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Abstract:

Argumentation is a promising approach for reasoning with uncertain or inco-

herent knowledge or more generally with common sense knowledge. It consists of

constructing arguments and counter-arguments, comparing the different arguments

and selecting the most acceptable among them.

This thesis contains three main parts. The first one concerns the notion of equiv-

alence between two argumentation frameworks. We studied two families of equiva-

lence: basic equivalence and strong equivalence. We proposed different equivalence

criteria, investigated their links and showed under which conditions two frameworks

are equivalent w.r.t. each of the proposed criteria. The notion of equivalence is then

used in order to compute the core(s) of an argumentation framework. A core of a

framework is its compact version, i.e. an equivalent sub-framework. Hence, instead

of using an argumentation framework which may be infinite, it is sufficient to con-

sider one of its cores, which is usually finite. This core determines the stability of

the status of each argument.

The second part of the thesis concerns the use of preferences in argumentation.

We investigated the roles that preferences may play in an argumentation frame-

work. Two particular roles were identified: i) to privilege strong arguments over

weaker attacking arguments when computing the standard solutions of a frame-

work, and ii) to refine those standard solutions. We showed that the two roles

are completely independent and require different procedures for modeling them.

Besides, we showed that almost all the existing works have tackled only the first

role. Moreover, the proposed approaches suffer from a drawback which consists of

returning conflicting extensions. We proposed a general approach which solves this

problem and which presents two novelties: First, it takes into account preferences

at a semantic level, i.e. it defines new acceptability semantics which are grounded

on attacks and preferences between arguments. Second, a semantics is defined as a

dominance relation that compares any pair of subsets of arguments.

The third part illustrates our preference-based argumentation frameworks (PAF)

in case of decision making and negotiation. We proposed an instantiation of our

PAF which rank-orders options in a decision making problem. Then, we studied

the dynamics of this model. More precisely, we showed how the ordering on options

changes in light of a new argument. We also used our PAF in order to show the

benefits of arguing in negotiation dialogues. For that purpose, we proposed an ab-

stract framework for argument-based negotiation, investigated the different types

of solutions that may be reached in such dialogues, and showed for the first time

under which conditions arguing is beneficial during a negotiation.
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Begin at the beginning and go on till

you come to the end; then stop.

The King from Alice’s Adventures in

Wonderland, Lewis Carroll 1
Introduction

Argumentation is a reasoning model based on the construction and evalua-
tion of arguments. An argument gives a reason to believe a statement, to
perform an action, to choose an option, etc. The advantage of argumen-
tation is that the reasoning process is composed of modular and intuitive
steps, and thus avoids the monolithic approach of many traditional logics.
An argumentation process starts with the construction of a set of argu-
ments from a knowledge base. Then, attacks between those arguments are
detected. Some argumentation frameworks also allow for specifying intrinsic
strengths of arguments (e.g. on the basis of the quality of the information
arguments are based on). Those elements are taken into account when de-
termining the subsets of arguments that can be regarded as “acceptable”,
called extensions. The last step consists of analyzing whether a given state-
ment is justified (i.e. follows from the knowledge base) or not. For example,
this can be the case if every extension contains at least one argument having
that statement as its conclusion.

Due to its explanatory power, argumentation has gained increasing in-
terest in Artificial Intelligence. Indeed, argumentation techniques are used
for revising information in a knowledge base (e.g. Rotstein et al., 2008), han-
dling inconsistency in knowledge bases (e.g. Simari and Loui, 1992; Besnard
and Hunter, 2001, 2008; Amgoud and Cayrol, 2002a; Garcia and Simari,
2004; Governatori et al., 2004), making decisions under uncertainty (e.g.
Bonet and Geffner, 1996a; Fox and Parsons, 1997; Gordon and Karacapilidis,
1997; Fox and McBurney, 2002; Amgoud and Prade, 2006, 2009), merging
information coming from different sources (e.g. Amgoud and Parsons, 2002;
Brena et al., 2005; Amgoud and Kaci, 2007), choosing agents’ intentions (e.g.
Amgoud, 2003; Atkinson et al., 2004; Rahwan and Amgoud, 2006), and gen-
erating agent’s goals (e.g. Hulstijn and van der Torre, 2004). Argumentation
is also gaining increasing interest in multi-agent systems, namely for mod-
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CHAPTER 1. INTRODUCTION

eling agents’ interactions. Since the seminal book by Walton and Krabbe
(1995) on the different categories of dialogues, several argumentation-based
systems were proposed for persuasion dialogues (e.g. Amgoud et al., 2000a;
Prakken, 2006), negotiation (e.g. Parsons and Jennings, 1996; Kraus et al.,
1998; Amgoud et al., 2000b; Amgoud and Prade, 2004; Kakas and Moraitis,
2006), and inquiry dialogues (e.g. Parsons et al., 2003; Black and Hunter,
2007).

This thesis is interested in the study of argumentation frameworks and
their applications. It contains three main parts: i) the study of the notion of
equivalence in argumentation, ii) the integration of preferences to argumen-
tation frameworks, and iii) applying argumentation techniques to decision
making and negotiation.

1.1 Equivalence in argumentation

The first part of the thesis studies when two argumentation frameworks are
equivalent. Such information is useful for different purposes. First, when
building an argumentation framework from a given knowledge base, several
attack relations may be used. Thus, knowing under which conditions two
or more attack relations lead to the same results could be useful. Second,
logic-based argumentation frameworks are generally infinite, meaning that
their sets of arguments are infinite. It is important to know whether such
frameworks can be reduced to finite sub-frameworks. Besides, even in a
finite case, building logic-based arguments from a concrete knowledge base
is computationally costly. Thus, every decrease in the number of arguments
is potentially useful since it reduces the burden of computation.

Despite the obvious benefits of the notion of equivalence, this issue has
received little attention in the literature. To the best of our knowledge,
the only work on equivalence in argumentation (Oikarinen and Woltran,
2010) is conducted for abstract argumentation frameworks, which means
that the structure of arguments is supposed to be unknown. Two categories
of equivalence criteria were particularly proposed. The first category (basic
equivalence) compares directly the outputs of two frameworks (namely their
extensions) while the second (strong equivalence) compares the outputs of
their extended versions (i.e. the frameworks augmented by the same set
of arguments). Oikarinen and Woltran (2010) concentrated only on strong
equivalence and showed that two frameworks are strongly equivalent if and
only if they coincide (i.e. they are identical) except in the rare case when

2



1.2. PREFERENCES IN ARGUMENTATION

self-attacking arguments are allowed.

In Chapter 3, we study both basic and strong equivalence between logic-
based argumentation frameworks. We propose flexible equivalence criteria
which take into account the internal structure of arguments. We study the
links between those criteria and show under which conditions two frame-
works are equivalent w.r.t. each of them. We then use this notion of equiv-
alence in order to define the compact versions of an argumentation frame-
work, called core(s). A core of a framework is an equivalent sub-framework.
Hence, instead of using an argumentation framework which may be infinite,
it is sufficient to consider one of its cores which are usually finite. Finally,
we show that a core of a framework is a threshold under which each argu-
ment of the framework has a floating status, and above it the statuses of all
arguments become stable.

1.2 Preferences in argumentation

The second part of the thesis concerns the use of preferences in argumen-
tation. There is a consensus in the literature that some arguments can be
stronger than others and that this should be taken into account when cal-
culating extensions. We show for the first time that there are two distinct
roles played by preferences in argumentation: i) to protect strong arguments
from attacks coming from weaker arguments, and ii) to refine the standard
solutions, i.e. to choose the best extensions among those computed using
any acceptability semantics. It is worth mentioning that almost all exist-
ing works (e.g. Amgoud and Cayrol, 2002b; Bench-Capon, 2003; Modgil,
2009) have modeled the first role except the work by Dimopoulos, Moraitis,
and Amgoud (2009) in which the second role was considered but without
identifying the nature of this role.

In Chapter 4, we start by showing that these roles are completely in-
dependent and require different procedures for modeling them. Then, we
show that existing works which tackle the first role suffer from a main draw-
back which consists of returning conflicting extensions. Then we propose
a novel approach which takes into account preferences at a semantic level,
i.e. it defines new acceptability semantics which take into account attacks
and preferences between arguments. Moreover, a semantics is defined as
a dominance relation that compares subsets of arguments. This allows to
compare any pair of sets of arguments, contrary to existing acceptability
semantics which only separate those sets into two classes: extensions and
non-extensions. We propose a framework in which both roles of preferences

3



CHAPTER 1. INTRODUCTION

are modeled. Finally, we show that two instantiations of this framework cap-
ture the preferred sub-theories (Brewka, 1989) and democratic sub-theories
(Cayrol et al., 1993), which were proposed for handling inconsistency in
prioritised knowledge bases.

1.3 Argumentation for decision making and negotia-
tion

The third contribution of the thesis consists of applying our preference-based
argumentation framework for making decisions and for negotiation. In a de-
cision making context, argumentation has obvious benefits as in everyday
life, decisions are often based on arguments and counter-arguments.

Several argument-based decision frameworks were proposed in the liter-
ature. However, the dynamics of those frameworks has not received enough
attention. In Chapter 5, we study the dynamics of a particular decision
framework that is proposed by Amgoud, Dimopoulos, and Moraitis (2008).
The framework rank-orders options (or decisions) on the basis of their sta-
tuses. The status of an option is based on the quality of its supporting
arguments. We study how an option status changes in the light of a new
argument. We provide conditions under which an accepted option becomes
rejected and vice versa. Our study is undertaken under two acceptability se-
mantics: grounded semantics and preferred one. These results may be used
in negotiation dialogues, namely for defining strategies. Indeed, at a given
step of a dialog, an agent may choose which argument to send to another
agent in order to change the status of an option. Our results may also help
to understand which arguments are useful and which ones are useless in a
given situation.

Besides, even if it was claimed by many researchers that exchanging ar-
guments may positively influence the quality of a negotiation outcome, this
was never formally shown. The reason is that the quality of an outcome
is not defined. In Chapter 6, we study the benefits of arguing in nego-
tiation dialogues. For that purpose, we start by proposing an abstract
framework for negotiation between two agents. Each agent is assumed to
be equipped with a decision framework like the one discussed in Chapter 5.
This framework is used for evaluating and choosing offers in a negotiation
dialogue, and also for evaluating and choosing the arguments to utter in a
dialogue. We define different types of solutions that may be reached in such
dialogues. Finally, we study the impact of exchanging arguments on the

4
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NEGOTIATION

quality of negotiation outcomes.

5





I dislike arguments of any kind. They

are always vulgar, and often convincing.

Lady Bracknell from The Importance of

Being Earnest, Oscar Wilde 2
Argumentation frameworks

2.1 Argumentation process

Humans engage in argumentation in almost all communications. They ad-
vance arguments and counter-arguments to justify or refute a given stand-
point. Before defining what argumentation is, let us start by presenting a
short dialogue between two violinists.

David “This violin is expensive since it is a Stradivarius.”

Jascha “I do not think that the violin is a Stradivarius.”

Here, the first violinist presents a claim which is at the time justified,
thus constructing an argument. The other one challenges this justification
by another argument.

Argumentation is seen as a reasoning process in which arguments are
built and evaluated in order to increase or decrease the acceptability of
a given standpoint. In the above dialogue, David aims at increasing the
acceptability of his statement, whereas Jascha decreases it by attacking its
justification. Argumentation is defined by van Eemeren, Grootendorst, and
Snoeck Henkemans (1996) as follows:

Argumentation is a verbal and social activity of reason aimed
at increasing (or decreasing) the acceptability of a controversial
standpoint for the listener or reader, by putting forward a con-
stellation of propositions intended to justify (or refute) the stand-
point before a rational judge.

In the previous definition, argumentation is defined as a verbal activity,
since it is supposed to be conducted in a natural language. However, there
are many approaches which aim at constructing a computational model of

7



CHAPTER 2. ARGUMENTATION FRAMEWORKS

argumentation. In this thesis, we are interested in such models. Argumen-
tation is also defined as a social activity since it is directed at other people.
It is considered as an activity of reason since an argument is supposed to
contain somehow rational justification. Argumentation always relates to a
particular opinion, or standpoint, about a specific subject. A subject may
be something believed or known (like in the our example) but also an action
to perform, a goal to achieve, etc. Finally, argumentation is intended to
justify or refute a standpoint.

Researchers in artificial intelligence are interested in building a computa-
tional model of argument. In such an approach, an argumentation process
starts with construction of arguments from a knowledge base using a given
logic, after which interactions between them are identified (e.g. attacks,
supports). An intrinsic strength of each argument is also determined, based
on quality of information it is built from. Finally, arguments are evaluated
and usually extensions of arguments are calculated, where an extension rep-
resents a set of arguments that are acceptable together.

2.2 Dung’s abstract argumentation framework

The most abstract and general argumentation framework in the literature is
the one proposed by Dung (1995). It takes as input a set of arguments and
a binary relation encoding attacks between arguments. The framework is
abstract since neither the structure nor the origin of the two components are
specified. Thus, it can be instantiated in different ways. The framework is
general since no particular constraints are imposed on arguments or attacks.

Definition 2.2.1 (Argumentation framework). An argumentation framework
is a pair F = (A,R), where A is a set of arguments and R ⊆ A × A is a
binary relation representing attacks between arguments. For two arguments
a, b ∈ A, the notation aRb or (a, b) ∈ R means that a attacks b.

Thus, each argumentation framework can be represented as a directed
graph whose nodes represent arguments of the framework and the arcs stand
for attacks between them.

Example 2.2.1. Let F = (A,R) be an argumentation framework with A =
{a, b, c, d} and R = {(a, a), (a, b), (b, c), (c, d), (d, b)}. The graphical repre-
sentation of the framework is shown below.

8



2.2. DUNG’S ABSTRACT ARGUMENTATION FRAMEWORK

c d

a b

Example 2.2.2. Consider again the dialogue between the two violinists David
and Jascha from the beginning of the chapter. That dialogue can be formal-
ized by a simple framework with two arguments:
a : “This violin is expensive since it is a Stradivarius.”
b : “I do not think that the violin is a Stradivarius.”
Since Jascha challenged David’s argument, b attacks a.

a b

The same dialogue can be formalized in a different manner.

Example 2.2.3. The dialogue between Jascha and David from the beginning
of the chapter can be represented by the following argumentation framework:
a: “This violin is a Stradivarius.”
b: “Since the violin is a Stradivarius, it is expensive.”
c: “The violin is not a Stradivarius.”
The graph associated with this framework is depicted in the figure below.

a b

c

Until now, we did not make any assumptions on the cardinality of the
set of arguments. We define a finite argumentation framework as follows.

Definition 2.2.2. Argumentation framework F = (A,R) is finite iff A is
finite.

9



CHAPTER 2. ARGUMENTATION FRAMEWORKS

2.2.1 Acceptability semantics

One of the key steps in an argumentation process is the one in which ar-
guments are evaluated using an acceptability semantics. A semantics is a
set of criteria that should be satisfied by a set of arguments in order to be
acceptable.

In argumentation literature, two main families of approaches for defining
a semantics exist: declarative approaches and labeling-based ones. A declar-
ative approach specifies which sets of arguments are acceptable. Examples of
such semantics are those proposed by Dung (1995) (i.e. admissible, complete,
preferred, stable, grounded) as well as their refinements: semi-stable (Cam-
inada, 2006b), ideal (Dung, Mancarella, and Toni, 2007), recursive (Baroni,
Giacomin, and Guida, 2005) and prudent semantics (Coste-Marquis, De-
vred, and Marquis, 2005). A labeling-based approach follows two steps:
i) to assign a label to each argument using a particular labeling function,
and ii) to compute the extensions. Generally three labels are assumed: In,
stating that the argument is acceptable; Out, meaning that the argument
is rejected; Und, describing the case where the status of the argument is
floating (i.e. unknown). Examples of labeling-based semantics include ro-
bust semantics (Jakobovits and Vermeir, 1999) and stage semantics (Verheij,
1996). It was also shown by Caminada (2006a) that Dung’s semantics can
be redefined using labeling functions. Whatever the approach is, a semantics
defines extensions which are acceptable sets of arguments. The idea behind
an extension is that it represents a coherent point of view or a coherent
position. Thus, each extension should be conflict-free, that is it must not
contain arguments which attack each other.

Definition 2.2.3 (Conflict-freeness). Let F = (A,R) be an argumentation
framework and S ⊆ A. S is conflict-free iff ∄a, b ∈ S s.t. aRb.

For the purpose of this thesis, we only need to recall Dung’s semantics.
They are based on a notion of defence which is defined as follows.

Definition 2.2.4 (Defence). Let F = (A,R) be an argumentation framework,
a ∈ A and S ⊆ A. S defends argument a iff ∀b ∈ A if bRa then ∃c ∈ S s.t.
cRb.

Dung’s semantics are based on a notion of admissibility. The intuition
behind the notion of admissibility is that a set of arguments is acceptable
if for any argument which is somehow challenged from outside, the counter-
attack is possible from the arguments present in the set.

10
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Definition 2.2.5 (Admissible semantics). Let F = (A,R) be an argumenta-
tion framework, and S ⊆ A. S is an admissible set of F iff S is conflict-free
and defends all its elements.

Example 2.2.4. In the framework of Example 2.2.3, there are exactly four
admissible sets: ∅, {a}, {c}, {a, b}.

Note that every argumentation framework has at least one admissible
set; the empty set is admissible in every argumentation framework.

In the previous example, the set {a} is admissible but it does not contain
the argument b which is defended by a. However, if we accept a, why not
accept b? In other words, if we accept that the violin is a Stradivari, then
it should be natural to accept that it is expensive. This type of reasoning
gives rise to complete semantics.

Definition 2.2.6 (Complete semantics). Let F = (A,R) be an argumentation
framework and S ⊆ A. S is a complete extension of F iff S is conflict-free
and S = {a ∈ A | S defends a}.

Example 2.2.5. In the framework of Example 2.2.3, there are exactly three
complete extensions: ∅, {c}, {a, b}.

It is easy to see that any complete extension is an admissible set. The
converse is not true. For example, the set {a} in Example 2.2.3 is an admis-
sible set, but is not a complete extension.

It may seem surprising that the empty set is a complete extension in
Example 2.2.3, since both a and c are omitted in that case. In the particular
meaning we gave to those arguments, one could say that the violin is either
a Stradivarius or not. This leads to the definition of preferred semantics,
which includes a notion of maximality.

Definition 2.2.7 (Preferred semantics). Let F = (A,R) be an argumentation
framework, and S ⊆ A. S is a preferred extension iff S is a maximal (for
set inclusion) admissible set.

In other words, a set is a preferred extension of F iff it is admissible and
no strict superset of that set is an admissible set.

Example 2.2.6. In the framework of Example 2.2.3, there are exactly two
preferred extensions: {c} and {a, b}.

Theorem 2.2.1 (Dung, 1995). Let F = (A,R) be an argumentation frame-
work.

11
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• F has at least one preferred extension.

• Any preferred extension of F is a complete extension of F .

The contrary of the previous result is not true; for example the empty set
is a complete extension but not a preferred one in the framework of Example
2.2.3.

Another semantics widely used in argumentation is stable semantics.
According to this semantics, a set of arguments is acceptable if it is conflict-
free and attacks any argument outside that set.

