1 ∧ . . . ∧Knϕn]ϕ at x where ϕ1, . . . , ϕn ∈ Lel. In Theorem 5.31 we show

that (MC(GAL)) is in PSPACE and in Theorem 5.32 we show that it is PSPACE-hard.

5.3.1 Preliminary Results

Let ZM be the greatest bisimulation relation on M. Note that ZM is an equivalence relation

on S. For all s ∈ S, let ‖s‖ be the equivalence class of s modulo ZM. The bisimulation

contraction of M is the structure ‖M‖ = (S′,∼′
1, . . . ,∼

′
n, V ′) such that:

• S′ = S|ZM , i.e. the quotient of S modulo ZM

• ‖s‖ ∼′
i ‖t‖ iff there exist v, w ∈ S such that sZMv, tZMw and v ∼i w

• V ′(p) = V (p)|ZM

The following proposition will be obvious, because:
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• the bisimulation contraction is bisimilar to the original structure;

• bisimilar structures have the same logical theory[Blackburn et al., 2001];

• public announcement and group announcement are bisimilation preserving operations.

Proposition 5.30 For all ϕ ∈ Lgal , ‖M‖, ‖x‖ |= ϕ iff M, x |= ϕ.

In ‖M‖ = (S′,∼′
1, . . . ,∼

′
n, V ′), every ‖s‖ ∈ S′ can be distinguished by a pure epistemic

formula from all other (non-bisimilar) states. Let us call ψ[[s]] the characteristic formula of

[[s]] in M′. Thus, for any i ∈ {1, . . . , n}, K̂iψ[[s]] characterizes the class of equivalence for ∼′
i.

Hence, for any i ∈ {1, . . . , n}, each union C′i of classes of equivalence for ∼′
i is distinguished

from all other (non-bisimilar) states by a pure epistemic formula of the form Kiϕi. Therefore,

a pure epistemic formula of the form
∧

i∈G Kiϕi defines a restriction M′′ = (S′′,∼′′
1, . . . ,∼

′′
n

, V ′′) where S′′ = ∩i∈GC′i. We call such a restriction a definable restriction.

5.3.2 Model Checking Algorithm

Proposition 5.31 (MC(GAL)) is in PSPACE.

Proof Since APTIME = PSPACE (see [Chandra et al., 1981]), it suffices to prove that

(MC (GAL)) is in APTIME. Let us consider the alternating algorithm 1 given on page

115. This algorithm takes as input a finite model M, a state s inM, a formula ϕ in Lgal and

b in {0, 1}. It stops with a reject iff either b = 0 andM, s |= ϕ or b = 1 andM, s 6|= ϕ whereas

it stops with an accept iff either b = 0 and M, s 6|= ϕ or b = 1 and M, s |= ϕ. Its execution

depends primarily on (ϕ, b). Each case is either existential or universal. For example, the case

(ϕ1 ∨ ϕ2, 1) is existential. It is an accepting case iff for some ϕ′ ∈ {ϕ1, ϕ2}, the case (ϕ′, 1)

is accepting, thus corresponding to the fact that ϕ1 ∨ ϕ2 is true at s in M iff for some ϕ′ ∈

{ϕ1, ϕ2}, ϕ′ is true at s in M. As well, the case (ϕ1 ∨ ϕ2, 0) is universal. It is an accepting

case iff for every ϕ′ ∈ {ϕ1, ϕ2}, the case (ϕ′, 0) is accepting, thus corresponding to the fact

that ϕ1∨ϕ2 is false at s inM iff for every ϕ′ ∈ {ϕ1, ϕ2}, ϕ′ is false at s inM. Cases labelled

with (∙) are both existential and universal.

Obviously,

• sat(M, s, ϕ, 1) accepts iff M, s |= ϕ,

• sat(M, s, ϕ, 1) rejects iff M, s 6|= ϕ,

• sat(M, s, ϕ, 0) accepts iff M, s 6|= ϕ,

• sat(M, s, ϕ, 0) rejects iff M, s |= ϕ.
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Algorithm 1 sat(M, s, ϕ, b)
case (ϕ, b) of
(∙) (p, 1): if s ∈ V (p) then accept else reject;
(∙) (p, 0): if s ∈ V (p) then reject else accept;
(∙) (⊥, 1): reject;
(∙) (⊥, 0): accept;
(∙) (¬ϕ′, 1): sat(M, s, ϕ′, 0);
(∙) (¬ϕ′, 0): sat(M, s, ϕ′, 1);
(∃) (ϕ1 ∨ ϕ2, 1): choose ϕ′ ∈ {ϕ1, ϕ2}; sat(M, s, ϕ′, 1);
(∀) (ϕ1 ∨ ϕ2, 0): choose ϕ′ ∈ {ϕ1, ϕ2}; sat(M, s, ϕ′, 0);
(∀) (Kiϕ

′, 1): choose t ∈ ∼i (s); sat(M, t, ϕ′, 1);
(∃) (Kiϕ

′, 0): choose t ∈ ∼i (s); sat(M, t, ϕ′, 0);
(∙) ([ϕ1]ϕ2, 1): compute the ϕ1-definable restriction M′ = (S′,∼1, . . . ,∼n, V ′) of M;

if s ∈ S′ then sat(M′, s, ϕ2, 1) else accept;
(∙) ([ϕ1]ϕ2, 0): compute the ϕ1-definable restriction M′ = (S′,∼1, . . . ,∼n, V ′) of M;

if s ∈ S′ then sat(M′, s, ϕ2, 0) else reject;
(∀) ([G]ϕ, 1): Compute ‖M‖, choose a definable restriction M′′ = (S′′,∼′′

1, . . . ,∼
′′
n, V ′′)

of ‖M‖ s.t. S′′ = ∩i∈GCi where Ci are unions of classes of equivalence for
∼′

i;
if s ∈ S′′ then sat(M′′, s, ϕ, 1) else accept;

(∃) ([G]ϕ, 0): Compute ‖M‖, choose a definable restriction M′′ = (S′′,∼′′
1, . . . ,∼

′′
n, V ′′)

of ‖M‖ s.t. S′′ = ∩i∈GCi where Ci are unions of classes of equivalence for
∼′

i;
if s ∈ S′′ then sat(M′′, s, ϕ, 0) else reject;

end case

The only difficult case is ([G]ϕ, 1). Computing ‖M‖ is easy and by Proposition 5.30 we

have that M, s |= 〈G〉ϕ iff ‖M‖, ‖s‖ |= 〈G〉ϕ. Then we just have to prove it in the case

where ‖M‖ = M. Let us suppose it, and let us see that, if there is a definable restriction

M′′ = (S′′,∼′′
1, . . . ,∼

′′
n, V ′) of M such that S′′ = ∩i∈GCi where Ci are unions of classes of

equivalence for ∼i, if also s ∈ S′′ and M′′, s |= ϕ, then M, s |= 〈G〉ϕ. Let us then suppose

the first part of the implication.

M is supposed to be bisimulation-contracted, then we know that for all s ∈ M, there is

ϕs ∈ Lgal, s.t. for all t ∈ M, M, t |= ϕs iff s = t. It implies that s ∈ S′′ iff (for all i ∈ G,

s ∈ Ci) iff M, s |=
∧

i∈G(
∨

t∈Ci
ϕt) which is equivalent to M, s |=

∧
i∈G Ki(

∨
t∈Ci

ϕt). That

means that M′′ = M|
∧

i∈G Ki(
∨

t∈Ci
ϕt) and then M, s |= 〈

∧
i∈G Ki(

∨
t∈Ci

ϕt)〉ϕ (because

s ∈ S′′ and M′′, s |= ϕ). We obtain M, s |= 〈G〉ϕ.

Since sat can be implemented in polynomial time, (MC (GAL)) is in APTIME.

�

Proposition 5.32 (MC(GAL)) is PSPACE-hard.

Proof We prove that (MC(GAL)) is PSPACE-hard. Let Ψ = Q1x1...QkxkΦ(x1, ..., xk)

be an entry of the problem QBF-SAT:



116 CHAPTER 5. GROUP ANNOUNCEMENT LOGIC

• Q1, ..., Qk ∈ {∀, ∃}

• x1, ..., xk are Boolean variables

• Φ(x1, ..., xk) is a Boolean formula

We associate to Ψ a modelM1;k = (W1;k,R1, . . . ,Rk, V ), a world x ∈W1;k and a formula

ψ(Ψ) ∈ Lgal such that the following property (Pk) is true:

|= Ψ iff M1;k, x |= ψ(Ψ)

Let 1 ≤ m ≤ k, Wm;k = {x} ∪ {(xl, 0), (xl, 1)}l∈{m,...,k} be the set of possible worlds,

{p−m, p+
m, ..., p−k , p+

k } be the set of atoms, with V (p−l )={(xl, 0)} and V (p+
l )={(xl, 1)}. Let

i, g ∈ AG and let us define

{
Ri = Wm;k ×Wm;k

Rg = {(s, s) such that s ∈Wm;k}
(We remark that g is omni-

scient and that i assumes this fact)

M1;k : p−1 •(x1,0)

i

i
p−2 •(x2,0)

i

i (. . .) i
p−k •(xk,0)

i

x•
i

i

p+
1 •(x1,1)

i
p+
2 •(x2,1)

i (. . .) i
p+

k •(xk,1)

Figure 5.5: A model to prove the hardness of MC(GAL)
Ri is assumed to be reflexive, symmetrical and transitive, and Rg reflexive

We now define some formulas:

for all l ∈ {1, . . . , k}, ql = K̂i(p
−
l ∧Ki¬p+

l ) ∨ K̂i(p
+
l ∧Ki¬p−l ) and rl = K̂ip

+
l ∧ K̂ip

−
l .

Intuitively,M1,k |= rl means that (xl, 0) and (xl, 1) are still possible worlds of the model (i.e.

the truth value of xl is not fixed) and M1,k |= ql means that one and only one of (xl, 0) and

(xl, 1) is still a possible world (i.e. we have fixed the value of xl).

We can now define the equivalence recursively:

let ψ0 = Φ(K̂ip
+
1 , . . . , K̂ip

+
k ), suppose ψl is defined for some l < k, then

ψl+1 =

{
Ki[g](q1 ∧ ... ∧ qk−l ∧ rk−l+1 ∧ ... ∧ rk → ψl) if Ql+1 = ∀

K̂i〈g〉(q1 ∧ ... ∧ qk−l ∧ rk−l+1 ∧ ... ∧ rk ∧ ψl) if Ql+1 = ∃

Finally, ψ(Ψ) = ψk.

Example: If Ψ = ∀x1∃x2∀x3Φ(x1, x2, x3) then:

ψ(Ψ) = Ki[g](q1 ∧ r2 ∧ r3 → K̂i〈g〉(q1 ∧ q2 ∧ r3 ∧Ki[g](q1 ∧ q2 ∧ q3 → Φ(K̂ip
+
1 , . . . , K̂ip

+
k ))))
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Intuitively, Ki[g](q1 ∧ r2 ∧ r3 → ϕ) means ‘After having fixed the value of x1 only, ϕ’ and

K̂i〈g〉(q1 ∧ r2 ∧ r3 ∧ ϕ) as ‘There is a way of fixing the value of x1 only, such that ϕ’. We can

now prove |= Ψ ⇔M1;k, x |= ψ(Ψ) by induction on k. The induction is quite technical, but

the intuition is that something is true after having fixed the value of k + 1 boolean variables

if and only if it is true after having fixed the value of the first k variables, added the final one

and then fixed its value. More precisely:

Base case: k = 1:

Ψ = Q1x1Φ(x1), and M1 : p−1 •(x1,0)

i

x•
i

p+
1 •(x1,1)

i

• If Q1 = ∀ then |= Ψ iff (|= Φ(>) and |= Φ(⊥))

iff ( p+
1 •

i
•x |= Φ(K̂ip

+
1 ) and p−1 •

i
•x |= Φ(K̂ip

+
1 ))

iff M1, x |= Ki[g](q1 → Φ(K̂ip
+
1 )) i.e. M1, x |= ψ(Ψ)

• Else, Q1 = ∃ and |= Ψ iff (|= Φ(>) or |= Φ(⊥))

iff ( p+
1 •

i
•x |= Φ(K̂ip

+
1 ) or p−1 •

i
•x |= Φ(K̂ip

+
1 ))

iff M1, x |= K̂i〈g〉(q1 ∧ Φ(K̂ip
+
1 )) i.e. M1, x |= ψ(Ψ)

Inductive case: k → k + 1:

Suppose that (Pk) is true, and let us note: Ψ = Q1x1...QkxkQk+1xk+1Φ(x1, ..., xk, xk+1).

We pose Ψ̃(x1) := Q2x2..QkxkQk+1xk+1Φ(x1, ..., xk, xk+1) and we have |= Ψ⇔|= Q1x1Ψ̃(x1).

Thus:

• If Q1 = ∀ then |= Ψ iff (|= Ψ̃(>) and |= Ψ̃(⊥))

iff M2;k+1, x |= ψ(Ψ̃(>)) and M2;k+1, x |= ψ(Ψ̃(⊥)) (by IH)

iff M1;k+1, x |= Ki[g](q1 ∧ r2 ∧ . . . ∧ rk+1 → ψ∗(Ψ̃(K̂ip
+
1 )))

with ψ∗ obtained by replacing any succession q2 ∧ . . . by q1 ∧ q2 ∧ . . .

• If Q1 = ∃ then |= Ψ iff (|= Ψ̃(>) or |= Ψ̃(⊥))

iff M2;k+1, x |= ψ(Ψ̃(>)) or M2;k+1, x |= ψ(Ψ̃(⊥)) (by IH)

iff M1;k+1, x |= K̂i〈g〉(q1 ∧ r2 ∧ . . . ∧ rk+1 ∧ ψ∗(Ψ̃(K̂ip
+
1 )))

�

We conclude:

Theorem 5.33 (MC(GAL)) is PSPACE-complete.

We observe that our results also extend to APAL: the model checking problem for arbi-

trary public announcement logic is also PSPACE-complete. A relevant detail in the proof of
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Proposition 5.32 is that it involves an omniscient agent g, and that the role of [g] is in APAL

played by �, and that of 〈g〉 by ♦. (See also the expressivity result involving g, Proposition

5.29.)

5.4 Announcements and Ability

Our initial intuitive interpretation of a formula of the form 〈C〉ϕ was that coalition C has the

ability to make ϕ come about by making some public announcement. We now have a better

understanding of group announcement logic; let us discuss to what extent that intuition is

precise.

Recent work on strategy logics have illuminated the fact that there are many subtly

different notions of ability in the context of incomplete information (see [Jamroga, 2003,

Jamroga and van der Hoek, 2004, Ågotnes, 2006] or [Jamroga and Ågotnes, 2007] for a

recent summary). For example, does ability entail knowledge of ability? In

[Jamroga and Ågotnes, 2007, p. 433] three levels of ability in general strategy logics are

discussed. We now discuss counterparts of these in the special context of truthful public

announcements. In general strategy logics, such as atl or stit, agents and coalitions can

perform arbitrary state-transforming actions. In our setting the actions are truthful announce-

ments, and there is thus an intimate relationship between knowledge and ability. There are

two main questions of interest related to the mentioned different variants of ability here: are

they indeed different in this special context, and are they expressible in the logical language

of GAL?

5.4.1 Singleton Coalitions

For simplicity we first consider a singleton coalition {a}. What does it mean that agent a has

the ability to make a goal ϕ come about by making a public announcement? Let us begin

with the weakest form of ability.

Being able to, but not necessarily knowing it The formula 〈a〉ϕ means that there is

something which a knows, and if the fact that a knows it is announced, ϕ is a consequence.

However, it might be the case that a doesn’t know this, i.e., that Ka〈a〉ϕ is not true. As an

example, first observe that 〈Kaψ〉ϕ → Ka〈Kaψ〉ϕ is not a principle of public announcement

logic. As a counter-example take state s of the following model

•ps
a •¬p

t

and take ψa = > and ϕ = p. However, this does not mean that a cannot achieve ϕ in

all her accessible states by some other announcements (possibly different ones in different

states). But in group announcement logic, we have in the model above that s |= 〈a〉p (a can

announce Ka>), but t 6|= 〈a〉p and thus, s |= ¬Ka〈a〉p. So, 〈a〉ϕ→ Ka〈a〉ϕ is not a principle
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of group announcement logic. This is a first illustration of the fact that we must be careful

when using the term “ability”: in some (but not necessarily all) circumstances it might be

counter-intuitive to say that a has the ability to make ϕ come about, when she is not aware

that she is; when she cannot discern between the actual situation and a situation in which

she does not have this ability.

Being able to, knowing that, but not knowing how Consider the following model M

(some model updates are also shown):

M : M|K1p : M|K1q :

•¬p,q
u

2
2

•p,¬q
v

2
•p,q

s
1 •p,q

t
•p,¬q

v
2
•p,q

s
1 •p,q

t

•¬p,q
u

2

•p,q
s

1 •p,q
t

and let

ϕ = K2q ∧ (¬K2p ∨ K̂1(K2p ∧ ¬K2q))

If we take the current state to be s, we have a situation where 1 is able to make ϕ come

about and where she in addition knows this; a stronger type of ability than in the example

above. Formally: s |= 〈1〉ϕ, because s |= 〈K1q〉ϕ, and t |= 〈1〉ϕ because t |= 〈K1p〉ϕ. Thus,

s |= K1〈1〉ϕ. However, we argue, it might still be counter-intuitive to say that 1 can make ϕ

come about in this situation. The reason is that she has to use different announcements

in indiscernible states. Observe that s |= 〈K1p〉¬ϕ and t |= 〈K1q〉¬ϕ: while the same

announcements can be made in both states, they don’t have the same consequences. In

fact, there exists no single announcement agent 1 can make which will ensure that ϕ will

be true in both s and t. To see this, we can enumerate the possible models resulting from

1 making an announcement in s or t. Because such a model must include 1’s equivalence

class {s, t}, there are four possibilities. First, the starting model itself (e.g., 1 announces a

tautology), in which ϕ does not hold in s. Second, the model where only state u is removed

(e.g., 1 announces K1p), in which ϕ does not hold in s (as we saw above). Third, the model

where only state v is removed (e.g., 1 announces K1q), in which ϕ does not hold in t (as we

saw above). Fourth, the model where both u and v are removed, in which ϕ holds in neither

s nor t.

Since agent 1 cannot discern state s from state t, she has the ability to make ϕ come

about only in the sense that she depends on guessing the correct announcement. In other

words, she can make ϕ come about, knows that she can make ϕ come about, but does not

know how to make ϕ come about.

Being able to, knowing that, knowing how Thus, we can formulate a strong notion of

the ability of a to achieve ϕ by public announcements: there exists a formula ψ such that a
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knows ψ and in any state a considers possible, 〈Kaψ〉ϕ holds.

Compare this version of ability, “there is an announcement which a knows will achieve

the goal”, with the previous version above, “a knows that there is an announcement which

will achieve the goal”. We can call these notions, respectively, knowing de re and knowing de

dicto that the goal can be achieved, following [Jamroga and van der Hoek, 2004] who use the

same terminology for general strategy logics, after the corresponding notion used in quantified

modal logic. In our framework these notions are more formally defined as follows:

Knowledge de dicto: Agent i knows de dicto that she can achieve the goal ϕ in state s of

model M iff

∀t ∼i s ∃ψ ∈ Lel (M, t) |= 〈Kiψ〉ϕ (5.1)

Knowledge de re: Agent i knows de re that she can achieve the goal ϕ in state s of model

M iff

∃ψ ∈ Lel ∀t ∼i s (M, t) |= 〈Kiψ〉ϕ (5.2)

Note, however, that it is not prima facie clear that there is a distinction between these

notions in GAL, because of the intimate interaction between knowledge and possible actions

(announcements), but the model and formula above show that there indeed is.

We have seen how to express knowledge de dicto. In the most popular general strat-

egy logics such as atl, where actions are not necessarily truthful announcements, extended

with epistemics, knowledge de re is not expressible. Several recent works have focussed on

extending such logics in order to be able to express knowledge de re and other interaction prop-

erties between knowledge and ability : see [Jamroga and van der Hoek, 2004, Ågotnes, 2006,

Jamroga and Ågotnes, 2007, Broersen, 2008]. In the special case of GAL, however, it turns

out that knowledge de re in fact is already expressible (in the single agent case, at least), as

the following proposition shows.

Proposition 5.34

1. Knowledge de dicto (5.1) is expressed by the formula Ki〈i〉ϕ

2. Knowledge de re (5.2) is expressed by the formula 〈i〉Kiϕ

Proof

1. Immediate.

2. Let M be a model and s a state in M.
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Agent i knows de re that she can achieve ϕ

iff ∃ψ ∈ Lel, (M, s |= Kiψ and ∀t ∈ S (if s ∼i t then M, t |= 〈Kiψ〉ϕ))

iff ∃ψ ∈ Lel, (M, s |= Kiψ and ∀t ∈ S (if s ∼i t then M|Kiψ, t |= ϕ))

(since M, s |= Kiψ and s ∼i t implies that M, t |= Kiψ)

iff ∃ψ ∈ Lel, (M, s |= Kiψ and ∀t ∈ [[Kiψ]], M|Kiψ, t |= ϕ)

iff ∃ψ ∈ Lel, (M, s |= Kiψ and ∀t ∈ [[Kiψ]], (if s ∼i t then M|Kiψ, t |= ϕ))

iff ∃ψ ∈ Lel((M, s) |= Kiψ and M|Kiψ, s |= Kiϕ)

iff (M, s) |= 〈i〉Kiϕ.

�

Thus, i knows de re that she can achieve ϕ iff she can achieve the fact that she knows ϕ.

This depends crucially on the fact that by “achieve” we mean achieve by truthful public

announcements; it is not true if we allow general actions. As an illustration of the latter case,

take the following example. An agent i is in front of a combination lock safe. The agent does

not know the combination. The available actions correspond to dialling different codes. The

agent is able to open the safe, 〈i〉open, because there is a successful action (dial the correct

code). She knows de dicto that she can open the safe, Ki〈i〉open, because this is true in

all the states she considers possible (a possible state correspond to a possible correct code).

But she does not know de re that she can open the safe, because there is no code that will

open the safe in all the states she considers possible. However, 〈i〉Kiopen does hold: there

is some action she can perform (dial the correct code) after which she will know that the

safe is open. In GAL, the fact that 〈i〉Kiϕ expresses (5.2) is a result of the inter-dependence

between knowledge and actions (announcements) and the S5 properties of knowledge. The

following are some properties of knowledge de dicto and de re in GAL.

Proposition 5.35 The following are valid.

1. Ki〈i〉ϕ→ 〈i〉ϕ. Knowledge de dicto of ability implies ability; if you know that you can

do it then you can do it.

2. 〈i〉Kiϕ→ Ki〈i〉ϕ. Knowledge de re implies knowledge de dicto; if you know how to do

it you know that you can do it.

3. 〈i〉Kiϕ↔ Ki〈i〉Kiϕ. Knowledge de re holds iff knowledge of knowledge de re holds; you

know how to do it iff you know that.

Proof The first point is immediate from reflexivity of the accessibility relations. The second

point is also immediate; let ψ be fixed by (5.2). For the third point, the direction to the left

is immedate by point 1, so consider the direction to the right. Assume that M, s |= 〈i〉Kiϕ,

i.e., that (5.2) holds. Let u ∼i s. We must show that ∃ψ ∈ Lel ∀t ∼i u (M, t) |= 〈Kiψ〉ϕ.

Let ψ be as in (5.2), and let t ∼i u. By transitivity of ∼i we have that t ∼i s, and thus that

(M, t) |= 〈Kiψ〉ϕ by (5.2).
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�

On first sight the expression 〈i〉Kiϕ of knowledge de re might seem to suffer from a similar

problem as the expression of “mere” ability of the first type we discussed above, 〈i〉ψ, namely

that while i has the ability to make ψ come about she does not necessarily know this (de

dicto). However, as the last point in the proposition above shows, if ψ is of the special form

Kiϕ (for the same agent i), then ability does in fact imply knowledge of ability. In every

circumstance where you can achieve a state where you know ϕ, you know that you can.

As illustrated above, the other direction of the second property in Prop. 5.35 does not

hold; knowledge de dicto does not imply knowledge de re. Given our expressions of these two

properties, we thus have that

Ki〈i〉ϕ→ 〈i〉Kiϕ is not valid

– that you know that you can achieve ϕ does not necessarily mean that you can achieve a

state where you know ϕ.

5.4.2 More Than One Agent

In the case of more than one agent, there are even more subtleties. In particular, what does

it mean that a group knows how to achieve something, i.e., knows which joint announcement

will be effective? That everybody knows it? That they have common knowledge of it?

In [Jamroga and van der Hoek, 2004] it is argued that the answer depends on the situa-

tion. It might be the case that the agents have common knowledge (although they then need

some resolution mechanism for cases when there are more than one effective announcement,

in order to coordinate); that every agent knows the effective announcement; that the agents

have distributed knowledge about the effective announcement and thus can pool their knowl-

edge together to find out what they should do; that a particular agent (the “leader”) knows

the effective announcement and can communicate it to the others.

In GAL we do not have distributed or common knowledge in the language, but “everybody

knows” can be defined: EGϕ ≡
∧

i∈G Kiϕ, where G is a coalition. The following generalisation

of (5.2) says that in state s coalition G can make a truthful announcement which all the

members of G know will achieve the goal ϕ:

∃{ψi}i∈G ⊆ Lel ∀(t, s) ∈
⋃

i∈G

∼i (M, t) |= 〈
∧

i∈G

Kiψi〉ϕ (5.3)

However, while the single agent case (5.2) is expressed by 〈i〉Kiϕ, it is not in general the

case that (5.3) is expressed by 〈G〉EGϕ. The following is a counter-example. Let M and ϕ

be the following model and formula.



5.4. ANNOUNCEMENTS AND ABILITY 123

•p,¬q
t

•p,q
s

1

2

•¬p,q
u

ϕ = p ∧ q

Let G = {1, 2}. It is easy to see that group G in s does not know de re that they can achieve ϕ

in the sense of (5.3): it would imply, for instance, that it is possible to make an announcement

in state t which at the same time eliminates state t – which is impossible. However, 〈1, 2〉EGϕ

holds in s – {1, 2} can announce K1p ∧K2q.

Let us consider distributed and common knowledge. Assume for a moment that the

language is extended with operators CG and DG where G is a coalition, such thatM, s |= DGϕ

iff for all (s, t) ∈
⋂

i∈G∼i M, t |= ϕ and M, s |= CGϕ iff for all (s, t) ∈ ∼G
∗ M, t |= ϕ, where

∼G
∗ is the reflexive transitive closure of

⋃
i∈G ∼i. The following version of (5.3) says that in

s, G can make a truthful announcement which G distributively know will achieve the goal ϕ:

∃{ψi}i∈G ⊆ Lel ∀t ∈ S

(

(s, t) ∈
⋂

i∈G

∼i ⇒ (M, t) |= 〈
∧

i∈G

Kiψi〉ϕ

)

(5.4)

Contrary to the case for “everybody knows”, this property is in fact expressed by the analogue

to the expression for the single-agent case. This can be shown similarly to Prop. 5.35 – observe

that (s, t) ∈
⋂

i∈G and M, s |=
∧

i∈G Kiψi implies that M, t |=
∧

i∈G Kiψi:

Proposition 5.36 The property (5.4) is expressed by the formula 〈G〉DGϕ.

