
THÈSETHÈSE
En vue de l'obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSEDOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse III - Paul Sabatier
Discipline ou spécialité : Physico-Chimie Théorique

JURY
Prof. Gian Luigi Bendazzoli, Professeur à l'Université de Bologna

Prof. Isabelle Baraille, Professeur à l'Université de Pau
 Dr. Jacques Bonvoisin, Chargé de Recherche àu CEMES, Toulouse

Prof. Thierry Leininger, Professeur à l'Université Paul Sabatier 

École doctorale : Sciences de la Matière
Unité de recherche : Laboratoire de Chimie et Physique Quantiques (UMR 5256)

Directeurs de Thèse : Prof. Stefano Evangelisti
                             Prof. Thierry Leininger

Présentée et soutenue par Wissam Helal
Le 18 Mai 2009

Titre : Utilisation des méthodes de localisation multi-référence 
pour les systèmes quasi-dégénérés



To my family:

Mother, Father, Brother, & Manal

With love and respect...



Acknowledgement

I would like to express my deep appreciation to my advisors Prof. Ste-
fano Evangelisti and Prof. Thierry Leininger for their guidance, fruitful dis-
cussions, continuous support and encouragement through the course of this
work.

Special thanks go to Daniel Maynau and Nadia Ben Amor for the collab-
oration and for being very patience while explaining to me the arcanes of
CASDI program code.

I was deeply touched by the friendship and assistance of all the members
of the “Laboratoire de Chimie et Physique Quantiques” at Paul Sabatier
University.

I would also like to express my gratitude to the members of the defence com-
mitte: Prof. Gian Luigi Bendazzoli, Prof. Isabelle Baraille, Prof. Jacques
Bonvoisin, and Prof. Thierry Leininger.

The financial support of the Institute of Research on Complex Atomic and
Molecular Systems (IRSAMC) during some periods through the course of
this work is profoundly acknowledged.

I would also like to thank my professors in Yarmouk University and Applied
Science University in Jordan, for encouraging me to pursue my postgraduate
study.



Contents

Contents iii

List of Figures vi

List of Tables xi

1 Introduction 1

2 Theoretical methods of calculations: ab-initio methods 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Quantum mechanics and quantum chemistry . . . . . . . . . . . . . 5

2.1.2 Notation used in the present work . . . . . . . . . . . . . . . . . . . 7

2.1.2.1 Bracket notation . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2.2 Second quantization . . . . . . . . . . . . . . . . . . . . . 7

2.2 Basic approximations in ab-initio methods . . . . . . . . . . . . . . . . . . 8

2.2.1 Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 The Hamiltonian operator and the Born-Oppenheimer approximation 9

2.2.3 The wave function and its relevant basic approximations . . . . . . 10

2.2.4 Hartree-Fock Self-Consistent Field . . . . . . . . . . . . . . . . . . . 13

2.2.4.1 RHF, UHF and ROHF methods . . . . . . . . . . . . . . . 15

2.3 Correlated ab-initio methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Electron correlation energy . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2.1 Dynamical and non-dynamical correlation . . . . . . . . . 19

2.3.3 Dynamical correlation: Single-Reference Methods . . . . . . . . . . 19

2.3.3.1 Configuration interaction . . . . . . . . . . . . . . . . . . 19

i



ii CONTENTS

2.3.3.2 Many-Body Perturbation Theory . . . . . . . . . . . . . . 21

2.3.3.3 Coupled-cluster methods . . . . . . . . . . . . . . . . . . . 22

2.3.4 Non-dynamical correlation: Multi-Configuration SCF . . . . . . . . 22

2.3.4.1 CASSCF . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.5 Dynamical corrections on non-dynamical wave-functions: Multi-Reference

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.5.1 Multireference configuration interaction . . . . . . . . . . 23

2.3.5.2 Multireference perturbation theory . . . . . . . . . . . . . 24

2.3.6 Some practical aspects and limitations of non-dynamical correlation

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Localized multi-reference methods . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Localization in chemistry and quantum chemistry . . . . . . . . . . 24

2.4.2 Linear Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 CASDI program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 DFT methods used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Basis sets used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Mixed valence systems 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Electron-transfer reactions and mixed-valency . . . . . . . . . . . . . . . . 31

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Mixed-valence systems and their classification . . . . . . . . . . . . 32

3.2.3 Electron transfer theory and potential energy surfaces . . . . . . . . 32

3.2.4 Three-state classical models . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Computational quantum mechanical methods of mixed-valence molecules . 36

3.4 Mixed-valence molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Inorganic mixed-valence molecules . . . . . . . . . . . . . . . . . . . 38

3.4.2 Organic mixed-valence molecules . . . . . . . . . . . . . . . . . . . 39

3.5 Reaction coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 The “Spiro” molecular cation 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Spiro symmetry and orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Calculations and computational procedures . . . . . . . . . . . . . . . . . . 49



CONTENTS iii

4.3.1 Electronic states computed . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Basis sets used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Geometry optimization . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.4 The reaction coordinates . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.5 The choice of the active space . . . . . . . . . . . . . . . . . . . . . 50

4.3.6 Methods of calculations used . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Results of the theoretical modeling and calculations on Spiro . . . . . . . . 52

4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 A preliminary publication on Spiro . . . . . . . . . . . . . . . . . . 52

4.4.3 Results of CAS(7/4) active space using SZ and DZ basis sets . . . . 53

4.4.4 Results of CAS(7/4) active space with the augmented basis sets . . 64

4.4.5 Results of CAS(7/8) active space with all the basis sets . . . . . . . 66

4.4.6 Results of CAS(11/10) active space with all the basis sets . . . . . 68

4.4.7 NEVPT calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Linear beryllium chains 75

6 The bis-Triarylamines 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Triarylamine 1 cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Triarylamine 4 cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 HF and DFT energies of the optimized geometries . . . . . . . . . . 116

6.3.2 Geometries of the optimized structures . . . . . . . . . . . . . . . . 118

7 Conclusion 123

8 Appendix 125

8.1 Other results in published articles: CASSCF, MRCI, and NEVPT calcula-

tions on Spiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2 Other results of calculations on Spiro using CAS(7/4), CAS(7/8) and CAS(11/10)

active spaces with different basis sets . . . . . . . . . . . . . . . . . . . . . 149

References 163



iv CONTENTS



List of Figures

3.1 A cross section of an energy profile for initial state a and final state b in a

typical symmetric (exothermicity or ∆E = 0) ET reaction.The solid curves

are the adiabatic surfaces, the dashed lines refer to diabatic surfaces. Qa

and Qb are equilibrium nuclear coordinates of a and b respectively. Elec-

tron transfer matrix Vab, diabatic activation energy Ed, adiabatic activation

energy Ea, and the intramolecular reorganizing energy Eopt, are indicated. . 34

3.2 Typical molecular structures of bis-triarylamines. (The IUPAC names of

molecules 1 and 4 are given in chapter 6). . . . . . . . . . . . . . . . . . . 40

4.1 The Spiro π-σ-π system 5,5’(4H,4H’)-spirobi[cyclopenta[c]-pyrrole]2,2’,6,6’tetrahydro

molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Valence “π” molecular orbitals of the neutral Spiro molecule computed at

RHF-SCF/SZ for D2d geometry using C2v irreducible representations. (See

Table 4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Canonical MO’s of CAS(11/10)/TZP for Spiro+ in C2v geometry for B1 state. 71

4.4 Localized guess MO’s of CAS(11/10)/SZ for Spiro+ in C2v geometry for B1

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Localized optimized MO’s of CAS+S(11/10)/SZ for Spiro+ in C2v geometry

for B1 state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 bis-Triarylamine (1): N,N,N’,N’-Tetra(4-methoxyphenyl)-1,4-phenylenediamine.113

6.2 bis-Triarylamine (4): Bis{4-[N,N-di(4-methoxyphenyl)amino]phenyl}butadiyne.114
6.3 bis-triarylamine 1: Molecular orbitals (HOMO up and LUMO bottom) of

Bis{4-[N,N-di(4-methoxyphenyl)amino]phenyl}butadiyne obtained by local-

izing the guess orbitals at CASSCF(1/2) level. . . . . . . . . . . . . . . . . 116

v



vi LIST OF FIGURES

6.4 Molecule triarylamine 4 with atom numbering . . . . . . . . . . . . . . . . 118

6.5 ROHF/ANO-DZP MO’s of Triarylamine 4 D2/HF: bottom, SOMO; middle,

HOMO; top, LUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 ROHF/ANO-DZP MO’s of Triarylamine 4+ C2/HF(mix): bottom, SOMO;

middle, HOMO; top, LUMO . . . . . . . . . . . . . . . . . . . . . . . . . . 121



List of Tables

4.1 The designation of the valence “π” molecular orbitals of the Spiro neutral

molecule shown in Figure 4.2 for the D2d geometry using C2v irreducible

representations and the corresponding MO’s in D2d symmetry together with

their orbital energies (in a.u.). Orbitals 1 to 6 are doubly occupied, while

orbitals 7 to 10 are empty. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Energies (kJ/mol) of the different states of Spiro cation, at D2d geometry

(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZP

basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt

and CAS+Sloc. For each method, the reference energy has been taken as

the energy of the ground state 12A2 in the D2d geometry. . . . . . . . . . . 65

4.3 Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry

(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using TZP

basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt

and CAS+Sloc. For each method, the reference energy has been taken as

the energy of the ground state 12A2 in the D2d geometry. . . . . . . . . . . 66

4.4 Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry

(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using SZ

basis set and CAS(7/8): CAScan, CASloc−guess, CASloc−opt and CAS+Sloc.

For each method, the reference energy has been taken as the energy of the

ground state 12A2 in the D2d geometry. . . . . . . . . . . . . . . . . . . . . 67

vii



viii LIST OF TABLES

4.5 Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry

(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZ

basis set and CAS(7/8): CAScan, CASloc−guess, CASloc−opt and CAS+Sloc.

For each method, the reference energy has been taken as the energy of the

ground state 12A2 in the D2d geometry. . . . . . . . . . . . . . . . . . . . . 68

4.6 Energies (kJ/mol) of the different states of Spiro cation, at D2d geometry

(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using SZ

basis set and CAS(11/10): CAScan, CASloc−guess, CASloc−opt and CAS+Sloc.

For each method, the reference energy has been taken as the energy of the

ground state 12A2 in the D2d geometry. . . . . . . . . . . . . . . . . . . . . 69

4.7 Energies (kJ/mol) of the different states of Spiro cation, at D2d geome-

try (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using

TZP basis set and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz and

CAS+Sloc−frz. For each method, the reference energy has been taken as the

energy of the ground state 12A2 in the D2d geometry. . . . . . . . . . . . . 70

6.1 Energy (a.u.) of triarylamine 4 (indicated as T4 in this table), neutral,

cation (+) and bication (++) using ROHF/ANO-DZP and DFT-B3LYP/ANO-

DZP methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Geometry of Triarylamine 4 (indicated as T4 in the Table), neutral, cation

and bication. Distances are in Angstroms. (Br) stands for the geometries of

T4 found by Bredas et al. in JACS 2002, vol. 124, pp. 10519 - 10530 using

DFT B3LYP method and 6 − 31G∗∗ basis. CN1: bond distance between

C1 and N1, CN2: bond distance between C2 and N2, CN3: bond distance

between C3 and N1, CN4: bond distance between C4 and N2, DH1: dihedral

angle between C7, C5, C6, and C8, DH2: dihedral angle between C4, N2,

N1, and C3, DH3: dihedral angle between C1, N1, C3, and C9, and DH4:

dihedral angle between C2, N2, C4, and C10. See Figure 6.4 for atom

numbering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.1 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using SZ basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess,

CASloc−opt, CAS+Sloc and CAS+SDloc . . . . . . . . . . . . . . . . . . . . 150



LIST OF TABLES ix

8.2 Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry

(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using SZ

basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt,

CAS+Sloc and CAS+SDloc. For each method, the reference energy has been

taken as the energy of the ground state 12A2 in the D2d geometry. . . . . . 151

8.3 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using DZ basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess,

CASloc−opt, CAS+Sloc and CAS+SDloc. . . . . . . . . . . . . . . . . . . . . 152

8.4 Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry

(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZ

basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt,

CAS+Sloc and CAS+SDloc. For each method, the reference energy has been

taken as the energy of the ground state 12A2 in the D2d geometry. . . . . . 153

8.5 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using DZP basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess,

CASloc−opt and CAS+Sloc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.6 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using TZP basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess,

CASloc−opt and CAS+Sloc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.7 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using SZ basis set and CAS(7/8): CAScan, CASloc−guess, CASloc−opt and

CAS+Sloc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.8 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using DZ basis set and CAS(7/8): CAScan, CASloc−guess, CASloc−opt and

CAS+Sloc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.9 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using DZP basis set and CAS(7/8): CAScan, CASloc−guess. . . . . . . . . . 157



x LIST OF TABLES

8.10 Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry

(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZP

basis set and CAS(7/8): CAScan, CASloc−guess. For each method, the ref-

erence energy has been taken as the energy of the ground state 12A2 in the

D2d geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.11 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using TZP basis set and CAS(7/8): CAScan, CASloc−guess. . . . . . . . . . . 158

8.12 Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry

(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using TZP

basis set and CAS(7/8): CAScan, CASloc−guess. For each method, the ref-

erence energy has been taken as the energy of the ground state 12A2 in the

D2d geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.13 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using SZ basis set and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz,

CAS+Sloc−frz, CAS+SDloc−frz, CASloc−opt and CAS+Sloc. . . . . . . . . . . 159

8.14 Absolute energyies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using DZ basis set and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz

and CAS+Sloc−frz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.15 Energies, in kJ/mol, of the different states of Spiro cation, at D2d geom-

etry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using

DZ basis set and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz and

CAS+Sloc−frz. For each method, the reference energy has been taken as the

energy of the ground state 12A2 in the D2d geometry. . . . . . . . . . . . . 160

8.16 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using DZP basis set and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz

and CAS+Sloc−frz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



LIST OF TABLES xi

8.17 Energies, in kJ/mol, of the different states of Spiro cation, at D2d geom-

etry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using

DZP basis set and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz and

CAS+Sloc−frz. For each method, the reference energy has been taken as the

energy of the ground state 12A2 in the D2d geometry. . . . . . . . . . . . . 161

8.18 Absolute energies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods

using TZP basis set and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz

and CAS+Sloc−frz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162









Chapter 1

Introduction

Le théme principal de cette thèse est l’étude de la structure électronique et des pro-

priétés physico-chimiques d’un certain nombre de composés à valence mixte en utilisant

des méthodes de chimiqie quantique ab-initio multi-référence fortement corrélées.

Les composés à valence mixte étudiés dans cet ouvrage sont: un cation de “spiro”

moléculaire, une série de châınes linéaires cationiques de béryllium, et deux molécules

cationiques de la famille “bis-triarylamines” (voir la section §6.1 pour la nomenclature IU-

PAC de ces deux molécules). Les méthodes de chimie quantique utilisées dans cette étude

sont les méthodes ab-initio multi-référence utilisant à la fois des orbitales moléculaires

canoniques et localisées. La méthode ab-initio multi-référence variationnelle et locale

(CASDI), développée récemment dans notre laboratoire “Laboratoire de Chimie Physique

et quantiques” à l’Université de Toulouse III, a reçu une particularité spécifique dans ce

travail pour l’étude des propriétés électroniques des composés à valence mixte.

Considérant le caractère quasi-dégénéré des composés à valence mixte, la méthode ab-

initio multi-reference locale semble être adéquate pour traiter tels composés chimiques.

Cette hypothèse a été testée dans le cadre des travaux de cette thèse, en comparant les

résultats de la méthode ab-initio multi-référence locale à d’autres méthodes bien établies.

Le cation moléculaire à valence mixte de type spiro étudié dans ce travail, 5,5’(4H,4H’)-

spirobi[cyclopenta[c]pyrrole]2,2’,6,6’tetrahydro cation, est un composé chimique modèle

avec une taille moléculaire relativement petite. Ce dernier point a pu ouvrir la possi-

bilité d’avoir des nombreux résultats des calculs quantique ab-initio multi-référence sur

cette molécule. Plusieurs résultats ont été obtenus pour la molécule “spiro” par le fait

de calculer sa structure électronique : les bas états électroniques à travers une coor-

1
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donnée de réaction du transfert d’électron intramoléculaire, et quelques paramètres spec-

troscopiques à valence mixte. Malheureusement, dans la littérature scientifique, aucun

des résultats expérimentaux de la molécule “spiro” ne sont disponibles pour valider nos

modèles théoriques et procédures de calculs. Néanmoins, considérant le caractère “modèle”

de l’étude sur cette molécule particulière, les résultats des calculs obtenus ont été comparés

avec d’autres méthodes bien établies de chimie quantique.

En outre, notre objectif était d’étendre cette enquête au-delà des systèmes modèles et

à inclure quelques autres systèmes moléculaires à valence mixte pour être traités à l’aide

des méthodes ab-initio locale multi-référence fortement corrélées. Gardant cela à l’esprit,

une série de châınes cationiques linéaires atomiques de béryllium, avec le nombre d’atomes

de béryllium dans les châınes varie de 6 à 12, a été étudiée. Les résultats obtenus pour

ces systèmes sont très prometteurs et peuvent ouvrir de nombreuses nouvelles perspectives

pour des futures recherches et investigations.

Enfin, notre objectif était aussi de pousser les limites de la méthode ab-initio multi-

référence pour inclure des molécules relativement importantes en taille qui ne sont pas

généralement traitées par un tel niveau de la théorie, tout en gardant en même temps

une grande précision quantitative. Les molécules candidates sont deux bis-triarylamines, à

savoir, le N,N,N’,N’-tetra(4-méthoxyphényl)-1,4-phénylènediamine et le bis{4-[N,N-di(4-
méthoxyphényl)amino]phényl}butadiyne. Nous avons choisi en particulier cette classe

de molécules puisque leur modélisation théorique et exigences de calculs présentent un

véritable défi en raison de leur grande taille moléculaire et de leur propre nature chimique

en tant que des composés à valence mixte. En outre, et contrairement à la molécule cation-

ique du “spiro” étudié dans ce projet, les bis-triarylamines sont des composés “réelles” où

de nombreux résultats expérimentaux, concernant leur caractéristiques de valence mixte,

peuvent être trouvées dans la littérature scientifique. En raison de leur taille inhabituelle, et

donc du temps important de calculs nécessaires, le projet sur ces deux molécules n’a pas été

terminé durant le délai de mon projet de doctorat. Cependant, les résultats préliminaires

de calculs établis pour ces deux molécules sont présentés et discutés.