Definition 2.2.8 (Stable semantics). Let F = (A,R) be an argumentation
framework and S ⊆ A. S is a stable extension of F iff S is conflict-free
and ∀a ∈ A \ S, ∃b ∈ S s.t. bRa.

Example 2.2.7. Let F = (A,R) be as depicted below. This framework has
two preferred extensions: {a, c} and {e}. However, only {a, c} is a stable
extension.

e d

a b c

Theorem 2.2.2 (Dung, 1995). Let F = (A,R) be an argumentation frame-
work. Any stable extension of F is also a preferred extension of F .

A serious drawback of stable semantics is that the existence of stable
extensions is not guaranteed. For instance, the framework of Example 2.2.1
has no stable extensions.

All the semantics presented so far may return more than one extension.
This means that arguments may have multiple statuses: they may be ac-
cepted in some extensions and rejected in others. A semantics which assigns
only one status to each argument was also proposed by Dung (1995). It is
the well-known grounded semantics which is the minimal (for set inclusion)
complete extension.

Definition 2.2.9 (Grounded semantics). Let F = (A,R) be an argumentation
framework and S ⊆ A. S is a grounded extension of F iff S is a minimal
for set inclusion complete extension of F .

12
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Theorem 2.2.3 (Dung, 1995). Let F = (A,R) be an argumentation frame-
work.

• F has exactly one grounded extension (which may be empty).

• The grounded extension of F is exactly the set-theoretic intersection
of all complete extensions of F .

• The grounded extension of F is a subset of any preferred extension of
F .

When the argumentation framework is finite, its grounded extension can
be computed by iterative application of characteristic function F on the
empty set. For a given set S of arguments, the function F returns the set
of arguments defended by S. In other words, F(S) is the set containing all
(and only) arguments that S defends.

Definition 2.2.10 (Characteristic function). Let F = (A,R) be an argumen-
tation framework. The characteristic function of F is defined as follows:

• F : 2A → 2A

• F(S) = {a ∈ A | S defends a}, for all S ⊆ A.

If A is finite, the grounded extension can be calculated by iterative ap-
plications of function F to the empty set, i.e. it is equal to

⋃∞
i=0 Fi(∅), where

Fi(S) = F(F(. . . F
︸ ︷︷ ︸

i times

(S)) . . .).

Example 2.2.8. Let F = (A,R) be the argumentation framework depicted
below. The grounded extension is calculated as follows: F(∅) = {d, e},
F({d, e}) = {c, d, e}, F({c, d, e}) = {c, d, e}. Thus, the grounded extension
is the set {c, d, e}.

d e

a b c
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2.2.2 Status of arguments

Abstract argumentation frameworks return two outputs: a set of extensions
of arguments under a given semantics, and a status for each argument. This
latter is computed on the basis of argument’s membership to extensions.

Definition 2.2.11 (Status of arguments). Let F = (A,R) be an argumenta-
tion framework, Ext(F) be the set of its extensions under a given semantics
and a ∈ A.

• a is sceptically accepted (or sceptical) iff a ∈
⋂

Ei, where Ei ∈ Ext(F)

• a is credulously accepted (or credulous) iff a ∈
⋃

Ei, where Ei ∈ Ext(F)

• a is rejected iff a /∈
⋃

Ei, where Ei ∈ Ext(F).

Example 2.2.9. The framework of Example 2.2.3 has two stable extensions:
{a, b} and {c}. Thus, all the arguments are credulously accepted under stable
semantics. The grounded extension of this framework is the empty set, thus,
all the arguments are rejected under this semantics.

Note that any sceptical argument is also credulous. However, there are
exactly three disjunct cases, since an argument can be: i) sceptical (and
credulous), ii) credulous and not sceptical iii) rejected. Let Status(a,F) be
a function which returns the status of an argument a in an argumentation
framework F . This function simply returns three different values in those
three disjunct cases.

2.2.3 Complexity

It is well-known that argumentation reasoning is computationally costly.
The concepts of credulous and sceptical acceptance motivate a number of
decision problems, summarised below, that have been considered by Di-
mopoulos and Torres (1996) and by Dunne and Bench-Capon (2002).

Theorem 2.2.4. Let F = (A,R) be an argumentation framework, S ⊆ A
and a ∈ A.
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Question Complexity

Is S ⊆ A a stable extension of F? polynomial
Does F have any stable extension? NP-complete
Does F have a non-empty preferred extension? NP-complete
Is a credulous under stable semantics? NP-complete
Is a credulous under preferred semantics? NP-complete
Is a sceptical under stable semantics? CO-NP-complete
Is a sceptical under preferred semantics? Πp

2-complete
Is every preferred extension of F a stable one? Πp

2-complete

In addition to those results, Dunne (2007) has studied computational
properties of argumentation frameworks which satisfy graph-theoretic con-
straints, e.g. when the numbers of attacks originating from and made upon
any argument are bounded.

2.3 Logic-based argumentation

Until now, we have studied abstract argumentation, which means that we
supposed that the origin and the structure of arguments are not known. We
will now consider building arguments from a knowledge base using a given
logic.

2.3.1 Logical language

A logic has two main components: a logical language L which is a set of
well-formed formulae, and a consequence operator CN which is used to draw
conclusions. Given a set of formulae X ⊆ L, the set CN(X) denotes the set
of conclusions that are drawn from the set X. Note that CN is a function,
CN : 2L → 2L.

Example 2.3.1. Let (L,CN) be propositional logic and X = {x, y}. Then,
CN(X) = {x, y, x ∧ y, x ∧ x, x → (x ∧ y), . . .}.

Example 2.3.2. Let us consider a simple logic for representing the colour and
the size of objects. Let L = Lcol ∪ Lsize ∪ Lerr with Lcol = {white, yellow,
red, orange, blue, black}, Lsize = {tiny, small, big, huge}, Lerr = {⊥}. In
this simple example, the consequence operator captures the fact that if two
different colours or two different sizes are present in the description of an
object, then information concerning that object is inconsistent. We define

15



CHAPTER 2. ARGUMENTATION FRAMEWORKS

CN as follows: for all X ⊆ L,

CN(X) =







L, if (∃x, y ∈ X s.t. x 6= y
and ({x, y} ⊆ Lcol or {x, y} ⊆ Lsize))

or if (⊥ ∈ X)
X, else

For example, CN(∅) = ∅, CN({red, big}) = {red, big}, CN({red, blue, big})
= CN{⊥} = L.

Two main families of logics are used in argumentation literature. The
first family contains approaches where arguments are built from a Tarskian
logic, while the second group of works uses rule-based systems for construct-
ing arguments.

Tarski (1956) defined a notion of an abstract logic as follows.

Definition 2.3.1 (Tarski, 1956). A Tarskian logic is a pair (L,CN), where
L is a set of formulae and CN : 2L → 2L its consequence operator which
verifies the following axioms:

1. X ⊆ CN(X) (Expansion)

2. CN(CN(X)) = CN(X) (Idempotence)

3. CN(X) =
⋃

Y ⊆fX CN(Y ) (Finitude)

4. CN({x}) = L for some x ∈ L (Absurdity)

5. CN(∅) 6= L (Coherence)

Notation Y ⊆f X means that Y is a finite subset of X.

The coherence requirement is absent from Tarski’s original axioms, but
added here to rule out trivial systems. Many well-known logics (e.g. propo-
sitional logic, first-order logic, modal logics, intuitionistic logic...) verify
those axioms and are thus Tarskian logics.

Example 2.3.3. Let (L,CN) be the logic from Example 2.3.2. It is easy to see
that this simple logic verifies all the five axioms of the previous definition.
Expansion and idempotence are verified directly from the definition of CN.
Finiteness is satisfied since L is finite. Absurdity and coherence are verified
since CN({⊥}) = L and CN({∅}) = ∅.
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In a Tarskian logic, consistency is defined as follows.

Definition 2.3.2. Let (L,CN) be a Tarskian logic and X ⊆ L. X is consistent
in (L,CN) iff CN(X) 6= L. It is inconsistent otherwise.

Example 2.3.4. Let (L,CN) be the logic from Example 2.3.2. The set {red,
big} is consistent, while {red, blue, big} is inconsistent.

We can distinguish two classes of works that use Tarskian logics. The
first class contains works which study argumentation frameworks built un-
der any Tarskian logic, like done by Amgoud and Besnard (2009, 2010).
Works in the second class concern argumentation frameworks built from a
particular Tarskian logic: propositional logic (Amgoud and Cayrol, 1998;
Besnard and Hunter, 2001; Simari and Loui, 1992), first-order logic (e.g.
Besnard and Hunter, 2001), etc.

The second family of works relies on rule-based systems. Examples of such
works include the work of Prakken and Sartor (1997) or the system of AS-
PIC project (Amgoud, Caminada, Cayrol, Lagasquie, and Prakken, 2004).
The underlying logic language usually consists of a set P of literals (i.e.
atomics formulae and their negations), a set S of strict rules and a set D
of defeasible rules. A strict rule has the form l1, . . . , ln−1 → ln where every
li is a literal of P. The meaning of this rule is that if l1, . . . , ln−1 are true,
then ln is true. A defeasible rule has the form l1, . . . , ln−1 ⇒ ln, where every
li is a literal of P, and expresses the fact that if l1, . . . , ln−1 are true, then
generally ln is also true.

In this thesis, we are interested in instantiating Dung’s argumentation frame-
work by a Tarskian logic.

2.3.2 Arguments

An argument consists of two parts: a support and a conclusion. It is defined
from formulae of a knowledge base Σ ⊆ L using a consequence operator CN.

Definition 2.3.3 (Argument). Let (L,CN) be a Tarskian logic and Σ ⊆ L.
(H,h) is an argument built from Σ iff:

1. H ⊆ Σ

2. H is consistent

3. h ∈ CN(H)
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4. ∄H ′ ⊂ H s.t. h ∈ CN(H ′).

H is called support and h conclusion of the argument.

The consistency condition forbids using inconsistent sets as supports,
since an argument should be based on coherent hypotheses. The third con-
dition specifies that the conclusion can be deduced from a support, while the
last condition guarantees that only relevant information is included among
the hypotheses of an argument.

Notations: For an argument a = (H,h), Conc(a) = h and Supp(a) = H.
For a set S ⊆ L, Arg(S) = {a | a is an argument (in the sense of
Definition 2.3.3) and Supp(a) ⊆ S}. For any E ⊆ Arg(L), Base(E) =
⋃

a∈E Supp(a).

Example 2.3.5. Let (L,CN) be propositional logic and Σ = {strad, strad →
exp,¬strad}. Arguments constructed from Σ include the following ones:
({strad}, strad), ({strad, strad → exp}, exp), ({¬strad, strad → exp},
¬strad ∧(¬exp → ¬strad)), . . . Note that the set of all arguments that can
be built from Σ is infinite.

Example 2.3.6. Let (L,CN) be the logic defined in Example 2.3.2, and let
Σ = {red, blue, big}. Arg(Σ) = {({red}, red), ({blue}, blue), ({big}, big)}.

Example 2.3.7. Let (L,CN) be the S5 logic, and Σ = {¬strad,3strad}. Ar-
guments constructed from Σ include the following ones: ({3strad},23strad),
({¬strad},23¬strad), . . .

2.3.3 Interactions between arguments

Arguments can interact in different manners: they can attack or support
other arguments. An attack expresses a conflict between two arguments. It
is almost always represented by a binary relation on the set of arguments.
A common practice in logic-based argumentation is to define an attack rela-
tion by specifying the type of logical inconsistency between two arguments
whose presence implies existence of an attack. For example, if the conclu-
sion of an argument somehow contradicts one of the formulae in the support
of another argument, then the former attacks the latter. We recall below
the most commonly used attack relations in the literature. For illustration
purposes, we use propositional logic, but note that similar ideas may be used
in definitions of attack relations for many different logics.
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Definition 2.3.4 (Attack relations in propositional logic). Let us suppose
two arguments a = ({h1, . . . , hn}, h) and a′ = ({h′

1, . . . , h
′
m}, h′) built from

the formulae of propositional logic. with a = ({h1, . . . , hn}, h) and a′ =
({h′

1, . . . , h
′
m}, h′). Below are several criteria that can be used for defining

an attack from a to a′:

(1) h ⊢ ¬(h′
1 ∧ . . . ∧ h′

n) (called defeat)

(2) ∃h′
i ∈ Supp(a′) s.t. h ⊢ ¬h′

i (called direct defeat)

(3) ∃H ′′ = {h′′
1 , . . . , h

′′
p} ⊆ Supp(a′) s.t. h ≡ ¬(h′′

1 ∧ . . . ∧ h′′
p) (called un-

dercut)

(4) h ≡ ¬(h′
1 ∧ . . . ∧ h′

n) (called canonical undercut)

(5) ∃h′
i ∈ Supp(a′) s.t. h ≡ ¬h′

i (called undercut or direct undercut)

(6) h ≡ ¬h′ (called rebut)

(7) h ⊢ ¬h′ (called defeating rebut)

Example 2.3.8. Let (L,CN) be propositional logic, a = ({strad, strad →
exp}, exp) and a′ = ({¬strad},¬strad). a′ attacks a w.r.t. (1), (2), (3),
and (5). Argument a′′ = ({¬strad},¬(strad ∧ strad → exp)) attacks a
w.r.t. (1), (3) and (4). Argument a attacks a′′′ = ({costs1000, costs1000 →
¬exp},¬exp) w.r.t. (1), (6) and (7).

Those definitions of attack relation may be adapted to other logics having
negation and conjunction. If we want to provide a general definition of an
attack relation for any Tarskian logic, things are more complicated since
Tarski’s definition is very abstract and there is no guarantee that the logic
in question has any negation. The simplest solution is to define attack
relation w.r.t. inconsistency.

Definition 2.3.5 (Attack relations in a Tarskian logic). Let us suppose that
a = (H,h) and a′ = (H ′, h′) are two arguments built from a Tarskian logic
(L,CN). Below are several criteria that can be used for defining an attack
from a to a′:

(1) {h} ∪ H ′ is inconsistent

(2) ∃h′
i ∈ H ′ s.t. {h} ∪ {h′

i} is inconsistent

(3) {h} ∪ {h′} is inconsistent.
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An argument can also support another one. This is also captured by a
binary relation on the set of arguments. An argument supported by several
arguments is supposed to be stronger than a non-supported argument. How-
ever, a supported argument is not necessarily accepted in an argumentation
framework.

The following are several possibilities for defining such a relation.

Definition 2.3.6 (Support relations in a Tarskian logic). Let a = (H,h) and
a′ = (H ′, h′) be two arguments built from a Tarskian logic (L,CN). Below
are several criteria that can be used for defining a support from a to a′:

(1) h = h′

(2) ∃h′
i ∈ H ′ s.t. h = h′

i

(3) the set H ∪ H ′ is consistent and ∃h′
i ∈ H ′ s.t. h = h′

i.

Amgoud and Besnard (2009) have conducted a general study on how to
choose an appropriate attack relation. They studied the link between the
inconsistency in arguments’ supports and conclusions and attacks between
them. In order to do so, they used the notion of a minimal conflict.

Definition 2.3.7 (Minimal conflict). Let (L,CN) be a Tarskian logic and C ⊆
L. C is a minimal conflict iff:

• C is inconsistent, and

• ∀x ∈ C, C \ {x} is consistent.

Let CL denote the set of all minimal conflicts of L.

An example of property of an attack relation (Amgoud and Besnard,
2009) is conflict-dependency.

Definition 2.3.8 (Conflict-dependent). Let (L,CN) be a Tarskian logic. An
attack relation R ⊆ Arg(L) × Arg(L) is conflict-dependent iff for a, b ∈
Arg(L), aRb implies that there exists a minimal conflict C ∈ CL such that
C ⊆ Supp(a) ∪ Supp(b).

Being conflict-dependent means that R shows no attack from a to b un-
less there is a conflict between the supports of a and b.

Let us introduce several other properties an attack relation can verify.

C1 ∀a, b, c ∈ A, if Conc(a) = Conc(b) then (aRc ⇔ bRc)
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C1’ ∀a, b, c ∈ A, if Conc(a) ≡ Conc(b) then (aRc ⇔ bRc)

C2 ∀a, b, c ∈ A, if Supp(a) = Supp(b) then (cRa ⇔ cRb)

C2’ ∀a, b, c ∈ A, if Supp(a) ≡ Supp(b) then (cRa ⇔ cRb)

The two first properties say that two arguments having the same (resp.
equivalent) conclusions attack exactly the same set of arguments. The two
remaining properties say that arguments having the same (resp. equivalent)
supports are attacked by the same set of arguments.

Proposition 2.3.1. Let R be an attack relation.

• If R satisfies C1′ then it satisfies C1.

• If R satisfies C2′ then it satisfies C2.

Amgoud and Besnard (2009) have defined rationality postulates that any
logic-based argumentation framework should satisfy. One of them concerns
the consistency of the results that are returned by its extensions. Indeed,
an argumentation framework satisfies extension consistency iff for every ex-
tension, the set of formulae used in its arguments is consistent.

Definition 2.3.9. Let (L,CN) be a Tarskian logic and F = (A,R) be argu-
mentation framework whose arguments are built using that logic. F satisfies
extension consistency iff for every E ∈ Ext(F), Base(E) is consistent.

Amgoud and Besnard (2009) have shown that if a Tarskian logic is used
for constructing arguments then a conflict-dependent and symmetric attack
relation may violate extension consistency. Indeed, if a knowledge base Σ
contains at least one minimal conflict of cardinality three or more, then F =
(Arg(Σ),R) violates extension consistency if R is symmetric and conflict-
dependent.

2.3.4 Outputs of an argumentation framework

In addition to extensions and statuses of arguments, we now define other
outputs of an argumentation framework.

Definition 2.3.10 (Outputs of an argumentation framework). Let F = (A,R)
be an argumentation framework.

• Sc(F) = {a ∈ A | a is sceptically accepted }

• Cr(F) = {a ∈ A | a is credulously accepted }
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• Outputsc(F) = {Conc(a) | a is sceptically accepted }

• Outputcr(F) = {Conc(a) | a is credulously accepted }

• Bases(F) = {Base(E) | E ∈ Ext(F)}

The first four sets contain the sceptically and credulously accepted ar-
guments (resp. conclusions). Bases(F) contains the subsets of Σ which are
returned by the extensions of F . It is worth noticing that Sc(F) ⊆ Arg(L),
Cr(F) ⊆ Arg(L), Outputsc(F) ⊆ L, Outputcr(F) ⊆ L and Base(E) ⊆ L for
E ∈ Ext(F).

2.4 Conclusion

In this chapter we have introduced abstract argumentation and logic-based
argumentation. In the first part of the chapter, we studied the most abstract
argumentation framework in the literature, which was proposed by Dung
(1995). We showed how to define an abstract argumentation framework,
how to use a semantics to calculate extensions and assign a status to each
argument.

In the second part of the chapter, we introduced the basics of logic-
based argumentation, where arguments are built under a given monotonic
logic. We showed how to define a logic-based argument and discussed several
attack relations and support relations. We also defined outputs of a logic-
based argumentation framework.
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Everything should be as simple as it is,

but not simpler.

Albert Einstein 3
Equivalence in argumentation

3.1 Introduction

This chapter tackles the question of equivalence between logic-based argu-
mentation frameworks (Amgoud and Vesic, 2011c). Our study is motivated
by several reasons.