The situation for common knowledge is, however, similar to that of “everybody knows”.

The following version of (5.4) says that in s G can make a truthful announcement which G

commonly know will achieve the goal ϕ:

∃{ψi}i∈G ⊆ Lel ∀t∼G
∗s (M, t) |= 〈

∧

i∈G

Kiψi〉ϕ (5.5)

The model M, formula ϕ and coalition G = {1, 2} above is a counterexample showing that

(5.5) is not expressed by 〈G〉CGϕ: (5.5) does not hold in state s, but M, s |= 〈G〉CGϕ.

Summing up, it can be argued that all of the different notions of ability discussed in this

section are useful. For example, in different contexts it might be useful to reason about what

an agent can achieve by guessing the right actions to perform, while in others what she can
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achieve by identifying the correct actions with certainty. It is, however, of vital importance to

discriminate between these different notions, for example in the analysis of security protocols.

5.5 Security Protocols

Consider a sender and a receiver who attempt to communicate a secret to each other without

an eavesdropper learning it. A very powerful eavesdropper is one that intercepts all com-

munications. This creates the setting where sender, receiver, and eavesdropper are three

agents that can be modelled in a multi-S5 system and where all communications are public

announcements by sender and receiver. One specific example of such a setting is known as

the Russian Cards Problem (see [van Ditmarsch, 2003]). The setting is one where a pack of

all different cards are distributed over the three ‘players’, where every player only knows his

own cards, where sender and receiver have an informational advantage over the eavesdropper

because they hold more cards, and where the ‘secrets’ that should not be divulged are about

card ownership. Posed as a riddle it looks as follows—Alex and Brune are sender and receiver,

Cha the eavesdropper:

From a pack of seven known cards 0, 1, 2, 3, 4, 5, 6 Alex and Brune each draw three

cards and Cha gets the remaining card. How can Alex and Brune openly (publicly)

inform each other about their cards, without Cha learning from any of their cards

who holds it?

To simplify matters, assume that Alex has drawn {0, 1, 2}, that Brune has drawn {3, 4, 5}

and that Cha therefore has card 6, as in Figure 5.6.

�
�
�
�0

�
�
�
�3�

�
�
�1

�
�
�
�4�

�
�
�2

�
�
�
�5�

�
�
�6

Figure 5.6: Three moody children playing in the Russian cards problem

The initial Kripke model D describing this setting consists of all possible card deals (val-

uations). In that model an epistemic class for an agent can be identified with the hand of

cards of that agent. For example, given that Alex holds {0, 1, 2}, he cannot distinguish the



5.5. SECURITY PROTOCOLS 125

four deals—allow us to use some suggestive notation—012.345.6, 012.346.5, 012.356.4, and

012.456.3 from one another.

Given that all announcements that can be made by a player are known by that player,

they consist of unions of equivalence classes for that player and can therefore be identified

with sets of alternative hands for that player. One solution is where

Alex says “My hand of cards is one of 012, 034, 056, 135, 246” after which Brune

says “My hand of cards is one of 345, 125, 024.”

The last is equivalent in that information state to Brune saying “Cha has card 6.” Alex and

Brune in fact execute a protocol here, not in the sense of sets of sequences of announcements

but in the sense of functions from local states of agents to nondeterministic choice between

announcements. For example, Alex is executing “given cards i, j, k, the first of my five hands

is that actual hand ijk; the second of my five hands to announce is ikl where k, l are chosen

from the five remaining cards; the third is imn where m,n are the remaining two cards; etc...;

shuffle the hands before announcing them.”

We can describe this solution in logic. Agent a stands for Alex, b for Brune, and c for Cha.

Let qi stand for ‘agent i holds card q’ and let klmi stand for ki∧ li∧mi. The information and

safety requirements are as follows — the conjunction in the formula suggests a conjunction

over all hands of cards, ‘Cha does not learn any card’ means ‘Cha does not learn the ownership

of any card except her own card.’

Alex learns Brune’s cards
∧

ijk(ijkb −→ Kaijkb) (one)

Brune learns Alex’s cards
∧

ijk(ijka −→ Kbijka) (two)

Cha does not learn any card
∧6

q=0((qa −→ ¬Kcqa) ∧ (qb −→ ¬Kcqb)) (three)

These requirements should hold throughout the model after protocol completion (i.e., they

should be common knowledge between Alex and Brune). The safety requirement should be

satisfied both at the end and in all intermediate stages: after any announcement that forms

part of such a protocol.

All protocols are finite, because the model is finite and all informative announcements

result in proper model restriction. But it is unclear how long such protocols need to be.

The above solution was of length two, but settings that require strictly longer protocols are

also known. The uncertain but finite length cannot be described in public announcement

logic, but it can be described in group announcement logic. The diamond in 〈ab〉ϕ refers to

arbitrarily finite length protocols taking place between sender a and receiver b in the presence

of other agents, such as the eavesdropper, as was discussed in Section 5.1.3.

Let us see how this works for the length-two protocol above that solves the Russian Cards

Problem. First, we model the solution in public announcement logic. In the solution, first

Alex announces 012a∨034a∨056a∨135a∨246a (alex ). Then Brune announces 345b∨125b∨024b
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(brune). After these two announcements the solution requirements are satisfied. This can now

be described in various ways: as a sequence of two announcements by different agents, as a

sequence of two simultaneous announcements by Alex and Brune, or as a single announcement

by Alex and Brune.

D, 012.345.6 |= 〈Kaalex 〉〈Kbbrune〉(one ∧ two ∧ three)

D, 012.345.6 |= 〈Kaalex ∧KbT 〉〈KaT ∧Kbbrune〉(one ∧ two ∧ three)

D, 012.345.6 |= 〈Ka(alex ∧ [Kaalex ∧KbT ]T ) ∧Kb(T ∧ [Kaalex ∧KbT ]brune)〉(one ∧ two ∧ three)

The last one implies that we have, in this case:

D, 012.345.6 |= 〈ab〉(one ∧ two ∧ three)

Given that we should be able to realize the three postconditions after any execution of the

underlying protocol, and regardless of the initial card deal, the existence of a successful

protocol to realize them can be expressed all at once by the model validity

D |= 〈ab〉(one ∧ two ∧ three)

or in other words

“〈ab〉(one ∧ two ∧ three) is valid in the initial model for card deals” (5.6)

In principle, we can now model check this formula in that model, thus establishing that a

secure exchange is possible under the uncertainty conditions about card ownership in a fully

automated way.

We have so far overlooked one aspect of the meaning of announcements executing such

protocols. The security requirement three should be an invariant: its validity throughout

the model should be preserved after every good announcement. In this particular case we

can enforce that, because its negation is a positive formula: if it is ever not preserved, then

it is lost forever afterwards. Therefore, it suffices to guarantee it after the execution of the

protocol. Thus the above expression also incorporates that invariance.

One must be careful when interpreting the meaning of the existence of sequences of an-

nouncements. If we can replace the two successive announcements: Alex says “My hand

of cards is one of 012, 034, 056, 135, 246” after which Brune says “My hand of cards is one

of 345, 125, 024”, by a single one, does that not mean that all protocols can be reduced to

length 1? And what would in this case that single simultaneous announcement be? Well: as

both agents are announcing facts and not knowledge, their single announcement is simply the

conjunction of their successive announcements. As the second one for Alex and the first one

for Brune was ‘true’ (vacuous), this means that they could simultaneously have made their
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successive announcements: Alex says “My hand of cards is one of 012, 034, 056, 135, 246” and

simultaneously Brune says “My hand of cards is one of 345, 125, 024”. Unfortunately, even

though this indeed solves the problem, the agents do not know the public consequences of

their joint action merely from the public consequences of their individual part in it. This

situation was discussed in the previous section: there is a simultaneous announcement by

Alex and Brune which will achieve the goal, but Alex and Brune do not know that their

respective announcements will achieve the goal – they will not achieve the goal in all the

states they consider possible. A different execution of the protocol for Alex, when he holds

cards {0, 1, 2}, is the announcement “My hand of cards is one of 012, 035, 046, 134, 256”. From

that with Brune’s above announcement Cha can deduce straightaway that the card deal is

012.345.6. And, obviously, Brune does not know whether Alex is going to announce the origi-

nal or the alternative set of five hands, or any of many others. In epistemic terms,we can sum

up our achievements for this security setting as follows, also using the discussion and results

of Section 5.4.

D |= 〈ab〉(one ∧ two ∧ three) (5.7)

D 6|= 〈ab〉Ka(one ∧ two ∧ three) (5.8)

D 6|= 〈ab〉Kb(one ∧ two ∧ three) (5.9)

D |= 〈a〉Ka(two ∧ three ∧ 〈b〉Kb(one ∧ two ∧ three)) (5.10)

Recall (Proposition 5.34.2) that a formula of the form 〈i〉Kiϕ expresses the fact that agent i

knows de re that she can achieve ϕ; that she can make an announcement that will ensure that

ϕ is true in any state that i considers possible. Thus, the last formula above, (5.10), expresses

the fact that there is an announcement that Alex can make after which Brune has learnt his

cards and Cha remains ignorant, no matter which of the four card deals Alex considers possible

is the actual one, and such that Brune then can make an announcement after which all three

requirements hold. Thus, it is rational for Alex to make that announcement, and for Brune

to make a proper counter-announcement in the resulting state. Unlike the property (5.6),

(5.10) shows that Alex and Brune know how to execute a successful protocol.





Chapter 6

Permission and Public

Announcements

Consider an art school examining works at an exhibition. A student is supposed

to select one of the displayed works and is then permitted to make a number

of intelligent observations about it, sufficient to impress the examiners with the

breadth of her knowledge. Now in such cases it never hurts to be more informative

than necessary, in order to pass the exam, but a certain minimum amount of

intelligent information has to be passed on. This particular museum has both

the Night Watch by Rembrandt and Guernica by Picasso on display in the same

room! You pass the exam if you observe about the Night Watch that a big

chunk of a meter or so is missing in the left corner, that was cut off in order to

make the painting fit in the Amsterdam Townhall (a1), and that the painter was

Rembrandt van Rijn (a2). Clearly, this is not a very difficult exam. You also

pass the exam if you make two of the three following observations: that Guernica

depicts the cruelties of the Spanish Civil war (b1), that it is painted in black and

white and not in colour (b2), and that the painter was Pablo Picasso (b3). It is not

permitted to make observations about different paintings at the same time, so any

conjunction of ai’s and bj ’s is not permitted: it would amount to bad judgement if

you cannot focus on a single painting. You are obliged to make two observations

about the Rembrandt and in that case say nothing about the Picasso, or to make

at least two of the three possible observations about the Picasso and in that case

say nothing about the Rembrandt. We can treat the permissions and obligations

in this setting in an extension of public announcement logic.

To formalize the concept of “having the permission to say” we extend Plaza’s public

announcement logic [Plaza, 1989] with a modal operator P of permission, where Pϕ expresses

that it is permitted to say (i.e., announce) ϕ.

Our proposal can be seen as an adaption of the dynamic logic of permission pro-

posed by [van der Meyden, 1996]. Van der Meyden’s proposal was later elaborated on by

[Pucella and Weissman, 2004]). In Van der Meyden’s work, ♦(α,ϕ) means “there is a way

to execute α which is permitted and after which ϕ is true.” We treat the particular case

where actions are public announcements. Thus, for α in van der Meyden’s ♦(α,ϕ) we take

129
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an announcement ψ! such that ♦(ψ!, ϕ) now means “there is a way to execute the announce-

ment ψ which is permitted and after which ϕ is true.” The executability precondition for an

announcement (‘truthful public announcement’) is the truth of the announcement formulas,

therefore, the latter is equivalent to “ψ is true and it is permitted to announce ψ, after which

ϕ is true”. This suggests an equivalence of ♦(ψ!, ϕ) with, in our setting, Pψ ∧ 〈ψ〉ϕ, but our

operator behaves slightly different. This is because we assume that if you have the permission

to say something, you also have the permission to say something weaker, and because our

binary permission operator allows update of permissions after an announcement.

[van der Meyden, 1996] also introduces a weak form of obligation. The meaning of O(α,ϕ)

is “after any permitted execution of α, ϕ is true”. Similarly, we also introduce an obligation

operator Oϕ, meaning “the agents are obliged to announce ϕ.”

This chapter further relates to the extension of public announcement logic with protocols

by [van Benthem et al., 2009, Wang et al., 2009]. In their approach, one cannot just announce

anything that is true, but one can only announce a true formula that is part of the protocol,

i.e., that is the first formula in a sequence of formulas (standing for a sequence of successive

announcements) that is a member of a set of such sequences called the protocol. In other

words, one can only announce permitted formulas.

In the setting of informative actions like announcements we leave the beaten track for

permission in one important aspect. Cha is given permission by her parents to invite uncle

Jean for her 8th birthday party with his children friends and for a delightful canoe trip on

the river Rhône, but not for the family dinner afterwards. When seeing uncle Jean, she only

mentions the canoe trip but not the children’s party. She does not mention the family dinner.

Has she transgressed the permissions given? Of course not. Permission to say p ∧ q implies

permission to say only q. She has also not transgressed the permission if she were not to invite

him at all. Permission to say p ∧ q implies permission to say nothing, i.e., to say the always

true and therefore uninformative statement >. Similarly, an obligation to say ϕ entails the

obligation for anything entailed by ϕ. If you are obliged to say p∧q you are also obliged to say

q. Now saying q does not therefore mean you have fulfilled the original obligation of p∧q, you

have only partially fulfilled the entailed weaker obligation of q. It may be worth to already

point out as this stage that the weakening of announcement formulas is unrelated to Ross’s

Paradox (see [Ross, 1941]): this is about the obligation to do one of two possible actions—the

alternative to that in public announcement logic would be the obligation to make one of two

possible announcements (announcement of) ϕ and (announcement of) ψ, completely different

from the obligation to make an announcement of (the disjunctive formula) ϕ∨ ψ. As we saw

in Section 3.2, in dynamic epistemic logics, there is a clear distinction between actions and

formulas. We comment the validity of the classical deontic paradoxes in Section 6.5.1.

We present first the syntax and the semantics of our logic, continue with various validi-

ties and semantics observations, and conclude with the completeness of the axiomatization

and the decidability of the problem of satisfiability. After that we present an example in
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detail: the card game La Belote. We conclude with some observations relating to stan-

dard deontic logical topics, and a more detailed comparison of our proposal with the rele-

vant dynamic logical literature, i.e. with [van der Meyden, 1996, Pucella and Weissman, 2004,

van Benthem et al., 2009].

Most parts of this chapter have been published in the Journal of Philosophical Logic

([Balbiani and Seban, 2011]).

6.1 The Logic of Permission and Obligation to Speak

6.1.1 Syntax

The logic POPAL of permitted announcements is an extension of the multi-agent epistemic

logic of public announcements ([Plaza, 1989]).

Definition 6.1 (Language Lpopal) The language Lpopal over a countable set of agents AG

and a countable set of propositional atoms PROP is defined as follows:

ϕ ::= p|⊥|¬ϕ|ψ ∨ ϕ|Kiϕ|[ψ]ϕ|P (ψ,ϕ)|O(ψ,ϕ)

where i ∈ AG and p ∈ PROP . The language Lpoel is the fragment without announcement

construct [ψ]ϕ, the language Lpal is the fragment without O and P , and the language Lel is

the fragment restricted to the Boolean and epistemic operators.

The intuitive reading of Kiϕ is “agent i knows that ϕ is true” whereas [ψ]ϕ is read as “after

announcing ψ, it is true that ϕ”. We read P (ψ,ϕ) as “(ψ is true and) after announcing ψ, it

is permitted to announce ϕ”. Similarly, O(ψ,ϕ) stands for “(ψ is true and) after announcing

ψ, it is obligatory to announce ϕ”. Note that announcements are assumed to be public and

truthful. Definitions by abbreviation of other Boolean operators are standard. Moreover, we

define by abbreviation:

• 〈ψ〉ϕ := ¬[ψ]¬ϕ;

• Pϕ := P (>, ϕ);

• Oϕ := O(>, ϕ).

Formula Pϕ stands for “It is permitted to announce ϕ” and Oϕ stands for “It is obligatory

to announce ϕ” (the semantics also entails the truth of ϕ, in both cases); 〈ψ〉ϕ stands for “ψ

is true and after announcing ψ, ϕ is true.” Note the difference with [ψ]ϕ: “if ψ is true, then

after announcing it, ϕ is true.” The latter is vacuously true if the announcement cannot be

made.

The degree deg of a formula is a concept that will be used in the completeness proof, in

Section 6.2.2. It keeps count of the number of P and O operators in a given formula.
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Definition 6.2 (Degree) The degree of a formula ϕ ∈ Lpopal is defined inductively on the

structure of ϕ as follows:

deg(p) = 0 deg(ψ1 ∨ ϕ2) = max(deg(ψ1), deg(ψ2))

deg(⊥) = 0 deg([ψ]ϕ) = deg(ψ) + deg(ϕ)

deg(¬ψ) = deg(ψ) deg(P (ψ,ϕ)) = deg(ψ) + deg(ϕ) + 1

deg(Kiψ) = deg(ψ) deg(O(ψ,ϕ)) = deg(ψ) + deg(ϕ) + 1

This is therefore not the usual modal degree function, that counts Ki operators. For all

formulas ϕ ∈ Lpopal , deg(ϕ) = 0 iff ϕ does not contain any occurrence of P or O iff ϕ ∈ Lpal .

6.1.2 Semantics

The models of our logic are Kripke models with an additional permission relation P between

states and pairs of sets of states, that represents, for each state, the announcements that are

permitted to be done in this state.

Definition 6.3 (Permission Kripke Model) Given a set of agents AG and a set of atoms

PROP , permission Kripke models have the form M = (S, {∼i}i∈AG, V,P) with S a non-

empty set of states, for each i ∈ AG, ∼i an equivalence relation between states of S, valuation

function V mapping propositional atoms to subsets of S, and P ⊆ S × 2S × 2S such that if

(s, S′, S′′) ∈ P then s ∈ S′′ and S′′ ⊆ S′.

If the equivalence relation ∼i holds between states s, t ∈ S, this means that, as far as

agent i is concerned, s and t are indiscernible. The membership of (s, S′, S′′) in P can be

interpreted as follows: in state s, after an announcement that restricts the set of possible

states to S′, a further announcement in S′ that restricts that set to S′′ is permitted. We will

explain this in more detail after giving the semantics.

We simultaneously define the restrictionMψ of a modelM after the public announcement

of ψ, and the satisfiability relation |=. In the definitions we use the abbreviation [[ψ]]M =

{s ∈ S | M, s |= ψ}. If no ambiguity results, we occasionally write [[ψ]] instead of [[ψ]]M.

Definition 6.4 (Restricted model) For any model M and any ψ ∈ Lpopal , we define the

restriction Mψ = (Sψ,∼ψ
i , Vψ,Pψ) where:

• Sψ = [[ψ]]M

• for all i, ∼ψ
i = ∼i ∩ (Sψ × Sψ)

• for all p ∈ PROP , Vψ(p) = V (p) ∩ Sψ

• Pψ = {(s, S ′, S′′) ∈ P | s ∈ Sψ, S′ ⊆ Sψ, S′′ ⊆ Sψ}
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Definition 6.5 (Satisfiability relation) Let M be a model and let s be a state of S. The

satisfiability relation |= is defined inductively on the structure of ϕ:

M, s |= p iff s ∈ V (p)

M, s 6|= ⊥

M, s |= ¬ψ iff M, s 6|= ψ

M, s |= ψ1 ∨ ψ2 iff (M, s |= ψ1 or M, s |= ψ2)

M, s |= Kiψ iff for all t ∼i s, M, t |= ψ

M, s |= [ψ]χ iff (M, s |= ψ ⇒Mψ, s |= χ)

M, s |= P (ψ, χ) iff for some (s, [[ψ]]M, S′′) ∈ P, S′′ ⊆ [[〈ψ〉χ]]M

M, s |= O(ψ, χ) iff for all (s, [[ψ]]M, S′′) ∈ P, S′′ ⊆ [[〈ψ〉χ]]M.

For all ϕ ∈ Lpopal , M |= ϕ iff for all s ∈ S, M, s |= ϕ; and |= ϕ iff for all models M we

have M |= ϕ.

We do not impose that S′ and S′′ are denotations of formulas in the language for (s, S′, S′′)

to be in P . This semantics is thus more general than the intuitive one for “having the

permission to say”. Indeed, if S′ or S′′ do not correspond to a restriction of S made by

an announcement, then (s, S′, S′′) ∈ P does not correspond to some announcement being

permitted.

The semantics of P (ψ, χ) expresses that after announcement of ψ it is permitted to an-

nounce a χ weaker than the restriction given in the relation P . If the S′′ in (s, [[ψ]], S′′) is the

denotation of some [[〈ψ〉ϕ]], we get that after announcement of ψ it is permitted to announce

a χ weaker than (implied by) ϕ.

Remark 6.6 For any finite list of formulas σ = (σ1, . . . , σn) we can defineMσ by a direct in-

duction on the length of σ. Similarly, for every ϕ ∈ Lpopal we abbreviate [σ]ϕ := [σ1] . . . [σn]ϕ.

This will be particularly useful in Section 6.6.

We shall make another important observation before going ahead. In Proposition 6.7 we

notice that Lpopal may be reduced to a language with a unary operator Pϕ that we would

read simply ‘it is permitted to say ϕ’. We get the equivalence of their expressivity through

the translation P (ψ,ϕ) := 〈ψ〉Pϕ. We prove this result after discussing it a while.

The language with unary operator (let us call it L1
popal ) has an advantage and an incon-

venience with respect to Lpopal . Its advantage is that it is easier to read and to translate into

natural language: sentences such as ‘after the announcement of ψ it is permitted to say ϕ’ are

quite boring and not intuitive. Its inconveniences are on one hand that the unary nature of
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its operators is farther to the semantics made of triplets that we just saw, on the other hand

that technical results are more difficult to obtain, because the language cannot be reduced

to a language without announcements. In the following chapter we decided to use a kind of

language with unary operator, but in this one let us use binary ones.

As we show now, both languages are expressively equivalent, and the reader may prefer

to translate binary operators into unary ones using the translation P (ψ,ϕ) := 〈ψ〉Pϕ used in

the following proof.

Proposition 6.7 The language Lpopal is expressively equivalent to the language L1
popal .

Proof Clearly, Lpopal is at least as expressive as L1
popal , indeed the latter is a sublanguage

of the former, considering that the Pϕ and Oϕ are defined by the following abbreviations

Pϕ := P (>, ϕ) and Oϕ := O(>, ϕ). To prove the equivalence, it is thus sufficient to prove

that for all ψ,ϕ ∈ Lpopal , |= P (ψ, ϕ) ←→ 〈ψ〉P (>, ϕ) and |= O(ψ,ϕ) ←→ 〈ψ〉O(>, ϕ). We

refer to proposition 6.9 to see that |= [ψ]P (>, ϕ)←→ (ψ −→ P (ψ,ϕ)) and |= [ψ]O(>, ϕ)←→

(ψ −→ O(ψ,ϕ)). It remains to prove that |= P (ψ,ϕ) −→ ψ (and idem for O). But by

definition of T , if (s, [[ψ]]M, S′′) ∈ P then s ∈ [[ψ]]M. Then we have the wanted result.

�

6.1.3 Example: Art School

Consider the example presented in the introduction. In an art school examination you are

asked to “describe precisely one (and only one) of the presented pictures”. There are two

distinct sets of intelligent observations to make (modelled as atomic propositional variables):

A = {a1, a2}, B = {b1, b2, b3}, with A ∪ B = PROP . The domain of discourse consists of

all possible valuations S = 2PROP , in the actual state s all atoms are in fact true, and our

student is in fact an omniscient agent g (i.e. ∼g= idS) that can announce anything she likes.

The set P is given as P = {(s, [[>]], [[a1 ∧ a2]]), (s, [[>]], [[b1 ∧ b2]]), (s, [[>]], [[b1 ∧ b3]]), (s, [[>]], [[b2 ∧

b3]]), (s, [[>]], [[b1 ∧ b2 ∧ b3]])}. Note that [[>]] = S. We now have that

• It is permitted to say a1 (M, s |= P (>, a1)), because (s, [[>]], [[a1 ∧ a2]]) ∈ P and [[a1 ∧

a2]] ⊆ [[〈>〉a1]]M (where [[〈>〉a1]]M = [[a1]]M): it is permitted to say something weaker

than a1 ∧ a2.

• It is not permitted to say a1 ∧ b2 (M, s |= ¬P (>, a1 ∧ b2)) because the denotation of

that formula is not contained in either of the members of the set P .

• It is not obligatory to say a1 (M, s 6|= O(>, a1)), because it is permitted to say b1 ∧ b2,

and [[a1]] 6⊆ [[b1 ∧ b2]].

• It is obligatory to say ob := (a1 ∧ a2) ∨ (b1 ∧ b2) ∨ (b2 ∧ b3) ∨ (b1 ∧ b3) as all members of

P are stronger.
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This last obligation is also the strongest obligation in this setting. It is, e.g., also obligatory

to say a1 ∨ b1 ∨ b2 (M, s |= O(>, a1 ∨ b1 ∨ b2)) because this is weaker than ob. However, as

already mentioned, this does not mean that a student has fulfilled her obligation when saying

a1 ∨ b1 ∨ b2 - she then only fulfills part of her obligation (and will therefore fail the exam!).

We observe that our intuition of what an obligation is corresponds to the strongest obligation

under our definition—reasons to prefer the current definition are technical, such as getting

completeness right. A different definition, nearer to our intuition, is proposed in Chapter 7.

6.1.4 Valid Principles and Other Semantic Results

The O and P operators are not interdefinable. This is because the obligation to say ϕ means

that anything not entailing ϕ may not be permitted to say, and not only that it is not

permitted to say ¬ϕ. As an example, consider the following two models that have the same

domain S = {s1, s2}, the same valuation V (p) = {s1}, the same epistemic relation ∼i= S×S,

but that differ on the permission relation: M = (S, V,∼i,P) and M′ = (S, V,∼i,P ′) where

P = {(s1, S, {s1}), (s2, S, S)} and P ′ = {(s1, S, {s1}), (s1, S, S), (s2, S, S)}.