La thèse est organisée comme suite: chapitre 2 se penche aux méthodes ab initio de

chimie quantique basées sur les fonctions d’ondes. En fait, la plupart des méthodes décrites

dans ce chapitre ne sont pas utilisés pendant le cours de la thèse. Cependant, les méthodes

ab-initio corrélées et les méthodes multi-référence localisés, qui sont largement utilisés

dans ce travail, et qui sont expliqués plus en détail à la fin du chapitre 2, ne pouvait pas
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être correctement discutées sans présenter les caractéristiques principales et les limites des

méthodes ab-initio “traditionnelles”. Chapitre 3 est entièrement consacré à la chimie et la

physique générale des composés moléculaires chimiques à valence mixte. Dans ce chapitre,

j’ai brièvement examiné les principaux modèles pour conceptualiser correctement le trans-

fert de charge intramoléculaire, ou le transfert d’électrons, dans des systèmes moléculaires

à valence mixte. Une enquête sélectionnée, mais pas complète, de certains composés or-

ganiques et inorganiques à valence mixte est également discutée dans ce chapitre. Les

chapitres 4, 5 et 6 constituent le noyau de cette thèse, dans laquelle les résultats de la

modèlisation théorique et les procédures de calcul effectué sur la les systèmes moléculaires

chimiques sélectionnés sont présentés et discutés. Dans ces chapitres, les résultats et les

discussions sont signalés par les articles publiés au cours de mon projet de doctorat. Les

résultats non publiés sont présentés et discutés séparémet dans les chapitres correspon-

dants. Chapitre 4 présente les résultats de la molécule cationique du “spiro”. Le chapitre

suivant présente des résultats montrant un caractère à vlence mixte dans une série de

châınes linéaires d’atomes de béryllium. Le chapitre 6 est consacré aux deux molécules

cationiques de la famille bis-triarylamine, étudié dans un niveau préliminaire dans ce tra-

vail. Dans le dernier chapitre, des conclusions des résultats obtenus dans ce travail et

quelques remarques sur les perspectifs des travaux futurs possibles sont fait remarquer.



4 Chapter 1. Introduction



Chapter 2

Theoretical methods of calculations:

ab-initio methods

2.1 Introduction

In the present chapter, quantum chemical ab-initio methods are briefly described. In

particular, the localized Multi-Reference method that is used extensively in this work,

recently developed in our laboratory, is presented with some details. This section will

serve as a very short historical review and an explanation of the notation used.

2.1.1 Quantum mechanics and quantum chemistry

Quantum mechanics was formulated during the first half of the twentieth century, after the

failure of classical mechanics to explain some physical phenomena. The new theory, which

generalizes all classical theories, successfully explained black-body radiation [1], the pho-

toelectric effect [2], and other phenomena at the microscopic level, like the hydrogen atom

electronic orbitals [3] and the Compton effect [4]. The correspondence principle, which

describes the cases in which classical mechanics approaches quantum mechanics, was in-

troduced by Niels Bohr in 1923 [5], and in 1924 de Broglie proposed the wave-particle

duality of matter [6,7]. The new quantum theory was formulated with many mathematical

representations, the most famous are: matrix mechanics, developed by Heisenberg, Born,

and Jordan in 1925 [8–10]; wave mechanics, developed by Schrödinger in 1926 [11–16];

second quantization, sometimes known as “transformation theory”, developed by Dirac in

5
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1927 for photons [17], then extended by Jordan and Klein to massive bosons [18], and by

Jordan and Wigner to fermions [19]; and the formulation known as path integral devel-

oped by Feynman in 1948 [20, 21]. Schrödinger proved that Heisenberg matrix mechanics

is equivalent to Schrödinger wave mechanics [13]. The very basic principles of quantum

mechanics are postulated rather than derived. A complete integration of general relativity

with quantum mechanics is still not very well established, nevertheless, the results of quan-

tum theory when applied to micro-physical structures and mechanisms are spectacular.

Quantum chemistry, sometimes called molecular quantum mechanics, a branch of the-

oretical chemistry, may be defined as the application of quantum mechanics to predict

phenomena and solve problems in chemistry. An early generation of theoretical chemists

build powerful theoretical models, that apply explicitly the new concepts of quantum the-

ory to atoms and molecules, in order to understand and explain their electronic structure,

properties, and chemical reactivity. Two significant models were introduced: the first is

the Valence Bond (VB) model, sometimes called the homo-polar method or the directed

electron pairs, developed by Heitler, London, Pauling, and Slater [22–25], which is mainly

characterized by the “localization” of bonds; the second is the Molecular Orbital (MO)

model developed by Lennard-Jones, Hund, and Mulliken [26–32], in which an electron is

not assigned to a particular valence but is allowed to move in a field of the same symme-

try as that of the molecule. The two procedures represents different approximations, and

“philosophies”, to the solution of a complicated secular equation, but their final results are

equivalent [33], as long as qualitative pictures and representations are concerned.

The computational revolution in quantum chemistry, that started in the early 1950’s,

made it possible to solve the Schrödinger equation approximately with different approaches

and accuracies: ab-initio (from first principles) methods [34–46], see the following refer-

ences [47–52] for bibliographic compilations on ab-initio methods and applications; semiem-

pirical methods [53–56]; Density Functional Theory (DFT) methods [57–63]; and Quantum

Monte Carlo (QMC) methods [64–67]. DFT methods are sometimes classified by some au-

thors as ab-initio methods. Since this “revolution”, many theoretical models and computa-

tional techniques within the ab-initio family have been developed. Hartree-Fock (HF), Con-

figuration Interaction (CI), Many-Body Perturbation Theories (MBPT), Coupled Cluster

(CC), Complete Active Space Self Consistent Field (CASSCF), Generalized Valence Bond

(GVB), Multi-Reference Configuration Interaction (MRCI) and Multi-Reference Perturba-

tion Theories (MRPT) are among the most famous and well-established ab-initio methods.
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The next sections in this chapter will consider briefly and review these methods with a

special emphasis on the methods used in this work.

2.1.2 Notation used in the present work

2.1.2.1 Bracket notation

A physical state is represented by a state vector in a complex vector space. Following

Dirac [68], such a vector is called a ket and is denoted by |Ψ〉. This state ket is postulated
to contain complete information about the physical state. An observable, such as energy,

can be represented by an operator, such as Â, in the vector space in question. Generally,

an operator acts on a ket from the left Â|Ψ〉. To every ket |Ψ〉, there exist a bra, denoted

by 〈Ψ| in the bra space dual to the ket space. The bra dual to c|Ψ〉 is postulated to be

c∗〈Ψ|, where c is a complex number.

An inner product of a bra and a ket for an N -particle vector state, representing two

square integrable functions Ψ1(r1, . . . , rN) and Ψ2(r1, . . . , rN) is defined as,

〈Ψ1|Ψ2〉 ≡
∫

Ψ∗

1(r1, . . . , rN)Ψ2(r1, . . . , rN)d(r1, . . . , rN) (2.1)

from the definition (2.1), we have, 〈Ψ1|Ψ2〉 = 〈Ψ2|Ψ1〉∗. Moreover,

〈Ψ1|cΨ2〉 = c 〈Ψ1|Ψ2〉 (2.2)

〈cΨ1|Ψ2〉 = c∗ 〈Ψ1|Ψ2〉 (2.3)

〈Ψ3|Ψ1 +Ψ2〉 = 〈Ψ3|Ψ1〉+ 〈Ψ3|Ψ2〉 . (2.4)

where |Ψ3〉 is a third function.

2.1.2.2 Second quantization

The notation build for second quantization representation of quantummechanics for fermions

[19], is widely adopted in modern quantum chemical methods [46, 69–71]. In this repre-

sentation, all operators and states can be constructed from a set of elementary creation

and annihilation operators. If φi is a one-electron state and |0〉 is the vacuum state (no

particle), the creation operator a+i will create a particle in the state φi if applied to the
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vacuum state |0〉,
a+i |0〉 = |φi〉 (2.5)

The annihilation operator ai will give the vacuum state if applied to φi,

ai|φi〉 = |0〉 (2.6)

The following anti-commutation relations hold:

[a+i , a
+
j ]+ = a+i a

+
j + a+j a

+
i = 0 (2.7)

[ai, aj]+ = 0 (2.8)

[a+i , aj]+ = δi,j (2.9)

where δij is the Kronecker delta (equals 1 for i = j and 0 otherwise). From equations (2.7)

– (2.9), all the algebric properties of the second quantization formalism follow.

The Slater determinant describing a wavefunction of N electrons (see section §2.2.3) is
represented by an occupation number vector |k〉,

|k〉 = |k1, k2, . . . , kN〉, kp =







1, φ occupied;

0, φ unoccupied.
(2.10)

thus, kp is the occupation number corresponding to the spin-orbital φp.

2.2 Basic approximations in ab-initio methods

2.2.1 Schrödinger equation

One major deal in quantum chemistry is trying to solve the time-independent non-relativistic

Schrödinger eigenvalue equation [11] for chemical systems,

Ĥ|Ψ〉 = E|Ψ〉 (2.11)

In equation (2.11), Ĥ is the non-relativistic Hermitian and linear energy operator, the

Hamiltonian operator; Ψ, the eigenvector of an Hilbert space, is the time-independent
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wave function, or state function, of the system, which is a function of the space and spin

coordinates of the elementary particles composing the system, and which contains all the

information about the system; and E, the eigenvalue constant, is the total energy of the

system.

The Hamiltonian operator Ĥ for a particular chemical system of interest is constructed

in order to find, by means of solution of (2.11), the energy E and the wave function Ψ

of the system. Once Ψ is found, it can be used to find some other properties. In prac-

tice, the Schrödinger equation could be solved exactly only for systems with one electron.

Many approximations are inevitable to treat real chemical systems. Nevertheless, many of

these approximations are reliable and lead to accurate results, in the limit of the available

computational resources.

2.2.2 The Hamiltonian operator and the Born-Oppenheimer ap-

proximation

The non-relativistic Hamiltonian operator, Ĥ, of a system composed of N electrons, with

the corresponding ri space position vector for the ith electron; and M nuclei, with the

corresponding RA space position vector for the Ath nucleus, is defined in atomic units as:

Ĥ = −
N
∑

i=1

1

2
∇2

i −
M
∑

A=1

1

2MA

∇2
A −

N
∑

i=1

M
∑

A=1

ZA

riA
+

N
∑

i=1

N
∑

j>i

1

rij
+

M
∑

A=1

M
∑

B>A

ZAZB

RAB

(2.12)

whereMA is the ratio of the mass of nucleus A to the mass of an electron, ZA is the atomic

number of nucleus A, riA = |riA| = |ri −RA|, rij = |ri − rj|, RAB = |RA −RB|, and ∇2 is

the Laplacian operator for the ith electron and the Ath nucleus expressed in any suitable

coordinates system. In equation (2.12), the first term is the kinetic energy operator of the

electrons; the second term is the kinetic energy operator of the nuclei; the last three terms

are the potential energy operators of the system particles, the third term represents the

Coulomb attraction between electrons and nuclei, the fourth and fifth terms represent the

repulsion between electrons and between nuclei, respectively.

Small magnetic terms, like spin-orbit coupling and spin-spin interaction, which are

usually of minor significance to the chemical energies, are neglected in the Hamiltonian

operator (2.12). In cases where the velocities of the electrons approach the velocity of

light, like the inner-shell electrons of heavy atoms, the Hamiltonian operator (2.12) ceases
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to be appropriate and relativistic effects should be considered [72–74].

To simplify the Hamiltonian operator, Born-Oppenheimer (BO) approximation [75,

76] is used. Taking the fact that the nuclei move much slower than the electrons, since

mp+/me− = 1836, one can consider the electrons in a molecule to be moving in a field

of fixed nuclei. By treating the nuclei as stationary sources of electrostatic fields, the

second term of the Hamiltonian operator (2.12), i.e. the kinetic energy of the nuclei, can

be neglected, and the last term of equation (2.12), i.e. the repulsion between the nuclei,

can be considered to be constant which is usually added at the end of a calculation (any

constant added to an operator has no effect on the operator eigenfunctions and only adds

to the operator eigenvalues).

The remaining terms in equation (2.12) are together called the electronic Hamiltonian

operator Ĥel which describes the motion of N electrons in the field of M point charges,

Ĥel = −
N
∑

i=1

1

2
∇2

i −
N
∑

i=1

M
∑

A=1

ZA

riA
+

N
∑

i=1

N
∑

j>i

1

rij
(2.13)

Using the electronic Hamiltonian operator Ĥel would yield the electronic wave function Ψel

and the electronic energy Eel, as the eigenfunction and eigenvalue of the Schrödinger equa-

tion (2.11), respectively. Ψel and Eel depends parametrically on the nuclear coordinates,

Ψel is a function of the electrons only (Ψel = Ψel(ri)).

Within the adiabatic approximation [77–79], the nuclei move on a Potential Energy

Surface (PES) obtained by calculating Ψel and Eel using the BO approximation at each

nuclear configuration on the PES [80,81].

The Born-Oppenheimer and the adiabatic approximations are extensively used in quan-

tum chemical methods. However, non-adiabatic processes are present in many important

chemical systems [82]. In such cases, the Born-Oppenheimer approximation breaks down.

This is particularly true in some charge transfer reactions and non-crossing regions (see the

next chapter) where the electronic coupling between the two (or more, see section §3.2.4)
electronic states is relatively high [83,84].

2.2.3 The wave function and its relevant basic approximations

First, spatial orbitals and spin-orbitals are defined. A spatial orbital, ψi(r), is a one-

electron wave function, where r is a coordinate vector in the ordinary 3-dimensional space.
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In order to satisfy Pauli exclusion principle [85], two one-electron spin functions α(σ) and

β(σ), corresponding to spin up (1/2) and spin down (−1/2) respectively, are introduced.

The spin functions are orthonormal, i. e., 〈α|α〉 = 1, 〈β|β〉 = 1, and 〈α|β〉 = 〈β|α〉 = 0. A

spin-orbital, φi(x), where x = {r, σ}, is a one-electron wave function, which is a product

of one-electron spatial orbital and a one-electron spin function.

In order to overcome the incapability to solve the so called r12 terms (the third term

of equation (2.13)), quantum chemical ab-initio wave function based methods reduce the

N -body problem to N one-body problems. In MO theory, this corresponds to approximate

the electronic wave function Ψel(x1, . . . ,xN) of a molecule containing N electrons as the

product of N spin orbitals φi(x). This is the orbital approximation. The many-electron

wave function should, however, be antisymmetric with respect to the interchange of the

coordinate x of any two electrons, a condition needed to satisfy Pauli exclusion principle.

In addition, the many-electron wave function should take into consideration the indis-

tinguishability of the electrons that are assigned to particular spin-orbitals. One way to

satisfy these criteria, within the orbital approximation context, is writing the total wave

function of a system containing N electrons and N spin-orbitals as an antisymmetrized

product of N one-electron spin-orbitals. This product is usually referred to as a Slater

determinant [86, 87],

Ψel(x1,x2, . . . ,xN) ≈ ΨSD(x1,x2, . . . ,xN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1) φ2(x1) . . . φN(x1)

φ1(x2) φ2(x2) . . . φN(x2)

. . . . . . . . . . . .

φ1(xN) φ2(xN) . . . φN(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.14)

where 1/
√
N ! is a normalization factor. A short hand of writing the Slater determinant

(2.14) using a ket space is,

|ΨSD〉 = |φ1φ2 . . . φN〉 (2.15)

where only the diagonal elements of the determinant are written, and the normalization

factor is omitted.

Configuration State Function (CSF) is defined as the set of all the Slater determinants

with the same orbital occupation but different spin-orbital occupation numbers.

The molecular orbitals of a Slater determinant are expressed as a superposition of

Atomic Orbitals (AO). The method is known as Molecular Orbitals-Linear Combination of



12 Chapter 2. Theoretical methods of calculations: ab-initio methods

Atomic Orbitals (MO-LCAO). In this method, the spatial molecular orbitals ψi(r) are ex-

panded as a linear combination of known one-electron basis functions χµ(r), conventionally

called atomic orbitals (although in general they are not solutions to atomic Schrödinger

equation), centered on the atoms that constitute the molecule,

ψi(r) =
K
∑

µ=1

Cµ,iχµ(r) (2.16)

where Cµ,i are the expansion coefficients of the set of basis functions (1, . . . , µ, . . . , K) used

for each molecular orbital i. Clearly, the coefficients Cµ,i are the elements of the matrix C.

The MO-LCAO procedure, proposed by Roothaan [88] for HF ab-initio calculations, made

it possible to compute the Hartree-Fock equations (see section §2.2.4) by transforming them

from differential eigenvalue equations, that are difficult to solve by machine algorithms,

to algebric eigenvalue equations that could be solved numerically using efficient matrix

algorithms. These algebric equations are known as Roothaan-Hall equations. [88, 89]

To exactly represent the molecular orbitals ψi(r), within Born-Oppenheimer approx-

imation, the basis functions χµ(r) should form a complete set. This requires an infinite

number of basis functions (K = ∞) in equation (2.16). In practice, one must use a finite

number K of basis functions. This is called the basis set approximation. However, if K

is large enough and the functions χµ(r) are well chosen, one can represent the molecular

orbitals with an acceptable error.

The molecular orbitals ψi(r) of a given molecular wave function show the same kinds of

possible symmetry behavior as the overall electronic wave function does [88]. The molecu-

lar orbitals are therefore classified according to the irreducible representations (symmetry

species) of the molecular point group. Hence, in MO-LCAO method, the atomic orbitals

are chosen to construct molecular orbitals so that upon application of the molecular sym-

metry operators each molecular orbital transforms according to one of the irreducible

representations of the molecular point group. The atomic orbitals (basis functions) chosen

in this way are called symmetry-adapted basis functions, and thus the method is known

as Symmetry-Adapted Linear Combination of atomic orbitals (SALC). This constraint

imposed by using the SALC’s is, indeed, a source of a significant reduction in the compu-

tational time of calculations, particularly for molecules belonging to high symmetry point

groups.
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Basis functions and basis sets, particularly those used in this work, are briefly treated

in section §2.6.
An N -electron wave function can exactly be expanded in a linear combination of all

the Slater determinants obtained from N one-electron functions:

Ψexact =
∑

I

CIΨI (2.17)

As far as the the one-electron basis set is complete, the expansion is exact within Born-

Oppenheimer approximation.

2.2.4 Hartree-Fock Self-Consistent Field

In the Hartree-Fock (HF) method [90, 91], the expansion of the wave function in a linear

combination of Slater determinants (2.17) is truncated to a single term:

Ψexact ≈ Ψ0 (2.18)

HF method is, thus, a single reference method. Replacing the true N -electron wave function

Ψexact by a single Slater determinant Ψ0 (ΨHF in the following) is, indeed, a fairly drastic

approximation. The variational principle is used to find the “best” Slater determinant

(that one particular ΨSD which gives the lowest energy):

Eel
HF = min

ΨHF

〈

ΨHF|Ĥel|ΨHF

〉

(2.19)

where the Eel
HF is the Hartree-Fock electronic energy and will be denoted by EHF in the

following. The variational freedom in this expression is in the choice of molecular orbitals.

For computational convenience, the spin-orbitals are usually chosen to be orthonormal:

〈φi|φj〉 = δij.

Given orbital orthogonality, the energy of a single determinant wavefunction (excluding

nuclear repulsion) is

EHF =
N
∑

i

〈

i|ĥ|i
〉

+
1

2

N
∑

ij

([ii|jj]− [ij|ji]) (2.20)
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where 〈i|h|i〉 are one-electron integrals defined as,

〈

i|ĥ|i
〉

=

∫

φ∗

i (x1)ĥ(r1)φj(x1)dx1 (2.21)

where the one-electron operator ĥ is defined as,

ĥ(i) = −1

2
∇2

i −
∑

A

ZA

riA
(2.22)

the two-electron integrals of the type [ii|jj] are generally called Coulomb integrals, while

those of type [ij|ji] are called exchange integrals. A two-electron integral is defined as,

[ij|kl] =
∫

φ∗

i (x1)φj(x1)
1

r12
φ∗

k(x2)φl(x2)dx1dx2 (2.23)

In the derivation of the HF equations, Lagrange multipliers εij are introduced to guar-

antee that all pairs of HF orbitals i and j will be orthogonal. Upon solution of the HF

equations only the diagonal elements εii, which are called orbital energies, have non-zero

values. Koopmans’ theorem [92] states that these orbital energies εii, or simply εi, may

be associated with the ionization potentials of the closed-shell atom or molecule for which

the SCF wave function has been obtained. More precisely,

εi =
〈

i|ĥ|i
〉

+
∑

j

[ii|jj]− [ij|ji] (2.24)

where the sum of Coulomb minus exchange integrals goes over all spin-orbitals. Koopmans

showed that the energy difference between the SCF energy calculated for a neutral molecule

using equation (2.20) and the energy of a single determinant resulting from removing one

spin-orbital φi from this wavefunction is the ionization potential of the molecule for the

corresponding spin-orbital and is just the orbital energy εi given by equation (2.24).