First, when building an argumentation framework from a given knowl-
edge base, it is very common that several attack relations may be used.
Thus, knowing under which conditions different attack relations induce same
or similar results is very likely to be useful.

Second, under many logics (e.g. propositional logic) an infinite number
of arguments is built from a finite knowledge base. It would be convenient
to know whether such a framework can be exchanged with an equivalent
finite framework.

Besides, even in a finite case, building logic-based arguments from a con-
crete knowledge base is computationally complex. There are at least two
tests to be done: a consistency test for checking whether argument’s support
is consistent and an inference test to check whether the argument’s conclu-
sion is a logical consequence of the support. In the case of propositional logic,
those two tests are NP-complete and co-NP-complete, respectively. Thus,
any reduction in the number of arguments of an argumentation framework
would be a step forward.

A study on when two Dung’s abstract frameworks are equivalent has
been carried out by Oikarinen and Woltran (2010). Authors defined three
equivalence criteria: according to them, two argumentation frameworks are
equivalent if they return i) the same extensions, ii) the same sets of sceptical
arguments, or iii) the same sets of credulous arguments. The main focus of
the article is not on equivalence, but rather on strong equivalence, which
is defined as follows: two frameworks are strongly equivalent iff after an
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arbitrary set of arguments and attacks have been added to both of them, the
two enriched frameworks still return the same set of extensions (respectively
sceptical / credulous arguments).

While these criteria are meaningful, they are too rigid; it has been shown
by Oikarinen and Woltran (2010) that if there are no self-attacking argu-
ments (i.e. if R is anti-reflexive) then any two frameworks are strongly equiv-
alent (w.r.t. any of the above criteria) if and only if they are equal. This
makes strong equivalence a nice theoretical property, but without practical
applications.

In this chapter, we argue that when the structure of arguments is taken
into account, similarities arise which are undetectable on the abstract level.
The following example serves to illustrate this issue. Consider two argumen-
tation frameworks built under propositional logic: the first framework has
the set {({x → y}, x → y)} as its unique extension while the only exten-
sion of the second one is {({x → y},¬x ∨ y)}. These two frameworks are
not equivalent with respect to the above criteria since the two arguments
{({x → y}, x → y)} and {({x → y},¬x ∨ y)} are different. However, un-
der some reasonable assumptions those two arguments should be considered
equivalent or exchangeable.

Thus, in order to define more accurately the notion of equivalence be-
tween two frameworks, the structure of arguments should be taken into
account. First, we exploit this fact to define equivalence criteria between
argumentation frameworks (Subsection 3.2.1) and study their interdepen-
dencies (Subsection 3.2.2). We also provide conditions under which two
frameworks are equivalent w.r.t. a given criterion (Subsection 3.2.3). We
study strong equivalence in Section 3.3. The rest of the chapter presents
diverse applications. In Section 3.4, we show how to identify a core of a
given argumentation framework, a core being its sub-framework containing
only the essential arguments of the original framework. We also provide a
condition under which a framework has a finite core. Finally, in Section 3.5,
we apply our results in the case when new arguments are added or removed
from a framework and we identify the cases when such a change does not
influence the status of existing arguments.

3.2 Basic equivalence

In the whole chapter, we suppose Dung’s argumentation framework instan-
tiated with a Tarskian logic. More precisely, let (L,CN) be a Tarskian logic
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such that L is a countable set, and let Σ ⊆ L be a given (finite or infinite)
knowledge base. We suppose that arguments are constructed as in Defini-
tion 2.3.3 and that their status is determined as in Definition 2.2.11. We
say that argumentation framework (A,R) is built from a knowledge base Σ
iff A ⊆ Arg(Σ). We did not restrict our attention to the single case of the
whole set Arg(Σ) of arguments that may be built from Σ. The reason is
that we want to be more general, i.e. our results will be valid both for the
case A = Arg(Σ) and the case A ⊂ Arg(Σ). This also allows us to study a
sub-framework which is equivalent to the framework having Arg(Σ) as a set
of arguments. We may also need to compare two of its sub-frameworks.

We assume that arguments are evaluated using stable semantics. Note
that this is not a substantial limitation since the main purpose of this chapter
is to explore general ways to define equivalence in logical argumentation and
not to study the subtleties of different semantics. A similar study can be
conducted for any other semantics. Recall that the set of all extensions of
an argumentation framework F = (A,R) is denoted by Ext(F).

In general, an argumentation framework may have an infinite number
of extensions even if the knowledge base Σ is finite. Let us consider the
following example.

Example 3.2.1. Let (L,CN) be propositional logic, Σ = {x} and A = Arg(Σ).
Assume that aRb iff a 6= b. It is clear that this framework has infinitely many
stable extensions. Some of them are: ({x}, x), ({x}, x ∧ x), ({x}, x ∨ y),
({x}, x ∧ (z ∨ ¬z)).

The following result shows that if the attack relation verifies C2 then
the argumentation framework built over a finite knowledge base has a finite
number of extensions.

Proposition 3.2.1. Let (A,R) be an argumentation framework built over Σ. If
Σ is finite and R satisfies C2, then (A,R) has a finite number of extensions.

3.2.1 Equivalence criteria

Throughout this section, we assume a fixed Tarskian logic (L,CN) and two
arbitrary argumentation frameworks F = (A,R) and F ′ = (A′,R′) that
are defined using this logic. Note that the two frameworks may be built
over different knowledge bases. The goal of this subsection is to define
equivalence criteria, i.e. to give a formal answer to the question: “When
are two argumentation frameworks equivalent?” We propose two families
of equivalence criteria. The first family compares directly the outputs of
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the two frameworks while the second family takes advantage of similarities
between arguments and logical equivalence between formulae. The following
definition introduces the criteria of the first family.

Definition 3.2.1 (Equivalence criteria). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks built using the same Tarskian logic (L,CN).
The two frameworks F and F ′ are EQi-equivalent iff criterion EQi below
holds:

EQ1: Ext(F) = Ext(F ′)

EQ2: Sc(F) = Sc(F ′)

EQ3: Cr(F) = Cr(F ′)

EQ4: Outputsc(F) = Outputsc(F
′)

EQ5: Outputcr(F) = Outputcr(F
′)

EQ6: Bases(F) = Bases(F ′).

Note that the first three criteria were mentioned but not studied by
Oikarinen and Woltran (2010). Let us consider again the example from the
introduction.

Example 3.2.2. Assume propositional logic and two argumentation frame-
works F and F ′ having respectively {({x → y}, x → y)} and {({x →
y},¬x∨ y)} as their extensions. These two frameworks are equivalent w.r.t.
criterion EQ6 since Bases(F) = Bases(F ′) = {{x → y}}. However, they
are not equivalent w.r.t. the remaining criteria, since those two arguments
are considered as different even if they have the same supports and logically
equivalent conclusions.

The following example shows two frameworks which return different but
somehow equivalent sub-bases of Σ.

Example 3.2.3. Assume propositional logic and two argumentation frame-
works F and F ′ having respectively {({x,¬¬y}, x∧ y)} and {({x, y}, x∧ y)}
as extensions. The two frameworks are equivalent w.r.t. EQ4 and EQ5 but
are not equivalent w.r.t. the remaining criteria, including EQ6. However,
for each formula in Bases(F) = {{x,¬¬y}}, there is an equivalent one in
Bases(F) = {{x, y}} and vice versa.
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In order to have more refined notions of equivalence between argumen-
tation frameworks, we take into account the logical equivalence between
formulae and between sets of formulae.

Definition 3.2.2 (Equivalence between sets and formulae). Let x, y ∈ L and
X,Y ⊆ L.

• x and y are equivalent, denoted by x ≡ y, iff CN({x}) = CN({y}). We
write x 6≡ y iff x and y are not equivalent.

• X and Y are equivalent, denoted by X ∼= Y , iff ∀x ∈ X, ∃y ∈ Y s.t.
x ≡ y and ∀y ∈ Y,∃x ∈ X s.t. x ≡ y. We write X 6∼= Y iff X and Y
are not equivalent.

In case of propositional logic, this allows to say that the two sets {x,¬¬y}
and {x, y} are equivalent. Note that if X ∼= Y , then CN(X) = CN(Y ). How-
ever, the converse is not true. For instance, CN({x∧ y}) = CN({x, y}) while
{x ∧ y} 6∼= {x, y} . One may ask why not to use the equality of CN(X) and
CN(Y ) in order to say that X and Y are equivalent? The previous example
have already given some of our motivation for such a definition: wanting
to make a distinction between {x, y} and {x ∧ y}. The following counter-
example of two argumentation frameworks whose credulous conclusions are
respectively {x,¬x} and {y,¬y} is more drastic: it is clear that CN({x,¬x})
= CN({y,¬y}) while the two sets are in no way similar.

In order to define an accurate notion of equivalence between two argu-
mentation frameworks, we also take advantage of equivalence of arguments.
Two arguments are equivalent if they have same or equivalent supports and
conclusions.

Definition 3.2.3 (Equivalence between arguments). For two arguments a, a′ ∈
Arg(L).

• a ≈1 a′ iff Supp(a) = Supp(a′) and Conc(a) ≡ Conc(a′)

• a ≈2 a′ iff Supp(a) ≡ Supp(a′) and Conc(a) = Conc(a′)

• a ≈3 a′ iff Supp(a) ≡ Supp(a′) and Conc(a) ≡ Conc(a′)

Note that each relation ≈i is an equivalence relation (i.e. reflexive, sym-
metric and transitive). The equivalence between two arguments is extended
to equivalence between sets of arguments as follows.
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Definition 3.2.4 (Equivalence between sets of arguments). Let E , E ′ ⊆ Arg(L)
and ≈i be an equivalence relation between arguments with i ∈ {1, 2, 3}. Two
sets E and E ′ are equivalent, denoted E ∼i E

′ iff ∀a ∈ E ,∃a′ ∈ E ′ s.t. a ≈i a′

and ∀a′ ∈ E ′,∃a ∈ E s.t. a ≈i a′.

We are now ready to introduce the second family of equivalence criteria.

Definition 3.2.5 (Equivalence criteria continued). Let F = (A,R) and F ′ =
(A′,R′) be two argumentation frameworks built using the same Tarskian
logic (L,CN). Let ∼i be an equivalence relation between sets of arguments,
with i ∈ {1, 2, 3}. The two frameworks F and F ′ are EQi-equivalent iff
criterion EQi below holds:

EQ1i: there exists a bijection f : Ext(F) → Ext(F ′) such that ∀E ∈ Ext(F),
E ∼i f(E)

EQ2i: Sc(F) ∼i Sc(F
′)

EQ3i: Cr(F) ∼i Cr(F
′)

EQ4b Outputsc(F) ∼= Outputsc(F
′)

EQ5b Outputcr(F) ∼= Outputcr(F
′)

EQ6b ∀S ∈ Bases(F), ∃S′ ∈ Bases(F ′) s.t. S ∼= S′ and ∀S′ ∈ Bases(F ′),
∃S ∈ Bases(F) s.t. S ∼= S′.

Each of the above criteria refines a criterion in Definition 3.2.1 by consid-
ering the equivalences either between sets of arguments or sets of formulae.
The three first criteria use an index i since they are built upon an equiva-
lence relation ∼i between sets of arguments (with i ∈ {1, 2, 3}). Thus, for
instance, EQ11 stands for a criterion which use relation ∼1.

Example 3.2.4. The two argumentation frameworks F and F ′ of Example
3.2.2 are equivalent w.r.t. criteria EQ11, EQ13, EQ21, EQ23, EQ31, EQ33,
EQ4b, EQ5b and EQ6b; they are not equivalent w.r.t. EQ12, EQ22 and
EQ32.

Example 3.2.5. The two argumentation frameworks F and F ′ of Example
3.2.3 are equivalent w.r.t. criteria EQ12, EQ13, EQ22, EQ23, EQ32, EQ33,
EQ4b, EQ5b and EQ6b; they are not equivalent w.r.t. EQ11, EQ21 and
EQ31.
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Notation: If two argumentation frameworks F and F ′ are equivalent w.r.t.
criterion x, then we write F ≡x F ′.

It is easy to check that each criterion is an equivalence relation, i.e.
reflexive, symmetric and transitive.

Proposition 3.2.2. Each criterion is an equivalence relation.

Note that rejected arguments are not considered when comparing two
argumentation frameworks. The reason is that rejected arguments are not
an important output of a framework compared to sceptical and credulous
arguments. Indeed, the set of rejected arguments is exactly the complement
of the set of credulous arguments (which are themselves considered useful).
Let us consider the following example.

Example 3.2.6. Let (L,CN) be propositional logic, let a1 = ({t ∧ ¬x},¬x),
a2 = ({x, y}, x ∧ y), a3 = ({w ∧ ¬y},¬y), A = {a1, a2}, A′ = {a2, a3},
R = {(a1, a2)}, R′ = {(a3, a2)}. It is easy to see that F = (A,R) and
F ′ = (A′,R′) would be equivalent if we compare rejected arguments, since
their sets of rejected arguments coincide, i.e. for both frameworks that is
the set {a2}. However, those two frameworks have almost nothing in com-
mon since neither their conclusions nor their arguments coincide. Note also
that arguments of those frameworks are not equivalent w.r.t. any reasonable
equivalence relation.

3.2.2 Links between criteria

It is clear that not all criteria are equally demanding and that they are
not completely independent. For example, it is easy to see that when two
argumentation frameworks are equivalent w.r.t. EQ1, then they are also
equivalent w.r.t. EQ11, EQ12 and EQ13. In this section, we investigate all
dependencies between the criteria proposed so far.

Theorem 3.2.1. Let F and F ′ be two argumentation frameworks built on
the same logic (L,CN). Table 3.1 summarises the dependencies in the fol-
lowing form: (F ≡x F ′) ⇒ (F ≡x′ F ′).

Note that if two argumentation frameworks are equivalent w.r.t. EQ1,
then they are equivalent w.r.t. any of the other criteria. This is not the case
for its refined versions, i.e. for EQ11, EQ12 and EQ13. For instance, if two
arguments are equivalent w.r.t. to EQ11, they are not necessarily equivalent
w.r.t. EQ21, EQ23 and EQ4b. Later in this subsection, we will show that
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EQi/EQj 1 11 12 13 2 21 22 23 3 31 32 33 4 4b 5 5b 6 6b
1 + + + + + + + + + + + + + + + + + +
11 + + + + + + +
12 + + + + + + +
13 + + + +
2 + + + + + +
21 + + +
22 + + + +
23 + +
3 + + + + + +
31 + + +
32 + + + +
33 + +
4 + +
4b +
5 + +
5b +
6 + +
6b +

Table 3.1: Links between criteria. For two criteria, c in row i, and c′ in col-
umn j, sign + means that c implies c′, more precisely, if two argumentation
frameworks are equivalent w.r.t. c then they are equivalent w.r.t. c′.

under some reasonable constraints, these implications exist. Indeed, if two
argumentation frameworks are equivalent w.r.t. to EQ11, then they are also
equivalent w.r.t. the three criteria EQ21, EQ23 and EQ4b provided that
the two frameworks use attack relations which verify properties C1′ and C2.
Before presenting formally this result, let us study how the two properties
C1′ and C2 of an attack relation are related to the equivalence relation ≈1

between arguments which is used in criterion EQ11.

The following proposition shows that equivalent arguments w.r.t. relation
≈1 behave in the same way w.r.t. attacks in case the attack relation enjoys
the two properties C1′ and C2.

Proposition 3.2.3. Let (A,R) be an argumentation framework s.t. R verifies
C1′ and C2. For all a, a′, b, b′ ∈ A, (a ≈1 a′ and b ≈1 b′) ⇒ (aRb iff a′Rb′).

The next result shows that equivalent arguments w.r.t. relation ≈1 be-
long to the same extensions.

Proposition 3.2.4. Let (A,R) be an argumentation framework s.t. R enjoys
C1′ and C2. For all a, a′ ∈ A, if a ≈1 a′, then ∀E ∈ Ext(F), a ∈ E iff a′ ∈ E .

It can also be checked that when two argumentation frameworks are
equivalent w.r.t. EQ11, then if we consider two equivalent arguments (one
from each framework), then the two arguments have the same status.

Proposition 3.2.5. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), and let R and R′ verify
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C1′ and C2, and F ≡EQ11 F ′. For all a ∈ A and for all a′ ∈ A′, if a ≈1 a′

then Status(a,F) = Status(a′,F ′).

In general, when two argumentation frameworks are equivalent w.r.t.
EQ11, they are not necessarily equivalent w.r.t. EQ21, EQ23 and EQ4b.
The following result shows that when the attack relations of both frameworks
verify C1′ and C2, the previous implications hold.

Theorem 3.2.2. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1′ and
C2. If F ≡EQ11 F ′, then F ≡x F ′ with x ∈ {EQ21, EQ23, EQ4b}.

When two argumentation frameworks are equivalent w.r.t. EQ12, they
are also equivalent w.r.t. EQ22, EQ23, EQ4 and EQ4b in case the attack
relations of the two frameworks enjoy properties C1 and C2′. The reason is
that there is a correlation between an attack relation which satisfies these
two properties and the equivalence relation ≈2 between arguments. Indeed,
equivalent arguments w.r.t. ≈2 behave in the same way w.r.t. an attack
relation satisfying C1 and C2′.

Proposition 3.2.6. Let (A,R) be an argumentation framework s.t. R enjoys
C1 and C2′. For all a, a′, b, b′ ∈ A, (a ≈2 a′ and b ≈2 b′) ⇒ (aRb iff a′Rb′).

Equivalent arguments w.r.t. ≈2 belong to the same extensions of an
argumentation framework.

Proposition 3.2.7. Let (A,R) be an argumentation framework s.t. R enjoys
C1 and C2′. For all a, a′ ∈ A, if a ≈2 a′ then ∀E ∈ Ext(F), a ∈ E iff a′ ∈ E .

Finally, two equivalent arguments pertaining to two frameworks whose
attack relations satisfy C1 and C2′ have the same status.

Proposition 3.2.8. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1 and
C2′, and F ≡EQ12 F ′. For all a ∈ A and for all a′ ∈ A′, if a ≈2 a′ then
Status(a,F) = Status(a′,F ′).

From the above properties, it follows that two argumentation frameworks
which are equivalent w.r.t. EQ12 are also equivalent w.r.t. EQ22, EQ23, EQ4
and EQ4b.

Theorem 3.2.3. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1 and
C2′. If F ≡EQ12 F ′, then F ≡x F ′ with x ∈ {EQ22, EQ23, EQ4, EQ4b}.
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Finally, similar results can be shown when considering an attack relation
satisfying the two properties C1′ and C2′ and the equivalence relation ≈3

between arguments.

Proposition 3.2.9. Let (A,R) be an argumentation framework s.t. R enjoys
C1′ and C2′. For all a, a′, b, b′ ∈ A, (a ≈3 a′ and b ≈3 b′) ⇒ (aRb iff a′Rb′).

The following proposition shows that equivalent arguments w.r.t. ≈3

belong to the same extensions in an argumentation framework whose attack
relation satisfies C1′ and C2′.

Proposition 3.2.10. Let (A,R) be an argumentation framework s.t. R enjoys
C1′ and C2′. For all a, a′ ∈ A, if a ≈3 a′ then ∀E ∈ Ext(F), a ∈ E iff a′ ∈ E .