Let L−popal be the language without the obligation operator O. The models M and M′

satisfy the same formulas in that language: for all k ∈ {1, 2} and all ϕ ∈ L−popal , (M, sk |= ϕ

iff M′, sk |= ϕ). The proof is obvious for all inductive cases of ϕ except when ϕ takes

shape P (ψ,ϕ). In that case, observe from the semantics of P and the given relations P and

P ′ that only formulas of type P (>, ϕ2) (or simply P (ϕ2)) can be true in these models, as

the second argument of all triples in P and P ′ is the entire domain S. Further these two

properties: first anything that is true in s1 is permitted to be said, formally for all ϕ ∈ Lpopal ,

M, s1 |= ϕ ↔ P (ϕ) and M′, s1 |= ϕ ↔ P (ϕ). Second anything that is permitted to be said

in s2 is a validity of the model, formally for all ϕ ∈ Lpopal , M, s2 |= P (ϕ) → (ϕ ↔ >) and

M′, s2 |= P (ϕ) → (ϕ ↔ >). So M and M′ are modally equivalent in L−popal . On the other

hand, as (s, S, S) is not in P we have that M, s1 |= O(>, p) but M′, s1 |= ¬O(>, p), so the

models are not modally equivalent in Lpopal . We conclude that:

Proposition 6.8 L−popal is strictly less expressive than Lpopal.

The standard validities for public announcement logic are preserved in this extension

of the logic with permission and obligation (for details, see a standard introduction like

[van Ditmarsch et al., 2007]):

• |= [ψ]p↔ (ψ −→ p)

• |= [ψ]⊥ ↔ ¬ψ

• |= [ψ]¬ϕ↔ (ψ −→ ¬[ψ]ϕ)

• |= [ψ](ϕ1 ∨ ϕ2)↔ ([ψ]ϕ1 ∨ [ψ]ϕ2)



136 CHAPTER 6. PERMISSION AND PUBLIC ANNOUNCEMENTS

• |= [ψ]Kiϕ↔ (ψ −→ Ki[ψ]ϕ)

• |= [ψ1][ψ2]ϕ↔ [〈ψ1〉ψ2]ϕ

For example, [ψ]p ↔ (ψ −→ p) says that p is true after announcement of ψ iff ψ implies

p (is true). As ψ is the condition to be able to make the announcement, this principle

merely says that an announcement cannot change the valuation of atoms. Of course, for

other formulas than atoms we cannot get rid of the announcement that way. A typical

counterexample (the Moore-sentence) is that (p ∧ ¬Kip) −→ (p ∧ ¬Kip) is a trivial validity

whereas [p ∧ ¬Kip](p ∧ ¬Kip) is false, because whenever p ∧ ¬Kip can be announced, p is

known afterwards: Kip.

Additional to the principles for public announcement logic, two principles address how to

treat a permission or obligation operator after an announcement.

Proposition 6.9

For all p ∈ POPAL, all ψ,ϕ, ψ1, ψ2, ϕ1, ϕ2 ∈ Lpopal :

1. |= [ψ1]P (ψ2, ϕ)↔ (ψ1 −→ P (〈ψ1〉ψ2, ϕ))

2. |= [ψ1]O(ψ2, ϕ)↔ (ψ1 −→ O(〈ψ1〉ψ2, ϕ))

Proof For all M, all s ∈ S and all ψ1, ψ2, ϕ ∈ Lpopal we have:

1. (⇒) Suppose that M, s |= [ψ1]P (ψ2, ϕ) and s ∈ [[ψ1]]M. Then for some S′′ ⊆

[[〈ψ2〉ϕ]]Mψ1
, (s, [[ψ2]]Mψ1

, S′′) ∈ Pψ1 . This implies that for some S′′ ⊆

[[〈ψ1〉〈ψ2〉ϕ]]M, (s, [[〈ψ1〉ψ2]]M, S′′) ∈ Pψ1 , i.e. for some S′′ ⊆ [[〈ψ1〈ψ2〉〉ϕ]]M,

(s, [[〈ψ1〉ψ2]]M, S′′) ∈ P . Finally M, s |= P (〈ψ1〉ψ2, ϕ).

(⇐) Suppose thatM, s |= (ψ1 −→ P (〈ψ1〉ψ2, ϕ)). IfM, s 6|= ψ1 then obviouslyM, s |=

[ψ1]P (ψ2, ϕ). Otherwise s ∈ [[ψ1]]M and M, s |= P (〈ψ1〉ψ2, ϕ). Therefore, there

exists S′′ ⊆ [[〈〈ψ1〉ψ2〉ϕ]]M such that (s, [[〈ψ1〉ψ2]]M, S′′) ∈ P . Thus s ∈ [[ψ1]]M,

S′′ ⊆ [[〈ψ2〉ϕ]]Mψ1
and (s, [[ψ2]]Mψ1

, S′′) ∈ Pψ1 . Finally M, s |= [ψ1]P (ψ2, ϕ).

2. (⇒) Suppose thatM, s |= [ψ1]O(ψ2, ϕ) and s ∈ [[ψ1]]M. Then for all (s, [[ψ2]]Mψ1
, S′′) ∈

Pψ1 , S′′ ⊆ [[〈ψ2〉ϕ]]Mψ1
. This implies that for all (s, [[〈ψ1〉ψ2]]M, S′′) ∈ Pψ1 , S′′ ⊆

[[〈ψ1〉〈ψ2〉ϕ]]M i.e. for all (s, [[〈ψ1〉ψ2]]M, S′′) ∈ P , S′′ ⊆ [[〈ψ1〉〈ψ2〉ϕ]]M. Finally

M, s |= O(〈ψ1〉ψ2, ϕ).

(⇐) Suppose thatM, s |= (ψ1 −→ O(〈ψ1〉ψ2, ϕ)). IfM, s 6|= ψ1 then obviouslyM, s |=

[ψ1]O(ψ2, ϕ). Otherwise s ∈ [[ψ1]]M and M, s |= O(〈ψ1〉ψ2, ϕ). Therefore, for all

(s, [[〈ψ1〉ψ2]]M, S′′) ∈ P we have S′′ ⊆ [[〈〈ψ1〉ψ2〉ϕ]]M. Thus s ∈ [[ψ1]]M and for all

(s, [[ψ2]]Mψ1
, S′′) ∈ Pψ1 we have S′′ ⊆ [[〈ψ2〉ϕ]]Mψ1

. Finally M, s |= [ψ1]O(ψ2, ϕ).
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For example, principle [ψ1]P (ψ2, ϕ) ↔ (ψ1 −→ P (〈ψ1〉ψ2, ϕ)) of Proposition 7.18 says

the following: “(After announcing ψ1 we have that (ψ2 is true and after announcing ψ2

it is permitted to announce ϕ)) iff (On condition that ψ1 is true (〈ψ1〉ψ2 is true and after

announcing 〈ψ1〉ψ2 it is permitted to say ϕ)).”

Using the meaning of the public announcement operator, the right part is the same as

“On condition that ψ1 is true, after announcing ψ1, ψ2 is true and after then announcing ψ2

it is permitted to say ϕ.” Which gets us back to the left part of the original equivalence.

Another validity of the logic spells out that equivalent announcements lead to equivalent

permissions.

Proposition 6.10 For all models M and all formulas ψ,ψ′, ϕ, ϕ′ ∈ Lpopal : If M |= (ψ ←→

ψ′) ∧ ([ψ]ϕ −→ [ψ′]ϕ′) then M |= P (ψ,ϕ) −→ P (ψ′, ϕ′) and M |= O(ψ,ϕ) −→ O(ψ′, ϕ′).

Proof For all ψ,ψ′, ϕ, ϕ′ ∈ Lpopal , if M |= (ψ ←→ ψ′) and M |= 〈ψ〉ϕ −→ 〈ψ′〉ϕ′, then

[[ψ]]M = [[ψ′]]M and [[〈ψ〉ϕ]]M ⊆ [[〈ψ′〉ϕ′]]M. It implies that for all (s, [[ψ]]M, S′′) ∈ P , we have

(s, [[ψ′]]M, S′′) ∈ P and if S′′ ⊆ [[〈ψ〉ϕ]] then S′′ ⊆ [[〈ψ〉′ϕ′]].

�

We continue with a proposition on allowed logical compositions of permitted and obliged

announcements.

Proposition 6.11 For all ψ,ϕ, ϕ1, ϕ2 ∈ Lpopal :

1. |= (O(ψ,ϕ1) ∧O(ψ,ϕ2))↔ O(ψ,ϕ1 ∧ ϕ2)

2. |= (P (ψ,ϕ1) ∧O(ψ,ϕ2)) −→ P (ψ,ϕ1 ∧ ϕ2)

3. |= (ψ ∧O(ψ,ϕ) ∧ ¬P (ψ,ϕ))↔ (ψ ∧ ¬P (ψ,>))

Proof For all models M and all state s ∈ S we have

1. M, s |= O(ψ,ϕ1) ∧ O(ψ, ϕ2) iff for all (s, [[ψ]], S′′) ∈ P , S′′ ⊆ [[〈ψ〉ϕ1]] & S′′ ⊆

[[〈ψ〉ϕ2]] iff for all (s, [[ψ]], S′′) ∈ P , S′′ ⊆ [[〈ψ〉ϕ1]]∩ [[〈ψ〉ϕ2]] = [[〈ψ〉(ϕ1 ∧ϕ2)]] iffM, s |=

O(ψ,ϕ1 ∧ ϕ2).

2. Suppose M, s |= P (ψ,ϕ1) ∧ O(ψ,ϕ2). Then for some (s, [[ψ]], S′′) ∈ P , S′′ ⊆ [[〈ψ〉ϕ1]]

and for all (s, [[ψ]], S′′) ∈ P , S′′ ⊆ [[〈ψ〉ϕ2]]. Thus, for some (s, [[ψ]], S′′) ∈ P , S′′ ⊆

[[〈ψ〉ϕ1]] ∩ [[〈ψ〉ϕ2]] = [[〈ψ〉(ϕ1 ∧ ψ2)]], which is equivalent to M, s |= P (ψ,ϕ1 ∧ ϕ2).

3. M, s |= ψ∧O(ψ,ϕ)∧¬P (ψ,ϕ) if and only ifM, s |= ψ and for all (s, [[ψ]], S′′) ∈ P , S′′ ⊆

[[〈ψ〉ϕ]] and S′′ 6⊆ [[〈ψ〉ϕ]]. This is equivalent to M, s |= ψ and the fact that there is no

S′′ such that (s, [[ψ]], S′′) ∈ P , which means that M, s |= ψ ∧ ¬P (ψ,>).
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�

We also have that if ϕ is permitted, then any ϕ ∨ ψ is also permitted (namely anything

weaker than ϕ is also permitted) and similarly, if ϕ is obligatory, than any ϕ ∨ ψ is also

obligatory. In the example in the previous section we already illustrated that this notion

of weakened obligation is not intuitive—one might rather see the announcement of ϕ ∨ ψ as

something towards fulfilling an obligation. The weakened permission of ϕ∨ψ we find intuitive

in the setting of permitted announcements. Unlike in the Ross Paradox [Ross, 1941], note

that this is not a choice between two different announcements, but the single announcement

of a disjunction.

Proposition 6.9 suggests the following translation tr :Lpopal −→ Lpoel :

Definition 6.12 (the translation tr) We define tr(ϕ) by induction on the complexity of

ϕ as follows:

• tr(p) = p

• tr(⊥) = ⊥

• tr(¬ϕ) = ¬tr(ϕ)

• tr(ψ ∨ ϕ) = tr(ψ) ∨ tr(ϕ)

• tr(Kiϕ) = Kitr(ϕ)

• tr(P (ψ,ϕ)) = P (tr(ψ), tr(ϕ))

• tr(O(ψ,ϕ)) = O(tr(ψ), tr(ϕ))

• tr([ψ]p) = tr(ψ) −→ p

• tr([ψ]⊥) = ¬tr(ψ)

• tr([ψ]¬ϕ) = tr(ψ) −→ ¬tr([ψ]ϕ)

• tr([ψ](ϕ1 ∨ ϕ2)) = tr([ψ]ϕ1) ∨ tr([ψ]ϕ2)

• tr([ψ]Kiϕ) = tr(ψ) −→ Kitr([ψ]ϕ)

• tr([ψ1][ψ2]ϕ) = tr([〈ψ1〉ψ2]ϕ)

• tr([ψ1]P (ψ2, ϕ)) = tr(ψ1) −→ P (tr(〈ψ1〉ψ2), tr(ϕ))

• tr([ψ1]O(ψ2, ϕ)) = tr(ψ1) −→ O(tr(〈ψ1〉ψ2), tr(ϕ))

An elementary proof by induction on the structure of ϕ, using Proposition 6.9, now

delivers:
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Proposition 6.13 For all ϕ ∈ Lpopal , |= ϕ←→ tr(ϕ).

In other words, adding public announcements to a logical language with permitted and

obligatory announcement does not increase the expressivity of the logic.

Finally, we need to show a property of the degree function: for all ϕ ∈ Lpopal , Π(ϕ) :

deg(tr(ϕ)) = deg(ϕ). This property will be used in the completeness proof. To prove it, we

first introduce a preliminary lemma:

Lemma 6.14 For all ψ,ψ′ ∈ Lpopal ,

1. deg(ψ) 6 deg([ψ]ψ′) and deg(tr(ψ)) 6 deg(tr([ψ]ψ′))

2. deg(〈ψ〉ψ′) = deg([ψ]ψ′) and deg(tr(〈ψ〉ψ′)) = deg(tr([ψ]ψ′))

Proof

1. By a simple induction on the structure of ψ′.

2. Let us look at the second one, the first being similar and easier:

deg(tr(〈ψ〉ψ′)) = deg(tr(¬[ψ]¬ψ′)) = deg(¬tr([ψ]¬ψ′))

= deg(tr([ψ]¬ψ′)) = deg(tr(ψ) −→ ¬tr([ψ]ψ′))

= max(deg(tr(ψ)), deg(¬tr([ψ]ψ′))) = max(deg(tr(ψ)), deg(tr([ψ]ψ′)))

= deg(tr([ψ]ψ′)) by 1.

�

Lemma 6.15 For all θ ∈ Lpopal : for all ψ ∈ Lpopal , if Π(ψ) then Π([ψ]θ) and Π(θ).

Proof Let us prove it by induction on the structure of θ. We denote by =∗ the equalities

that come from Π(ψ).

Base cases

−θ = p: let ψ ∈ Lpopal be such that Π(ψ)

Π([ψ]p)






deg(tr([ψ]p))

= deg(tr(ψ) −→ p)

= max(deg(tr(ψ)), deg(p))

= deg(tr(ψ))

=∗ deg(ψ)

= deg([ψ]p)

and Π(p)

{
deg(tr(p))

= deg(p)

θ = ⊥: let ψ ∈ Lpopal be such that Π(ψ)

Π([ψ]⊥)






deg(tr([ψ]⊥))

= deg(¬tr(ψ))

= deg(tr(ψ))

=∗ deg(ψ)

= deg([ψ]⊥)

and Π(⊥)

{
deg(tr(⊥))

= deg(⊥)
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Inductive cases: let us suppose that for all ψ, Π(ψ) implies Π([ψ]χ) and Π(χ) for all χ that

are subformula of θ. We denote by =IH1 the equalities that come from Π([ψ]χ) and by

=IH2 the ones that come from Π(χ).

• θ = ¬χ : let ψ ∈ Lpopal be such that Π(ψ)

Π([ψ]¬χ)






deg(tr([ψ]¬χ))

= deg(tr(ψ) −→ ¬tr([ψ]χ))

= max(deg(tr(ψ)), deg(tr([ψ]χ)))

=∗
IH1 max(deg(ψ), deg([ψ]χ))

= deg(ψ) + deg(χ)

= deg([ψ]¬χ)

and Π(¬χ)






deg(tr(¬χ))

= deg(¬tr(χ))

= deg(tr(χ))

=IH2 deg(χ)

= deg(¬χ)

• θ = Kiχ : Identical

• θ = χ1 ∨ χ2 : let ψ ∈ Lpopal be such that Π(ψ)





deg(tr([ψ](χ1 ∨ χ2)))

= deg(tr([ψ]χ1) ∨ tr([ψ]χ2))

= max(deg(tr([ψ]χ1)), deg(tr([ψ]χ2)))

=IH1 max(deg([ψ]χ1), deg([ψ]χ2))

= deg(ψ) + max(deg(χ1), deg(χ2))

= deg([ψ](χ1 ∨ χ2))

and






deg(tr(χ1 ∨ χ2))

= deg(tr(χ1) ∨ tr(χ2))

=IH2 max(deg(χ1), deg(χ2))

= deg(χ1 ∨ χ2)

• θ = P (ψ′, χ) : let ψ ∈ Lpopal be such that Π(ψ). We denote by =@ the equalities

that comes from Lemma 6.14

Π([ψ]P (ψ′, χ))






deg(tr([ψ]P (ψ′, χ)))

= deg(tr(ψ) −→ P (tr(〈ψ〉ψ′), tr(χ)))

= max(deg(tr(ψ)), deg(P (tr(〈ψ〉ψ′), tr(χ))))

=∗ max(deg(ψ), deg(tr(〈ψ〉ψ′)) + deg(tr(χ)) + 1)

=@
IH1 max(deg(ψ), deg(〈ψ〉ψ′) + deg(tr(χ)) + 1)

=@ deg(〈ψ〉ψ′) + deg(tr(χ)) + 1

=@
IH2 deg(ψ) + deg(ψ′) + deg(χ) + 1

= deg([ψ]P (ψ′, χ))

and Π(P (ψ′, χ))






deg(tr(P (ψ′, χ)))

= deg(P (tr(ψ′), tr(χ)))

= deg(tr(ψ′)) + deg(tr(χ)) + 1

=IH2 deg(ψ′) + deg(χ) + 1

= deg(P (ψ′, χ))

• θ = O(ψ′, χ) : Identical

• θ = [ψ′]χ: let ψ ∈ Lpopal be such that Π(ψ)
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Π([ψ][ψ′]χ)






deg(tr([ψ][ψ′]χ))

= deg(tr([〈ψ〉ψ′]χ)) by definition

=IH1 deg([〈ψ〉ψ′]χ)

because Π(〈ψ〉ψ′) (by IH1) and then Π([〈ψ〉ψ′]χ)

= deg(〈ψ〉ψ′) + deg(χ)

= deg(ψ) + deg(ψ′) + deg(χ)

= deg([ψ][ψ′]χ)

and Π([ψ′]χ)

{
deg(tr([ψ′]χ))

=IH1 deg([ψ′]χ) because Π(ψ′) by IH2

�

Therefore we have:

Proposition 6.16 For all ϕ ∈ Lpopal , Π(ϕ) : deg(tr(ϕ)) = deg(ϕ).

Proof Since Π(>), the previous proposition guarantees this one.

�

6.2 Axiomatization

We define the axiomatization POPAL and prove its soundness and completeness. Let

POPAL be the least set of formulas in our language that contains the axiom schemata

and is closed under the inference rules in Table 6.1. We write `POPAL ϕ for ϕ ∈ POPAL.

The axiom of ‘obligation and prohibition’ and the inference rule of ‘substitution’ deserve

some explanation. This last inference rule simply express the fact that the announcements of

two equivalent formulas give the same result, and that if announcing ϕ gives more information

than announcing ϕ′, if the first is permitted then the second also is. This intuition has been

explained in the introduction of this chapter. Axiom ‘obligation and prohibition’ is a quite

complicated way to express the intuitive implication O(ψ,ϕ) −→ P (ψ,ϕ): everything that is

obligatory to be said is also permitted to be said. In fact, this last property is not valid in our

models, because it may happen that the set P is empty. In this case, nothing is permitted

(not even the fact to say nothing), and thus everything is obligatory. This axiom allows

to consider such borderline cases. If we want to avoid them, we can consider the class of

models in which for all ψ, ψ −→ P (ψ,>) is valid, that we call ‘permissive models’. In these

models ‘obligation and prohibition’ is equivalent to O(ψ,ϕ) −→ P (ψ,ϕ). Moreover we have

the following:

Remark 6.17 LetM, s be a pointed model, and let χ ∈ Lpopal . IfM, s |= P (ψ, χ)∨¬O(ψ, χ)

then for all ϕ ∈ Lpopal we have M, s |= O(ψ,ϕ) −→ P (ψ,ϕ).
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all instances of propositional tautologies
Ki(ψ −→ ϕ) −→ (Kiψ −→ Kiϕ) distribution
Kiϕ −→ ϕ truth
Kiϕ −→ KiKiϕ positive introspection
¬Kiϕ −→ Ki¬Kiϕ negative introspection
[ψ]p↔ (ψ −→ p) atomic permanence
[ψ]⊥ ↔ ¬ψ ann. and false
[ψ]¬ϕ↔ (ψ −→ ¬[ψ]ϕ) ann. and negation
[ψ](ϕ1 ∨ ϕ2)←→ ([ψ]ϕ1 ∨ [ψ]ϕ2) ann. and disjunction
[ψ]Kiϕ↔ (ψ −→ Ki[ψ]ϕ) ann. and knowledge
[ψ1][ψ2]ϕ↔ [〈ψ〉1ψ2]ϕ ann. composition
[ψ]P (ψ′, ϕ)↔ (ψ −→ P (〈ψ〉ψ′, ϕ)) ann. and permission
[ψ]O(ψ′, ϕ)↔ (ψ −→ O(〈ψ〉ψ′, ϕ)) ann. and obligation
P (ψ,ϕ) −→ 〈ψ〉ϕ permission and truth
O(>,>)
(O(ψ,ϕ1) ∧O(ψ,ϕ2))↔ O(ψ,ϕ1 ∧ ϕ2) obligations composition
(P (ψ,ϕ1) ∧O(ψ,ϕ2)) −→ P (ψ,ϕ1 ∧ ϕ2) obligation and permission comp.
(ψ ∧O(ψ,ϕ) ∧ ¬P (ψ,ϕ))↔ (ψ ∧ ¬P (ψ,>)) obligation and prohibition
From ϕ and ϕ −→ ψ infer ψ modus ponens
From ϕ infer Kiϕ necessitation of Ki

From ϕ infer [ψ]ϕ necessitation of announcement
From (ψ ←→ ψ′) ∧ (〈ψ〉ϕ −→ 〈ψ′〉ϕ′) infer
(P (ψ,ϕ) −→ P (ψ′, ϕ′)) and (O(ψ,ϕ) −→ O(ψ′, ϕ′)) substitution

Table 6.1: Axiomatization of POPAL

We define the consistency and the maximality of a set x of formulas as usual: x is POPAL-

consistent iff for all nonnegative integers n and for all formulas ϕ1, . . . , ϕn ∈ x, ¬(ϕ1 ∧ . . . ∧

ϕn) 6∈ POPAL whereas x is maximal iff for all formulas ϕ, ϕ ∈ x or ¬ϕ ∈ x.

6.2.1 Soundness

Proposition 6.18 POPAL is sound on the class of all permission Kripke models.

Proof By Propositions 6.9, 6.10 and 6.11.

�

Note that we have in particular that

Proposition 6.19 For all ϕ ∈ Lpopal ,`POPAL ϕ←→ tr(ϕ).

6.2.2 Completeness

To prove the completeness result, we use a classical method through the canonical model. To

do so, we first define the following:
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Definition 6.20 Let Sc be the set of all `POPAL-maximal consistent sets, x ∈ Sc, and

ψ ∈ Lpopal . We define Ax
ψ := {y ∈ Sc | 〈ψ〉χ ∈ y for all O(ψ, χ) ∈ x}.

How to interpret such a set Ax
ψ? A `-maximal consistent set y is in Ax

ψ if it contains 〈ψ〉ϕ

for every announcement ϕ that is obligatory in x after the announcement of ψ.

Remark 6.21 By Remark 6.17, we get that if P (ψ,>) ∈ x then :

• x ∈ Ax
ψ. Indeed we then have O(ψ,ϕ) ∈ x only if P (ψ,ϕ) ∈ x only if 〈ψ〉ϕ ∈ x.

• for all formula χ ∈ Lpopal , O(ψ, χ) −→ P (ψ, χ) ∈ x.

It is also the case if, for some formula μ ∈ Lpopal , P (ψ, μ) ∈ x or ¬O(ψ, μ) ∈ x.

We are now able to define the canonical model for POPAL:

Definition 6.22 (Canonical Model)

The canonical model Mc = (Sc,∼c
i , V

c,Pc) is defined as follows:

• Sc is the set of all `POPAL-maximal consistent sets

• for any p ∈ PROP , V c(p) = {x ∈ Sc | p ∈ x}

• x ∼c
i y iff Kix = Kiy, where Kix = {ϕ|Kiϕ ∈ x}

• Pc = {(x, S′, S′′) : ∃P (ψ,ϕ) ∈ x| S′ = {y ∈ Sc : ψ ∈ y} , S′′ = {y ∈ Sc : 〈ψ〉ϕ ∈

y} ∩Ax
ψ}
⋃
{(x, S′, S′′) : ∃(ψ ∧ ¬O(ψ,ϕ)) ∈ x| S′ = {y ∈ Sc : ψ ∈ y} , S′′ = Ax

ψ}.

The definition of Pc requires some explanation. The main idea is that we put in Pc the

triplets (x, S′, S′′) such that S′′ is as big as possible (i.e. corresponds to the least restriction).

For that purpose, considering that S′ corresponds to the announcement of ψ, two kinds of

transitions (x, S′, S′′) (i.e. two kinds of announcements) are in Pc:

1. if some P (ψ,ϕ) ∈ x, we take for S′′ the expression of ϕ ∧
∧

χi where the χi are such

that O(ψ, χi) ∈ x: as every restriction in Pc has to restrict more than every restriction

corresponding to the χi, then S′′ is the least restriction that insure that P (ψ,ϕ) ∈ x.

2. if some ¬O(ψ,ϕ)) ∈ x, we take for S′′ the set Ax
ψ, which is the biggest set we can take

to insure that the obligations in x are satisfied.

Proposition 6.23 The canonical model is a model.

Proof The set of states and the valuation are clearly well defined, and as the equality is an

equivalence relation between sets of formulas, ∼c
i is an equivalence relation. Pc is a set of

triplets of the expected form, the only thing we have to verify is that for every (x, S′, S′′) ∈ Pc,

we have x ∈ S′′ ⊆ S′. Indeed, let (x, S′, S′′) ∈ Pc, thus there are two possibilities:
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1. There exists a P (ψ,ϕ) ∈ x such that S′ = {y ∈ Sc : ψ ∈ y} and S′′ = {y ∈ Sc : 〈ψ〉ϕ ∈

y} ∩ Ax
ψ. In this case, clearly S′′ ⊆ S′ because for all y ∈ Sc, 〈ψ〉ϕ ∈ y only if ψ ∈ y.

Now x ∈ {y ∈ Sc : 〈ψ〉ϕ ∈ y} comes from the axiom ‘permission and truth’ considering

that P (ψ,ϕ) ∈ x. It remains to show that x ∈ Ax
ψ, which is proved by Remark 6.21.