HF equations are solved using a self consistent procedure. An SCF wave function is

the single determinant of lowest energy within a finite basis set.

Hartree-Fock self-consistent field theory accounts for the bulk (≈ 99%) of the total

energy of the molecule. However, the component of the energy left out in such a model,

which results from the neglect of instantaneous interactions (correlations) between elec-

trons, is crucial for the description of chemical bond formation. Moreover, HF theory does
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not behave correctly at regions far from the equilibrium. HF-SCF wavefunctions actu-

ally provides an excellent starting point for subsequent calculations of electron correlation

(section §2.3) that enhances the accuracy deficiency encountered by HF-SCF calculations.

2.2.4.1 RHF, UHF and ROHF methods

For closed shell systems with singlet configurations, HF wave functions are characterized

by having doubly occupied spatial orbitals, that is to say, two spin orbitals: φi with a

spin function α and φj with a spin function β, that share the same spatial orbital ψi

and have the same orbital energy. If this restriction was imposed from the beginning

in a calculation, an approximated wave function that is known as “Restricted Hartree-

Fock” (RHF) wave function [88] well be generated. RHF approximation is inappropriate

for open shell chemical systems (like the Spiro molecular cation studied in chapter 4 and

all other -mixed-valence systems ions). There are two possibilities for the computational

treatment of open shell systems within the HF-SCF approximation: The first method is

the “Unrestricted Hartree-Fock” (UHF) [93, 94]. The second method is the “Restricted

Open-shell Hartree-Fock” (ROHF) [95].

In the UHF approximation, the notion of doubly occupied spatial orbitals is completely

ignored and each spin-orbital is allowed to have its own spatial part and orbital energy.

However, using the spin-orbitals in the UHF calculations may introduce serious problems.

Actually, the obtained wave function is mono-determinantal and is not an eigenfunction of

the spin operator.

ROHF approximation, on the other hand, permits to obtain spin-orbitals, by a self-

consistent way, that minimize the energy of a multi-determinantal state that is formed

from one spin configuration and that take into consideration the symmetries of the system.

ROHF method differentiates two types of orbitals, according to their occupation: Doubly

occupied orbitals; and active orbitals, where the occupation is determined by the spin and

space symmetries of the system. ROHF wave function |ΨHF 〉 is thus can be written as,

|ΨROHF 〉 =
∣

∣ψ2
1 . . . ψ

2
n

〉

⊗ |Ψ〉 (2.25)

where the orbitals ψ1 . . . ψn are the doubly occupied orbitals; and |Ψ〉, based on p active
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orbitals ψn+1, . . . , ψn+p, can be defined as,

|Ψ〉 =
∑

I

CI

∣

∣

∣
ψ

αI
n+1

n+1 . . . ψ
αI
n+p

n+p

〉

(2.26)

where I span the determinants that form |Ψ〉; CI is the coefficient of the determinant I;

and the exponent αI
n+i corresponds to the occupation of the ith active orbital in the I

determinant (it has the value 0 in the case of an empty orbital, 1 if the orbital is occupied

by an α electron, -1 if the orbital is occupied by a β electron, and 2 in the case of doubly

occupied orbital.)

2.3 Correlated ab-initio methods

2.3.1 Definitions

In order to discuss properly the different correlated ab-initio methods, it is necessary to

define first some fundamental concepts.

1. Size extensivity [96], is the property of a method that scales correctly with the number

of particles.

2. Size consistency [97], is a method that leads during a molecular fragmentation to a

wave function which is multiplicatively separable and an energy which is additively

separable.

Size consistency is only defined if the two fragments are non-interacting, while size

extensivity implies that fragments can be interacting.

3. Coulomb hole is a region surrounding each electron, in an atom or a molecule, in

which the probability of finding another electron of the opposite spin is small. This

is due to the fact that electrons try to repel each others (r12 effect).

4. Fermi hole is a region surrounding each electron, in an atom or a molecule, in which

the probability of finding another electron of the same spin is small. This is due to

Pauli exclusion principle.

5. Excited determinants are defined, for a system of N electrons and 2K spin-orbitals,

as the set of single determinants that could be formed from the combination of 2K
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spin-orbitals with N electrons when 2K > N . The number of which is defined by

the binomial coefficient,
(

2K

N

)

=
(2K)!

N !(2K −N)!
(2.27)

where the HF ground state determinant is one of these.

A singly excited determinant is one which differs by a single spin-orbital from the

HF determinant, etc.

6. Brillouin theorem (BT) [98, 99] states that matrix elements of the electronic Hamil-

tonian operator between the HF determinant for a closed-shell atom or molecule

and all singly excited determinants, that differs by a single spin-orbital of the same

symmetry, are zero,

〈ΨHF |Ĥel|ΨS〉 = 0 (2.28)

where ΨS is a singly excited determinant wave function. For SCF wave functions

|ΨSCF 〉, Brillouin’s theorem states that

〈ΨSCF |Ĥel|ΨS〉 = 0 (2.29)

only if the single spin-orbital in |ΨS〉 not in |ΨSCF 〉 can be constructed from the finite

basis set in which the SCF calculation was carried out.

2.3.2 Electron correlation energy

HF theory is an approximation to the Schrödinger equation of molecules. The results

of HF energy are not exact. In order to improve these results, electron correlation must

be considered in the subsequent methods that still use HF wave function as a start. It

should be reminded that the neglect of electron correlation is not the only source of error

in HF method. Basis set truncation error (incompleteness of the basis set), deviations from

Born-Oppenheimer approximation, and the neglect of relativistic effects are all important

sources of error in ab initio molecular electronic calculations. Löwdin has defined the

correlation energy as: “The correlation energy for a certain state with respect to a specified

Hamiltonian is the difference between the exact eigenvalue of the Hamiltonian and its

expectation value in the Hartree-Fock approximation for the state under consideration”

[100]. Electron correlation energy Ecorr for a system is thus calculated, for a given basis
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set, as:

Ecorr = Eexact − EHF (2.30)

where Eexact is the exact non-relativistic energy of the system and EHF is the corresponding

energy calculated by HF method. As guaranteed by the variational principle, the electron

correlation energy Ecorr is always negative. Typically, the correlation energy is defined

within the finite basis set used, and the convergence with respect to increasing the basis

set size is then considered separately. It should be noted that Ecorr is not a constant

through the whole PES, it becomes greater at points far from the equilibrium. One more

point is that Fermi correlation, arises from the Pauli antisymmetry principle, is not part

of the of electron correlation energy as defined above, since it is already taken into account

in the HF level.

Correlation energy for an open-shell molecule is usually defined with respect to unre-

stricted Hartree-Fock (UHF) theory, while some authors prefer to define it with respect to

restricted Hartree-Fock theory. This may lead to some ambiguities. In addition, Goddard

has suggested to replace the HF approximation with a reference wave function that corre-

sponds to all configurations that are necessary for the qualitatively correct description of

the system under consideration, and suggested an alternative definition of the correlation

energy for large R in the dissociation process [101]. This reference wave function could be a

multiconfiguration reference function §(2.3.4) or a Generalized Valence Bond (GVB) wave

function [102–105]. Electron correlation effects, as defined above, are clearly not directly

observable. In fact, Ecorr in equation (2.30) is a measure of the errors that are inherent in

HF theory.

Criteria for a theoretical model to be suitable as a method for the solution of the

correlation problem in molecules have been formulated by Pople et al. [96], extended by

Bartlett and Purvis [97], and summarized by Bartlett [106] and Wilson [107]. The method

should be as follows:

1. Size-extensive;

2. Generally applicable to a wide range class of problems and a wide variety of molecules

within one framework;

3. Invariant to classes of transformations, particularly unitary transformations among

degenerate orbitals;
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4. Efficient and cost effective, with the amount of computer time not increasing too

rapidly with the size of the system;

5. Applicable to excited states and open-shells;

6. Able to dissociate a molecule correctly into its fragments.

No single method satisfies all the criteria mentioned.

More details on electron correlation energy are discussed elsewhere in the literature

[37, 39, 42,43,96,106,108–112]

2.3.2.1 Dynamical and non-dynamical correlation

While the definition of the correlation energy defined in equation 2.30 is satisfactory near

equilibrium, it becomes less satisfactory as molecular bonds are stretched. It is usual

to recognize that the correlation energy so defined may be split into two parts, which

Sinanoǧlu is generally acknowledged to be the first to recognize [113]: “Correlation effects

may be divided into ‘dynamical’ and ‘nondynamical’ ones. Dynamical correlation occurs

with a ‘tight pair’ of electrons as in He or in the (2pz)
2 in Ne, etc. There is no one

configuration in the Configuration Interaction wavefunction which mixes strongly with the

Hartree Fock configuration and CI is slowly convergent. ‘Non-dynamical’ correlations, on

the other hand, arise from degeneracies or near-degeneracies (first order CI).”

Dynamical correlation energy (DCE) is associated with the lowering of the energy as

a result of correlating the motion of the electrons due to Coulomb repulsion. DCE is

not considered in HF mean field (independent particle model) approximation. DCE is a

short range phenomena. Non-dynamical correlation energy (NDCE) is associated with the

lowering of the energy through interaction of the HF configuration with low-lying excited

states. It is a near-degeneracy effect and a long range phenomena. It is difficult, and in

most cases impossible, to calculate exactly the values of each of the dynamical and the

non-dynamical correlation energies separately [114].

2.3.3 Dynamical correlation: Single-Reference Methods

2.3.3.1 Configuration interaction

Configuration interaction (CI), sometimes called superposition of configurations or con-

figuration mixing, is one of the oldest correlation methods [115–122]. CI requires one to
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build a set of n-electron configuration state functions (CSFs or spin-adapted Slater deter-

minants) by replacing occupied molecular orbitals (MOs) in some SCF reference function

with virtual (unoccupied) orbitals. The Hamiltonian is then diagonalized in the resulting

basis of n-electron configurations. In the CI method, the wave function is constructed as

a linear combination of determinants or CSF’s,

|C〉 =
∑

i

Ci|i〉 (2.31)

where C is a vector containing the expansion coefficients Ci. The coefficients Ci are deter-

mined by a variational optimization of the expectation value of the electronic energy. This

means minimization of the ground state,

ECI = min
C

〈

C|Ĥel|C
〉

(2.32)

The MO’s used for building the excited Slater determinants are taken from HF calculation

and held fixed. Subscripts S, D, T, Q, etc. indicate singly, doubly, triply, quantuply etc.

excited relative to the HF configuration.

Full CI (FCI) method for an n-electron system is defined as the wave function that

includes all possible excitations through order n. With a complete basis set, FCI method

would become the exact solution of the non-relativistic electronic Schrödinger equation.

It is the FCI method to which all approximate methods are compared. Therefore, FCI

energies are used as benchmarks tests for other methods [123–135]. The number of config-

urations in a FCI expansion grows exponentially with the size of the system. FCI methods

are intractable for all but very small molecules, e.g. diatomic molecules of the first-raw

elements. Novel algorithmic developments have contributed toward increasing the number

of configurations which can be included in a practical FCI calculation [136–144].

Truncated CI is the term used whenever a limited number of excitations in the CI

expansion is used. CI with Singles (CIS) does not give any improvement over the HF

results for the ground state energies as all matrix elements between the HF wave function

and singly excited determinants are zero (Brillouin theorem).The lowest CI level that

gives improvements over HF energy is CI with Doubles (CID) model. The singly excited

determinants have non-zero matrix elements with the doubly excited determinants. CI with

Singles and Doubles (CISD) was for a long time a “standard” method for the treatment of
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electron correlation. Better improvements to the CISD method are CISDT and CISDTQ

models which scales rapidly with the number of particles of the system (> N8).

The following concepts have a great impact in the development of CI calculations: The

formulation of Direct Configuration Interaction (DCI) approach [145]; the introduction to

electronic structure theory of the Unitary Group Approach (UGA) by Paldus [146]; the

introduction of a Graphical representation of the UGA-based CI expansion by Shavitt,

leading to the Graphical Unitary Group Approach (GUGA) [147,148]; and the separation

of the GUGA graph into two parts, the complex internal part and the simple external part,

by Siegbahn [149].

The CI approach to the many-electron problem suffers from two main disadvantages.

First, all truncated CI methods are not size extensive. For instance, as the molecule

gets larger, CISD method recovers less and less of the correlation energy. Second, the

CI description of the electronic energy is not particularly compact. Thus, even though

higher excitations are less important than those of lower orders, their number is very large.

As a result, the CI wave function converges slowly with the number of the variational

parameters.

CI was the dominant and preferred electron correlation technique until the early 1980s

when it was superseded by size-consistent techniques such as perturbation theory or coupled

cluster methods [150].

2.3.3.2 Many-Body Perturbation Theory

In perturbation methods, the Hamiltonian operator consists of two parts, a reference Ĥ0

part and a perturbation Ĥ′ part, where Ĥ′ is relatively “small” compared to Ĥ0. The

theoretical framework of Many-Body Perturbation Theory (MBPT) is defined by adding

corrections to solutions which employ an independent particle model using perturbational

methods.

Møller Plesset theorem [151] is a corollary of Brillouin’s theorem. It adds electron

correlation effects by means of Rayleigh-Schrödinger perturbation theory usually to second

(MP2), third (MP3) or fourth (MP4) order. For open shell molecules, MPn theory can

directly be applied only to unrestricted Hartree-Fock reference functions (since ROHF

states are not in general eigenvectors of the Fock operator). However, the resulting energies

often suffer from severe spin contamination, leading to very wrong results. A much better

alternative is to use MP methods based on restricted Hartree-Fock references.
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Unlike variational methods, as CI, in which the energy is an upper bound to the exact

energy, perturbation methods offer no such guarantee. Nevertheless, the size extensivity

of MP methods combined with the low cost relative to CI methods make MP calculations

a good choice for including electron correlation.

2.3.3.3 Coupled-cluster methods

Coupled-cluster theory [152–154] expresses the exact wave function within the basis set

approximation as,

Ψ = eT̂ΨHF (2.33)

where ΨHF is a single CSF HF determinant that is used in the SCF process to generate a

set of spin-orbitals. The operator T̂ , called the cluster operator, generates, when acting on

ΨHF, single, double, etc., excitations and is defined as,

T̂ = T̂1 + T̂2 + T̂3 + . . .+ T̂n (2.34)

where n is the total number of electrons and the various T̂i operators generate all possible

determinants having i excitations from the reference. As in CI method, and using the

same notation, one can compute CCD, where T̂ = T̂2; CCSD, where T̂ = T̂1 + T̂2; etc.

The CCSDT calculations gives very accurate results for correlation energy but are very

demanding computationally and are only feasible for small molecules with small basis sets.

Several approximate forms of CCSDT have been developed, for instance, in the CCSD(T)

method, triple excitations are calculated based on perturbation theory.

2.3.4 Non-dynamical correlation: Multi-Configuration SCF

Multi-configurational self-consistent field (MCSCF) method uses a linear combination of

configuration state functions (CSF) or configuration determinants to approximate the exact

molecular electronic wavefunction. In a MCSCF calculation, the set of coefficients of both

the CSFs or determinants and the basis functions in the molecular orbitals are varied

to obtain the total electronic wavefunction with the lowest possible energy. The non-

dynamical correlation included in the MCSCF method is particularly useful in the quasi-

degenerate cases like in molecular ground states with low-lying excited states or in bond

breaking situations.
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2.3.4.1 CASSCF

One of the most used forms of MCSCF is Complete Active Space Self-Consistent Field

(CASSCF) [155–158], in which the MCSCF procedure is applied to some molecular orbitals

called the active orbitals. In CASSCF, the orbitals are divided into three classes:

1. Occupied orbitals, (O) that are doubly occupied in all the reference determinants;

2. Active orbitals, (A) that have a variable occupation number in the reference deter-

minants;

3. Virtual orbitals, (V) that are unoccupied in all reference determinants.

The CASSCF wave function corresponds to a FCI wave function in the active space, while

the occupied and virtual orbitals are optimized through an SCF-like procedure.

2.3.5 Dynamical corrections on non-dynamical wave-functions:

Multi-Reference Methods

The calculation of dynamical and non-dynamical correlation energies is obtained by using

multi-reference methods where dynamical correlation is calculated over a multi-reference

wave function. Three methods are explained below: a multi-reference method that uses

variational CI dynamical correlation, MRCI; and two multi-reference methods that use

perturbational corrections, CASPT and NEVPT methods.

2.3.5.1 Multireference configuration interaction

In a Multi-Reference Configuration interaction (MRCI) [159, 160], a CI calculation is per-

formed with an MCSCF wave function as the reference function instead of a single reference

CSF as in CI method. CASSCF wave functions are often used as the starting point for

MRCI calculations. Typically, MRCI is a useful method to study a large section of a PES,

where significant changes in bonding, and thus in correlation energy, are taking place so

a proper method is needed to predict dynamical and non-dynamical correlation energies.

The MRCI method has been shown to reproduce FCI results very closely for a wide range

of spectroscopic problems [161]. As with single-reference CI, most MRCI calculations trun-

cate the CI expansion to include only singles and doubles (MRCISD). If a CASSCF wave

function is used as reference, MRCISD could be also designated as CAS+SD.
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2.3.5.2 Multireference perturbation theory

The generalization of MPn theory to the multireference case involves using an MCSCF

wave function for Ψ0 instead of a single-determinant RHF or UHF one. However, it is

less obvious what should be chosen for Ĥ0, as the MCSCF MOs do not diagonalize any

particular set of one-electron operators.

Several different implementations of MP2 type expansions based on a CASSCF refer-

ence (CASPT2) were developed [162] in the 1990’s and a wide range of applications was

tested. Another method of doing multireference perturbation theory calculations is the the

n-electron valence perturbation theory (NEVPT) method [163–166].

2.3.6 Some practical aspects and limitations of non-dynamical

correlation methods

For large molecular systems, one strategy to approximate non-dynamical correlation is

to perform CASSCF calculations in small active spaces. In that case, non-dynamical

correlation is not completely described in the zero-order wave function. Practically, this

approximation introduces arbitrariness into the theoretical descriptions because the active

space is not uniquely defined and must be chosen based on physical considerations for

each particular process. Often, small active orbital spaces lead to significant errors, which

cannot be completely recovered by subsequent calculations of dynamical correlation. It

has been shown by Davidson that CASSCF calculations for the Cope rearrangement (that

involves a sigmatropic rearrangement of hydrocarbon dienes) performed in a π-orbitals

active space is qualitatively incorrect, and inclusion of σ − π correlation by subsequent

second order perturbation theory (CASMP2) calculations changes the energetics along the

reaction coordinate significantly [167]. There are other cases also where large active spaces

are necessary and can be close to the computational limit for CASSCF method [168].

