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“It is not the strongest of the species that survives… nor the most 
intelligent that survives. It is the one that is the most adaptable to 
change.” 

 

 

"We can allow satellites, planets, suns, universe, nay whole systems 
of universe to be governed by laws, but the smallest insect, we wish 
to be created at once by special act.” 

 

                                                                                                           

                                                                   Charles Darwin  
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SUMMARY 

Author: Assia HIJAZI 

Title: The role of two members of the Ly6 superfamily in the organization of septate junctions 

during Drosophila melanogaster development. 

PhD supervisors: Dr. Fernando Roch and Dr. Lucas Waltzer 

The Ly6 superfamily is a large family of genes present in most metazoan genomes, including 

45 members in Humans. These genes mainly encode for extracellular glycoproteins attached to 

the cell membrane by a GPI anchor (Glycosylphosphatidylinositol), but also for soluble 

ligands. They are characterized by the presence of an extracellular domain, called Ly6 domain, 

whose structure is provided by 8 to 10 cysteines present in conserved positions. The great 

variability exhibited by the Ly6 primary sequences allows these proteins to exert highly 

divergent roles. Although their function has been elucidated in various organisms, we still 

know very little about their potential roles during animal development. During my PhD, I used 

the Drosophila model system to extend our knowledge about the functions of these proteins in 

a developmental context. Our work has permitted the identification of 36 members of the Ly6 

superfamily in Drosophila melanogaster, and I have characterized at a functional level two of 

these genes during development. Phenotypic analysis of mutants for these two genes, called 

boudin and coiled, has shown that both of them are required for tracheal morphogenesis and 

organization of septate junctions in epithelial tissues. Septate junctions are cell adhesion 

structures analogous to vertebrate tight junctions. They allow epithelia to perform their barrier 

function and regulate the passage of solutes and ions through the paracellular space. Septate 

junctions in Drosophila are similar to the vertebrate paranodal junctions, present at the contact 

between axons and Schwann cells, and our results show that boudin and coiled are also 

required for the organization of septate junctions in the fly nervous system. On the other hand, 

we have shown that the protein Boudin is able to diffuse from one cell to another to regulate 

septate junction formation. This non cell autonomous mode of action had never been described 

for proteins involved in septate junction organization. Studying the diffusion mechanisms and 

the trafficking of Boudin is important to better understand how this protein performs its 

function. Finally, another challenge will be to identify functional partners of Boudin and Coiled 

to elucidate the molecular mechanisms by which these proteins control the maintenance and the 

organization of septate junction structures.  
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RÉSUMÉ 

AUTEUR : HIJAZI Assia 

 

Titre : Etude du rôle de deux gènes de la superfamille Ly6 dans l’organisation des jonctions 

septées au cours du développement de Drosophila melanogaster 

 

Directeurs de thèse : Dr. ROCH Fernando et Dr. WALTZER Lucas 

 

La superfamille Ly6 est une famille de gènes présente dans le génome de la plupart des 

métazoaires, y compris l’Humain. Ces gènes codent principalement pour des glycoprotéines 

attachées à la membrane par une ancre GPI (Glycosylphosphatidylinositol), mais aussi pour des 

ligands solubles. Les membres de cette famille se caractérisent par la présence d’un domaine 

extracellulaire, appelé domaine Ly6, dont la structuration est assurée par 8 à 10 cystéines 

présents dans des positions conservées. La grande variabilité du reste de la séquence des 

protéines Ly6 leur permet d’exercer des fonctions divergentes, hautement spécialisées. Même 

si certaines fonctions des protéines Ly6 ont été élucidées chez divers organismes, on connait 

très peu sur leurs rôles potentiels pendant le développement animal.  

Durant ma thèse, j’ai utilisé la drosophile comme système modèle afin d’étendre nos 

connaissances sur les fonctions de ces protéines dans un contexte développemental. Notre 

travail a permis d’identifier l’ensemble des 36 membres de la superfamille Ly6 chez 

Drosophila melanogaster. J’ai étudié plus particulièrement le rôle de deux membres de cette 

famille au cours du développement. La caractérisation fonctionnelle des mutants pour ces deux 

gènes, appelés boudin et coiled, a montré qu’ils sont tous les deux requis pour la morphogenèse 

trachéale et l’organisation des jonctions septées dans les tissus épithéliaux. Les jonctions 

septées sont des structures d’adhérence cellulaire, analogues aux jonctions serrées des 

vertébrés. Elles permettent aux épithéliums d’exercer leur fonction de barrière paracellulaire 

qui régule le passage des solutés et des ions. Les jonctions septées de la drosophile sont aussi 

similaires aux jonctions paranodales des vertébrés, présentes au contact entre axones et cellules 

de Schwann, et nos résultats montrent que boudin et coiled sont également requis pour 

l’organisation des jonctions septées dans le système nerveux. D'autre part, nous avons montré 

que la protéine Boudin est capable de diffuser d’une cellule à l’autre pour réguler la formation 

des jonctions septées. Ce mode d’action «cellulaire non-autonome » n’avait jamais été décrit 

pour des protéines qui participent à l’organisation des jonctions septées. L’étude du mode de 
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diffusion et du trafficking de Boudin permettra de mieux comprendre comment cette protéine 

exerce sa fonction. Enfin, un autre challenge sera d’identifier les partenaires fonctionnels de 

Boudin et Coiled pour élucider les mécanismes moléculaires par lesquels ces protéines 

contrôlent le maintien et l’organisation des jonctions septées. 

Mots-clefs: la superfamille Ly6, développement de la drosophile, jonctions septées, barrière 

paracellulaire, jonctions paranodales. 

Discipline: Biologie cellulaire, Génétique et Développement.  
 

                                     Intitulé et addresse du laboratoire 
Centre de Biologie du Développement 

Université Paul Sabatier, Toulouse III – CNRS UMR 5547 

  Bât 4RIII- 118, rte de Narbonne-31062 Toulouse cedex 09 – France 
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Part 1 

I. Biological barriers, a hallmark of life 

In his wonderful essay “What is life?” appeared in 1944, the physicist E. Schrödinger enquired 

about the essential features that define living organisms and mark the transition between life 

and the inanimate matter. He found that one of the essential properties of living beings is that, 

despite their active metabolism, they are extremely organized structures capable of standing for 

a considerable amount of time against the universal course towards thermodynamic 

equilibrium. How do these “entropy islands” manage to temporarily avoid decay? He found a 

satisfactory explanation stating that life has the unique property of extracting order from the 

external environment, incorporate it into its structure and then release waste products in a 

constant exchange that, as he liked to put it, feeds the organism with negative entropy. 

Although Schrödinger did not venture into these grounds, it follows that such entropy islands 

need to be separated from the surrounding environment by some kind of barrier, which 

becomes thus one of the fundamental features of living organisms. So, it is tempting to propose 

that without efficient barriers, life simply would not be possible.  

The most obvious and universal type of barrier existing in living organisms is the cell 

membrane that surrounds the protoplasm of each cell and separates the ordered intracellular 

components from the chaotic external environment. However, this cell barrier is selectively 

permeable, which means that is able to regulate the passage of different substances that enter 

and exit the cell, assuring the transport of materials needed for cell survival. 

During evolution, multicellular organisms have in turn developed highly specialized cell types, 

the epithelial cells, whose main function is to act as barriers. However, epithelia not only 

insulate organisms from the external environment, but also allow body subdivision into 

physiologically distinct compartments, opening the way to both organogenesis and evolution of 

complex body plans. Thus, a crucial function of epithelia during animal development is to 

maintain the unique composition of different body compartments and to regulate the passage of 

different materials through the space separating adjacent cells, providing a control over which 

substances are allowed to enter or leave a particular tissue.  
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Fig 1. Junctional cell complexes in vertebrate epithelial cells. (A) Schematic drawing of 

intestinal epithelial cells. Membrane epithelial cells display three types of cell adhesion 

complexes: 1) Occluding junctions embodied by the tight junctions in vertebrates and 

localized in the most apical part of the cell). 2) Anchoring junctions (including adherens 

junctions, desmosomes and hemidesmosomes). 3) Gap junctions. Apical cell domain is at 

the top, basal cell domain is at the bottom. Respective function established by different cell 

junction complexes is mentioned in the table, on the right. (B) Electron microscopy image 

showing different junctional complexes of mouse intestinal epithelial cells. (Mv, 

microvilli; TJ, tight junction, circled in black and  localized most apically; AJ, adherens 

junction localized just below the TJ; DS, desmosome.) Scale bar, 200 nm. Ref. panel A: 

Alberts B. et al., 2002. Mol Biol of the Cell, Garland Science, 4th edition. Ref. panel B: 

(Tsukita et al., 2001). 
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How epithelial cells are organized and assembled and how they accomplish their physiological 

“barrier” function remains a fundamental issue in animal development, and has been for 

decades the object of multiple studies. 

Interestingly, the concept of epithelial cell barrier has evolved over time, as different 

experiences and novel observations have accumulated. In fact, initial experiences performed on 

epithelial tissues using vital dyes, revealed a distinct region at the apical end of the lateral cell 

membrane, referred to as the “terminal bar.” This structure was thought to constitute an 

absolute barrier totally blocking the passage between cells. However, by the early 20th century, 

it became clear that some materials, like macrophages and water could indeed cross epithelia 

through the paracellular space, which is the space available between contiguous cells of the 

same epithelium. Current understanding shows that specialized cell junctions essentially form a 

selective permeability barrier across epithelial cells and behave as gates regulating the passage 

of solutes, ions and even small molecules from one side of the epithelium sheet to the other 

(Tsukita et al., 2001; Knust and Bossinger, 2002). But, which is the material basis for these 

selective gates? 

 

II. Cell junctions: a material basis for the barriers in multicellular organisms 

The solution that multicellular organisms have adopted to respond to the need for efficient 

paracellular barriers is to build up specialized cell adhesion contacts charged with this specific 

task. In fact, not all the known types of adhesion contacts contribute to the formation of 

paracellular barriers.  

In general terms, epithelial cell junction complexes have been classified into three groups that 

assume different, albeit often related functions (Müller and Bossinger, 2003). We can 

distinguish (Fig 1):  

-   Sealing or occluding junctions, such as zonula occludens or tight junctions, which 

maintain the selective barrier of epithelia (Schneeberger and Lynch 1992; Anderson et 

al., 1993). 

-  Anchoring junctions such as adherens junctions (Niessen and Gottardi, 2008) and 

desmosomes (Holthofer et al., 2007; Garrod and Chidgey, 2008) which keep cells 

mechanically attached to each other’s by joining specific cytoskeleton components of 
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Fig 2. (A) Cartoon of a tight junction strand. At tight junctions, tightly aligned rows 

of proteins, localized under cytoplasmic half of lipid bilayer, permit to join the tight 

junction strand in the apposed membranes, sealing the association between adjacent 

cells. This serves to block the movement of materials through the intercellular space, 

by forming the so-called kissing points. (B) Structure of tight junctions. Freeze-

fracture replica electron microscopic image of intestinal epithelial cells. Tight 

junctions appear as a continuous, anastomosing particle fibrils, forming strands 

(arrowheads) with complementary vacant grooves (arrows). (Mv, microvilli; Ap, 

apical membrane; Bl, basolateral membrane.) Scale bar, 200 nm. (C) Ultrathin 

transmission electron microscopy section of tight junction structures. This 

electron micrograph shows that at kissing points of tight junctions (arrowheads), the 

intercellular space is obliterated. Scale bar, 50 nm. Ref. panels B and C: (Tsukita et 

al., 2001). 
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the adjacent epithelial cells, or the hemidesmosomes (reviewed by Jones et al., 1994) 

(Fig 1), permitting to attach the cytoskeleton of epithelial cells to the extracellular 

matrix. 

         - Communicating junctions, such as gap junctions which are channels that mediate 

communication of chemical or electrical signals between cells that are in direct contact 

with each other’s (Bennett et al., 1991; Kumar and Gilula, 1996). 

In my thesis, I will particularly focus on the “sealing junctions” that control the paracellular 

flow of water, nutrients, ions, growth factors and even cells. However, this is not their only 

role, as they assure at the same time other important functions. For instance, they share with 

anchoring junctions the capacity to mediate cell adhesion and communication between adjacent 

cells.  

 

III. Sealing junctions:  general structure and particular features 

Sealing junctions characterized in so far can be grouped in three main categories: the vertebrate 

tight junctions (TJ), the invertebrate septate junctions (SJ) and the paranodal septate junctions 

(PSJ), found in both vertebrates and invertebrates. 

 

a) Tight junctions 

The irruption of electron microscopy applied to biology permitted the discovery of the two 

main types of sealing junctions that we can recognize in extant organisms. The first to be 

identified were the tight junctions or zonula occludens, which are vertebrate-specific type of 

cell adhesion complexes and were discovered by M.G. Farquhar and G.E. Palade in 1963. Tight 

junctions, firstly resolved in the electron microscope as tightly associated regions between 

membranes of adjacent cells, localize to the most apical part of the lateral cell membrane, just 

above the adherence junctions of the polarized epithelial cells (Fig 1, see also Fig 6). As their 

name implies, TJ constitute a site where the outer leaflets of the membranes of two contacting 

cells come very close or tight (Fig 2 B, C). 
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Fig 3. (A). TEM of Drosophila epidermis from late stage 17 wild-type 

embryo, showing the apical adherens junctions (AJ, arrow) and the lateral 

septate junctions. Laterally, interacting plasma membranes are joined by 

septa, arranged in parallel rows with a regular periodicity. Brackets 

indicate clustered groups of septa, and arrowheads point to individual 

septa. (B). Freeze fracture replica of septate junction structures in 

arthropod epithelia, showing the parallel arrays of intramembrane  

rounded particles, forming septa between adjacent cell membranes. Scale 

bar represent 100 nm. Ref panel A: (Wu et al., 2004). Ref. panel B: 

(Furuse and Tsukita, 2006). 
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Basically, the key structure in TJs is called “TJ strand”, a belt-like region in which two 

apposing membranes lie close together (Fig 2, A). The TJ strands are localized within the 

plasma membrane, as shown by freeze-fracture replica electron microscopy (Staehelin, 1973) 

(Fig 2, B). Each TJ strand is tightly associated with an equivalent strand situated in the 

opposing membrane of an adjacent cell to form a paired strand. The sites of contact of the two 

structures are called “Kissing Points” that can be visualized in ultrathin sections, as regions in 

which the intercellular space is obliterated (Fig 2 A, C) (Farquhar and Palade, 1963; Tsukita et 

al., 2001). 

The TJ strands are composed at least by 40 different proteins, whose function is not only 

restricted to the maintenance of a paracellular seal. In fact, the TJ structural complexity reflects 

the contribution of some its components to other interrelated cell process, like the maintenance 

of cell polarity (Cereijido et al., 1998) in which TJ participate by limiting the diffusion of 

proteins and lipids within the membrane, ultimately keeping the apical and basolateral regions 

of the plasma membrane as separated domains (Cereijido et al., 2008). 

However, this is not their only associated function, as TJ are also known to participate in 

signalling (Izumi et al., 1998; Ebnet et al., 2008), cell cycle control (Tsukita et al., 2008), 

vesicle trafficking (Yeaman et al., 2004) and even transcriptional regulation (Balda and Matter, 

2003).   

 

b) Septate junctions 

Septate junctions were described for the first time by R.L. Wood in 1959 (Wood, 1959) as 

“septate desmosomes”, during his electron microscopy (EM) observations of Hydra epithelial 

cells. Commonly found in invertebrate epithelia, their name is due to their ladder-like 

appearance visible in electron microscopy cross-sections (Fig 3). In sections perpendicular to 

the cell surface, the septa appear as regularly spaced electro-dense crossbars spanning the space 

existing between the opposed membranes of adjacent cells (Fig 3), that are separated by a 

constant distance of approximately 15-20 nm (Tepass et al., 2001, also reviewed by Furuse and 

Tsukita, 2006).  

It only became clear that these structures were responsible for the formation of the paracellular 

barrier when the paracellular diffusion of electron-dense dyes was studied in EM sections. In 

fact, in an intact epithelium the diffusion of dyes like the Lanthanum is precisely stopped at the 
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Fig 4. Glial layers of the peripheral nervous system in Drosophila larvae. (E) 

Cartoon of the CNS dissected out from Drosophila third larval instar and oriented 

laterally. OL (optic lobe), VNC (Ventral nerve cord). (F) Cross-section of larval 

peripheral abdominal nerve observed in electron. Three glial cell layers are present in 

the larval nerve: axons (ax) are ensheathed by wrapping glial (wg) cells (shown in pink) 

and the overlying subperineurial glia (spg) which appears as a flattened layer (in 

purple). SPG itself is surrounded by the perineurial glia (pg) in green, ensheathed by the 

neural lamella which covers the nervous system. (F’) Close up of the white boxed area 

in F, showing a part of the adjacent subperineurial and perineurial glia. septate junctions 

(SJ) appears only in the intercellular space between subperineurial glial cells (white 

arrowhead), whereas they are missed between perineurial glial cells (black arrowhead). 

Fig adapted from (Stork et al., 2008). 
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SJ level. The implication of the SJ in the barrier function has also been confirmed in 

Drosophila by morphological analysis of mutants in which intercellular septa are missing and 

that consistently present defective barriers (Baumgartner et al., 1996; Lamb et al., 1998).  

Interestingly, the ultrastructural features of the SJ seem well conserved in the multiple species 

in which their presence has been reported, which range from chordates (Rosenbluth, 1995; 

Banerjee et al., 2006) to porifera, where SJs have been observed between sclerocyte cells that 

secrete the spicules of the calcareous sponge Sycon ciliatum (Ledger et al., 1975).  

However, some structural heterogeneity exists. In insects, Flower and Filshie (Flower and 

Filshie, 1975) distinguished two different subtypes of septate junctions, based on their 

characteristic appearance in tangential views: the “pleated” and the “smooth” septate junctions. 

The pleated SJ, found in ectoderm derived epithelia and in glial sheets, form the typical ladders 

like electron-dense septa described above (Tepass et al., 2001). In contrast, the smooth SJs are 

only found in endodermal derivatives, like the midgut and lack the regular arrays of septae 

(Green et al., 1983). 

In invertebrates and particularly in insects, SJ can be easily recognized in most ectodermally 

derived epithelia. However, very similar adhesion structures have also been observed in the 

insect nervous system, where they contribute to the formation of a sealing barrier that protects 

and isolates the neurons from their surrounding environment. 

More in detail, a series of electron microscopy observations performed on the nervous system 

of Drosophila have shown that septate junctions are present at the cell contacts between 

specialized types of glial cells, the so-called subperineurial glial (spg) cells, which surround 

and ensheath axon fascicles of central and peripheral nervous system (Stork et al., 2008) (Fig 

4). These connections have an essential role for the maintenance of the Blood Brain barrier 

(BBB) organization, a physiological barrier protecting the nervous system from the high 

potassium (K+) concentration present in the hemolymph but also regulating the entry of other 

molecules inside the nervous system (Bainton et al., 2005; Schwabe et al., 2005; Stork et al., 

2008). 

 

 

c) Paranodal septate junctions 

Interestingly, structures morphologically very similar to the invertebrate SJ have also been 

observed in the nervous tissues of vertebrate organisms: the so-called paranodal septate 
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Fig 5. Membrane domain organization of the vertebrate myelinated axons. (A) 

Cartoon of a myelinated neuron. Myelinating Schwann cells ensheath all axon surfaces 

excepting nodes of Ranvier to induce the “saltatory conduction” of action potentials. (B) 

Schematic representation of myelinated axon shows three distinct compartments or axon 

domains: the node of Ranvier (in red), the paranode (in green) and the juxtaparanode or 

internode (in purple). In nodes, axons are in contact with Schwann cell microvilli of glial 

cells, but they are in contact with paranodal myelinated loops in paranodal domain (fig B, 

close up), whereas internodal domains are ensheated with myelinated axons. Paranodal 

septate junctions PSJ (presented by the hatched green lines) are formed between paranodal 

loops and junctional axon domain. Paranodal loop cells are polarized presenting tight 

junctions (TJ) that provide paracellular barrier between the periaxonal space and the loops, 

gap junctions (GJ) permit direct communication between loops, and adherens junctions 

(AJ) that promote attachment between adjacent loops. Such organization of paranodal 

myelinated loop cells is very similar to that of polarized epithelial cells. Fig adapted 

from: (Salzer, 2003). 
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junctions (Brophy, 2001). This denomination is due to their presence in the paranodal axon 

domains of the myelinated nerves, at the interface between glial myelinated Schwann cell loops 

and axonal membranes (Fig 5, B).  

It has been recognized that myelinated axons of the central and peripheral nervous systems 

(Fig 5, A) are compartmentalized into three functionally distinct domains: the nodes of 

Ranvier, the paranodes, and the juxtaparanodes or internodes (Fig 5, B) (reviewed by Salzer et 

al., 2003). 

Paranodes, located on both sides of Ranvier nodes are the site of attachment of the axonal 

membrane to the terminal loops of myelinating glial cells, which spiral around the axon, 

forming a series of septate-like junctions (Fig 5, B). This axo-glial paranodal junction plays 

three important physiological roles. First, it provides electrical insulation, allowing saltatory 

conduction of the nerve impulses from one node of Ranvier to the next node. Second, it 

restricts the lateral mobility of axonal membrane proteins and channels, organizing a fence 

within the axonal membrane that separates Na+ channels present at the unmyelinated node of 

Ranvier from K+ channels present under the glial cells, in the juxtaparanode (Bhat, 2003; Bhat 

et al., 2001). Third, it also provides adhesion and putative intercellular communication 

between axons and Schwann cells at the level of the axon-glia contact domains. 

Thus, paranodal septate junctions establish a physical Blood Brain Barrier (BBB) between the 

neuron and the ensheathing glial cells by preventing the unregulated exit into the blood of 

neurotransmitters and other substances emanating from nerve cells, and at the same time 

blocking the passage of blood material into the nerves (Bellen et al., 1998). They are also 

likely to contribute to a bi-directional signalling between axons and glial cells and seem to 

play important roles in the process of myelination, as defects in the organization of paranodal 

septate junctions have been associated with several neuropathies and dysmyelinating 

disorders (Griffiths et al., 1996). 
 

We have seen that both epithelial septate junctions and paranodal septate junctions play an 

equivalent role to that of tight junctions, but differ strikingly in morphological terms. Another 

remarkable difference between SJ and TJ, as far as epithelial tissues are concerned, is that the 

position along the lateral cell membrane of these structures is different. In fact, SJ are placed 

just below the adherens junctions and not above, as TJ are (Fig 6), suggesting that these 

adhesion structures are completely different, both in composition and in evolutive origin. In 

fact, for a long time, they have been envisaged as analogous structures rather than homologous 

ones.  
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Fig 6. Localization of tight and septate junctions, respectively in 

vertebrate and invertebrate epithelial cells. In vertebrates, tight 

junction (TJ) structures, where adjacent cell membranes join together 

in a specific sites (shown in green), are localized in the most apical 

part of epithelial cells, just above the adherens junctions (in pink, left 

hand panel). Whereas in invertebrates, tight junctions analogous, 

called septate junction (SJ), are situated just below adherens junctions 

(in pink, right hand panel) and are characterized by a ladder-like septa 

(in green) spanning the intercellular epithelial space. Ref. Fig: 

(Tepass, 2003). 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However, the detailed characterization of their multiple components has shown that these 

structures share more similarities than previously thought, a feature that also applies to the 

paranodal septate junctions. So, how are these junctional complexes organized at the molecular 

level? 

 

IV. Molecular organization of the sealing junctions 

 

a) Molecular organization of TJ 

After the first electron microscopy observations, cell biologists began to focus in the study of 

TJ, to unmask the nature of its molecular components. Contrary to what was initially thought, 

the nature of the TJ strands is not predominantly lipidic, but made of protein complexes 

arranged like beads that span the paracellular space. In fact, at the level of the TJ, the adjacent 

plasma membranes are hold together by rows of transmembrane junctional proteins. On the 

one hand, the extracellular domains of these proteins directly interact with one another to 

occlude the intercellular space and create a seal (Schneeberger and Lynch, 1992; Gumbiner, 

1993; Anderson and van Itallie, 1995). On the other hand, the intracellular part of these 

transmembrane proteins associates with a set of cytosolic components that anchor the strands 

to the actin cytoskeleton. In this way, the tight junctions allow the cytoskeletons of adjacent 

cells to join together. At the molecular level, the different components of the tight junctions 

can be broadly separated in three different groups: 

- The Claudins: tetraspan membrane proteins, like Occludin, which are allegedly 

responsible for the selective barrier function (Fig 7 A, B).  