A similar result as Proposition 3.2.8 is found in case of argumentation
frameworks with attack relations satisfying C1′ and C2′ and using the equiv-
alence relation ≈3.

Proposition 3.2.11. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1′ and
C2′, and F ≡EQ13 F ′. For all a ∈ A and for all a′ ∈ A′, if a ≈3 a′ then
Status(a,F) = Status(a′,F ′).

Finally, we show that if two argumentation frameworks whose attack
relations enjoy C1′ and C2′ are equivalent w.r.t. EQ13, then they are also
equivalent w.r.t. EQ23 and EQ4b.

Theorem 3.2.4. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1′ and
C2′. If F ≡EQ13 F ′, then F ≡x F ′ with x ∈ {EQ23, EQ4b}.

In sum, the comparative study revealed that the most useful equivalence
criteria are EQ11, EQ12 and EQ13, since they are at the same time flexible
(contrary to, for example EQ1) and general (i.e. they are based on extensions
and imply many other criteria). This is why, in the next subsection, we
provide conditions under which two frameworks are equivalent w.r.t. those
three criteria.

3.2.3 Conditions for equivalence

In subsection 3.2.1, we have proposed different criteria for the equivalence
of two argumentation frameworks built from the same logic. An important
question now is: “Are there conditions under which two distinct argumenta-
tion frameworks are equivalent with respect to those criteria?” Recall that
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in case of the criteria proposed by Oikarinen and Woltran (2010) the answer
is negative. In this section, we show that our refined criteria make it possible
to compare different frameworks.

In the rest of the subsection, we will study the case of two argumentation
frameworks that may be built from two distinct knowledge bases but use
the same attack relation (e.g. both frameworks use ‘undercut’). Recall that
Arg(L) is the set of all arguments that can be built from a fixed Tarskian
logic (L,CN). We denote by R(L) the attack relation which is used in the
two frameworks with R(L) ⊆ Arg(L) × Arg(L). The following result shows
when two argumentation frameworks F = (A,R) and F ′ = (A′,R′), are
equivalent w.r.t. EQ11.

Theorem 3.2.5. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1′ and C2 and A ∼1 A′, then F ≡EQ11 F ′.

The following result follows from the previous result and Theorem 3.2.2.

Corollary 3.2.1. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1′ and C2 and A ∼1 A′, then F ≡x F ′ with
x ∈ {EQ13, EQ21, EQ23, EQ31, EQ33, EQ4b, EQ5b, EQ6, EQ6b}.

A similar result is shown for argumentation frameworks which use the
same attack relation provided that the latter satisfies properties C1 and C2′.

Theorem 3.2.6. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1 and C2′ and A ∼2 A′, then F ≡EQ12 F ′.

As a consequence of the previous result and dependencies between cri-
terion EQ12 and other equivalence criteria, which are proved in Theorem
3.2.3, the next result holds.

Corollary 3.2.2. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1 and C2′ and A ∼2 A′, then F ≡x F ′ with
x ∈ {EQ13, EQ22, EQ23, EQ32, EQ33, EQ4, EQ4b, EQ5, EQ5b, EQ6b}.
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The following result shows under which conditions two frameworks are
equivalent w.r.t. EQ13.

Theorem 3.2.7. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1′ and C2′ and A ∼3 A′, then F ≡EQ13 F ′.

The following follows from the previous result and Theorem 3.2.4.

Corollary 3.2.3. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1′ and C2′ and A ∼3 A′, then F ≡x F ′ with
x ∈ {EQ23, EQ33, EQ4b, EQ5b, EQ6b}.

Note that results proved for attack relations verifying C1’ and C2, equiv-
alence relation ∼1 and corresponding equivalence criteria (e.g. EQ11) have
their counterparts for attack relations verifying C1 and C2’ (resp. C1’ and
C2’), equivalence relation ∼2 (resp. ∼3) and corresponding equivalence cri-
teria, e.g. EQ12 (resp. EQ13). From now on, we will concentrate on attack
relations verifying C1’ and C2 (and corresponding equivalence relations).

This choice is motivated by the fact that this class of attack relations
corresponds to equivalence relation ∼1 between arguments. This relation
is a good compromise between two extreme standpoints, one being asking
for C1 and C2, which is too rigid, and the second one being asking for C1’
and C2’. At this point, we will argue why we prefer to continue our study
with relations verifying C1’ and C2 (and relation ∼1) instead of those ver-
ifying C1’ and C2’ (and the corresponding relation ∼3). In logical based
argumentation, arguments are supposed to be constructed from a knowl-
edge base, which contains some information. Thus, two arguments having
different (but equivalent) formulae in their support use formulae coming
possibly from different sources. Moreover, in preference-based argumenta-
tion, one of those formulae may be stronger than another, and consequently
the first argument may be stronger than the second one. For all these rea-
sons, we prefer not to call them equivalent. As for C1 and C2’, this is the
least appealing choice since the subtleties in the supports of arguments are
not taken into account, while too much attention is drawn to differences
in conclusions. On the contrary, we want to keep information about the
argument’s support (i.e. hypotheses used in its reasoning) while we want to
eliminate (usually) infinitely many alternative (but equivalent) conclusions.
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Related to that point is our second remark. Namely, a knowledge base
from which arguments are built is often supposed to be finite. Thus, a
finite number of arguments’ supports is available. On the contrary, almost
all well-known logics allow for an infinite number of conclusions which can
be drawn from a (finite or infinite) set of formulae. Thus, we can keep
the information which will allow us to distinguish between equivalent but
different formulae in the support, but if we want to be able to reduce a
framework to an equivalent, finite one, we will have to reduce the number
of conclusions, as will be shown later in this chapter.

The third comment we want to make here is the link between relation
∼1, which corresponds to the class of attack relations verifying C1’ and
C2, and the notion of conservatism defined by Besnard and Hunter (2008).
According to that definition, an argument (H,h) is more conservative than
(H ′, h′) iff H ⊆ H ′ and h′ ⊢ h. Thus, two arguments are equivalent in the
sense of ∼1 iff they are more conservative than the other (i.e. the first one
is more conservative than the second and vice versa).

Note also that, regardless of all the previous comments, for the majority
of results which will be presented in the rest of the chapter, similar ones can
be proved for relations verifying C1 and C2’ (or C1’ and C2’).

3.3 Strong equivalence

In this subsection, we study the strong equivalence between logic-based ar-
gumentation frameworks. As mentioned before, two argumentation frame-
works are strongly equivalent iff after adding the same set of arguments to
both frameworks, the new frameworks are equivalent w.r.t. a given equiva-
lence criterion.

We will be working with a framework enriched with new arguments.
One of the essential questions when a new piece of information arrives is to
know which arguments attack/are attacked by it. Since arguments are built
from a logical language L, and for all well-known logics Arg(L) contains an
infinite number of arguments, it is reasonable to suppose that the attack
relation is defined by using some rule/principle allowing us to know when
two arguments attack each other instead of manually specifying the attack
relation R on A. Thus, in the rest of the chapter, we will suppose that a
general attack relation is defined on the set of all arguments Arg(L) that
can be built from the logic (L,CN). For any pair of arguments, this relation
specifies whether they attack each other. As before, this relation will be
denoted by R(L); thus R(L) ⊆ Arg(L) × Arg(L). As already mentioned,
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in the rest of the chapter we will suppose that R(L) verifies C1’ and C2.
Once this attack relation is defined, we suppose that for any argumentation
framework F = (A,R), relation R is a restriction of R(L) on A, i.e. R =
R(L)|A.

Augmenting a given argumentation framework F = (A,R) by an arbi-
trary set B of arguments results in a new framework, denoted by F ⊕ B,
where F ⊕ B = (Ab,Rb) with Ab = A ∪ B and Rb = R(L)|Ab

.

Definition 3.3.1 (Strong equivalence between two argumentation frameworks).
Let F = (A,R) and F ′ = (A′,R′) be two argumentation frameworks built
using the same Tarski’s logic (L,CN) and let EQx be an equivalence cri-
terion. The two frameworks F and F ′ are strongly equivalent w.r.t. EQx
iff

∀B ⊆ Arg(L), F ⊕ B ≡EQx F ′ ⊕ B.

We will also use notation F ≡EQxS F ′ (’S’ stands for strong) as a
synonym for the phrase “F and F ′ are strongly equivalent w.r.t. EQx”.

The following result is an obvious consequence of the previous definition.

Proposition 3.3.1. Let EQx be an arbitrary equivalence criterion (from Def-
inition 3.2.1 or Definition 3.2.5), and let F and F ′ be two argumentation
frameworks. If F ≡EQxS F ′ then F ≡EQx F ′.

For example, from the previous result and Theorems 3.2.1 and 3.2.2, we
see that if F ≡EQ11S F ′, then F ≡EQ21S F ′ and F ≡EQ31S F ′.

Corollary 3.3.1. Let F = (A,R) and F ′ = (A′,R′) be two argumentation
frameworks built from a Tarskian logic (L,CN), s.t. R(L) ⊆ Arg(L)×Arg(L)
verifies C1’ and C2, R = R(L)|A and R′ = R(L)|A′ . If F ≡EQ11S,
then F ≡x F ′ with x ∈ {EQ13S,EQ21S,EQ23S,EQ31S, EQ33S,EQ4bS,
EQ5bS,EQ6S, EQ6bS}.

The previous result showed under which conditions one form of strong
equivalence implies other forms of strong equivalence between two argumen-
tation frameworks. We will now show that the condition we introduced in
the previous section is general enough to guarantee the strong equivalence.

Theorem 3.3.1. Let F = (A,R) and F ′ = (A′,R′) be two argumentation
frameworks built from a Tarskian logic (L,CN), s.t. R(L) ⊆ Arg(L)×Arg(L)
verifies C1’ and C2, R = R(L)|A and R′ = R(L)|A′ . If A ∼1 A′, then
F ≡EQ11S F ′.

A consequence of the previous theorem is the following.
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Corollary 3.3.2. Let F = (A,R) and F ′ = (A′,R′) be two argumentation
frameworks built from a Tarskian logic (L,CN), s.t. R(L) ⊆ Arg(L)×Arg(L)
verifies C1’ and C2, R = R(L)|A and R′ = R(L)|A′ . If A ∼1 A′, then
F ≡x F ′, with x ∈ {EQ13S, EQ21S, EQ23S, EQ31S, EQ33S, EQ4bS,
EQ5bS, EQ6S, EQ6bS}.

Note, however, that this does not mean that notions of equivalence and
strong equivalence coincide, as illustrated by the following example.

Example 3.3.1. Let (L,CN) be a Tarskian logic defined as L = {rock, paper,
book, scissors,⊥}, and let for all X ⊆ L,

CN(X) =

{
X, if ⊥ /∈ X and |X| ≤ 1
L, else

As expected, rock attacks scissors, scissors attack paper, and of course,
paper attacks rock. We also suppose that scissors attack book. Formally,
∀a, b ∈ Arg(L), aR(L)b iff

• (Conc(a) = scissors and (paper ∈ Supp(b) or book ∈ Supp(b)), or

• (Conc(a) = rock and scissors ∈ Supp(b)), or

• (Conc(a) = paper and rock ∈ Supp(b)).

It is easy to see that R(L) verifies C1’ and C2. Let r = ({rock}, rock),
p = ({paper}, paper), b = ({book}, book), s = ({scissors}, scissors). We
define F = (A,R) with A = {p, s} and R = R(L)|A (i.e. R = {(s, p)})
and F ′ = (A′,R′) with A′ = {b, s} and R′ = R(L)|A′ (i.e. R′ = {(s, b)}).
The only extension of F is set {s}, which is also the only extension of F ′.
Thus, the two frameworks are equivalent w.r.t. all the criteria from Defini-
tion 3.2.1 and Definition 3.2.5. However, they are not strongly equivalent
w.r.t. any criteria from Definition 3.2.1 or Definition 3.2.5. Namely, if both
frameworks are augmented with {r}, framework F ⊕ {r} has no extensions
and all its arguments are rejected, while F ′ ⊕ {r} has a unique extension
{r, b}.

3.4 Core(s) of an argumentation framework

In this subsection, we will show how to define a core of an argumentation
framework, that is, to define its “sub-framework” which is equivalent to the
original one. We also provide a condition under which an argumentation
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framework has a finite core. The basic idea is to simplify a given argumen-
tation framework by taking exactly one argument from each equivalence
class of A/ ∼1.

We use the standard notation, i.e. given a set X and an equivalence
relation ∼ on that set, ∀x ∈ X, we write [x] = {x′ ∈ X | x′ ∼ x} and
X/ ∼ = {[x] | x ∈ X}. Recall also that we suppose a general attack relation
R(L) ⊆ Arg(L) × Arg(L) which satisfies C1’ and C2, and that for any
framework F = (A,R) we have R = R(L)|A.

Definition 3.4.1 (Core of an argumentation framework). Let F = (A,R) be
an argumentation framework. An argumentation framework F ′ = (A′,R′)
is a core of F iff:

• A′ ⊆ A

• ∀C ∈ A/ ∼1, ∃!a ∈ C ∩ A′

• R′ = R|A′ , i.e. R′ is the restriction of R on A′.

The fact that one representative of each equivalence class is included in
a core allows us to show that any core of an argumentation framework is
equivalent with the original framework.

Theorem 3.4.1. Let F be an argumentation framework and F ′ one of its
cores. Then: F ≡EQ11 F ′.

As a consequence of the previous result and Theorems 3.2.1 and 3.2.2,
we see that all important outputs of an argumentation framework and any
of its cores coincide.

Corollary 3.4.1. Let F be an argumentation framework and F ′ one of its
cores. Then:

• Sc(F) ∼1 Sc(F
′)

• Cr(F) ∼1 Cr(F
′)

• Outputsc(F) ∼= Outputsc(F
′)

• Outputcr(F) ∼= Outputcr(F
′)

• Bases(F) = Bases(F ′)
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We can also see that if F ′ is a core of F , then each argument of F ′ has
the same status in F and in F ′ (this follows from Proposition 3.2.5).

We will now show that when an attack relation verifies C1’ and C2 then
two arguments having the same support have the same status. This means
that if a given standpoint (i.e. the set of hypotheses) is accepted, then all of
its consequences (i.e. conclusions) must be accepted as well.

Proposition 3.4.1. Let F = (A,R) be an argumentation framework and let
a, a′ ∈ A be two arguments such that Supp(a) = Supp(a′). Then:
Status(a,F) = Status(a′,F).

A core of an argumentation framework provides enough information to
know the status of a given argument. First, we will show that if a given
argument is in the core, then its status in the core is the same as in the
original framework. Furthermore, we will also show how to determine a
status of an argument not belonging to a given core.

Proposition 3.4.2. Let F = (A,R) be an argumentation framework and F ′ =
(A′,R′) its core.

• If a ∈ A′ then Status(a,F) = Status(a,F ′),

• If a /∈ A′ then Status(a,F) = Status(b,F ′), where b ∈ A′ is an
arbitrary argument s.t. Supp(a) = Supp(b).

Note also that different cores return equivalent results. This comes from
the transitivity of equivalence relations between argumentation frameworks.
So, if F is an argumentation framework and F ′ and F ′′ its cores, then from
F ≡EQ11 F ′ and F ≡EQ11 F ′′, we have F ′ ≡EQ11 F ′′.

We now provide a condition which guarantees that any core of any argu-
mentation framework built from a finite knowledge base is finite. This is the
case for logics in which any consistent finite set of formulae has finitely many
logically non-equivalent consequences. To formalize this, we use the follow-
ing notation for a set of logical consequences made from consistent subsets
of a given set. For any X ⊆ L, Cncs(X) = {x ∈ L | ∃Y ⊆ X s.t. CN(Y ) 6=
L and x ∈ CN(Y )}.

We show that if Cncs(Σ) has a finite number of equivalence classes, then
any core of F is finite (i.e. has a finite set of arguments).

Theorem 3.4.2. Let F = (A,R) be an argumentation framework built over
a knowledge base Σ (i.e. let A ⊆ Arg(Σ)). If Cncs(Σ)/ ≡ is finite, then any
core of F is finite.
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3.4.1 Core(s) in propositional logic

In this subsection, we will consider a particular case of the general framework
we have studied so far. More precisely, we will study an argumentation
framework based on propositional logic. Furthermore, we will suppose that
the attack relation R(L) ⊆ Arg(L) × Arg(L) is defined as follows.

Definition 3.4.2 (Undercut). Let a, b ∈ Arg(L). We say that aRb iff ∃h ∈
Supp(b) s.t. a ≡ ¬h.

Until the end of this subsection, we suppose that R(L) is as in the pre-
vious definition.

It can be checked that the condition of the previous theorem (i.e. that
Cncs(Σ)/ ≡ is finite) is almost never verified by propositional logic (more
precisely, it is not verified iff Σ contains at least one consistent formula).
We provide a simple counter-example.

Example 3.4.1. Let (L,CN) be propositional logic and let Σ = {x}. Cncs(Σ)
contains following formulae: x, x∨ z1, x∨ z2, x∨ z3 . . . It is clear that in this
case Cncs(Σ)/ ≡ is infinite.

Luckily, Theorem 3.4.2 can easily be adapted to suit propositional logic
(and many other well-known logics). As expected, the basic idea is to limit
the number of variables which are used for the construction of arguments.

Roughly speaking, there are two sources of infiniteness for Arg(Σ). The
first one is due to logically equivalent conclusions and can be illustrated by
the following series of arguments: ({x}, x), ({x}, x ∧ x), ({x}, x ∧ x ∧ x), . . .
({x}, x∧ (y → y)), ({x}, x∧ (y ∨¬y)), ({x}, x∧ ((y → z) ↔ (¬z → ¬y))), . . .
This includes arguments with the same support and different but logically
equivalent conclusions. It is easy to see that their number is infinite. The
second source infiniteness is the fact that new atoms may be introduced in
the conclusion. For example, if x ∈ Σ, then Arg(Σ) contains (but is not
limited to) the following arguments: ({x}, x ∨ z1), ({x}, x ∨ z2), ({x}, x ∨
z3), ({x}, x ∨ z4), . . .

We have already formalized the equivalence between arguments having
equivalent conclusions. Now, we will show how to limit a number of atoms
in arguments’ conclusions so that a core is finite. The idea is to take only
arguments which are built entirely on atoms from Σ. We will first formal-
ize this idea and then show that eliminating those arguments will allow to
construct a finite core without losing any important information present in
the original framework.
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Let us use the following notations. Atoms(Σ) is the set of atoms occurring
in Σ. Arg(Σ)↓ is the subset of Arg(Σ) that contains only arguments with
conclusions in the language of Σ. For instance, if Σ = {x → y, z ∨ ¬w}
then Atoms(Σ) = {x, y, z, w}. Thus, an argument such as ({x → y}, (¬x ∨
y) ∨ t) does not belong to the set Arg(Σ)↓. From now on, when Σ is fixed,
and if not explicitly stated otherwise, we will also use the notation F↓ =
(Arg(Σ)↓,R↓) with R↓ = R(L)|Arg(Σ)↓ . Note that the set Arg(Σ)↓ is infinite
(due to equivalent arguments).

Importantly, its arguments have the same status in the two frameworks
F = (Arg(Σ),R) and F↓ = (Arg(Σ)↓,R↓).