2.4 Localized multi-reference methods

2.4.1 Localization in chemistry and quantum chemistry

Traditional chemistry is based on local concepts. Lewis representation of molecules [169]

and the Valence Bond (VB) method [22–25,170,171] are two examples on early molecular
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models based on locality in terms of bonds and lone-electron pairs. On the other hand,

locality is not reflected in standard electronic structure calculations in which the molecular

orbital theory presumes molecular orbitals extended over the whole molecule with various

coefficients on each atom. However, Fock observed that a one determinant many-electron

wave function is invariant with respect to unitary transformations among its molecular

orbitals [91]. One thus has freedom in the choice of the orbitals that describes a given

system. Based on this observation, many authors pointed out the interest of using Localized

Molecular Orbitals (LMO) [172–175].

2.4.2 Linear Scaling

One of the most important advantages of using LMO’s is their use in linear scaling pro-

cedures [176]. In order to perform molecular electronic-structure calculations in which

computational time scales linearly with the number N of atoms, one could take the advan-

tage of the fact that interaction between different fragments goes to zero with increasing

distance. In this way, a large amount of unnecessary bi-electronic integrals, between dis-

tant atomic orbitals, can be neglected during a calculation. This effect can be obtained by

using local orbitals.

Not only can localization methods be of great interest in the computational level, but on

the theoretical level as well. Localized molecular orbitals provide the link between Hartree-

Fock theory and the concept of chemical bonds formed between two atoms. Moreover, they

are indispensable for exploiting the nature of dynamical, short-range, electron correlation.

Localization methods were applied to to Single-Reference (SR) methods like HF-SCF

[176,177], and methods based on dynamical correlation such as second-order Møller-Plesset

(MP2) perturbation theory [178], single and double configuration interaction CI(SD) [179],

and single and double coupled cluster CC(SD) [180]. However, many important chemi-

cal processes and systems, like chemical bond breaking and formation, transition states,

electronically excited states, magnetic systems, and mixed valence systems, are degener-

ate or quasi-degenerate in nature. Only multi-reference methods, in which non-dynamical

correlation procedures such as CAS-SCF and FCI are applied, could treat successfully

quasi-degenerate systems. Unfortunately, linear scaling for non-dynamical correlation is

an open problem, but it should be noticed that orbital localization is a necessary condition

toward linear scaling multi-reference electronic structure calculations.
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2.4.3 CASDI program

A formalism for obtaining a priori local orbitals of CAS-SCF type was recently developed

in our laboratory [181–185]. A priori, in this context, means that the final localized

orbitals are directly obtained and optimized from guess localized orbitals [186, 187]. On

the other hand, if the localized orbitals were obtained from canonical optimized orbitals,

the method is designated as a posteriori [172, 174, 177]. An advantage of using a priori

localized molecular orbitals is that one can choose, among the large number of possible CAS

spaces, the particular set of active orbitals that are relevant for the study of a particular

phenomenon.

At the moment, two versions, variational [182] and perturbative [183], of the devel-

oped algorithm exist. The variational method is briefly described in the following. The

algorithm consists of a two step procedure: in the first step, a set of orthogonal atomic or-

bitals is generated through a symmetric orthonormalization of the non-orthogonal atomic

orbitals, these orthogonal atomic orbitals are then combined to form a set of guess lo-

calized molecular orthogonal orbitals through a hierarchic combination of symmetric and

Schmidt orthogonalization, in order to avoid core/valence mixing. The generated localized

molecular orthogonal orbitals at the end of the first step can be centered on a bond or an

atom (e.g., for lone pairs and core orbitals), they can also be distributed on a molecular

fragment. In the second step, the localized orthogonalized molecular orbitals are optimized

using a super-CI-like procedure, equivalent to that proposed by Ruedenberg and cowork-

ers [188]. Starting from a CAS-CI wavefunction |ΨCAS〉, the CAS+S set of internally

contracted single excitations is produced, where the single excitation operators a+i aj act

on the wavefunction |ΨCAS〉 as a whole. A new wavefunction in the CAS+S space |ΨCAS+S〉
is produced. By diagonalizing the one-body density matrix Γ1 associated to |ΨCAS+S〉, a
new set of orbitals is obtained, which can be used to build a new |ΨCAS〉 wavefunction.

The procedure is iterated until wavefunction invariance is achieved and optimized natural

orbitals of CAS-SCF type are obtained through satisfying the generalized Brillouin the-

orem (GBT) [189]. The diagonalization of Γ1 completely mixes the orbitals within each

class and the original locality of the guess orbitals would be lost. Taking advantage of

the invariance of the CAS-SCF wavefunction with respect to orbital rotations within each

orbital class, a block diagonalization of Γ1 would minimize the mixing between the orbitals

at each iteration. As a result, the orbitals at convergence maintain as far as possible the
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same nature as the initial guess orbitals.

The new method has been implemented and successfully tested for the ground and the

excited states of different organic conjugated systems [190–193], magnetic metal containing

systems [194, 195], fullerenes [196, 197], and other chemical systems [198–201]. Geometry

optimization within a localized CAS-SCF approach was also investigated [202]. In this

work, we have used the variational version to optimize CAS+S and CAS+SD wavefunction

starting from localized guess orbitals.

2.5 DFT methods used

Density Functional Theory (DFT) was developed by Hohenberg and Kohn in 1964 [203,

204]. In DFT method, the electron density ρ is regarded as the central variational quantity

of interest. Despite the fact that the knowledge of exact DFT functionals is incomplete,

DFT still enjoys widespread popularity because it provides a good balance between compu-

tational effort and accuracy. However, there are a number of well-known situations where

DFT is inadequate: strongly correlated systems, excited states, and open-shell systems,

just to name a few. In this work, the DFT method was used to optimize the geometries of

the bis-triarylamine molecules studied in chapter 6.

2.6 Basis sets used

The most common and practical method to construct molecular orbitals is the many-

center expansion (equation (2.16)) of MO’s from known basis functions (atomic orbitals).

Two main types of basis functions are used in quantum chemical calculations: Slater

Type Orbitals (STO) [205], in which multi-center molecular integrals (resulted from the

expansion (2.16)) are difficult to compute; and Gaussian Type Orbitals (GTO) [206], which

do not properly represent the nuclear cusp and the tail as STO’s does, but have the

advantage of being faster than STO’s in calculating multi-center molecular integrals.

To overcome the inaccuracies caused by the zero slopes of GTO’s at and near the

nuclear cusp regions and the fast decay of the tails far from the nucleus, several GTO’s,

called Primitive GTOs (PGTO) could be used to approximate one GTO, called Contracted

GTO (CGTO). Clearly, more PGTO’s are needed if high accuracy is desired, but this will

generate another problem which is the computational cost. A compromise is the linear
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combination of primitive GTO’s with a fixed expansion coefficients,

χr =
k

∑

i

ar,igu (2.35)

where χr,i are the contracted GTO’s that will be used in the expansion (2.16); gu are the

primitives GTO’s; and ar,i are the contraction coefficients which are not parameters to be

determined by variation principle, but are held fixed during the calculation after finding

their proper values by some suitable method before the orbital optimization. This contrac-

tion saves computational time with little loss in accuracy if the contraction coefficients ar,i

are well chosen.

There are two ways commonly used in modern quantum chemical packages for con-

tracting a set of primitive GTO’s to a set of contracted GTO’s:

1. Segmented contraction, where each primitive GTO is only used in one contracted

function. The contraction coefficients, fixed during a calculations, can be determined

by a variational uncorrelated optimization method, like an atomic HF calculation.

For this reason, those basis sets are appropriate for ground-state HF calculations.

Examples on this kind of contraction are:

(a) Pople style basis sets (STO-nG, k-nlmG),

(b) Dunning-Huzinga Basis sets.

2. General contraction, where all the primitive GTO’s, on a given atom and of a given

angular momentum, enter all the contracted functions having that angular momen-

tum, but with different contraction coefficients. Moreover, correlated atomic calcula-

tions are used to find the contraction coefficients, and thus, they are usually suitable

for molecular calculations with different correlation levels. Examples on this kind of

contraction are:

(a) Atomic Natural Orbitals (ANO) [207], where a large primitive GTO’s set is

contracted to a small number of contracted GTO’s by using natural orbitals,

from a correlated calculation on the free atom, typically at the CISD level

[208,209].

(b) Correlation consistent basis sets.
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All the calculations in this work were done using ANO basis set for first row atoms [207].
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Chapter 3

Mixed valence systems

3.1 Introduction

In this chapter, mixed-valency and mixed-valence molecules are surveyed. The next section

will present the theoretical background underlying electron, or charge, transfer reactions

and mixed-valence systems. A discussion of the quantum mechanical computational capa-

bilities and limitations to treat these kind of molecules and their physicochemical properties

is then presented before a literature survey of organic and inorganic mixed-valence systems

is briefly given. In the last section, the issue of computing a reaction coordinates that

corresponds to the intramolecular charge transfer reaction is discussed.

3.2 Electron-transfer reactions and mixed-valency

3.2.1 Introduction

Electron-transfer (ET) reactions are fundamental processes in chemistry and biology [210–

212]. As a result of major advances in experimental and computational techniques, great

progress has been achieved in the understanding and control of ET processes [213, 214].

Numerous investigations were devoted to the study of ET processes in real biological sys-

tems [215], in biomimetic model compounds [216, 217], and in structurally simple and

completely artificial low molecular weight systems [218, 219]. The aims range from the

desire to understand ET processes in nature to the design of molecular wires for electronic

communication and other electronic devices [220–229].

31



32 Chapter 3. Mixed valence systems

3.2.2 Mixed-valence systems and their classification

Mixed-valence compounds are characterized by inter-valence charge transfer (CT) between

two or more redox sites existing in different oxidation states. Since the seminal work of

Creutz and Taube on mixed-valence compounds [230], these simple inorganic derivatives,

compared to natural ET systems, were used as test cases in order to study basic aspects

of ET theories [231, 232], that is, to check the applicability of Marcus ET theory and its

extension, the Hush theory for interpreting intervalence charge-transfer (IV-CT) absorption

spectra [233–237].

Robin and Day classified mixed-valence compounds, with two (or more) redox centers,

according to the size of the electronic interaction between these centers [238]. There are

three categories in Robin and Day classification:

1. class I: there is no coupling between the centers, that is to say, the redox centers are

completely localized, and behave as separate entities,

2. class II: intermediate coupling between the mixed valence centers exists, and therefore

the charge is partly localized,

3. class III: coupling is so strong that the system is completely delocalized and inter-

mediate redox states have to be attributed to the redox centers.

An important feature of class II and class III mixed-valence complexes is the appear-

ance in the visible or near-infrared region of the IV-CT band, associated with the optical

excitation from the minimum of the ground electronic state to the lowest excited electronic

state, which cannot be attributed to the system subunits.

It should be noted that cases in which there is a transition between two adjacent classes

are frequent. For instance, the transition between class II and class III systems has recently

attracted considerable attention [239–242].

3.2.3 Electron transfer theory and potential energy surfaces

In ET reactions, the transfer of electron is accompanied by nuclear rearrangements. There-

fore, it is convenient to consider the potential energy of the system as a function of nuclear

coordinates Q, i.e., Potential Energy Surfaces (PES). According to Marcus [243–245] the

potential energy surface of a degenerate mixed-valence system can be constructed from



3.2 Electron-transfer reactions and mixed-valency 33

parabolic functions each representing a diabatic, or zero-order, non-interacting state (de-

noted by a, b, c, . . .). In this picture, solvent and counterion effects are obviously neglected,

and therefore molecules are treated in a gas phase model. The discussion below also as-

sumes that the intramolecular ET reaction in the corresponding system is dominated by

two electronic states and that these two states are related to each other by a symmetry

plane between them (this assures that the system is symmetric). The total wave function

Ψ0 of the non-interacting system is

Ψ0 = ψaψb (3.1)

where ψa and ψa are the wave functions of the diabatic states a and b respectively. If there

is an electronic interaction (coupling) between the states a and b, their corresponding wave

functions will mix with each other, to an extent that depends on the magnitude of the

interaction. This leads to an effective removing of the degeneracy at the crossing of the

diabatic wave functions, i.e., the formation of the avoided crossing, which gives rise to

two new and separate adiabatic (first-order) states of energies E1 and E2, (defined below).

A typical symmetric PES showing two adiabatic states resulted from a coupling of two

diabatic states is sketched in Figure 3.1.

The associated wave functions of these new adiabatic states, Ψ1 and Ψ2, are linear

combinations of ψa and ψb,

Ψ1 = caψa + cbψb, (3.2a)

Ψ2 = caψb − cbψa (3.2b)

The electronic coupling Vab, known as coupling matrix element, tunneling matrix element,

or resonance exchange integral, is defined as half the splitting between the adiabatic po-

tential energy surfaces E1 and E2 at the crossing seam (see Figure 3.1),

2Vab = E2 − E1 (3.3)

Where E2 is the higher and E1 is the lower root (solution) of the secular equation:
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Figure 3.1: A cross section of an energy profile for initial state a and final state b in
a typical symmetric (exothermicity or ∆E = 0) ET reaction.The solid curves are the
adiabatic surfaces, the dashed lines refer to diabatic surfaces. Qa and Qb are equilibrium
nuclear coordinates of a and b respectively. Electron transfer matrix Vab, diabatic activation
energy Ed, adiabatic activation energy Ea, and the intramolecular reorganizing energy Eopt,
are indicated.

where Haa = 〈ψa|H|ψa〉, Hbb = 〈ψb|H|ψb〉, Hab = 〈ψa|H|ψb〉, Sab = 〈ψa|ψb〉, and H is

the electronic Hamiltonian operator Ĥel defined in equation (2.13). At the crossing seam

Haa = Hbb, therefore Vab becomes:

Vab =
Hab − Sab(Haa)

1− S2
ab

(3.5)

In the limit of small Sab, Vab ≈ Hab. The electronic coupling integral, Vab, is a key quantity

in ET models, in which its role is both mixing the two diabatic states and mixing the

electronic ground state with that of the excited state. These two “mixings” are explained

next.

For class II systems, two intramolecular electron-transfer pathways are conceivable
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[237]: (1) the thermal process where the system moves from one minimum of the lower

adiabatic surface over a transition state, along the electron-transfer coordinate to the other

minimum, where the energy of this transition is the adiabatic energy barrier separating

the two equilibrium points, called Ea; and (2) the optical way where the system is photo-

excited from one minimum of the lower adiabatic surface to the Franck-Condon state of the

upper adiabatic surface. The energy of this IV-CT excitation is the Marcus reorganization

energy λ and it is equal to the optical transition energy Eopt in the cases of symmetric

PES’s (see Figure 3.1).

It is important to mention that a charge transfer processes can be sometimes classified

as: through-bond and through-space CT. In a through-bond CT, the transfer of electrons

between the redox units proceeds by way of an intermediate electronic state that uses wave

functions localized on the bridge-unit between the redox sites. In contrast, a through-space

CT is the result of the direct spatial overlap of the two redox units wave functions while

the bridge is used only to bring the two units together.

In addition to the classical two-state model described so far (sometimes called Marcus

two-state model), there are other theoretical approaches to describe ET reactions. Quan-

tum mechanical treatments account for the integral role of vibronic coupling which becomes

increasingly important with stronger electronic coupling due to the dynamic interaction

between the vibrational and electronic motions (i.e. the failure to meet the Born Oppen-

heimer approximation) [246,247]. The PKS model proposed by Piepho, Krausz and Schatz

was originally formulated as a two-state, one-dimensional model along an anti-symmetric

vibrational coordinate, q [248,249].

Some other models includes, semi-classical [250], molecular orbital (e.g., the Ondrechen

model) [251], and three-state models. The latter are briefly described in the next subsec-

tion. These and other models were reviewed and described in greater detail by many

authors [242,244,252,253].

3.2.4 Three-state classical models

The classical two-state model is based on Born-Oppenheimer approximation and is strictly

valid only in the strongly localized and delocalized limits. In the bridged mixed-valence

systems in which the electron transfer is mediated by a third state, the inclusion of an

additional electronic state is often necessary. For instance, systems that are transitions
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between localized and delocalized regimes (i.g., transition between class II and class III)

are not properly described by a two-state model and the so called three-state models

[241,254–256] are indeed more adequate to treat such systems.

The three-state model proposed by Brunschwig, Creutz and Sutin [241] provides an ex-

tension to the two-state classical model by explicitly including a third electronic state (c)

formed by charge transfer to or from the bridging ligand. The influence of this additional

state depends on its energy relative to the other two diabatic states (a and b). When the

mediating state is of high energy, the electron transfer can be treated analytically by in-

voking perturbative (superexchange) mixing of the reactant, product and mediating states:

the wave functions for the former diabatic states are modified by including perturbative

contributions from the higher electronic states. On the other hand, if the mediating state

is sufficiently low lying, charge transfer can take place by a sequential electron or hole

transfer reaction (chemical mechanism) in which the bridging group becomes reduced or

oxidized [241]. In general, a 3 × 3 Hamiltonian must be solved to obtain the adiabatic

surfaces of the three states. The electron transfer process involves superexchange coupling

of the three states, where states a and b couple to state c through the electronic coupling

parameter Vac (= Vbc), and the direct Vab coupling is zero.

The same authors had also proposed a four-state ET model for systems with several d

electrons in which the treatment of electrons other than the transferring one is necessary

[241]. An example of the latter case is symmetric D2h RuII–Bridge–RuIII complexes such

as the pyrazine-bridged dimer [(NH3)5Ru]2pz
5+ where at least three electrons need to be

considered.

Potential energy surfaces and reaction pathways for bridged mediated electron transfer

molecular ionic systems were also recently reported [257–260]. The subject of PES and

the reaction coordinates of mixed valence systems will be treated in the last section in this

chapter.

3.3 Computational quantum mechanical methods of

mixed-valence molecules

Semiempirical computational methods such as INDO, AM1 and PM3, and ab initio meth-

ods such as Hartree-Fock Self-Consistent Field method (HF-SCF), post Hartree-Fock cor-
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related methods, and Density Functional Theory (DFT) (see the previous chapter for a de-

tailed treatment of ab initio methods) have been extensively employed to provide rapid cal-

culations of the structural and electronic properties of mixed-valence systems [83,261,262].

These calculations could be compared with the experimental values of Vab and Eopt which

in turn can be estimated from IV-CT band structure, intensity, and position.

Among the many measurable quantities of mixed-valence ET reactions, the numerical

calculation of Vab had received a great interest. The semiempirical CNDO/S, INDO, and

related methods have been exploited by several groups in estimating Vab [83], while Nelsen

and Newton had shown recently an estimation of Vab from AM1 calculations [263].

Extensive application of ab initio methods has been made to study electron transfer

in many systems. Most studies have used HF wave functions and thus have been limited

to reactions involving the lowest state of a given symmetry, but some studies have used

correlated wave functions [264,265]. In the ab initio determination of Vab, several different

strategies can in principle be employed. For instance, the diabatic way involves explicit

determination of the matrix elements of equation (3.4), which is usually accomplished by

exploiting the properties of symmetry-broken SCF solutions for weakly coupled systems

and therefore is limited to uncorrelated wave functions [266, 267]. A second possibility is

to compute the adiabatic energies and to obtain Vab, making use of equation (3.3). This

approach allows for a wide variety of technical solutions making use, for instance, of orbital

energies (by using Koopmans’ theorem) or sophisticated correlated eigenstates. However,

such an approach is not free of difficulties since the calculation of E1 and E2 (say from a

multireference configuration interaction (MRCI) expansion) should ensure that the same

degree of electron correlation is incorporated into the two adiabatic states.