2. There exists a (ψ ∧ ¬O(ψ,ϕ)) ∈ x such that S′ = {y ∈ Sc : ψ ∈ y} and S′′ = {y ∈ Sc :

∀O(ψ, χ) ∈ x, 〈ψ〉χ ∈ y}. In this case, S′′ ⊆ S′ comes from the fact that [ψ]O(>,>) ∈ x,

and thus ψ ∈ x implies that O(ψ,>) ∈ x. Therefore if y ∈ S′′ then 〈ψ〉> ∈ y, which

means that y ∈ S′. Now to show that x ∈ S′′ let us consider O(ψ, χ) ∈ x and let us show

that 〈ψ〉χ ∈ x. Indeed, by Remark 6.21, ¬O(ψ,ϕ) ∈ x implies O(ψ, χ) −→ P (ψ, χ) ∈ x,

with O(ψ, χ) ∈ x we get P (ψ, χ) ∈ x by ‘modus ponens’, and finally 〈ψ〉χ ∈ x by

‘permission and truth’.

�

In the canonical model, a state is a set of formulas. The link between the fact that a

formula ϕ is in a set x and the fact that Mc, x |= ϕ is given by the Truth Lemma. In the

proof of the Truth Lemma, we need the following

Lemma 6.24 For any x ∈Mc and any ψ,ϕ, α, β ∈ Lpoel ,

1. if Ax
ψ ⊆ {y : 〈ψ〉ϕ ∈ y}, then O(ψ,ϕ) ∈ x,

2. if P (α, β) ∈ x and {y : 〈α〉β ∈ y} ∩Ax
α ⊆ {y : 〈α〉ϕ ∈ y}, then P (α,ϕ) ∈ x

Proof

1. By hypothesis, any maximal consistent set that contains 〈ψ〉χ for all O(ψ, χ) ∈ x

contains also 〈ψ〉ϕ, thus {〈ψ〉χ : O(ψ, χ) ∈ x} ∪ {[ψ]¬ϕ} is inconsistent. By definition,

it has a finite subset {〈ψ〉χ1, . . . , 〈ψ〉χn, [ψ]¬ϕ} that is inconsistent. Thus ` 〈ψ〉χ1 ∧

. . . ∧ 〈ψ〉χn −→ 〈ψ〉ϕ, i.e. ` 〈ψ〉
∧

χi −→ 〈ψ〉ϕ and then ` O(ψ,
∧

χi) −→ O(ψ,ϕ) by

the inference rule of substitution. By axiom ‘obligations composition’ O(ψ,
∧

χi) ∈ x,

and by ‘modus ponens’ O(ψ,ϕ) ∈ x.

2. By hypothesis, any maximal consistent set that contains 〈α〉β and 〈α〉χ for all O(α, χ) ∈

x contains also 〈α〉ϕ. Thus {〈α〉β}∪{〈α〉χ : O(α, χ) ∈ x}∪{[α]¬ϕ} is inconsistent. By

definition, this set has a finite subset {〈α〉β, 〈α〉χ1, . . . , 〈α〉χn, α¬ϕ} that is inconsistent.

Thus ` (〈α〉β ∧ 〈α〉χ1 ∧ . . . ∧ 〈α〉χn) −→ 〈α〉ϕ, i.e. ` 〈α〉(β ∧
∧

χi) −→ 〈α〉ϕ and then

` P (α, β ∧
∧

χi) −→ P (α,ϕ). O(α,
∧

χi) ∈ x is true by axiom ‘obligation composition’

and P (α, β) ∈ x by hypothesis. Thus P (α, β ∧
∧

χi) ∈ x is true by axiom ‘obligation

and permission comp.’. Finally, P (α,ϕ) ∈ x by ‘modus ponens’.

�
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Proposition 6.25 (Truth Lemma for Lpoel) For all ϕ ∈ Lpoel we have:

Π(ϕ) : for all x ∈ Sc,Mc, x |= ϕ iff ϕ ∈ x

Proof The proof is by induction on the degree of ϕ.

Base case If deg(ϕ) = 0 then ϕ ∈ Lel and Π(ϕ) is a known result (See Proposition 4.1 or

[Blackburn et al., 2001] or [Fagin et al., 1995] for details). Note that (Sc,∼c
i , V

c) is the

classical canonical model for Lel .

Induction steps Let k ∈ N, let us suppose that Π(ψ) is true for all ψ ∈ Lpoel such that

deg(ψ) 6 k.

Note that it follows that Π(ψ) is true for all ψ ∈ Lpopal such that deg(ψ) 6 k. Indeed,

for all such ψ, for all x ∈ Sc, Mc, x |= ψ iff Mc, x |= tr(ψ) iff tr(ψ) ∈ x iff ψ ∈ x.

Let ϕ be such that deg(ϕ) ≤ k +1 and let us reason by induction on the structure of ϕ.

• ϕ = p;⊥;¬ψ; ϕ1 ∨ ϕ2; Kiψ: See the proof of the truth lemma for Lel in

[Blackburn et al., 2001] or [Fagin et al., 1995].

• ϕ = P (ψ, χ):

(⇒) Suppose thatMc, x |= P (ψ, χ). This implies thatMc, x |= ψ (and thus ψ ∈ x

by IH) and that there exists S′′ ⊆ [[〈ψ〉χ]]Mc such that (x, [[ψ]]Mc , S′′) ∈ Pc.

Now, there are two possibilities:

– There exists P (α, β) ∈ x s.t. (∗)[[ψ]]Mc = {y ∈ Sc : α ∈ y} and S′′ =

{y ∈ Sc : 〈α〉β ∈ y} ∩ Ax
α. In this case S′′ ⊆ [[〈ψ〉χ]]Mc by hypothesis, and

[[〈ψ〉χ]]Mc = [[〈α〉χ]]Mc by (∗). Thus S′′ ⊆ [[〈α〉χ]]Mc . By lemma 6.24.2, with

P (α, β) ∈ x, this implies that P (α, χ) ∈ x by substitution rule. By (∗) again

we obtain that P (ψ, χ) ∈ x.

– There exists ¬O(α, β) ∈ x s.t. [[ψ]]Mc = {y ∈ Sc : α ∈ y} and S′′ = Ax
α. On one

hand, this implies that ` ψ ←→ α and then ¬O(ψ, β) ∈ x by substitution rule.

On the other hand, with the fact that S′′ ⊆ [[〈ψ〉χ]]Mc we obtain, by lemma

6.24.1, that O(ψ, χ) ∈ x. Now, if we suppose P (ψ, χ) /∈ x then ¬P (ψ,>) ∈ x

by Remark 6.21. Therefore, using the fact that ψ ∈ x,we obtain O(ψ, β) ∈ x by

the same Remark. This leads to a contradiction which proves that P (ψ, χ) ∈ x.

(⇐) If P (ψ, χ) ∈ x then let us define S′ = [[ψ]]Mc and S′′ = [[〈ψ〉χ]]∩Ax
ψ. We obtain

(x, S′, S′′) ∈ Pc by definition of Pc. Therefore, as S′′ ⊆ [[〈ψ〉χ]] = [[tr(〈ψ〉χ)]],

Mc, x |= P (ψ, χ).

• ϕ = O(ψ, χ):

(⇐) Suppose that O(ψ, χ) ∈ x and Mc, x 6|= O(ψ, χ). Thus Mc, x |= ψ otherwise

we would have Mc, x |= O(ψ, χ). Now Mc, x 6|= O(ψ, χ) implies that there exists
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(x, [[ψ]], S′′) ∈ Pc such that S′′ 6⊆ [[〈ψ〉χ]]. That is impossible, because by definition

S′′ ⊆ Ax
ψ ⊆ [[〈ψ〉χ]].

(⇒) Suppose that O(ψ, χ) 6∈ x and Mc, x |= O(ψ, χ). Then ¬O(ψ, χ) ∈ x and,

by definition of Pc, (x, [[ψ]], Ax
ψ) ∈ Pc. But then Mc, x |= O(ψ, χ) leads to Ax

ψ ⊆

[[〈ψ〉χ]] by the semantics. Now, if we prove that [[〈ψ〉χ]] = {y : 〈ψ〉χ ∈ y} we obtain

O(ψ, χ) ∈ x by Lemma 6.24.1. It would lead to a contradiction and then to the

wanted result. Now [[〈ψ〉χ]] = [[tr(〈ψ〉χ)]] by Proposition 6.13. [[tr(〈ψ〉χ)]] = {y :

tr(〈ψ〉χ) ∈ y} by IH (because tr(〈ψ〉χ) ∈ Lpoel and deg(tr(〈ψ〉χ)) ≤ k). Finally,

{y : tr(〈ψ〉χ) ∈ y} = {y : 〈ψ〉χ ∈ y} by Proposition 6.19.

�

Proposition 6.26 POPAL is sound and complete with respect to the class of all permission

Kripke models.

Proof The soundness has been shown in Proposition 6.18. By Proposition 6.25 we can show

the completeness with respect to the class of all permission Kripke models. Indeed, for all

ϕ ∈ Lpopal :

|= ϕ⇒ |= tr(ϕ)⇒ Mc |= tr(ϕ)⇒ ` tr(ϕ)⇒ ` ϕ.

�

6.3 Decidability

We prove in this section that POPAL is decidable by proving a small model property. To

do so, we use a filtration method, extending the notion of filtration introduced in Definition

2.16. We first introduce to notions that are useful in this method:

Definition 6.27 (Closed set) Let X ⊆ Lpoel . We shall say that X is closed if the following

properties are satisfied:

• X is closed under subformulas

• for all P (ψ,ϕ) ∈ X, tr(〈ψ〉ϕ) ∈ X

• for all O(ψ,ϕ) ∈ X, tr(〈ψ〉ϕ) ∈ X

Definition 6.28 Let M = (S,∼i, V,P) be a model and Γ be a closed set of formulas. Let

!Γ be the relation on S defined, for all s, t ∈ S, by:

s!Γt iff ∀ ϕ ∈ Γ : (M, s |= ϕ iff M, t |= ϕ)
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Note that !Γ is an equivalence relation. For all s ∈ S, let us denote by |s|Γ (or simply

|s|) the equivalence class of s with respect to !Γ; and for S′ ⊆ S′′, we write !Γ(S′) for

{t ∈ S | ∃s ∈ S′ : s!Γt}.

We can now generalize the notion of filtration in the context of permission models:

Definition 6.29 (Filtration) We call the filtration ofM through Γ (or simply the filtration

of M) the model MΓ = (SΓ,∼Γ
i , V Γ,PΓ) where:

• SΓ = S/!Γ

• |s| ∼Γ
i |t| iff for all Kiϕ ∈ Γ, (M, s |= Kiϕ iff M, t |= Kiϕ)

• V Γ(p) =

{
∅ if p 6∈ Γ

V (p)/!Γ
if p ∈ Γ)

• PΓ = {(|s|, S1, S2): there exists t ∈ |s| and S′′ ⊆ S s.t. S′′/!Γ
= S2 and

(t,
⋃

(S1), S′′) ∈ P}

In this definition, S1 is a set of equivalence classes, and
⋃

S1 is the set of all states that

are represented by an element of S1. Here is a useful lemma:

Lemma 6.30 Let Γ ⊂ Lpoel be a finite closed set. For any model M, its filtration MΓ

contains at most 2m nodes, where m = Card(Γ).

Proof Let M be a model. Let g : SΓ −→ 2Γ be defined by g(|s|) = {ψ ∈ Γ :M, s |= ψ}. It

follows from the definition of !Γ that g is well-defined and injective. Thus the size of SΓ is

at most 2m.

�

The epistemic relations of a model and their filtrations over a set Γ are linked by the

following property:

Proposition 6.31 Let M be a model and let Γ be a closed set of formulas. Then for all

s, t ∈ S, for all ϕ ∈ Γ:

1. s ∼i t⇒ |s| ∼Γ
i |t|.

2. |s| ∼Γ
i |t| and Kiϕ ∈ Γ and M, s |= Kiϕ⇒M, t |= ϕ.

Proof

1. Let s, t ∈ S such that s ∼i t, and let Kiϕ ∈ Γ. Then we have M, s |= Kiϕ iff for all

u ∼i s,M, u |= ϕ iff for all u ∼i t, M, u |= ϕ iff M, t |= Kiϕ. Then by definition of ∼Γ
i

we obtain |s| ∼Γ
i |t|.

2. Let us suppose the first part of the implication. Since |s| ∼Γ
i |t|, Kiϕ ∈ Γ and M, s |=

Kiϕ then M, t |= Kiϕ. Since ∼i is reflexive M, t |= ϕ.
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�

Proposition 6.31 is sufficient to prove the following:

Proposition 6.32 (Filtration lemma) Let M be a model and let Γ be a closed set of for-

mulas. For all ϕ ∈ Γ we have:

(F oϕ) ∀s ∈ S, (M, s |= ϕ iff MΓ, |s| |= ϕ).

Proof By induction on the degree of ϕ.

base case If deg(ϕ) = 0 then ϕ ∈ Lel and the proof of (F oϕ) is done by induction on the

complexity of ϕ (see [Blackburn et al., 2001] or [Fagin et al., 1995] for details, note that

Γ is in particular closed under subformulas).

induction steps Let k ∈ N. Suppose that (F oψ) is true for all ψ ∈ Lpoel such that deg(ψ) 6

k. Let ϕ be such that deg(ϕ) ≤ k + 1 and let us reason on the structure of ϕ.

• ϕ = p;⊥;¬ψ; ϕ1 ∨ ϕ2,Kiϕ: See the proof of the filtration lemma in [Blackburn et al., 2001]

or [Fagin et al., 1995].

• ϕ = P (ψ, χ): Let s ∈ S. By construction of Γ we know that
{
!Γ([[ψ]]M) = [[ψ]]M and

(∗) !Γ([[〈ψ〉χ]]M) =!Γ([[tr(〈ψ〉χ)]]M) = [[tr(〈ψ〉χ)]]M = [[〈ψ〉χ]]M.

(⇒) Suppose M, s |= P (ψ, χ). Let S′′ ⊆ [[〈ψ〉χ]]M = [[tr(〈ψ〉χ)]]M be such that

(s, [[ψ]],S′′) ∈ P , and let Soo = S′′/!Γ . We have (by IH) that Soo ⊆ [[tr(〈ψ〉χ)]]MΓ

and we obtain that (|s|, [[ψ]]MΓ , Soo) ∈ PΓ by definition of the filtration and (∗). Fi-

nally, MΓ, |s| |= P (ψ, χ)

(⇐) Suppose MΓ, |s| |= P (ψ, χ). Let Soo ⊆ [[tr(〈ψ〉χ)]]MΓ be such that

(|s|, [[ψ]]MΓ , Soo) ∈ PΓ. Then by definition of PΓ, there exists t ∈ |s| and S′′ such

that S′′/!Γ = Soo and (t, [[ψ]], S′′) ∈ P . By IH, Soo ⊆ [[tr(〈ψ〉χ)]]MΓ implies that

S′′ ⊆ [[tr(〈ψ〉χ)]]M. Therefore, M, t |= P (ψ, χ). Finally, as s!Γt, M, s |= P (ψ, χ).

• ϕ = O(ψ, χ): Let s ∈ S,

(⇒) Suppose M, s |= O(ψ, χ) and let Soo be such that

(|s|, [[ψ]]MΓ , Soo) ∈ PΓ, we want to show that Soo ⊆ [[〈ψ〉χ]]MΓ . By definition of

the filtration, we can construct S′′ such that S′′/!Γ = Soo and (t, [[ψ]], S′′) ∈ P for

some t ∈ |s|. Thus S′′ ⊆ [[〈ψ〉χ]]M, because M, t |= O(ψ, χ) (as s!Γt). Finally

Soo ⊆ [[〈ψ〉χ]]MΓ by (∗) and IH.

(⇐) Suppose MΓ, |s| |= O(ψ, χ) and let S′′ be such that

(s, [[ψ]], S′′) ∈ P . We show that S′′ ⊆ [[〈ψ〉χ]]M. Let Soo = S′′/!Γ , then by
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definition of the filtration, (|s|, [[ψ]]MΓ , Soo) ∈ PΓ. Thus Soo ⊆ [[〈ψ〉χ]]MΓ and then

S′′ ⊆ [[〈ψ〉χ]]MΓ by (∗) and IH.

�

Definition 6.33 (Closure) For all ϕ ∈ Lpoel , we construct the P-Closure of ϕ, noted Cl(ϕ),

inductively on the structure of ϕ:

• Cl(p) = {p}

• Cl(⊥) = {⊥}

• Cl(¬ϕ) = {¬ϕ} ∪ Cl(ϕ)

• Cl(ψ ∨ ϕ) = {ψ ∨ ϕ} ∪ Cl(ψ) ∪ Cl(ϕ)

• Cl(Kiϕ) = {Kiϕ} ∪ Cl(ϕ)

• Cl(P (ψ,ϕ)) = {P (ψ,ϕ)} ∪ Cl(ψ) ∪ Cl(ϕ) ∪ Cl(tr(〈ψ〉ϕ)).

• Cl(O(ψ,ϕ)) = {O(ψ,ϕ)} ∪ Cl(ψ) ∪ Cl(ϕ) ∪ Cl(tr(〈ψ〉ϕ)).

Proposition 6.34 For all ϕ ∈ Lpoel , Cl(ϕ) is well-defined and it is a finite closed set.

Proof The proof is by induction on the degree of ϕ.

base case If deg(ϕ) = 0 then ϕ ∈ Lel and we only need to prove that Cl(ϕ) is a well-defined

finite set closed under subformulas, which is straightforward.

inductive cases Let k ∈ N, let us suppose that Cl(ψ) is a well-defined finite closed set for

any ψ such that deg(ψ) ≤ k. Let ϕ be such that deg(ϕ) ≤ k + 1 and let us reason

inductively on the structure of ϕ.

• ϕ = p;⊥;¬ψ; ϕ1 ∨ ϕ2; Kiψ: Trivial.

• ϕ = P (ψ, χ) or O(ψ, χ): By IH, Cl(ψ), Cl(χ) and Cl(tr(〈ψ〉χ)) are well-defined

finite closed sets, so Cl(P (ψ, χ)) and Cl(O(ψ, χ)) are well-defined finite sets. We

only need to prove that they are closed, which is straightforward.

�

Proposition 6.35 (Finite model property)

Let ϕ ∈ Lpoel , if ϕ is satisfiable then ϕ is satisfiable in a model containing at most 2m

nodes, where m = Card(Cl(ϕ)).



150 CHAPTER 6. PERMISSION AND PUBLIC ANNOUNCEMENTS

Proof Suppose thatM and s are such thatM, s |= ϕ. Let Γ = Cl(ϕ). Then by Proposition

6.32, MΓ, |s| |= ϕ. By Lemma 6.30, MΓ contains at most 2m states.

�

Theorem 6.36 POPAL is decidable.

Proof Let ϕ ∈ Lpopal be a formula. The following procedure decides whether ϕ is satisfiable

or not:

1. Compute Φ = tr(ϕ)

2. Compute Γ = Cl(Φ)

3. For all permission Kripke models M of size ≤ 2Card(Γ) check if there exists s ∈M such

that M, s |= Φ.

�

6.4 Extended Example: La Belote

We now consider the French card game “la Belote”. For a full description of the game, see

http://en.wikipedia.org/wiki/Belote. The game is played with four players, who form

two teams, and with 32 cards of a regular full deck of cards (the ranks 2 to 6 are eliminated).

The name of the game, “belote”, is also used in the game to designate a pair of a King and

a Queen of a trump suit.

After the deal, and after the choice of a trump suit, the first player chooses and plays a

card of her hand, followed by the other players in clockwise order. The player who played

the highest trump card or the highest of the same color as the first player’s card wins the

round and starts the next round. Except for the first player of a round, each player has to

follow suit or, if she cannot, to play trump. Moreover, when a trump has been played, it is

forbidden to play a lower trump.

The act of playing a card can be seen as the public announcement that the corre-

sponding card belonged to the corresponding player. We model the game with the set

of propositional atoms PROP expressing card ownership, namely PROP = {RCi | R ∈

{7, 8, 9, 10, J,Q,K,A}, C ∈ {♣,♥,♦,♠}, i ∈ {A,B,C,D}}. An atom RCi stands for ‘player

i holds the card with rank R of suit C’. For any suit C and player i, we introduce the

abbreviations Ci =
∨

R RCi, and C>R
i =

∨
R′>R R′Ci.

A model M = (S, {∼i}, V,P) is called a “model of La Belote” if

1. for each state s, for any R and C, there is exactly one i such that s ∈ V (RCi) (i.e. the

states of M are deals of cards);
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2. for any s, t ∈ S and any i, s ∼i t implies that for all R,C: s ∈ V (RCi) iff t ∈ V (RCi)

(i.e. each player can distinguish different cards);

3. P is constructed from (S, {∼i}, V ) according to the rules of the game.

The last item means that in a given deal s, for all the cards p held by an agent i that are

permitted by the rules to be played, (s, S, Spi) ∈ P . If after p has been played by player i it

is permitted for player j to play q, then we also need that (s, Spi , S〈pi〉qj
) ∈ P . And so on, for

all possible moves.

LetM be a model of La Belote. The trump suit has been selected before the game starts,

we will suppose that it is clubs. The set of atoms is partially ordered as follows (∗ can be one

of the players A,B,C,D). First, any trump is higher than any non-trump. But the cards are

also ordered in the following way: for non-trumps (i.e. for any C 6= ♣):

7C∗ < 8C∗ < 9C∗ < JC∗ < QC∗ < KC∗ < 10C∗ < AC∗

For trumps:

7♣∗ < 8♣∗ < Q♣∗ < K♣∗ < 10♣∗ < A♣∗ < 9♣∗ < J♣∗

For more details, see the mentioned website.

We now list a number of model validities of La Belote. These formulas are valid at the

beginning of each round of the game, in other words, the models M considered below result

from any iteration of a sequence of four permitted announcements. We will call 1 the player

that opens the round, followed by 2, etc.

1-One player at once:

For all ψ ∈ Lpopal , all i 6= j, all pi, qj ∈ PROP , M |= P (ψ, pi) −→ ¬P (ψ, qj).

Two different players are not allowed to play simultaneously.

2-Each card is played once:

For all p ∈ PROP , all ψ ∈ Lpopal , M |= ¬P (〈p〉ψ, p).

If a card has been played once, it cannot be played again.

3-Obligation to follow suit:

For all ranks R and all suits C,

M |= C2 −→ O(RC1, C2).

If the player 2 can follow the suit asked by 1, she is obliged to do so.
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4-Obligation to play trump:

For all ranks R, all suit C 6= ♣, M |= ♣2 −→ O(RC1, C2 ∨ ♣2).

If the player 2 can follow the suit asked by 1 or play trump, she is obliged to do so.

5-Permission to say “belote et rebelote”:

For all players i, M |= K♣i ∧Q♣i ∧ (P (ψ,Q♣i) ∨ P (ψ,K♣i)) −→ P (ψ,Q♣i ∧K♣i).

If the player one is allowed to play the queen of the trump suit, she is allowed to

announce that she has the royal couple (called the “belote”). This does not mean that

she is allowed to play both cards, but playing one of them she is allowed to announce

that she also has the other one.

6-Obligation to go up at trump:

For all ψ ∈ Lpopal , all player i and all R, M |= ♣>R
i −→ O(〈ψ〉R♣i−1,♣

>R
i ).

This says that if the previous player played trump and if you have higher cards than

the played trump, then you are obliged to play one of them.

�
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Figure 6.1: The moody children playing la belote

We apply these conditional rules about the permission to speak to the state (deal) s, presented

in Figure 6.1, in which each player has 2 cards. Alex starts the game. According to the rule,

our model validates the following formulas:
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• M, s |= P (8♥A) ∧ P (7♦A) ∧ ¬P (8♥A ∧ 7♦A):

Alex has the permission to play one of his cards, but not both.

• M, s |= O(8♥A, Q♥B):

If Alex plays the 8♥ card, Brune is obliged to play a card of the same suit, thus she

cannot play her K♠ card (rule (3)).

• M, s |= P (〈8♥A〉Q♥B , Q♣C ∧K♣C):

Cha has the permission to announce that she has both cards of the “belote” (rule (5)).

• M, s |= O(〈〈8♥A〉Q♥B〉Q♣C , A♣D):

The ‘go up at trump”applies if Cha plays the queen of clubs. As Dan has a unique

higher trump, she has the obligation to play it.

6.5 Comparison to the Literature

6.5.1 Classic Deontic Principles and Paradoxes

As we reviewed before, deontic logic started out with Von Wright’s operators P and O binding

formulas in expressions Pϕ and Oϕ, then came Meyer’s and Van der Meyden’s mind-frame

switch to operators P and O binding actions, and finally we treated communicative actions

that are represented by the announced formulas. Recall that in our framework we treat

the obligation and permission to speak ϕ (as Pϕ and Oϕ, using the abbreviation) and not

the obligation and permission that ϕ. Well, if we end up with such expressions, how do its

validities relate to the standard and historical Von Wright approach? In this subsection, we

summarily treat that matter.

First, a disappointment: the P and O operators we have introduced are not normal modal

operators (the triples in the P relation rather suggest a modality with a neighbourhood-type

of semantics). They do not satisfy necessitation! A formula may be valid, but that does not

make it an obligation, or permitted; if you are not allowed to announce p nor ¬p, it does not

help you a great deal that p ∨ ¬p is a validity!

Something else has to be underlined once again: our formalism allows to consider situations

in which nothing is permitted to be said, which is equivalent to the fact that everything is

obligatory. To avoid such borderline cases, we will often consider the class of models in which

for all ψ, ψ −→ P (ψ,>) is valid, called the ‘permissive models’. Our comments on classical

deontic paradoxes is in this context of permissive models.

Obligation distributes over conjunction (and implication), as O(ϕ∧ψ)←→ (Oϕ∧Oψ) is

a special case (in the case where the first argument is >) of Proposition 6.11.1. Permission

does not distribute over conjunction: we may have that p and q are both permissible an-

nouncements, such that Pp and Pq are true, but not at the same time, P (p∧ q) may be false.
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This reflects that for a given Kripke model with domain S and actual state s the relation

P may contain (s, S, [[p]]) and (s, S, [[q]]) but not (s, S, [[p ∧ q]]). However, given weakening of

permitted announcements, a valid principle indeed is P (ϕ ∧ ψ) −→ (Pϕ ∧ Pψ).

Permitted announcements are true, obligatory ones also in the permissive models: Pϕ −→

ϕ and Oϕ −→ ϕ, a principle obviously false in classic deontic logic. But one has to realize the

special reading of such implications in our setting! Pϕ −→ ϕ is valid because a precondition

for a permitted announcement is the truth of the announcement formula. It does not formalize

that all permitted actions always take place. A similar slip of the deontic mind occurs

when observing that Pϕ −→ P (ϕ ∨ ψ) is valid. Doesn’t this conflict with Ross’s Paradox

[Ross, 1941]? We addressed this matter in the introduction, let us go over the details. Ross’s

Paradox is about the reading (for permission and for obligation) that ‘to be permitted to

do a or b’ entails ‘to be permitted to do a’ and ‘to be permitted to do b’. In the setting of

permitted announcements we have to clearly distinguish the action of announcing from the

formula being announced. Permission to announce a or b indeed entails permission to perform

either announcement, and choose between them. This is a nondeterministic action. This is

different from the permission to make an announcement weaker than the announcement of a,

such as a∨ b. In other words, permission to announce a or b is not the same as permission to

announce a∨ b. Possibly, “permission to announce a or b” might be called ambiguous, as the

‘or’ may mean logical disjunction of formulas or non-deterministic choice between programs.