 

- A large set of different single-pass transmembrane proteins that can be collectively 

designed as junctional adhesion molecules (JAM) (Fig 7, C). 

  

-  Multiple cytoplasmic adaptor proteins, that form the so called tight junction plaque and 

include the Zonula Occludens ZO-1, ZO-2 and ZO-3, all belonging to the MAGUKs 

(Membrane-Associated Guanylate Kinase) family and other proteins containing a 

PDZ domain (PSD-95/Discs large/ZO-1) which interact specifically with the 
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Fig 7. Topology of tight junction integral membrane proteins. (A) Occludin has four 

transmembrane domains with two extracellular loops, one short intracellular loop with 

amino and carboxy terminal cytoplasmic domains. (B) Claudin-1 also has four 

transmembrane domains, but does not display sequence similarity to Occludin. Note that 

the cytoplasmic tail of claudin-1 is shorter than that of Occludin. Different Claudin 

members show variability in the aminoacid composition of their extracellular loops. (C) 

Junctional adhesion molecule 1 (JAM-1) also known by JAM-A has a single 

transmembrane domain; its extracellular domain contains two immunoglobulin-like loops 

that are formed by disulphide bonds. The first amino terminal loop is known to mediate 

homologous interaction with JAM-1 molecule, present in the adjacent cell membrane. 

Molecular weight, isoform and aminoacid number of each molecule are also mentioned. 

Ref. Fig: (Schneeberger and Lynch, 2004). 
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cytoplasmic domains of Occludin, Claudins and JAM and form a scaffold capable of 

recruiting other signalling proteins and cytoskeleton components to the TJs. 

 

Occludin derives its name from the latin word ‘‘occludere’’, to close, and represents the first 

example of integral membrane proteins specifically found in TJ strand (Furuse et al., 1993; 

Ando-Akatsuka et al., 1996). Occludin encodes for a membrane protein with four 

transmembrane domains, a topology that generates two extracellular loops, one intracellular 

loop and two amino- and carboxy-terminal cytoplasmic domains (Fig 7, A). Although 

Occludin is specifically localized at the tight junctions, its physiological function is still 

unclear. In fact, epithelial tissues deficient for Occludin do not show obvious defects at the 

level of the TJ and the paracellular diffusion barriers seem functional (Saitou et al., 1998). 

However, Occludin knock-out mutant mice display clear phenotypes, such as growth 

retardation, male sterility, and a tendency to develop gastritis, suggesting that the digestive 

apparatus barrier function could be impaired (Saitou et al., 2000). The presence of functional 

tight junctions in these mutants has stimulated the study of other membrane proteins present 

in the TJ complex, leading to the discovery of the key role played by Claudins in paracellular 

barriers. 

 

Claudins, also named from the latin “claudere”, to close, have emerged as key components of 

the TJs and are thought to have a direct function in barrier and tight junction strand formation 

(Inai et al., 1999; McCarthy et al., 2000). They form a large multigene family with 

approximately 24 members in human and mice (Van Itallie and Anderson, 2006; Furuse and 

Tsukita, 2006; Angelow et al., 2008), but recently they have also been identified in insects 

(Wu et al., 2004). Claudins are also tetraspan proteins, sharing a similar topology to that of 

Occludin (Fig 7, B). Claudins are known to interact in a homo- and heterophilic way in the 

plane of the membrane (Furuse et al., 1999; Blasig et al., 2006), but also with the Claudins of 

the adjacent cells (Furuse et al., 1999), thereby sealing the cell junctions. Ectopic expression 

of Claudins in fibroblasts results in the formation of tight junction-like structures, indicating 

that Claudin expression has a capital role in driving tight junction formation. Interestingly, the 

observed profusion of Claudin paralogues seems to provide a molecular basis for the different 

selective properties exhibited by different epithelial barriers. Indeed, manipulations altering 

the type of Claudin expressed in a tissue seem to have a direct impact on paracellular ion 

and/or size selectivity (Van Itallie et al., 2001; Nitta et al., 2003). It seems that these selective 

properties reside in the extracellular loops of Claudins that contain several electrically 
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Fig 8. Schematic representation of the basic molecular 

components of tight junctions in epithelial cells. Claudins, 

Occludin and the junctional adhesion molecules (JAMs) are the 

most prominent components. Within the cytoplasm many first-

order adaptor proteins, including the scaffolding proteins Zonula 

Occludens 1, 2 and 3 (ZO-1–3) bind to the cytoplasmic tail of 

intramembrane proteins and provide a direct link to the actin-

based cytoskeleton. Among the second-order adaptor molecules, 

Cingulin is shown. Signaling and regulatory proteins include 

multi-PDZ-protein 1 (MUPP1) and MAGI (membrane-

associated guanylate kinase with inverted orientation of protein–

protein interaction domains).  

      

 

 

 

 

 

 

31



charged residues. In fact, it is known that different members of the Claudin family exhibit a 

large variability of isoelectric points and, for instance, point mutations altering the charge in 

the first extracellular loop of Claudin-15, expressed in the mammalian polarized Madin-Darby 

canine kidney cells (MDCK), result in changes of barrier ion specificity (Colegio et al., 2002). 

Thus it is now widely accepted that barrier specificity is largely due to the type of claudin(s) 

present at the tight junctions (Anderson et al., 2004; Furuse and Tsukita, 2006).  

 

JAMs or junctional adhesion molecules are the second type of integral membrane proteins 

localized at TJ. They belong to a family of single-span transmembrane proteins characterized 

by the presence of immunoglobulin extracellular domains (Fig 7, C) (Martin-Padura et al., 

1998; Ebnet et al., 2004). For instance, in humans, the family consists of four closely related 

molecules called JAM-A, -B, -C and JAM-4 (Ebnet et al., 2004). Differing from Claudins, 

their expression in fibroblasts does not induce the formation of tight junctional strands, 

suggesting that they may play a subsidiary role in TJ assembly. As their name implies, JAM’s 

main contribution seems to be mediating cell adhesion. In fact, they are supposed to hold 

together the two opposing membranes of the tight junction thanks to their capacity to interact 

in an homophilic and heterophilic way (Keiper et al., 2005). However, it seems that this is not 

their only function, as they also mediate interactions with a wide range of cytoplasmic 

proteins. In particular, they are thought to play a role in the regulation of the cell polarity, as 

JAM-C is necessary for the recruitment of the cell polarity complexes PAR6, Cdc42, PKCl 

and PATJ during mammalian spermatid differentiation (Gliki et al., 2004).  

 

Scaffolding proteins: The incorporation and association of the transmembrane proteins 

Occludin, Claudins, and JAMs in tight junctional strands requires the local clustering of these 

proteins in a particular membrane region. Although direct interactions between Occludin, 

Claudins, and JAMs may contribute to their clustering, this process mainly relies on the 

scaffolding properties of their cytoplasmic binding partners.  

An important group of tight junctional scaffolding molecules are the zonula occludens 

proteins ZO- 1, ZO-2 and ZO-3 (Fig 8). These proteins belong to the MAGUK family and are 

characterized by the presence of three N-terminal PDZ domains, an SH3 domain followed by 

a catalytically active guanylate kinase domain. These proteins can interact directly with 

Occludin, Claudins and JAMs via their PDZ domains (Furuse et al., 1994; Haskins et al., 

1998; Itoh et al., 1999; Ebnet et al., 2000), whereas their C-terminus can associate with 

filamentous actin, thus providing a direct link with the actin cortex (Fig 8) (Fanning et al., 
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1998; Wittchen et al., 1999). In fact, their interaction with actin could be essential for their 

localization at the level of the TJ, as it has been shown for the ZO-1 protein (Fanning et al., 

2002). In addition, ZO-1 has been shown to form homodimers and also heterodimers with 

either ZO-2 or ZO-3, a property that could contribute decisively to the clustering of the TJ 

components. Along this line, it has been shown recently that both ZO-1 and ZO-2 are 

essential for Claudin clustering, strand formation and barrier maintenance (Umeda et al., 

2006).  

 

The ZO proteins are not the only PDZ-motif adaptors present in TJ. Several proteins, such the 

Multi-PDZ domain protein 1 (MUPP1) and the membrane-associated guanylate kinase with 

inverted domain orientation (MAGI) proteins have been shown to interact with one or more 

integral membrane TJ components (Fig 8) (Schneeberger and Lynch, 2004). However, it is 

unclear if these molecules are part of a structural core essential for tight junctions stability or 

if they serve a subsidiary regulatory function, as TJ are dynamic structures whose properties 

change in different cellular and physiological situations. For instance, Cingulin, a non-PDZ 

tight junctional plaque protein, also interacts with ZOs, JAMs, and actin via its head domain, 

whereas its central domain is required for homodimerization and can interact with myosin. As 

such, this protein may be an important regulator of tight junctional dynamics during 

actomyosin contraction (Clayburgh et al., 2005).  

 

As we have seen, the general molecular organization of tight junctions stands on a group of 

transmembrane proteins (Occludin, various Claudins and JAMs) whose C-terminal 

cytoplasmic sequences present high affinity for scaffolding proteins, mostly containing one or 

more PDZ domains. The study of invertebrate septate junctions has shown that their structural 

logic is very similar to that of TJ, and that both complexes are formed by similar types of 

molecules.   

 

b) Molecular organization of SJ 

Basically, the most detailed molecular dissection of invertebrate septate junction (SJ) has been 

carried out in Drosophila. In this organism, many SJ components have been identified and it 

has been found that some of them play equivalent molecular functions to known vertebrate TJ 

proteins. Moreover, in many cases the septate and tight junction components appear to be 

clear homologous proteins that share the same organization and domain composition.  
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As in vertebrates, the internal logic of SJ allows to classify its components in three groups.  

 

First, the Drosophila SJs present transmembrane proteins like the Claudins, supposed to 

maintain the barrier function of these structures. For instance, three fly Claudins displaying 

the characteristic topology of these proteins have been described: Megatrachea (Mega) (Behr 

et al., 2003), Sinuous (Sinu) (Wu et al., 2004) and Kune Kune (Kune Kune) (Nelson et al., 

2010). However, Occludin seems to be absent in this insect.  

 

Second, the Drosophila SJ complex is also composed by a group of cell adhesion molecules 

that includes both transmembrane proteins, such as Neurexin IV (Baumgartner et al., 1996), 

Gliotactin (Genova and Fehon, 2003; Schulte et al., 2003), Fasciclin III (Woods et al., 1997), 

Neuroglian (Hortsch et al., 1995; Genova and Fehon, 2003) and the Na+/K+ ATPase pump 

(Paul et al., 2003)), and also Glycosylphosphatidylinositol (GPI) anchored cell membrane 

proteins, such as Lachesin (Llimargas et al., 2004), Contactin (Faivre-Sarrailh et al., 2004) 

and Melanotranferrin (Tiklová et al., 2010).  

 

The third type of SJ proteins consists of scaffolding adaptor molecules found at the 

cytoplasmic side of the membrane. These proteins include ZO homologous proteins with 

different PDZ proteins, like Dlg (Woods et al., 1991) and Varicose (Wu et al., 2007), 

founding members of the MAGUK family. Many other fly scaffolding components, notably 

Coracle, a cytoskeletal linker belonging to the 4.1, Ezrin, Radixin, Moesin (FERM) protein 

domain family (Fehon et al., 1994; Lamb et al., 1998) and Scribble (Bilder et Perrimon, 

2000), a protein with leucine-rich repeats (LRRs) and PDZ domains, known to regulate cell 

polarity, are also associated with vertebrate tight junctions (D’Atri et al., 2002), thus pointing 

on the molecular and functional conservation existing between tight and septate junction 

structures. 

 

In Drosophila polarized cells, the different SJ components appear clustered in a membrane 

region placed below the adherens junctions. Multiple observations have shown that in mutant 

background for one of the SJ components, the other components appear systematically 

mislocalized and found uniformly distributed along the lateral membrane (Genova and Fehon, 

2003; Faivre Sarrailh et al., 2004; Llimargas et al., 2004; Moyer et al., 2008; Tiklova et al., 

2010 …). These observations have lead to the notion that the different components of SJ are 
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Fig 9. Schematic representation of septate junction molecular complex between 

Drosophila epithelial cells. Different protein interactions are shown between septate 

junction components. The cell adhesion molecules NeurexinIV, D-Contactin and 

Neuroglian interact together to form a tripartite complex, also present in vertebrate 

PSJ. Coracle and NeurexinIV also form an interdependant complex with Neuroglian 

and the Na+/K+ ATPase pump. Other hypothetical interactions are supposed to occur 

between the cytoplasmic PDZ-binding domains of Neurexin IV with the PDZ 

domains of Scribble or Discs large, as well as interactions between Coracle and the 

4.1-protein-binding domain of Discs large, but also between Gliotactin and the PDZ 

domains of Scribble and between the PDZ domains of Scribble and Discs large. 

These interactions are indicated by broken arrows; however they still need to be 

demonstrated. These molecules, with the exception of the homophilic cell adhesion 

molecule Fasciclin III and the Drosophila ankyrins, have now been demonstrated to 

be essential for the function of septate junctions in the epithelia and nervous system 

of Drosophila. Ref. adapted from: (Hortsch M and Margolis B, 2003).  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interdependent for their clustered localization and therefore for the organization of the whole SJ 

complex. 

Moreover, genetic and biochemical studies have unveiled a complex network of interactions 

between some of the SJ components (Fig 9). For example, it has been shown that the FERM 

protein Coracle (Cor) interacts with the cytoplasmic tail of Nrx IV (illustrated in Fig 9) and, 

accordingly, the clustered localization of Cor is lost in NrxIV mutants (Ward et al., 1998). 

Further studies based on immunoprecipitation experiments have also indicated that Cor and 

Nrx IV are found in an interdependent complex with the Na+/K+ ATPase pump and the 

transmembrane protein Nrg (Genova and Fehon, 2003). In addition, it has been shown that the 

cytoplasmic tail of Nrx IV binds to the PDZ domain of the scaffolding MAGUK protein 

Varicose (Wu et al., 2007). Finally, biochemical experiments indicate that MTf, a conserved 

transferrin family of GPI anchored iron-binding protein, also interacts with Nrx IV, Cont and 

Nrg complex (Tiklová et al., 2010). 

However, even though more and more interactions between septate junction components 

become apparent, further studies will be required to understand how the SJ complex is 

assembled and how its integrity is maintained during development. In particular, the dynamic 

of the interactions established between SJ components has hardly been explored. For instance, 

it has been shown that in mutants for Nrx IV, Contactin protein seems unable to reach the 

plasma membrane and is seen instead accumulating in intracellular vesicles (Faivre-Sarrailh et 

al., 2004). This finding suggests that SJ complexes may preassemble en route to the membrane, 

but we still know little about how the trafficking of the different septate junction components is 

organized and how these proteins are addressed to a particular region of the cell membrane. 

These questions have just begun to be analyzed in a seminal study focusing on the MTf SJ 

component (Tiklová et al., 2010). This work has shown that before SJ formation, the MTf 

protein is uniformly distributed along the lateral membrane, then enters different endosomal 

compartments (Rab5 positive early endosomes and Rab11 positive recycling endosomes), and 

is finally reshipped to the apical part of the lateral membrane where it forms a cluster at the 

level of the SJ. This suggests that membrane recycling plays an active role in the initial 

clustering of the SJ components, but it could also participate in SJ maintenance during 

development and/or in physiological regulation of paracellular barrier activity. Indeed, the 

endocytosis of SJ components could be a recurrent way to regulate the properties of barriers, as 

many studies in the vertebrate TJ have demonstrated (Utech et al., 2010).  
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Figure 10. Schematic model describing molecular interactions at the paranodal 

region of myelinated axons. A cis complex of adhesion molecules Caspr (contactin-

associated protein) and Contactin, present in the lipid raft domain of the axon, are 

interacting together. Caspr binds in its cytoplasmic region to protein 4.1B, a member of the 

4.1 family of cytoskeletal and cytoplasmic adaptor proteins. Caspr/Contactin complex 

interacts with the glial protein, NF155 (Neurofascin 155), anchored to lipid rafts of the 

myelinated terminal loops membrane. Fig. adapted from: (Labasque and Faivre-Sarrailh, 

2010) and (Salzer, 2003). 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c) Molecular organization of paranodal septate junctions 

Septate junctions display extraordinary similarities with the vertebrate paranodal septate 

junctions (PSJ) not only at the morphological level, but also at the molecular one, as they share 

many different membrane adhesion molecules and cytoplasmic adaptors. 

The structural core of the PSJ is composed by members of the Immunoglobulin cell adhesion 

molecules (Ig L1-CAM) family, including Caspr/Paranodin (NCP1), F3/Contactin and 

Neurofascin 155 (NF-155), which are the respective homologues of Drosophila Neurexin IV, 

D-Contactin and Neuroglian. These proteins are thought to be associated with lipid rafts in the 

glial membrane domains, and their insertion in these membrane microdomains seems 

important for the function of paranodal junctions (Fig 10) (Maier et al., 2007), also reviewed 

by (Labasque and Faivre-Sarrailh, 2010). It is known that the Neurexin-type Caspr/Paranodin 

protein interacts with GPI-anchored Contactin in a cis-configuration (Peles et al., 1997). In 

paranodal junctions, this complex binds by its cytoplasmic tail to the scaffolding 4.1B protein 

(Denisenko-Nehrbass et al., 2003), also present in invertebrate SJ and that acts as an 

important linker between the membrane proteins and the cytoskeletal network. Finally, this 

complex mediates cell adhesion by a trans interaction with the Neurofascin-155 present in the 

opposite membrane (Fig 10) (Charles et al., 2002). The interaction between these PSJ proteins 

is required for the organization of the proper axon functions and the nerve potential action 

conduction (Bhat et al., 2001; Boyle et al., 2001). In Paranodal region, Claudins play an 

intriguing role, as they are also present, but appear associated with the formation of TJ 

between myelinated loops surrounding axons (Poliak et al., 2002). 
 
Despite recent advances, we are still far from having understood the cellular and molecular 

mechanisms controlling the assembly and maintenance of the PSJ, and their specific functions 

in the vertebrate nervous system. However, the picture emerging from the studies comparing 

TJ, SJ and PSJ at the molecular level indicates that strong parallelisms exist between 

invertebrate and vertebrates at the level of their structural components (see Table 1), pleading 

for an ancient common origin for all of the extant sealing junctions. 

This consideration also implies that studies focusing on the insect septate junctions could be 

specially informative to shed light on the molecular complexity, the assembly mode and the 

interactions existing between the different components of paranodal septate junctions. 
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Table 1. Molecular components of Drosophila SJ components and their vertebrate 

counterparts. Abbreviations: Ig, immunoglobulin; EGF, epidermal growth factor; FERM, 

Band 4.1 ezrin radixin moesin homology; FnIII, fibronectin III; GPI, glycosyl-

phosphatidylinositol; LAP, leucine-rich repeat and PDZ-containing; MAGUK, membrane-

associated guanylate kinase; PDZ, PSD-95 DLG ZO-1. In addition to these proteins in 

Drosophila, diverse other molecules (lachesin, Melanotransferrin,..) have been described after 

for their roles in SJ organization. Even though, some of them have vertebrate homologous, 

however, no evidence has yet been reported concerning their contribution to the vertebrate 

PSJ organization. No vertebrate homolog of the Drosophila Fasciclin III protein has been 

identified and, therefore, it remains uncertain whether Fasciclin III belongs to a separate gene 

family. Ref. : (Hortsch and Margolis 2003). 

 

 

 

 

 

 

 

 

 

39



V. Drosophila: a model system to study sealing junctions 

The overall goal of my PhD project is to contribute to the characterization of new septate 

junction components and the study of the molecular mechanisms involved in their assembly 

and maintenance during development, using Drosophila melanogaster as a paradigm.  

This insect presents multiple advantages for this kind of studies, as its development is relatively 

simple and well understood, it is cheap and easy to handle and is well suited for genetic studies.  

In addition, its genome is entirely sequenced and extremely well annotated. The study of gene 

function is greatly facilitated by the availability of mutants for many genes, which allow rapid 

phenotypic characterizations. In addition, the information obtained in this model system can 

often be extrapolated to other organisms, as about 60% of fly genes have mammalian 

homologues. Furthermore, 75% of genes thought to be involved in human diseases are also 

found in flies.  

Studies carried out in Drosophila have contributed to the identification of many septate 

junction components, taking advantage of straight forward genetic approaches. This has been 

possible mainly because in this organism, phenotypes denoting defects at the level of the 

septate junction can be scored after morphological analysis of a simple tissue, the embryonic 

tracheal system.  

The tracheas, the respiratory system of insects, are formed by a complex network of 

interconnected epithelial tubes that allow transport of oxygen and other gases throughout the 

organism. Tracheal morphogenesis begins at an early embryonic stage (stage 10), by the 

singularization of tracheal placodes, epithelial sacs of 80 cells present from the second thoracic 

segment to the eighth abdominal segment of the body embryo (Fig 11 A, arrowheads). These 

ectodermal cells invaginate at stage 11 and form the tracheal pits (stage 12) (Fig 11, B). After 

this stage, tracheal tree formation occurs without cell divisions. First, the cells migrate 

internally in a distinct pattern, and then they fuse with tracheal cells from adjacent segments to 

form a continuous tubular network, after having undergone sequential sprouting of primary, 

secondary, and terminal branches. In late embryonic stages, when branching is completed, the 

tracheal network consists of a dorsal trunk supporting different ramified branches, running all 

over the body of the Drosophila embryo (Fig 11, D) (Affolter and Caussinus, 2008).  

Drosophila mutants for different septate junction components consistently display a 

characteristic phenotype in their dorsal tracheal trunks, which acquire a convoluted shape and 
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Fig 11. Branching morphogenesis of the Drosophila tracheal system during 

embryonic development. (A) Stage 11 of embryonic development. Tracheal cells 

invaginate (arrowheads) and form tracheal pits during the initial phase of germ band 

retraction. (B) Stage 12 of embryonic development. Tracheal pits extend branches in 

stereotyped directions (asterisks). (C) Stage 14 of embryonic development showing 

tracheal branches elongation. (D) Late stage 15 of embryonic development. Branches are 

fusing to form an interconnected network of tracheal tubes (arrowheads). DBs, dorsal 

branches; DT, dorsal trunk; TCs, transverse connectives. Anterior is to the left and dorsal 

to the top. Scale bars: 100 µm. Ref. Fig: (Affolter and Caussinus, 2008). 
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Fig 12. Septate junction components are required for tracheal morphogenesis. Stage 

15 of wild type (A) and megatrachea (mega) homozygous mutant (B) embryos labeled for 

the tracheal lumen antigen marker, using 2A12 antibody. mega embryo displays a tortuous 

dorsal trunk (arrow) and a tortuous transverse connective (arrowhead) compared to the 

wild type. Ref. Fig (Behr et al., 2003).  
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Fig 13. Septate junction genes are required for 

tracheal tube size control. SJ genes mutations induce 

similar tracheal defects, mostly marked by an elongated 

and convoluted tracheal dorsal trunk shape, with and 

extended and enlarged lumen width (B-H), compared to 

the wild type tracheal dorsal trunk (A). Abbreviations: 

WT, Wild Type; ATPα, Na+/K+ATPase α subunit; nrx, 

neurexin IV; vari, varicose; Nrv2, Nervana2; scrib, 

scribble; Sinu, Sinuous; Kune, kune kune. Ref. adapted 

from : (Wu et al., 2004) ; (Behr et al., 2003) ; (Paul et 

al., 2007). 
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present an enlarged lumen width, a phenotype that becomes apparent when compared to the 

straight dorsal trunk shape of wild type embryos (Fig 12-13). These defects can be easily 

detected, thanks to tracheal luminal markers like the 2A12 monoclonal antibody that 

specifically labels the lumen of Drosophila tracheal system (Fig 12). These tracheal 

morphological phenotypes are often correlated with a defect in the paracellular barrier formed 

by the tracheal epithelium. In a wild type background, these cells form SJs acting as a barrier 

that selectively regulates the passage of solutes and ions in and out of the tracheal lumen. 