Theorem 3.4.3. Let F = (Arg(Σ),R) and F↓ = (Arg(Σ)↓,R↓). For all
a ∈ Arg(Σ)↓, Status(a,F) = Status(a,F↓).

This result is important since it shows that arguments that use external
variables (i.e. variables which are not in Atoms(Σ)) in their conclusions can
be omitted from the reasoning process. Moreover, we show next that their
status is still known. It is that of any argument in Arg(Σ)↓ with the same
support.

Theorem 3.4.4. Let F = (Arg(Σ),R) be an argumentation framework built
over Σ. For all a ∈ Arg(Σ) \ Arg(Σ)↓, Status(a,F) = Status(b,F) where
b ∈ Arg(Σ)↓ and Supp(a) = Supp(b).

In sum, Theorem 3.4.3 and Theorem 3.4.4 clearly show that one can
use the sub-framework F↓ = (Arg(Σ)↓,R↓) instead of F = (Arg(Σ),R)
without losing any information. However, this framework is still infinite due
to redundant arguments.

The following result proves that the set Arg(Σ)↓ is partitioned into a
finite number of equivalence classes w.r.t. the equivalence relation ∼1.

Proposition 3.4.3. It holds that |Arg(Σ)↓/ ≈1 | ≤ 2n · 22m
, where n = |Σ| and

m = |Atoms(Σ)|.

This result is of great importance since it shows how it is possible to
partition an infinite set of arguments into a finite number of classes. Note
that each class may contain an infinite number of arguments. An example
of such infinite class is the one which contains (but is not limited to) all the
arguments having {x} as a support and x, x ∧ x, . . . as conclusions.

Until now, we have shown that arguments from Arg(Σ) \ Arg(Σ)↓ may
be omitted. Now, we show that when only atoms from Σ are used, any core
of any argumentation framework built over a finite knowledge base is finite.
The result is a direct consequence of Proposition 3.4.3 and Definition 3.4.1.
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Proposition 3.4.4. Given F = (A,R), such that A ⊆ Arg(Σ)↓, any core of F
has a finite number of arguments.

The last question to be answered in this subsection is the following:
“If we do not include the arguments having atoms not belonging to Σ, and
if we want use argumentation for reasoning, i.e. to calculate all sceptical
conclusions, is it possible to obtain all sceptical conclusions of the original
framework by using its core?” The answer is given in the next theorem, as
we show that any conclusion of the original framework can be deduced from
the conclusions of the framework using only atoms from Σ. Note that now
we suppose that argumentation is used for calculating all conclusions, thus,
A = Arg(Σ).

Theorem 3.4.5. Let F = (A = Arg(Σ),R) be an argumentation framework
built over a knowledge base Σ, let F ′ = (A′ = Arg(Σ)↓,R

′), with R′ = R|A′ ,
and let G be a core of F ′. Then, Outputsc(F) = {x ∈ L s.t.Outputsc(G) ⊢
x}.

An important question now is how to choose a core, i.e. how to pick
exactly one formula from each set of logically equivalent formulae? Since a
lexicographic order on set L is usually available, we can take the first formula
from that set according to that order. Instead of defining a lexicographic
order, one could also choose to take the disjunctive (or conjunctive) normal
form of a formula.

3.5 Application on dynamic frameworks

In many situations, some arguments are built, their statuses are calculated
and (sceptical/credulous) conclusions of the argumentation framework are
computed. In this subsection, we suppose that an argumentation framework
is given and we study the impact of a new argument on the argumentation
framework, in particular on the status of existing arguments and its outputs.
We will also show when it is possible to know the status of the arriving
argument(s) without having to recalculate the extensions of the framework.

Recall that we suppose a Tarskian logic (L,CN) and that a general func-
tion R(L) ⊆ Arg(L)×Arg(L) verifying C1’ and C2 is given. We also suppose
that for any argumentation framework F = (A,R), we have R = R(L)|A.

Considering a knowledge base corresponding to a given argumentation
framework, if not explicitly stated otherwise, in this section we suppose that
F is an arbitrary argumentation framework and Σ = Base(A).
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We will study two situations. In the first one, we suppose that framework
F = (A,R) is augmented with a new set of arguments E ; thus, we obtain
a new framework, which will be denoted by F ⊕ E . Recall that we have
already defined operator ⊕ for merging an argumentation framework with
a set of arguments on page 36. Similarly, we will define operator ⊖ in an
expected way: F ⊖ E = (A′,R′) with A′ = A \ E and R′ = R(L)|A′ .

We now identify a case in revision when it is not necessary to recalculate
arguments’ statuses.

We will show that if argumentation framework F = (A,R) contains a
core of argumentation framework (A′ = Arg(Σ),R′ = R(L)|A′) then argu-
ments built from Σ have no impact on revision process.

Definition 3.5.1. If F = (A,R) and G are argumentation frameworks, we
say that F contains a core of G iff there exists an argumentation framework
H = (Ah,Rh) s.t. Ah ⊆ A and Rh = R(L)|Ah

and H is a core of G.

Theorem 3.5.1. Let F = (A,R) be an argumentation framework which
contains a core of G = (Ag = Arg(Σ),Rg = R(L)|Ag ) and let E ⊆ Arg(Σ).
Then:

• F ≡EQ11 F ⊕ E

• ∀a ∈ A, Status(a,F) = Status(a,F ⊕ E)

• ∀e ∈ E \ A, Status(e,F ⊕ E) = Status(a,F), where a ∈ A is any
argument s.t. Supp(a) = Supp(e).

It is clear that the previous theorem is applicable when F is itself a core
of G = (Ag = Arg(Σ),Rg = R(L)|Ag ) and E ⊆ Arg(Σ).

We will now show that when a framework does not contain a core of the
framework built over its base, new arguments may change the status of the
existing ones.

Example 3.5.1. Let (L,CN) be the propositional logic and let the attack
relation R(L) be defined as: ∀a, b ∈ Arg(L), aR(L)b iff ∃h ∈ Supp(b)
s.t. Conc(a) ≡ ¬h. Let F = (A,R) with A = {a1 = ({strad, strad →
exp}, exp), a2 = ({¬strad},¬strad)}. Recall that we suppose that R =
R(L)|A; thus, R = {(a2, a1)}. Argument a2 is sceptically accepted and
a1 is rejected. Let e = ({strad}, strad). It is clear that e ∈ Arg(Base(A)).
However, statuses of a1 and a2 change in F ⊕ {e}. Namely, in the revised
framework there are neither sceptically accepted nor rejected arguments; all
arguments are credulously accepted.
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The previous example illustrated a situation when an argumentation
framework does not contain a core of the framework constructed from its
base. This means that not all available information is represented in F ;
thus, it is not surprising that it is possible to revise arguments’ statuses.

We have already seen that extracting a core of an argumentation frame-
work is a compact way to represent the original framework. In that process,
arguments are deleted from the original framework. In some situations, one
would prefer to say the same thing in several different ways, since it can
be useful in a given situation; for example in a dialogue. In other situa-
tions, we want to get rid of some superfluous arguments. We show under
which conditions deleting argument(s) does not influence the status of other
arguments.

As expected, if a set of arguments E is deleted from F and if a resulting
framework F ⊖ E contains a core of (Arg(Σ),R(L)|Arg(Σ)), then statuses of
remaining arguments do not change. The following corollary follows from
Theorem 3.5.1.

Corollary 3.5.1. Let F = (A,R) be an argumentation framework and let
E ⊆ A. If F ⊖E contains a core of G = (Ag = Arg(Σ),Rg = R(L)Ag ), then:

• F ≡EQ11 F ⊖ E

• ∀a ∈ A \ E , Status(a,F) = Status(a,F ⊖ E).

The obvious consequence of the above result is that if F ⊖E is itself one
of the cores of G, then the statuses of its arguments are not changed after
the deletion of arguments from E .

Note that in some works in the literature, behavior of an argumentation
framework after addition or removal of an attack is studied. We did not
consider this option since in logic-based argumentation it does not make
sense. Namely, we supposed that arguments are built from a logical lan-
guage, and that whether an argument attacks another is determined using
logical properties of two given arguments (e.g. union of the conclusion of
the first argument and the support of the second argument are inconsistent).
Thus, it is not possible to become aware of a conflict in one moment with-
out knowing that it has existed from the instant when the second of the two
arguments was constructed.
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3.6 Conclusion

In this chapter, we have tackled the question: “When are two argumenta-
tion frameworks equivalent?” First, we showed how to define equivalence
between formulae, arguments, sets of formulae and sets of arguments. We
have then used those equivalence relations to define equivalence criteria be-
tween argumentation frameworks. Links between criteria have also been
investigated. Particularly important results are those which show under
which conditions two frameworks are equivalent. We also considered strong
equivalence between argumentation frameworks.

In the second part, we showed how to apply our results: first, they
allow to reduce the number of arguments in an argumentation framework
by obtaining an equivalent but smaller (in the terms of number of arguments)
framework; second, we identified situations when adding new arguments to
a framework does not influence statuses of existing ones and showed that in
this case it is not necessary to recalculate extensions.

We have already noted that Oikarinen and Woltran (2010) have dealt
with the problem of equivalence between argumentation frameworks. That
work treated only strong equivalence in the abstract case when the structure
of arguments is unknown. In that case, two frameworks are strongly equiva-
lent if and only if they coincide, except if there are self-attacking arguments.
In this thesis, thanks to taking into account the logical structure of argu-
ments, we have identified cases when different argumentation frameworks
are equivalent.

Equivalence between arguments and sets of arguments was also studied
from the computational complexity perspective (Wooldridge, Dunne, and
Parsons, 2006), in the case of propositional logic and one attack relation:
undercut. According to Wooldridge et al. (2006), two arguments are log-
ically equivalent iff their conclusions are logically equivalent. The main
difference with our definitions is illustrated by the following example: Let
a = ({y, y → x}, x) and a′ = ({z, z → x}, x). According to Wooldridge et al.
(2006), a and a′ are equivalent, whereas they are not equivalent w.r.t. any
of our criteria. Note that we do not consider them equivalent, since they
are based on different hypotheses. It can be the case that one of those hy-
potheses is attacked and not the other one. For example, if b = ({¬y},¬y)
then b undercuts a but not a′. This shows why that definition of equiva-
lence is too simplistic for our purpose and is not sufficient to guarantee that
all information from a knowledge base is represented in an argumentation
framework.

Two sets of arguments X and Y are said to be equivalent if there is
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a bijection between between them f , s.t. ∀x ∈ X, f(x) is equivalent with
x (Wooldridge et al., 2006). In this thesis, we opted for a more flexible
definition of equivalence. For example, let X = {({x}, x), ({x},¬¬x)} and
Y = {({x}, x)}. We defined criteria which allow to say that those two sets
are equivalent, while they are not equivalent w.r.t. the definition given by
Wooldridge et al. (2006). This allows us to reduce an infinite framework
to a finite one, which is impossible if using the definition demanding for a
bijection between the two sets.

It should be also noted that Wooldridge et al. (2006) allow for an argu-
ment’s support to be inconsistent and / or non-minimal. Thus, items 2 and
4 of Definition 2.3.3 are not verified.

Note also that in that paper, a problem of equivalence between two
argumentation frameworks is not addressed. The focus of the work is on the
computational complexity of different problems, e.g. the problem of checking
whether an argument set is maximal (in the sense that no argument could
be added without such an argument being logically equivalent to one that
is already present).

46



Sur quelque préférence, une estime se fonde,

Et c’est n’estimer rien, qu’estimer tout le monde.

Alceste in Le Misanthrope, Molière 4
Preferences in argumentation frameworks

This Chapter studies the role of preferences in argumentation. In Section
4.2, after presenting some examples of preference relations, we argue that
there are two roles of preferences in argumentation: conflict-resolution role
and refining role. Then we present existing preference-based argumentation
frameworks. In Section 4.3, we illustrate through several critical examples
the drawbacks of existing frameworks which model the conflict-resolution
role of preferences in argumentation. Then, we present our framework for
the modeling of this role. That section uses and develops the results from
several papers (Amgoud and Vesic, 2009b, 2010a). Section 4.4 presents the
first framework in the literature which integrates both roles of preferences
(Amgoud and Vesic, 2010c, 2011e). In Section 4.5, we show the links between
well-known non-argumentative formalisms for handling inconsistency and
two instantiations of our framework (Amgoud and Vesic, 2010b).

4.1 Introduction

Informally speaking, preference refers to ordering objects, on the basis of
their “quality”. Quality may be related to satisfaction or utility an object
provides: if one is offered a drink, and (s)he can choose between orange
juice, coffee and tea, one has to rank-order those three options (or, at least,
identify the most preferred option) in order to choose what to drink. We
say that one has to express his/her preferences.

A preference relation is a binary relation defined over a set X of objects.
It is generally reflexive and transitive even if non-transitive preference rela-
tions exist. For example, if one prefers tea to coffee, and coffee to orange
juice, it is reasonable to expect that (s)he prefers tea to orange juice. A
reflexive and transitive relation is called preorder. A relation that compares
any pair of objects in X is said to be total.

Formally, let ≥ be a preference relation on X, that is for x, y ∈ X, x ≥ y
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means that x is at least as good/preferred as y. If x ≥ y and y ≥ x, then x
and y are said to be indifferent. When not x ≥ y and not y ≥ x, then x and
y are said to be incomparable. The relation ≥ is total iff ∀x, y ∈ X, x ≥ y
or y ≥ x (or both). A strict version of ≥ is denoted by > and is defined as
follows: for x, y ∈ X, x > y iff x ≥ y and not y ≥ x.

Example 4.1.1. Let X = {oj, c, t} where oj stands for orange juice, c for
coffee and t for tea. If ≥= {(t, t), (oj, oj), (c, c)(t, oj), (t, c)}, then tea is the
most preferred option. Note that orange juice and coffee are incomparable.
Thus, this preference relation is not total. However, it is both reflexive and
transitive.

4.2 Preferences in argumentation

There is a clear consensus in the argumentation literature that arguments
do not necessarily have the same strength. It may be the case that an
argument relies on certain information while another argument is built from
less certain ones, or that an argument promotes an important value while
another promotes a weaker one. In both cases, the former argument is
clearly stronger than the latter. These differences in arguments’ strengths
make it possible to compare them. Consequently, several preference relations
between arguments have been defined in the literature (e.g. Amgoud, Cayrol,
and LeBerre, 1996; Benferhat, Dubois, and Prade, 1993; Cayrol, Royer, and
Saurel, 1993; Prakken and Sartor, 1997; Simari and Loui, 1992). There is
also a consensus on the fact that preferences should be taken into account
in the evaluation of arguments (Amgoud and Cayrol, 2002b; Bench-Capon,
2003; Modgil, 2009; Prakken and Sartor, 1997; Simari and Loui, 1992).

This section introduces examples of preference relations, studies the role
of preferences in argumentation, and surveys the existing works in the area.

4.2.1 Examples of preference relations

In argumentation literature, several preference relations over arguments were
defined. Those works often (but not always) assume a logic-based argumen-
tation framework (A,R) built from a knowledge base Σ and under a mono-
tonic logic (L,CN). They define a binary relation ≥ on A which expresses
preferences between arguments of A.

In the framework proposed by Bench-Capon (2003), each argument pro-
motes a value, and the importance of an argument is equal to the importance
of the value it promotes.
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Definition 4.2.1. Let (A,R) be an argumentation framework, V a set of val-
ues, Pref ⊆ V × V a preference relation over values and val : A → V a
function which assigns to each argument the value it promotes. For a, b ∈ A,
a ≥ b iff (val(a), val(b)) ∈ Pref.

Benferhat, Dubois, and Prade (1993) have proposed a preference relation
based on the certainty of the formulae used as a support of an argument.
This preference relation is based on the weakest link principle. The idea is
that an argument is stronger (or equal) than another iff the weakest formula
in the support of the first argument is better (or equal) than the weakest
formula in the support of the second one. In this work, a knowledge base Σ
contains propositional formulae. This base is equipped with a total order,
that is it is stratified into Σ1 ∪ . . . ∪Σn. such that ∀i, j ∈ {1, . . . , n} if i 6= j
then Σi ∩ Σj = ∅. In other words, Σ is partitioned into a finite number of
disjunct sets. Formulae in Σi have the same equality level and more certain
that those in Σj iff i ≤ j. The stratification of Σ enables to define a certainty
level of each subset S of Σ. It is the highest number of stratum met by this
subset. Formally:

Level(S) = max{i | S ∩ Σi 6= ∅} (with Level(∅) = 0).

The above certainty level is used in order to define a total preorder on the
set of arguments that can be built from a stratified knowledge base.

Definition 4.2.2 (Weakest link principle). Let Σ = Σ1∪. . .∪Σn be a stratified
knowledge base. An argument (H,h) ∈ Arg(Σ) is preferred to another ar-
gument (H ′, h′) ∈ Arg(Σ), denoted by (H,h) ≥wlp (H ′, h′), iff Level(H) ≤
Level(H ′).

Cayrol, Royer, and Saurel (1993) have extended this relation to the case
when the knowledge base is equipped with a partial preorder, meaning that
some formulae may be incomparable.

Definition 4.2.3 (Generalized weakest link principle). Let Σ be a knowl-
edge base equipped with a partial preorder D⊆ Σ × Σ. For two arguments
(H,h), (H ′, h′) ∈ Arg(Σ), we write (H,h) ≥gwlp (H ′, h′) iff ∀k ∈ H, ∃k′ ∈
H ′ such that k ⊲ k′ (i.e. k D k′ and not (k′ D k)).

Simari and Loui (1992) proposed another preference relation which priv-
ileges more specific information. Roughly speaking, this can be illustrated
by letting an argument saying that Tweety does not fly since it is a penguin,
be preferred to an argument saying that Tweety flies since it is a bird. This
is since the former is grounded on the more specific rule than the latter.
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4.2.2 Roles of preferences in argumentation

This subsection analyzes the role that preferences between arguments can
play in an argumentation framework. We will discuss different critical ex-
amples. In this informal discussion, we will use terms standard solutions
for the solutions calculated before taking into account the preferences and
preferred solutions for the solutions calculated after preferences have been
taken into account.1

Example 4.2.1. Let us consider the argumentation framework depicted below.
This framework has two standard stable extensions: {a, c} and {b, d}.

d c

a b

Assume that a > b and c > d. It can be argued that the stable extension
{a, c} is better than {b, d} since for each element of {b, d} there exists a
better one in {a, c}. Thus, this preference-based argumentation framework
would have only preferred solution {a, c} as extension.

Note that in Example 4.2.1, preferences refine the results obtained in the
standard case. Indeed, the set of preferred solutions is a subset of the set of
the standard ones. Preferences play here exactly the role described in non-
monotonic reasoning formalisms (e.g. Brewka, Niemela, and Truszczynski,
2003). Let us now consider a different example.