But once the reading has been chosen, the course is clear.

We already observed that obligation and permission are not interdefinable. In Proposition

6.8 we showed that obligation adds to the expressivity of the logic. So Oϕ←→ ¬P¬ϕ is not

valid. Now, Clearly, Oϕ −→ ¬O¬ϕ is valid in the class of permissive models. The norm is

thus still considered as non-contradictory, we may want, to avoid this ‘paradox’, to include

different norms in the same framework. We leave this for further research. But then again,

even in the permissive cases, Pϕ ∨ P¬ϕ is not valid: there is nothing against both p and

¬p being forbidden announcements at the same time! For yet another example, consider

the schema O(Oϕ −→ ϕ), formalizing the requirement that obligations are fulfilled. In our

setting, either we are in a non-permissive case and thus this obligation is satisfied, or it is

a permissive one and thus as Oϕ −→ ϕ is valid, this is equivalent to the validity of O>,

which indeed is a validity (note that > is weaker than any obligatory announcement, and

that weakening holds for obligation).

A more recent development in deontic logic is the interaction between obligations and per-

missions and explicit agency (see [Chisholm, 1963, Horty, 2001]). The well-known Meinong-

Chisholm reduction of “The agent is obliged to do a” to “It is obligatory that the agent does

a” seems to have an interesting parallel in the logic of permitted announcements. In the logic

of public announcements, the announcement by agent a is typically reduced to ‘the (public)

announcement of ‘agent a knows ϕ’. It is relevant to recall at this stage that public announce-

ments are supposedly made by outsiders of the system, not by agents modelled explicitly in



6.5. COMPARISON TO THE LITERATURE 155

the logical language. This observation can be applied in the logic of permitted and obligatory

announcements! A Meinongian turn to permitted announcements seems to interpret OKiϕ—

“It is obligatory that agent i announces ϕ” (announcements of ϕ by an agent i in the system

are known to be true by that agent, so in fact have form Kiϕ)—as an indirect form of agency

in our logic, namely, we can let it stand for “Agent i is obliged to announce ϕ.”

6.5.2 Deontic Action Logics

For the purpose of comparing our work with the existing literature we present a variant

of the semantics for permission. Our current understanding of P (ψ,ϕ) is that “after the

announcement of ψ it is permitted to give at most the information ϕ”. Any weakening of ϕ

is also permitted. Instead, it was until now “after the announcement of ψ it is permitted to

give exactly the information ϕ”. We will write P= for that modality. It has the semantics:

for all M and s in the domain of M:

M, s |= P=(ψ,ϕ) iff (s, [[ψ]], [[〈ψ〉ϕ]]) ∈ P .

The logic with P subsumes the one with P=: let us expand a given relation P with all

supersets for the third argument of a triple in that relation: for all subsets S′′′ of the domain

of a given model M, if (s, S′, S′′) ∈ P and S′′ ⊆ S′′′, then add (s, S ′, S′′′) to P . Call the

resulting relation P= and let M= be the model with P= instead of P . On the language

without obligation, inductively define a translation •= that replaces all occurrences of P by

P=. We now have that M, s |= P (ψ,ϕ) iff M=, s |= P=(ψ,ϕ). We compare the proposal

using the operator P= with the related works presented in Section 3.3.

The Dynamic Logic of Permission Recall the framework proposed by

[van der Meyden, 1996] and presented in Section 3.2.2. Our semantics for P=(ψ,ϕ)

consists of the particular case where actions are public announcements. Thus, for α in Van

der Meyden’s ♦(α,ϕ) we take an announcement ψ! such that ♦(ψ!, ϕ) now means ‘it is

permitted to announce ψ, after which ϕ is true’. The precise correspondence is:

Proposition 6.37 ♦(ϕ!, θ) is equivalent to P=(>, ϕ) ∧ 〈ϕ〉θ

Proof Given a model M with domain S, we can see the announcement ϕ! as an atomic

action which links each state s ∈ [[ϕ]]M to the same state s ∈ Sϕ. This is a permitted action

in Van der Meyden’s semantics if and only if (s, S, Sϕ) ∈ P . By definition, M, s |= P=(>, ϕ)

iff (s, S, Sϕ) ∈ P . The formula θ should then hold after the permitted announcement of ϕ.

�

Van der Meyden’s ♦(ϕ!, θ) is found in a syntactic variant Perm(ϕ)θ in

[Pucella and Weissman, 2004]. Now, we have that P=(>, ϕ) is equivalent to Perm(ϕ). Given
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the abbreviation P (ϕ) in our language for P=(>, ϕ), the correspondence is therefore very

close.

Merging Frameworks for Interaction Recall the logical language Ltpal of Van Benthem

et al.’s protocol logic TPAL ([van Benthem et al., 2009]) presented in Section 3.3. We have

seen that the domain was a set of histories, a history h being a succession of announcements,

with the following semantics for the dynamic operator: MΠ, h |= 〈ψ〉ϕ iff

• MΠ, h |= ψ

• h′ = hψ ∈ Π

• MΠ, h′ |= ϕ

This suggests to translate P=(ψ,ϕ) in Lpopal by [ψ]〈ϕ〉> in Ltpal . (For convenience, we

write announcements ψ! and ϕ! instead of singleton event models with precondition ψ and

ϕ, respectively.) Unfortunately, this translation is imprecise. Consider executing these two

announcements in a state s of an initial model M. If sψ 6∈ H then MΠ, s |= [ψ]〈ϕ〉>:

after a non-permitted announcement, anything is permitted to be said, because anything

holds after a necessity-type modal operator that cannot be executed. But M, s 6|= P=(ψ,ϕ),

because (s, [[ψ]], [[〈ψ〉ϕ]]) is not in the P relation to validate it. In other words, in our logic

we get the full forest produced by the protocol of all truthful public announcements, but

some branches are coloured with permitted and others are coloured with not-permitted. The

Van Benthem et al. approach produces a forest restricted to the protocol (i.e., restricted to

permitted announcements only).

A more serious problem with such a translation is as follows. Our semantics allows that

if something is later permitted to be said, we are already permitted to say something now in

a different way, a consequence of the axiom “announcement and permission” [ψ]P (ψ′, ϕ) ↔

(ψ −→ P (〈ψ〉ψ′, ϕ)). (This axiom holds for P= as well.) In TPAL this would amount

to requiring that (announcement) protocols are postfix-closed in the restricted sense that if

π′π′′ = π ∈ Π, then there is a single announcement ξ (combining all the announcements in

the initial π′ part in one complex announcement) such that ξπ′′ ∈ Π.

Our logic with P instead of P= and with obligation O as well makes the comparison even

more problematic.

As we now know, the notion of “obligation to say ϕ” cannot be captured only by the

negation of permission to say anything else than ϕ (except in a very radical dictatorship),

but much more by the fact that all that does not say at least ϕ is not permitted. This notion

of obligation we consider a strong point of our logic POPAL, in which it differs from known

other proposals.
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6.6 Tableaux

We introduce here a proof method for PPAL, the logic reduced to the language wihtout

obligation operator. This proof uses analytic tableaux to construct, given a formula ϕ, a

model that satisfies ϕ (or prove its inconsistency if it fails). In order to do so we use notations

near to the one proposed by [Balbiani et al., 2010] for a tableau method for PAL.

6.6.1 Definitions

The ‘formulas’ appearing in the tableau are L1
ppal -formulas prefixed by a natural number (n)

that stands for a possible world in the model, and by a list of formulas (σ) representing

successive updates.

Definition 6.38 (Labelled formula) A labelled formula is a triple of the form 〈σ, n, ϕ〉

such that: σ is a (possibly empty) finite list of formulas of L1
ppal , n ∈ N and ϕ ∈ L1

ppal .

The intuition behind this notation is that 〈σ, n, ϕ〉 appears in the tableau if the state n is

still a state of the model after having announced successively the elements of the list σ, and

the resulting state (after the announcements) satisfies ϕ. In other words 〈σ, n, ϕ〉 appears in

the tableau if n ∈Wσ andMσ, n |= ϕ. If n ∈Wσ we say that ‘n survives (the announcement)

σ’.

To define what is a branch in this context, we denote by L(N) the set of all the finite lists of

L1
ppal -formulas. For any list σ = (σ1, . . . , σn) we write hd(σ) = σn, tl(σ) = (σ1, . . . , σn−1), and

for any formula ψ ∈ L1
ppal , σ ◦ ψ = (σ1, . . . , σn, ψ) ∈ L(N). We write ε ∈ L(N) to designate the

empty list. Finally, § is a countable set of formal symbols whose aim is to represent subsets

of the initial set of worlds in a model.

Definition 6.39 (Branch) Let § be a countable infinite set of symbols. A branch is a set of

terms t of the form:

1. “〈σ, n, ϕ〉” (labelled formula);

2. “nRim” where i ∈ AG, n,m ∈ N;

3. “Π(n, S, S ′)” where n ∈ N and S, S ′ ∈ §;

4. “n ∈ S”, “n 6∈ S” where n ∈ N and S ∈ §;

5. “S ` σ”, “S a σ”, “S 6` σ” and “S 6a σ” where S ∈ § and σ ∈ L(N).

We denote by [♦] the set of terms of the first category, [R] for the second category, [Π] for the

third, [∈] for the fourth and finally [`] for the fifth.

nRim corresponds to the fact that the corresponding worlds of n and m are linked by

R in a model. Π corresponds to P . The term “n ∈ S” (“n 6∈ S”) means that the world n
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belongs (does not belong) to the set represented by S. The term “S ` σ” means “all worlds

in the set represented by S survive the announcement of σ”. The term “S a σ” means “all

worlds which survive the announcement of σ are in S”. The term “S 6` σ” means “there

exists a world n in S that does not survive the announcement of σ”. The “S 6a σ” means

“there exists a world n which survives the announcement of σ and which is not in S”.

Definition 6.40 (Initial Tableau for ϕ) Given a formula ϕ ∈ L1
ppal , the set containing a

unique branch {〈ε, 0, ϕ〉} is called the initial tableau for ϕ. We represent it as T0(ϕ).

We define now the notion of ‘tableau for ϕ’. Informally, a tableau for ϕ is a set of

branches obtained from the initial tableau by applying some rules. These rules are presented

in a concise way in Table 6.2. We read them in the following way, considering a branch b of

a given tableau T :

α1 ; . . . ; αn

β1; . . . ; βp
(R1)

:

If the patterns α1; . . . αn are unifiable with a subset of terms of b and terms of the form

β1, . . . , βp can not be found in b, then we add the instantiated instances of β1, . . . , βp

in b. Formally if there exists a substitution s such that s(α1), . . . , s(αn) ∈ b and for

all s′, {s′s(β1), . . . , s′s(βp)} 6⊆ b then R1(b) = b ∪ {s′s(β1), . . . , s′s(βp)} where s′ is a

substitution for free variables of s(β1), . . . , s(βp).

α1; . . . αn

β1, . . . , βp | γ1, . . . , γr
(R2)

If the patterns α1; . . . αn are unifiable with a subset of terms of b and no terms of the

form β1, . . . , βp or γ1, . . . , γr can be found in b, then we create one branch where we add

β1, . . . , βp in b and another branch where we add γ1, . . . , γr. Formally if there exists a

substitution s such that s(α1), . . . , s(αn) ∈ b, for all s′, {s′s(β1), . . . , s′s(βp)} 6⊆ b and

{s′s(γ1), . . . , s′s(γr)} 6⊆ b then R1(b) = b∪{s′s(β1), . . . , s′s(βp)}; b∪{s′s(γ1), . . . , s′s(γr)}

where s′ is a substitution for free variables of s(β1), . . . , s(βp), s(γ1), . . . , s(γr).

A deterministic rule (such as R1) modifies a given branch, a non deterministic one (such as

R2) makes copies of a given branch and modifies them. We give some details about the rules

appearing in Table 6.2 to make precise the understanding of this table:

• The rule (R∨) means that if a node n survives the list of announcements σ and satisfies

ψ ∨ ϕ after the announcements, then we will consider one branch where n survives the

list of announcements σ and satisfies ψ and another branch where n survives the list of

announcements σ and satisfies ϕ.

• The rules (RT ), (RS) and (R4) capture respectively the reflexivity, symmetry and

transitivity of the relation Ri.
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• The rule (Rσ) explains the mechanism of announcement. If a world n survives after the

announcement of σ, where σ is not the empty list, then it means the world survives after

the announcement of the tail of σ and satisfies the head of σ after the announcement.

• The rule (RSB) concerns the behaviour of literals (propositions or negation of propo-

sitions) towards announcements: if a literal l is true in n after the announcements of σ

then the literal l is already true in the world n without any announcement.

• The rule (R ∈) is a “cut” rule and choose for all nodes n and all already used symbols

S ∈ § whether n should belong to the set represented by S or not.

• The rule (RP ) creates a new permission relation Π(n, S1, S2), S1 and S2 representing

subsets of the domain. S1 ` σ and S1 a σ ensures that S1 corresponds to the domain

of Mσ and S2 ` σ ◦ ϕ ensures that S2 corresponds to a subset of [[ϕ]]Mσ .

• The rule (R¬P ) guarantees that if a permission relation exists, it does not satisfy the

conditions that would make the announcement of ϕ permitted.

• The rule (R `) explains the meaning of S ` σ: if a state belongs to S it ‘survives’

after the successive announcements of σ. Similarly (R a), (R 6`) and (R 6a) explains the

meaning of S a σ, S 6` σ and S 6a σ.

Definition 6.41 (Tableau for ϕ) Given a formula ϕ ∈ L1
ppal we define the set T ab(ϕ) of

‘tableaux for ϕ’ inductively as follows:

• T0 = {{〈ε, 0, ϕ〉}} is in T ab(ϕ)

• If T is obtained from T ′ ∈ T ab(ϕ) by applying one of the rules of Table 6.2 to one of

the branch of T ′, then T ∈ T ab(ϕ)

Definition 6.42 (Closed Tableau) Let b be a branch. We say that b is closed if it contains

〈σ, n,⊥〉 for some σ, n. We say that a tableau T for ϕ is closed if every branch in b ∈ T is

closed. We say that a tableau (resp. branch) is open if it is not closed.

Definition 6.43 (Satisfiability) The branch b is said satisfiable iff there exists a model

M = 〈W,∼, V,P〉 and a function f : N −→W such that

1. for all i ∈ AG, if (nRin
′) ∈ b then f(n) ∼i f(n′)

2. for all 〈σ, n, ϕ〉 ∈ b: f(n) ∈Wσ and Mσ, f(n) |= ϕ

3. for all Π(n, S1, S2) in b, there exists S1, S2 ⊆W such that (f(n), S1, S2) ∈ P and

(i) for all m ∈ N,

{
if (m ∈ S∗) is in b then f(m) ∈ S∗

if (m /∈ S∗) is in b then f(m) /∈ S∗



160 CHAPTER 6. PERMISSION AND PUBLIC ANNOUNCEMENTS

〈σ, n, ψ ∨ ϕ〉
〈σ, n, ψ〉 | 〈σ, n, ϕ〉

(R∨)

〈σ, n,¬(ψ ∨ ϕ)〉
〈σ, n,¬ϕ〉
〈σ, n,¬ψ〉

(R∧)

〈σ, n,Kiϕ〉 ; nRim

〈ε,m, [σ]ϕ〉
(RKi)

〈σ, n,¬Kiϕ〉
〈σ,m,¬ϕ〉 ; nRim

(RK̂i)

〈σ, n, [ψ]ϕ〉
〈σ, n,¬ψ〉 | 〈σ ◦ ψ, n, ϕ〉

(R[.])
〈σ, n,¬[ψ]ϕ〉

〈σ ◦ ψ, n,¬ϕ〉
(R〈.〉)

〈σ, n, ϕ〉

〈tl(σ), n, h(σ)〉
(Rσ) 〈σ, n,¬¬ϕ〉

〈σ, n, ϕ〉
(R¬)

.
nRin

(RT )
nRim
mRin

(RS)
〈σ ◦ ψ, n, l〉
〈ε, n, l〉

(RSB)

nRim ; mRio

nRio
(R4)

〈σ, n, ϕ〉 ; 〈σ, n,¬ϕ〉
〈σ, n,⊥〉

(R⊥)

〈σ, n, Pϕ〉
S1 ` σ

Π(n, S1, S2) ; S1 a σ
S2 ` σ ◦ ϕ

(RP )

〈σ, n,¬Pϕ〉 ; Π(n, S1, S2)
S1 6` σ | S1 6a σ | S2 6` σ ◦ ϕ

(R¬P )

.
n ∈ S | n 6∈ S

(R ∈)
Π(n, S′, S′′)

n ∈ S′′ (RΠ)

S ` σ ; n ∈ S

〈σ, n,>〉
(R `)

S 6` σ

n ∈ S ; 〈ε, n, [σ]⊥〉
(R 6`)

S a σ ; n 6∈ S

〈ε, n, [σ]⊥〉
(R a)

S 6a σ

n 6∈ S ; 〈σ, n,>〉
(R 6a)

Table 6.2: Tableau rules for PPAL
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(ii) for all σ ∈ L(N),






if (S∗ ` σ) is in b then S∗ ⊆Wσ

if (S∗ 6` σ) is in b then S∗ 6⊆Wσ

if (S∗ a σ) is in b then S∗ ⊇Wσ

if (S∗ 6a σ) is in b then S∗ 6⊇Wσ

A tableau is said to be satisfiable if it contains a satisfiable branch.

6.6.2 Properties

We show in this section soundness and completeness of the tableau method:

Proposition 6.44 (Soundness) If ϕ is satisfiable, then there exists no closed tableau for ϕ.

Proof It is enough to see that any tableau rule preserves satisfiability of a given tableau,

i.e if b is a satisfiable branch, then the set B of branches generated from b by applying a rule

contains a satisfiable branch.

Indeed, if ϕ is satisfiable then the initial tableau for ϕ is satisfiable. Therefore every

tableau would be satisfiable. Hence every tableau would contain an open branch (otherwise

〈σ, n,⊥〉 ∈ L and thus Mσ, f(n) |= ⊥) Q.E.D.

For every tableau rule we prove that it preserves satisfiability, by showing that it preserves

the three constraints of the definition of satisfiability (Definition 6.43).

• R∧,R∨, R¬,RK,RK̂,RSB, R[.],R〈.〉: We let the reader prove that conditions 1 and 2

are preserved. Similar proofs can be found in [Balbiani et al., 2010]. Furthermore [Π],

[∈] and [`] do not change by applying these rules. Therefore condition 3 is clearly

preserved.

•R⊥: No satisfiable branch can satisfy the conditions to apply this rule, therefore it neces-

sarily preserves satisfiability.

•RT,R4,RS: Condition 1 is preserved by the fact that the relation in the constructed model

is an equivalence relation. Conditions 2 and 3 are preserved because only [R] is modified

by this rule.

•Rσ: If f(n) ∈ Wσ then f(n) ∈ Wtl(σ) and Mtl(σ), f(n) |= hd(σ). Therefore condition 2 is

preserved. Conditions 1 and 3 are preserved because only [♦] is modified by this rule.

•RP: Conditions 1 and 2 are preserved because [♦] and [R] are not modified by this rule.

Condition 3.i is preserved because [∈] is not modified by this rule, and the sets S1, S2

created are new. For condition 3.ii recall that by hypothesis Mσ, f(n) |= Pϕ (and

f(n) ∈ Wσ). Then there exists (f(n), S1, S2) ∈ P such that S1 = Wσ and S2 ⊆ Wσ◦ϕ.

Let us consider the Π(n, S1, S2) created by the rule RP , we can easily verify that

(f(n), S1, S2) ∈ P is a good candidate to satisfy the requisites of 3.ii.
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•R¬P: Conditions 1 and 2 and 3.i are preserved because [♦], [R], [∈] and [Π] are not modified

by this rule. For condition 3.ii, by hypothesis, Mσ, f(n) |= ¬Pϕ (and f(n) ∈ Wσ) and

there exists a (f(n), S1, S2) ∈ P satisfying conditions 3.i and 3.ii. But Mσ, f(n) |=

¬Pϕ imposes that S1 6⊆ Wσ or S1 6⊇ Wσ or S2 6⊆ Wσ◦ϕ. Therefore, by choosing the

corresponding branch 3.ii is preserved by the rule.

•R∈: Conditions 1, 2 and 3.ii are preserved because only [∈] is modified by this rule. By

hypothesis, n is a node and Si is a letter appearing in an element of [Π]. Thus by

hypothesis f(n) ∈ W and there exists Si ⊆ W satisfying 3.i and 3.ii. Therefore either

f(n) ∈ Si and we choose n ∈ Si in [∈] or f(n) 6∈ Si and we choose n 6∈ Si in [∈].

•R` : Conditions 1. and 3. are evidently satisfied. The hypothesis imposes that there exists

S′ ⊆ Wσ with f(n) ∈ S′. Therefore f(n) ∈ Wσ and Mσ, f(n) |= >, which is condition

2.

•Ra : Conditions 1. and 3. are evidently satisfied. The hypothesis imposes that there exists

S′ ⊇ Wσ with f(n) /∈ S′. Therefore f(n) /∈ Wσ , which means that M, f(n) |= [σ]⊥.

Condition 2 is thus satisfied.

•R 6` : Condition 1. and 3.ii are evidently satisfied. By hypothesis, there exists S′ 6⊆ Wσ

satisfying 3.i. Therefore there exists a f(n) ∈ S′ such that M, f(n) |= [σ]⊥. Therefore

the rule preserves 2. and 3.i.

•R 6a : Condition 1. and 3.ii are evidently satisfied. By hypothesis, there exists S′ 6⊇ Wσ

satisfying 3.i. Therefore there exists f(n) ∈ Wσ s.t. f(n) /∈ S′ (and Mσ, f(n) |= >).

Therefore the rule preserves 2. and 3.i.

�

Definition 6.45 Let b a branch and R = α1;...;αn

β1;...;βp|γ1...γr
a rule. We say that R is applicable

on b iff there exists a substitution s such that s(α1), . . . , s(αn) ∈ b and for all substitutions s′

we have {s′s(β1), . . . , s′s(βp)} 6⊆ b and {s′s(γ1), . . . , s′s(γr)} 6⊆ b.

Let us now prove completeness. We first need the notion of saturated tableau:

Definition 6.46 Let b a branch. We say that b is saturated under a rule R iff R is not

applicable on b.

A branch b is said saturated if and only if it is saturated under all tableau rules.

Let T be a tableau for ϕ0. T is said saturated if and only if for all branch b ∈ T , b is

either closed or saturated.

Proposition 6.47 If there exists an open saturated tableau for ϕ0, then ϕ0 is satisfiable.

In order to prove it, we require the following notion of degree of a formula:
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Definition 6.48 (Degree) We define the degree of a formula ϕ ∈ Lpopal inductively

as follows: deg(p) = 0, deg(¬ϕ) = deg(ϕ), deg(ϕ1 ∨ ϕ2) = max(deg(ϕ1), deg(ϕ2)),

deg(Kiϕ) = deg(ϕ), deg([ψ]ϕ) = deg(ψ) + deg(ϕ) + 2, deg(Pϕ) = deg(ϕ) + 2.

Proof (of Proposition 6.47) Let T be an open saturated tableau for ϕ0, and b be an

open branch of T . b is saturated under every tableau rule. We then construct the model

M = (W,∼, V,P) with:

• W = {n ∈ N | 〈σ, n, ϕ〉 ∈ b for some σ, ϕ}

• for every agent i, ∼i= {(n, n′) | nRin
′ ∈ b}

• for every propositional atom p, V (p) = {n ∈ N | 〈ε, n, p〉 ∈ b}

• P = {(n, g(S1), g(S2)) ∈ W × 2W × 2W | Π(n, S1, S2) ∈ b}, where by definition g(S) =

{n ∈ N | (n ∈ S) ∈ b}.

First of all, it is easy to see that M is a model. In particular

• for every agent i ∼i is an equivalence relation by rules RT , R4 and RS

• for every (n, S1, S2) ∈ P , n ∈ S2 by rule RΠ and S1 ⊆ S2 by rule RP with R ` and

R a.

For all a ∈ N, k ∈ N, ϕ ∈ L1
ppal , we call ρ(a, k, ϕ) the following property:

∀n ∈W, ∀σ = (σ1, . . . , σk), if (∗)

{
k + Σdeg(σi) + deg(ϕ) 6 a

〈(σ1, . . . , σk), n, ϕ〉 ∈ b
then

{
n ∈Wσ

Mσ, n |= ϕ

Note that ρ(a, k, ϕ) is true if k + deg(ϕ) > a (†).

For any pair of triplets (a′, k′, ϕ′) and (a, k, ϕ) in N×N×L1
ppal , we say that (a′, k′, ϕ′)�

(a, k, ϕ) if and only if: a′ < a or (a′ = a and k′ < k) or ((a′, k′) = (a, k) and ϕ′ ∈ Sub(ϕ)). It

is a well-founded (partial) order.

Let us suppose that ρ(a′, k′, ϕ′) is true for all (a′, k′, ϕ′)� (a, k, ϕ), and let us prove that

ρ(a, k, ϕ) is true, by reasoning on the structure of ϕ. It would prove that ρ(a, k, ϕ) is true for

all (a, k, ϕ) in N × N × L1
ppal , and in particular that (a, 0, ϕ) is true for all a, ϕ in N × L1

ppal ,

which implies Proposition 6.49.

Let n be in W , and σ1, . . . , σk ∈ L1
ppal be such that (∗). We note σ = (σ1, . . . , σk).

Case ϕ = p: First, if k = 0 then 〈ε, n, p〉 ∈ b iff n ∈ V (p) iff M, n |= p and the result is

proved. Hence we assume that k > 1. Now, by hypothesis, we have 〈(σ1, . . . , σk), n, p〉 ∈ b,

then

1. 〈(σ1, . . . , σk−1), n, σk〉 ∈ b (by Rσ-sat), and then

{
n ∈Wtl(σ)

Mtl(σ), n |= σk

by ρ(a, k − 1, σk)

because (k − 1) + deg(σ1) + ∙ ∙ ∙+ deg(σk) 6 a. Therefore n ∈Wσ.

2. 〈ε, n, p〉 ∈ b (by RSB-sat). We obtain M, n |= p by definition of the valuation. Thus

Mσ, n |= p
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Cases ϕ = ¬p,>,⊥: Idem, using the fact that the branch is open.

Case ϕ = ϕ1 ∨ ϕ2: By hypothesis, we have 〈σ, n, ϕ1 ∨ ϕ2〉 ∈ b. Thus, by R∨-sat, we have

〈σ, n, ϕ1〉 ∈ b or 〈σ, n, ϕ2〉 ∈ b . As for both i, deg(ϕi) 6 deg(ϕ), and ϕi ∈ Subf(ϕ) we can

apply ρ(a, k, ϕi) and thus we obtain

{
n ∈Wσ

Mσ, n |= ϕ1 ∨ ϕ2

Case ϕ = ϕ1 ∧ ϕ2: Identical, using R∧-sat.