Injections of a fluorescently labelled dextran dye (10 kDa) in live embryos are commonly used 

as a tool to monitor barrier integrity, allowing the unambiguous identification of mutants 

affecting paracellular barrier integrity (Fig 14). 

 An intriguing question is why the integrity of the SJ seems to be required for the tracheal 

morphogenesis and the control of lumen size. Some studies examining this issue have shown 

that the tracheal lumen is a highly organized structure containing a fibrous chitin matrix that is 

present during lumen morphogenesis and has a critical role for determining lumen length and 

diameter (Tonning et al., 2005). Interestingly, many mutations affecting SJ components seem to 

affect the secretion into the tracheal lumen of both chitin and a series of matrix-modifying 

enzymes, like Vermiform and Serpentine (Wang et al., 2006; Wu et al., 2007). These 

observations indicate that the organization of the luminal chitin matrix has an important role in 

determining tube size and morphology, as confirmed by the analysis of mutants in which chitin 

synthesis is compromised (Devine et al., 2005; Moussian et al., 2006).  

However, there are probably other mechanisms at play. For example, a recent study has shown 

that the interplay between SJ proteins like Yurt and Cor modulates the dimensions of the apical 

surface of tracheal cells by interacting with the cell polarity regulator Crumbs (Laprise et al., 

2010). This activity of Yurt and Cor specifically impinging on the tracheal cell architecture 

could control the tracheal tube size independently of the luminal secretion of the matrix 

components (Wang et al., 2006; Wu et al., 2007). 

 

During my PhD, I took advantage of the Drosophila melanogaster model system to identify 

two new genes required for SJ formation. These two genes code for two distinct membrane 

proteins that however contain a similar extracellular domain, the Ly6 domain. The analysis of 

mutants for both genes has shown that they present all the classical phenotypes seen in mutants 

for septate junction components. However, the participation of Ly6 proteins in SJ formation 
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Fig 14. Septate junction integrity is required for epithelial paracellular barrier in 

Drosophila. (a-c) Live stage 16 embryos are injected into their body cavity with fluorescent 

10kda dextran dye. In SJ mutants like ATPα and Cor 1 for example, the paracellular barrier 

between tracheal cells is disrupted and the dye easily penetrates into the tracheal lumen, 

contrary to wild type embryo where the dye is completely excluded from the tracheal lumen 

(trachea is delimited by white dotted lines). Ref. Fig: (Paul et al., 2007). 
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was not expected, because this Ly6 module was not previously known to be involved in the 

formation of sealing junctions. 

What are Ly6 domain proteins and what do we know about them? 
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Fig 15. Ly6/TFD proteins share comparable tridimensional structure. (A-

I). Crystallographic representation of TFD proteins shows that they share 

comparable structures. The core of the TFD proteins contains from 4 to 5 

conserved disulphide bridges (in yellow) established between cysteines. Three 

loops or ‘fingers’ protrude from the inner core, hence their denomination “three 

finger proteins”. These sheeted loops are numbered right to left as loop I, II and 

III, respectively. We can remark that the length of loops is variable from one 

molecule to another. Ref. Fig: (Kini, 2002). 
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Part 2 

The Ly6/ three-finger domain (TFD) family of proteins  

I. Structural conformation of Ly6 proteins  

Proteins of the Ly6 superfamily are defined by a small motif called Ly6 domain, three-finger 

domain or Ly6/CD59/uPAR domain (Ploug and Ellis, 1994). This structural module is 

characterized by a pattern of 8-10 cysteines found in stereotyped positions. Besides these 

cysteines, the Ly6 primary sequences are highly variable, although they always result in 

comparable three-dimensional structures (Tsetlin, 1999 and Kini, 2002) (Fig 15). In fact, after 

the first example was identified in the sea-snake toxin erabutoxin-b (Low et al., 1976), many 

studies using X- ray crystallography and nuclear magnetic resonance (NMR) have shown that 

all the Ly6 proteins share a similar structural and tridimensional organization. The Ly6 motif is 

characterized by a twisted array of anti-parallel beta-sheets composed of five short strands. This 

central core is stabilized by four to five disulphide bridges established between the conserved 

cysteines and supports three prominent loops, resembling the outstretched fingers of a hand, 

whence their three-finger domain denomination (Fig 15). 

 

II. Most Ly6 glycoproteins are anchored to the cell membrane by a GPI anchor 

The Ly6 is an extracellular module that is never found in combination with other extracellular 

domains, thus constituting the hallmark of a large superfamily of cell surface glycoproteins. 

This superfamily includes both glycosylphosphatidylinositol (GPI)-anchored and soluble 

proteins. They are firstly synthesized as precursors containing an N-terminal signal peptide that 

leads their entry into the lumen of the rough endoplasmic reticulum. Most Ly6 precursors have 

also a hydrophobic carboxy-terminal region that is cleaved after addition of a GPI anchor. This 

GPI moiety maintains the mature proteins attached to the cell membrane (Fig 16).  

However, some Ly6 proteins, and in particular the different snake toxins, lack this hydrophobic 

C-terminal region and behave as secreted factors, which is envisaged as a secondary adaptation 

to their specific function as venoms. 
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Fig 16. (A) General structure of Ly6/TFD proteins. Precursor form of Ly6/TFD 

proteins, produced in the endoplasmic reticulum, contains an amino-terminal signal peptide 

(SP), the Ly6 domain which presents 8-10 stereotyped cysteines and a hydrophobic 

Carboxy terminal domain, with a conserved asparagine (N) situated after the last cystein of 

the Ly6 motif. (N) is the site of GPI anchoring. Mature proteins lack the amino and 

terminal domains and are anchored to the outer leaflet of the cell membrane through the 

GPI anchor moiety. In parallel, snake toxins TFD proteins are synthesized as soluble 

proteins, not tethered to the cell membrane. (B) General structure of a typical GPI 

anchored protein. GPI anchored proteins are linked by their carboxy-terminus asparagine 

through a phosphodiester linkage of phosphoethanolamine to a trimannosyl-non-acetylated 

glucosamine core. Terminal end of non-acetylated glucosamine is linked to 

phosphatidylinositol (PI). PI is then anchored by another phosphodiester linkage to the 

outer leaflet cell membrane through its hydrophobic region. GPI membrane proteins can be 

soluble, by phosphatidylinositol-phospholipase C (PI-PLC) or Phosphatidylinositol–

phospholipase D (PI-PLD) enzymatic cleavage. These enzymes specifically hydrolyze 

phosphodiester bond of phosphatidylinositol, permitting the release of GPI proteins from 

the cell membrane. Ref. Fig: (Udfriend and kodukula, 1995). 
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III. Characteristic features of the Ly6 domain proteins 

The Ly6 motifs behave as protein-protein interaction domains and exhibit a series of properties 

intimately related to their particular architecture. Their most striking feature is their sequence 

plasticity that consists in a remarkable capacity to accommodate for multiple aminoacid 

substitutions without perturbing the protein general folding. This plasticity has allowed in turn 

a high sequence divergence and a rapid rate of evolution that is probably also the main reason 

for the high number of gene duplicates coding for Ly6 proteins that can be observed in most 

animal genomes.   

These general principles are nicely illustrated by examples coming from the multiple detailed 

studies that have been conducted with the three-finger snake venom toxins. The key feature of 

these toxins is that, despite their common organization, they display a high variability, not only 

at the level of their loop sequences (Fig 17), which are the main sites of interaction, but also in 

other surface exposed regions (Ohno et al., 1998). In fact, diversity in the number of their 

disulfide bonds (Servent et al., 1997), specific post-translational modifications like 

glycosylation (Osipov et al., 2004) and the possibility of forming dimers (Osipov et al., 2008) 

(see Fig 15, E) can also have an important impact on their binding properties. 

It has been shown that related TFD venom toxins can bind to disparate targets such as the 

peripheral site of acetylcholinesterase (AChE), that is blocked by the mamba Fasciculins 

(Eastman et al., 1995), the muscle nicotinic acetylcholine receptors (nAChR), the classic target 

of α-bungarotoxins (Tsetlinet al., 1999; Changeux et al., 1990), or the L-type calcium channels, 

that are blocked by the calciseptins, (De Weille et al., 1991; Albrand et al., 1995). 

In turn, their capacity to achieve high specificity is clearly illustrated by the selectivity of the 

muscarinic toxins from Dendroaspis (Mamba) venom, which target with much higher affinity 

the muscarinic acetylcholine receptors than the nicotinic subtypes (Karlsson et al., 2000; 

Jerusalinsky et al., 1994). 

Snake toxins are not only very specific, but also bind to their targets with high affinity, with 

typical inhibition constants (Ki) in the pico or nanomolar range (Chiappinelli, 1991). Perhaps 

not surprisingly, site-directed mutagenesis of determinant residues inside the loops of some 

TFD induces a significant decrease in the affinity of these proteins for their targets (Pillet et al., 

1993). These observations illustrate how strong adaptive pressure can finely tune the properties 

of these plastic structures. Interestingly, it has been shown that non-synonymous nucleotide 

substitutions (leading to change in amino acid residues) are more common than synonymous 
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Fig 17. The Ly6/TFD protein loops contain molecular determinants that mediate the 

interaction with their specific site receptors. Functional sites of TFD proteins like snake 

toxin fasciculin (A, B) calciseptine (C, D) and dendroaspin (E, F) are represented in red. 

The interaction site of fasciculin is found in loops I and II, whereas that of calciseptine and 

dendroaspin is only found in loop III. (A, C, E) the residues involved in interaction are 

shown as stick models (red). (B, D, F). Space-filling Corey–Pauling–Koltun (CPK) 

models, showing in red the functionally important residues mediating interactions with the 

specific receptors. Ref. Fig: (Kini, 2002).  
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nucleotide substitutions (not producing change in amino acid residues) in the protein coding 

regions of TFD, when these are compared to their respective introns and non-coding (UTRs) 

regions (Chang et al., 2000; Gong et al., 2000; Fujimi et al., 2003). This observation has lead to 

the idea that a high rate of point substitutions accelerated the evolution of TFD toxins. But, is 

this the only mechanism responsible for the high functional diversification of these toxins?   

Different studies analyzing the whole gene structure of these toxins and their evolution have 

shown that TFD domains have undergone a particular mode of accelerated evolution, called 

Accelerated Segment Switch in Exons to alter Targeting or ASSET (Doley et al., 2009). 

Briefly, comparison of the coding sequences of related toxin genes revealed the presence of 

sequence blocks within the TFD that are nearly identical in two or more proteins and that are 

found next to other blocks that are not conserved (i.e., are protein specific) or are shared with 

other proteins, as if they have been shuffled during evolution. Interestingly, these LEGO-like 

blocks seem to correspond to equivalent parts in the tridimensional structure, suggesting that 

these dramatic protein rearrangements do not perturb the overall stability of the TFD domain, 

while they can provoke radical changes in their binding specificity. 

Obviously, gene duplication has played key role in the genesis of this diversity, and several 

successive duplication events involving the ancestral gene(s) of extant TFD toxins have 

allowed in different species the evolution of a broad arsenal of paralogous genes displaying 

highly divergent functions. 

Not surprisingly, the members of the Ly6/three finger domain superfamily have also been 

found in the genomes of different vertebrate organisms, where they carry out physiological 

functions very different to those of toxins. Below, I will briefly describe some of the better 

characterized members of this superfamily in vertebrates and their respective functions. 

 

IV. The roles of the Ly6 superfamily members in vertebrates 

 

TFD proteins, firstly discovered in snake toxins, were subsequently reported in multiple 

vertebrate organisms, including Humans, whose genome encodes for 45 members of this family 

(Galat, 2008). These proteins include the 12 TGF-β/Activin receptors, whose ectodomains 

(their extracellular ligand binding motifs) adopt also a snake three-finger fold (Greenwald et 

al., 1999). However, while the role of the TGF-β receptors in cell signalling has been studied in 

great detail, comparatively much less is known about the function of the other members of this 
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Fig 18. A. Complement system cascade pathway. Complement system is a proteolytic 

cascade in blood plasma. The terminal components of the complement cascade elements: 

C5b, C6, C7, C8 and C9 form the Membrane attack complex (MAC) (Inset in A and B, left 

panel). MAC formation is initiated by the cleavage of C5 protein into C5a and C5b. 

Sequential addition of C6, C7, C8, and C9 to C5b leads to the formation of the membrane 

attack complex (MAC) which, when inserted into the lipid bilayer, form transmembrane 

pores and induces cell lysis. MAC is the stage where the protectin CD59 is active. This 

complement regulatory factor binds the complement factors, C8 and C9, within the C5b6-9 

complex to prevent final assembly of the MAC and inhibit polymerization of the final C9 

membrane pore (B, right panel), thus protecting cells from lysis.   
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superfamily. Among these, the proteins of the Ly6 complex, the CD59 factor and the uPAR 

receptor, all at the origin of the Ly6/CD59/uPAR denomination, are some of the best 

characterized at the functional level. 

The ly6 (lymphocyte antigen 6 complex) locus was firstly identified in the mouse, and codes 

for different TFD antigens expressed at the surface of multiple cell types, including most of the 

immune system cells (granulocytes, lymphocytes, etc...). This has allowed their widespread use 

as markers for different subpopulations of immune cells, both in mice and humans. In addition, 

they are up-regulated in some tumoral situations, and provide useful markers for malignancy 

diagnosis and promising targets for cancer immunotherapy (Bamezai et al., 2004). Current 

evidence suggests that they fulfill roles in signalling and lymphocyte T activation, although 

their precise mode of action is not fully understood.  

More information is available about the molecular function of CD59 (or Cluster of 

Differentiation 59), a cell surface glycoprotein that is expressed in different human cell types, 

including erythrocytes (red blood cells), leukocytes (white blood cells), and different epithelial 

cell types. This protein acts as a regulatory element of the complement system cascade, 

preventing the formation of the membrane attack complex (MAC) (Fig 18), and therefore 

protecting the cells from complement mediated lysis (Davies et al., 1989). This is essential to 

restrain the effect of the complement cascade activation to targeted cells, while sparing the 

surrounding tissue. Its molecular partners are the terminal complement cascade elements (C8 

and C9) and its presence directly inhibits the formation of the complement lytic pore (Fig 18). 

Interestingly, CD59 has been also found in spermatozoids, although is not produced by these 

cells. Instead, it is synthesized by prostatic cells and reaches the sperm travelling associated to 

“prostasomes”, membranous secreted vesicles carrying a GPI anchored form of CD59 (Rooney 

et al., 1993). The presence of CD59 allows spermatozoids to elude complement attack triggered 

by the antibodies present in the female reproductive tract.  

This case shows that these proteins can be shared by different cell populations and that their 

extracellular traffic can have an important physiological impact, adding a supplementary level 

of complexity to their functional properties. 

The uPAR receptor (or urokinase Plasminogen Activator Receptor) is a GPI-anchored 

protein containing three contiguous three-finger motifs. uPAR levels are low in physiologically 

normal conditions, but are up-regulated in invasive tumor cells and also in migrating 
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Fig 19. Schematic representation of the uPA/uPAR complex function. The urokinase 

Plasminogene Activator (uPA) binds to its specific receptor uPAR, present at the cell 

membrane to be activated. Activated uPA converts the plasminogen proenzyme into plasmin, a 

serine protease protein that activates other families of proteases, such as the matrix 

metalloproteinases (MMPs), to promote extracellular matrix degradation, and thereby cell 

migration or metastasis. In addition, activated plasmin and uPA contributes to the activation of 

latent growth factors (like TGF-β1) and induce cell proliferation and overgrowth. Ref. Fig 

adapted from: (Blasi and Carmeliet, 2002). 
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keratinocytes during wound healing, indicating that it could have a role in cell mobility (Romer 

et al., 2001). This role is mediated by its ligand, the serine protease urokinase-type 

Plasminogen Activator (uPA). Upon binding to its receptor (uPAR), uPA activates the 

plasminogen and converts it into plasmin, which in turn degrades the extracellular matrix 

(ECM), thus facilitating cell mobility but also cancer metastasis (Fig 19). However, uPAR is 

also known to interact with vitronectin, a component of the ECM (Wei et al., 1994), Integrins 

(Wei et al., 1996) and G-protein coupled receptors (Resnati et al., 2002) thus mediating both 

cell adhesion and signal transduction.  

These few examples show that the physiological roles of vertebrate Ly6 proteins can be very 

diverse and that they can interact with a broad range of different partners. They also clearly 

indicate that the three-finger proteins can act in very different cellular contexts and have been 

probably co-opted during evolution into very diverse cellular tasks.  

Another example, provided by the Lynx-1 (Ly6/neurotoxin-like protein 1), furnishes an 

interesting illustration of how this co-option into novel processes could occur. This three-finger 

protein presents structural similarities with the snake venom toxins, and it has been shown to 

act as a physiological endogenous modulator of nicotinic acetylcholine receptors (nAChR) in 

the mammalian central nervous system (Miwa et al., 1999). Lynx-1 binds specifically to the 

nAChR (Ibañez-Tallon et al., 2002) and regulates its activity by reducing its sensibility to the 

acetylcholine neurotransmitter. It has been proposed that this endogenous neurotoxin-like cell 

surface molecule could incarnate an ancestral non-toxic form of the different snake toxins 

targeting the nAChR, which subsequently derived into novel poisons targeting other substrates. 

Although the relationship between Lynx-1 and the snake toxins remains hypothetical, as 

convergent evolution may also explain their similar modes of action, this example illustrates 

how natural selection could drive co-option of three finger proteins into novel biological 

processes, providing a plausible scenario for their evolutive radiation and functional 

diversification. 

 

V. The Ly6 module is also present in invertebrate genomes 

The Ly6 motif must be an ancient module, because it is present throughout the animal 

kingdom, from cnidarians to vertebrates. For instance, the Pdcyst-rich protein of the coral 

Pocillopora damicornis, a member of this family, has been identified as a factor playing a role 
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Fig 20. Expression patterns of Ly6 genes in Drosophila embryos. In situ hybridizations 

were realized on stage 16 embryos. These genes show various expression patterns and are 

expressed in different tissues. CG14430 (boudin) and CG6579 are expressed in ectodermal 

derivatives, other genes are expressed in the nervous system: CG9335 in the ventral nerve 

cord, CG6329 in the whole CNS and a subset of PNS neurons (black arrowheads), CG9336 

in the midline and the PNS glia. CG31676 transcripts are mainly detected in mesodermal 

gonad cells (black arrowheads) and in the pharyngeal epithelial cells (black arrow). 

 

 

 

 

 

57



in the relationships tying the coral algal symbionts and its cnidarian host (Vidal-Dupiol et al., 

2009). Ly6 proteins have also been reported in nematodes, where the Caenorhabditis elegans 

Odr-2 protein is required for the function of some olfactory neurons (Chou et al., 2001). 

Finally, it has also been identified in insects, where the proteins NlLynx-1 and NlLynx-2, found 

in the planthopper Nilaparvata lugens, appear to also modulate the activity of nAChRs in this 

insect (Liu et al., 2009).  

However, the exploration of the diverse functions of invertebrate Ly6 family members has just 

began, we know very little about the potential implication of these proteins in processes like 

morphogenesis and development. 

In Drosophila, and besides the five TGF-β receptors (tkv, babo, sax, put and wit) that carry a 

Ly6 domain, little was known about Ly6 proteins. Its only characterized members are the 

products of a gene called retroactive (rtv), required for cuticle organization and chitin 

extracellular matrix assembly (Moussian et al., 2005) and of another gene called sleepless (sss), 

required for the regulation of the circadian rhythm (Koh et al., 2008; Wu et al., 2010).  

My PhD supervisor Fernando Roch carried out a systematic search in the Drosophila genome 

for proteins containing a Ly6 domain. Using as a diagnostic criterion the presence of a typical 

set of 8 to 10 cysteines in stereotyped positions, he identified a large family of 36 new Ly6 

genes in the fly genome. Preliminary characterization of the expression patterns of some of 

these genes showed that they are present in a wide variety of tissues during embryogenesis (Fig 

20), consistently with the idea that they may be implicated in multiple developmental 

processes.  

When I arrived in the laboratory as a PhD student three years ago, my project main goal was 

the functional characterization of two members of this fly family, for which lethal loss of 

function mutations were available. At the beginning, we focused in the study of the CG14430 

gene that we have subsequently called boudin (bou), due to the tracheal defects observed in 

these mutant embryos. In fact, in these animals the tracheal dorsal trunk resembles a string of 

sausages, boudin being the name of a black French sausage. 

In a second time, we also analyzed the role of the CG2813 gene that surprisingly displayed also 

very similar “boudin-like” phenotypes. Eventually, this gene has been called coiled (cold) by 

another group that identified the same phenotypes independently (Nilton et al., 2010). 
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We found that bou and cold genes have similar expression patterns and are both required for 

the organization of septate junction components in embryonic and larval epithelial tissues. 

Furthermore, our results also revealed that both are required for blood brain barrier 

maintenance in neural embryonic tissues. 
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INTRODUCTION
Model organisms, such as the fruit fly, are sophisticated tools that
have contributed decisively to our understanding of genetic
complexity, allowing functional characterisation of new genes and
novel insight into many developmental processes. We have profited
from the advantages offered by Drosophila to enlarge current
knowledge about a poorly characterised family of proteins present
in metazoan genomes, the Ly6 superfamily. The Ly6 proteins share
an extracellular motif spanning about 100 residues known as a three-
finger domain, three-finger snake toxin motif or Ly6/uPAR domain.
This structure, first identified in the sea-snake erabutoxin b (Low et
al., 1976), features a simple inner core stabilised by disulphide
bridges, which supports three protruding loops or fingers. Besides a
diagnostic set of 8 or 10 cysteines found in stereotyped positions,
Ly6 primary sequences are poorly conserved, but they adopt
remarkably similar three-dimensional structures (Kini, 2002; Ploug
and Ellis, 1994). The Ly6 module is a structural domain involved in
protein-protein interactions, tolerating an unusual degree of
variation and binding with high specificity to a broad spectrum of
targets.

The human genome codes for 45 members of the Ly6 superfamily
(Galat, 2008). These include 12 TGFβ receptors, the ectodomains
of which adopt the three-finger fold, but also many
glycosylphosphatidylinositol (GPI)-anchored proteins and soluble
ligands. Only a few of these proteins have been studied in detail, such
as the urokinase plasminogen activator receptor (uPAR; PLAUR –
Human Gene Nomenclature Database), which plays important roles

in cell adhesion, proliferation and migration (Blasi and Carmeliet,
2002), and CD59, an inhibitor of complement activity (Davies et al.,
1989). Other members, such as Lynx1 (Miwa et al., 2006) or the
soluble SLURP proteins (Grando, 2008), act as regulators of nicotinic
acetylcholine receptors, and are likely to be the ancestors of the snake
neurotoxins. However, although they are often used as lymphocyte
and tumoural markers (Bamezai, 2004), many Ly6 human and murine
proteins have unknown roles.

We carried out a systematic search for members of the Ly6
superfamily in Drosophila, identifying 36 previously
uncharacterised genes coding for one or more Ly6 motifs. We also
explored the function of one of these proteins during Drosophila
development, that encoded by the gene boudin (bou). Phenotypic
analysis of bou mutants shows that this Ly6 protein participates
in the formation of paracellular barriers in epithelial and neural
tissues, physiological fences that regulate the passage of solutes
between cells in both epithelial and glial sheaths (Banerjee and
Bhat, 2007; Tepass et al., 2001). We show that bou is required for
the organisation of septate junctions (SJs), invertebrate adhesion
structures fulfilling an equivalent role to the vertebrate tight
junctions. Differing from known SJ constituents, bou
requirements are non-cell-autonomous, and, accordingly, we find
that Bou can be released in extracellular particles and become
incorporated into neighbouring cells. Altogether, our results
indicate that Drosophila could be an attractive system in which to
study the function and general properties of Ly6 proteins in a
developmental context.