To overcome these difficulties, Sanz and Malrieu reported [268] on an alternative method

to compute Vab at the correlated level in which the determination of adiabatic energies or

diabatic wave functions was not compulsory. In this procedure, only electron correlation

contributions to the off-diagonal term Hab were explicitly computed. The method allows

for a variational calculation by means of the CI matrix built up from the minimal set of

determinants contributing to the energy difference between the adiabatic states a and b

(Difference-Dedicated CI, DDCI).

Density functional theory (DFT) has been extensively applied in modern theoretical

approaches to a wide variety of chemical problems. However, its application to the com-

putation of the ET matrix element is limited by the fact that such a theory was originally
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developed for the ground state, while equation (3.3) also needs the energy for the first

excited state. DFT computations of excited-state energies is quite an involved task, and a

large effort in this direction is currently made [269].

Theoretical and computational framework for quantitatively modeling the electronic

characteristics of mixed-valence systems between the localized and delocalized regimes has

been also proposed [270]. The formalism accounts for the key features of the shift, including

the central role of both anti-symmetric and symmetric modes within the full treatment of

the vibronic coupling problem. The Generalized Mulliken-Hush (GMH) method [271,272]

can be successfully used for calculating the electronic matrix coupling elements in which

three and more states are present in an electron transfer process.

3.4 Mixed-valence molecules

Mixed-valence compounds were extensively studied since the 1960’s. In contrast to in-

organic and organometallic mixed-valence compounds, much less is known about purely

organic mixed-valence systems, although a great number of derivatives have been synthe-

sized that might have mixed-valence character in one possible oxidation state.

3.4.1 Inorganic mixed-valence molecules

A typical inorganic mixed-valence compounds are composed of symmetrical complexes

in which two metal atoms are connected by a bridging ligand. One famous example

is [(NH3)5Ru− pyz− Ru(NH3)5]
5+, where pyz = pyrazine, synthesized and studied by

Cruetz and Taube in 1969 [230]. This initiated the synthesis of a great variety of molecular

mixed-valence compounds [231,273–276]. The synthesis of new mixed-valence compounds

including bridged dimers of ruthenium is still an active field of research [277–283]. Their

properties, in particular the electronic coupling between the metal centers through the

bridge, are investigated using electrochemistry, spectroelectrochemistry, absorption spec-

troscopies, EPR (electronic paramagnetic resonance), and DFT (density functional theory)

calculations, while the analysis of the intervalence band in this type of complexes, the ef-

fect of solvent, the effect of localization, and dynamics have been the subject of recent

theoretical works [241,284–288].

Theoretical calculations on mixed-valence complexes containing other transition metals
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are also very frequent in the literature [289].

3.4.2 Organic mixed-valence molecules

The study of pure organic mixed-valence compounds appeared relatively later than their in-

organic counterparts. Organic mixed-valence molecules tend to exhibit stronger inter-site

coupling than their transition-metal-based analogues [290]. Moreover, the Inter-Valence

Charge Transfer (IV-CT) band of organic mixed-valence systems are not affected by the

overlap with other low-lying transition, contrary to what may occur for inorganic com-

pounds due to appearance of the d → d metal to ligand (MLCT) or ligand to metal

(LMCT) charge transfer excitations.

Many different pure organic redox centers have been investigated, including quinones

and imides [291, 292], dioxaborines [293], nitro groups [294, 295], and perchlorotriphenyl-

methyl centers [296, 297] in anionic organic mixed-valence systems, and hydrazines [298,

299], 1,4-dialkoxybenzenes [300,301], and various alkylamines [287,302] in cationic systems.

Triarylamine mixed-valence species have been the focus of a number of studies [259,260,

303–318]; triarylamines may be readily combined with a wide range of bridging groups and,

with appropriate substitution patterns, can be converted to rather stable radical cations at

only moderate oxidizing potentials [319]. The importance of these molecules comes from

their use as hole-transport agents in organic electronics applications [320,321], in which the

intermolecular charge-transfer process involves electron hopping between neutral molecules

and the corresponding mixed-valence radical cation.

Lambert and Nöll have studied the mixed-valence properties of a variety of bis-triarylamine

systems in which the terminal aryl groups have methoxy groups in the 4-position, including

those with phenylene, biphenyl, and phenylene-ethynylene bridging groups [259, 260, 307];

(see Figure 3.2 for typical molecular structures of this class). Additionally, several theoret-

ical and computational works have been published on these compounds. Coropceanu et al.

performed a time dependent DFT calculations on molecule 1 cation (1+) shown in Figure

3.2, their measurement of the lowest optical transitions were close to experimental data

and it was suggested that molecule 1+ is a class II/III borderline system [309]. The latter

work was extended to include all the molecules shown in Figure 3.2, where the electronic

coupling parameter were also evaluated [311], and some general conclusions have been

drawn about the classification of the molecular cations studied. For instance, according
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Figure 3.2: Typical molecular structures of bis-triarylamines. (The IUPAC names of
molecules 1 and 4 are given in chapter 6).

to these calculations, it was suggested that molecules 3+ and 4+ can be classified as class

II mixed-valence systems, while the IV-CT profiles of molecules 1+ and 2+ was found to

be consistent with class III systems exhibiting strong coupling of the electron transfer to

symmetrical vibrations [311]. The effect of temperature on the charge transfer transitions

on these molecules were also investigated theoretically by the same group [313].

Molecules 1+ and 4+ shown in Figure 3.2 were investigated at a preliminary level during
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the course of this thesis, see chapter 6.

3.5 Reaction coordinates

A reaction coordinate, or a reaction path, is defined as the steepest-descent pathway, in

the many-dimensional nuclear coordinate space, connecting the two equivalent minima and

passing through the saddle point (the transition state) on the crossing seam surface [322].

In this work, we have replaced the exact reaction path by an approximated one, in

which the geometries are obtained by averaging the geometries of two points on the reaction

coordinate according to a mixing parameter ξ. The mixing parameter is plotted on the

abscissa of a reaction coordinate, it could be chosen to have different ranges, typically from

−0.5 to +0.5, and different increments. An averaged geometry can be obtained by two

different methods:

1. mixing linearly the optimized equilibrium, or minimum, geometry with the optimized

transition state, or saddle point, geometry at the crossing seam;

2. mixing linearly the geometries of the two optimized minima.

The first choice would produce a transition state structure in which the first derivative

of energy, dE/dξ, is non zero. The second choice seems to be preferable, since it produces

a smooth curve on the whole ξ range, including the crossing seam at ξ = 0.00. Another

advantage of mixing the two optimized equilibrium geometries is the possibility to test the

geometry of the transition state point on the reaction coordinate with respect to the truly

optimized transition state geometry. For these two reasons, we have chosen the second

method. Using such a method is justified in the framework of the two-state model used

for the molecular cations investigated.

Therefore, for all the systems studied in this work, the reaction coordinate was obtained

by mixing linearly the optimized coordinates of the two equilibrium geometries:

Q(ξ) =

(

1

2
− ξ

)

QA +

(

1

2
+ ξ

)

QB (3.6)

where Q(ξ) is the nuclear configuration at the point ξ on the reaction path, while QA

and QB represent the nuclear coordinates of the two optimized equilibrium geometries.
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The mixing parameter ξ was varied from −1.00 to +1.00 (−1.50 to +1.50 in the case of

Spiro) in steps of 0.05. In such a way, QA is the geometry of the first minimum, this

geometry corresponding to the point ξ = −0.50, where the positive charge is localized

on one redox site of the molecular cation. QB is the geometry of second minimum, this

geometry corresponding to the point ξ = +0.50, where the positive charge is localized on

the other site of the molecule. The internal coordinates of the systems at the crossing seam,

ξ = 0.00, are calculated as the average of the internal coordinates, of the two equilibrium

points. The Born-Oppenheimer potential energy surfaces were then obtained by calculating

the energies of the different electronic states that are most engaged for the corresponding

ET reaction, at each step value of the parameter ξ.

In order to test the quality of the averaged transition state geometry and energy for

the different molecules used in this work, geometry optimization at the crossing seam was

carried on. The optimized geometries were then compared with the corresponding geome-

tries of the obtained by mixing geometries of the two optimized minima. For all systems

studied in this work, the differences between the optimized and the average geometries of

the crossing seam states were very close, see chapters 4 and 5. This was also true for the

energy differences between the electronic states of the averaged and the optimized geom-

etry at the crossing seam. For these reasons, we believe that the geometry path obtained

through equation (3.6) is very close to the optimal one.
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The “Spiro” molecular cation

4.1 Introduction

The Spiro π-σ-π molecular cation, 5,5’(4H,4H’)-spirobi[cyclopenta[c]pyrrole]2,2’,6,6’tetrahydro

cation (the “Spiro” molecule in the following), shown in Figure 4.1, was thoroughly and ex-

tensively investigated as a model system during the course of this thesis. The Spiro system

consists of two equivalent π moieties, lying onto two orthogonal planes, and separated by a

spirocycloalkane rigid σ bridge. The spiro group is an sp3 central carbon atom connected

to four other adjacent carbon atoms forming together a tetrahedral shape. At the end of

each π moiety, the two highly conjugated pyrrole groups, each with an sp2 nitrogen atom

bearing an electron pair of electrons, are the nominal donor/acceptor, or redox, centers in

the Spiro molecule. If an electron is extracted from the neutral Spiro molecule, the result-

ing hole tends to localize either on the left or the right π system, inducing a deformation of

the molecular geometry and an equilibrium state for each case. Therefore, two equivalent

minima, separated by an energy barrier which represents the transition state between the

two equilibrium states, exist for the cation, and the ground state presents the double-well

potential energy surface which is typical for mixed-valence systems of class II (Figure 3.1).

In this work, a classical (or Marcus-like) two-state model (see section §3.2.3) is adopted

for the study of the electronic structure and spectroscopic states of mixed-valence Spiro

molecular cation. It is important to remind that a three-state model for some special

cases of mixed valence systems (see section §3.2.4) are sometimes more adequate than the

simplified classical two-state model. The justification of using such a simplified two-state

model in this study of Spiro is discussed in this chapter.
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Figure 4.1: The Spiro π-σ-π system 5,5’(4H,4H’)-spirobi[cyclopenta[c]-
pyrrole]2,2’,6,6’tetrahydro molecule.

Since the mid 1970’s, Spiro, and the broader class of of molecules with π-σ-π compo-

sition, have been proposed as molecular electronic devices, since their electronic molecu-

lar structure allows them to be considered as strong candidates to be used as molecular

switches or molecular memory devices [323–329]. In order for such a molecule to function

as a device, each π moiety should be effectively insulated from the the other π moiety.

This is achieved by having the spirocycloalkane as the σ bridge, making the plane of each

π moiety perpendicular to that of the other one. Molecules of this type can be looked upon

as a double-well potential for an electron that can hop back and forth between the two

wells at some characteristic frequency, which depends on the height and the shape of the

potential energy barrier. Such a two-state molecule can serve as a binary system in which

one state represents “on” and the other represents “off” [324]. In this case, the two minima

should be separated by a sufficiently high barrier, so that neither tunneling nor thermal

fluctuations can intentionally switch one state to the other. Only by external control, e.g.,

an electric field or light, should one be able to switch. The height of the barrier can be

controlled by chemical and structural modifications. However, the latter point is possible

if the chemical bonds of the σ bridge are mostly responsible for the transfer of electrons,

that is, through-bond ET.

The purpose of the study performed on Spiro in this project, was not to extract some

conclusions about the potentiality of Spiro as a successful molecular device. Rather, and

as a first step, a comprehensive understanding of the electronic structure and the low-lying

spectroscopic states through the whole intramolecular charge transfer reaction coordinate
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was thought to be necessary, and, therefore, an extensive investigation using highly cor-

related ab-initio multi-reference methods, using both canonical and localized molecular

orbitals, was carried on Spiro molecular cation.

Spiro has been previously studied as a model system [325,330,331], since its relatively

small size permits high level ab-initio investigations. Aviram et al. proposed a method

and an algorithm based on symmetry broken SCF solutions of the diabatic states, by using

RHF/STO-3G and RHF/3-21G to calculate Vab and other ET mixed-valence parameters

of the Spiro cation [325]. Their study showed that Spiro cation is a double-well-potential

molecule with a significant energy barrier against the transfer of electrons from one end of

the molecule to the other end, and that this barrier is sufficiently high so the stored bit

of information is not inadvertently lost. The effect of an external electric field, treated as

an external perturbation, on the values of computed Vab, λ, Ed, and Ea was also observed.

Through these calculations, they have found that the energy of the barrier decreases rapidly

as the external field strength is increased. On the other hand, they have reported that Vab

and λ are not affected by the strength of the applied electric field.

They have also estimated the through-space contribution to the total Vab value. This

was done by calculating Vab at zero field for a super-molecule consisting of a pyrrole and a

pyrrole cation located at the same distance and angle 90◦ as the corresponding structure at

the seam of crossing in Spiro. Moreover, the basis set of all carbons have been extensively

augmented to assure the flexibility needed for the two fragments to overlap through space.

They have found that through-space contribution to the total value of Vab is less than 9%.

Hence, one of their main conclusions was that Spiro does exhibit characteristics that are

appropriate for molecular device applications.

Calzado et al. have measured the electronic coupling matrix element Vab for Spiro,

and other two mixed-valence systems, using UHF, DFT/B3-LYP, and the ab-initio vari-

ational Difference-Dedicated Configuration Interaction (DDCI) method [331]. They have

concluded that DFT results of Vab were underestimated by 15 − 20% than that of DDCI.

Nevertheless, they have pointed out some advantages of measuring such mixed-valence

characteristics using DFT, such as the price and the simplicity of the DFT method used as

compared to DDCI. Moreover, they have noticed that DFT provides more reliable results

than UHF method at only a reasonable increment of computational effort.

Finally, Dehareng et al. have reported a more extensive study of Spiro, and other

5 pure organic mixed cation molecules, at ab-initio HF, CIS, CISD, MP2 and CASSCF
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levels [330]. They have concluded that: 1) CIS level is quite misleading, 2) minimal basis

sets should not be used except for geometry guesses for higher calculation levels, 3) the

CASSCF level is certainly very appealing to determine excited states energies, but the

appropriate choice of the active space remains a very delicate task, 4) the UHF level is

subject to instabilities that makes the determination of Vab, λ, Ed, and Ea only qualitative,

5) the inclusion of some electronic correlation to the UHF method (like UMP2, UMP4,

UCISD) has a great influence on Ed and Ea but not as large on λ values.

4.2 Spiro symmetry and orbitals

The ideal symmetry of the neutral system is D2d, where the principal axis of rotation,

the C2 axis, is the z-axis that passes through the two nitrogen atoms, see Figure 4.1.

The ground electronic state geometry of the distorted cation shows two equivalent minima

having a lower symmetry, C2v. The two minima are separated by a saddle point at the

crossing seam with a symmetric D2d geometry. The σ/π separation is an approximated

one, since σ and π orbitals belong to the same irreducible representations in both D2d and

C2v. In Figure 4.2, the ten valence “π” orbitals for the symmetric D2d neutral Spiro are

shown together with their symmetry assignments. Notice that the symmetries reported

in Figure 4.2 and the rest of this chapter are those of the C2v point group. This is due

to the fact that all the calculations performed on D2d Spiro were done in the reduced C2v

subgroup, since the computer codes used in are not able to carry out calculations on non-

Abelian groups, as D2d point group. The D2d symmetry is then imposed by setting the

necessary constraints on the coordinates.

The orbitals in Figure 4.2 have been obtained at SCF level and by using a minimal basis

set. The neutral “π” system contains twelve electrons, so the six lowest orbitals in Figure

4.2 are occupied, while the remaining four are empty (only the valence “π” orbitals of Spiro

are considered here). The electronic configuration of the Spiro valence π orbitals, at the

single determinant level, in the C2v point group, is given by: (σ-core) (1b1)
2 (1b2)

2 (2b1)
2

(2b2)
2 (1a2)

2 (2a2)
1. The Highest Occupied Molecular Orbital (HOMO) of the system is

the 2a2 orbital. By removing an electron from the HOMO, the ground state of the cation

is obtained, which is therefore the 2A2 state. Since the HOMO-1 1a2 orbital is very close

in energy to that of 2a2 orbital, one can expect a strong participation of this orbital to the

low-lying states of the cation. Two more orbitals play an important role in the low-energy
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spectrum: these are the two degenerated 2b1 and 2b2 orbitals (they actually belong to

the degenerated E irreducible representation of D2d, see Table 4.1). For this reason, our

minimal CAS calculations have been performed by using these four orbitals as the active

space, see section §4.3.5 below.

Figure 4.2: Valence “π” molecular orbitals of the neutral Spiro molecule computed at RHF-
SCF/SZ for D2d geometry using C2v irreducible representations. (See Table 4.1).

In Table 4.1, the orbitals are classified accordingly to both D2d and C2v groups. It can

be seen that the degenerated e orbitals in the D2d group correspond to a pair b1-b2 in C2v.
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Table 4.1: The designation of the valence “π” molecular orbitals of the Spiro neutral
molecule shown in Figure 4.2 for the D2d geometry using C2v irreducible representations
and the corresponding MO’s in D2d symmetry together with their orbital energies (in a.u.).
Orbitals 1 to 6 are doubly occupied, while orbitals 7 to 10 are empty.

MO number C2v sym. D2d sym. orbital energy

1,2 1b1 1b2 1e −0.6456
3,4 2b1 2b2 2e −0.4221
5 1a2 1b1 −0.3990
6 2a2 1a2 −0.3947
7,8 3b1 3b2 3e +0.1280
9 3a2 2b1 +0.2128
10 4a2 2a2 +0.2179

In a similar way, the a2 orbitals in C2v are classified either b1 or a2 in D2d. For this reason,

the two lowest states of the cation have different symmetry in D2d: the lowest one has A2

symmetry, while the first excited state has B1 symmetry (while they are both A2 in C2v).

In D2d, the reaction coordinate has the same symmetry as the z axes, hence B2. Since

in this group B1 ⊗ B2 = A2, the two lowest states are indeed mixed by an antisymmetric

deformation of the coordinates in the z direction.

In some previous reports, the Spiro cation was studied in the C2v point group, if the

charge is localized on either one of the two aromatic moieties in the molecule, while a D2d

geometry was taken for the totally delocalized state [325]. Other recent studies at CAS-

SCF level, suggested C2 and C1 point groups for the two situations, respectively [330].

However, according to these calculations, the distortion from exact C2v andD2d symmetries

are extremely small. Moreover, CAS-SCF tends to enhance symmetry-breaking distortions

(see the computational details section and Figure 3 in reference [332] reported in section

§4.4.3), so it is not clear whether these slight departures from higher symmetries are real

or artefactual. Therefore, in view of the model character of the present investigation, we

decided to use the high symmetry groups in this study.
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4.3 Calculations and computational procedures

4.3.1 Electronic states computed

In the calculations performed on Spiro, only the valence “π” orbitals of the cation were

given attention, since these orbitals are responsible for the intramolecular charge transfer

process in the Spiro mixed-valence molecular system. It should be also reminded that the

electronic states computed for Spiro at every point on the reaction coordinate are that of

C2v point group.