Example 4.2.2. Let A = (A,R) with A = {a, b} and R = {(a, b)}. This
framework has one standard stable extension: the set {a}. Now, if we as-
sume that b > a, it is clear that the standard solution cannot be refined and
{a} is the only preferred solution of the framework. What happened here is
that the preferred argument is rejected when computing the standard solution
(without taking preferences into account). Thus, there is no way to apply
the preference of b over a.
However, it is not intuitive to consider the set {a} as a preferred extension
of the framework. Let us illustrate this by a less abstract example. Assume
that the framework is built from a stratified propositional knowledge base
Σ = Σ1 ∪Σ2 with Σ1 = {x, x → y} and Σ2 = {z, z → ¬x}. Let a = ({z, z →

1It should be clear that the word preferred does not refer to Dung’s preferred semantics.
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¬x},¬x) b = ({x, x → y}, y). If the attack relation is the one which allows
to undermine a premise of another argument, then a undermines b but not
vice versa. If we use the preference relation which is based on the weakest
link principle, then b > a. It is natural to expect that the conclusion y is
justified and the argument b is accepted. Thus, the preferred solution of the
framework should be the extension {b}.

Contrarily to Example 4.2.1, the use of preferences in Example 4.2.2
completely modifies the original set of extensions. Consequently, the set of
preferred solutions of a framework is not necessarily a subset of the set of
standard solutions. It can even be argued, that {b} is the standard solution
in the previous example, and consequently, the unique preferred solution.

The two examples show that there are two distinct roles that preferences
can play in an argumentation framework. They can be used in order to
protect strong arguments from attacks coming from weaker ones. In this
case, not all available preferences are exploited. Indeed, only preferences
that contradict attacks are considered. In Example 4.2.2, the preference
saying that a is preferred to b contradicts the attack from b to a. Such
attacks are called “critical attacks”.

Definition 4.2.4. Let a, b be two arguments. There is a critical attack from
a to b iff aRb and b > a.

From now on, we will call solutions obtained after taking into account the
first role of preferences standard solutions. The second role of preferences
consists of exploiting the remaining preferences to refine the results obtained
after having handled critical attacks.

The following example shows an argumentation framework in which both
roles of preferences are needed.

Example 4.2.3. Let us consider the argumentation framework depicted below.

d c

a b

e

This framework has one stable extension: {a, c}. Assume now that b > c,
d > a and b > e. Note that only b > e conflicts with the attack relation since
e attacks b. Thus, only this preference is taken into account for computing
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the two standard solutions {a, c} and {b, d}. Consequently, the two remain-
ing preferences may be used in order to refine the standard result and to
prefer the extension {b, d}.

To summarize, two roles of preferences are distinguished:

1. To weaken the critical attacks (i.e. the attacks which conflict with
the preferences) in an AF, and thus to compute intuitive standard
solutions.

2. To refine the standard solutions computed after considering the first
role.

Example 4.2.2 shows that a refinement does not solve the problem of
critical attacks whereas Example 4.2.3 shows that the first role is not suffi-
cient and its results may need to be refined as the first role does not exploit
all the available preferences.

4.2.3 Existing preference-based argumentation frameworks

As said before, there is an agreement in the literature that arguments do not
necessarily have the same strength. Surprisingly, there are divergent opin-
ions on whether the attack relation in Dung’s framework already takes into
account the strengths of arguments or should be augmented by a preference
relation which captures these strengths. It is worth mentioning that Dung
(1995) does not give an answer to this question. The only thing which is
mentioned in that paper is that an argument can attack another argument
meaning that it disqualifies this argument, and the two arguments cannot
“survive” together.

According to some researchers, the attack relation in Dung’s framework
is a combination of a symmetric conflict relation and a preference relation
between arguments (Kaci, van der Torre, and Weydert, 2006; Kaci, 2010).
They argue that a conflict between two arguments should always be sym-
metric, and since Dung’s attack relation may be asymmetric, this means
that a preference relation is applied between the two arguments in order to
solve the conflict.

According to other researchers (Amgoud, Caminada, Cayrol, Lagasquie,
and Prakken, 2004), an argument can attack another argument by under-
mining one of its three basic components, that is its conclusion, a premise
of its support, or a link between a premise and a conclusion. The formal
definition of the first kind of attack induces a symmetric relation, e.g. rebut
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(Elvang-Gøransson, Fox, and Krause, 1993), the two other kinds of attack in-
duce asymmetric relations e.g. assumption attack (Elvang-Gøransson et al.,
1993) or undercut (Pollock, 1992). Thus, the conflict relation mentioned by
Kaci can be either symmetric or asymmetric. Besides, Amgoud and Besnard
(2009) have shown that the choice of an attack relation is crucial for ensur-
ing sound results, and should not be arbitrary. They have studied how to
choose an attack relation when arguments are built using any logic satisfying
Tarski’s axioms. The results confirm that an attack relation should not be
symmetric, in particular when the knowledge base from which arguments
are built contains at least one minimal inconsistent subset with a cardinal-
ity higher than two. Indeed, symmetric relations lead to the violation of
the rationality postulates identified by Caminada and Amgoud (2007). This
means that the point of view defended by Kaci is not applicable, and con-
firms the hypothesis that attacks and preferences are two independent inputs
of a preference-based argumentation framework. Thus, Dung’s framework
should be extended by preferences (at least for those applications which use
a Tarskian logic for building arguments).

4.2.3.1 Handling critical attacks

We will now present the three most influential works that are done in the lit-
erature on the first role of preferences: preference-based frameworks, value-
based frameworks and extended argumentation frameworks. As we will see,
they all rely on the idea that preferences are used for (and only for) neu-
tralizing attacks from weak arguments towards strong arguments.

Preference-based frameworks. (PAF) Amgoud and Cayrol (2002b)
have proposed the first abstract preference-based argumentation framework.
It takes as input a set A of arguments, an attack relation R, and a preference
relation ≥ between arguments which is abstract and can be instantiated in
different ways. The basic idea behind these works is to ignore any attack
coming from a weak argument towards a stronger one. This is formalised
through a new relation between arguments, called defeat.

An argument defeats another iff the first one attacks the second one, and
the second is not strictly preferred to the first one.

Definition 4.2.5. Let (A,R,≥) be a preference-based argumentation frame-
work. For a, b ∈ A, argument a defeats argument b, denoted aDefb iff aRb
and not (b > a).

Extensions of a preference-based argumentation framework are then de-
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fined as extensions of (A, Def).

Example 4.2.4. Let A = {a, b}, R = {(a, b)} and ≥= {(a, a), (b, a), (b, b)}.
Then, Def = ∅. Consequently, this framework has a unique stable/preferred
extension: {a, b}.

Value-based argumentation frameworks. (VAF) This extension of
Dung’s framework was proposed by Bench-Capon (2003). It assumes that
each argument promotes a value, and a preference between two arguments
comes from the importance of the respective values that are promoted by
the two arguments. For different audiences, different values are more or less
important, which is formalized by defining an audience simply as an order-
ing on the set of values. An audience-specific value-based argumentation
framework is defined as follows.

Definition 4.2.6. An audience-specific value-based argumentation framework
is a 5-tuple: (A,R,V, val, P refaud), where A is a finite set of arguments, R
is an irreflexive binary relation on A, V is a nonempty set of values, val :
A → V, aud is an audience (i.e. an ordering on V), and Prefaud is a pref-
erence relation (transitive, irreflexive and asymmetric), Prefaud ⊆ V × V,
reflecting the value preferences of audience aud.

This framework is a particular case of the previous PAF where the pref-
erence relation ≥ between arguments is defined as illustrated in Definition
4.2.1, i.e. on the basis of the importance of their corresponding values. Thus,
for evaluating arguments, a VAF ignores critical attacks, exactly like in PAF.

Definition 4.2.7. An argument a defeats b for audience aud, written (x, y) ∈
Defaud, if and only if both aRb and not Prefaud(b, a).

Like in the case of preference-based argumentation frameworks, exten-
sions w.r.t. audience aud are then calculated using (A, Defaud).

Example 4.2.5. Let A = {a, b}, R = {(a, b)}, V = {v1, v2}, val(a) = v1,
val(b) = v2, and Prefaud(v2, v1). Then, Defaud = ∅. The only sta-
ble/preferred extension w.r.t. this audience is the set {a, b}.

Extended argumentation frameworks. (EAF) Modgil (2009) has pro-
posed to reason even about preferences. Thus, arguments may support
preferences about arguments.

54



4.2. PREFERENCES IN ARGUMENTATION

Definition 4.2.8. An extended argumentation framework is a tuple (A,R,D)
such that A is a set of arguments, and:

• R ⊆ A×A

• D ⊆ A×R

• if (x, (y, z)), (x′ , (z, y)) ∈ D then (x, x′), (x′, x) ∈ R

The idea behind this definition is that R is an attack relation, like in
Dung’s basic framework, while D is a second relation which ranges from
arguments to attacks. For example, if (x, y) ∈ R, meaning that x attacks
y, then (z, (x, y)) ∈ D means that argument z neutralizes that attack by
stating that y is somehow stronger/better than x and thus there is a reason
to protect it from the attack of y (in R). This means that preferences are
not defined by a given preference ordering, but are themselves claimed by
arguments. The third item in the previous definition specifies that if one
arguments x says that z should be preferred to y and x′ says that y is
preferred to z, then x and x′ must attack each other w.r.t. R.

Definition 4.2.9. Let (A,R,D) be an extended argumentation framework and
S ⊆ A. S is conflict-free iff ∀x, y ∈ S if (x, y) ∈ R then (y, x) /∈ R and
∃z ∈ S s.t. (z, (x, y)) ∈ D.

Definition 4.2.10. Let (A,R,D) be an extended argumentation framework
and S ⊆ A. Then xDefSy iff (x, y) ∈ R and ∄z ∈ S s.t. (z, (x, y)) ∈ D.

This means that attacks from D “neutralize” or “delete” attacks with
respect to R. Semantics are then defined using this defeat relation. For
example, a set S is a stable extension if it is conflict-free and ∀y /∈ S,
∃x ∈ S s.t. xDefSy.

Example 4.2.6. Let A = {x, y, z}, R = {(x, y)} and D = {(z, (x, y))}. Set
{x, y, z} is the only stable extension of this extended argumentation frame-
work. Informally, z prevents x in attacking y and thus the framework is
considered as conflict-free since the only attack w.r.t. R is “ignored”.

In sum, we have seen that even if formalizations differ, the basic idea be-
hind preference-based, value-based and extended argumentation frameworks
is to ignore attacks from weaker arguments to stronger ones.
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4.2.3.2 Preferences for refining

The previous section shows that most works on preferences in argumentation
treat the case of critical attacks. In a recent work, Dimopoulos, Moraitis,
and Amgoud (2009) have shown through a simple example that the results
returned by existing approaches can be refined. The authors have focused
on stable semantics, and have shown that the stable extensions returned
by existing approaches can be compared, and that some of them may be
better than others. They defined a new semantics which returns directly the
“best” stable extensions, called super-stable extensions. For that purpose,
they started by extending a preference relation ≥ on a set A of arguments
as follows.

Definition 4.2.11. Let A be a set of arguments and ≥ a preference relation
on A. A relation ≥′ is an extension of ≥ iff ∀a, b ∈ A if a ≥ b then a ≥′ b
and if a > b then a >′ b. An ordering extension of ≥ is an extension of ≥
which is itself a total relation.

A super-stable extension is then defined as follows.

Definition 4.2.12. Let (A,R,≥) be a PAF such that R is symmetric. A set
S ⊆ A is a super-stable extension of (A,R,≥) iff S is a stable extension
of PAF (A,R,≥) and there exists an ordering extension ≥′ of ≥ s.t. S is a
stable extension of PAF (A,R,≥′).

Example 4.2.7. Let A and R be as depicted below and let a > b, c > d.

d c

a b

The set {a, c} is a super-stable extension, since it is a stable extension
of PAF (A,R,≥′), where ≥′ is an ordering extension of ≥ s.t. b > c and
a > d. Set {b, d} is not a super-stable extension since there is no ≥′′ s.t.
≥′′ is an ordering extension of ≥ and {b, d} is a stable extension of PAF
(A,R,≥′′).

Even if the idea to use preferences in order to choose between several
extensions was already identified in nonmonotonic reasoning and answer
set programming (Brewka et al., 2003), this paper showed for the first time
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that this role of preferences is also present in argumentation. In other words,
preferences are used not only during the conflict-resolution phase, but also
for comparing results obtained after that phase, e.g. for comparing stable
extensions of (A,R,≥).

However, the major drawback of this framework is that it supposes a
symmetric attack relation, which is shown by Amgoud and Besnard (2009)
to often be undesirable. Another limitation is that the work is done only for
stable semantics.

4.3 A new approach for handling critical attacks

In this section, we show the limits of existing approaches for handling critical
attacks, and propose a novel solution that palliates those limits.

4.3.1 Critical examples

The three approaches (Amgoud and Cayrol, 2002b; Bench-Capon, 2003;
Modgil, 2009) look for attacks from weak to stronger arguments, remove
them from the attack relation, and then evaluate arguments on the basis of
the remaining attacks. While this seems meaningful, we show that removing
attacks may lead to conflicting extensions in case of non-symmetric attack
relations.

Example 4.3.1. Assume that A = {a, b} and R = {(a, b)} (R being not
symmetric, like undercut). Assume also that b is strictly better than a. For
Amgoud and Cayrol (2002b), b > a. In the framework of Bench-Capon
(2003), the value promoted by b is more important than the value promoted
by a. In the model proposed by Modgil (2009), an additional argument c is
added in A and D = {(c, (a, b))} is used instead of ≥. The three approaches
return only one extension, which is the set {a, b}, in case the framework by
Amgoud and Cayrol (2002b) or the one by Bench-Capon (2003) is used, or
the set {a, b, c}, if the framework of Modgil (2009). In all three cases, the
only extension of the frameworks is not conflict-free in the sense of R.

The previous example illustrates a negative feature of existing preference-
based argumentation frameworks, which is that an extension may contain
attacks w.r.t. R. This is in contradiction with the fact that an extension
represents one of the possible points of view, each of them being coherent.
The following example shows that violating conflict-freeness may lead to the
violation of the rationality postulates proposed by Amgoud and Besnard
(2009), see Definition 2.3.9.
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Let Σ = Σ1 ∪ Σ2 with Σ1 = {x} and Σ2 = {¬y, x → y} be a strati-
fied propositional knowledge base. (Recall that this means that the formula
x is preferred to the two other formulae). The following framework may be
constructed using Σ.

a1 : ({x}, x) a2 : ({¬y},¬y)
a3 : ({x → y}, x → y) a4 : ({x,¬y}, x ∧ ¬y)
a5 : ({¬y, x → y},¬x) a6 : ({x, x → y}, y)

Note that propositional logic verifies Tarski’s axioms; thus propositional
logic is a Tarskian logic. Furthermore, Amgoud and Besnard (2009) have
shown that if arguments are built using a Tarskian logic and a knowledge
base contains a ternary minimal conflict2 (which is the case with Σ) then
symmetric attack relations violate consistency. Thus, we should choose a
non-symmetric relation like undercut (Definition 3.4.2).

Note that it has been shown by Cayrol (1995) that the corresponding
argumentation framework ensures sound results. Indeed, the base of each
stable extension of the framework is a maximal consistent subset of Σ.

The figure below depicts the attacks between the six above arguments.

a4 a3

a1 a5 a6 a2

As a preference relation, we will use the weakest link principle (Definition
4.2.2) as a preference relation. In our example, a1 is strictly preferred to
all the other arguments, since it is constructed only from the formulae from
Σ1. Thus, a1 > a2, a3, . . . , a6.

All the three existing approaches for preference-based argumentation
(Amgoud and Cayrol, 2002b; Bench-Capon, 2003; Modgil, 2009) remove the
attack from a5 to a1 and obtain the set B = {a1, a2, a3, a5} as a stable ex-
tension. Note that if we use the framework proposed by Modgil (2009), then
supplementary arguments, which specify that the argument a1 is stronger
than the others, should be added. However, the framework will also return

2A set S is a ternary minimal conflict iff S contains exactly three formulae, S is
inconsistent, and every proper subset of S is consistent.
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only the extension B. It is easy to check that this extension is not conflict-
free with respect to the attack relation (undercut). Worse yet, it contains
two arguments with contradictory conclusions (x and ¬x). It is clear that
this problem is due to the addition of preferences since as said before, when
preferences are ignored the framework returns sound results as shown by
Cayrol (1995). What happens is that when an argument is stronger than its
attacker, the attack is completely removed from the graph. By so doing, an
important information is lost. This information is the conflict that exists be-
tween the two arguments, and consequently the two arguments may belong
to the same extension. Note that this observation holds for any asymmetric
relation and not only the one we are using in this example. Thus an ap-
proach which removes attacks is not acceptable since it does not guarantee
conflict-free extensions.

One may argue that the undesirable behavior in our example is due to
incompleteness of the framework, since other arguments can be constructed
from Σ, e.g. ({x}, x ∨ y), ({x}, x ∧ x), . . . However, we will now show that
even if an arbitrary set of arguments from Arg(Σ) is added, the resulting
framework always has a stable extension which contains conflicting argu-
ments w.r.t. R and an inconsistent base. Let A ⊆ Arg(Σ) be an arbitrary
set which contains the initial framework, i.e. s.t. {a1, a2, . . . , a6} ⊆ A, let
R ⊆ A × A be undercut, and ≥⊆ A × A the weakest link principle. Let
B1 = (Arg({x}) ∪ Arg({x → y,¬y})) ∩ A. Let Def ⊆ A × A be the de-
feat relation obtained after deleting all attacks from arguments of level 2
to those having level 1. Let a, b ∈ B1, we will show that ¬(aDefb). Let
Supp(b) = {x}. Then, we have aRb only if Conc(a) ≡ ¬x. This is possible
only if Supp(a) = {x → y,¬y}, and consequently b > a. Thus, ¬(aDefb).
Let Supp(b) 6= {x}. Then, for aRb to hold, we need to have Conc(a) ≡ x∧¬y
or Conc(a) ≡ y. In the first case, we have Supp(a) = {x,¬y} and in the sec-
ond case, Supp(a) = {x, x → y}. In both cases, a /∈ B1. Thus, B1 is
conflict-free w.r.t. Def. Let us now show that B1 attacks any argument
in A \ B1 w.r.t. Def. Let b ∈ A \ B1. Then Supp(b) = {x, x → y} or
Supp(b) = {x,¬y}. In both cases, a5Defb. Thus, B1 is a stable extension
of (A, Def). This means that even if an arbitrary number of arguments is
added, the framework always has an extension containing conflicting argu-
ments and inconsistent base.

Another remark may be that there are other attack relations that could
be used. For example, it may seem that the problem could be “solved” by
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using a relation for which a1 attacks a5 and a5 attacks a1. Can we define
R as a union of rebut3 and undercut? Let R be the union of undercut and
rebut, i.e. aRb iff a undercuts b or a rebuts b. In this case, the attack graph
w.r.t. Def would be as follows:

a4 a3

a1 a5 a6 a2

However, it is easy to see that this attack relation does not solve the
problem: this framework returns {a1, a2, a3} as a stable extension, a set
having an inconsistent base.

Furthermore, a good preference-based argumentation framework should re-
turn sound results for any input; for any set of arguments and any attack
relation, extensions should be conflict-free.

4.3.2 A new approach

The previous subsection highlighted the limits of existing preference-based
argumentation frameworks. Even if the idea pursued by these frameworks
is meaningful, their results may violate the key property of conflict-freeness
with respect to the attack relation R. This problem is mainly due to the
removing attacks from weaker to stronger arguments from the framework
(critical attacks).