MATERIALS AND METHODS
Sequence analysis
We used the PSI-BLAST algorithm (Altschul et al., 1997) and the Rtv, CD59
and uPAR sequences as queries against the Drosophila RefSeq database
(Pruitt et al., 2007). Newly identified Ly6 homologues were incorporated
into the search matrix until no more members could be identified, typically
after six to seven rounds of iterative search. Then, we used these sequences
as novel queries. An identical strategy was used in the honeybee.
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Genetics
Full definitions of these stocks can be found in FlyBase (http://flybase.org/):
bouPG27 (bouGAL4), l(1)6Ea2 (boulet), Dp(1;Y) ct+y+, rtv11, nrg14, NrgGFP,
PdiGFP74-1, UASApoLII-Myc, apGAL4, btlGAL4 UASActinGFP,
nulloGAL4, enGAL4, ptcGAL4, dppGAL4, tubGAL4, hsFLP tubGAL80
FRT19A; UASmCD8GFP and GAL80ts. The FM7c-Actin-lacZ and FM7c-
KrGAL4UASGFP balancers were used for genotyping. Temperature shifts
at 18°C were done 24 hours before dissection in cultures containing third
larval instars of the bouPG27/NrgGFP; UASHA-Bou/+; GAL80ts/+ genotype.
Mutant clones were induced in 48-hour larvae by 1 hour heat shock at 37°C,
in bouPG27 FRT19A/hsFLP tubGAL80 FRT19A; UASmCD8GFP/+;
tubGAL4/+ larvae. A ywFRT19 chromosome was used as control.

Dye injection
Dye diffusion into trachea and chordotonal organs was analysed injecting
with a micromanipulator 10 mg/ml 10 kDa rhodamine dextran (Molecular
Probes) into the body cavity of stage 16 (14- to 16-hour) embryos (Lamb et
al., 1998). Diffusion into the nerve cord was monitored in 22-hour embryos.
Samples were visualised with a Leica SP2 confocal microscope within 20-
30 minutes of injection.

Molecular biology
Three independent PCR fragments containing the bou transcription unit
were amplified from boulet genomic DNA, cloned and sequenced. The HA-
tag was introduced in frame within the Bou coding region by PCR, using
specific oligonucleotides and the RE28342 cDNA (DRGC). The HA-
BouΔC was generated substituting Gly128 for a stop codon. Both constructs
were sequenced and subcloned into pAc5.1 (Invitrogen) for cell transfection
or into pUAST (Brand and Perrimon, 1993) for transgenesis.

Cell culture and biochemistry
Cell culture, transfections and antibody staining were carried out as in Koh
et al. (Koh et al., 2008). S2 cells co-transfected with pAcDMoe-GFP (kind
gift from F. Payre, CBD, Toulouse, France) and pAcHA-Bou or pAcHA-
BouΔC were fixed and stained in either permeabilising (PBS, 0.1% Triton-
X100) or non-permeabilising (PBS) conditions. Transfected KcD26
(2�106) cells were incubated at 25°C for 1 hour in PBS, with or without 1
unit of phosphatidylinositol-specific phospholipase C (PI-PLC, Sigma). Cell
proteins were extracted in 1� RIPA, whereas the extracellular medium was
precipitated with TCA-DOC and resuspended in 50 μl of 1� loading buffer.
For each condition, 20 μg of cell extracts and 25 μl of supernatant were run
in an SDS-PAGE gel and blotted with anti-HA.

Immunohistochemistry
Sense riboprobes were generated from clone RE28342 for in situ hybridisation
(Waltzer et al., 2003). Embryos and larval tissues were fixed for 20-30 minutes
in PBS 4% paraformaldehyde. Blocking, washing and overnight incubation
with primary and secondary antibodies were carried out in 0.05% Triton-X100
0.1% BSA. Primary antibodies include mouse anti-β-gal (Promega), rabbit
anti-β-gal (Cappel), mouse anti-HA (Covance), rabbit anti-HA (Clontech),
rabbit anti-GFP (Torrey), anti-NrxIV (gift of H. Bellen, Baylor College of
Medicine, Houston, TX, USA), rat anti-Crb (gift of U. Tepass, University of
Toronto, Toronto, Canada), and monoclonals 9E10 anti-Myc, anti-2A12, 4F3
anti-Dlg, DCAD2 anti-DECad, BP104 anti-Nrg and 7G10 anti-FasIII, all from
DSHB. Secondary FITC and TRIT conjugated antibodies and streptavidin
come from Molecular Probes. We also used CBP-FITC (NEB). Samples were
visualised with a Leica SP2 confocal microscope.

RESULTS
The Drosophila genome codes for 41 Ly6 family
members
In general, Ly6 domains share little sequence similarity, making their
identification by genomic annotation algorithms difficult. For
instance, the only known Drosophila proteins containing this domain
are the five TGFβ receptors (tkv, babo, sax, put and wit) and the
product of the gene retroactive (rtv) (Moussian et al., 2005). Using
the iterative PSI-BLAST program (Altschul et al., 1997), we carried
out a systematic search for Ly6 members in the fly genome, screening

for domains of about 100 amino acids containing 10 cysteines, where
Cys1 and Cys2 are always separated by two residues and an Asn
residue contiguous to the last cysteine (canonical 10C motif).
Alignment of the Drosophila Ly6 domains revealed the presence of
short intervening distances between Cys8 and Cys9 (0-3 residues) and
Cys9 and Cys10 (4-5 residues), confirming that they belong to the Ly6
family (see Fig. S1 in the supplementary material). Thus, besides the
five TGFβ receptors, we have identified in flies 72 Ly6 canonical
motifs and 14 related domains encoded by 36 different genes not
previously ascribed to any known family (Table 1).

Ly6 motifs are never found in combination with other
extracellular domains, a principle also valid in Drosophila, where a
single Ly6 domain is the only module present in 28 proteins. In the
other eight cases, multiple Ly6 motifs are found, as in the human
uPAR and C4.4A proteins (Galat, 2008). We also identified three
different types of Ly6-related domains lacking key features of a
canonical domain. The first variant found was the 8C domain (11
motifs found in two proteins), with only eight cysteines.
Interestingly, 8C domains are similar to the vertebrate uPAR domain
I, which lacks both Cys7 and Cys8 and also the disulphide bridge
formed by these residues. Nonetheless, the uPAR domain I also
adopts a three-finger fold (Huai et al., 2006). Another variant is what
we call ‘atypical 10C’ domain (a10C), found only in two proteins.
This motif could have arisen by replacement of Cys8 by a new Cys
placed two residues after the C-terminal Asn (see Fig. S1 in the
supplementary material). Finally, we found a group of three
contiguous genes coding for long stretches of repeated amino acids
(mostly Ser, Thr and charged residues) in the region between Cys4

and Cys5 (see Fig. S1 in the supplementary material). We termed
these long motifs ‘disordered 10C’ (d10C), as these repeats are
predicted to form flexible regions of unstable conformation, called
regions of intrinsic disorder (Dyson and Wright, 2002). Hence, it is
not clear whether these proteins adopt a three-finger fold.

Vertebrate members of the Ly6 family are synthesised as
propeptide precursors entering the endoplasmic reticulum thanks to
an N-terminal signal peptide. They have often a second C-terminal
hydrophobic peptide placed after their Ly6 domain, permitting the
addition of a GPI anchor to an internal sequence of the precursor. In
Drosophila, all the Ly6 genes code for an N-terminal portion of 25-
35 residues and a 20- to 30-residue C-terminal stretch, raising the
possibility that all could incorporate a GPI anchor.

We could not establish orthology relationships between
Drosophila and vertebrate Ly6 proteins due to their low degree of
sequence similarity. However, for each Drosophila melanogaster
protein we identified a putative orthologue in Drosophila grimshawi,
a distant drosophilid species. We found that the organisation of
canonical, 8C, a10C and d10C Ly6 motifs is also conserved in this
species, despite 60 mya of separate evolution (Tamura et al., 2004)
(Table 1). Therefore, the whole fly Ly6 family was already present in
the drosophilid ancestor. We also performed a search for Ly6
members in the honeybee genome, finding only 14 genes coding for
this motif. Among these, 12 are orthologues of Drosophila genes
(sequence identity above 50%). Thus, several gene duplication events
followed by rapid divergence occurred in the drosophilid lineage,
which nonetheless conserved most of the ancestral Ly6 members.
Intriguingly, as is also the case in humans and mice (Galat, 2008), the
Drosophila genes coding Ly6 proteins are often contiguous in the
genome, forming six clusters that group together 24 genes (Table 1).

Existing databases of gene expression patterns allowed us to
visualise during embryogenesis the transcript distribution of 21
members of the Drosophila Ly6 family (Tomancak et al., 2002).
They are expressed in a dynamic and tissue-specific pattern in a
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wide range of contexts, from the epidermis and its derivatives to the
nervous system and the gut (Table 1). Thus, Ly6 genes can
potentially participate in many different developmental and
physiological processes.

The bou product is required for tracheal
morphogenesis
We analysed the function of a new member of this family, the product
of the CG14430 gene, which we have called boudin (bou). The bou
locus codes for a protein of 149 residues presenting all the typical
features of Ly6 members. Bou is predicted to be a GPI-anchored
protein by the Big-PI algorithm (Eisenhaber et al., 1998), which
proposes Asn125 as the omega site of the mature protein, where the
GPI moiety is attached (Fig. 1B). Unlike other members of the
Drosophila Ly6 family, the Bou sequence appears conserved in other
insect genomes, where we have identified clear orthologues (Fig. 1C).

The bou transcript was first detected by in situ hybridisation at the
cellular blastoderm stage, first ubiquitously and then accumulating
in the invaginating mesoderm (Fig. 1D-F). By stages 13 and 14, the
hindgut, foregut, salivary gland and tracheal cells express high levels
of bou, which is also present at lower levels in the epidermis (Fig.
1G,H). This pattern is maintained until the end of embryogenesis,
although transcript levels start declining after stage 14 (Fig. 1I). We
did not detect bou expression in the ventral nerve cord or in
mesodermal derivatives, indicating that at late stages this gene is
expressed only in ectodermal tissues.

In a genetic screen we recovered a GAL4 P-element embryonic
lethal insertion in the 5� UTR of bou (bouPG27) (Fig. 1A) (Bourbon
et al., 2002). Both remobilisation of this transposon or expression of
an HA-tagged Bou form (HA-Bou), using bouPG27 itself as driver,
restored the viability of bouPG27 flies. We used this allele to carry out
complementation tests with lethal mutations mapping to the same
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Table 1. The D. melanogaster Ly6 genes ordered according to their cytological position, indicating inclusion in a genomic cluster
(I-VI) and the number of residues of each protein

Dmel Dgri Amel Domain
Dmel gene name Length Cytolocation cluster orthologue orthologue composition Embryonic expression pattern

CG15773 478 5 B3 – GH24088 – 4�10C + 1�a10C NA
CG14430 bou 149 6 E4 – GH24685 XP_001120415 1�10C Trachea, fore and hindgut, salivary gland
CG15347 214 7 E11 – GH12232 – 2�10C Yolk nuclei, midgut
CG1397 rtv 151 10 A8 – GH12509 NW_001253268.1 1�10C Trachea, epidermis, head skeleton, 

pharynx
CG2813 153 21 E2 – GH11235 XP_001120323 1�10C Trachea, fore and hindgut, salivary gland
CG7781 147 29 A5 I GH10175 XP_001120798 1�10C No staining
CG14275 148 29 B1 I GH11591 – 1�10C Yolk nuclei, fat body
CG14274 136 29 B1 I GH11592 – 1�10C NA
CG14273 252 29 B1 I GH11593 – 1�d10C NA
CG7778 269 29 B1 I GH11594 – 1�d10C Late expression in head epidermis, 

hindgut, anal pad
CG31901 555 29 B1 I GH11595 – 1�d10C NA
CG9568 150 29 F7 II GH13259 – 1�10C Midgut, Malpighian tubules, gastric 

caecum
CG13102 150 29 F7 II GH13260 – 1�10C Midgut
CG6583 154 33 D2 III GH11181 XP_001122840 1�10C NA
CG17218 151 33 D2 III GH11641 XP_393726 1�10C Trachea, fore and hindgut, salivary gland
CG6579 185 33 D2 III GH10139 – 1�10C NA
CG15170 561 37 B8 IV GH11596 – 3�10C + 1�a10C NA

+ 2�8C
CG15169 345 37 B8 IV GH10174 – 1�10C NA
CG10650 425 37 B8 IV GH10197 – 5�10C Midgut
CG31676 159 38 F2 V GH10589 – 1�10C Gonad, prothoracic muscle, ring gland
CG9335 166 38 F2 V GH10590 – 1�10C Bolwig organ, ventral nerve cord, lateral 

glia
CG9336 148 38 F3 V GH10591 – 1�10C Dorsal vessel, ventral nerve cord, 

peripheral nervous system
CG9338 147 38 F3 V GH10592 – 1�10C Dorsal vessel, peripheral nervous system, 

trachea
CG31675 148 38 F3 V GH10593 – 1�10C Peripheral nervous system
CG14401 146 38 F3 V GH10594 – 1�10C NA
CG33472 158 47 F13 – GH21388 NW_001253216 1�10C NA
CG8501 152 49 A1 – GH20694 – 1�10C NA
CG3955 201 49 F2 – GH21594 XP_623481 1�10C NA
CG6329 155 50 C6 – GH21037 XP_395132 1�10C Ventral nerve cord
CG13492 2968 58 A2 VI GH20775 – 27�10C + 7�8C NA
CG34040 281 58 A2 VI GH20774 – 2�10C NA
CG4363 199 58 A2 VI GH20773 – 2�10C No staining
CG4377 231 58 A2 VI GH20772 – 2�10C NA
CG6038 158 68 D2 – GH16386 NW_001253250.1 1�10C Pharynx, hindgut, epidermis
CG8861 180 85 D8 – GH22350 XP_397506 1�10C Ventral nerve cord
CG31323 169 97 A2 – GH19467 XP_001121813 1�10C Midgut

A. mellifera and D. grimshawi accession numbers correspond to annotated proteins or contigs coding for the corresponding orthologues. Domain composition refers to the
number of times (1�, 2�, etc.) a domain appears in a protein (10C, canonical domain; a10C, atypical domain; d10C, disordered domain; 8C, 8 cysteines domain; see text for
definitions). Expression patterns descriptions are as in Tomancak et al. (Tomancak et al., 2002), except for CG1397 rtv, which is described by Moussian et al. (Moussian et al.,
2005). NA, not available.

D
E
V
E
LO

P
M
E
N
T

64



2202

chromosomal region and identified a second bou lethal mutation,
l(1)6Ea2 (boulet) (Perrimon et al., 1989). Sequencing of the bou
region in the boulet chromosome revealed a deletion of 238
nucleotides encompassing the coding region and most of the 3� UTR
(Fig. 1A). We predict boulet to be a null allele, as this deletion
truncates the Ly6 domain and eliminates the C-terminus of the Bou
precursor (Fig. 1B).

As bou is expressed in the tracheal cells, we first looked for
morphological defects in this tissue. Staining with the 2A12 tracheal
luminal marker and labelling of tracheal cells with ActinGFP
revealed that bouPG27 and boulet embryos display identical
phenotypes, presenting tracheal tubes with abnormal shape and
dimensions (Fig. 2A-H; and data not shown). At stage 16, the branch
pattern of the tracheal network seemed normal, but the dorsal trunk
appeared elongated and convoluted and we observed that the 2A12
luminal staining was interrupted along the dorsal branches and
transverse connectives (Fig. 2B,E). These phenotypes point to
tracheal lumen expansion defects (Beitel and Krasnow, 2000), and
indeed, the tracheal dorsal trunk of stage 15 bou mutants did not
present a uniform width (Fig. 2W), showing instead a series of
bulging cysts resembling a string of sausages (hence the name
‘boudin’, a French black sausage).

The Ly6 genes bou and rtv regulate tracheal
morphogenesis through different mechanisms
The defects observed in bou trachea were strikingly similar to those
seen in mutant embryos for rtv, a gene coding for another Ly6
protein (Moussian et al., 2005). Rtv is required for the formation of
an intraluminal chitin cable, which is essential for proper tube
expansion of Drosophila trachea (Devine et al., 2005; Moussian et
al., 2006; Tonning et al., 2005). To determine whether bou and rtv
act by similar mechanisms, we monitored chitin cable integrity in
stage 16 bou mutants, using a fluorescent chitin-binding probe
(CBP). Chitin forms an organised filamentous structure in the lumen
of wild-type trachea, but in the rtv11 null allele this structure is lost
and CBP stains a diffuse luminal material (Fig. 2J-L) (Moussian et

al., 2006). The chitin cable of boulet mutants also loses its fibrous
aspect, although the CBP staining is more intense than in rtv11

trachea (Fig. 2K,L). Thus, chitin cable formation is affected in both
bou and rtv mutants, with bou presenting a weaker phenotype.

Mutations in different Drosophila SJ components also result in
embryos with abnormal trachea, presenting the same cysts observed
in rtv and bou mutants (Beitel and Krasnow, 2000; Wu and Beitel,
2004). As SJs are adhesion structures required for the establishment
of paracellular barriers regulating molecular diffusion through
epithelia, we examined the integrity of this barrier in both rtv and
bou mutants. For this, we injected 10 kDa fluorescent dextran into
the body cavity of live embryos and monitored the capacity of this
molecule to enter the tracheal lumen (Lamb et al., 1998). At stage
16, both wild-type and rtv11 tracheal cells formed an efficient
paracellular barrier, preventing dye diffusion into the lumen (Fig.
2M-R). By contrast, dextran was readily detected inside the boulet

tracheal tubes within 20 minutes of injection and we observed
abnormal dye deposits trapped between contiguous cells (Fig.
2N,Q). Thus, the paracellular barrier is disrupted in bou mutants,
suggesting that this gene is implicated in SJ organisation. To confirm
this hypothesis, we examined the subcellular localisation of an SJ
component, Fasciclin3 (Fas3), in tracheal cells (Beitel and Krasnow,
2000; Wu and Beitel, 2004). In wild-type and rtv11 tracheal cells, this
marker accumulates in the most apical part of the lateral membrane,
where SJs are present (Fig. 2S,U). By contrast, this apical
accumulation was lost in boulet embryos and Fas3 appeared
uniformly distributed along the lateral membrane (Fig. 2T).
Therefore, whereas bou is required for SJ maintenance, rtv seems
dispensable for this process, indicating that these genes regulate
tracheal morphogenesis by different mechanisms.

bou is essential for SJ organisation in Drosophila
epithelia
To further characterise the bou phenotypes, we analysed the
subcellular localisation of several SJ components, including Discs
large 1 (Dlg1), Neurexin IV (Nrx-IV) and the protein-trap fusion
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Fig. 1. bou codes for a conserved Ly6
protein. (A) The bou locus, indicating the
bouPG27 and boulet DNA lesions. (B) Bou
precursor features: the signal peptide (indigo),
the Ly6 domain (green) and the putative GPI
anchor site (Asn125, red). The HA-tag
position (brown) and the HA-BouΔC stop
codon (orange) are also indicated. Residues
deleted in the boulet mutant are underlined.
(C) Protein alignments of the Ly6 domain of
insect Bou orthologues and human CD59,
showing its stereotyped pattern of disulphide
bridges. The 10 conserved Cys and Asn
residues are indicated by red dots or a square,
respectively. (D-I) bou expression during
embryogenesis. bou mRNA is upregulated in
the invaginating mesoderm (E, black
arrowhead). At stages 13 and 14 (G-H), it
accumulates in the hindgut (black
arrowhead), salivary gland (black arrow) and
trachea (white arrowhead), before its levels
start decaying by stage 15 (I).
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NeuroglianGFP (NrgGFP) (Beitel and Krasnow, 2000; Wu and
Beitel, 2004). Similarly to Fas3, all these markers appeared
delocalised in the lateral membrane of boulet tracheal cells (Fig.
3A,G-I,D,J-L). We also monitored the distribution of the cell
polarity marker Crumbs (Tepass et al., 1990) and the apical
junction component DE-Cadherin (Shotgun – FlyBase) (Oda et
al., 1994). As in controls, these markers localised to the most
apical part of the tracheal cells throughout development,
indicating that bou specifically affects the SJ organisation rather
than the general polarity of the cell (Fig. 3B,C,E,F). In addition,
bou is required for the early establishment of SJ in this tissue (see
Fig. S2 in the supplementary material), because a clear
delocalisation of the Nrx-IV marker was already observed by
stage 14, when pleated SJ begin to form (Tepass and Hartenstein,
1994).

Finally, we tested if bou is required for SJ organisation in other
epithelial tissues, such as the epidermis, salivary gland and
embryonic hindgut. Analysis of boulet embryos showed that
NrgGFP, Dlg1 and Nrx-IV are also delocalised in these tissues (Fig.
3M-R; and data not shown). Thus, bou is generally required for SJ
organisation in embryonic ectodermal derivatives.

bou is required for SJ formation in a non-cell-
autonomous fashion
Seeking to extend the characterisation of bou requirements to larval
tissues, we analysed the contribution of this gene to the
morphogenesis of imaginal discs, the epithelial precursors of the
adult integument. For this, we studied mosaic individuals containing
clones of homozygous bouPG27 cells, using the MARCM technique
to positively label the mutant territories (Lee et al., 2000). We found
that large bou wing clones generated early in larval development did
not show any obvious growth defects. Moreover, the SJ marker Fas3
protein was correctly localised in bou mutant cells (Fig. 4A-A�).
Thus, bou function could be restricted to the embryonic tissues or,
more intriguingly, the surrounding cells could exert a rescuing
activity upon the mutant territories.

To discriminate between these possibilities, we sought to
establish whether bou is required in larval tissues. To bypass
embryonic lethality and recover boulet mutant larvae, we
expressed wild-type HA-Bou in boulet embryos using nulloGAL4,
a driver only active at the blastoderm stage (Coiffier et al., 2008).
In this way, we obtained boulet mutants now dying at pupariation
and presenting discs with reduced size and abnormal shape. At the
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Fig. 2. bou and rtv regulate
tracheal morphogenesis by
different mechanisms. Projections
(A-C, J-L and V-X) or single confocal
sections (D-I and M-U) of embryonic
trachea. (A-I) At stage 16, the
dorsal trunk of both boulet and rtv11

mutants displays an enlarged width
and a convoluted shape, compared
with wild type, as revealed by 2A12
luminal staining (A-F, arrowheads)
or cell-contour labelling with
ActinGFP (G-I). (J-L) CBP staining
reveals luminal chitin cable
disorganisation in both rtv11 and
boulet mutants. (M-O) Diffusion of
10 kDa dextran (red) into the
trachea (marked by ActinGFP,
green) of stage-16 wild-type and
mutant live embryos. (P-R) Negative
image in black and white of the
dextran red channel. Dextran (black)
diffuses into the tracheal lumen of
boulet (N,Q, asterisk) but not wild
type or rtv11 embryos (M,P,O,R,
asterisks). Notice abnormal dye
deposits between boulet contiguous
cells (Q, black arrowheads).
(S-U) Fas3 appears delocalised along
the lateral membrane of tracheal
boulet cells (T, arrowhead) but
localises to the apical part of both
wild-type and rtv11 trachea (S,U,
arrowheads). (V-X) Stage 15 boulet

and rtv11 embryos stained with
2A12, showing a series of cysts in
their dorsal trunk (arrowheads).
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cellular level, we observed that Crumbs localisation was not
affected in boulet wing cells. By contrast, the SJ marker Fas3 was
delocalised and distributed uniformly along the basolateral
membrane (Fig. 4C-F). Thus, the bou product is also specifically
required for SJ organisation in imaginal epithelia. Consistent with
the idea that bou phenotypes are not cell-autonomous, we
recovered morphologically normal adult boulet mutant flies
expressing HA-Bou with engrailed, patched or decapentaplegic
GAL4, three drivers with clear-cut regionalised patterns.
Moreover, staining for Fas3 in boulet; enGAL4/UASHA-bou
mutant discs confirmed that SJs are normal throughout the disc
and not only in the engrailed domain (Fig. 4B-B�). Therefore,
cells expressing the Bou protein can rescue the mutant phenotypes
in surrounding territories, confirming that bou acts non-
autonomously.