The electronic, or spectroscopic, states that are considered along all or some points

on the reaction path of intramolecular charge transfer in Spiro are: two state-averaged
2A2, which will be denoted as 12A2 and 22A2 in the the following; one 2B1; and one 2B2

state. Indeed, all our CAS-SCF calculations were performed by averaging the two lowest
2A2 electronic states with equal weight, since if only one electronic state is optimized, a

CAS-SCF instability [333] appears (see Figure 3 in the article published on Spiro [332] and

reported in section §4.4.3)), and the energy surface is discontinuous at the crossing seam

(D2d) point geometry.

No 2A1 electronic state was considered in this study since 2A1 state does not exist in

the π orbitals set as the π orbitals do not transform as the irreducible representation A1.

4.3.2 Basis sets used

Four contraction schemes of basis sets of Atomic Natural Orbitals (ANO) type [207] were

used: SZ ((1s) for each H and (2s1p) for each C and N), DZ ((2s) for each H and (3s2p) for

each C and N), DZP ((2s1p) for each H and (3s2p1d) for each C and N) and TZP ((3s1p)

for each H and (4s3p1d) for each C and N).

The number of contracted orbitals of the minimal basis set (SZ) is 89, while that of the

largest basis set used (TZP) is 354 orbitals. The number of contracted orbitals of DZ and

DZP basis sets are 163 and 280 respectively.

4.3.3 Geometry optimization

Geometry optimization of the neutral Spiro molecule, were calculated using Restricted

Open shell Hartree Fock (ROHF) with TZP basis set. The same method and basis set

were used to optimize the geometry of the 2A2 electronic state of the cation at both C2v
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and D2d geometries. The geometry of the Spiro di-cation 3A1 was also optimized at this

level. Some of these optimized geometries were used to calculate the reaction coordinate

of the intramolecular charge transfer process in Spiro. The details of these calculations are

discussed in section §4.4.3.

4.3.4 The reaction coordinates

The details of producing the reaction coordinates of the intramolecular charge transfer in

Spiro are found in the subsection entitled “reaction coordinates” in the article shown in

section §4.4.3. Here, only the notation necessary to follow the discussion below is men-

tioned. The reaction coordinate was obtained by mixing linearly the optimized coordinates

of the two equilibrium C2v geometries by using the equation (see also section 3.5:

Q(ξ) =

(

1

2
− ξ

)

QA +

(

1

2
+ ξ

)

QB (4.1)

where Q(ξ) is the nuclear configuration at the point ξ on the reaction path, while QA and

QB represent the nuclear coordinates of the two optimized C2v geometries. The mixing

parameter ξ was varied from −1.50 to +1.50 in steps of 0.05. In such a way, QA is the

geometry of the first C2v minimum, this geometry corresponds to the point ξ = −0.50,

where the positive charge is localized on one moiety of the molecule. QB is the geometry

of second C2v minimum, which will, this geometry corresponds to the point ξ = +0.50,

where the positive charge is localized on the other moiety of the molecule. The internal

coordinates of Spiro cation at the crossing seam, which has a D2d symmetry, are calculated

as the average of the two C2v internal coordinates, and it is obtained at the crossing

seam point ξ = 0.00. The Born-Oppenheimer potential energy surfaces were obtained by

calculating the energies of 12A2, 2
2A2,

2B1 and 2B2 electronic states at each step value of

the parameter ξ.

4.3.5 The choice of the active space

Given the Spiro electronic configuration of the π valence orbitals as presented in the pre-

vious section §4.2, it would be reasonable to choose our minimal active space of Spiro to

include the two, near degenerate, HOMO (1a2) and HOMO-1 (1a2) orbitals in addition to

the two degenerate 2b1 and 2b2 orbitals, which are close in energy to that of the HOMO
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and HOMO-1 orbitals, see Figure 4.2 and Table 4.1. For a monocation Spiro, this active

space is designated as CAS(7/4), i.e., 7 active electrons in 4 active orbitals. In order to

improve the description of the Spiro valence π orbitals, and to see the effect of including

more valence π orbitals in the active space on the results of the spectroscopic states and

the different mixed-valence ET parameters, two other larger active spaces were also used

in computing CASSCF, and other MRCI methods, using canonical and localized orbitals.

One is CAS(11/10) active space, which include all the 6 valence π orbitals and the lowest

four virtual π orbitals shown in Figure 4.2, that is: (1b1)
2 (1b2)

2 (2b1)
2 (2b2)

2 (1a2)
2 (2a2)

1

(3b1)
0 (3b2)

0 (3a2)
0 (4a2)

0. The other active space used in this study is CAS(7/8) which

excludes the lowest two occupied valence π orbitals, namely (1b1)
2 and (1b2)

2 from the

CAS(11/10) active space. Hence, the orbitals included in the latter CAS(7/8) active space

are: (2b1)
2 (2b2)

2 (1a2)
2 (2a2)

1 (3b1)
0 (3b2)

0 (3a2)
0 (4a2)

0, which corresponds to the valence

π system of the eight carbon atoms located on the two external pyrrole cycles.

The exclusion of (1b1)
2 and (1b2)

2 orbitals, which corresponds to the two nitrogen atoms

valence π orbitals, from the complete valence π system in CAS(7/8) is justified by the fact

that C6-N distance, see Figure 4.1 for atom numbering of Spiro, has a small dependence

on the reaction path during an intramolecular charge transfer compared to the significant

change of C4-C5 and C4-C6 bond distances during such a process (for more details on this

point, see Table 2 and Figure 5 in the article published on Spiro [332] and reported in

section §4.4.3).

4.3.6 Methods of calculations used

In this subsection, the calculations performed on Spiro are mentioned together with their

corresponding notation used. The methods of calculations performed on Spiro are: CAS-

SCF, denoted as CAS; CAS-CI, denoted as CASguess; single excitation CI on CAS-SCF

reference wave function, denoted as CAS+S; and single and double excitations CI on CAS-

SCF reference wave function, denoted as CAS+SD. Two techniques of CAS+SD were used:

contracted CAS+SD [159,160], denoted as C-CAS+SD; and uncontracted CAS+SD, which

keeps the same notation without any prefix. In the following, and when it is appropriate,

any of these calculation methods used will be denoted as X. Two types of guess orbitals

were used in performing any of the above mentioned calculation methods X: canonical

orbitals, labeled with the subscript Xcan; and localized orbitals, of a priori type, labeled
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with the subscript Xloc. Localized orbitals were not used for C-CAS+SD calculations. In

addition, CAS-CI (CASguess) calculations were only performed by using localized orbitals.

Finally, If all the σ orbitals were kept frozen during an orbital optimization, a subscript

Xfrz is added.

Its worthwhile to mention that, due to hardware limitations, some calculations were

not feasible. For instance, CAS+SD were not calculated using the smallest active space

CAS(7/4) with DZP and TZP basis sets, and the two largest active spaces CAS(7/8) and

CAS(11/10) with any basis set. The less demanding CAS+S calculations were carried

out using the active space CAS(7/4) with the four basis set, CAS(7/8) active space with

SZ and DZ basis sets, and CAS(11/10) active space with only the minimal SZ basis set

contraction.

4.4 Results of the theoretical modeling and calcula-

tions on Spiro

4.4.1 Introduction

In this section, the results of the calculations done on Spiro are presented and discussed.

A published article on Spiro is reported in subsection §4.4.3. The unpublished results are

then reported and discussed in separate subsections. Many of the unpublished results are

tabulated in the Appendix chapter (chapter 8), but are, when necessary, commented and

discussed in the present chapter.

4.4.2 A preliminary publication on Spiro

An introductory article that report the preliminary results of the calculations performed

on Spiro was published in “Lecture Notes in Computational Sciences” in 2006 [334]. In this

article, the notation used is somewhat different from that explained above and presented

elsewhere in this chapter. Moreover, the results presented in this paper are included in

the far comprehensive publication reported in the next subsection. For these reasons, this

publication, entitled “Ab-Initio Multi-reference Study of a Bistable Spiro Molecule”, is

reported in section §8.1 in the appendix.
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4.4.3 Results of CAS(7/4) active space using SZ and DZ basis

sets

The following article was published in 2008 in the “Journal of Computational Chemistry”

[332]. This article will be named “article I” in the following. In this publication, the

results of CAS-SCF, CAS+S, CAS+SD, and C-CAS+SD calculations, using both canonical

and localized orbitals, are reported (only canonical orbitals were used for C-CAS+SD).

These levels of theory were used to compute, numerically, ET characteristics and the

energetics of the spectroscopic electronic states through the intramolecular charge transfer

reaction coordinate. In particular, two points in the reaction coordinate were given a

special attention: the equilibrium point, or minimum, having C2v point group geometry;

and the D2d transition state, or saddle point. In this contribution, only the results of the

calculations using the smallest active space (CAS(7/4)), with SZ and DZ basis sets were

reported. This particular active space and these two basis sets were chosen to be presented

since, as mentioned above, CAS+SDcan, CAS+SDloc, and C-CAS+SDcan were only feasible

using CAS(7/4) active space with the two smallest basis sets. In this article, the aim was

the possibility to compare CAS+SDcan and, to a more extent, CAS+SDloc with the well-

established C-CAS+SD method. The same comparison was also made at CAS-SCF and

CAS+S levels to see the effect of, both, using canonical orbitals, on one hand; and the

dynamical correlation, on the other hand.

The article also presented and discussed the theoretical model used to produce the reac-

tion coordinates and the PES curves of the low-lying adiabatic electronic states. Moreover,

the geometry changes, i.e., the bond length changes, of the particular bonds of Spiro were

followed during ET reaction coordinate and the results were discussed.
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4.4.4 Results of CAS(7/4) active space with the augmented basis

sets

In this and the following two subsections, all the calculations that were performed on

Spiro and were not reported in article I are presented. All the results presented in these

three subsections were, at the best, limited at CAS+S level (see section §4.3.6). For that

reason, and in order to have some reference values of the methods used for the larger

active spaces and basis sets, the results of C-CAS+SDcan method using CAS(7/4) with

DZ basis set (reported in tables 5 and 6 in article I) will be considered as the benchmark

values. It should not be deduced from this choice that C-CAS+SDcan is more accurate

than CAS+SDcan or CAS+SDloc methods. In fact, C-CAS+SDcan method is a well known

and a largely tested and accepted method. Moreover, it has been shown that CAS+SDcan

and CAS+SDloc give very similar results to C-CAS+SDcan method, at least, as long as the

mixed-valence Spiro is concerned (see article I).

The energies, in kJ/mol, of the different electronic states at two points on the reaction

coordinate of Spiro using CAS(7/4) with DZP basis set are tabulated in Table 4.2. In

this and the following tables that consider the electronic state energies of Spiro, for each

method, the reference energy has been taken as the energy of the ground state 12A2 at the

point the saddle point (ξ = 0.00), (D2d geometry). In such a way, the energy values of

22A2 electronic state at D2d geometry represent 2Vab (see section 3.2.3). While the energy

values of 22A2 electronic state at C2v geometry represent the energy of the ET barrier (Ea).

The results of CAS-CI (denoted as CASloc−guess) are added in this table.

The general trends of both CAS-SCF using canonical orbitals (CAScan) and CAS-SCF

using localized orbitals CASloc−opt (where the subscript Xopt is added to the latter to remind

that the orbitals are optimized contrary to that of CASloc−guess method) are similar to that

of SZ and DZ basis sets using the same active space (Tables 4 and 6 in article I). This is

also true for the same calculations using TZP basis set contraction, see Table 4.3. However,

the anomaly of the results of CAS+S level for 2B1 and 2B2 electronic states in both C2v

and D2d geometries, that were observed and reported in article I, was not removed or even

systematically enhanced by using extended basis sets like that used for the results shown

in Tables 4.2 and 4.3. Therefore, it is fair to conclude that the general trends that were

observed in SZ and DZ basis sets using CAS(7/4) active space are generally consistent when

using more extended basis sets contractions. On the other hand, the results of CAS-CI are,
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Table 4.2: Energies (kJ/mol) of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZP basis set and
CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt and CAS+Sloc. For each
method, the reference energy has been taken as the energy of the ground state 12A2 in the
D2d geometry.

Geometry State CAScan C-CAS+SDcan CASloc−guess CASloc−opt CAS+Sloc

D2d 12A2 0.000 0.000 0.000 0.000 0.000
22A2 9.664 10.077 2.180 9.639 8.455
2B1 46.521 61.379 381.999 47.320 117.357
2B2 46.521 61.379 381.999 47.320 117.357

C2v 12A2 -6.528 -5.196 -11.541 -6.939 -4.185
22A2 39.852 39.042 37.575 40.253 36.271
2B1 51.802 64.937 399.894 51.969 118.619
2B2 63.421 80.668 388.335 64.974 139.422

in general, very far to be consistent with those of CAS, CAS+S and CAS+SD results, and

this behavior is generally independent of the size of the basis set (see below), although the

qualitative trend of CAS-CI results are quite consistent with that of the highly correlated

methods.

The absolute energies, in hartree (or a.u.), of the results of the calculations using

CAS(7/4) with DZP and TZP basis sets are tabulated in section §8.2 in the Appendix.

In addition, and to report the CAS-CI results of the two smallest basis sets, tables of the

results of SZ and DZ basis sets of the same active space in both kJ/mol and in atomic

units are also included in the same section in the appendix chapter. It can be shown

that there is no quantitative enhancement of CAS-CI results when augmented basis sets

are considered, although the values of 2A2 electronic state are relatively enhanced when

passing from the minimal basis set (0.76 kJ/mol) to the other extended basis sets (around

2.1 kJ/mol). These latter values should be compared with that of, for instance, C-CAS+SD

(10.3 kJ/mol) or CAS+SDloc (9.9 kJ/mol) at DZ basis set.

At this point, we can conclude that both dynamical and nondynamical correlations are
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Table 4.3: Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using TZP basis set and
CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt and CAS+Sloc. For each
method, the reference energy has been taken as the energy of the ground state 12A2 in the
D2d geometry.

Geometry State CAScan C-CAS+SDcan CASloc−guess CASloc−opt CAS+Sloc

D2d 12A2 0.000 0.000 0.000 0.000 0.000
22A2 9.626 9.999 2.139 9.607 8.392
2B1 45.181 59.461 381.441 45.985 116.820
2B2 45.181 59.461 381.441 45.985 116.820

C2v 12A2 -6.753 -5.580 -11.708 -7.164 -3.333
22A2 39.390 38.523 37.052 39.814 36.068
2B1 50.231 62.704 398.870 50.446 117.813
2B2 61.731 78.246 387.602 63.325 138.023

necessary to reproduce the quantitative accuracy needed to describe properly the electronic

states of Spiro. However the inclusion of the mono-excitation dynamical corrections on the

CAS-SCF wave functions were found to be deficient, in term of accuracy, and the highly

expensive CAS+SD level is needed if one seeks a good quantitative description. In addition,

using localized orbitals, for this particular active space, did not change significantly the

trend of the results of any of the levels of theory considered for the CAS (7/4) active space.

The following two subsections will try to ask the following question: Is a quantitative

accuracy achieved at CAS+S level when a larger the active space is used? In particular,

the role of using localized orbitals will also be addressed in the context of this question.

The interest of this question is relevant if one seeks obtaining, relatively, reliable theoretical

results on mixed-valence systems by using only the cheapest possible methods.

4.4.5 Results of CAS(7/8) active space with all the basis sets

The results of CAScan, CASloc−guess, CASloc−opt, and CAS+Sloc methods used to compute

the energies of the Spiro electronic states, in kJ/mol, using CAS(7/8) active space are
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Table 4.4: Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry (ξ =
0.00) and C2v geometry (ξ = 0.50), for different methods using SZ basis set and CAS(7/8):
CAScan, CASloc−guess, CASloc−opt and CAS+Sloc. For each method, the reference energy
has been taken as the energy of the ground state 12A2 in the D2d geometry.

Geometry State CAScan CASloc−guess CASloc−opt CAS+Sloc

D2d 12A2 0.000 0.000 0.000 0.000
22A2 8.003 0.759 8.367 8.148
2B1 41.133 272.175 45.067 69.772
2B2 41.133 272.175 45.067 69.772

C2v 12A2 -5.882 -11.504 -5.894 -4.017
22A2 45.717 44.011 46.141 44.767
2B1 51.707 298.730 55.157 75.441
2B2 61.811 278.073 65.732 96.332

presented in Table 4.4 with SZ basis set and Table 4.5 with DZ basis set. The absolute

energy results of the same calculations are reported in section §8.2 in the Appendix together

with other results using the two larger basis sets.

At CAScan level, the ET energy barrier (Ea) and the energy splitting at the cross-

ing seam (2Vab) values are lowered using CAS(7/8) active space by ∼ 30% and ∼ 12%

respectively as compared to that of CAS(7/4). This is true for both SZ and DZ basis sets.

Again, electronic energy states calculated with CAS-SCF using localized orbitals are

close to that of canonical orbitals with any basis set of the same active space. When CAS+S

results are considered, a significant lowering of Ea values using DZ basis is observed. For

instance, CAS+S(7/8)/DZ value of Ea is -2.12 kJ/mol; that means, the energy of the ET

barrier is lowered around 35% and 50% with that of CAS(7/4)/DZ and CAS(7/8)/DZ

respectively, and more than 50% when compared with that of CAS+SD using CAS(7/4)

active space and DZ basis set. In addition, the energy results of B states are not compatible

with that of CAS+SD results found in article I, since CAS+S results predicts a lower mixing

(or higher separation) between the ground and first excited state with the B states (the

higher excited states) with the larger active space than CAS-SCF or CAS+SD methods



68 Chapter 4. The “Spiro” molecular cation

Table 4.5: Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry (ξ =
0.00) and C2v geometry (ξ = 0.50), for different methods using DZ basis set and CAS(7/8):
CAScan, CASloc−guess, CASloc−opt and CAS+Sloc. For each method, the reference energy has
been taken as the energy of the ground state 12A2 in the D2d geometry.

Geometry State CAScan CASloc−guess CASloc−opt CAS+Sloc

D2d 12A2 0.000 0.000 0.000 0.000
22A2 9.066 2.149 9.288 8.751
2B1 46.564 323.555 52.284 90.281
2B2 46.564 323.555 52.284 90.281

C2v 12A2 -4.471 -11.127 -4.762 -2.1191
22A2 38.603 38.410 39.147 36.392
2B1 54.820 347.412 60.544 93.687
2B2 62.529 325.186 67.824 112.003

using any active space with any basis set. The computational values of 2Vab using CAS+S

are merely affected by the size of the active space: 8.717 kJ/mol with the CAS(7/4)+S and

8.750 kJ/mol with the CAS(7/8)+S using DZ basis, that means an energy difference less

than 0.4% between the two active spaces. A difference of 1% is obtained for the case of SZ

basis set. It is worth noting that the computed value of 2Vab was found to be dependent

on the size of the active space using CAS-SCF, it was lower in the case of CAS(7/8) by

11% − 13% depending on the basis set than that of CAS(7/4) as mentioned above. The

computed value 2Vab was also found to be dependent on the nature of the active space as

reported by Dehareng et al. [330].

4.4.6 Results of CAS(11/10) active space with all the basis sets

The results of the electronic states relative energy values, in kJ/mol at CAS(11/10) using

SZ and TZP basis sets are reported in Tables 4.6 and 4.7 respectively. The results of

this active space for other basis sets (DZ and DZP) both in a.u. (absolute energies) and

in kJ/mol, and that of SZ and TZP basis sets in a.u. are reported in section §8.2 in
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Table 4.6: Energies (kJ/mol) of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using SZ basis set and
CAS(11/10): CAScan, CASloc−guess, CASloc−opt and CAS+Sloc. For each method, the ref-
erence energy has been taken as the energy of the ground state 12A2 in the D2d geometry.