Case ϕ = Kiϕ1: By hypothesis, we have 〈σ, n,Kiϕ1〉 ∈ b. Therefore, on one hand we obtain

〈σ, n, ϕ1〉 ∈ b (by RT -sat) and thus

{
n ∈Wσ

Mσ, n |= ϕ1

(by ρ(a, k, ϕ1)). On the other hand, let

m ∈ Wσ be such that n ∼i m, let us show that Mσ,m |= ϕ1. But by definition of ∼i,

nRim ∈ b and thus, by RK-saturation, 〈σ,m,ϕ1〉 ∈ b.

Case ϕ = ¬Kiϕ1: By hypothesis, we have 〈σ, n,¬Kiϕ1〉 ∈ b. By RK̂-sat, there exists a

m ∈W s.t. nRim ∈ b and 〈σ, m,¬ϕ1〉 ∈ b. This leads to the desired result by ρ(a, k,¬ϕ1).

Case ϕ = [σk+1]ϕ1: We suppose a > 2, otherwise it is already proven by (†) because

k + deg(ϕ) > a. We write σ′ = σ ◦ σk+1. Now, by hypothesis we have 〈σ, n, [σk+1]ϕ1〉 ∈ b,

thus by R[.]-saturation:

- either 〈σ, n,¬σk+1〉 ∈ b and then Mσ, n |= ¬σk+1 by ρ(a− 2, k,¬σk+1), because

k + deg(σ1) + ∙ ∙ ∙+ deg(σk) + deg(¬σk+1)

6 k + deg(σ1) + ∙ ∙ ∙+ deg(σk) + deg(σk+1) + deg(ϕ1)

= k + deg(σ1) + ∙ ∙ ∙+ deg(σk) + deg([σk+1]ϕ1)− 2 6 a− 2

- or 〈σ, n, σk+1〉 ∈ b. In this case 〈σ′, n, ϕ1〉 ∈ b and we obtain that

{
n ∈Wσ′

Mσ′ , n |= ϕ1

by

ρ(a− 1, k + 1, ϕ1) because

k + 1 + deg(σ1) + ∙ ∙ ∙+ deg(σk) + deg(σk+1) + deg(ϕ1)

= k + deg(σ1) + ∙ ∙ ∙+ deg(σk) + deg([σk+1]ϕ1)− 1 6 a− 1

Case ϕ = ¬[σk+1]ϕ1: We suppose a > 2, otherwise it is already proven by (†), because

k +deg(ϕ) > a. We write σ′ = σ ◦σk+1. By hypothesis we have 〈σ, n,¬[σk+1]ϕ1〉 ∈ b, thus by

R〈.〉-saturation, 〈σ, n, σk+1〉 ∈ b and 〈σ′, n,¬ϕ1〉 ∈ b, which implies that Mσ, n |= σk+1 and

Mσ′ , n |= σ¬ϕ1 by ρ(a− 1, k + 1,¬ϕ1) because

k + 1 + deg(σ1) + ∙ ∙ ∙+ deg(σk) + deg(σk+1) + deg(¬ϕ1)

= k + deg(σ1) + ∙ ∙ ∙+ deg(σk) + deg(¬[σk+1]ϕ1)− 1 6 a− 1.
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Case ϕ = Pϕ1: We suppose a > 2, otherwise it is already proven by (†), because k +

deg(ϕ) > a. By hypothesis we have 〈σ, n, Pϕ1〉 ∈ b, thus by RP -saturation, there is a

Π(n, S1, S2) ∈ b such that {S1 ` σ, S1 a σ>, S2 ` σ ◦ ϕ1} ⊆ b. Therefore, by construction of

P , (n, g(S1), g(S2)) ∈ P . Let us show that g(S1) = Wσ and g(S2) ⊆Wσ◦ϕ1 .

First let m ∈ g(S1), thus [m ∈ S1] is in b and then, by R `-saturation, 〈σ,m,>〉 ∈ b. Thus

by ρ(a − 1, k,>) we obtain m ∈ Wσ, because k + deg(σ1) + ∙ ∙ ∙ + deg(σk) 6 k + deg(σ1) +

∙ ∙ ∙+ deg(σk) + deg(Pϕ1)− 1 6 a− 1. Thus g(S1) ⊆Wσ.

Second let m ∈ g(S2), thus [m ∈ S2] is in b and then, by R `-saturation, 〈σ◦ϕ1,m,>〉 ∈ b.

By Rσ-sat 〈σ,m,ϕ1〉 ∈ b and ρ(a, k, ϕ1) we obtain

{
n ∈Wσ

Mσ, n |= ϕ1

, because k + deg(σ1) +

∙ ∙ ∙+ deg(σk) + deg(ϕ1) 6 k + deg(σ1) + ∙ ∙ ∙+ deg(σk) + deg(Pϕ1) 6 a. Thus g(S1) ⊆Wσ◦ϕ1 .

Third, let m ∈Wσ. Towards a contradiction assume that m 6∈ g(S1). Thus [m 6∈ S1] is in

b, and by R a-saturation we have that 〈ε,m, [σ]⊥〉 ∈ b. Therefore, by R[.]-saturation iterated,

- either 〈ε,m,¬σ1〉 ∈ b and M, m |= ¬σ1 by ρ(a, 0,¬σ1)

- or 〈σ1,m,¬σ2〉 ∈ b and Mσ1 ,m |= ¬σ2 by ρ(a, 1,¬σ2)

- . . .

- or 〈(σ1, . . . , σk),m,⊥〉 ∈ b and Mσ,m |= ⊥ by ρ(a− 1, k,>)

In all cases, that is in contradiction with the hypothesis m ∈Wσ.

Case ϕ = ¬Pϕ1: We suppose a > 2, otherwise it is already proven by (†), because k +

deg(ϕ) > a. By hypothesis we have 〈σ, n,¬Pϕ1〉 ∈ b and we want to show that show that

for all (n, S1, S2) ∈ P , S1 6= [[〈σ〉>]] or S2 6⊆ [[〈σ〉ϕ1]]. Let (n, S1, S2) ∈ P , by definition of P ,

we have Π(n, S1, S2) ∈ b with g(S1) = S1 and g(S2) = S2. Thus, by R¬P -saturation, either

(S1 6` σ) ∈ b or (S1 6a σ) ∈ b or (S2 6` σ ◦ ϕ1) ∈ b.

In the first case, by R 6` -saturation, there exists a m ∈W such that (m ∈ S1) is in b and

〈ε,m, [σ]⊥〉 ∈ b. Thus m ∈ S1 and 〈ε,m, [σ]⊥〉 ∈ b. As in the previous case, this is equivalent

to m /∈Wσ. Therefore S1 6⊆ [[〈σ〉>]].

In the third case we prove S2 6⊆ [[〈σ〉ϕ1]] in the same way.

In the second case, by R 6a -saturation, there exists a m ∈ W such that (m /∈ S1) is in b

and 〈σ,m,>〉 ∈ b. Thus m /∈ g(S1) and, by ρ(a− 1, k,>), m ∈Wσ. Therefore S1 6⊇ [[〈σ〉>]].

�

We are now able to prove completeness of the tableau method:

Theorem 6.49 (Completeness) If every tableau for ϕ is open then ϕ is satisfiable.

Proof

Let SN , called the naive strategy be the following application of the tableau rules

SN :
(
(R∨); (RKi); (R[.]); (Rσ); (R∧); (RK̂i); (R〈.〉); (R¬); (RT ); (RS); (RSB); (R4); (R⊥);
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(R¬P ); (R ∈); (RΠ); (RP1); (RP2); (RP ); (R`); (R 6`); (R a); (R 6a)
)∗

. It can be called naive

because it simply applies all the rules in an arbitrarily chosen order, and then starts again.

If a rule is applicable, it is applied to one of the oldest instances that match with the

conditions of the rule (FIFO). Remark that SN satisfies the fact that for all i > 0, if a rule

R is applicable in Ti then it will be considered at some step j > i.

Now let ϕ ∈ L1
ppal be such that for all T ∈ T ab(ϕ), T is open. Let (Tn) = T ab(ϕ) the

(possibly infinite) list of all the tableaux for ϕ constructed by applying strategy SN to the

initial tableau for ϕ, T0 = T0(ϕ).

Now there are two possibilities for a given formula ϕ: starting from the initial tableau for

ϕ, either SN ends after n steps or SN never ends. In the first case Tn is saturated (because

no rule can be applied anymore) and it is open by hypothesis. Then it is an open saturated

tableau. By proposition 6.47 we obtain the wanted result.

In the second case, let T∞ be the infinite tree representing the infinite executions of SN : for

all n ∈ N, the nodes of depth n are the branches of Tn. Therefore the root node is {〈ε, 0, ϕ〉}

and every node is a set containing every one of its ancestor nodes. It is a finitely branching

tree because every rule creates a finite number of branches. Therefore, as it is infinite, it has

an infinite tree-branch B∞. We prove that this is an open branch. Indeed it is an infinite

union of branches that are included one in the other for all i ∈ N, Bi ⊆ Bi+1. We can thus

define their limit
⋃

i∈N Bi and obtain B∞.

Now for all i ∈ N, Bi is open. Therefore B∞ does not contain 〈σ, n,⊥〉 for any σ, n.

Furthermore B∞ is saturated by construction. Therefore it is an open saturated (infinite)

branch. By Proposition 6.47 this leads to the satisfiability of ϕ.

�

6.6.3 Implementation

We first have implemented the semi-algorithm corresponding to the tableau. In order to get

a more efficient algorithm, we implement the tableau method using two modifications of the

tableau method. First, we add two additive rules RP1 and RP2:

Π(m,S1, S2); 〈σ, n, Pϕ〉; S1 ` σ; S1 a σ; S2 ` σ ◦ ϕ

Π(n, S1, S2)
(RP1)

Π(m,S1, S2); 〈σ, n, Pϕ〉; S1 ` σ; S1 a σ

Π(n, S1, S3) ; S3 ` σ ◦ ϕ
(RP2)

Table 6.3: Two additive tableau rules

The rules (RP1) and (RP2) simply subsume the rule (RP ) in order to avoid cre-

ation of useless extra symbols of §. Second, we construct the models following strat-

egy Strat defined as the application of the first rule which is applicable in the follow-

ing list (R∨); (RKi); (R[.]); (Rσ); (R∧); (RK̂i); (R〈.〉); (R¬); (RT ); (RS); (RSB); (R4); (R⊥);



6.6. TABLEAUX 167

(R¬P ); (R ∈); (RΠ); (RP1); (RP2); (RP ); (R`); (R 6`); (R a); (R 6a) and then restart strategy

Strat, or quit if there is no applicable rule.

We have implemented the strategy Strat under LotrecScheme1 which is a software for

rewriting terms close to the tool Lotrec (see [Gasquet et al., 2005] and [Said, 2010]). We have

written all rules of the Table 6.2. Figure 6.2 shows the implementation of rules (Rσ), (R4)

and (RP2).

Figure 6.2: Rules (Rσ), (R4) and (RP2)

We write (lf L PHI) in the node A for 〈L,A, ϕ〉. We use the primitive cdr and car of Scheme

to get respectively the tail and the head of the list L. (R4) is a graphical representation of

transitivity. All terms S ` σ, Π(n, S1, S2)... are written in an extra node called “extra”.

We adapt also the language Lppal in order to implement it. Thus Kiϕ is written �iPHI

and [ψ]ϕ is written Ann�(PSI)PHI . The other constructions (¬,∧, ...) are identical.

Let us see, as an example, the satisfiability of the following formula ϕ = PK1p ∧ PK1q ∧

¬PK1(p∧ q)∧ K̂2PK1(p∧ q)∧ [K1p]PK1(p∧ q). It expresses the possibility of the following:

• Agent 1 is permitted to say (she knows) p and (she knows) q but is not permitted to

say (she knows) p ∧ q – as for Alex in the first example.

• Agent 2 imagines that Agent 1 is permitted to say p ∧ q (she may not know the rule).

• Agent 1 has the permission to say (she knows) p ∧ q after the announcement that (she

knows) p.

Figure 6.3 presents the output of LotrecScheme if we ask for a model of ϕ. The actual

state is n24, in the top left of the model. The node ‘Pi’ is not a state but represents the set

1http://www.irit.fr/~Francois.Schwarzentruber/lotrecscheme/.
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Figure 6.3: The output of the tableau method for PK1p∧PK1q∧¬PK1(p∧ q)∧ K̂2PK1(p∧
q) ∧ [K1p]PK1(p ∧ q)

P of permitted transitions. As for ‘extra’, it is a list of the membership (or not) of the states

of the models to the sets of states considered in ‘Pi’. The membership of a state n to a set S

is reproduced inside the state.

Let us have a look at ‘Pi’: Π(n24, S28, S35) corresponds to PK1p, Π(n24, S28, S29) cor-

responds to PK1q, Π(b25, S28, S38) corresponds to K̂2PK1(p∧ q) and Π(n24, S41, S42) cor-

responds to [K1p]PK1(p ∧ q). We explain the details of this last example.

Π(n24, S41, S42) means that in the state n24, the transition from the submodel based

on S41 to the submodel based on S42 is a permitted transition. S41 is the following set of

states: S41 = {n24, b25, a66, b69} (the four states in the top of the model). Those are exactly

the states that satisfy K1p: S41 = [[K1p]]. Now S42 = {n24}, and n24 satisfies K1(p ∧ q).

Therefore the restriction to S42 is stronger than the restriction to [[〈K1p〉K1(p∧q)]]. Therefore

[K1p]PK1(p ∧ q).

Unfortunately this tableau method does not provide a terminating algorithm. For in-

stance, if you want to check if P (K̂1K̂2p) the tableau method will not terminate. But we

believe that we can tune the tableau method by adding a loop check rule in order to obtain

a terminating procedure. We guess that the loop check rule may look like: “if there are two

nodes n1 and n2 containing the same formulas, and such that “n1 ∈ S” ∈ b iff “n2 ∈ S” ∈ b

and “Π(n1, S1, S2)” ∈ b iff “Π(n2, S1, S2)” ∈ b then we merge the two nodes n1 and n2.”

Nevertheless, this tableau method for PPAL opens perspectives in the purpose of creating
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a framework taking rules of games expressed in POPAL and building automatically artificial

agents able to reason about the corresponding game and play it.





Chapter 7

Private Permissions

7.1 Introduction

A medical laboratory (L) gets the results of the blood analysis of a patient called Michel

(M). This confirms that Michel does not have AIDS (A). But of course, the results could

have been different. To prevent that patients commit suicide when they learn that they are

ill, French laboratories are not allowed to inform a patient directly of the results of a blood

analysis (by email, by post, or whatever inconvenient form of impersonal or unprofessional

communication). They have to inform a doctor (D), who receives the patient in his office, and

then informs the patient. This protocol has to be followed when the patient has AIDS, but

also when he does not have AIDS, otherwise having an appointment with the doctor could

already be interpreted as confirmation of the disease, and we still get the terrible situation of

lonely people in distress, that are a suicide risk.

Our aim, in this chapter, is to be able to formalize this kind of situation in which agents

can communicate with each other, and where there are restrictions, that can be deontic, moral

or hierarchical, on these announcements.

To formalize the concept of ‘having the permission to say to somebody’ we develop here a

variant of POPAL presented in the previous chapter. Indeed, the language considered here is

an extension of Plaza’s public announcement logic ([Plaza, 1989]), which we could call ‘private

announcement logic’, with a modal operator PG
i for permission, where PG

i ϕ expresses that

agent i is allowed to say ϕ to the agents of the group G. As for POPAL, this logic can be seen

as an adaption of the dynamic logic of permission proposed by [van der Meyden, 1996], later

elaborated by [Pucella and Weissman, 2004], presented in Section 3.2. Recall that in Van der

Meyden’s work, ♦(α,ϕ) means “there is a way to execute α which is permitted and after which

ϕ is true”: we treat now the particular case where actions are announcements made by an

agent to a group of agents. We also introduce an obligation operator OG
i ψ, meaning that the

agent is obliged to say ψ to the group G.

Once again, there is a relation between this proposal and the extension of public an-

nouncement logic with protocols by [van Benthem et al., 2009] presented in Section 3.3. In

their approach, one cannot just announce anything that is true, but one can only announce a

true formula that is part of the protocol, i.e., that is the first formula in a sequence of formu-

las (standing for a sequence of successive announcements) that is a member of a set of such

sequences called the protocol. In other words, one can only announce permitted formulas. We

171
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do not have this limitation here: we can distinguish an announcement that cannot be done

(because its content is false) from an announcement that is feasible but forbidden.

The permissions we model here are permissions for individual agents modelled in a multi-

agent system. For example, if we have three agents a, b, c, we want to formalize that a has

permission to say p to b, but not to c. We can model permission for agents using the standard

method that agents only announce what they know: so agent a says Kap to b only. This

would leave open what c learns from this interaction. The solution we chose is similar to

the semi-public announcements ([Baltag and Moss, 2004]) where agents not involved in the

communicative interaction at least are aware of the topic of conversation and of the agents

involved in it: if a actually announces p to b, c considers it possible that a announces Kap to

b, or that he announces ¬Kap to the same b. We also model such permissions and obligations

of individual agents towards other agents in the system, or to groups of other agents.

7.2 Logic of Permitted and Obligatory Private Announce-

ments

7.2.1 Introducing Agency and Individual Permission

The reader may recall the previous chapter to better understand the current one. Indeed, as we

will see in Proposition 7.15, the notion of permission of this logic with private announcements

can be seen as an extension of the notion of permission formalized in POPAL and presented

in Chapter 6: if the group that ‘receive’ the announcement is always the whole group of agents

AG, then any ‘private’ announcements to the group G is a public one. The analogous feature

is not true for obligation, given that we have a different intuition of obligation in this chapter.

We want to consider private announcements, i.e. informative events in which an agent

gives a piece of information that she has to another agent (or to a group of agents). Some

choices have to be made. First, we consider that the content of an announcement is true,

second we consider that the agent who is speaking can speak only about her own knowledge

(it is the only thing she can actually know to be true), third we consider that the agents

who hear the announcement believe it (and update their knowledge in consequence). This

third point implies, in our understanding, that if the receiver of the announcement is a group

then the information will be common to all its agents: anyone of them knows that any

other one modified her knowledge. These points, except maybe the second, are classical in

the field of dynamic epistemic logic ([van Ditmarsch et al., 2007]). But one characteristic of

‘private announcement’ still has to be fixed: what do the other agents learn? Indeed, the

announcement can be hidden (and the others may believe that nothing is happening), or it

may be the case that the other agents see who is communicating with who, without knowing

anything about the content of the message. They may also know both the agents involved

and the topic of the announcement, without knowing its truth value.
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In [Baltag and Moss, 2004] the authors propose a general framework to express these

different kinds of announcements. The main idea is that an announcement is represented by

a graph: its states are deterministic events (and are labelled by formulas of the language that

express the content of the messageà); a relation between two states, labeled by an agent i, is

like in Kripke models an uncertainty for these agents about which of the two messages is given.

With this formalism the previous examples of announcement can be represented as follows

(in these examples i gives the information ϕ to j, the actual event being double-surrounded):

Public announcement: Kiϕ

AG

Hidden announcement : Kaϕ

AG

AG\{i,j} >

AG

Visible private announcement: Kiϕ

AG

AG\{i,j}

AG\{i,j}

Kiϕ1

AG

AG\{i,j}.

Kiϕn

AG

Idem with known topic: Kiϕ

AG

AG\{i,j} ¬Kiϕ

AG

For both technical and practical reasons we restrict our formalism to the last kind of

announcements, in which both the agents involved and the topic of the message are publicly

known. In this context, we consider announcements of the type !Gi ϕ with ϕ ∈ Lel , i ∈ AG

and G ⊆ AG. This formula represents the semi-private announcement by i to the group

G of what she knows about ϕ. That can be “I know that ϕ is true”, “I don’t know if

ϕ is true” (analogously to the treatment of questions in [Groenendijk and Stokhof, 1997]).

Our formalism does not use event models, announcements are simply modelled as models

restrictions, but the result of such an announcement is exactly the same as the result of the

action of the corresponding event model as described previously:

Kiϕ
(AG\{i})\G

¬Kiϕ

You can read this in the following way: The actual action is that agent i says “I know

that ϕ” and the agents in the group G know it, but every other agent that is not in G cannot

distinguish this action from agent i saying “I don’t know either ϕ”.

It is worth noting that every state of every model satisfies only one of the two previous

preconditions: in every state, either i knows ϕ, or she does not know ϕ. This implies that

the action of !Gi ϕ on an epistemic model is only a copy of it with less epistemic arrows (if j

learns that i knows ϕ, she does not consider anymore the states in which ¬Kiϕ was true).
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Note that !Gi ϕ is identical to !Gi Kiϕ and that !Gi ¬Kiϕ is the same action model but pointed

in the other state.

Such semi-public announcements can be modelled as restrictions on accessibility relations,

while keeping the entire domain intact.

In the following subsection, instead of a permission relation that is the same for all agents,

we define individual permission relations, one for each agent, and based on these structures

we propose operators (let us take the one argument version) PG
i ψ and OG

i ψ for “agent i is

permitted to announce whether she knows ψ to group G”, and “agent i is obliged to announce

whether she knows ψ to group G”. The more general form of obligation is O
~G
i

~ψ, where i has

obligations (~ψ =) ψ1, ..., ψn to groups of agents ( ~G =) G1, ..., Gn.

Let us see it in details.

7.2.2 Syntax of Lpopral

We first define the following partial language Lpral :

Definition 7.1 (Lpral) The language of private announcement logic Lpral over PROP and

AG is defined inductively as follow:

ψ ::= p|⊥|¬ψ|ψ ∨ ψ|Kiψ|[!
G
i ψ]ψ

where i ∈ AG, G ⊆ AG, and p ∈ PROP

We are now able to introduce properly the syntax of our language:

Definition 7.2 The language of permitted and obligatory private announcements logic Lpopral

is defined inductively as follows:

ϕ ::= p|⊥|¬ϕ|ϕ ∨ ϕ|Kiϕ|[!
G
i ψ]ϕ|PG

i ψ|O
~G
i

~ψ

where i ∈ AG, G ⊆ AG, p ∈ PROP , ψ ∈ Lpral , ~ψ = (ψ1, . . . , ψn) is a tuple of Lpral -formulas

and ~G = (G1, . . . , Gn) a tuple of subsets of AG. We call Lppral the fragment of the language

without obligation operators (and Lpral is the fragment of the language without permission

and obligation operators).

The boolean operators have the classical reading, and Kiϕ is read “agent i knows that

ϕ”. We read [!Gi ψ]ϕ as “after the announcement by agent i to the group G that (she knows)

ψ, where the agents not in G also consider possible that i announces that she does not know

ψ, ϕ becomes true”, PG
i ψ by “i is allowed to say ψ to the group G” and O

~G
i

~ψ by “i is

obliged to say ψ1 to G1 or . . . or ψn to Gn”. The obligation is thus presented as a list of

allowed announcements, and the agent satisfies her obligation by announcing one of them.

This construction may seem complicated, and looks like a disjunction: is it possible to reduce
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O
~G
i

~ψ to some kind of
∨

i OGi
i ψi? The answer is no: the following example shows that you

can have the obligation to announce one thing or one other without having the obligation to

announce any particular one of the two.

Example 7.3

In the Cluedo game1, a murder has been committed and every player has some information

about the weapon that has been used, the murderer or the room where the murder took place. A

player (A) makes a proposal: “I suggest it was Professor Plum (PP), in the library (L), with

the candlestick (C).” If another player (B) knows that this proposal is not correct, she has to

show to A one card that invalidates it (for example showing the card that says that Professor

Plum is innocent). B is thus obliged to give information to A, but she has no obligation to

give one particular information. Suppose that B knows that the three propositions PP , L and

C are false. Therefore we have (considering ~A = (A,A,A)) :

O
~A
B(¬PP,¬L,¬C) ∧ ¬(OA

B(¬PP ) ∨OA
B(¬L) ∨OA

B(¬C)).

The following technical notation will allow us to define the notion of strong obligation:

Definition 7.4 Let k, n ∈ N, let

{
~ψ := (ψ1, . . . , ψn)
~G := (G1, . . . , Gn)

and let

{
~ψ′ := (ψ′

1, . . . , ψ
′
k)

~G′ := (G′
1, . . . , G

′
k)

.

We note (~ψ′, ~G′) < (~ψ, ~G) if (~ψ′, ~G′) 6= (~ψ, ~G) and there exist j1, . . . , jk ∈ N such that

1 6 j1 < ∙ ∙ ∙ < jk 6 n and for all l ∈ {1, . . . , k},

{
ψjl

= ψ′
l

Gjl
:= G′

l

This notation can be understood as the fact that the announcements (formula and group) of

the first couple are announcements of the second. In particular, k < n.

We can now introduce the following useful abbreviations.

Definition 7.5

• 〈!Gi ψ〉ϕ := ¬[!Gi ψ]¬ϕ

• Strong obligation: O ~G
i

~ψ := O
~G
i

~ψ ∧
∧

(~ψ′, ~G′)<(~ψ, ~G)
¬O

~G′

i (~ψ′)

• [!Gi ψ∼]ϕ := [!Gi ψ]ϕ∧ [!Gi ¬Kiψ]ϕ: whatever i announces to G about her knowledge on ψ,

ϕ becomes true after the announcement

• (Finite) sequence of announcements: an announcement !Gi ψ is a sequence of announce-

ments, and if σ1, σ2 are sequences of announcements, then σ1; σ2 is a sequence of an-

nouncements.

• For all sequences of announcements σ1, σ2, we define [σ1; σ2]ϕ := [σ1][σ2]ϕ, 〈σ1; σ2〉ϕ :=

〈σ1〉〈σ2〉ϕ and [(σ1; σ2)∼]ϕ := [σ∼
1 ][σ∼

2 ]ϕ

1For a complete explanation of the rules of this game: http://en.wikipedia.org/wiki/Cluedo
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• If the tuple of groups (and announcements) are made of a unique element, we abbreviate

in the following way: OG
i ϕ := O

(G)
i (ϕ)

The first operator is the dual of [!Gi ψ]. As we will see, it is equivalent to [!Gi ψ]ϕ with the

supplementary condition that i can announce ψ. The second construction, [!Gi ψ∼]ϕ, means

that whatever i knows about ψ, if she says it to G then ϕ becomes true. The third one

defines a stronger (and in our opinion more realistic) notion of obligation: not only a list

of announcements one of which you have to ensure, but the smallest such list. This strong

obligation will guarantee us to avoid Ross’s paradox, indeed with this interpretation if you

are (strongly) obliged to make an announcement you are not (strongly) obliged to make this

announcement or another one. The fourth definition allows us to consider every sequence of

announcements σ. The fifth abbreviates the notation in the case where the considered tuples

are 1-uples.

7.2.3 Semantics for Lpral

The models of our logic will be epistemic models augmented with an additional relation

P between states and sets of relations, that represents, for each state, the announcements

that are explicitly permitted to be done in this state. To define it properly, we need some

preliminary notions:

Definition 7.6 (AG-relation) Let AG and S be two sets. We define an AG-relation over S

(or simply AG-relation) as a set R = {Ri}i∈AG such that for all i ∈ AG, Ri is an equivalence

relation over S.