One possibility is that Bou itself can travel from cell to cell.
Indeed, some vertebrate members of the Ly6 family have the
ability to diffuse, either as soluble ligands or coupled to lipid
particles via their GPI anchor (Chimienti et al., 2003; Rooney et
al., 1993). To gain insight into the Bou mode of function, we
generated transgenic flies expressing a C-terminal truncated form
of HA-Bou (HA-BouΔC), coding for an intact Ly6 motif but
missing the last 22 residues of the precursor (Fig. 1B). We
predicted this molecule would behave as an active soluble form,
as the C-terminal region is necessary for GPI addition in other
GPI-anchored proteins. Instead, we observed that HA-BouΔC
expression did not rescue the bouPG27 lethality, indicating that the
Bou C-terminus integrity is essential for its activity. Moreover,
expression of HA-BouΔC in the tracheal cells driven by
breathlessGAL4 could not rescue Fas3 delocalisation in boulet

mutant trachea (Fig. 4J,N,R), whereas expression of a wild-type
HA-Bou form not only rescued the boulet phenotypes in the
tracheal cells but also in the salivary gland and the hindgut,
tissues not expressing HA-Bou in this genetic combination (Fig.
4I,M,Q; and data not shown). This finding indicates that Bou-
targeted expression can elicit non-autonomous effects in other
tissues, opening up the possibility that Bou could diffuse
systemically.

Bou localisation is not restricted to SJ membrane
areas
To characterise the Bou subcellular distribution, we first sought to
confirm whether Bou is a membrane GPI-anchored protein. In
Drosophila S2 cells, HA-Bou is observed in the cell body and also
the plasma membrane, as confirmed by immunostainings carried out
in non-permeabilising conditions (Fig. 5A,C). By contrast, the HA-
BouΔC form could only be detected in internal cell compartments
after permeabilisation, showing that the Bou C-terminus is essential
for cell membrane insertion (Fig. 5B,D). HA-Bou is a GPI-anchored
protein, because incubation of intact cells with phosphatidylinositol
phospholipase C (PI-PLC) provokes its release to the extracellular
medium (Fig. 5E).

Next, we studied the HA-Bou subcellular localisation in
embryonic tissues and in the wing disc, activating its expression with
tissue-specific drivers. As in cultured cells, HA-Bou appeared
distributed homogenously throughout the tracheal cell body and did
not accumulate in any particular structure (Fig. 6A). We found that
the HA-BouΔC form has a more restricted localisation, as it was
excluded from contact regions between adjacent cells (Fig. 6B). Co-
staining with the SJ marker NrgGFP showed that HA-BouΔC was
absent from the lateral membrane, whereas the HA-Bou staining
overlapped with NrgGFP in the apical part of the cells (Fig. 6A,B).

In the wing disc, HA-Bou was also present in the cell body and
throughout cell contact regions (Fig. 6C,E,G,H). By contrast, the
HA-BouΔC form distributed like the disulphide isomerase PdiGFP,
a resident enzyme of the endoplasmic reticulum (ER) (Bobinnec et
al., 2003) (Fig. 6D,F,I,J). Thus, the HA-BouΔC form could not exit
the ER, whereas the full-size HA-Bou reached membrane areas from
which the ER is excluded (Fig. 6C,D,G,I). Co-staining with NrgGFP
revealed that HA-Bou was present at the SJ level and accumulated
in an apical region, placed above the SJ, that could correspond to a
secretion compartment (Fig. 6E,H, see below).

To gain insight into the dynamics of HA-Bou protein localisation,
we profited from the large size of the third-larval-instar salivary
gland cells. Using the bouPG27 GAL4 driver, we drove expression of
HA-Bou and HA-BouΔC in this cell type, placing a GAL80ts

thermosensitive repressor in the same genetic background (McGuire
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Fig. 3. bou is required for septate junction organisation in embryonic ectodermal derivatives. (A-L) Confocal sections of stage-16 tracheal
dorsal trunks of wild-type and boulet embryos stained as indicated. NrgGFP (G,J, green in A,D), Dlg1 (H,K, red in A,D) and Nrx-IV (I,L) distribute
along the lateral membrane of boulet mutant tracheal cells (D,J-L, arrowheads), differing from the control (A,G-I, arrowheads). The cell markers
Crumbs (B,E) and DE-Cadherin (C,F) localise to the most apical part of tracheal cells in both wild-type and boulet embryos. (M-R) Confocal sections
of stage-16 embryonic salivary glands (M,P), lateral epidermis (N,Q) and hindgut (O,R) labelled with NrgGFP. In the wild type (M-O), these markers
localise to the apical part of the cells (towards the lumen in hindgut and salivary glands; up in the epidermis) whereas in the boulet mutant (P-R)
they spread along the lateral membrane. Epi, epidermis; Hgut, hindgut; Sg, salivary glands.
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et al., 2003). At 25°C, the GAL80ts repressor is inactive and we
observed a strong accumulation of the HA-Bou forms in the salivary
gland cell body (Fig. 6K,L). Then, we shifted the larvae at 18°C 24
hours before dissection, activating the GAL80ts repressor and
shutting down synthesis of HA-Bou protein. In these conditions,
HA-Bou disappeared from the cell body and accumulated at high
levels in the lumen of the salivary gland. In addition, we observed a
weak but clear staining at the lateral membrane, coinciding with the
NrgGFP SJ marker (Fig. 6M). As expected, the levels of HA-BouΔC
decayed uniformly after the temperature switch (Fig. 6N). These
results confirm that Bou associates with SJ membrane regions,
although its localisation is not restricted to these membrane
domains.

Bou is secreted extracellularly
One way to explain the non-cell-autonomy of the bou phenotypes is
that Bou could be secreted extracellularly. Consistently, we noticed
the presence of extracellular particles containing this protein in the
luminal surface of the wing disc, budding off from the apical HA-

Bou-enriched domain (Fig. 6C; Fig. 7A,B). These particles were
seen over apGAL4-expressing cells, but were also detected in other
territories of the wing disc lumen, indicating that HA-Bou can
diffuse (Fig. 7A). Interestingly, increasing the laser power of the
confocal microscope, we observed a diffuse intracellular staining
and the presence of dots containing HA-Bou in cells adjacent to the
apGAL4 territory, showing that the secreted protein is incorporated
by neighbour cells (Fig. 7D). In addition, we observed intracellular
vesicles accumulating high levels of HA-Bou within the apGAL4
cells (Fig. 7C). As none of these structures was observed in HA-
BouΔC-expressing discs (Fig. 7E-H), we conclude that they reflect
the ongoing traffic of the HA-Bou protein in the wing epithelium.
We tested if the Bou extracellular particles are lipophorin particles,
as these lipid vesicles are known to contain GPI-anchored proteins
(Panakova et al., 2005). However, co-expression of HA-Bou and
ApoLII-Myc, the main protein component of lipophorin particles,
revealed that these markers label different vesicle populations (Fig.
7I-K). Thus, HA-Bou extracellular transport is unlikely to rely on
lipophorin particles.

2205RESEARCH ARTICLELy6 proteins in septate junctions

Fig. 4. bou SJ phenotypes are not cell-autonomous. (A-F) Confocal z-sections through the pouch of third-larval-instar wing discs. (A,B) Fas3
(red; white in A′, B′) is correctly localised in all the cells of mosaic wings containing GFP+ bouPG27 mutant clones (A, green) or boulet mutants
expressing HA-Bou in enGAL4 GFP+ cells (B, green). (C,D) Fas3 distributes along the lateral membrane of boulet mutant discs but localises apically in
controls. (E,F) Crumbs localises to the apical region of both wild-type and boulet mutant wing cells. (G-R) Confocal sections showing Fas3
localisation (red) in wild-type or boulet embryos expressing HA-Bou or HA-BouΔC in the tracheal epithelium. Presence of ActinGFP (green) reveals
btlGAL4 driver activity. Only wild-type and HA-Bou-rescued boulet embryos display normal accumulation of Fas3 in both trachea (K-N) and salivary
glands (O-R). The green extracellular signal seen in salivary glands corresponds to unspecific background staining.
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bou function is required in a subset of neural
tissues
We show that bou function is essential for SJ assembly in epithelial
tissues. However, SJs also play a physiological role in the glial cells
forming the blood-brain barrier and isolating the insect neural tissues
(Banerjee and Bhat, 2007). This prompted us to examine if bou is
involved in the maintenance of this barrier in the embryonic
chordotonal organs. These sensory mechanoreceptors are made of
five units, each formed by three glial cells protecting a sensory
bipolar neuron. Two of these glial cells, the cap cell and the scolopal
cell, form a luminal cavity encapsulating the neuron ciliar dendrite
and forming SJs with each other to isolate this structure (Fig. 8A)
(Carlson et al., 1997). The cell contacts between cap and scolopal
cells accumulate SJ markers, such as Nrx-IV and NrgGFP (Fig. 8B-
F) (Banerjee et al., 2006). We performed dextran injections in stage-
16 wild-type embryos and confirmed that this dye is excluded from
the chordotonal lumen (Fig. 8B-D). By contrast, the dye diffused
into this structure in boulet embryos of the same stage (Fig. 8H-J),
and the SJ markers appear delocalised (Fig. 8H-L). Therefore, bou
is also required for SJ organisation in the chordotonal organs.

The embryonic ventral nerve cord is also protected by a
specialised layer of glial cells, the subperineural glia, which form an
efficient paracellular barrier (Schwabe et al., 2005; Stork et al.,
2008). Performing dye injections in 22-hour-old embryos (Fig. 8M-
O), we observed that this barrier was still functional in boulet

mutants, whereas, as expected, the dye penetrated into the nerve
cord of nrg14 mutants (Schwabe et al., 2005). Thus, the integrity of
the central nervous system paracellular barrier does not depend on
bou activity.

DISCUSSION
bou is required for SJ formation in different
epithelial and neural tissues
Our results reveal that Bou plays an essential role in the organisation
of SJs and the maintenance of paracellular barriers in Drosophila
epithelia and chordotonal organs. Although some vertebrate
members of the Ly6 family are known to participate in cell-adhesion
processes (Bamezai, 2004), this is the first example showing that
they are required for the formation of this type of cellular junction.
As bou is well conserved in other insect genomes, its role in SJ
organisation could have been maintained during evolution.
Invertebrate SJs and vertebrate tight junctions are considered
analogous structures because both participate in the establishment
of paracellular barriers, although they present a different
organisation. However, vertebrates have adhesion structures
functionally, morphologically and molecularly similar to insect
pleated SJs (Bellen et al., 1998): the so-called paranodal septate
junctions, which are formed by neural axons and Schwann cells, at
the level of the Ranvier’s nodes (Schafer and Rasband, 2006). We
show that Bou is necessary for SJ organisation in the embryonic
peripheral nervous system, indicating that its activity is required in
some neural tissues. Thus, our observations raise the possibility that
some vertebrate Ly6 proteins could be involved in the formation of
paranodal septate junctions, which are essential for axonal insulation
and propagation of action potentials.

In insects, the epithelial and neural SJs share many components,
so our observation that bou is not required for blood-brain barrier
maintenance in the ventral nerve cord came as a surprise, revealing
the existence of tissular and molecular heterogeneities in the
organisation of these junctions. It will be interesting to establish
whether these differences also determine different barrier selective
properties. We speculate that other Ly6 proteins expressed in the
nervous system could contribute to blood-brain barrier formation in
the subperineural glia.

A secreted factor participating in SJ assembly?
Our results show that bou inactivation specifically perturbs the
organisation of SJs. As these structures are large extracellular
complexes including different transmembrane and GPI-anchored
proteins (Wu and Beitel, 2004), one hypothesis is that Bou could be
a membrane SJ component. Consistently, HA-Bou is found at lateral
contact areas in tracheal, salivary gland and wing disc epithelia,
overlapping with the membrane domains that contain SJ. However,
this protein does not significantly accumulate in these membrane
regions and is also seen in the most apical part of the cells, opening
up the possibility that it could operate in other membrane areas or
act as a signalling molecule. Indeed, studies in vertebrates indicate
that Ly6 proteins can assume roles in both cell signalling and cell
adhesion (Bamezai, 2004). Clearly, identification of the Bou
molecular partners will be a crucial step in understanding how this
protein exerts its activity.

In contrast with other genes required for SJ formation (Genova
and Fehon, 2003), bou functions in a non-cell-autonomous way.
Accordingly, the Bou protein is found in extracellular particles and
can be captured by neighbouring cells, suggesting that its diffusion
is responsible for the phenotypic non-autonomy. Although it is
possible that Bou could act as a secreted ligand after release of its
GPI anchor, a parallelism with other members of the family suggests
that the full molecule could instead become incorporated into the
membrane of neighbouring cells (Neumann et al., 2007). In fact, the
mammalian Ly6 member CD59, a cell-surface antigen protecting
host cells from the complement attack, travels coupled to
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Fig. 5. Bou is a GPI-anchored membrane protein. (A-D) Drosophila
S2 cells co-expressing Moesin-GFP (green, right panels) and HA-Bou
(A,C) or HA-BouΔC (B,D). Staining with anti-HA (white, left panels; red,
right panels) and anti-GFP (blue, right panels) was carried out in
permeabilising (A,B) or non-permeabilising (C,D) conditions. White
arrowheads indicate HA-Bou membrane accumulation. (E) Cellular
fraction or culture medium of Drosophila Kc cells expressing HA-Bou or
HA-BouΔC, blotted with anti-HA antibody. HA-Bou but not HA-BouΔC
is released to the culture medium upon PI-PLC treatment. c, cellular
fraction; m, culture medium.
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membranous vesicles called prostasomes with its intact GPI. These
specialised vesicles are secreted into the seminal fluid by prostatic
glands, and allow CD59 transfer to the sperm cells, which can then
elude complement attack (Rooney et al., 1993). GPI-bound CD59
has also been found associated with human HDL apolipoproteins
(Vakeva et al., 1994). However, we show that the Bou particles are

not lipophorin vesicles, the insect equivalent to vertebrate
apolipoproteins (Rodenburg and Van der Horst, 2005). Therefore,
the fly wing epithelium could produce a different type of vesicle,
possibly similar to prostasomes, which we propose to call
‘boudosomes’. Unfortunately, we could not determine whether the
Bou GPI anchor is required for incorporation into these particles,

2207RESEARCH ARTICLELy6 proteins in septate junctions

Fig. 6. HA-Bou is found in the membrane and is stabilised in SJ membrane areas. (A-J) Confocal sections showing HA-Bou and HA-BouΔC
distribution (red) in tracheal cells (A,B) and wing discs (C-J) counterstained with NrgGFP or PdiGFP (green). HA-Bou overlaps with NrgGFP in
membrane areas (A,E,H, arrowheads) and with PdiGFP in the cell body (C,G). HA-BouΔC colocalises with PdiGFP (D,I) but is excluded from
membrane areas (B,F,J, arrowheads). (K-N) Single confocal sections featuring the luminal apical side of bouGAL4/GAL80ts larval salivary gland cells
expressing HA-Bou or HA-BouΔC. (K,L) At 25°C, both proteins stain the cell body. (M,N) Twenty-four hours after a shift to 18°C, the HA-Bou protein
accumulates in the lumen surface (asterisk) and is seen colocalising with NrgGFP in lateral membrane regions (M, arrowheads), while HA-BouΔC
levels decay uniformly (N). Lu, lumen.

Fig. 7. The HA-Bou protein is present in extracellular particles. (A-H) Single confocal x/y sections of third-larval-instar wing discs stained with
anti-HA antibody. HA-Bou accumulates apically in extracellular particles (A,B, arrowheads) and intracellular vesicles found in the medial regions of
apGAL4 cells (C) or contiguous cells (D, arrowhead). HA-BouΔC does not accumulate in any vesicular structure (E-H). (I-K) Higher magnification of
framed area in A. HA-Bou (I, cyan in K) and ApoLII-Myc (J, red in K) label different populations of extracellular particles, as seen in merge channel
(K). api, apical; med, medial. D
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because the C-terminus of the protein seems essential for prior exit
from the ER. Thus, future work will be needed to characterise the
biochemical features of boudosomes and their function.

Little is known about how epithelial cells coordinate their activity
to form efficient fences. As many SJ components are required in a
cell-autonomous manner (Genova and Fehon, 2003), their
simultaneous expression by each individual cell seems a prerequisite
for barrier assembly. A component and/or SJ regulator shared by
different cells could be an element coordinating the organisation of
efficient barriers in a dynamic epithelium. Alternatively, Bou
extracellular traffic could be a specialised feature of this GPI-
anchored protein and not have functional relevance for SJ assembly
during normal development.

The Drosophila Ly6 family boom
Besides Bou and the TGFβ receptors, the only member of the Ly6
fly family with a characterised role is the Rtv protein, which is also
expressed in epidermal derivatives. We show that both bou and rtv
mutants affect the organisation of the tracheal chitin luminal cable,
although rtv mutants exhibit stronger phenotypes. However, SJ
integrity is a prerequisite for proper assembly of the chitin cable
(Swanson and Beitel, 2006), and we show that rtv is neither required
for paracellular barrier integrity nor for SJ organisation. Thus,
whereas our observations confirm that chitin cable deposition relies
on the organisation of SJs, they demonstrate that these Ly6 proteins
act in different processes.

We have carried out the first description of the Ly6 superfamily
in the genome of an insect, identifying 36 new genes bearing this
domain in Drosophila. The conservation of these proteins among the
drosophilids indicates that the family was established before the
evolutive radiation of this group. By contrast, we have identified
only 14 genes coding for Ly6 domains in the honeybee genome.
Most of these genes have fly orthologues, like bou and rtv, pointing
out the existence in higher insects of a core of ancestral genes with

potentially conserved roles. Thus, repeated events of gene
duplication followed by rapid divergence of coding and regulatory
sequences occurred in the drosophilid lineage. Indeed, the presence
of genomic clusters grouping together different Ly6 genes is a novel
evolutive acquisition, as the conserved genes tend to be in isolated
positions (Table 1).

It seems that genes coding for a Ly6 motif are prone to sudden
phases of extensive duplication and diversification in different
phylogenetic groups. In fact, an interesting parallelism can be drawn
with the evolution of three-finger elapid snake venoms. This large
group of Ly6 secreted proteins operates using diverse strategies,
such as forming membrane pores, targeting the activity of
acetylcholine receptors, inactivating acetylcholine esterase or
blocking platelet aggregation (Tsetlin, 1999). Moreover,
crystallographic analysis has revealed that three-finger toxins can
interact with their targets via virtually any part of their solvent
exposed surfaces (Kini, 2002). Yet, most of them share a common
ancestor (Fry et al., 2003). Given the broad diversity of expression
patterns exhibited by the different Drosophila Ly6 members, it is
likely that gene duplication has been followed by acquisition of new
developmental and physiological functions. Analysis of this insect
family from an evolutive perspective could be a way to enhance our
understanding of the mechanisms underlying the generation of
evolutive innovations.
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Fig. 8. The bou gene is required for blood-brain barrier maintenance in a subset of neural tissues. (A-L) Single confocal sections showing
chordotonal organs of wild-type (A-F) and boulet (G-L) stage-16 embryos. (A,G) Schematic representations of a single chordotonal organ unit.
Injected dextran (red, B,H; black, D,J) diffuses into the lumen (arrowheads) of boulet but not wild-type chordotonal organs. NrgGFP (green) and Nrx-
IV (red) accumulate in wild-type SJ regions (B-F, arrows) but not in boulet embryos (H-L). (M-O) Single confocal sections of ventral nerve cords of 22-
hour live embryos injected with dextran (black). This dye fills intercellular spaces in nrg14 but not wild-type or boulet embryos. Cc, cap cell; d,
dendrite; Lc, ligament cell; Lu, lumen; N, neuron; Sc, scolopal cell; SJ, SJ contacts.
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• Supplemental Figure S1  
 
 
Fig. S1. Manual alignments of the 10 conserved cysteines present in 
Drosophila Ly6/uPAR domains, allowing visualisation of the 
characteristic distances existing between these residues. When 
multiple domains of the same protein are considered, they have been 
numbered in the same order as they appear on each protein.  
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• Supplemental Figure S2  
 
Fig. S2. bou is involved in early establishment of tracheal septate junctions. 
(A-D) Tracheal dorsal trunks stained with NrxIV. At stages 14 and 15, this 
marker is already delocalised along the tracheal lateral cell membrane of boulet 
embryos (B, D).  
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Abstract

Background: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the
mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight
junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and
have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and
glial envelopes.

Methodology/Principal Findings: In this work we characterise the function of the Drosophila cold gene, that codes for a
protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically
required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution
is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present
evidence indicating that this protein could act as a septate junction component.

Conclusion/Significance: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily
that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that
vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.
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Introduction

The proteins of the Ly6 superfamily are an ancient feature of

metazoan genomes, as genes coding for the Ly6 motif have been

identified in a wide variety of animal clades, ranging from

cnidarians [1] to vertebrates [2,3]. The Ly6 domains are small

extracellular modules of about 100 residues characterised by

presence of 4–6 pairs of cysteines placed in stereotypical positions

[4]. These conserved residues form internal disulphide bridges that

stabilise the conformation of the motif, but the rest of the protein

sequence can vary to a remarkable extent. Despite this variability,

these proteins adopt upon folding comparable three-dimensional

structures, that are characterised by an internal hydrophobic core

supporting three protruding fingers [4]. Indeed, these architectural

motifs are often referred to as Three Finger Domains (TFD). The

Ly6 module is present in both soluble and GPI anchored

membrane proteins but is never observed in combination with

other extracellular motifs. Due to its plasticity, it has been co-opted

into many different biological processes, where it participates as a

protein-protein interaction domain binding specifically to a wide

variety of molecular partners [5,6].

The Drosophila genome codes for 45 proteins belonging to the

Ly6 superfamily [7]. Further illustrating the versatility of the Ly6

module, three of these genes have been analysed at a functional

level and have been found to participate in distinct developmental

tasks, namely the assembly of the chitin extracellular matrix

(retroactive) [8], the regulation of circadian rhythms (sleepless) [9] and

the organisation of cell adhesion junctions (boudin) [7]. Thus,

Drosophila represents an attractive system where to pursue genetic

studies identifying the multiple physiological roles of these

proteins.

We have analysed the role of another member of the fly Ly6

superfamily, the gene CG2813/coiled (cold) [10]. We show that cold

mutants display similar phenotypes to those seen in bou alleles [7],

indicating that cold is essential for the organisation of the insect

septate junctions (SJ). These invertebrate adhesion structures

contribute both to the maintenance of cell contacts and the

establishment of paracellular barriers preventing the unregulated

passage of ions and solutes through epithelial layers and glial

sheaths [11]. The Drosophila SJ have received considerable

attention because they share with the vertebrate tight junctions

not only a common role but also several conserved components,

suggesting that they could be homologue structures [11,12]. In

addition, there are also striking parallelisms at the functional and

molecular level between the insect SJ and the vertebrate paranodal

septate junctions [13], which are adhesion structures formed at the

axon-Schwann cells contact areas on both sides of the nodes of

Ranvier [14]. Thus, studying the Drosophila SJ is a way to identify
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new components of these multi-molecular adhesion complexes and

to understand the general mechanisms controlling their assembly.

In this work we show that cold is specifically required for the

organisation of the SJ in both epithelial tissues and in glial cells, where

its activity is required for maintenance of the blood brain barrier. We

present evidence suggesting that the cold product could behave as a

membrane component of the septate junctions and we show that this

gene, differing from bou, is required in a cell autonomous way.

Results

Cold is expressed in ectodermal derivatives and in a
subset of glial cells

To begin the functional characterisation of new members of the

Drosophila Ly6 superfamily, we searched in public stock collections

for potential mutants affecting their activity and focused in the

analysis of the CG2813 gene, for which three different putative

mutants are available for genetic studies (see below). While we

were preparing this manuscript, a study reported an analysis of

CG2813 mutants and named this locus as coiled (cold) [10]. Thus,

thereafter we will refer to CG2813 as to coiled. The cold gene codes

for a single Ly6 domain, whose primary sequence appears to be

well conserved among insects. In fact, a cold orthologue can be

recognised in several available fully sequenced insect genomes

(Fig. 1B and data not shown). This indicates that, in contrast with

other Ly6 Drosophila paralogues, which are found exclusively in the

drosophilid lineage [7], the cold product could be part of an ancient

genetic network common to all insects. Genetic analysis of three

independent mutant lines carrying PiggyBac insertions in different

regions of the cold locus (Fig. 1A) revealed that all of them behave

as recessive embryonic lethal alleles belonging to a single

complementation group. These observations indicate that cold

function is essential for embryonic development. Consistently,

remobilisation of the PBacf05607 transposon restored fly viability

both in homozygosis and in heteroallelic combinations, suggesting

that this insertion is responsible for the observed lethality.