Geometry State CAScan CASloc−guess CASloc−opt CAS+Sloc

D2d 12A2 0.000 0.000 0.000 0.000
22A2 7.409 0.602 7.661 7.810
2B1 14.182 95.864 4.746 62.696
2B2 14.182 95.864 4.746 62.696

C2v 12A2 -7.991 -12.213 8.022 -4.503
22A2 47.524 44.942 7.832 45.090
2B1 19.025 101.968 9.596 68.278
2B2 41.175 122.355 1.756 89.682

the Appendix. In these tables, the calculations limits were further restricted by the large

number of configuration state functions and thus, for instance, CAS+S method was only

feasible for the minimal (SZ) basis set. Therefore, the results of CAS-SCF and CAS+S

methods for the different basis sets using complete freezing of all the sigma orbitals in

Spiro are added in these tables.

The results of CAS-SCF calculations using CAS(10/11) suffers serious problems and

misrepresentations on the quantitative as well as the qualitative levels of describing the

Spiro ground and excited states PES shapes and energies. First, in the case of SZ, DZ,

and DZP basis sets, at the C2v minimum geometry, the two B symmetry states, which

represent the second and third excited states, are lower in energy than that of 22A2 first

excited state. While at the D2d geometry, the quantitative energy results of the 2B1 and
2B2

states are far to be compatible with that of CAS(7/4) or CAS(7/8) with any level of theory

and using any basis set. At D2d geometry, the two degenerate B states are separated from

the first excited state by the same value as that between the ground state and the first

excited state. For the sake of comparison with CAS+SD results at DZ basis set, these two

higher excited states were separated from the first excited state by five folds as that for
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Table 4.7: Energies (kJ/mol) of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using TZP basis set and
CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz and CAS+Sloc−frz. For each method,
the reference energy has been taken as the energy of the ground state 12A2 in the D2d

geometry.

Geometry State CAScan CASloc−guess CASloc−opt−frz CAS+Sloc−frz

D2d 12A2 0.000 0.000 0.000 0.000
22A2 8.449 1.937 2.816 2.685
2B1 9.706 116.057 87.291 116.733
2B2 9.706 116.057 87.291 116.733

C2v 12A2 37.053 -12.482 -11.679 -10.033
22A2 86.341 38.220 38.519 36.922
2B1 114.867 117.633 88.354 117.870
2B2 134.302 138.584 110.142 139.841

2Vab values. Second, in the case of TZP basis set, the energy of the ground state, having

12A2 symmetry, at the minimum C2v geometry is higher than that of D2d geometry (the

energy of 12A2 electronic state at C2v geometry is positive), thus, a parabola is obtained

for the electronic ground state in Spiro which implies that the energy barrier separating

the two minima disappeared for this bistable system.

Actually, the valence π isosurface orbitals obtained using this large “complete” active

space at CAS-SCF/TZP level at the C2v minimum geometry of the 2B1 state shows a

different physical content, since, some of the π orbitals are replaced by orbitals having σ

character, see Figure 4.3.

As mentioned above, it was not possible to perform a CAS-SCF and CAS+S calculations

using localized molecular orbitals with TZP, nevertheless, the valence π isosurface orbitals

of CAS(11/10) and CAS+S(11/10) at SZ basis set level starting with using localized guess

orbitals are very interesting to compare with that of CAS(11/10)/TZP. Isosurface orbitals

of CAS(11/10)/SZ and CAS+S(11/10)/S using localized molecular orbitals are shown in

Figures 4.4 and 4.5 respectively. It is clear from these two figures that the using localized
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Figure 4.3: Canonical MO’s of CAS(11/10)/TZP for Spiro+ in C2v geometry for B1 state.

guess orbitals for optimizing a CAS space orbitals removes all the anomalies that were found

with canonical CAS-SCF orbitals. However, in order to obtain more general conclusions

about this point, the comparison should be made with the corresponding basis set, i.e.,

with TZP basis set.

4.4.7 NEVPT calculations

The results of NEVPT calculations performed on Spiro for the different active spaces and

basis sets were reported in two published articles [335, 336] that are reported in section

§8.1 of the appendix. The first publication, entitled “Can the second order multireference

perturbation theory be considered a reliable tool to study mixed-valence compounds?”

that was published in Journal of Chemical Physics [335], considers the minimal active

space possible CAS(1/2) and the minimal basis set. The second publication on Spiro

using NEVPT, entitled “Application of a “charge-averaged” second order Multireference
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Figure 4.4: Localized guess MO’s of CAS(11/10)/SZ for Spiro+ in C2v geometry for B1

state.

Perturbation Theory strategy to the study of a model Mixed-Valence compound” was

published in Journal of Molecular Structure: Theochem [336], it considers larger active

spaces and more extended basis sets.
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Figure 4.5: Localized optimized MO’s of CAS+S(11/10)/SZ for Spiro+ in C2v geometry
for B1 state.
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Chapter 5

Linear beryllium chains

The second step of this work is the theoretical study of the bistability for a series of linear

beryllium chains. The experimental application of this system was not addressed, since its

beyond the scope of this study. However, the methods of deposing single atomic metals

on different kinds of surfaces are getting more and more attention recently. Actually, this

kind of system was found to be very promising and the results found may clarify some

points for further future investigation.

The results obtained so far are reported in the following article that is published in

Journal of Physical Chemistry A [337].
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Chapter 6

The bis-Triarylamines

6.1 Introduction

NN

O

OO

O

C H
3

C H
3

C H
3

C H
3

Figure 6.1: bis-Triarylamine (1): N,N,N’,N’-Tetra(4-methoxyphenyl)-1,4-
phenylenediamine.

The two bis-Triarylamines molecules investigated, at a preliminary level, in this work

are the cations of: N,N,N’,N’-Tetra(4-methoxyphenyl)-1,4-phenylenediamine, labeled tri-
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Figure 6.2: bis-Triarylamine (4): Bis{4-[N,N-di(4-
methoxyphenyl)amino]phenyl}butadiyne.

arylamine 1, shown in Figure 6.1; and bis{4-[N,N-di(4-methoxyphenyl)amino]phenyl}butadiyne,
labeled triarylamine 4, shown in Figure 6.2. These two molecules (and the other bis-

Triarylamines shown in Figure 3.2) are composed of two symmetric triphenylamine groups

that are connected by a hydrocarbon conjugated bridge. The terminal aryl groups having

methoxy groups in 4-position. The bridge in triarylamine 1 is a simple benzene ring con-

nected, at positions 1 and 4, to the two nitrogen atoms of each triphenylamine group; while

that of triarylamine 4 is a Bis-phenyl butadiene. The main characteristic of these molecules

is the high conjugation and, therefore, the strong π character of the bridge unit. It should

be also noted that the geometries of both the neutral and cation Triarylamines 1 and 4

are not planar, since there are dihedral angles between the two triphenylamine groups on

each molecule and between the aryls of each triphenylamine group in each molecule.

In principle, the two nitrogen atoms in these two systems serve as a charge donor/acceptor

in the cation state while the bridge serves as a charge mediator. Taking the last point in

consideration, a two state model, like that used for Spiro, may not properly describe these

kind of systems where a third state, that correspond to the bridge, my actively participate



6.2 Triarylamine 1 cation 115

in the charge transport during an ET reaction. Therefore, the inclusion of a third state is

most likely necessary.

The point group of both neutral Triarylamines 1 and 4 is D2, with the principal axis

of rotation, the C2 axis, is the z axis that passes through the two nitrogen atoms (see

Figures 6.1 and 6.2). If an electron is extracted from the system of these two molecules,

the charge, will not be distributed equivalently on both sides of the system. Either a strong

localization of the charge in one equilibrium geometry or a very weak charge localization

will distort the molecular geometry of the ground state, leaving the cation with a lower

symmetry C2 point group through the whole range of the reaction coordinate, except at

the point where the charge is totally delocalized (the saddle point in the case of a class II

bistable compound), where the point group is D2.

The classification of Triarylamines 1 and 4 cations, and other bis-triarylamine molecules,

into class II valence trapped and class III charge delocalized systems is not always straight-

forward and clear. Though it is generally accepted that this family is a class II/III transi-

tion [259,260,307,311], some studies had shown that triarylamine 4+ is a class II localized

mixed-valence system [307, 311], while triarylamine 1+ is a class III system [311]. Earlier

works had suggested that molecule 1+ is a class II/III borderline system [239–241,307,309].

Practically, these two molecules are relatively very large in size to perform correlated

ab-initio geometry optimizations and highly correlated ab-initio single point calculations.

This is specially true for triarylamine 4 where there are 346 electrons distributed in 50

second-row atoms and 36 hydrogen. This was one of the main difficulties on performing

calculations on Triarylamines 1+ and 4+.

6.2 Triarylamine 1 cation

The energies of the Triarylamine 1+ molecule calculations using CASDI code using SZ

basis set, where the guess MO’s were localized, for the two geometries C2 and D2 shows no

bistability of this molecule. The absolute energy of the geometry at D2 was around 10−5

hartree lower than that of C2 (ξ = 0.5) structure. This indicates that PES of the ET in

Triarylamine 1+ is almost flat through the reaction path between the supposed two minima

points. However, the orbitals of the HOMO and LUMO of this molecule conducted at

CASSCF(2/1) active space at SZ basis set, where the two active space orbitals are HOMO

and LUMO MO’s, using the localization of the guess orbitals shows that these orbitals are
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localized each on a nitrogen atom, see Figure 6.3.

Figure 6.3: bis-triarylamine 1: Molecular orbitals (HOMO up and LUMO bottom) of Bis{4-
[N,N-di(4-methoxyphenyl)amino]phenyl}butadiyne obtained by localizing the guess orbitals
at CASSCF(1/2) level.

6.3 Triarylamine 4 cation

6.3.1 HF and DFT energies of the optimized geometries

Table 6.1 below, reports the energies of two points, namely D2 and C2 of the neutral,

bication, and the cation of triarylamine 4+ using HF and DFT methods to optimize the

geometry, with DZP basis set. From Table 6.1, we can conclude that DFT methods

predict a two-well PES for the ground state, whereas it is not the case for the geometries

obtained at HF level of optimization. The LUMO, HOMO and SOMO orbitals of the

neutral Triarylamine 4 optimized at HF/DZP level are shown in Figure 6.5. While that of

the C2 geometry optimized at HF/DPZ and starting by a guess geometry where the two

halves of the molecules are connected together by attaching a neutral half molecule to a
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Table 6.1: Energy (a.u.) of triarylamine 4 (indicated as T4 in this table), neutral, cation
(+) and bication (++) using ROHF/ANO-DZP and DFT-B3LYP/ANO-DZP methods.

T4 geom/opt DFT/DZP HF/DZP∗

T4 D2/HF -2095.88456718
T4++ D2/HF -2095.40573826

T4+ D2/HF -2095.66930134
T4+ C2/HF -2095.66930087

∆E (kJ/mol) 0.001

T4+ D2/HF -2095.66930134
T4+ C2/HF(mix)∗∗ -2095.66847332

∆E (kJ/mol) 2.174

T4+ D2/DFT -2107.66894878 -2095.64529745
T4+ C2/DFT -2107.66924111 -2095.64657110

∆E (kJ/mol) -0.768 -3.344

T4+ D2/DFT -2107.66894878 -2095.64529745
T4+ C2/DFT(mix)∗∗ -2107.66922682 -2095.64639050

∆E (kJ/mol) -0.730 -2.870

∗ HF energies are calculated after the geom. opt. in DFT for each structure.
∗∗ (mix) indicates an input starting geometry half-mixed dication/neutral optimized geometries.

bication other half, are shown in Figure 6.6 where we can clearly see the localization of the

orbitals of SOMO and HOMO on each side of the molecule, though this localization is not

symmetric. This was not found in the other geometries obtained by other methods shown

in Table 6.1.
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N 2N 1
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Figure 6.4: Molecule triarylamine 4 with atom numbering

6.3.2 Geometries of the optimized structures

The bond lengths and the bond angles of triarylamine 4 found by the methods used in

Table 6.1 are reported in Table 6.2 together with the results previously published by Bredas

et al. [311]. Figure 6.4 should be consulted for bond lengths and bond angles numbering.

Generally speaking, the geometrical differences between the “active” sites of the two sides

of the molecule are small, for example, much less than that found in Spiro, see Chapter 4.

However the CN bond lengths of the two sides are found to be asymmetric when geometry

was optimized by both HF and DFT in the case of mixing the two half bication and half

neutral structures. The comparison with the results found by Bredas et al. could be

misleading since they have supposed a totally symmetric geometry for the ground and

excited state cation equilibrium geometry.
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Table 6.2: Geometry of Triarylamine 4 (indicated as T4 in the Table), neutral, cation
and bication. Distances are in Angstroms. (Br) stands for the geometries of T4 found by
Bredas et al. in JACS 2002, vol. 124, pp. 10519 - 10530 using DFT B3LYP method and
6− 31G∗∗ basis. CN1: bond distance between C1 and N1, CN2: bond distance between C2
and N2, CN3: bond distance between C3 and N1, CN4: bond distance between C4 and N2,
DH1: dihedral angle between C7, C5, C6, and C8, DH2: dihedral angle between C4, N2,
N1, and C3, DH3: dihedral angle between C1, N1, C3, and C9, and DH4: dihedral angle
between C2, N2, C4, and C10. See Figure 6.4 for atom numbering.

CN1 CN2 CN3 CN4 DH1 DH2 DH3 DH4

T4 (Br) 1.408 4 65 48
T4+ (Br) 1.390 1 54 48
T4+∗ (Br) 1.418 1 80 40

T4 D2/HF 1.397 1.397 1.421 1.421 23.911 30.213 59.678 59.678
T4++ D2/HF 1.423 1.423 1.394 1.394 61.363 37.918 37.436 37.436

T4+ D2/HF 1.347 1.347 1.436 1.436 4.190 24.981 75.104 75.104
T4+ C2/HF 1.347 1.347 1.436 1.436 4.234 24.968 75.156 75.132
T4+ C2/HF(mix) 1.382 1.413 1.427 1.400 26.089 31.884 71.652 39.099

T4+ D2/DFT 1.384 1.384 1.429 1.429 13.957 32.602 50.531 50.531
T4+ C2/DFT 1.385 1.385 1.429 1.429 12.570 32.282 51.976 52.017
T4+ C2/DFT(mix) 1.385 1.785 1.429 1.429 12.761 32.401 52.004 51.509
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Figure 6.5: ROHF/ANO-DZP MO’s of Triarylamine 4 D2/HF: bottom, SOMO; middle,
HOMO; top, LUMO
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Figure 6.6: ROHF/ANO-DZP MO’s of Triarylamine 4+ C2/HF(mix): bottom, SOMO;
middle, HOMO; top, LUMO
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Chapter 7

Conclusion

Dans ce travail, une enquête théorique et computationnelle de la structure électronique et

des coordonnées de réaction du transfert de charge de certains composés à valence mixte

a été réalisée. Les composés à valence mixte utilisés dans cet étude allaient d’un système

moléculaire modèle, relativement petit, comme le cation du Spiro, aux molécules relative-

ment grandes et “réelles” comme les cations des composés à valence mixte, comme les

bis-triarylamines. Un nouveau genre de système moléculaire, les châınes linéaires atom-

iques de béryllium, étudiées pour la première fois en tant que composés à valence mixte, a

été également montré.

Les outils théoriques et informatiques utilisés dans ce travail ont été appliqués différemment

selon les limites de calculs confrontés à cause de la taille de la molécule, les jeux de base, et la

taille de l’espace actif utilisé pour le composé à valence mixte correspondant. L’utilisation

des méthodes ab-initio multi-référence pour l’étude des composés à valence mixte est per-

tinente, car ces méthodes peuvent décrire correctement ces systèmes moléculaires avec des

fonctions d’onde de plusieurs configurations électroniques dans leurs états fondamentaux.

Les avantages de l’utilisation des orbitales localisées dans les méthodes ab-initio multi-

référence utilisées pour certains de ces composés à valence mixte ont été décrites.

Par ailleurs, la bistabilité du cation de Spiro et des châınes liéaires atomiques de

béryllium (Ben) a été démontrée par nos calculs. La bistabilité des deux molécules cation-

iques bis-triarylamines étudiées dans ce travail n’a pas été clairement montrée a cause des

limites de calculs.

Dans le cadre de ce travail, il a été montré que, pour le cas du Spiro, l’inclusion de

la corrélation dynamique (CAS+SD) aux fonctions d’onde de corrélation non-dynamique

123
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(CAS-SCF) est nécessaire pour obtenir des résultats quantitatifs précis pour le calcul de

la structure électronique des composés à vlence mixte et ses propriétés moléculaires. Les

problèmes liés au orbitales CAS-SCF canoniques avec une grande taille d’espace actif dans

les composés à valence mixte peuvent être surmontés efficacement en utilisant des orbitales

multi-référence localisées. La corrélation “exagérée” trouvée en utilisant le niveau (CAS+S)

dans le cas de Spiro ne peut pas nécessairement être généralisés à d’autres composés à

valence mixtes. Cependant, plusieurs expériences sont nécessaires pour comprendre les

raisons d’un tel comportement et pour conclure si ce phénomène se reproduit dans d’autres

systèmes à valence mixte.

L’avantage principale d’utiliser des châınes linéaires atomiques de béryllium (BeN) en

tant que composés à valence mixte est la possibilité d’un réglage fin des caractéristiques

propres au composés à valence mixtes, comme 2Vab, Ea et Eopt, et la possibilité d’introduire

d’autres unités atomiques a la châıne, ou même la possibilité d’utiliser des chaines “ram-

ifiées”, au lieu de linéaires, afin d’avoir plus de deux centres d’oxydoréduction, et donc, des

composés avec des nouvelles caractéristiques. Cette étude montre que les recherches fu-

tures de châınes qui contiennent des clusters de béryllium sont très attrayantes. En outre,

la possibilité de faire un “design” moléculaire d’un grand nombre de structures chimiques

de ces composés à valence mixte qui ne sont pas coûteuses au niveau de calcul, même

au niveaux CAS-SCF et CAS+SD, est une avantage important de l’étude des châınes de

béryllium. Il est également suggéré que l’étude expérimentale de ces composés à valence

mixte intéressante est une étape importante pour étudier d’avantage la possibilité d’utiliser

ce genre de composés dans les dispositifs moléculaires.
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Appendix

8.1 Other results in published articles: CASSCF, MRCI,

and NEVPT calculations on Spiro

The following three published articles on Spiro molecular cation were mentioned and cited

in sections §4.4.2 and 4.4.7.
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8.2 Other results of calculations on Spiro using CAS(7/4),

CAS(7/8) and CAS(11/10) active spaces with dif-

ferent basis sets

This section contains tables with results of calculations on Spiro that were not reported in

sections §4.4.4, 4.4.5, and 4.4.6.
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Table 8.1: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geometry (ξ = 0.00) and C2v geometry
(ξ = 0.50), for different methods using SZ basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt,
CAS+Sloc and CAS+SDloc

.