Definition 7.7 (Inclusion of AG-relations) Let R = {Ri}i∈AG and R′ = {R′
i}i∈AG be

two AG-relations over S

• We say R′ ⊆ R if for all i ∈ AG, R′
i ⊆ Ri.

• For all i ∈ AG, we say R′ ⊆i R if R′
i = Ri and for all j ∈ AG\{i}, R′

j ⊆ Rj.

Remark 7.8 For all i, G ∈ AG× 2AG, we have that R′ ⊆i R only if R′ ⊆ R. Note also that

⊆ and ⊆i are partial orders on AG-relations, in particular, they are transitive.

We are now able to define the notion of restriction of an AG-relation:

Definition 7.9 Let M = (S,R, V ) be an epistemic model over PROP and AG (cf. Defini-

tion 2.17), G ⊆ AG and ψ ∈ Lel an epistemic formula. We denote by R!Gi ψ the AG-relation

R′ = {Ri}i∈AG such that:

• R′
i = Ri

• for all j 6∈ G, R′
j = Rj
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• for all j ∈ G, R′
j = {(s, t) ∈ Rj s.t. M, s |= Kiψ iff M, t |= Kiψ}.

Therefore we define M!Gi ψ = (S,R!Gi ψ, V ).

We underline some elements:

• We could have removed the first line R′
i = Ri. Indeed, in both cases (i ∈ G and i /∈ G)

the other two lines would have imposed this condition. We do not remove it to be more

explicit.

• R!Gi ψ ⊆i R

• M!Gi ψ is still an epistemic model, as R!Gi ψ is clearly an equivalence relation.

We remark also that we can extend this notion of restriction to any Lpral -formula considering

the following semantics to interpret Lpral -formulas:

Definition 7.10 (Satisfiability relation for Lpral) LetM be a model and let s be a state

of S. The satisfiability relation M, s |= ϕ is defined inductively on the structure of ϕ:

• M, s |= p iff s ∈ V (p)

• M, s 6|= ⊥

• M, s |= ¬ψ iff M, s 6|= ψ

• M, s |= ψ1 ∨ ψ2 iff (M, s |= ψ1 or M, s |= ψ2)

• M, s |= Kiψ iff for all t ∼i s, M, t |= ψ

• M, s |= [!Gi ψ]χ iff M, s |= Kiψ implies M!Gi ψ, s |= χ

where M!Gi ψ = (S,R!Gi ψ, V ) with R!Gi ψ the AG-relation R′ = {Ri}i∈AG such that:

• R′
i = Ri

• for all j 6∈ G, R′
j = Rj

• for all j ∈ G\{i}, R′
j = {(s, t) ∈ Rj s.t. M, s |= Kiψ iff M, t |= Kiψ}.

7.2.4 Semantics for Lpopral

We can now define the models of our logic, that are epistemic models augmented in the

following way.

Definition 7.11 A model over a countable set of atomic propositions PROP and a countable

set of agents AG is a structure M = (S,R, V,P) with

• S being a non-empty set of states
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• R being a AG-relation over S.

• V mapping every p ∈ PROP to a subset of S

• for all i ∈ AG, Ti = {(s,R′,R′′) : R′,R′′ are AG-relations, s ∈ S, R′′ ⊆i R′ ⊆ R}

• P = {Pi}i∈AG where for all i ∈ AG, Pi ⊆ Ti.

The membership of (s,R′,R′′) in Pi can be interpreted as follows: in state s, after every

announcement that restricts the AG-relation to R′, every announcement of i that restricts

the AG-relation to R′′ is ‘permitted’. Indeed, only Lpral -formulas can be announced, so

the definitions of restriction appearing in Definitions 7.9 and 7.10 are sufficient to define

the update of a model M after the announcement !Gi ψ as the restriction M!Gi ψ, and the

interpretation of our logical language employing that model restriction.

Definition 7.12 (Satisfiability relation and restricted model) Let M be a model and

let s be a state of S. The satisfiability relationM, s |= ϕ is defined inductively on the structure

of ϕ:

• M, s |= p iff s ∈ V (p)

• M, s 6|= ⊥

• M, s |= ¬ψ iff M, s 6|= ψ

• M, s |= ψ1 ∨ ψ2 iff (M, s |= ψ1 or M, s |= ψ2)

• M, s |= Kiψ iff for all t ∼i s, M, t |= ψ

• M, s |= [!Gi ψ]χ iff M, s |= Kiψ implies M!Gi ψ, s |= χ

• M, s |= PG
i χ iff there exists ψ ∈ Lpral such that

1. M, s |= Kiψ

2. [[Kiψ]]M ⊆ [[Kiχ]]M and

3. (s,R,R!Gi ψ) ∈ Pi

• M, s |= O
~G
i ~ϕ iff

1. for all k ∈ {1, . . . , | ~G|}, M, s |= Kiϕk and (s,R,R
!
Gk
i ϕk

) ∈ Pi, and

2. for all (s,R,R!Hi χ) ∈ Pi there exists a k ∈ {1, . . . , |AG|} such that R!Hi χ = R
!
Gk
i χ

and [[Kiχ]]M ⊆ [[Kiϕk]]M

where M!Gi ψ = (S,R!Gi ψ, V,P ′) with P = {Pi}i∈AG such that for all j ∈ AG,

P ′
j = {(s,R1,R2) ∈ Pj s.t. R1 ⊆ R!Gi ψ}
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The semantics of the permission operator is thus the following: we say that i is allowed to

say (that she knows) χ to G if there is something (ψ) that she knows, which announcement

is more informative than the announcement of χ and gives a restriction that is in Pi. The

intuition hard encoded in the semantics for obligation is that given two different things that

you are permitted to say, you should only have the obligation to announce the weaker of both.

This explains the part “for all (s,R,R!Gi χ) ∈ Pi there exists a k such that R!Gi χ = R
!
Gk
i χ

and

[[Kiχ]]M ⊆ [[Kiϕk]]M” of the definition. This also intuitively entails that if you are obliged to

do something then it should at least be permitted, and that intuition is indeed valid for the

given semantics of obligation: for all ϕ ∈ Lpral : |= OG
i ϕ −→ PG

i ϕ.

But this notion of obligation still does not say what you are actually forced to say: indeed,

adding formulas to the tuple ~ϕ would maintain this obligation. This pushed us to define the

notion of ‘strong obligation’ as the smallest such ~ϕ satisfying the definiendum: M, s |= O ~G
i ~ϕ

iff M, s |= O
~G
i ~ϕ and for all ~ϕ′ < ~ϕ, M, s 6|= O

~G′

i (~ϕ′).

Remark 7.13 We define also M(!Gi ψ;!Hj χ) := (M!Gi ψ)!Hj χ, and we obtain inductively Mσ for

every finite sequence of announcements σ.

What is precisely the epistemic effect of the restriction !Gi ψ? For every agent j ∈ G after

the announcement of !Gi ψ it becomes valid that j is able to distinguish the states where i

knew ψ from the states where she did not know ψ. The other agents cannot distinguish any

state they could not distinguish before, but they know that group G agents can.

Let us make another important remark.

Remark 7.14 From Definition 7.5 we obtain:

• M, s |= 〈!Gi ψ〉ϕ iff M, s |= Kiψ and M!Gi ψ, s |= ϕ

• By a direct induction on n and by Remark 7.13 we obtain that for any sequence of

announcements σ =!G1
i1

ψ1; !
G2
i2

ψ2, . . . ; !
Gn
in

ψn, we have M, s |= 〈σ〉ϕ iff (M
!
G1
i1

ψ1
, s |=

〈!G2
i2

ψ2, . . . ; !
Gn
in

ψn〉ϕ andM
(!

G1
i1

ψ1;!
G2
i2

ψ2)
, s |= 〈!G3

i3
ψ3, . . . ; !

Gn
in

ψn〉ϕ and . . . andM〈σ〉, s |=

ϕ). We abbreviate this by saying that M, s |= 〈σ〉ϕ iff M, s |= 〈σ〉> and Mσ, s |= ϕ.

7.2.5 Comparison With the Non-Agent Version

As we announced in section 7.1, except for the notion of obligation that differs in the semantics,

we can see this work as an extension of the previous work on permitted public announcement

logic presented in Chapter 6. More precisely, consider the fragment of Lpopral in which the

group that receives any announcement is the entire group of agents AG. Let us call LAG
popral this

particular language, in which the announcements have the form !AG
i ψ (we thus abbreviate it

in !iψ). The important remark is that such an announcement just divides the model into two

submodels, depending on the initial valuation of Kiψ: R!iψ is the restriction of R to [[Kiψ]]
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and [[¬Kiψ]]. Now, for every model M = (S,R, V,P) of PPrAL we define the following

model M∗ = (S∗,R∗, V ∗,P∗) of PPAL:

• S∗ = S

• R∗ = R

• V ∗ = V

• for every announcement !iψ we define S!iψ = [[Kiψ]]M. Therefore we can define Sσ for

every succession of announcements σ by a direct induction (using Remark 7.13). Note

that Rσ is

• P∗ = {(s, Sσ, Sσ!iψ) ∈ S × 2S × 2S s.t. (s,Rσ,Rσ!iψ) ∈ P},

Therefore, an announcement !iψ inM has the same meaning as the public announcement

of Kiψ inM∗: if ϕ ∈ LAG
popral we define ϕ∗ ∈ Lpopal where ϕ∗ is obtained from ϕ by replacing

any occurrence of an announcement !iψ by Kiψ and any occurrence of PAG
i ψ by P (>, Kiψ).

Hence the following:

Proposition 7.15 Let ϕ be a LAG
ppral -formula. Then we have :

for every model M, and every state s ∈ S, M, s |= ϕ iff M∗, s |= ϕ∗.

To prove it we need the following lemma:

Lemma 7.16 Let ϕ ∈ (LAG
ppral )

∗ (i.e. the fragment of Lpopal obtained by translating a

Lppral -formula). Therefore for every model M, every sequence of announcements σ =

!i1ψ1; . . . ; !inψn such that M, s |= 〈σ〉> we have (Mσ)∗, s |= ϕ iff M∗|K(σ), s |= ϕ where

K(σ) := Ki1ψ1, . . . ,Kinψn.

In particular (if n = 1) for every model M, announcements !iψ such thatM, s |= Kiψ we

have (M!iψ)∗, s |= ϕ iff M∗|Kiψ, s |= ϕ.

Proof We prove it by induction on the formula ϕ:

Base cases: for ϕ = p by definition of V ∗. For ϕ = ⊥ it is trivial.

Inductive cases: Suppose that it is true for every subformula of ϕ∗

• ϕ = ¬χ, χ1 ∨ χ2 : direct

• ϕ = Kjχ: (Mσ)∗, s |= Kjχ

iff for t ∈ S′∗(= S) such that s(R′∗
j )t, (Mσ)∗, t |= χ

iff for t ∈ S such that sR′
jt, (Mσ)∗, t |= χ (because R′∗ = R′)

iff for t ∈ S such that sRjt and M, t |= 〈σ〉>, (Mσ)∗, t |= χ

(by definition of R′
j)

iff for t ∈ S such that sRjt and M, t |= Kiψ, M∗|Kiψ, t |= χ (by IH)

iff M∗|Kiψ, s |= Kjχ
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• ϕ = 〈χ〉θ: Note that ϕ is obtained by translating a Lppral -formula, thus ϕ =

〈Kjχ
∗〉θ∗ where χ ∈ Lpral , θ ∈ Lppral . Now:

(M!iψ)∗, s |= 〈Kjχ
∗〉θ∗

iff (M!iψ)∗, s |= Kjχ
∗ and (M!iψ)∗|(Kjχ

∗), s |= θ∗

iff M∗|Kiψ, s |= Kiχ
∗ (by IH) and (M!iψ;!jχ)∗, s |= θ∗ (by IH)

iff for t ∈ S such that sR′
jt, (M!iψ)∗, t |= χ (because R′∗ = R′)

iff for t ∈ S such that sRjt and M, t |= Kiψ, (M!iψ)∗, t |= χ

iff for t ∈ S such that sRjt and M, t |= Kiψ, M∗|Kiψ, t |= χ (by IH)

iff M∗|Kiψ, t |= Kjχ

�

Proof (of Proposition 7.15) We prove it by induction on the structure of ϕ.

base cases (ϕ = p,⊥): Comes from the fact that S = S∗ and V = V ∗.

induction steps Let us suppose that it is true for every subformula of ϕ:

• ϕ = ¬ψ,ψ1 ∨ ψ2: by a simple use of IH

• ϕ = Kiψ: by IH using that R∗ = R

(We can consider in particular that the property is true for every ψ ∈ Lel )

• ϕ = 〈!iψ〉χ: Therefore, ϕ∗ = 〈Kiψ〉χ∗. Now

M, s |= 〈!iψ〉χ

iff M, s |= Kiψ and M!iψ, s |= χ

iff M∗, s |= Kiψ and (M!iψ)∗, s |= χ∗

iff M∗, s |= Kiψ and (M)∗|Kiψ, s |= χ∗

iff M∗, s |= 〈Kiψ〉χ∗

iff M∗, s |= (〈!iψ〉χ)∗

• ϕ = PAG
i χ:

M, s |= PAG
i χ

iff there exists ψ ∈ Lel s.t.






M, s |= Kiψ

[[Kiψ]]M ⊆ [[Kiχ]]M and

(s,R,R!Gi ψ) ∈ Pi)

iff there exists ψ ∈ Lel s.t.






M∗, s |= Kiψ

[[Kiψ]]M∗ ⊆ [[Kiχ]]M∗ and

(s, S, [[Kiψ]]) ∈ P∗
i )

iff M∗, s |= P (>, Kiχ)

�

We also have a different intuition than in Chapter 6 of what ‘strong obligation’ means.

The obligation is here seen as a disjunction (the obligation to make one of the announcements

of ~ψ) but as the minimal one.
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7.2.6 Properties

First, here is a characterization of the link between a model and its reduction after an an-

nouncement:

Proposition 7.17 For all formulas ϕ, all models M, all states s of the model and all se-

quences of announcements σ we have: Mσ, s |= ϕ ⇐⇒ M, s |= [σ∼]ϕ.

Proof Let us first prove it for a single announcement !Gi ψ:

M!Gi ψ, s |= ϕ

iff

{
M, s |= Kiψ implies M, s |= 〈!Gi ψ〉ϕ

M, s |= ¬Kiψ implies M, s |= 〈!Gi ¬Kiψ〉ϕ

iff M, s |= (Kiψ −→ 〈!Gi ψ〉ϕ) ∧ (¬Kiψ −→ 〈!Gi ¬Kiψ〉ϕ)

iff M, s |= [!Gi ψ]ϕ ∧ [!Gi ¬Kiψ]ϕ (because |= ¬Kiψ ←→ Ki¬Kiψ)

iff M, s |= [!Gi ψ∼]ϕ.

By the definition of [.∼] in Definition 7.5 and by Remark 7.13 the result extends to every

sequence of announcements.

�

Let us see some properties of our logic, and in particular a reduced language that is

expressively equivalent.

Proposition 7.18 For all p ∈ PROP , all i ∈ AG, all G ⊆ AG, all ψ ∈ Lpral , and all

ϕ,ϕ1, ϕ2 ∈ Lpopral

1. |= [!Gi ψ]p←→ (Kiψ −→ p)

2. |= [!Gi ψ]⊥ ←→ ¬Kiψ

3. |= [!Gi ψ]¬ϕ←→ (Kiψ −→ ¬[!iψG]ϕ)

4. |= [!Gi ψ](ϕ1 ∨ ϕ2)←→ ([!Gi ψ]ϕ1 ∨ [!Gi ψ]ϕ2)

5. for all j ∈ G ∪ {i}, |= [!Gi ψ]Kjϕ←→ (Kiψ −→ Kj [!Gi ψ]ϕ)

6. for all j 6∈ (G ∪ {i}), |= [!Gi ψ]Kjϕ←→ (Kiψ −→ Kj([!Gi ψ∼]ϕ))

These equivalences need some explanation, let us see the first one. It says that p is true after

every possible announcement by i of ψ iff if i knows ψ (and then he can announce it) then p

is true. This only says that an announcement cannot change the valuation.

Proof This proof is very similar to the proof of reduction of PAL (see [Plaza, 1989] for

details). Let us see the proof of the last two ones, with R′ := R!Gi ψ.

5. (⇒) let j ∈ G, s ∈ S such that M, s |= [!Gi ψ]Kjϕ ∧ Kiψ and t a state such that

(s, t) ∈ Rj . We want to show that M, t |= [!Gi ψ]ϕ. Now either M, t |= ¬Kiψ and it is
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finished, orM, t |= Kiψ and thus (s, t) ∈ Rj implies that s, t ∈ R′
j (by definition of R′).

As M!Gi ψ, s |= Kjϕ we obtain that M!Gi ψ, t |= ϕ Q.E.D.

(⇐) let j ∈ G, s ∈ S such thatM, s |= Kiψ∧Kj [!Gi ψ]ϕ and t ∈ [[Kiψ]] a state such that

(s, t) ∈ R′
j . We want to show that M!Gi ψ, t |= ϕ. By definition of R′, (s, t) ∈ R′

j implies

(s, t) ∈ Rj , and thus M, t |= [!Gi ψ]ϕ. As t ∈ [[Kiψ]], M, t |= [!Gi ψ]ϕ Q.E.D.

6. (⇒) let j /∈ (G ∪ {i}), s ∈ S such that M, s |= [!Gi ψ]Kjϕ ∧Kiψ and t a state such that

(s, t) ∈ Rj . We want to show that M, t |= [!Gi ψ∼]ϕ. Recall that in this case Rj = R′
j .

NowM, s |= [!Gi ψ]Kjϕ∧Kiψ implies thatM!Gi ψ, s |= Kjϕ. Considering that (s, t) ∈ R′
j

we obtain M!Gi ψ, s |= ϕ. By Proposition 7.17 this means that M, t |= [!Gi ψ∼]ϕ Q.E.D.

(⇐) let j /∈ (G ∪ {i}), s ∈ S such that M, s |= Kiψ ∧Kj [!Gi ψ∼]ϕ and t ∈ [[Kiψ]] a state

such that (s, t) ∈ R′
j . We want to show that M!Gi ψ, t |= ϕ. Recalling that Rj = R′

j ,

M, s |= Kj [!Gi ψ∼]ϕ implies M, t |= [!Gi ψ∼]ϕ. Thus M, t |= [!Gi ψ]ϕ and, as t ∈ [[Kiψ]],

M!Gi ψ, t |= ϕ Q.E.D.

�

Definition 7.19 We call LelPO the following language:

ϕ ::= p|⊥|¬ϕ|ϕ ∨ ϕ|Kiϕ|〈σ〉P
G
i ψ|〈σ〉¬PG

i ψ|〈σ〉O
~G
i

~ψ|〈σ〉¬O
~G
i

~ψ

where ψ ∈ Lel , i ∈ AG, G ⊆ AG, σ is a sequence of announcements and for all ψj , Gj in the

tuples ~ψ, ~G, we have ψj ∈ Lel and Gj ⊆ AG. It is the restriction of Lpopral to the fragment

without announcements except a sequence before permission and obligation operators. We call

LelP the restriction of LelPO to the fragment without obligation operators.

Note that we cannot make the announcement disappear completely. This is due to the

unary nature of the permission and obligation operator (cf. discussion on page 133). But it

is possible to consider only formulas with announcements preceding exclusively permission or

obligation operators. We could also have chosen the following equivalent language:

ϕ ::= p|⊥|¬ϕ|ϕ ∨ ϕ|Kiϕ|〈σ〉P
G
i ψ|[σ]PG

i ψ|〈σ〉O
~G
i

~ψ|[σ]O
~G
i

~ψ.

Corollary 7.20 (of Proposition 7.18) LelPO is expressively equivalent to Lpopral . LelP is

expressively equivalent to Lppral . Lel is expressively equivalent to Lpral .

This last language, LelP , will be used in Section 7.2.7 to prove the completeness of the given

axiomatization. To prove Corollary 7.20, we use the following translation

Definition 7.21 We define tr : Lpopral −→ LelPO inductively on the structure of the formula:

• tr(⊥) = ⊥ and for all atom p ∈ PROP , tr(p) = p
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• tr(¬ϕ) = ¬tr(ϕ) ; tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ) ; tr(Kiϕ) = Kitr(ϕ)

• tr([!Gi ψ]p) = Kitr(ψ) −→ p ; tr([!Gi ψ]⊥) = ¬Kitr(ψ)

• tr([!Gi ψ]¬ϕ) = Kitr(ψ) −→ ¬tr([!Gi ψ]ϕ)

• tr([!Gi ψ](ϕ1 ∨ ϕ2)) = tr([!Gi ψ]ϕ1) ∨ tr([!Gi ψ]ϕ2)

• for all j ∈ G, tr([!Gi ψ]Kjϕ) = Kitr(ψ) −→ Kjtr([!Gi ψ]ϕ)

• for all k 6∈ G, tr([!Gi ψ]Kkϕ) = Kitr(ψ) −→ Kktr([!Gi ψ∼]ϕ)

• tr(PG
i ψ) = PG

i tr(ψ) ; tr(O ~G
i

~ψ) = O
~G
i (tr(ψ1), . . . , tr(ψn)).

Note that it is actually true that for all ϕ ∈ Lpopral , tr(ϕ) ∈ LelPO . In fact, after any sequence

of announcements, anything else than a P or an O is reduced by the translation. Note also

that tr(Lppral ) = LelP and tr(Lpral ) = Lel .

Proof (of Proposition 7.20) We prove the first property, we can prove the other two

properties in the same way. Clearly Lpopral is at least as expressive as LelPO (because the

second is included in the first). We use the translation tr defined in the previous definition.

We obtain the wanted result by Proposition 7.18.

�

Another interesting property of our semantics is that, without any additive assumption,

the following proposition is true:

Proposition 7.22 For all models M and all formulas ψ1, ψ2 ∈ Lpral all i, j ∈ AG, we have

that if M |= Kiψ1 −→ Kiψ2 then M |= PG
i ψ1 −→ PG

i ψ2.

Note that this translates our intuition that: if an agent is allowed to give some information

to some group of agents, then she is also allowed to give less information to the same group.

Corollary 7.23 If we have M |= Ki(ψ1 −→ ψ2) then M |= PG
i ψ1 −→ PG

i ψ2.

This corollary comes directly from the Kripke nature of the models, that implies that

|= Ki(ψ1 −→ ψ2) −→ (Kiψ1 −→ Kiψ2).

Proof (of Proposition 7.22) By definition of the semantics of P and by transitivity of the

implication. More precisely: let s ∈ S, suppose that M, s |= PG
i ψ1, we want to show that

M, s |= PG
i ψ2. Then let ψ0 ∈ Lpral be such that M, s |= Kiψ0, M |= Kiψ0 −→ Kiψ1 and

(s,R,R!Gi ψ0
) ∈ Pi, the three conditions of the semantics of P . Then we can keep the first and

the third one, and replace the second, by transitivity of the implication, by M |= Kiψ0 −→

Kiψ2. We then obtain M, s |= PG
i ψ2.

�

Let us see now what are the consequences of the composition of different obligations or

permissions:
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Proposition 7.24 For every ψ ∈ Lpopral , every agent i, every group G and every n-tuple ~ψ

and ~G of Lpopral -formulas and groups,

1. |= PG
i (ψ) −→ Kiψ

2. |= O
~G
i

~ψ −→
∧

k∈{1,...,n} PGk
i ψk

3. |= O ~G
i

~ψ −→ O
~G
i

~ψ

4. for all permutation η, |= (Oη( ~G)
i η(~ψ)←→ O ~G

i
~ψ) ∧ (Oη( ~G)

i η(~ψ)←→ O
~G
i

~ψ)

5. |= PG
i ψ ∧OG

i ϕ −→ PG
i (ψ ∧ ϕ1)

Proof The first proposition comes directly from s ∈ [[Kiψ]]M in the semantics of P , the

second one from (s,R,R
!
Gk
i ϕk

) ∈ Pi in the semantics of O, the third is induced by the syntax

of O and the fourth one by the semantics of O and O.

Now the fifth one. Suppose that M, s |= PG1
i ψ ∧ OG

i ϕ. Therefore there exists χ ∈ Lpral

such that M, s |= Kiχ, [[Kiχ]]M ⊆ [[Kiψ]]M and (s,R,R
!
G1
i χ

) ∈ Pi (because M, s |= PG1
i ψ).

But as M, s |= OG
i ϕ necessarily [[Kiχ]]M ⊆ [[Kiϕ]]M. Recalling that [[Kiϕ]]M ∩ [[Kiψ]]M =

[[Ki(ϕ ∧ ψ)]]M we get [[Kiχ]]M ⊆ [[Ki(ϕ ∧ ψ)]]M and thus M, s |= PG
i (ψ ∧ ϕ1)

�

7.2.7 Soundness and Completeness

In this section, we give a sound and complete axiomatization of our logic. For technical

reasons, we restrict this proposal to the language without obligation operators Lppral . We

conjecture that a complete axiomatization for the whole logic exists, and plan to prove it in

a further work.

Let PPrAL be the axiomatization presented in table 7.1

Proposition 7.25 PPrAL is sound in all the models.

Proof The soundness of the tautologies of propositional logic, of modus ponens, of the first

four axioms of table 7.1, and of the necessitation rule for every Ki comes from the fact that

for every model M = (S, V,R,P), (S, V,R) is a Kripke model where every Ri ∈ R is an

equivalence relation (see [Fagin et al., 1995] for details). From the fifth to the tenth axiom,

the soundness is proven by Propositions 7.18. Soundness of the last axiom is direct.

Let us prove soundness of the eleventh axiom. Let M be a model and s be a state

of M. Suppose that M, s |= 〈σ〉PG
i ϕ, then M, s |= 〈σ〉> and Mσ, s |= PG

i ϕ (with the

abbreviation proposed in Remark 7.14). By Proposition 7.24 we get Mσ, s |= Kiϕ. Finally,

M, s |= 〈σ〉Kiϕ.

Now note that the soundness of the permission inference rule has been proved in Propo-

sition 7.22 using the same Remark 7.17.