To begin the analysis of cold function, we studied by in situ

hybridisation the embryonic distribution of its transcript. In early

embryos, we detected an uniform signal corresponding to a cold

mRNA maternal contribution (Fig. 1C–D). After cellularisation,

cold is expressed in the ectoderm and at low levels until stage 11,

when its transcript begins to accumulate in the fore and hindgut

primordia (Fig. 1E). By stage 13, cold is expressed at high levels in

epithelial derivatives, including the tracheal network, the fore and

hindgut and the salivary glands (Fig. 1F). We also detected a weak

expression in the embryonic epidermis and, at late stages, in cells

associated with the nerve tracks exiting the ventral cord (Fig. 1I).

Furthermore, we monitored the expression of YFP (Yellow

Fluorescent Protein) in embryos carrying the PBac1001277 protein

trap insertion, which is placed in the first cold intron and produces

an in frame YFP fusion with the Cold protein (Fig. 1A). The

expression pattern of this protein matches the observed distribu-

tion of the cold transcript, as we observed Cold-YFP in all epithelial

derivatives by stage 13 (Fig. 1G–H). At later stages, this fusion

protein was also detected in a subset of Repo-positive glial cells

[15] seen both at the surface of the ventral cord and in close

association with the nerve tracks (Fig. 1J–K). Thus, these

observations indicate that cold could have a role not only in

epidermal tissues but also in glial cells.

Cold is required for tracheal morphogenesis and SJ
organisation

We examined embryos homozygous for the coldf05607 insertion

in search of visible phenotypes. For this, we focused on the

development of the tracheal network, a tissue where cold is

expressed at high levels. Staining of the embryonic tracheal system

with the 2A12 luminal marker revealed that the overall

organisation and branching pattern of this tubular network was

preserved in cold mutants (Fig. 2C–D). However, both the shape

and the length of the tracheal dorsal trunk segments were

abnormal in this mutant (Fig. 2A–D9). Differing from the wild

type, this structure appeared in stage 15 cold embryos as a

Figure 1. Structure and expression pattern of the cold gene. (A)
coiled/CG2813 genomic region, showing the localisation of the cold
PBac insertions used in this work. (B). Protein sequence alignment
corresponding to the Ly6 domain of different insect Cold orthologues.
Invariant residues are shown in red. The 12 invariant cysteines and C-
terminal asparagines, are marked respectively by red circles and a red
square. See Materials and Methods for the species full names. (C,E,F) In
situ hybridisation showing the cold mRNA distribution at different
embryonic stages. Note at stage 5 an uniform signal corresponding to a
maternal transcript and progressive accumulation of cold mRNA in the
foregut and hindgut primordia at stage 11 (arrows), and in foregut,
hindgut (arrows), trachea and salivary gland (arrowheads) of stage 13
embryos. (D) No signal was observed using a cold sense RNA probe.
(G,H) Stage 13 PBac1001277 embryos expressing a YFP-Cold fusion
protein and stained for FasIII. The YFP signal was detected in the
trachea and epidermis (white arrows) and in salivary gland, fore and
hindgut (white arrowheads). (I) Ventral cord of a stage 16 embryo
revealing cold transcript accumulation in cells associated with the nerve
tracks (arrows). (J,K) Stage 16 embryos stained for Repo (red) and the
YFP-Cold fusion protein (green), which is expressed in a subset of glial
cells placed in the ventral cord surface (arrowheads) and associated
with the exiting nerves (arrows).
doi:10.1371/journal.pone.0017763.g001
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succession of bulging cysts (Fig. 2A–B9) and, by stage 16, an

abnormally convoluted tube (Fig. 2C–D9). Staining of the tracheal

chitin cable with a fluorescent chitin binding probe (CBP) [16],

showed that its fibrous structure was disorganised in the mutant

embryos and chitin was deposited as an amorphous material in the

tracheal lumen (Fig. 2E,F). These phenotypes are highly

reminiscent of mutants affecting the formation of the septate

junctions (SJ) [12], and prompted us to test whether the

paracellular barrier preventing solute passage through epithelial

layers is functional in cold embryos, a diagnostic character for

mutants involved in SJ organisation [17]. We monitored the ability

of a 10kDa fluorescent dextran dye injected into the body cavity to

diffuse into the tracheal lumen of cold live embryos. In sharp

contrast with the wild type controls, we observed a rapid diffusion

(,30 minutes) of this soluble dye into the lumen of stage 16 cold

mutant trachea (Fig. 2G–H9), showing that cold is essential in this

tissue for organisation of a functional paracellular barrier.

We then studied in the same mutant background the subcellular

distribution of Nrg-GFP [18] and Dlg [19], two SJ markers. The

localisation of Nrg-GFP was perturbed in all epithelial tissues

examined in cold mutant embryos (Fig. 3A–H). Instead of

accumulating in the most apical part of the cells, Nrg-GFP

appeared homogenously distributed along their lateral side in the

trachea, the salivary glands, the hind-gut and the epidermis

(Fig. 3A–H). The localisation of Dlg was affected in a similar way,

but we observed that a portion of this protein was still

accumulating in the apical part of the cells, suggesting that

apico-basal polarity is not completely lost in the cold embryos

(Figs. 3A–H and 4F9–G9). Consistently with this idea, the

localisation of E-Cadherin and Crumbs, respectively apical

junction and cell polarity markers [20,21] was not altered in cold

mutant trachea, suggesting that this gene is not required for cell

polarity or assembly of other adhesion structures (Fig. 3I–L).

However, the coldf05607 homozygous embryos could still contain

some wild type product supplied maternally and capable of masking

its requirements during early establishment of cell polarity, as

observed with other genes required for SJ assembly such as coracle,

NrxIV, yurt and the Na+/K+ ATPase [22]. To address this issue, we

generated embryos in which the cold maternal contribution was

missing, taking advantage of the FLP-DFS (FLP-recombinase-

dominant female sterile) technique [23]. Embryos lacking the cold

maternal contribution but rescued paternally with a wild type allele

did not show any phenotype and survived into adulthood (Fig. 4C

and data not shown). In contrast, mutant embryos lacking both

maternal and zygotic contributions died during embryogenesis but

did not display obvious morphological defects and were indistin-

guishable from embryos lacking only the cold zygotic contribution

(Fig. 4A–D). Notably, they exhibited similar defects in SJ

organisation, as revealed by staining with antibodies against FasIII

(Fig. 4E–I) and Dlg, which was still seen accumulating in the most

apical part of the salivary gland cells in both types of embryos

(Fig. 4E9–I9). Since boudin, another member of the Ly6 gene

superfamily, is also required for SJ organisation [7], we wondered

whether some degree of genetic redundancy could exist between cold

and bou. The overall morphology of embryos either double or single

mutant for these genes was identical and the distributions of FasIII

and Dlg were also indistinguishable in the three mutant back-

grounds (Fig. 4G–I9). Thus cold and bou do not show redundant

activities during embryogenesis.

Altogether, these results indicate that the tracheal morpholog-

ical phenotypes and the defects observed in the paracellular

barrier of cold mutant trachea are likely to result from a specific

defect in the assembly or maintenance of the epithelial SJ.

Cold is required for blood brain barrier organisation
Insect pleated SJ are not exclusive of epithelial cells and are also

seen at the cell contacts existing between certain types of glial cells

[24]. In the embryonic ventral cord, the presence of SJ in the

subperineural glia is essential for the formation of the so called

blood-brain barrier, a physiological fence essential for brain

insulation from the hemolymph [25]. Given that cold is expressed

in surface glial cells, we monitored if dye injected into the

hemolymph could penetrate into the ventral cord of cold mutants

22 hours old, when the blood-brain barrier is fully established [26].

Our results show that a 10 kDa dextran dye readily diffused into

the ventral cord of cold mutant embryos, whereas it was efficiently

Figure 2. The tracheal morphology and paracellular barrier
integrity are perturbed in cold embryos. (A–D) Projections of
confocal stacks corresponding to wild type and coldf05607 embryos
staged as indicated and stained for the 2A12 tracheal luminal antigen.
The same trachea are shown at higher magnification in panels A9–D9. At
stage 15, the morphology of the tracheal dorsal trunk (arrows) is
affected and displays a series of cysts (asterisks) visible in cold mutants.
By stage 16, the dorsal trunk adopts a convoluted shape. (E–F)
Projections of confocal stacks showing the tracheal dorsal trunk stained
with fluorescent chitin binding probe (CBP). In the wild type, the chitin
cable displayed a fibrous structure that was lost in cold embryos of the
same stage. (G,H) Single confocal sections showing a view of the dorsal
tracheal trunk marked by ActinGFP (green) and corresponding to stage
16 live embryos injected in the hemolymph with rhodamine 10 kDa
dextran (red). (G9,H9) show a greyscale negative image of the red
channel shown in G,H.
doi:10.1371/journal.pone.0017763.g002
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excluded from this structure in wild type embryos of the same age

(Fig. 5A–B). We also analysed dye diffusion in the peripheral

nervous system lateral chordotonal organs, which are insulated

from the hemolymph by a specific set of glial cells [27,28]. We

observed that the injected dye diffuses into the lumen of the

chordotonal organs in stage 17 cold embryos (Fig. 5G), whereas SJs

established between the cap, scolopal and ligament cells (Fig. 5F)

[28] prevented dye intake in the wild type controls (Fig. 5C). In

fact, the SJ markers Nrg-GFP and NrxIV were not seen

accumulating at the contact regions between these cells in a cold

mutant background (Fig. 5D–E9 and H–I9). These observations

demonstrate that maintenance of an efficient paracellular barrier

and proper distribution of SJ markers depends on the activity of

cold in the nervous system.

The cold gene is autonomously required for SJ
organisation

Previous analysis of the bou Ly6 gene, which is also required for

SJ formation, indicates that the mutant phenotypes for this gene

are not cell autonomous, as presence of wild type neighbour cells

can rescue the SJ defects seen in bou mosaic embryos [7]. To test

whether this feature also applies to the cold phenotypes, we

directed expression of a FLAG tagged form of Cold in the

tracheal cells of a cold mutant embryo, using the btlGAL4 driver.

The SJ marker FasIII delocalisation phenotype observed in cold

trachea was fully rescued by FLAG-Cold expression (Fig. 6A–A9).

This indicates that this protein is fully functional and further

confirms that the cold gene is responsible for the observed tracheal

phenotypes. However, unlike the Bou protein, targeted Cold

expression in the trachea did not restore proper FasIII

localisation in other tissues, like the salivary gland (Fig. 6A0).

We further confirmed the full autonomy of the cold requirements

by monitoring FasIII distribution in the hindgut of mutant

embryos expressing FLAG-Cold under the control of the

engrailedGAL4 driver, which is only expressed in the dorsal half

of this epithelial tube [29]. In fact, FasIII appeared correctly

localised only in the cells expressing the FLAG-Cold protein

(Fig. 6C–C0). Thus, our results show that cold rescuing activity is

neither able to diffuse from tissue to tissue (like in the case of bou)

nor between neighbour cells belonging to the same epithelium. In

line with these results, we found that cold is also autonomously

required for proper SJ maintenance in the epithelial cells that

form the imaginal discs. Indeed, in mosaic third larval instar wing

discs containing large coldf02290 Minute+ clones, we observed that

the cold mutant cells fail to accumulate the FasIII marker in their

most apical part, unlike the surrounding wild type cells

(Fig. 7A,A9). Consistently with the idea that cold is not involved

in cell polarity maintenance, we also observed that a small

amount of Dlg and normal levels of Crumbs are present in the

most apical part of the mutant cells (Fig. 7B–C9).

Cold is present at the membrane and stably associates
with regions containing SJ

Lacking specific antibodies against Cold, we took advantage of

our FLAG-Cold fusion protein to analyse its subcellular distribu-

tion in wing disc epithelial cells, using apterousGAL4 as a driver.

The FLAG-Cold was detected inside the cells, where we observed

extensive co-localisation with the endoplasmic reticulum marker

Pdi-GFP [30] (Fig. 8A–A0). We also detected a slight concentra-

tion of FLAG-Cold in the most apical part of the cells, in a region

free of endoplasmic reticulum that could correspond to the plasma

membrane, as it contained low levels of Nrg-GFP (Fig. 8B–C0).

Yet, the FLAG-Cold protein did not obviously accumulate in the

membrane regions displaying the highest levels of Nrg-GFP and

harbouring the SJ (Fig. 8B–C0). In addition, we observed in more

basal regions internal vesicles containing FLAG-Cold which do

not stain positively for Nrg-GFP (Fig. 8D–D0). Thus, although

FLAG-Cold is not preferentially associated with the SJ, our

observations indicate that part of this protein could be present in

the plasma membrane, as it is the case in S2 cultured cells. In fact,

FLAG-Cold is readily detected at the cell surface of non

permeabilised S2 cells that were stained in conditions that prevent

antibody access to the interior of the cell (Fig. 8F–F0). In

permeabilised cells, we also observed presence of FLAG-Cold in

internal vesicles, as previously noticed (Fig. 8E–E0) [10].

These observations are consistent with the idea that FLAG-Cold

could be a membrane protein cycling between internal compart-

ments and the plasma membrane, but we reasoned that the high

Figure 3. cold is required for the organisation of epithelial
septate junctions. (A–H) Single confocal sections showing the
subcellular localisation of the Nrg-GFP (green) and Dlg (magenta)
proteins in different epithelial tissues belonging to stage 16 wild type
and coldf05607 embryos. In wild type embryos, Nrg-GFP and Dlg
accumulated in the apical part of these epithelia (arrows). In the
mutant embryos, the Nrg-GFP protein appeared uniformly distributed
in the lateral part of the cells (arrowheads), whereas some apical
accumulation of Dlg protein was still visible. (I–L) Projections of
confocal stacks representing the trachea of wild type or coldf05607

embryos, stained as indicated. E-cadherin and Crumbs localised to the
apical part of the tracheal cells in both genetic backgrounds.
doi:10.1371/journal.pone.0017763.g003
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levels of FLAG-Cold produced in these experiments could saturate

the cell, obscuring its potential accumulation in particular

subcellular compartments. To analyse the localisation of this

protein in a less saturated background, we took advantage of the

GAL80ts repressor to switch down FLAG-Cold production during

development [31]. Accordingly, we expressed this protein in

presence of the tubGAL80ts repressor in third larval instar salivary

glands, using bouGAL4 as a driver [7]. In larvae growing at 25uC,

we detected high levels of FLAG-Cold in the lumen and in the cell

bodies of the salivary gland cells, but no preferential accumulation

at the SJ level (Fig. 9A,A9). Then, we switched-off FLAG-Cold

expression by shifting the fly cultures to 18uC 40 hours prior to

dissection. In these conditions, the FLAG-Cold protein was still

seen in the salivary gland lumen, but could also be detected at low

levels in a lateral cell region containing the FasIII SJ marker

(Fig. 9B,B9). This weak staining was not observed in control glands

lacking the bouGAL4 driver (Fig. 9C,C9), indicating that upon

expression, a small portion of FLAG-Cold seems stably associated

with SJ-containing regions.

Discussion

Is cold specifically required for SJ organisation?
The profusion of Drosophila Ly6 paralogues (45 members) and

the variety of their expression patterns [7] suggest that mutants for

these genes could a priori display the most various phenotypes, as it

is the case for the three fly Ly6 genes characterised in so far: rtv

[8,16], sss [9,32] and bou [7]. However, a recent report pointed out

that three other Drosophila Ly6 proteins, Coiled, Crooked and

Crimpled participate in a non redundant way in the same process

as Bou: the organisation of epithelial septate junctions [10]. Our

genetic characterisation of cold mutants further confirms that this

gene is required for SJ organisation in epithelial tissues, and shows

by direct comparison with bou mutants that both elicit undistin-

guishable phenotypes. Still, besides their diagnostic set of 10

cysteines, the primary sequences of Bou, Coiled, Crooked and

Crimpled are remarkably different, making impossible to predict a

common molecular role. Given their structural divergences and

the versatility of the Ly6 domain, they could in principle bind to

Figure 4. cold is not required for establishment of epithelial cell polarity. (A–D) Single confocal sections showing the overall morphology of
either wild type embryos or mutant combinations lacking the cold maternal contribution (cold M), the zygotic one (cold Z) or both (cold M & Z), all
stained for Dlg. (E–I9) Subcellular distribution of FasIII and Dlg in trachea, salivary gland and hindgut of stage 16 embryos of the indicated genotypes.
Notice FasIII uniform distribution in the lateral membrane of the mutant tissues (E–I, arrows). A portion of Dlg (E9–I9) was redirected to the lateral
membrane in the mutant tissues (arrows), although apical accumulation was still visible in the salivary gland and hindgut cells (open arrowheads).
doi:10.1371/journal.pone.0017763.g004
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different molecular partners. Our analysis of bou cold double

mutant embryos indicates that at least these two genes do not exert

redundant functions during SJ assembly and cell polarity

establishment. Thus, the available data are coherent with the

idea that these proteins have non-exchangeable roles, despite their

similarities at the phenotypic level. Interestingly, the four Ly6

genes implicated in the organisation of the fly SJ have highly

conserved orthologues in other insects, such as the honey-bee [7],

pleading for a hardwired role of these proteins in SJ assembly.

Our analysis of embryos lacking both the cold zygotic and

maternal contributions indicates that this gene is unlikely to have a

role during the establishment of cell polarity. Thus, while some SJ

components such as Yurt, NrxIV, Coracle and the Na+/K+

ATPase are also necessary for this process [22], the activity of Cold

seems dispensable. Hence, it seems that this protein would

participate in a genetic module whose role is solely required for

the assembly of SJ. It will be interesting to test whether this also

applies to the three other Ly6 genes affecting SJ organisation, as a

differential requirement could provide hints facilitating the

recognition of their specific partners.

A recent genetic screen identified cold as a gene required in the

embryonic epidermis for efficient reestablishment of epithelial

integrity upon injury [33]. This observation indicates that the

integrity of the whole SJ adhesion complex could be required for

wound healing or, alternatively, that cold may have a specific role

in this process. Further analysis of the role of the SJ adhesion

structures during epithelial repair will allow to clarify this issue. In

any case, this observation shows that upcoming functional analysis

of the Drosophila Ly6 proteins is likely to contribute to a better

understanding of many developmental and physiological processes

in which this versatile module has been co-opted.

Is Cold a SJ component?
Previous studies in S2 cells pointed out that a Cold tagged version

expressed in these cells accumulates in endocytic vesicles [10]. We

have further analysed the localisation of a functional FLAG-Cold

fusion protein, both in S2 cells and in developing tissues containing

SJ. Our findings are consistent with the idea that Cold, predicted to

be GPI anchored by the bigPI software [34], is associated not only

with the endoplasmic reticulum and internal vesicles but also with

the plasma membrane. In the salivary glands, we observed that a

small amount of FLAG-Cold was stably associated with SJ

containing regions, as if making part of a complex localising to

this membrane compartment. Interestingly, a similar accumulation

has been observed with a HA-Bou tagged version in the same tissue

Figure 5. The cold gene is required for blood-brain barrier
organisation. (A–B) Single confocal sections taken at the level of the
ventral cord and showing in negative the distribution of 10 kDa
rhodamine dextran injected into the body cavity of live stage 17
embryos. Notice dye penetration in the neuropile region of the cold
mutant (arrow). (C,G) Confocal sections taken at the level of the lateral
chordotonal organ of dextran injected stage 16 live embryos, showing
dye accumulation in the lumen of these organs in the cold mutant
(arrows). (D,H) Distribution of Nrg-GFP in the chordotonal organ of
stage 16 live embryos, showing accumulation of this protein in the
junctions existing between cap and scolopal cells (arrows) and ligament
and scolopal cells (arrowheads). Notice that Nrg-GFP accumulation was
lost in the mutant embryos. (E,I) Projections of confocal stacks showing
the distribution of NrxIV (magenta) and the BP104 antibody-reactive
Nrg neural isoform (green) in the lateral chordotonal organs of stage 17
embryos. (E9,I9) correspond to the magenta channel shown in E,I. The
NrxIV SJ marker was not properly localised at the level of the cell
junctions in the mutant embryos (white and red arrows). F. Cartoon
representing the cellular composition of one single scolopal unit. Cc,
cap cell; Sc, scolopal cell; Lc, ligament cell; d, dendrite; lu, lumen; SJ,
septate junctions.
doi:10.1371/journal.pone.0017763.g005

Figure 6. The embryonic cold SJ phenotypes are cell autono-
mous. (A) Projection of a confocal stack showing a stage 16 coldf05607

homozygous embryo stained for FasIII (magenta) and expressing FLAG-
Cold and Actin-GFP (green) proteins under the control of btlGAL4.
(A9,A0) Single confocal sections at a higher magnification of the trachea
dorsal trunk (A9) and the salivary gland (A0) of the same embryo,
showing the distribution of the SJ marker FasIII. Notice the delocalisa-
tion of this marker in the salivary gland (arrowhead) and its normal
distribution in the trachea (arrowhead). (B–C9) Distribution of FasIII
(shown in magenta in B,C and in greyscale in B9,C9) in the hindgut of
stage 16 embryos expressing FLAG-Cold in the engrailedGAL4 territory,
marked by GFP (green). In wild type embryos, expression of FLAG-Cold
in the en cells (green) did not affect the localisation of the FasIII marker
in the apical portion of the lateral membrane (arrowheads) (B,B9). In
coldf05607 homozygous embryos normal apical accumulation of FasIII
was only observed in the en cells (green, arrowheads).
doi:10.1371/journal.pone.0017763.g006
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[7]. It is thus possible that a small subset of both proteins could

contribute to the organisation of the SJ by interacting with each

other and/or with other SJ components. However, it is premature

to conclude that Cold function is circumscribed to the lateral

membrane region containing the SJ, as other valid alternatives exist.

In fact, the FLAG-Cold protein was also seen in other subcellular

compartments, and it is difficult to ascertain where it exerts its

primary activity. For instance, it has been shown that the SJ

component NrxIV is re-localised to internal vesicles in cold mutant

embryos [10]. Although this phenotype is also observed in embryos

lacking known SJ components such as Coracle and Nrv2 [10], the

Ly6 proteins could indeed play a role in the vesicular trafficking of

these proteins or in their preassembly into larger macro-complexes

en route to the membrane. As the intracellular traffic seems to play a

key role in the early assembly of the SJ [35], it will be interesting to

compare the paths followed by Ly6 proteins and known SJ

components during the formation of these structures. Concerning

the traffic of the Ly6 proteins themselves, it is clear that Cold differs

from Bou in two related aspects: it behaves in a cell autonomous way

and we have not found any evidence indicating that this protein

could travel from cell to cell. Thus, although these proteins may

meet at the level of the SJ or in other subcellular compartments,

these observations implicate that they do not always traffic together.

It will be interesting to analyse whether this differential behaviour

provides a rationale for their non-exchangeable roles.

A conserved role for Cold in the nervous system?
Our results show that cold is expressed in a subset of glial cells and is

required for organisation of the blood-brain-barrier in the Drosophila

nervous system. Thus, it is possible that vertebrate members of the

Ly6 superfamily could fulfil an analogous role in the formation of the

paranodal junctions existing in the contact areas between axons and

Schwann cells [14]. The high variability observed in the Ly6 domains

primary sequence precludes identification of vertebrate orthologues

corresponding to the Drosophila genes. However, the genetic networks

in which these proteins are implicated could be better conserved, as

insect SJ and paranodal junctions share a significant number of

components [36]. Thus, future functional studies in Drosophila and

vertebrates may reveal analogous roles for apparently unrelated Ly6

proteins, as it is the case for the four Drosophila Ly6 members

participating in SJ assembly.

Materials and Methods

Sequence analysis
We used the TBLASTN program to search for cold orthologues

in insect genome databases using the BLAST search program [37]

and the ClustalW program to create the alignments. The species

considered are Dmel, Drosophila melanogaster; Dpse, Drosophila

pseudobscura; Aaeg, Aedes aegypty; Agam, Anopheles gambiae (Diptera).

Bmor; Bombyx mori (Lepidoptera). Tcas, Tribolium castaneum

(Coleoptera). Amel, Apis mellifera; Nvit, Nasonia vitripennis (Hyme-

noptera). Apis, Acyrthosiphon pisum, (Hemiptera).