Geometry State CAScan C-CAS+SDcan CASloc−guess CASloc−opt CAS+Sloc CAS+SDloc

D2d 12A2 -607.818761 -608.393342 -607.797952 -607.818309 -607.869516 -608.497676
22A2 -607.815317 -608.389791 -607.797670 -607.814868 -607.866445 -608.494212
2B1 -607.801717 -608.372785 -607.671072 -607.800878 -607.836126 -608.477425
2B2 -607.801717 -608.372785 -607.671072 -607.800878 -607.836126 -608.477425

C2v 12A2 -607.821933 -608.395887 -607.802639 -607.821582 -607.871438 -608.500290
22A2 -607.800341 -608.375411 -607.781109 -607.799783 -607.852817 -608.479630
2B1 -607.798706 -608.370591 -607.662968 -607.797982 -607.837476 -608.474939
2B2 -607.793353 -608.363373 -607.667020 -607.792019 -607.825980 -608.467912
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Table 8.2: Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry (ξ = 0.00) and C2v geometry
(ξ = 0.50), for different methods using SZ basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt,
CAS+Sloc and CAS+SDloc. For each method, the reference energy has been taken as the energy of the ground state 12A2

in the D2d geometry.

Geometry State CAScan C-CAS+SDcan CASloc−guess CASloc−opt CAS+Sloc CAS+SDloc

D2d 12A2 0.000 0.000 0.000 0.000 0.000 0.000
22A2 9.043 9.323 0.743 9.035 8.063 9.096
2B1 44.748 53.972 333.126 45.766 87.666 53.170
2B2 44.748 53.972 333.126 45.766 87.666 53.170

C2v 12A2 -8.328 -6.684 -12.305 -8.593 -5.048 -6.862
22A2 48.362 47.076 44.223 48.638 43.842 47.380
2B1 52.655 59.732 354.402 53.369 84.120 59.698
2B2 66.710 78.682 343.763 69.024 114.303 78.146
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Table 8.3: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geometry (ξ = 0.00) and C2v geometry
(ξ = 0.50), for different methods using DZ basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt,
CAS+Sloc and CAS+SDloc.

Geometry State CAScan C-CAS+SDcan CASloc−guess CASloc−opt CAS+Sloc CAS+SDloc

D2d 12A2 -608.847468 -609.677281 -608.823693 -608.846770 -608.908804 -609.831383
22A2 -608.843664 -609.673361 -608.822858 -608.842997 -608.905484 -609.827600
2B1 -608.827797 -609.653514 -608.678618 -608.826895 -608.864884 -609.808070
2B2 -608.827797 -609.653514 -608.678618 -608.826895 -608.864884 -609.808070

C2v 12A2 -608.849617 -609.679059 -608.827720 -608.849094 -608.910002 -609.831383
22A2 -608.832163 -609.662305 -608.809405 -608.831314 -608.895001 -609.827600
2B1 -608.825787 -609.652346 -608.671799 -608.825116 -608.864240 -609.806682
2B2 -608.820946 -609.645710 -608.675835 -608.819818 -608.856267 -609.800375
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Table 8.4: Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry (ξ = 0.00) and C2v geometry
(ξ = 0.50), for different methods using DZ basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt,
CAS+Sloc and CAS+SDloc. For each method, the reference energy has been taken as the energy of the ground state 12A2

in the D2d geometry.

Geometry State CAScan C-CAS+SDcan CASloc−guess CASloc−opt CAS+Sloc CAS+SDloc

D2d 12A2 0.000 0.000 0.000 0.000 0.000 0.000
22A2 9.987 10.290 2.191 9.908 8.717 9.933
2B1 51.646 62.400 380.894 52.182 115.312 61.209
2B2 51.646 62.400 380.894 52.182 115.312 61.209

C2v 12A2 -5.640 -4.669 -10.573 -6.102 -3.148 -4.914
22A2 40.185 39.319 37.513 40.581 36.239 39.546
2B1 56.923 65.467 398.796 56.854 117.002 63.289
2B2 69.636 82.888 388.201 70.764 137.934 79.849
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Table 8.5: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geometry (ξ = 0.00) and C2v geometry
(ξ = 0.50), for different methods using DZP basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt

and CAS+Sloc.

Geometry State CAScan C-CAS+SDcan CASloc−guess CASloc−opt CAS+Sloc

D2d 12A2 -609.167882 -610.379384 -609.143392 -609.167230 -609.235470
22A2 -609.164201 -610.375546 -609.142561 -609.163559 -609.232250
2B1 -609.150163 -610.356006 -608.997896 -609.149207 -609.190771
2B2 -609.150163 -610.356006 -608.997896 -609.149207 -609.190771

C2v 12A2 -609.170368 -610.381363 -609.147787 -609.169873 -609.237064
22A2 -609.152703 -610.364514 -609.129080 -609.151899 -609.221655
2B1 -609.148152 -610.354651 -608.991080 -609.147436 -609.190290
2B2 -609.143726 -610.348659 -608.995482 -609.142483 -609.182367
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Table 8.6: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geometry (ξ = 0.00) and C2v geometry
(ξ = 0.50), for different methods using TZP basis set and CAS(7/4): CAScan, C-CAS+SDcan, CASloc−guess, CASloc−opt

and CAS+Sloc.

Geometry State CAScan C-CAS+SDcan CASloc−guess CASloc−opt CAS+Sloc

D2d 12A2 -609.204169 -610.469834 -609.179038 -609.203517 -609.272375
22A2 -609.200503 -610.466026 -609.178224 -609.199858 -609.269179
2B1 -609.186961 -610.447186 -609.033755 -609.186003 -609.227881
2B2 -609.186961 -610.447186 -609.033755 -609.186003 -609.227881

C2v 12A2 -609.206742 -610.471959 -609.183498 -609.206246 -609.273645
22A2 -609.189167 -610.455161 -609.164928 -609.188353 -609.258637
2B1 -609.185037 -610.445951 -609.027117 -609.184303 -609.227503
2B2 -609.180657 -610.440031 -609.031408 -609.179398 -609.219805
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Table 8.7: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using SZ basis set and
CAS(7/8): CAScan, CASloc−guess, CASloc−opt and CAS+Sloc.

Geometry State CAScan CASloc−guess CASloc−opt CAS+Sloc

D2d 12A2 -607.896162 -607.868004 -607.895906 -608.053959
22A2 -607.893114 -607.867715 -607.892719 -608.050856
2B1 -607.880496 -607.764338 -607.878741 -608.027384
2B2 -607.880496 -607.764338 -607.878741 -608.027384

C2v 12A2 -607.898402 -607.872386 -607.898151 -608.055489
22A2 -607.878749 -607.851241 -607.878331 -608.036908
2B1 -607.876468 -607.754224 -607.874897 -608.025225
2B2 -607.872620 -607.762092 -607.870870 -608.017268

Table 8.8: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZ basis set and
CAS(7/8): CAScan, CASloc−guess, CASloc−opt and CAS+Sloc.

Geometry State CAScan CASloc−guess CASloc−opt CAS+Sloc

D2d 12A2 -608.924267 -608.890171 -608.922241 -609.116863
22A2 -608.920814 -608.889352 -608.918704 -609.113530
2B1 -608.906532 -608.766935 -608.902327 -609.082477
2B2 -608.906532 -608.766935 -608.902327 -609.082477

C2v 12A2 -608.925970 -608.894409 -608.924055 -609.117670
22A2 -608.909564 -608.875541 -608.907331 -609.103002
2B1 -608.903388 -608.757849 -608.899181 -609.081180
2B2 -608.900451 -608.766314 -608.896408 -609.074203
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Table 8.9: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZP basis set and
CAS(7/8): CAScan, CASloc−guess.

Geometry State CAScan CASloc−guess

D2d 12A2 -609.240349 -609.204067
22A2 -609.236983 -609.203249
2B1 -609.225609 -609.079248
2B2 -609.225609 -609.079248

C2v 12A2 -609.242000 -609.208595
22A2 -609.225970 -609.189452
2B1 -609.222506 -609.070262
2B2 -609.219803 -609.078825

Table 8.10: Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZP basis set and
CAS(7/8): CAScan, CASloc−guess. For each method, the reference energy has been taken as
the energy of the ground state 12A2 in the D2d geometry.

Geometry State CAScan CASloc−guess

D2d 12A2 0.000 0.000
22A2 8.838 2.146
2B1 38.699 327.710
2B2 38.699 327.710

C2v 12A2 -4.597 -11.888
22A2 37.752 38.370
2B1 46.848 351.303
2B2 53.943 328.821



158 Chapter 8. Appendix

Table 8.11: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geom-
etry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using TZP basis set
and CAS(7/8): CAScan, CASloc−guess.

Geometry State CAScan CASloc−guess

D2d 12A2 -609.276308 -609.239205
22A2 -609.272967 -609.238404
2B1 -609.262128 -609.114573
2B2 -609.262128 -609.114573

C2v 12A2 -609.278140 -609.243785
22A2 -609.262124 -609.224807
2B1 -609.259162 -609.105805
2B2 -609.256415 -609.114177

Table 8.12: Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using TZP basis set and
CAS(7/8): CAScan, CASloc−guess. For each method, the reference energy has been taken as
the energy of the ground state 12A2 in the D2d geometry.

Geometry State CAScan CASloc−guess

D2d 12A2 0.000 0.000
22A2 8.771 2.102
2B1 37.230 327.220
2B2 37.230 327.220

C2v 12A2 -4.811 -12.024
22A2 37.241 37.803
2B1 45.016 350.242
2B2 52.230 328.262
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Table 8.13: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geometry (ξ = 0.00) and C2v geometry
(ξ = 0.50), for different methods using SZ basis set and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz, CAS+Sloc−frz,
CAS+SDloc−frz, CASloc−opt and CAS+Sloc.

Geometry State CAScan CASloc−guess CASloc−opt−frz CAS+Sloc−frz CAS+SDloc−frz CASloc−opt CAS+Sloc

D2d 12A2 -607.927553 -607.904904 -607.906994 -607.907657 -607.911957 -607.927377 -608.122487

22A2 -607.924731 -607.904674 -607.906705 -607.907366 -607.911666 -607.924459 -608.119512
2B1 -607.922151 -607.868391 -607.868301 -607.868533 -607.872690 -607.921760 -608.098607
2B2 -607.922151 -607.868391 -607.868301 -607.868533 -607.872690 -607.921760 -608.098607

C2v 12A2 -607.930596 -607.909555 -607.911612 -607.912262 -607.916525 -607.930432 -608.124202

22A2 -607.909452 -607.887786 -607.889829 -607.890498 -607.894846 -607.909159 -608.105313
2B1 -607.920306 -607.866066 -607.865955 -607.866182 -607.870326 -607.919913 -608.096481
2B2 -607.911870 -607.858301 -607.858249 -607.858482 -607.862662 -607.911473 -608.088329
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Table 8.14: Absolute energyies, in a.u., of the different states of Spiro cation, at D2d

geometry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZ basis set
and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz and CAS+Sloc−frz.

Geometry State CAScan CASloc−guess CASloc−opt−frz CAS+Sloc−frz

D2d 12A2 -608.949720 -608.920412 -608.933790 -608.961700
22A2 -608.946471 -608.919673 -608.932728 -608.960792
2B1 -608.945129 -608.877160 -608.900009 -608.918742
2B2 -608.945129 -608.877160 -608.900009 -608.918742

C2v 12A2 -608.952356 -608.924844 -608.938174 -608.965738
22A2 -608.934223 -608.905620 -608.918663 -608.947133
2B1 -608.944212 -608.876286 -608.899291 -608.918170
2B2 -608.936647 -608.868315 -608.891066 -608.909598

Table 8.15: Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZ basis set and
CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz and CAS+Sloc−frz. For each method,
the reference energy has been taken as the energy of the ground state 12A2 in the D2d

geometry.

Geometry State CAScan CASloc−guess CASloc−opt−frz CAS+Sloc−frz

D2d 12A2 0.000 0.000 0.000 0.000
22A2 8.530 1.942 2.789 2.646
2B1 12.053 113.560 88.691 113.048
2B2 12.053 113.560 88.691 113.048

C2v 12A2 -6.920 -11.637 -11.510 -10.339
22A2 40.688 38.838 39.717 38.508
2B1 14.462 115.853 90.577 114.550
2B2 34.323 136.782 112.173 137.055
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Table 8.16: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geom-
etry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZP basis set
and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz and CAS+Sloc−frz.

Geometry State CAScan CASloc−guess CASloc−opt−frz CAS+Sloc−frz

D2d 12A2 -609.264132 -609.232001 -609.248080 -609.289570
22A2 -609.260890 -609.231250 -609.246991 -609.288535
2B1 -609.260282 -609.187822 -609.215069 -609.245289
2B2 -609.260282 -609.187822 -609.215069 -609.245289

C2v 12A2 -609.266811 -609.236705 -609.252487 -609.293326
22A2 -609.248871 -609.217235 -609.233177 -609.275283
2B1 -609.259409 -609.187109 -609.214613 -609.244809
2B2 -609.252066 -609.179120 -609.206164 -609.236269

Table 8.17: Energies, in kJ/mol, of the different states of Spiro cation, at D2d geometry
(ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using DZP basis set and
CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz and CAS+Sloc−frz. For each method,
the reference energy has been taken as the energy of the ground state 12A2 in the D2d

geometry.

Geometry State CAScan CASloc−guess CASloc−opt−frz CAS+Sloc−frz

D2d 12A2 0.000 0.000 0.000 0.000
22A2 8.512 1.973 2.859 2.719
2B1 10.107 115.992 86.671 116.260
2B2 10.107 115.992 86.671 116.260

C2v 12A2 -7.035 -12.349 -11.570 -9.862
22A2 40.067 38.770 39.130 37.511
2B1 12.400 117.865 87.868 117.519
2B2 31.679 138.841 110.050 139.942
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Table 8.18: Absolute energies, in a.u., of the different states of Spiro cation, at D2d geom-
etry (ξ = 0.00) and C2v geometry (ξ = 0.50), for different methods using TZP basis set
and CAS(11/10): CAScan, CASloc−guess, CASloc−opt−frz and CAS+Sloc−frz.

Geometry State CAScan CASloc−guess CASloc−opt−frz CAS+Sloc−frz

D2d 12A2 -609.300202 -609.267049 -609.283464 -609.325118
22A2 -609.296984 -609.266311 -609.282391 -609.324095
2B1 -609.296505 -609.222845 -609.250216 -609.280657
2B2 -609.296505 -609.222845 -609.250216 -609.280657

C2v 12A2 -609.286089 -609.271803 -609.287912 -609.328940
22A2 -609.267317 -609.252492 -609.268793 -609.311055
2B1 -609.256452 -609.222245 -609.249812 -609.280224
2B2 -609.249049 -609.214265 -609.241513 -609.271856
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[157] Siegbahn, P. E. M.; Almlöf, J.; Heiberg, A.; Roos, B. O., J. Chem. Phys., 1981, 74,

2384.

[158] Roos, B. O., Adv. Chem. Phys., 1987, 69, 399.

[159] Werner, H.-J.; Knowles, P. J. J. Chem. Phys., 1988, 89, 5803.

[160] Knowles, P. J.; Werner, H.-J., Chem. Phys. Lett. 1988, 145, 514.

[161] Bauschlisher, C. W.; Langhoff, S. R.; Taylor, P. R., Adv. Chem. Phys., 1990, 77,

103.
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1998, 4, 2129.
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Abstract 
 
 

The electronic structure and the intramolecular charge transfer properties of a selected number 
of mixed valence compounds were investigated at multireference ab-initio level, using both 
canonical and localized molecular orbitals. 
 
The chemical compounds studied are: a spiro π-σ-π molecular cation: 5,5_(4H,4H_)- 
spirobi[cyclopenta[c]pyrrole]2,2’,6,6’tetrahydro cation (the “Spiro” molecule in the 
following); a series of cationic linear chains composed of beryllium atoms: BeN, (with N = 
6, ..., 12); and two bis-Triaryl amines molecules: namely N,N,N’,N’-Tetra(4-methoxyphenyl)-
1,4-phenylenediamine cation, and bis{4-[N,N-di(4-methoxyphenyl)amino]phenyl}butadiyne 
cation. The theoretical models and computational methods used in this work are: CAS-SCF, 
CAS+S, CAS+SD (MRCI), and CAS+SD using localized orbitals. Different basis sets 
contractions were used. 
 
For Spiro cation, The potential energy surfaces of the adiabatic ground and the lowest three 
excited electronic states have been computed, within a two-state model, and a double-well 
potential has been obtained for the ground electronic state. We have demonstrated a low 
coupling interaction between the two redox moieties of this molecular cation by following the 
charge localization/delocalization in the valence _ system through the reaction coordinate of 
the intramolecular charge transfer. The effect of dynamical correlation, using either localized 
or canonical orbitals, was found to be crucial for a quantitative 
description of the electronic structure and some important electron transfer parameters of this 
model mixed-valence system. 
 
The results of the linear beryllium chains show a consistent gradual shift between different 
classes of mixed-valence compounds as the number of beryllium atoms increases, from class-
III strong coupling toward class-II valence trapped. Indeed, in the largest cases (N > 10), the 
cationic chains were found to be closer to class I, where the coupling vanishes. The 
intramolecular electron transfer parameters Vab, Ea, and Eopt were calculated for each atomic 
chain. It is shown that the decrease of Vab with increasing N follows an exponential pattern. 
 
 
 
 



Résumé 
 
 

La structure électronique et les propriétés de transfert de charge intramoléculaire de certains 
composés à valence mixte ont été étudiés au niveau ab-initio multi-référence, en utilisant des 
orbitales moléculaires canoniques et localisées. 
 
Les composés chimiques étudiés sont : un cation de spiro π-σ-π : 5,5’(4H,4H’)-spirobi-
[cyclopenta[c]pyrrole]2,2’,6,6’tetrahydro cation, (“Spiro” dans le texte suivant); une série des 
chaînes cationiques linéaires composées d’atomes de béryllium : BeN, (avec N = 6, ..., 12); et 
deux molécules bis-triarylamines : N,N,N’,N’-Tetra(4-méthoxyphényl)-1,4phénylènediamine 
cation, et bis{4–[N,N-di(4-méthoxyphnyl)amino]phényl}butadiyne cation. Les modèles 
théoriques et les méthodes de calcul utilisées dans ce travail sont les suivants : CAS-SCF, 
CAS+S, CAS+SD (MRCI), et CAS+SD en utilisant des orbitales localisées. Des différents 
bases contractées ont été utilisés. 
 
Les surfaces d’énergie potentielles adiabatiques de l’état électronique fondamentale et les 
trois états excités les plus bas du cation de Spiro, ont été calculés, au sein d’un modèle à deux 
états, et un potentiel de double-puits a été obtenu pour l’état électronique fondamental. En 
suivant la localisation/délocalisation de charge dans le système π de valence du Spiro à travers 
la coordonnée de réaction du transfert de charge intramoléculaire, nous avons montré un 
faible couplage électronique entre les deux moitiés d’oxydoréduction de ce cation moléculaire. 
L’effet de la corrélation dynamique, en utilisant des orbitales localisées ou canoniques, a été 
jugé cruciale pour une description quantitative de la structure électronique et les autres 
paramètres importantes de transfert d’électron de ce système modèle à valence mixte. 
 
Les résultats des chaînes linéaires de béryllium montrent une évolution progressive de classe 
III (couplage électronique fort) envers classe II (couplage électronique faible) en fonction de 
nombre d’atomes de béryllium. En effet, dans les cas où (N > 10), les chaînes cationiques ont 
été trouvés se rapprocher de la classe I, où le couplage disparaît. Les paramètres de transfert 
d’électrons intramoléculaire Vab, Ea, et Eopt ont été calculés pour chaque chaîne atomique. Il à 
été montré que la baisse des valeurs de Vab avec l’augmentation de N suit une courbe 
exponentielle. 
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