�
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all instantiations of propositional tautologies
Ki(ψ −→ ϕ) −→ (Kiψ −→ Kiϕ) distribution
Kiϕ −→ ϕ truth
Kiϕ −→ KiKiϕ positive introspection
¬Kiϕ −→ Ki¬Kiϕ negative introspection
[!Gi ψ]p←→ (Kiψ −→ p) atomic permanence
[!Gi ψ]⊥ ←→ ¬Kiψ ann. and false
[!Gi ψ]¬ϕ←→ (Kiψ −→ ¬[!Gi ψ]ϕ) ann. and negation
[!Gi ψ](ϕ1 ∨ ϕ2)←→ ([!Gi ψ]ϕ1 ∨ [!Gi ψ]ϕ2) ann. and disjunction
if j ∈ G ∪ {i}, [!Gi ψ]Kjϕ←→ (Kiψ −→ Kj [!Gi ψ]ϕ) ann. and knowledge (1)
if k 6∈ G ∪ {i}, [!Gi ψ]Kkϕ←→ (Kiψ −→ Kk[!Gi ψ∼]ϕ) ann. and knowledge (2)
〈σ〉PG

i ϕ −→ 〈σ〉Kiϕ rationality of permission
〈σ〉¬PG

i ϕ −→ 〈σ〉> ann reduction
From ϕ and ϕ −→ ψ infer ψ modus ponens
From ϕ infer Kiϕ necessitation of Ki

From ϕ infer [!Gi ψ]ϕ necessitation of announcement
From [σ∼](Kiϕ −→ Kiϕ

′) infer [σ∼](PG
i ϕ −→ PG

i ϕ′) Permission rule

Table 7.1: The axiomatization PPrAL

Remark 7.26 Note that we have in particular that for all ϕ ∈ Lppral , `PPrAL ϕ ←→ tr(ϕ).

We often use this property in the following proofs, in particular to use ϕ instead of tr(ϕ), for

the sake of simplicity, when we need an LelP -formula.

To prove the completeness result, we define the canonical model for PPrAL in two phases:

Definition 7.27 (Epistemic part of the canonical model) We define the following tu-

ple EMc = (Sc, V c,Rc) where Rc = {Rc
i}:

• Sc is the set of all `PPrAL-maximal consistent sets

• for every p ∈ PROP , V c(p) = {x ∈ Sc | p ∈ x}

• for every i ∈ AG, xRc
iy iff Kix = Kiy, where Kix = {ϕ|Kiϕ ∈ x}.

Therefore, EMc is an epistemic canonical model, and the truth lemma for Lel applies here:

for all ϕ ∈ Lel , EMc, x |= ϕ iff ϕ ∈ x. Furthermore, this extends to Lpral : for all ϕ ∈ Lpral ,

EMc, x |= ϕ

iff EMc, x |= tr(ϕ) by Proposition 7.18

iff tr(ϕ) ∈ x by the truth lemma for Lel

iff ϕ ∈ x by Remark 7.26
Given a formula ψ ∈ Lpral we can thus define the relation R!Gi ψ as in Definition 7.9. We

are now able to define properly the canonical model for Lppral :
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Definition 7.28 (Canonical model) The canonical model Mc = (Sc,Rc
i , V

c,Pc) is de-

fined as follows:

• Sc is the set of all `PPrAL-maximal consistent sets

• for every p ∈ PROP , V c(p) = {x ∈ Sc | p ∈ x}

• for every i ∈ AG, xRc
iy iff Kix = Kiy, where Kix = {ϕ|Kiϕ ∈ x}

• T c
i = {(x,Rc

σ,Rσ!Gi χ) : χ ∈ Lpral , σ a sequence of announcements, G ⊆ AG}, and Pc
i =

T c
i \ {(x,Rc

σ,Rc
σ!Gi χ

) : for some ψ ∈ Lpral ,` [σ∼](Kiχ −→ Kiψ) and 〈σ〉¬PG
i ψ ∈ x}

Remark 7.29 Note that to define Pc
i in the canonical model we need to define Rσ and Rσ!Gi χ

which suppose that we are able to define properly what Mc, x |= 〈σ〉> and Mc, x |= 〈σ〉Kiχ

mean . But note that for all ψ ∈ Lpral , Mc, x |= ψ iff EMc, x |= ψ. Thus it has been done

already.

Proposition 7.30 The canonical model is a model.

Proof Indeed, Sc is a set, V c, Pc
i and Rc

i for all i have the desired form. The only property

we have to show is that if (x,R1,R2) ∈ Pc
i then R2 ⊆i R1. Thus, let us suppose that

(x,R1,R2) ∈ Pc
i , we have σ, χ,G such that R1 = Rc

σ and R2 = Rc
σ|!Gi χ

. By definition of ⊆i

we obtain the wanted result.

�

In the canonical model, a state is thus a set of formulas. The link between the fact that

a formula ϕ is in a set x and the fact that Mc, x |= ϕ is given by the following proposition:

Proposition 7.31 (Truth Lemma for LelP) For all ϕ ∈ LelP we have:

Π(ϕ) : for all x ∈ Sc,Mc, x |= ϕ iff ϕ ∈ x

Proof We prove it by induction on the number of occurrences of a P operator.

base case: If ϕ is a formula without permission, Π(ϕ) is a known result, the canoni-

cal model considered here being an extension of the canonical model for S5 (see

[Blackburn et al., 2001] or [Fagin et al., 1995] for details).

Main induction step: Let us then suppose that Π(ϕ) is true for every formula ϕ with at

most n occurrences of a permission operator. Note that by Remarks 7.20 and 7.26 we

can suppose the result for every formula of Lppral containing at most n occurrences of

a permission operator.

Let us now prove the wanted result for every formula with at most n + 1 occurrences of

a permission operator by induction on the structure of the formula ϕ:
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• ϕ = ¬ψ: Mc, x |= ¬ψ iff Mc, x 6|= ψ iff ψ 6∈ x (by IH) iff ¬ψ ∈ x (by maximality

of x)

• ϕ = ϕ1 ∨ ϕ2: Mc, x |= ϕ1 ∨ ϕ2 iff Mc, x |= ϕ1 or Mc, x |= ϕ2 iff ϕ1 ∈ x or ϕ2 ∈ x

(by IH) iff ϕ1 ∨ ϕ2 ∈ x

• ϕ = Kiψ: Let us first suppose that Kiψ ∈ x and let y be such that xRc
iy, we want

to show that Mc, y |= ψ. Indeed we have Kiψ ∈ y and then ψ ∈ y, which implies

(by IH) that Mc, y |= ψ.

Reciprocally, let us suppose thatMc, x |= Kiψ and that Kiψ /∈ x. Then Kix∪{¬ψ}

is consistent which means that there exists a y such that xRiy and ¬ψ ∈ y. By IH

we obtain Mc, y 6|= ψ and thus Mc, x 6|= Kiψ which is a contradiction. Thus the

hypothesis Kiψ /∈ x was wrong and Kiψ ∈ x.

• ϕ = 〈σ〉PG
i χ:

(⇒) By the main base case , we have that for every Lpral -formula θ, 〈σ〉θ ∈ x

iff Mc, x |= 〈σ〉θ (∗). Let us suppose that 〈σ〉PG
i χ /∈ x, i.e. ¬〈σ〉PG

i χ ∈ x by

maximality, we want to show that Mc, x 6|= 〈σ〉PG
i χ.

Now, either 〈σ〉> /∈ x and thus Mc, x 6|= 〈σ〉> by IH, and then it is finished.

Or 〈σ〉> ∈ x, and then 〈σ〉¬PG
i χ ∈ x. Let us suppose it. To show that Mc, x 6|=

〈σ〉PG
i χ let us take ψ ∈ Lpral -formula such that Mc |= [σ∼](Kiψ −→ Kiχ) and

let us prove that (x,Rc
σ,Rc

σ|!Gi ψ
) 6∈ Pc

i . Indeed if it is true for all such ψ we would

have Mc, x 6|= 〈σ〉PG
i χ. Now, by IH we have that ` [σ∼](Kiψ −→ Kiχ), which

means with 〈σ〉¬PG
i χ ∈ x that (x,Rc

σ,Rc
σ|!Gi ψ

) 6∈ Pc
i Q.E.D.

(⇐) If 〈σ〉PG
i χ ∈ x, then in particular 〈σ〉KG

i χ ∈ x (and for all ϕ ∈ Lppral ,

[σ∼]ϕ ∈ x iff 〈σ〉ϕ ∈ x, using the axioms 5–10). Now for all ψ ∈ Lpral such that

` [σ∼](Kiχ −→ Kiψ) we have, by the permission inference rule, that [σ∼]PG
i ψ ∈ x

and thus 〈σ〉PG
i ψ ∈ x. Therefore, by definition of Pc, (x,Rc

σ,Rc
σ!Gi χ

) ∈ Pc
i . This

proves that Mc, x |= 〈σ〉PG
i χ.

• ϕ = 〈σ〉¬PG
i χ:

(⇒) Suppose thatMc, x |= 〈σ〉¬PG
i χ. Then (x,Rc

σ,Rc
σ|!Gi χ

) /∈ Pc
i , i.e. there exists

a ψ ∈ Lpral such that ` [σ∼](Kiχ −→ Kiψ) and 〈σ〉¬PG
i ψ ∈ x. Thus, by the

permission inference rule , we obtain that 〈σ〉¬PG
i χ ∈ x.

(⇐) If 〈σ〉¬PG
i χ ∈ x then, by definition of Pc

i , for all ψ ∈ Lpral such that `

[σ∼](Kiψ −→ Kiχ) we have (x,Rc
σ,Rc

σ|!Gi ψ
) /∈ Pc

i . This is equivalent, by the main

base case, to the fact that for all ψ ∈ Lpral such thatMc |= [σ∼](Kiψ −→ Kiχ) we

have (x,Rc
σ,Rc

σ|!Gi ψ
) /∈ Pc

i . That means exactly that Mc, x 6|= 〈σ〉PG
i χ. We also

have that 〈σ〉> ∈ x by the last axiom, which implies that Mc, x |= 〈σ〉> by the

main base case. Therefore from Mc, x |= ¬〈σ〉PG
i χ we obtain Mc, x |= 〈σ〉¬PG

i χ

by using many times axiom ann. and negation.
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�

Theorem 7.32 PPrAL is sound and complete with respect to the class of all models.

Proof Soundness has been proved in Proposition 7.25. For the completeness part, let

ϕ ∈ Lppral be a valid formula. Thus we have: |= ϕ only if |= tr(ϕ) only ifMc |= tr(ϕ) only if

` tr(ϕ) (by Proposition 7.31) only if ` ϕ (by Remark 7.26).

�

7.3 Case Study: AIDS

Let us recall the case of Michel, a patient who took an AIDS test, presented in the in-

troduction. His case can be represented as in Figure 7.1 with individual permissions and

transgressions. Let us explain the visual primitives.

AL

L
L

L

M,D
¬A L

L

L
L

ALM

D

M
¬A

LM

D

AL

L,M

D
¬A

L,M

M

ALMD ¬ALMD

Figure 7.1: AIDS example

At the top, a two-state epistemic model where neither Michel nor the doctor can distin-

guish between a state where Michel has Aids (A) and a state where he has not (¬A). Instead,

the laboratory knows (there is no label L on the double links between A and ¬A). We see

three more of such epistemic models in the figure, on the left is the situation where the un-

certainty has been removed for the doctor but where Michel still is uncertain, on the right

is the dual where the doctor is still uncertain, but Michel knows. For the record: this is the

suicide-risk situation that we want to avoid! So getting there should not be permitted. At

the bottom, everybody knows.
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The pointed (and colored) arrows stand for the results of announcements. If they are

dotted (and red), they are not permitted, if they are plain (and green), they are permitted.

The reader may note that such a representation is not a model of POPrAL: the transi-

tions representing announcements are transitions between states and not triplets (s,R1,R2).

This is true, but we claim that such a graphical representation (much more readable) is anal-

ogous to the formal one. Indeed, the epistemic models appearing in the figure have the same

domain (set of states) as the initial one, and their relation R′ is a subrelation of the initial

one R. Furthermore, the pointed arrows (that represent announcements) start from a state

and end in the same state of a reduced model. Finally, if such a pointed arrow is indexed

by an agent a then the relation R′ in the resulting model satisfy R′ ⊆a R. For all these

reasons, this graphic representation is identical to the formal one, that should be written in

the following (complex) way: 1M = (S,R, V,P) where PROP = {A}, AG = {M,D,L} and

• S = {s1, s2}

• R = {RM , RD, RL} with

– RM = RD = {(s1, s1), (s1, s2), (s2, s2)}

– RL = {(s1, s1), (s2, s2)}

• V (A) = {s1}

It remains to define P properly. To do so, let us call R1 the left epistemic model’s relation,

R2 the right epistemic model’s one, and R3 the bottom epistemic model’s one. Formally for

all i ∈ {1, 2, 3}, Ri = {Ri
M , Ri

D, Ri
L} with:

• R1
M = RM ; R1

D = R1
L = RL

• R2
D = RD ; R2

M = R2
L = RL

• R3
M = R3

D = R3
L = RL

We are now able to define P = {PM ,PD,PL} with

• PM = {(s1,R1,R1), (s2,R1,R1), (s2,R2,R2), (s1,R2,R3), (s2,R2,R3), (s1,R3,R3),

(s2,R3,R3)}

• PD = {(s1,R1,R3), (s2,R1,R3), (s1,R3,R3), (s2,R3,R3)}

• PL = {(s1,R,R1), (s2,R,R1), (s1,R1,R1), (s2,R1,R1), (s1,R2,R3), (s2,R2,R3),

(s1,R3,R3), (s2,R3,R3)}

We admit that these models are quite difficult to be read by a human being. But this is

not the case for a computer, and the proposed equivalent graphical representation is useful

to do direct comments, as we do here. The reflexive arrows labelled with L in the top
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Kripke model (information state) for the laboratory show that the empty announcement, i.e.

the announcement of ‘true’, after which the same structure results, is not permitted for the

laboratory: the laboratory is obliged to say something informative. In the top information

state, it is permitted for the laboratory to announce the outcome of the test to the doctor.

This action (whether A is true, or the different action for when A is false) brings us to the left

state (plain arrows). Also, these are the only plain arrows from those states: the laboratory

is obliged to inform the doctor: M, s1 |= OD
L A and M, s2 |= OD

L ¬A

Apart from the reflexive arrows, two more non-permitted actions on top are: informing

Michel (go to right): M, s1 |= ¬PM
L A, and informing the doctor and Michel at the same

time (straight to the bottom, where everybody knows): M, s1 |= ¬P
{D,M}
L A. The other

connections can be similarly explained. Finally, after the violation of the laboratory informing

Michel, the laboratory is still obliged to inform the doctor, and also Michel is obliged to contact

the doctor: M, s1 |= 〈!ML A〉(OD
L A ∧ OD

MA) — which we could now interpret that action will

be undertaken if Michel has not contacted the doctor after the laboratory has improperly

informed him directly of the outcome of the AIDS-test. Therefore, the plain arrows from the

right to the bottom are labelled both with L and with M . Further intricacies in the reflexive

arrows on the right-hand side are left to the imagination of the reader.





Chapter 8

Conclusion

Situations involving norms and communication are frequent: communicative games (such as

card games), medical databases, protocols of communication, etc. However, there exists no

general framework to handle such situations. Yet such a general framework would be of great

interest from a theoretical point of view to analyse and explain such situations, and from a

practical one, to create artificial agents able to reason in terms of permission to communicate.

The field of logic may be appropriate to create such frameworks, and many logi-

cians are trying to make progress in this direction (see for example [Aucher et al., 2010,

van Benthem et al., 2009]). This mémoire is an attempt to use dynamic epistemic logics in

order to understand the notion of ‘right to say’. We may first recall what has been presented

so far.

After having introduced our work, we presented in a first part the basic notions of modal

logic for the study of knowledge. Some would disagree with the fact that such a basic pre-

sentation appears in a memoir of Ph. D. But can we pretend that scientists may not be

concerned about making readable their work? To be readable was the aim of this chapter.

We then presented the works in progress on dynamic epistemic logic (DEL), essentially

since Plaza introduced the Public Announcement Logic [Plaza, 1989], and the basic notions

of deontic logic. We saw that in the field of DEL some notions could be developed, and we

added our contribution to the building in the Chapter 4 and 5. We saw that the notion of

objectivity and group capacity (in the field of DEL) introduced in these chapters may be

useful to understand and solve problems about protocols of communication. We presented

several technical results (decidability, complexity) of the logics LAUOB and GAL introduced.

That led us to the last two chapters, which gave proposals to understand the notion of

right to say in a dynamic context, namely POPAL and POPrAL. The first of them treats the

case where the announcements are public and can be thought as external events (made by an

omniscient agent). The second generalizes the first treating a case of private announcement

(that includes public ones) and considering agency of announcements. Technical results have

also been proved.

However, much remains to be done. First of all, there are technical results we would like

to obtain in each chapter proposed here. For example, chapters 5,6 and 7 have few results

of complexity, results we consider interesting. What is the class of complexity of the SAT-

problem for POPAL (resp GAL, POPrAL)? As another example, we would also like to

extend the axiomatization of PPrAL to get one for the whole language of POPrAL.

193
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The tableau method for PPAL proposed in Section 6.6 could also be generalized to

the whole language Lpopal , integrating in it the deontic operator of permission O. Another

easy extension would be to add a tableau rule (RP=) as proposed in Table 8.1 to consider

operator P= presented in section 6.5.2. This operator may be useful if a different intuition of

permission is required. A more important extension would be to develop an analogous method

〈σ, n, Pϕ〉

Π(n, S1, S2); S1 ` σ; S1 a σ; S2 ` σ ◦ ϕ; S2 a σ ◦ ϕ
(RP=)

Table 8.1: Tableau rule for P=

for POPrAL or even for a more general logic for dynamic epistemic logic and permission (cf.

Section 8.2).

Moreover, we could imagine an attempt to mix the different languages proposed in this

thesis, and consider together notions of permission, group announcements, knowledge and

update of objective beliefs.

Besides, other recent works could open ways to expand our formalism. We could con-

sider for example to expand the framework with changing permissions, as in Pucella et al.

[Pucella and Weissman, 2004]. In this context, as in the example of Section 7.3, this would

mean to define an operation that defines or modifies the permission relation P of a given

model, which could be a POPAL or a POPrAL model.

As another example, following [Cuppens et al., 2005b], it would be interesting to integrate

the notion of role in the attribution of permissions and obligations, or to consider the notion

of deadline (cf [Cuppens et al., 2005a]) that gives sense to the notion of obligation imposing

a limited time to fulfill the obligation.

Besides it would be possible to use this formalism. Therefore, there is no doubt that this

thesis opens to further researches, and an exhaustive list of all such possible technical results

or conceivable extensions seems impossible – in fact the reader may imagine a lot of them.

Yet some possible extensions of our work appears of greater interest, and we present in the

two next sections the two most important in our opinion.

8.1 Dealing with Privacy Policies

In [Aucher et al., 2010] the authors propose a formalism close to ours with the difference that

in their proposal the ‘right to say’ can be derived from the ‘right to know’. In other words,

they assume that there is a list of permissions or obligations to know that have to be satisfied.

This list defines whether an announcement is permitted or not: it is permitted if and only

if it leads to a situation that satisfies these obligations/permissions. A basic presentation of

this framework has been done in Section 3.3.

This condition (‘the permission to say is derivable from the permission to know’) does not

allow to model every situation: two different announcements that lead to the same epistemic
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situations (then that satisfy the same permissions to know) can be one permitted the other

forbidden, as far as they are announced in different situations. The situation presented

in section 7.3 is such a counter-example: we have M, A |= ¬P
{D,M}
L A ∧ 〈!ML A〉PD

L A: the

laboratory is not allowed to announce A to the doctor and Michel at the same time, but after

having informed Michel it is allowed to announce it to the doctor. These two announcements

are not permitted in the same way, and yet they lead to the same situation (the A-situation

at the bottom of Figure 7.1) — but they did not come from the same one!

But in some situations, the restrictions on announcements are derivable from a Privacy

Policy which says what each agent is allowed to know. Therefore, we would try to adapt

Aucher et al.’s notion of Privacy Policy, to model those multi-agent situations in which the

right to know is the relevant notion, deriving the permission relation P (as presented in

Chapter 7) from it. We make here a draft of such a proposal, that would avoid, in our

opinion, another limit of their work, namely that it is limited to a single 2-agents situation,

in which a sender gives information to a receiver, the latter having a perfect knowledge of

the epistemic state of the former.

Let us see a compelling example, cited from [Aucher et al., 2010]:

Consider the information about websites contacted by a user (U), which are avail-

able on a server logfile. The list of websites for each user is clearly a sensitive

information which he would not like to disclose. However, knowing which websites

have been visited is a valuable information, for example, for the configuration of a

firewall, or to make statistics. Thus it has become anonym by replacing the names

of the users with numbers by means of a hashcode (h). So even if one knows the

list of users one cannot understand who contacted which website. However, from

the association between users and numbers and between numbers and websites the

original information can be reconstructed. Therefore the mappings from the users

to the numbers (c) and from the numbers to the websites (e) can be distributed

individually but not altogether since their association would allow to reconstruct

the mapping from the users to the websites they visited (v): c ∧ e −→ v.

The last sentence says that the user u is permitted to know c and to know e but not to know

v. The privacy policy being the set of what is (not) permitted to be known by the agent,

it would be in this case {¬P (KUv)}: it is not permitted that U knows v. To construct our

model, presented in Figure 8.1, we start from an initial epistemic model and we define PS as

the set of transitions such that Kuv is wrong in the resulting state.

In Figure 8.1, as in Figure 7.1, double arrows represent knowledge, dotted arrows (red)

represent non-permitted announcements and plain (green) arrows permitted ones. At the top

a three-state Kripke model where the user does not know neither c nor e, nor v. We see

three more of such models in the figure. On the left is the situation where the uncertainty

on c has been removed, on the right is the situation in which the uncertainty on e has been
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¬e, c,¬v

Figure 8.1: server example

removed. At the bottom, v is known (epistemic situation we want to forbid). Once again,

the pointed arrows stand for the results of announcements. If they are dotted, they are not

permitted, if they are plain, they are permitted. To make the figure readable, we put only

the pointed arrows for the e, c, v-states. Thus this model says that the server is allowed to

say c or to say e to the user, but not to say v to her: M, (e, c, v) |= P u
s c∧P u

s e∧¬P u
s v. After

the announcement of one of the two pieces of information e or c, the server is not allowed to

say to the user the other one: M, (e, c, v) |= 〈!use〉¬P u
s c ∧ 〈!us c〉¬P u

s e .

We can thus define the notion of privacy policy in the following way: An epistemic norm

is a construction of the form pre −→ Piψ or pre −→ ¬Piψ with pre, ψ ∈ Lel and i ∈ AG. A

privacy policy is a finite set of epistemic norms.

We interpret pre −→ Piψ (resp. pre −→ ¬Piψ) by “if pre is true then i is allowed (resp.

not allowed) to get to a situation where ψ is true”. We note pre −→ Fiψ := pre −→ Oi¬ψ.

We can thus construct deterministically a POPrAL model starting from an epistemic

model and a privacy policy. Following [Aucher et al., 2010] we consider two situations: the

liberal situation considers that every situation that is not explicitly forbidden is permitted,

the dictatorial one considers that every situation that is not explicitly permitted is forbidden.

Let M = (S, V,R) be an epistemic model and PP be a privacy policy, we construct

the liberal model Ml
PP = (S, V,R,P l) and the dictatorial one Md

PP = (S, V,R,Pd) in the

following way: for all agent i ∈ AG,

P l
i = {(s,R1,R2) | ∀(pre −→ ¬Piψ) ∈ PP, if MR1 , s |= pre then MR2 , s 6|= ψ}
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Pd
i = {(s,R1,R2) | ∃(pre −→ Piψ) ∈ PP,MR1 , s |= pre and MR2 , s |= ψ}

8.2 Dynamic Epistemic Logic with Permission

Another possible further work would be to make a step forward in the way developed in

chapters 6 and 7. Indeed, we first considered only public announcements, and then a kind

of private announcements – that include public ones – in which the topic of the message and

the agents involved in the communication are publicly known. The first further step in this

work would thus be to avoid this limit by considering permission over other kinds of private

communication. In this sense, having a general framework for permission and obligation over

every epistemic action (cf. Section 3.1.3) would be a final step. How could we obtain such a

framework?

First, given an event model A, the language we may propose would extend action model

logic with additive operators Pia and Oia standing for ‘i is allowed to make the announcement

a’ and ‘i is obliged to make the announcement a’, where a ∈ A. The models would be of

the form M = (S,R, V,P) where P is constituted by triples (s,E1, E2). In such triples, E1

would represent the epistemic situation after a first announcement and E2 the situation after

a second one. Note that in this case, epistemic situations are not necessarily submodels of the

initial model as in chapter 6, and neither are they represented by subrelations as in chapter

7. They can be state models of any kind. Therefore we could imagine the following semantics

for the new operators:

M, s |= Pa iff M, s |= pre(a) implies there exists N1, N2 such that (s,N1, N2) ∈ P ,

N1←→M⊗A, (s, a) and N2←→M⊗A, (s, a; b)

It would be quite a complex semantics. Indeed, to verify if an announcement is permitted

we would have to test the bisimilarity of the resulting state model with the ones appearing

in P . But avoiding every restriction on the structure of epistemic events, it is impossible to

fix the structure of the resulting state model. Bisimilarity is in this context the good notion

to test the epistemic result of an announcement.

Note that we would need to define the ⊗-closure of an event model A, to ensure that if a

and b are in A, then (a; b) ∈ A. But such a definition (and other useful notions) are feasible.

We do not go further in this presentation, which is still a work in progress, but we think that

it could be a good starting point for a generalization of the frameworks presented in chapters

6 and 7.
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5 Quelques exemples de modèles de Kripke . . . . . . . . . . . . . . . . . . . . 8

6 Une instance du problème du pavage . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 A boolean model for the moody children . . . . . . . . . . . . . . . . . . . . . 24

1.2 Moody children: all the possible worlds . . . . . . . . . . . . . . . . . . . . . 25

2.1 Epistemic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Epistemic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Some examples of Kripke models . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 An instance of the domino problem . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Texas Hold’em . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Deal of three cards between three agents . . . . . . . . . . . . . . . . . . . . . 45

3.3 Alex announces: “I don’t have the 1 ” . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Cha shows her card to Brune . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Result of the event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Brune actions while receiving a letter from Cha . . . . . . . . . . . . . . . . . 58

3.7 Considering states of violation for Brune’s actions . . . . . . . . . . . . . . . 61

3.8 Considering labelled transition for Brune’s actions . . . . . . . . . . . . . . . 62

4.1 Possible models MψA
for A = ∃p1∀p2∀p3A

′ . . . . . . . . . . . . . . . . . . . 70

4.2 Action model equivalent to the update Uϕ,G(M) for objective beliefs . . . . . 72

4.3 Two counter-examples in one model . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Distinguishing Llauob from Lluob . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Brune wins with a “poker” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Two deals: d1 and d2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Counter-example of the validity of MacKinsey formula in GAL . . . . . . . . 101

5.2 Distinguishing Lgal from Lel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Distinguishing Lapal from Lgal . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Trying to distinguish Lgal from Lapal . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 A model to prove the hardness of MC(GAL) . . . . . . . . . . . . . . . . . . 116

5.6 Three moody children playing in the Russian cards problem . . . . . . . . . . 124

199



200 LIST OF FIGURES

6.1 The moody children playing la belote . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 Rules (Rσ), (R4) and (RP2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3 The output of the tableau method for PK1p∧PK1q∧¬PK1(p∧q)∧K̂2PK1(p∧

q) ∧ [K1p]PK1(p ∧ q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1 AIDS example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.1 server example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196



Bibliography
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