Genetics
Full definitions of the stocks used can be found in Flybase [38],

and include the cold alleles P(WH)Bacf05607 and P(WH)Bacf02290

and the strains P(GawB)bouPG27, bou6ea-2, P(PTT-GA)NrgG00305,

Figure 7. The cold gene is autonomously required in the wing disc for SJ organisation. (A–C9) Confocal pictures of third larval instar wing
imaginal discs containing M+ coldf02290 clones generated in first instar larvae and stained as indicated. The homozygous cold mutant cells lacking GFP
(green) can be distinguished from the surrounding GFP positive heterozygous tissue. A–C correspond to optical planar x-y sections taken at the level
of the SJ and A9–C9 show optical z-sections of the same discs. The planar views revealed abnormally low levels of FasIII and Dlg (red in left panels,
greyscale in right panels) in the apical part of the cold mutant cells (arrows). The z planes show that Dlg was found accumulating in a wider apical
domain (open arrowhead), whereas FasIII was distributed uniformly along the lateral part of the cells (arrow). A normal Crb apical distribution (red in
left panel, greyscale in the right panel) was observed in cold mutant cells.
doi:10.1371/journal.pone.0017763.g007
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P(PTT-un1)Pdi74-1, P(GawB)apmd544, btlGAL4 UASActinGFP,

P(en2.4-GAL4)e16E UASGFP and tubGAL80ts. The PBac(FSVS-

1)1001277 insertion was generated by the CPTI (http://www.

flyprot.org/). The FM7c-ActinLacZ, CyO-wglacZ and CyO KrGA-

L4UASGFP balancers were used for embryo genotyping. All

experiments were carried out at 25uC, except the temperature

shifts at 18uC, which where done 40 hours before dissection in

cultures containing third larval instars of the bouPG27/+; UASFLAG-

Coiled/+; tubGAL80ts/+ genotype. The cold embryos lacking both

the maternal and the zygotic contributions were recovered in the

progeny of hsFLP/+; P(ovoD1-18)2La P(ovoD1-18)2Lb FRT40A/

coldf05607 FRT40A females heat shocked two times for 1 hour at

37uC during larval stages and mated to coldf05607/CyO-wglacZ

males. The somatic Minute+ cold clones were induced 48 hours after

egg laying by 1 hour heat shock at 37uC in w hsFLP; coldf02290

FRT40/M(2)24F1 ubiGFP FRT40A larvae.

Figure 8. FLAG-Cold subcellular localisation in the wing epithelium and in S2 cells. (A–D0) Confocal images of third larval instar wing discs
expressing the FLAG-Cold protein (shown in red in left panels, greyscale in the mid panels) in the apGAL4 domain. The A–A0 and C–C0 show x-y planar
views of the apical part of the epithelium, whereas D–D0 shows a more basal region and B–B0 a z-section. Accumulation of FLAG-Cold was seen in a
cell apical region containing weak levels of Nrg-GFP (B–B0 and C–C0 white arrowheads) and no Pdi-GFP (A–A0, white arrowheads). Regions containing
high levels of Nrg-GFP and corresponding to the SJ did not show FLAG-Cold accumulation (B–B0 and C–C0, red arrows). FLAG-Cold was also seen in
internal vesicles (D–D0, white arrows). E–F0 Confocal images of S2 cells expressing FLAG-Cold (red in left panel, greyscale in the mid panel) and
Moesin-GFP (GFP fluorescence shown in green, left panel). In permeabilised cells (E–E0), both FLAG-Cold and Moesin-GFP were detected by
antibodies in the cell interior and at the membrane (anti-GFP shown in blue, left panel and in greyscale, right panel). In these conditions, we also
observed internal vesicles accumulating FLAG-Cold (open arrowheads). In non permeabilised cells (F–F0), FLAG-Cold was detected at the membrane
(arrowhead), whereas the cell interior was not accessible to the antibodies.
doi:10.1371/journal.pone.0017763.g008
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Dye injection
Dye diffusion into trachea and chordotonal organs was analysed

by injecting 10 mg/ml 10 kDa rhodamine-Dextran (Molecular

Probes) with a micromanipulator into the body cavity of

dechorionated stage 16 live embryos [17]. Diffusion into the

nerve cord was studied in 22 hours old embryos. Samples were

visualised within 20–30 minutes after injection with a Leica SP2

confocal microscope.

Molecular biology
The FLAG tag coding sequence DYKDDDDK, flanked in each

side by one A residue was introduced in frame by PCR within the

Coiled coding region after the E25 residue, using specifically

designed oligonucleotides and the LD16147 (DRGC) coiled cDNA

as template. The construct was then sequenced and subcloned into

pUAST [39] for generation of transgenic flies or pAc5.1

(Invitrogen), for cell transfections.

Cell culture
Cell culture, transfections and antibody stainings were carried

out as in Koh et al. [32]. S2 cells co-transfected with pAcDMoe-

GFP (kind gift from F. Payre, CBD, Toulouse, France) and

pAcFLAG-Cold were fixed and stained in either permeabilising

(PBS, 0.1% Triton-X100) or non-permeabilising (PBS) conditions.

Immunohistochemistry
In situ hybridisation with clone LD16147 sense and antisense

riboprobes were performed according to [40]. Embryos and larval

tissues were fixed for 20–30 minutes in PBS 4% paraformalde-

hyde. Blocking, washings and over night incubation with primary

and secondary antibodies was carried out in 0.1% Triton-X100

0.1% BSA. Primary antibodies included mouse anti-ßGal 1/100

(Promega), rabbit anti-ßGal 1/1000 (Cappel), mouse anti-FLAG

1/200 (Covance), rabbit anti-FLAG 1/100 (Sigma) rabbit anti-

GFP 1/500 (Torrey), anti-NrxIV 1/100 (kind gift of H. Bellen), rat

anti-Crb 1/500 (kind gift of U. Tepass), and monoclonals anti-

2A12 1/10, 4F3 anti-Dlg 1/100, DCAD2 anti-DECad 1/20,

BP104 anti-Nrg 1/100, 7G10 anti-FasIII 1/30, all from DSHB.

Secondary FITC and TRITC conjugated antibodies and strepta-

vidin were diluted 1/200 (Molecular Probes). We also used CBP-

FITC 1/100 (NEB). Samples were mounted in Vectashield

(Vector) and visualised with a LeicaSP2 confocal microscope.
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 Fig 1. The Septate junction components Neuroglian, Lachesin, and Fasciclin III behave 

as homophilic adhesion molecules in S2 aggregation assays. Whereas Drosophila S2 cells 

do not form aggregates in control experiments (A, C, E), cells expressing Neuroglian, 

Lachesin, and Fasciclin III form cell aggregates (B, D, F). Ref Fig (Hortsch et al., 1995; 

Strigini et al., 2006 & Snow et al., 1989). 
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I. Could Drosophila Ly6 proteins Boudin and Coiled mediate cell adhesion? 

Several known septate junction components, like Neuroglian (Hortsch et al., 1995), Lachesin 

(Llimargas et al., 2004; Strigini et al., 2006) and Fasciclin III (Snow et al., 1989), are thought to 

behave as “sticky” adhesion molecules and are suggested to be required on both cellular sides 

of the junctional complex to maintain contacts between contiguous cells.  

Given that both Boudin (Bou) and Coiled (Cold) are predicted to be membrane proteins, they 

could also act as components of the SJ complex and mediate cell adhesion. 

One commonly used way to disclose the roles of membrane proteins in cell adhesion is to 

perform aggregation assays with transfected Schneider-2 (S2) cells, a Drosophila cell line that 

normally does not form aggregates in culture. In fact, using this approach it has been found that 

S2 cells expressing Neuroglian, Lachesin and Fasciclin III aggregate to each other, suggesting 

that these molecules mediate homophilic adhesive interactions (Fig 1).Thus, we decided to 

investigate whether over-expression of Bou and Cold could enhance the adhesive properties of 

S2 cells in aggregation assays.  

As expected, S2 cells transfected with a control pAcGFP plasmid appeared as isolated cells 

(Fig 2, A), whereas GFP positive cells co-expressing the homophilic adhesion molecule 

Neuroglian (Nrg) formed big clumps of aggregated cells (Fig 2, B). We also observed that GFP 

positive cells expressing high levels of either HA-Bou or FLAG-Cold behaved as wild type 

cells and did not aggregate (Fig 2, C, D) (transfection of 0.2 µg to 1.5 µg of either pAcHA-Bou 

or pAc Flag-Cold in 3x106 cells). We could confirm by antibody staining that both of these 

tagged-protein are present in the membrane of these transfected S2 cells (Hijazi et al., 2009; 

Hijazi et al., 2011). Thus, the presence in the membrane of these proteins does not alter the 

adhesive capacities of these cells.  

We also examined the possibility that Bou and Cold could enhance cell adhesion by interacting 

with each other. For this, we monitored cell aggregation after incubating cells expressing HA-

Bou together with cells expressing FLAG-Cold (Trans-interaction test) and, in a separate 

experiment, cells co-expressing both proteins (Cis-interaction test). In both cases, we did not 

observe formation of cell aggregates, indicating that expression of these two molecules is not 

sufficient to trigger S2 cell adhesion (Fig 3). 
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Fig 2. Overexpression of Bou or Cold does not elicit aggregation in S2 

cells. (A) Drosophila S2 cells transfected with pAcGFP do not form 

aggregates after 2 hours of incubation. (B) Cotransfection of pAcGFP with 

pAcNrg elicits the formation of large clumps of aggregated cells. Cells 

transfected with pAcHA-Bou (C) or pAcFLAG-Cold (D) behave as 

normal cells and appear isolated.  
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Fig 3. Overexpression of Bou and Cold does 

not elicit aggregation in S2 cells. Separate 

cultures of S2 cells were transfected with 

pAcHA-Bou and pAcFLAG-Cold, mixed 

together and incubated for two hours. 

Immunostaining with anti-HA and anti-Flag 

antibodies reveals that cells expressing Bou and 

Cold do not aggregate together.  
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Fig 4. Expression of HA-Bou and FLAG-Cold does not enhance Nrg mediated aggregation. The graph 

shows the percentage of aggregated S2 cells observed after transfection with different amounts of Nrg (green 

bars) or in co-transfection experiments with HABou (red), FLAG-Cold (yellow) or both (red + yellow). The 

amounts of plasmids transfected in 3x106 cells are indicated. The values correspond to the mean obtained in 

three independent experiments constituted each by three replicas. Error bars reflect the standard deviation. 

Whereas high levels of Nrg result in aggregation of 80% of the cells, a dose of 0.03 µg results in a 10% of cell 

aggregation. In presence of this dose of Nrg, the overexpression of HA-Bou, FLAG-Cold or both does not 

modify significantly the aggregation rate. pAc GFP is used as a negative control (aggregation = 0%; green 

asterisks) and is co-transfected with all samples to visualize transfected cells. The overexpression of HA-Bou 

(red asterisks), Flag-Cold (yellow asterisks) or both (red and yellow asterisks) do not elicit cell aggregation. 
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II. Could bou and cold act cooperatively with the adhesion molecule Neuroglian?  

The results described above indicate that over-expression of HA-Bou and FLAG-Cold is not 

sufficient to mediate cell adhesion. However, one possibility is that these molecules could act 

as cofactors of other adhesion molecules, like Nrg. In our assays, expression of high levels of 

Nrg triggers the aggregation of 80% of the cells (transfection of 1µg of pAcNrg in 3x106 cells) 

(Fig 4). In contrast, the expression of lower amounts of Nrg (0.03 µg of pAcNrg in 3x106 cells) 

consistently resulted in the aggregation of ± 10% of the cells in three independent experiments, 

each containing three different replicas (Fig 4). We thus tested whether the percentage of 

aggregation observed when Nrg quantity becomes a limiting factor could be increased by co-

expressing HA-Bou, FLAG-Cold or both in the same cells. For this, we co-transfected 1 µg of 

pAcHA-Bou and/or pAcFLAG-Cold with 0.03 µ g of pAcNrg. However, none of these 

combinations appeared to modify the aggregation levels induced by Nrg alone (Fig 4). Similar 

results were obtained using a range of HA-Bou and/or FLAG-Cold plasmid varying from 0.1 to 

1.5µg (data not shown). Therefore, it seems that in these assays, neither HA-Bou nor FLAG-

Cold are limiting for Nrg-mediated cell adhesion.  
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Materials and Methods 
 
Cell aggregation experiments 

Confluent S2 cells grown in a Schneider medium (Gibco) supplemented with FBS (Foetal 

Bovine Serum) 10%, were adjusted to a concentration of 106cells/ml and transfected in 6-well 

culture plates with pAc GFP, pAc Neuroglian,  pAc HA-Bou, and/or pAc Flag-Cold, 

following the protocol of (Koh et al., 2008).  As described by (Hortsch et al., 1995), 48 hours 

after transfection, cells were placed on a rotating platform and rocked at 110rpm for 2 hours at 

room temperature, then fixed with PAF 4% in PBS for 30 min, transferred to eppendorfs 

tubes and centrifugated at 800 rpm for 3 min. Pellets were washed twice with PBS 3% FBS 

and centrifugated as above. Then, cells were gently resuspended in Vectashield, mounted and 

imaged with a confocal Zeiss Inverted microscope. Since cell clusters of five cells were 

occasionally observed in both untransfected and in pAc GFP mock-transfected S2 cells, only 

cells belonging to aggregates bigger than five cells were considered. Eight fields were 

counted per transfected condition. For each field, the ratio of aggregated cells versus the total 

number of cells was quantified using Image J. The final values represent the means obtained 

from 3 separated experiments performed in triplicates. 

 

 
Immunohistochemistry on S2 cells 

HA-Bou and FLAG-Cold vectors were transfected in separate S2 cell cultures, as described 

above and mixed together 48 hours after transfection. After 2 hours of incubation, S2 cells 

were fixed for 30 min, washed in PBS 1X, permeabilized with Schneider 10% FBS, 0.1 % 

Triton and incubated over night at 4°C with the primary antibodies mouse anti-HA (Covance) 

1:100 and the rabbit anti-Flag (Clontech) 1:100. After washing twice with Schneider 10% 

FBS 0.1 % Triton, cells  were incubated for 45 minutes at room temperature with secondary 

FITC and TRITC conjugated antibodies 1:400 (Molecular probes), mounted and imaged on a 

Zeiss Inverted microscope. 

 

 

 

 

98



 



 

 

 

 

                       

 

 IV. DISCUSSION 

& 

 PERSPECTIVES 

 
 

 

 

 

99



 



a) Discussion  

The discovery of the Ly6 family of proteins in Drosophila melanogaster offers the possibility 

to use this attractive model system to carry out basic research and better understand the 

multiple roles of these proteins during development. My PhD work has contributed to a 

functional characterization of two newly described members of this family, boudin (bou) and 

coiled (cold). Our study has shown that both genes are expressed in epithelial tissues following 

a very similar temporal profile. Consistently, we have shown that they are both required for a 

common process during the development of epithelial tissues: the proper organization of the 

septate junction adhesion structures. 

 

I.   The role of bou and cold in epithelial septate junction organization  

In the Drosophila epithelia, whose cells are characterized by a marked apico-basal 

polarization, cell contacts are mainly mediated by an apically located adhesion belt called 

Zonula Adherens (ZA), a structure that forms early in development during the cellular 

blastoderm stage (stage 5). In contrast, the pleated SJ junctions, which also mediate cell 

adhesion, appear just below the ZA at stage when cell polarity is already established, midway 

through embryogenesis (stage 14) (Tepass and Hartenstein, 1994; Tepass, 1997).  

 

Our analysis of bou and cold mutants indicates that these two Ly6 genes are specifically 

required for SJ organization in both embryonic and larval epithelial tissues. We propose that 

the phenotypes in SJ organization and barrier maintenance observed in the mutants reflect the 

direct contribution of bou and cold to the maintenance of this structure and are not an indirect 

consequence of defects in other processes such as ZA formation or cell polarity establishment. 

Supporting this hypothesis, our observations show that in bou and cold mutant epithelial cells 

the sub-apical cell marker Crumbs and the ZA marker E-Cadherin are properly localized, 

suggesting that cell polarity and ZA integrity are preserved in these mutants.  

 

We also studied the distribution of the SJ marker Dlg in bou and cold mutant embryos. The 

Dlg protein has been described as a tumor suppressor gene, and is known to regulate 

apicobasal cell polarity in most epithelial cells (Woods et al., 1994; Woods et al., 1996). In 

bou and cold mutants, Dlg localization is affected and a fraction of this protein is seen 

homogenously distributed along the lateral membrane of the mutant cells, in a similar way to 
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other SJ components such as Nrg, NrxIV and FasIII. However, and differing from these SJ 

markers, the apical localization of Dlg is not completely lost, and a portion of this protein is 

still seen accumulated in an apical domain.  

 

Despite the observed Dlg mislocalization, we failed to detect cell polarity defects in both bou 

and cold mutant embryos and also in double mutant combinations for these genes. In addition, 

and although Dlg localization is similarly affected in cold mutant cells belonging to imaginal 

wing disc mosaics, the cold mutant patches do not develop the typical overgrowths observed 

in Dlg loss of function (Woods and Bryant, 1991; Woods and Bryant, 1994). Thus, this 

ensemble of observations is coherent with the idea that the role of bou and cold is 

circumscribed to SJ assembly and that these genes do not participate in epithelial cell polarity 

establishment. The particular repartition of Dlg protein observed in the cell membrane of bou 

and cold mutant embryos could then reflect the duality of the Dlg mode of action in both SJ 

organization and apico-basal cell polarity. One pool of Dlg could depend for its proper 

localization on the integrity of SJ, whereas a second pool could still carry its normal function 

during cell polarity maintenance. Interestingly, detailed genetic analysis of different SJ 

components, such as coracle, NrxIV, yurt and the Na+/K+ ATPase has recently shown that 

they also play a dual role, acting first during apico-basal polarity establishment and 

subsequently in SJ formation (Laprise et al., 2009). It seems that Yurt participation during the 

establishment of cell polarity is contributed by the maternal genome, as this early requirement 

is not evident in yurt zygotic mutants. As our characterization of bou and cold is based in the 

analysis of zygotic mutants, we wondered if the maternal contribution of cold could mask a 

requirement for this gene during early establishment of the cell polarity, as it has been shown 

for yurt (Laprise et al., 2009). We found that embryos lacking both the maternal (M) and the 

zygotic (Z) contribution of cold did not display phenotypes additional to those observed in 

cold zygotic mutants, neither at the SJ level nor in epithelial morphology. Thus, these 

observations confirm that the cold product only obvious function is to participate in SJ 

assembly. However, we still have to test if embryos lacking both the zygotic and maternal 

contribution of bou behave similarly. Furthermore, the bou and cold double zygotic mutants 

present the same SJ defects observed in the separate single mutants and no additional obvious 

phenotypes, suggesting that these genes do not exert redundant functions in other processes 

and could act in the same genetic pathway during SJ organization. 
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Do the two Ly6 proteins bou and cold participate in SJ maintenance or are they required for 

their early assembly? At stages 15 and 16, when pleated SJ are well established, we observe 

that many SJ markers such as Nrg, FasIII, NrxIV, Contactin and Coracle are mislocalised 

along the lateral cell membrane of bou and cold mutants (Hijazi et al., 2009, Hijazi et al., 

2011 and unpublished observations). Interestingly, we observed that bou and cold are also 

required by stage 14, when pleated SJ begin to form (Tepass and Hartenstein, 1994), because 

a clear mislocalisation of the NrxIV marker is already observed at this stage. Thus, it seems 

that these genes are required for the early establishment of SJ. However, little is known about 

how SJs are assembled and it is difficult to predict how the two Ly6 proteins could contribute 

to this process. This issue has just begun to be explored in a study focusing on the early 

trafficking of a SJ component, the GPI-anchored MTf membrane protein. It has been shown 

that at stage 13, before the establishment of SJ structures (Tiklová et al., 2010), MTf is 

present at the cell membrane but is not distributed in a polarized manner, being uniformly 

found all along the lateral part of the cells. It is only at a later time (stage 15-16) that the MTf 

distribution is restricted to a more apical localization and a proper accumulation on the SJ 

domain is detected (Tiklová et al., 2010). This transition seems to depend on MTf intracellular 

trafficking. Indeed, this protein is also found accumulated at stage 13 in cytoplasmic puncta 

that correspond to early and recycling endosomes and it has been shown that trafficking 

through these intracellular compartments is required for MTf redistribution and clustering in 

the apical part of the cell lateral membrane. Moreover, other components like Coracle, 

Gliotactin and the Claudin Sinuous could similarly become redistributed during septate 

junction maturation, since they have been transiently detected in intracellular puncta at stage 

13, but not at stage16, when they are seen principally at the apical part of the membrane 

(Tiklová et al., 2010). These observations suggest that the trafficking of SJ components could 

be essential for the assembly of mature SJ complexes. However, how SJ components transport 

and targeting to specific cell membrane domains is controlled needs to be studied in more 

detail. 

 

In our work, we have studied the localization of different SJ components, such as Nrg, FasIII, 

NrxIV, Cont and Cor during late embryonic stages in wild type and in both bou and cold 

mutant backgrounds. In the mutants, SJ integrity is affected and these SJ components appear 

mislocalized along the lateral cell membrane. This phenotype could result from a defect in the 

clustering of these components, which, in absence of the two Ly6 proteins, are now free to 

diffuse along the lateral membrane. In fact, a series of elegant in vivo studies have shown that 
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in embryos mutant for one of the three cell adhesion molecules (CAMs) NrxIV, Nrg or Cont, 

the mobility of the two other SJ components is increased in the lateral cell membrane (Laval 

et al., 2008). Thus, the observed phenotypes in bou and cold mutants are consistent with the 

idea that the products of these genes, predicted to be GPI-anchored membrane proteins, could 

behave as SJ components and participate in the lateral clustering of the SJ junctional complex. 

 

However, a recent study has shown in the epidermis of stage 16 cold mutant live embryos that 

the SJ component NrxIV is not only mislocalised along the membrane but is also detected in 

cytoplasmic puncta, suggesting that a fraction of this protein is remobilized into internal 

vesicles in this mutant background. Interestingly, a similar phenotype has been detected in 

mutants lacking other SJ components, such as the Coracle adaptor and the Nrv2 β-subunit of 

the Na+/K+ ATPase pump (Nilton et al., 2010), but not in a mutant for Gliotactin, a cell 

membrane protein. These results suggest that SJ components can traffic intracellularly during 

late stages when particular SJ components are missing, indicating that vesicle traffic 

participates to the abnormal distribution of SJ components seen in cold and coracle mutants. 

However, it is difficult to establish at this stage whether these phenotypes are a consequence 

of a direct role for Cold, Nrv2 and Cor in cell trafficking rather than an indirect effect of 

defects in the SJ apical clustering, and it is also possible that these proteins actually have a 

role in both processes.  

 

Clarifying this issue will certainly require more live imaging studies, as our NrxIV 

localization analysis carried out on fixed cold mutant embryos of the same stages failed to 

detect a significant remobilization of this protein to intracellular vesicles. In fact, it is possible 

that the use of detergents in common immunohistochemistry protocols affects the integrity of 

internal membrane compartments and masks the potential accumulation of some SJ 

components in cytoplasmic puncta, thus preventing their visualization. In addition, we do not 

know if SJ components cycle during SJ maintenance, and, although the SJ complex seems a 

stable structure in late stages (Laval et al., 2008), cellular traffic could have a more important 

role than previously thought. Future analysis of the dynamic localization of SJ proteins in cold 

and bou mutant live embryos during development will allow to better understand the cellular 

role of these genes during SJ biogenesis. 
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II.    Are Bou and Cold new septate junction components? 

One possibility is that both Bou and Cold, putative membrane proteins, could be SJ 

components and participate directly in their assembly or maintenance. All septate junction 

components described in so far appear accumulated in the apico-lateral part of epithelial cells. 

In order to investigate whether Bou and Cold accumulate at the SJ level, we tried to 

characterise their subcellular localization and their respective distributions at the cell 

membrane. Unfortunately, immunization of rabbits with synthetic peptides corresponding to 

these proteins did not allow the production of antibodies able to detect the endogenous products 

of the bou and cold genes.  

To circumvent this limitation, we generated transgenic flies carrying constructs allowing the 

expression of HA-Bou and FLAG-Cold tagged forms under the control of an inducible UAS 

promoter. The overexpression of HA-Bou with different drivers, such as a bouGAL4, 

engrailedGAL4 and patchedGAL4 rescue the embryonic lethality of bou mutants, giving rise to 

viable adult flies. Moreover, the distribution of SJ markers such as FasIII, in bou mutant 

embryos rescued by HA-Bou expression appears normal, suggesting that the HA-Bou protein 

has a wild type activity. We also obtained adult cold mutant flies by expressing a FLAG-Cold 

fusion under the control of the patchedGAL4 driver, and again, expression of this protein 

restores FasIII normal distribution in the embryonic epidermal tissues of cold mutants. 