We propose a new approach for modeling the conflict-resolution role of
preferences in argumentation which prevents the above problem. Instead of
changing the original attack relation, we take into account preferences when
evaluating the arguments, i.e. at the semantics level. Our aim is not to
define new acceptability semantics but to generalize the existing ones with
preferences. Hence, when there are no critical attacks, the extended seman-
tics should return the same results as the basic ones (without preferences).

Our approach presents another novelty which consists of defining a se-
mantics as a dominance relation on the power set of the set A of arguments.
The best elements w.r.t. this relation are the acceptable sets of arguments,
i.e. the extensions. Recall that existing semantics divide the power set of A
into two subsets: extensions and non-extensions. The former are better than

3Recall that rebut is defined as aRb iff Conc(a) ≡ ¬Conc(b).
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the latter, but they do not say anything about non-extensions. However, in
some applications, one may want to compare some sets of arguments. For
instance, after a dialogue between two argents, an observer may want to
compare the two sets of arguments exchanged by the two agents. Defining
a semantics as a relation allows the comparison of any pair of subsets of
arguments (on the basis of attacks and preferences).

Before defining formally the new semantics, let us first introduce some nota-
tions and concepts. We define a preference-based argumentation framework
(PAF) as follows.

Definition 4.3.1 (PAF). A PAF is a tuple T = (A,R,≥) where A is a set of
arguments, R ⊆ A×A an attack relation, and ≥ ⊆ A×A a (partial or
total) preorder.

We suppose that R does not contain self-attacking arguments (i.e. R is
irreflexive). Note that whenever arguments are built from a logical knowl-
edge base, this assumption is verified. Furthermore, all definitions and re-
sults can be presented with slight modifications even for the case when R
is an arbitrary relation. However, we do not study this case in order to
simplify notations and proofs.

Notation: Let T = (A,R,≥) be a PAF. CF(T ) denotes the conflict-free
(w.r.t. R) sets of arguments. At some places, we abuse notation and
use CF(F) to denote the conflict-free sets of arguments of a basic
framework F = (A,R).

As already explained, a semantics for evaluating arguments of a PAF is
defined as a binary relation on the power set P(A) of A. Such a relation
will be denoted by �. For E , E ′ ∈ P(A), writing (E , E ′) ∈ � (or equivalently
E � E ′) means that the set E is at least as good as the set E ′. The relation ≻
is the strict version of �, that is for E , E ′ ∈ P(A), E ≻ E ′ iff E � E ′ and not
(E ′ � E). The maximal elements of such a relation are defined as follows.

Definition 4.3.2 (Maximal elements). Let A be a set of arguments, E ∈ P(A)
and � ⊆ P(A) × P(A). E is maximal w.r.t. � iff:

1. ∀E ′ ∈ P(A), E � E ′,

2. No strict superset of E verifies (1).

Let �max denote the set of maximal sets w.r.t. �.
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Like existing acceptability semantics, preference-based semantics should
satisfy some basic requirements. Thus, not any relation � can be used for
evaluating arguments in a PAF. An appropriate relation should satisfy at
least three postulates.

Notation: The writing X1...Xn

Y
means that if X1 . . . and Xn hold, then Y

holds as well.

The first postulate states that any conflict-free set of arguments should
be strictly preferred to a conflicting one.

Postulate 1 (P1). Let T = (A,R,≥) be a PAF and E , E ′ ∈ P(A).

E ∈ CF(T ) E ′ /∈ CF(T )

E ≻ E ′

Postulate P1 ensures conflict-freeness for the extensions of any PAF.
Indeed, the best elements of any dominance relation satisfying this postulate
are conflict-free.

Proposition 4.3.1. Let T = (A,R,≥) be a PAF. If a relation � satisfies pos-
tulate P1, then each element of the set �max is conflict-free w.r.t. R.

The second postulate describes the role of the attack relation. It shows
that an attack should win when it is not critical. This is in some sense the
basic idea behind all existing semantics in the literature.

Postulate 2 (P2). Let T = (A,R,≥) be a PAF and a, a′ ∈ A.

aRa′ ¬(a′Ra) ¬(a′ > a)

{a} ≻ {a′}

The third postulate ensures that preferences are privileged in critical
attacks. This is in fact the idea defended in previous works on PAFs (e.g.
Amgoud and Cayrol, 2002b; Bench-Capon, 2003). Indeed, if an argument
a attacks another argument a′ and a′ > a, then the set {a′} is privileged.
Thus, {a′} should be strictly preferred to {a}.

Postulate 3 (P3). Let T = (A,R,≥) be a PAF and a, a′ ∈ A.

aRa′ a′ > a

{a′} ≻ {a}
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We are now ready to define semantics for evaluating the arguments of a
PAF. A semantics is a binary relation (called also dominance relation) on the
power set of the set of arguments and which satisfies the above postulates.
The acceptable sets of arguments are the best elements of the dominance
relation.

Definition 4.3.3 (Semantics for PAFs). An acceptability semantics for a PAF
T = (A,R, ≥) is defined by a dominance relation � ⊆ P(A)×P(A) which
satisfies postulates P1, P2 and P3. Extensions of T under semantics � are
the elements of �max.

4.3.3 Generalising Dung’s semantics with preferences

In this subsection, we propose three new semantics which generalize respec-
tively stable, preferred and grounded semantics. Before presenting them, let
us first define formally when a semantics generalizes another one.

Definition 4.3.4 (Generalising a semantics). A dominance relation � gener-
alises semantics x iff for all (A,R,≥), if ∄a, b ∈ A such that aRb and b > a,
then �max = Ext((A,R)) where Ext((A,R)) is the set of all extensions of
the argumentation framework (A,R) w.r.t. semantics x.

Informally speaking, a dominance relation generalises a given semantics
iff its best elements are exactly the extensions of the basic framework (i.e.
without preferences) w.r.t. that semantics, unless there are critical attacks.

4.3.3.1 Generalising stable semantics

Before showing how to extend stable semantics with preferences, we show
that it is possible to encode this semantics in the new setting, i.e. to define
it as a dominance relation on the power set of the set of arguments. The
following theorem characterizes the dominance relations that encode stable
semantics.

Theorem 4.3.1. Let F = (A,R) be an argumentation framework and � ⊆
P(A)×P(A). Let Ext(F) be the set containing all the stable extensions of
F . The equality Ext(F) = �max holds iff ∀E ∈ P(A),

1. if E /∈ CF(F) then ∃E ′ ∈ P(A) s.t. not(E � E ′), and

2. if E ∈ CF(F) and ∀a′ /∈ E , ∃a ∈ E s.t. aRa′, then ∀E ′ ∈ P(A), E � E ′,
and
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3. if E ∈ CF(F) and ∃a′ ∈ A \ E s.t. ∄a ∈ E s.t. aRa′, then ∃E ′ ∈ P(A)
s.t. not(E � E ′).

It is worth mentioning that there are several relations � that encode sta-
ble semantics. All these relations return the same maximal elements (i.e. the
stable extensions). However, they compare in different ways the remaining
sets of arguments. An example of a relation that encodes stable semantics
is the following:

Relation 1. Let F = (A,R) be an AF and E , E ′ ∈ P(A). E �1 E ′ iff

• E ∈ CF(F) and E ′ /∈ CF(F), or

• E , E ′ ∈ CF(F) and ∀a′ ∈ E ′ \ E , ∃a ∈ E \ E ′ s.t. aRa′.

Let us illustrate this relation on the following simple example.

Example 4.3.2. Consider the argumentation framework depicted in the figure
below.

a b

It can be checked that: {a} �1 ∅, {b} �1 ∅, ∅ �1 {a, b}. The two sets
{a} and {b} are equally preferred. The maximal elements of �1 (its stable
extensions) are {a} and {b}.

Note that Dung’s approach returns only two classes of subsets of argu-
ments: the extensions and the non-extensions. In Example 4.3.2, the two
sets {a} and {b} are stable extensions while it does not say anything about
the sets {a, b} and {}. Our approach compares even the non-extensions.
According to relation �1, the set {} is preferred to the set {a, b}.

In what follows, we present a new semantics, called pref-stable semantics,
that generalises stable semantics with preferences. This amounts to define
a dominance relation which will be denoted by �s and its best elements by
�s

max. The idea behind this relation is the following: given two conflict-free
sets of arguments, E and E ′, we say that E is better than E ′ iff any argument
in E ′ \ E is weaker than at least one argument in E \ E ′ or is attacked by it.
Moreover, a conflict-free set of arguments is strictly preferred to a conflicting
one, while conflicting sets are all incomparable. In fact, the relation �s

extends the relation �1 with preferences.
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Definition 4.3.5 (Pref-stable semantics). Let T = (A, R, ≥) be a PAF and
E , E ′ ∈ P(A). It holds that E �s E

′ iff:

• E ∈ CF(T ) and E ′ /∈ CF(T ), or

• E , E ′ ∈ CF(T ) and ∀a′ ∈ E ′ \E, ∃a ∈ E \E ′ s.t. (aRa′ and not(a′ > a))
or (a > a′).

Let us illustrate this definition through the following simple example.

Example 4.3.3. Let A = {a, b, c}, a > b and let R be as depicted in the figure
below:

a b c

The conflict-free sets of arguments are: E1 = ∅, E2 = {a}, E3 = {b},
E4 = {c}, and E5 = {a, c}. It can be checked that the following relations
hold: E2 �s E1, E3 �s E1, E4 �s E1, E5 �s E1, E5 �s E4, E5 �s E2, E5 �s E3,
E4 �s E3, E3 �s E4, E2 �s E3. It can also be checked that �max= {E5}.

The relation �s is in conformity with Definition 4.3.3. Indeed, it satisfies
the three postulates P1, P2 and P3.

Proposition 4.3.2. The relation �s satisfies postulates P1, P2 and P3.

Since the relation �s satisfies postulate P1, its extensions are conflict-
free. The following result shows that they are even maximal (for set inclu-
sion). Indeed, the relation �s privileges maximal sets.

Proposition 4.3.3. Let E , E ′ ∈ P(A). If E ( E ′ then E ′ ≻s E (i.e. E ′ �s E and
not (E �s E

′)).

However, not any maximal conflict-free set of arguments is an extension
(i.e. an element of �s

max) as shown by the following example.

Example 4.3.4. The set E3 from Example 4.3.3 is a maximal conflict-free set
but does not belong to �s

max.

From Proposition 4.3.3, it follows that Definition 4.3.2 can be simplified
as follows: E ∈ �s

max iff ∀E ′ ∈ P(A), E �s E ′. Finally, notice that the
relation �s is not transitive. Indeed, in the previous example, E2 �s E3

and E3 �s E4 however, the two sets E2 and E4 are incomparable w.r.t.
�s. Informally speaking, this is a consequence of two facts: first, �s takes
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into account attacks from R; second, R is not transitive. For example, if
A = {a, b, c}, R = {(a, b), (b, c)} and all the arguments are equally preferred,
then {a} ≻s {b} and {b} ≻s {c}, as expected. However, there is not obvious
reason to prefer {a} to {c}. (Note that those two sets are not comparable
w.r.t. �s.

The following theorem shows that pref-stable semantics generalises stable
semantics. Recall that this means that the two semantics coincide in case
any attacked argument is not stronger than its attacker.

Theorem 4.3.2. The relation �s generalises stable semantics.

Finally, we can show that the proposed approach handles correctly the
example discussed on pages 58–60. Namely, it can be checked that the
corresponding PAF has exactly two extensions: {a1, a2, a4} (whose base is
{x,¬y}) and {a1, a3, a6} (whose base is {x, x → y}), and that both of them
are conflict-free and support consistent conclusions.

4.3.3.2 Generalising preferred semantics

We now propose a new semantics, called pref-preferred, that generalises pre-
ferred semantics with preferences. It is defined by a dominance relation,
denoted by �p. The basic idea behind this relation is that a set E of argu-
ments is better than another set E ′ of arguments iff for every attack from E ′

to E which does not fail, E is capable to defend the attacked argument and
that for every attack from E to E ′ which fails, there is another attack from
E that defends the argument which failed in its attack.

Definition 4.3.6 (Pref-preferred semantics). Let T = (A, R, ≥) be a PAF
and E , E ′ ∈ P(A). E �p E ′ iff:

• E ∈ CF(T ) and E ′ /∈ CF(T ), or

• E , E ′ ∈ CF(T ) and ∀a ∈ E, ∀a′ ∈ E ′, if (a′Ra and not(a > a′)) or
(aRa′ and a′ > a), then ∃b ∈ E such that (bRa′ and not(a′ > b)) or
(a′Rb and b > a′).

From now on, �p
max will denote the best elements w.r.t. this relation.

Let us illustrate this definition through the next example.

Example 4.3.5. In Example 4.3.3, it holds that E2 ≻p E3, E3 �p E4, E4 �p E3,
E5 ≻p E3, . . .. It can also be checked that �p

max= {E5} for this framework.
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Note that the relation �p is not transitive. However, it can be checked that
it satisfies the three postulates P1, P2 and P3. Thus, it encodes a semantics
in the sense of Definition 4.3.3.

Proposition 4.3.4. The relation �p satisfies postulates P1, P2 and P3.

The above proposition ensures that the extensions of a PAF under pref-
preferred semantics are conflict-free. The following result shows that this
semantics generalises Dung’s preferred semantics.

Theorem 4.3.3. The relation �p generalises preferred semantics.

In Dung’s basic framework, every stable extension is a preferred one.
We show that the same link holds in our setting. Namely, every pref-stable
extension is a pref-preferred extension.

Theorem 4.3.4. For any (A,R,≥), it holds that �s
max ⊆ �p

max.

4.3.3.3 Generalising grounded semantics

We now focus on grounded semantics and generalise it with preferences.
The new semantics is called pref-grounded and is defined by a dominance
relation which is denoted by �g. The basic idea behind this relation is that
a set is not worse than another if it can strongly defend all its arguments
against all attacks that come from the other set.

Before giving the formal definition of �g, let us first generalise the notion
of strong defense by preferences. The idea is that an argument has either
to be preferred to its attacker or has to be defended by arguments that
themselves can be strongly defended without using the argument in question.
Note that, for simplicity reasons, in this sub-subsection we suppose that
the set of arguments A is finite. While it is certainly possible to define
generalisations of grounded semantics for infinite sets of arguments (which
we will do later in this chapter), we conducted this first study of generalising
grounded semantics by dominance relations for a finite case. Consequently,
we suppose a finite set of arguments in the results concerning grounded
semantics in Subsection 4.3.5 (namely Theorem 4.3.12 and Theorem 4.3.13).

Definition 4.3.7 (Strong defense). Let E ⊆ A. E strongly defends an argu-
ment a from attacks of set E ′, denoted by sd(a, E , E ′), iff ∀b ∈ E ′ if (bRa
and not(a > b)) or (aRb and b > a), then ∃c ∈ E \ {a} such that ((cRb and
not(b > c)) or (bRc and c > b)) and sd(c, E \ {a}, E ′).
If the third argument of sd is not specified, then we define sd(a, E) as
sd(a, E ,A).
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Let us illustrate this notion through the following example.

Example 4.3.6. In the framework of Example 4.3.3, we have sd(a, {a}, {b})
since a is strictly preferred to b thus it can defend itself. However, we have
¬sd(b, {b}, {c}) since b cannot strongly defend itself against c. On the other
hand, sd(c, {a, c}, {b}) holds since a can defend c against b and a is protected
from b since it is strictly preferred to it.

The relation �g prefers subsets that strongly defend all their arguments.
Namely, E �g E ′ iff E strongly defends all its arguments against attacks from
E ′.

Definition 4.3.8 (Pref-grounded semantics). Let T = (A, R, ≥) be a PAF
and E , E ′ be two subsets of A. It holds that E �g E ′ iff:

• E ∈ CF(T ) and E ′ /∈ CF(T ), or

• ∀a ∈ E, it holds that sd(a, E , E ′).

Example 4.3.7. Let A = {a, b, c}, b > a, and R is as depicted in the figure
below:

a b c

One can check that there is exactly one subset of A which is preferred to
all other subsets of arguments w.r.t. �g. This set is the empty one. While
we do have {b} �g {a}, we have ¬({b} �g {c}), so {b} is not an extension of
this PAF. We have also ¬({a} �g {b}), ¬({c} �g {b}) and ¬({a, c} �g {b}).
This is expected and natural output since neither b nor c are capable to defend
strongly themselves and, on the other hand, it can be said that a is the worst
argument in this framework, thus not strong enough to be better than b.

The relation �g has exactly one best element, i.e. the set �g
max con-

tains only one set of arguments. This is not surprising since pref-grounded
semantics intends to generalise the principle underlying Dung’s grounded
semantics.

Proposition 4.3.5. The equality | �g
max | = 1 holds.

The following result shows that the relation �g satisfies the three pos-
tulates P1, P2 and P3. Thus, its unique extension is conflict-free.
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Proposition 4.3.6. The relation �g satisfies postulates P1, P2 and P3.

Finally, the dominance relation �g generalises grounded semantics.

Theorem 4.3.5. The relation �g generalises grounded semantics.

In Dung’s basic framework, the grounded extension is a subset of the
intersection of all preferred extensions. The same link exists between pref-
grounded and pref-preferred extensions:

Theorem 4.3.6. For any (A,R,≥), if E ∈�g
max then E ⊆

⋂

Ei∈�
p
max

Ei.

4.3.4 Characterizing pref-stable semantics

In the previous subsection, we have proposed three particular semantics
which generalise respectively stable, preferred and grounded semantics with
preferences. What is worth mentioning is that the three corresponding dom-
inance relations are not unique. There exist, for instance, other relations
which may generalise stable semantics by preferences. Not surprisingly, the
same is true for preferred and grounded semantics. This remark opens many
new questions: How many dominance relations that generalise a given se-
mantics do exist? Are some of them “better” than others? What are their
properties? What are the differences between them? In the rest of the sec-
tion we focus on stable semantics and give a formal and precise answer to
these questions.

4.3.4.1 Postulates

In this subsection, we characterize all the dominance relations � that gen-
eralise stable semantics with preferences. For that purpose, we identify a
set of postulates that such relations should satisfy. It is clear that the three
postulates P1, P2 and P3 are in that set. Postulate P1 ensures that the
extensions of a PAF are conflict-free w.r.t. the attack relation. This is im-
portant since an extension represents a coherent point of view. Postulates
P2 and P3 describe when the attack relation should take precedence over the
preference relation and when this latter is privileged. These two postulates
are given in order to underline the basic ideas on how to combine attacks
and preferences. However, they specify the correct behavior only in case of
singletons (sets containing exactly one argument). To completely define a
dominance relation, we will need to supply additional postulates which will
describe its desirable properties. We provide P4 and P5 with a motivation
to generalise basic principles behind Dung’s stable semantics.
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The first postulate describes when a set should not be preferred to an-
other. The idea is that: if an argument of a set E cannot be compared with
arguments in another set E ′ (since it is neither attacked nor less preferred
to any argument of that set), then E cannot be less preferred to E ′.

Postulate 4 (P4). Let T = (A,R,≥) be a PAF, and E , E ′ ∈ CF(T ) such that
E ∩ E ′ = ∅.