Therefore, our strategy of inserting a tag between the putative signal peptide and the TFD 

domain of Bou and Cold Ly6 precursors seems to permit the production of functional proteins.  

We have firstly studied the subcellular localization of these tagged forms in transfected 

Drosophila S2 cells. Analysis of their distribution, in permeabilizing or non permeabilizing 

conditions indicated that a fraction of HA-Bou and FLAG-Cold is found at the outer leaflet of 

the plasma membrane, as expected for putative GPI-anchored proteins. 

Moreover, we have shown that in Drosophila S2 cells at least a fraction of the HA-Bou protein 

is anchored to the cell membrane by a GPI moiety, which can be released from the plasma 

membrane by the specific enzymatic activity of PLPC. However, the observation of transfected 

S2 cells also revealed that a substantial amount of both HA-Bou and FLAG-Cold is found 

inside the cell, where it could be associated to internal membranes and trafficking vesicles. 
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Secondly, we examined the localization of these tagged proteins in vivo during development 

focusing on different epithelial tissues. Immunostainings done on the imaginal wing disc have 

shown that, as in S2 cells, an important fraction of the HA-Bou and FLAG-Cold is found in the 

interior of the cells. We observed in the same tissue that both proteins are distributed in a 

homogenous fashion along the cell body, but we detected a slight accumulation only in the 

most apical part of the disc epithelial cells, above the SJ. In fact, comparison of the 

localizations of our tagged proteins with the SJ marker Nrg GFP revealed that a fraction of HA-

Bou and FLAG-Cold is found at the membrane, including septate junction areas, but we did not 

detect any obvious accumulation at this level. This result is intriguing, because all proteins 

required for SJ organization are mostly found in SJ areas. One possibility is that HA-Bou and 

FLAG-Cold could act in other domains of the membrane, for instance restricting the movement 

of the SJ components and therefore contributing to their clustering in a specific domain.  

Alternatively, sustained production of these Ly6 proteins in our experiments could saturate the 

cells and mask potential accumulation sites that are relevant to understand their cellular 

function. This might well be the case as by switching-off HA-Bou or FLAG-Cold expression in 

the larval salivary gland cells, we could show that the remnant of both proteins seemed 

stabilized at the level of the SJ domains, where they clearly co-localize with SJ components 

like Nrg and Fas III. This observation raises the possibility that small amounts of HA-Bou and 

FLAG-Cold proteins, acting at the level of the SJs could be sufficient to maintain their normal 

organization.  

Actually, other explanations are consistent with the available observations. Notably, in the 

wing and in the trachea of stage 16 embryos, we detect accumulation of both HA-Bou and 

FLAG-Cold in internal vesicles, and it is tempting to speculate that their primary activity is to 

regulate the intracellular trafficking of SJ components. However, this localization may simply 

reflect the fact that these proteins have to reach the membrane following a secretory pathway, 

and their forced expression may also result in abnormal accumulation in some intercellular 

compartments. 

Development of efficient antisera and the use of immuno-electron microscopy will probably be 

required to elucidate if Bou and Cold are localized at SJ level and participate in the formation 

of intercellular septae. In addition, identification of their molecular partners would provide 

important hints to unveil their particular mode of function during SJ assembly. 
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III.   Are Bou and Cold cell adhesion molecules? 

Some SJ components act in certain physiological contexts as adhesive molecules without 

necessarily forming septate junctions. For example, NrxIV controls the adhesive properties of 

cardial and pericardial cells in the embryonic heart of Drosophila (Yi et al., 2008). In the 

central nervous system, this molecule also mediates interactions with Wrapper (a protein of the 

midline glia), permitting the ensheathment of commissural axons (Stork et al., 2009; Banerjee 

et al., 2010). The adhesive properties of NrxIV have been also shown in S2 cells, where this 

protein equally mediates cell adhesion with Wrapper (Wheeler et al., 2009). So, SJ membrane 

proteins can mediate cell adhesion both in vivo and in S2 cells. We have expressed Bou and 

Cold to high levels in S2 cells, to test their ability to elicit cell adhesion. Our results suggest 

that a putative homophilic or heterophilic interaction between Bou and Cold is not sufficient to 

elicit cell adhesion in this system. In addition, overexpression of these proteins is not capable to 

enhance cell aggregation mediated by the adhesion molecule Nrg. Thus, whereas these results 

argue against the idea that Bou and Cold directly mediate cell adhesion, they do not allow to 

rule out the possibility that they act as cofactors of other adhesion proteins.  

In fact, we do not know to what extent S2 cells aggregation allows reproducing the complex 

interactions that take place in vivo in cell adhesion junctions. For instance, overexpression of 

Nrg efficiently triggers cell aggregation in S2 cells, but it is thought that at the level of the SJ, 

this membrane protein mainly interacts in cis with the NrxIV and the Cont proteins of the 

opposite cell to form a tripartite complex. Interestingly, both Nrx IV (Wheeler et al., 2009) and 

Cont (Faivre-Sarrailh et al., 2004) seem to be expressed by S2 cells, suggesting that in this case 

S2 cells do reproduce the in vivo situation. Data from transcriptome analyses suggest that Bou 

and Cold are also expressed by S2 cells and thus it would be interesting to knock down their 

expression by RNAi to test whether their presence is required for Nrg mediated aggregation. 

In addition, we cannot exclude the possibility that an adhesive role of Bou and Cold could 

become evident in presence of other molecules that are not expressed in S2 cells at sufficient 

levels. For instance, Bou and Cold could enhance the aggregation activity of other septate 

junction adhesion molecules such as Fasciclin III and Lachesin, that are thought to mediate 

homophilic cell adhesion and whose ectopic expression can trigger cell aggregation in S2 cells 

(Snow et al., 1989; Strigini et al., 2006).  
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IV.   Autonomous versus non autonomous requirements and the mode of action of  

cold and bou  

Our results indicate that both in embryonic and larval epithelial tissues the activity of bou can 

operate in a non cell autonomous fashion to organize septate junctions. Indeed, the 

overexpression of HA-Bou specifically in the tracheal system of bou mutant embryos rescues 

SJ organization in tracheal cells, but also in all ectodermal derivatives where Bou activity is 

required. In addition, we have shown in larval wing disc that this HA-tagged Bou version can 

travel from cell to cell, possibly associated to extracellular particles. Therefore, one 

straightforward way to explain the non autonomous action of Bou is that it diffuses from cell 

to cell. Our observations also suggest that, at least in the embryo, this protein could diffuse 

from tissue to tissue, possibly trough the hemolymph, although we have failed to reveal this 

phenomena by immunostainings. Finally, in the larval wing disc, clones of bou mutant cells 

have no SJ defects, consistent with the idea that bou requirement for SJ organisation has been 

rescued by the surrounding wild type cells. In contrast, the cold gene, which codes for a very 

similar protein and elicits indistinguishable phenotypes, acts in clear-cut autonomous way and 

we did not detect extracellular diffusion of the Flag-Cold protein.  

 

Interestingly, this “non-cell autonomous” mode of action of bou has not been previously 

described for genes participating in septate junction organization. In order to better understand 

how Bou could diffuse, we have begun studying the nature of HA-Bou positive vesicles that we 

detect in the wing discs. In mammals, the GPI-bound Ly6 member CD59, a cell-surface 

glycoprotein protecting host cells from the complement system attack, has been found to travel 

in the human serum, directly associated with HDL apolipoproteins (Väkevä et al., 1994). 

Interestingly, recent studies have reported the crucial role of Drosophila lipoproteins as 

vehicles for the movement of lipid-linked morphogens (like Wingless and Hedgehog) and also 

GPI-linked proteins (Panáková et al., 2005). However, our observations indicate that HA-Bou 

is not associated with apolipophorin II particles (the insect equivalent of vertebrate 

apolipoproteins) (Hijazi et al., 2009), which are readily detected in the wing disc in the 

extracellular space, as the HA-Bou positive particles. This result suggests that Bou diffuses in a 

different way. The protein CD59 can also travel with its intact GPI coupled to membranous 

vesicles called prostasomes that are specifically produced by the prostatic gland cells (Rooney 

et al., 1993). It is envisageable that the Drosophila larval wing epithelium produce vesicles 

similar to these prostasomes, which we propose to call ‘boudosomes’.Whether these particles 

resemble exosomes or other known membranous vesicles remains to be explored.  
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Another open question is whether the HA-Bou GPI anchor is required for its incorporation into 

these particles and for its extracellular diffusion. In fact, cleavage of the GPI anchor, mediated 

by the activity of phospholipases, could allow extracellular release of the Bou TFD. We tried to 

explore this possibility getting inspiration from the snake toxins, which lack a GPI anchor and 

are efficiently secreted. We designed a Bou protein lacking its C-terminal end, which 

corresponds to the presumptive sequences required for GPI moiety addition. Unfortunately this 

defective protein is not capable of reaching the cell membrane and is neither functional nor 

capable of leaving the cell. Therefore, it seems that the deleted C-terminal sequences are 

required for the internal trafficking of the Bou precursor but deciphering the role of the GPI 

anchor will require other strategies.  

Still the most interesting issue that should be addressed in the future is to understand if Bou 

diffusion is essential for its function during SJ organization or it is just an added feature that is 

independent of its main function. As judged by in situ hybridisation, bou realm of expression 

accurately matches the tissues in which we have detected a bou genetic requirement, so in 

principle Bou could act in these tissues without leaving the cell. Interestingly, cold which 

codes for a very similar protein and elicits indistinguishable phenotypes, acts in clear-cut 

autonomous way. Furthermore, we did not detect extracellular diffusion of the Flag-Cold 

protein, suggesting that either this protein does not possess a GPI-anchor, which is still a 

possibility, or that presence of this lipidic moiety is not the only factor determining the ability 

of Ly6 proteins to exit the cell.  

 

V.   Functions of cold and bou in neural tissues 

Our results indicate that the activity of the Ly6 gene cold is essential for the maintenance of 

paracellular barrier and septate junction organization in different embryonic and larval 

epithelial tissues. We have shown as well that the paracellular barrier is compromised in cold 

mutants at the level of the ventral cord and the chordotonal organs of the peripheral nervous 

system. This result was somehow expected, since similar defects have been reported both in 

epithelial and neural tissues in mutants for many SJ components, reflecting the strong structural 

similarities existing between the SJ of both tissues.  

Many different organisms, including vertebrates, have developed efficient systems to isolate 

the brain from the rest of the body fluids and tightly regulate the composition of ions, proteins, 

hormones and nutrients that have access to the neuronal tissues. In Drosophila, the blood brain 
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barrier (BBB) is established by SJ formed between a subpopulation of glial cells, called 

subperineurial glia, that form a covering sheet protecting axon projections and the ventral cord 

(Stork et al., 2008). We have detected cold expression in a subset of glial cells that could 

correspond to the subperineurial population, suggesting that the BBB increased permeability 

observed in cold mutants could be due to defects in the glial SJ. However, analysis at the 

electron microscopy level of the SJ structure of cold mutants will be required to confirm this 

hypothesis, as other valid alternatives exist. For instance, it has been shown in the Drosophila 

ventral cord that the Moody G-protein coupled receptor (GPCR) is required for maintenance of 

an efficient BBB function, suggesting that GPCR signalling contributes to SJ formation. 

However, in moody mutants the formation of SJ is not completely abrogated in the 

subperineurial glial contact regions, and only a reduction in the total number of septae has been 

reported (Schwabe et al., 2005). Actually, moody BBB defects could be consecutive to the 

overall perturbations of the subperineurial cells structure, as in this mutant background cells fail 

to interdigitate as much as they do in a wild type context (Schwabe et al., 2005). Interestingly, a 

recent study has shown that mutants for different components of the actin-related protein-2/3 

(Arp2/3) complex, which regulate the actin cytoskeleton organization, show similar structural 

defects to those seen in moody mutants, including an impaired BBB (Hatan et al., 2011). 

Moreover, a careful structural characterization of the subperineurial cell contacts has shown 

that moody signalling triggers the formation of a series of specialized actin rich structures 

(ARS). In fact, it has been proposed that moody contribute to the maintenance of the BBB by 

controlling actin cytoskeleton organization. As many known SJ components, such as 

Neuroglian, also appear to be associated with the ARS (Hatan et al., 2011), it could be worth to 

evaluate if Cold exerts its activity at the level of these structures. 

Our work indicates that, differing from cold, bou is not essential for the organization of the 

BBB in the central nervous system, although it is required at the level of the chordotonal 

organs. This conclusion comes from analysis of diffusion of a 10 KDa fluorescent dye into the 

ventral cord of live embryos at stage 17, when the brain is already protected by an organized 

barrier preventing penetration of this molecule (Carlson and Hilgers, 1998; Carlson et al., 

2000). However, it has been shown that dyes as small as the FITC-dextran molecules (3 KDa) 

are efficiently excluded from the fly adult brain (Mayer et al., 2009), and not all the SJ mutants 

exhibit the same degree of permeability. For instance, it has been reported that a 70 kDa dye is 

excluded from the brain in some mutants (like moody) and not others (like nrxIV and sinu), 

whereas smaller dyes (10 kDa) easily penetrated into the brain of all of them (Stork et al., 

2008).  Thus, the use of smaller dyes may reveal BBB also in the ventral cord of bou mutants. 
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Another possibility is that a permeability defect might only became manifest in bou mutants at 

later stages, arguing for different temporal requirement for bou in the CNS and the PNS. In 

fact, both SJ types do not mature at the same moment: an efficient barrier is first established in 

the peripheral nervous system (stage 16) and later on in the ventral cord (stage 17) (Banerjee 

and Bhat 2007; Schwabe et al., 2005).  

Nonetheless, our results may also genuinely reflect a different requirement for bou in the 

peripheral versus the central nervous systems. In this respect, it seems plausible that the SJ 

formed by different cell types (epithelial, peripheral nervous system or central nervous system) 

display different permeability thresholds or selective properties, and thus rely on a different 

molecular and structural organization. The differential requirement for bou could reflect this 

heterogeneity; raising the exciting possibility that bou belongs to a molecular circuit involved 

in the modulation of the selective properties of paracellular barriers. 

In any case, our results show that two Drosophila Ly6 proteins could play an essential role at 

the level of the nervous system in glial tissues. Could other Ly6 proteins carry out similar 

function in vertebrates? It has been shown that F3/Contactin, NF155/Neurofascin and 

Caspr/Paranodin are conserved proteins with a role in the organization of PSJ (Maier et al., 

2007; Labasque and Faivre-Sarrailh 2010). These proteins have clear orthologues in 

Drosophila (respectively, Contactin, Neuroglian and Neurexin IV) that are all involved in SJ 

formation in the subperineural glia. This conservation between flies and vertebrates SJ might 

thus extend to members of the Ly6 family. 

The human genome codes for 45 Ly6 members, playing multiple roles in processes such cell 

adhesion, migration and signalling. Many, if not all of these 45 genes have orthologues in other 

mammals, notably in mice and rats, which are suitable model systems for research in 

neurobiology. The high variability of the Ly6 domain precludes the identification of vertebrate 

orthologues corresponding to the Drosophila Ly6 genes. Although evidence are still lacking in 

vertebrates, further investigations may reveal that some Ly6 proteins carry out functions 

analogous to those of Cold and Bou in the organization of PSJ. Also, a better understanding of 

the mode of action of these two proteins in Drosophila and the identification of their molecular 

partners will add more information permitting further evaluation of this hypothesis. 

As far as the arthropods lineage is concerned, there are chances that the function of cold and 

bou might be conserved, at least in this phyletic group. Our comparative analysis of the full 

complement of Ly6 coding genes present in Drosophila and in the hymenopteran Apis 
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mellifera shows that bou and cold orthologues are present in the genome of both insects, which 

is not the case for most other Drosophila Ly6 proteins (Hijazi et al., 2009). In addition, we 

have been able to identify orthologues for these two genes not only in multiple insect genomes 

(Hijazi et al., 2009; Hijazi et al., 2011), but also in the genomes of other arthropods, like the 

crustacean Daphnia pulex and the chelicerate Tetranychus urticae (Roch F., unpublished 

results). These observations are consistent with the idea that bou and cold make part of an 

ancient conserved molecular network operative at least in the arthropod lineage. 

 

VI.   Multiple roles for 4 Ly6 genes in SJ organization? 

The high degree of variability observed in the TFD domains of Ly6 proteins has been thought 

to be at the origin of their capacity to bind a broad spectrum of targets and to accomplish 

multiple biological functions. Mutants for four different Drosophila Ly6 genes, boudin, cold, 

crooked and crimpled show indistinguishable phenotypes and they are likely to participate in 

a non-redundant manner in the same process, the formation of epithelial SJ (Hijazi et al, 2009; 

Nilton et al., 2010; Hijazi et al., 2011). However, besides their diagnostic set of cysteines, 

these four proteins are highly divergent at the level of their primary sequences and their direct 

comparison does not permit to predict a common molecular role. Interestingly, the four Ly6 

genes have highly conserved orthologues in other insects, such as the honey-bee (Hijazi et al., 

2009). Thus, it is possible that although they participate in the same biological process, they 

could operate via completely different mechanisms. Moreover, their non-redundant roles 

could have diverged early in insect evolution. Supporting this line of thought, our data 

concerning the localization of Bou and Cold indicate that at least a fraction of these proteins is 

present at the cell membrane, whereas the Crooked protein seems to mainly concentrate in 

cytoplasmic puncta (Nilton et al., 2010). In addition, at least some of these Ly6 proteins have 

acquired specific properties, as boudin can act in a non cell autonomous way whereas the 

other genes act in a strictly cell autonomous manner. This observation indicates that, at least 

in the case of Bou, these proteins do not always traffic together in the same cell 

compartments.  

 

However, we still lack enough data to propose a comprehensive model explaining the mode of 

action of these four Ly6 proteins during SJ organization. Upcoming studies will allow 

clarifying if these genes act in completely independent ways or cooperate together to organize 

the assembly of the SJ structures.  
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b) Perspectives 
Our results show that bou and cold are required for the organization of septate junctions. 

Nevertheless, we still ignore if the products of these two genes act as components of the 

septate junction complex or participate in their assembly by another mechanism. Future 

studies focusing in this question, and in the long run, permitting the identification of the Bou 

and Cold molecular partners will greatly benefit from a more detailed characterization of the 

subcellular localization of these two proteins. 

 

I.   Studying in vivo the localization and the cellular trafficking of Bou and Cold  

As all GPI anchored proteins, Bou and Cold are supposed to be inserted into lipid raft 

membrane microdomains, whose presence in Drosophila tissues has been postulated for a 

long time (Rietveld et al., 1999). In principle, the organization of these microdomains could 

be extremely sensitive to the presence of detergents commonly used in immunohistochemistry 

techniques. To bypass this potential technical problem, we decided to generate fluorescent 

versions of Bou and Cold, using the mCherry and Citrine tags. Expression of these proteins in 

live tissues will allow to better characterize the distribution of Bou and Cold, and in particular 

their intracellular trafficking and membrane localization. In addition, they will also allow 

studying the diffusion of the Bou protein in fully physiological conditions. We expect that 

these tools could be more adapted for studying the nature of vesicles transporting Bou from 

cell to cell and to understand how this protein exits the cell and enter the adjacent ones. The 

use of different fluorescent markers for the main endosomal compartments will also help to 

clarify the cellular routes followed by Ly6 proteins during SJ assembly. 

 

Although our results suggest that Bou travels associated with extracellular vesicles, we still 

ignore if Bou diffuses with an intact GPI-anchor. It is also possible that the GPI-anchored 

form is cleaved by cellular phospholipases at the cell surface and then released as a soluble 

form, like the snake toxins. To explore this possibility, we will generate chimeric proteins 

where a fluorescently tagged version of the Bou Ly6 domain is coupled to a transmembrane 

protein domain, like the Nrg transmembrane region. We plan to insert between these two 

domains the consensus cleavage site of the tobacco mosaic virus protease (TevP), so that the 

tagged Ly6 domain could be released from the membrane upon co-expression of the TevP 

protease (Brankatschk and Eaton, 2010). This tool might be instrumental to test if Bou 

diffuses as a secreted factor, and if this form of Bou is functional (i.e. capable of contributing 

to SJ organization in a non cell autonomous way). 
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II.   Identification of Bou and Cold molecular partners by phenotypic analysis 

    and biochemical approaches 

 

Phenotypic analysis: Basically, our studies have shown that in bou and cold mutants, all the 

SJ components tested in so far appear distributed homogeneously along the lateral cell 

membrane instead of clustering in the apico-lateral part of epithelial cells. However, we have 

not analyzed the localization of other known SJ components, like the Drosophila Claudins, 

the Lachesin protein and the different Na+/K+ pump subunits, which are also potential partners 

of the Ly6 proteins. It has been shown in the case of the Contactin SJ component that this 

protein is retained in intracellular vesicles in NrxIV mutants, but not in other mutant 

backgrounds (Faivre-Sarrailh et al., 2004). Thus, we plan to extend the phenotypic 

characterization of the bou and cold phenotypes using a larger battery of markers and, when 

possible, analysis of live embryos. In particular, these studies will be not only focused on the 

late stages of development but also on the early phases of development in which the SJ 

become established. We hope in this way to progress in the identification of particular 

relationships between Ly6 proteins and already known SJ components, pointing to potential 

couples of interacting proteins. 

In addition, the study of the localization of the different fluorescent Bou and Cold forms in 

live embryos could be also carried out in different mutant backgrounds, to provide further 

opportunities of detecting particular interactions. 

 

Biochemical approach: The identification of potential Bou and Cold SJ partners by detailed 

phenotypic characterizations would serve as prime criteria allowing the choice of candidate 

genes for more in depth biochemical studies, permitting to establish which are the molecular 

partners of the Ly6 proteins. In this sense, we envisage using co-immunoprecipitation tests to 

detect physical interactions, and we are envisaging the generation of new efficient antisera 

against Bou and Cold that will allow their detection in wild type contexts to ease the 

biochemical experiments. 

 

In the long run, we expect that these strategies will provide a satisfactory answer to a series of 

questions that this PhD work has permitted to formulate: which are the cellular and molecular 

contributions of the Ly6 proteins, Bou and Cold, to the cell barrier function and the SJ 

formation? 
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Abstract 

The Ly6 superfamily is a large family of genes present in most metazoan genomes, including 
45 members in Humans. These genes mainly encode for extracellular glycoproteins attached 
to the cell membrane by a GPI anchor (Glycosylphosphatidylinositol), but also for soluble 
ligands. They are characterized by the presence of an extracellular domain, called Ly6 
domain, whose structure is provided by 8 to 10 cysteines present in conserved positions. The 
great variability exhibited by the Ly6 primary sequences allows these proteins to exert highly 
divergent roles. Although their function has been elucidated in various organisms, we still 
know very little about their potential roles during animal development. During my PhD, I 
used the Drosophila model system to extend our knowledge about the functions of these 
proteins in a developmental context. Our work has permitted the identification of 36 members 
of the Ly6 superfamily in Drosophila melanogaster, and I have characterized at a functional 
level two of these genes during development. Phenotypic analysis of mutants for these two 
genes, called boudin and coiled, has shown that both of them are required for tracheal 
morphogenesis and organization of septate junctions in epithelial tissues. Septate junctions are 
cell adhesion structures analogous to vertebrate tight junctions. They allow epithelia to 
perform their barrier function and regulate the passage of solutes and ions through the 
paracellular space. Septate junctions in Drosophila are similar to the vertebrate paranodal 
junctions, present at the contact between axons and Schwann cells, and our results show that 
boudin and coiled are also required for the organization of septate junctions in the fly nervous 
system. On the other hand, we have shown that the protein Boudin is able to diffuse from one 
cell to another to regulate septate junction formation. This non cell autonomous mode of 
action had never been described for proteins involved in septate junction organization. 
Studying the diffusion mechanisms and the trafficking of Boudin is important to better 
understand how this protein performs its function. Finally, another challenge will be to 
identify functional partners of Boudin and Coiled to elucidate the molecular mechanisms by 
which these proteins control the maintenance and the organization of septate junction 
structures.  
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