(∃a′ ∈ E ′)(∀a ∈ E) ¬(aRa′ ∧ ¬( a′ > a)) ∧ ¬(a > a′)

¬(E � E ′)

The second postulate describes when a set is preferred to another. The
idea is that if for any argument of a set, there is at least one argument
in another set which ‘wins the conflict’ with it, then the latter should be
preferred to the former. There are two situations in which an argument a
wins a conflict against a′: either a attacks a′ and a′ does not defend itself
since it is not stronger than a w.r.t. ≥, or a′ attacks a but a is strictly
preferred to a′.

Postulate 5 (P5). Let T = (A,R,≥) be a PAF and E , E ′ ∈ CF(T ) such that
E ∩ E ′ = ∅.

(∀a′ ∈ E ′)(∃a ∈ E) s.t. (aRa′ ∧ ¬(a′ > a)) or (a′Ra ∧ a > a′)

E � E ′

Proposition 4.3.7. Let � ⊆ P(A) × P(A). If � satisfies postulates P4 and
P5, then it also satisfies postulates P2 and P3.

The following requirement ensures that a dominance relation is entirely
based on the distinct elements of any two subsets of arguments.

Postulate 6 (P6). Let T = (A,R,≥) be a PAF, and E , E ′ ∈ CF(T ). Then:

E � E ′

E \ E ′ � E ′ \ E

E \ E ′ � E ′ \ E

E � E ′

Note that in Definition 4.3.5 we have defined a particular relation �s that
we called pref-stable semantics. From now on, we will redefine this notion,
by letting any relation satisfying P1, P4, P5 and P6 be called pref-stable
semantics.

Definition 4.3.9 (Pref-stable semantics). Let T = (A, R, ≥) be a PAF.
A relation � ⊆ P(A) × P(A) encodes pref-stable semantics iff it satisfies
postulates P1, P4, P5 and P6.
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From now on, a relation that encodes pref-stable semantics will be called
pref-stable relation, and its maximal elements will be called pref-stable ex-
tensions.

It can be checked that the relation �s given in Definition 4.3.5 is a
pref-stable relation and satisfies the four postulates.

Proposition 4.3.8. �s is a pref-stable relation.

There are several relations that encode pref-stable semantics. However,
they all return the same pref-stable extensions.

Theorem 4.3.7. Let T = (A,R,≥) be a PAF and �,�′ ⊆ P(A)×P(A). If
� and �′ are pref-stable relations, then �max = �′

max.

Note that postulates P1, P4, P5 and P6 encode important properties
of stable semantics enriched with preferences. However, it is worth noticing
that no relation which generalises stable semantics and verifies P1 and P5
is transitive. As already mentioned on page 65, that this is not surprising
since P5 describes one of the basic properties of stable semantics, which is
that a set attacking another one should win. This notion is not necessarily
transitive since it is based on an attack relation which does not exhibit any
property. Indeed, an attack relation is generally not a preorder. We formally
show that transitivity is incompatible with postulates P1 and P5.

Proposition 4.3.9. There exists no transitive relation which generalises stable
semantics and satisfies postulates P1 and P5.

Finally, we can show that a pref-stable semantics generalises stable se-
mantics.

Theorem 4.3.8. Let T = (A,R,≥) be a PAF. Any pref-stable relation
� ⊆ P(A) × P(A) generalises stable semantics.

4.3.4.2 General and specific pref-stable relations

As already said, there are several relations that encode pref-stable semantics.
Our aim now is to define the upper and lower bounds of these relations. The
most general pref-stable relation, denoted by �gn, returns E �gn E ′ if and
only if it can be proved from the four postulates that E must be preferred
to E ′.

Definition 4.3.10 (General pref-stable relation). Let T = (A,R,≥) be a PAF
and E , E ′ ∈ P(A). E �gn E ′ iff:
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• E ∈ CF(T ) and E ′ /∈ CF(T ), or

• E , E ′ ∈ CF(T ) and ∀a′ ∈ E ′ \ E ,∃a ∈ E \ E ′ such that (aRa′ and
not(a′ > a)) or (a′Ra and a > a′).

Proposition 4.3.10. �gn is a pref-stable relation.

The most specific pref-stable relation, denoted by �sp, returns E �sp E ′

if and only if from the four postulates, it cannot be proved that ¬(E �sp E ′).

Definition 4.3.11 (Specific pref-stable relation). Let T = (A,R,≥) be a PAF
and E , E ′ ∈ P(A). E �sp E ′ iff:

• E ′ /∈ CF(T ), or

• E , E ′ ∈ CF(T ) and ∀a′ ∈ E ′ \ E ,∃a ∈ E \ E ′ such that (aRa′ and
not(a′ > a)) or (a > a′).

Proposition 4.3.11. �sp is a pref-stable relation.

Let us illustrate the differences between the three particular relations
�s, �sp and �gn on the following example.

Example 4.3.8. Let A = {a, b, c},R = {(a, b)} and ≥= {(a, a), (b, b), (c, c),
(a, c)}. For example, it holds that {a} �s {c}, {a} �sp {c} and ¬({a} �gn

{c}). That is, for relations �s and �sp the strict preference between a and c
is enough to prefer {a} to {c}. For relation �gn, since c is not attacked by a,
there is no preference between sets {a} and {c}. The fact that a is stronger
is not important, because there is no conflict between those arguments.

Another difference is that for relation �sp, all conflicting sets are equally
preferred. For example, {a, b, c} �sp {a, b} and {a, b} �sp {a, b, c}. Rela-
tions �s and �gn encode the idea that a contradictory point of view cannot
be accepted as a standpoint. Thus, it is not even possible to compare two
contradictory sets of arguments. For example ¬({a, b, c} �s {a, b}).

The next result shows that any pref-stable relation is “between” the
general and the specific relations.

Theorem 4.3.9. Let T = (A,R,≥) be a PAF and E , E ′ ∈ P(A). Let � be
a pref-stable relation.

• If E �gn E ′ then E � E ′.

• If E � E ′ then E �sp E ′.

A simple consequence of the previous result is that, if E �gn E ′ and
E �sp E ′, then for any pref-stable relation �, it holds that E � E ′.
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4.3.5 Characterizing pref-stable, pref-preferred and pref-grounded
extensions

As already said, the new approach for taking into account the strengths of
arguments in an argumentation framework is sound and rich. It is sound
since it guarantees conflict-free extensions, and it is rich since it provides
more information than existing approaches. Indeed, not only it computes the
acceptable sets of arguments, but it also compares the remaining ones. This
comparison is of great importance in some applications like decision making
and dialogues. However, it is less crucial in some other applications like
handling inconsistency in knowledge bases. In this case, one looks only for
the sets of arguments which support ‘good’ conclusions and does not bother
about the other arguments. It is thus important to be able to characterize
the extensions under a given semantics without comparing all the subsets
of arguments, i.e. without referring to pref-stable relations. This subsection
provides those characterizations.

Theorem 4.3.10. Let T = (A,R,≥) be a PAF and � be a pref-stable
relation.
E ∈ �max iff:

• E ∈ CF(T ), and

• ∀a′ ∈ A \ E , ∃a ∈ E such that (aRa′ and not(a′ > a)) or (a′Ra and
a > a′).

This shows the link between our approach (based on dominance rela-
tions) and the existing approaches (based on changing R into Def and then
applying Dung’s semantics on (A, Def)). Namely, another way to compute
the pref-stable extensions of a PAF is to “invert” the direction of attacks
when they are not in accordance with the preferences between arguments.
We apply then stable semantics on the basic framework that is obtained.
More precisely, we start with a PAF T = (A,R,≥). We compute an AF
F = (A,R′) where R′ is defined as follows:

R′ = {(a, b) ∈ A×A | (aRb and not (b > a))}
∪ {(a, b) ∈ A×A | (bRa and a > b)}.

Then, we apply stable semantics on the new framework (A,R′).

The following result is a consequence of Theorem 4.3.10.
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Corollary 4.3.1. Let T = (A,R,≥) be a PAF and � be a pref-stable re-
lation. Let R′ = {(a, b) | a, b ∈ A, (aRb and not(b > a)) or (bRa and
a > b)}. It holds that �max is exactly the set of stable extensions of frame-
work (A,R′).

Let us illustrate this result through an example.

Example 4.3.9. Let A = {a, b, c, d, e} and let R be as depicted in figure below:

a b c

d e

Assume that b > a, b > c and e > d. Note that this framework has two
critical attacks: (a, b) and (c, b).
It can be checked that any pref-stable relation will return exactly one pref-
stable extension: �max= {{b, d, e}}.

Let us now consider the following argumentation framework that is ob-
tained after inverting the arrows of the two critical attacks.

a b c

d e

It is easy to check that the only stable extension of this framework is the
set {b, d, e}.

We will show that the same result can be obtained for two relations we
proposed for generalising preferred and grounded semantics.

Theorem 4.3.11. Let T = (A,R,≥) be a PAF, let �p be the relation from
Definition 4.3.6 and let �p

max be the set of maximal elements of T w.r.t.
that relation. Then, E ∈�p

max iff:

• E ∈ CF(T ), and

• (∀a′ ∈ E ′) (∀a ∈ A \ E ′) if (((a, a′) ∈ R ∧ (a′, a) /∈>) or ((a′, a) ∈ R
∧ (a, a′) ∈>)) then (∃b′ ∈ E ′) s.t. ((b′, a) ∈ R and (a, b′) /∈>) or
((a, b′) ∈ R and b′ > a), and

• E ′ is a maximal set (w.r.t. set inclusion) which satisfies previous two
items.
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The following result is a consequence of the previous theorem.

Corollary 4.3.2. Let T = (A,R,≥) be a PAF, let R′ = {(a, b) | a, b ∈
A, (aRb and not(b > a)) or (bRa and a > b)}, and let �p

max be the set of all
maximal elements w.r.t. �p. Then: �p

max is exactly the set of all preferred
extensions of (A,R′).

The corresponding results for relation �g are as follows. First, we show
how to characterize the pref-grounded extension.

Theorem 4.3.12. Let T = (A,R,≥) be a PAF, let �g be a relation from
Definition 4.3.8 and let �g

max be the set of maximal elements of T w.r.t.
that relation. Then, E ∈�g

max iff:

• E ∈ CF(T ), and

• (∀a ∈ E) sd(a, E) and

• E is a maximal set (w.r.t. set inclusion) which satisfies previous two
items.

Now, we can show that the pref-grounded extension can also be obtained
by inverting critical attacks.

Theorem 4.3.13. Let T = (A,R,≥) be a PAF and let R′ = {(a, b) | a, b ∈
A, (aRb and not(b > a)) or (bRa and a > b)}, and let �g

max be the set of
all maximal elements w.r.t. �g. Then: �g

max contains only one set which is
exactly the grounded extension of (A,R′).

4.4 Rich preference-based argumentation framework

In the previous section, we proposed a PAF for handling critical attacks.
Now, we propose a model that integrates both roles of preferences.

The general procedure we propose for modeling both roles follows two
steps. Given an input (A,R,≥), the first step handles critical attacks using
our approach. The output of this step is a set {E1, . . . , En} of extensions
under a given semantics. The second step consists of using a refinement
relation to compare those extensions.

A refinement relation can be any preorder on the set P(A). An exam-
ple of such a relation is the so-called democratic relation (Cayrol, Royer,
and Saurel, 1993).

75



CHAPTER 4. PREFERENCES IN ARGUMENTATION
FRAMEWORKS

Definition 4.4.1 (Democratic relation). Let X be a set of objects and ≥ ⊆
X × X be a preorder. For S,S ′ ⊆ X, S �d S ′ iff ∀x′ ∈ S ′ \ S, ∃x ∈ S \ S ′

such that x > x′.

Let us define our rich model which integrates both roles of preferences.
For simplicity reasons, the first role is encoded by inverting the arrows of
critical attacks.

Definition 4.4.2. A rich PAF is a tuple T = (A,R,≥,�) where A is a set
of arguments, R ⊆ A × A an attack relation, ≥⊆ A × A is a preference
relation and �⊆ P(A) × P(A) is a refinement relation s.t. both preference
and refinement relations are reflexive and transitive.

The basic part of T is PAF (A,R,≥). The extensions of (A,R,≥), denoted
Ext((A,R,≥)), are exactly the extensions of the argumentation framework
(A,R′) (w.r.t. the same semantics), where R′ = {(a, b) ∈ A×A |(aRb and
not(b > a)) or (bRa and a > b)}.

The set of extensions of the rich PAF T is the set {E ∈ Ext((A,R,≥))
| ∄E ′ ∈ Ext((A,R,≥)) s.t. E ′ � E}.

In other words, the extensions of a rich PAF are the best elements among
the extensions of its basic part.

Example 4.4.1. Let us consider the argumentation framework depicted below.

a b

e

d c

Assume that b > c, d > a and b > e and let the refinement relation be the
democratic relation �d. Basic PAF (A,R,≥) has exactly one critical attack,
that from e to b. The framework (A,R′) is depicted below:

a b

e

d c

Thus, basic PAF (A,R,≥) has exactly two stable extensions: {a, c} and
{b, d}. According to �d, we have {b, d} ≻d {a, c}; consequently rich PAF
(A,R,≥,�d) has exactly one extension, {b, d}.
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In the previous example, we used democratic relation as a refinement
relation. Other relations may be used instead. The choice of a refinement
relation is related to the particular application. There is a huge literature
on ranking sets of objects based on preferences, see for example the work by
Barbera, Bossert, and Pattanaik (2001).

It is easy to see that any extension of a rich PAF is conflict-free with
respect to R. This is a consequence of the fact that a set is conflict-free
w.r.t. R iff it is conflict-free w.r.t. R′.

Proposition 4.4.1. Let T = (A,R,≥,�) be a rich PAF. All extensions of T
are conflict-free.

The following result shows that in the particular case where the pref-
erence relation ≥ is a linear order (i.e. reflexive, antisymmetric, transitive
and total), then the basic part (A,R,≥) of any corresponding rich PAF has
a unique stable/preferred extension. It is clear that in this case, there is
no need to refine the result. Namely, the rich PAF has the same extension
independently of the refinement relation.

Proposition 4.4.2. Let T = (A,R,≥) be a basic PAF s.t. R is irreflexive and
≥ is a linear order.

• Stable, preferred and grounded extensions of T coincide.

• T has exactly one stable extension.

• If |A| = n, then this extension is computed in O(n2) time.

Our proposition of rich PAF has several advantages. First, it is the only
framework that models both roles of preferences for any semantics and any
attack relation. Moreover, if it is desirable to compare any pair of sets, dom-
inance relations may be used in the first step instead of inverting arrows.
Another interesting feature of our framework is that at the second step,
for comparing the basic extensions computed after the first step, one can
choose any preference relation. It is guaranteed that extensions obtained af-
ter the first step are already useful (e.g. they are conflict-free). Thus, in the
second step, one needs only to choose between them, i.e. to refine this result.

4.5 Links with non-argumentative approaches

This section shows that two particular instantiations of the rich PAF pre-
sented in the previous section capture respectively the preferred (Brewka,
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1989) and democratic (Cayrol et al., 1993) sub-theories, which were proposed
for handling inconsistency in prioritised knowledge bases. Throughout this
section, we assume a propositional knowledge base Σ.

The two instantiations of our rich PAF use the set Arg(Σ) as set of
arguments and undercut (Definition 3.4.2) as attack relation.

Note that inconsistent formulae are not used in construction of argu-
ments; they do not appear in preferred (or democratic) sub-theories neither.
Thus, in the rest of the chapter, we assume that a knowledge base Σ contains
only consistent formulae.

Proposition 4.5.1. Let Σ be a propositional knowledge base and (Arg(Σ),
Undercut) the argumentation framework built from Σ.

• For any consistent set S ⊆ Σ, S = Base(Arg(S)).

• The function Base : Arg(Σ) → Σ is surjective.

• For any E ⊆ Arg(Σ), E ⊆ Arg(Base(E)).

• The function Arg : Σ → Arg(Σ) is injective.

Another property that is important for the rest of the chapter relates
the notion of consistency of a set of formulae to that of conflict-freeness of
a set of arguments.

Proposition 4.5.2. A set S ⊆ Σ is consistent iff Arg(S) is conflict-free w.r.t.
undercut.

The following example shows that the previous proposition does not hold
for function Base.

Example 4.5.1. Let E = {({x}, x), ({x → y}, x → y), ({¬y},¬y)}. It is
obvious that E is conflict-free w.r.t. undercut while Base(E) is not consistent.

We show that if a preference relation ≥ between arguments is a total
preorder, then the stable extensions of (Arg(Σ),Undercut,≥) are all incom-
parable w.r.t. the democratic relation �d.

Proposition 4.5.3. Let T = (Arg(Σ),Undercut,≥) be a basic PAF and let ≥
be a total preorder (i.e. any pair of arguments is comparable). Then: for all
stable extensions E and E ′ of T , if E 6= E ′, then ¬(E �d E ′).

From the previous proposition, it follows that the stable extensions of ba-
sic PAF (Arg(Σ), Undercut, ≥) coincide with those of the rich PAF (Arg(Σ),
Undercut, ≥, �d).
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Corollary 4.5.1. If ≥ is a total preorder, then the stable extensions of
(Arg(Σ), Undercut, ≥, �d) are exactly the stable extensions of (Arg(Σ),
Undercut, ≥).

As a consequence, in the first part of our study (i.e. when ≥ is total, and con-
sequently, Σ is stratified), we will use a basic framework (Arg(Σ),Undercut,
≥wlp) since refinement is not necessary in this case.

4.5.1 Recovering preferred sub-theories

A notion of preferred sub-theory has been defined by Brewka (1989). It
supposes a stratified knowledge base Σ = Σ1 ∪ . . . ∪ Σn and uses these
preferences on the set of formulae in order to choose the best sets among
the maximal consistent subsets of Σ.

Definition 4.5.1 (Brewka, 1989). Let Σ = Σ1 ∪ . . .∪Σn be a stratified knowl-
edge base. Let S ⊆ Σ and let ∀i ∈ {1, . . . , n}, Si = S ∩ Σi. S is a preferred
sub-theory of Σ iff ∀k ∈ {1, . . . , n}, S1 ∪ . . . ∪ Sk is a maximal (for set
inclusion) consistent set in Σ1 ∪ . . . ∪ Σk.

The following proposition is a consequence of Definition 4.5.1.

Proposition 4.5.4. Every preferred sub-theory of Σ = Σ1∪. . .∪Σn is a maximal
consistent set in Σ.

Example 4.5.2. Let Σ = Σ1 ∪ Σ2 ∪ Σ3 with Σ1 = {strad}, Σ2 = {strad →
exp}, Σ3 = {¬exp}, where strad stands for “the violin is a Stradivarius”
and exp for “the violin is a expensive”. There are three maximal consistent
subsets of Σ: S1 = {strad, strad → exp}, S2 = {strad,¬exp} and S3 =
{strad → exp,¬exp}. Only S1 is a preferred sub-theory.

In the rest of the subsection, we will show that there is a full correspon-
dence between the preferred sub-theories of a stratified knowledge base Σ
and the stable extensions of the basic PAF (Arg(Σ), Undercut, ≥wlp). Recall
that the relation ≥wlp is based on the weakest link principle and privileges
the arguments whose less important formulae are more important than the
less important formulae of the other arguments. This relation is a total
preorder (and is defined over a knowledge base that is itself equipped with a
total preorder). Recall that, according to Corollary 4.5.1, the stable exten-
sions of (Arg(Σ), Undercut, ≥wlp) coincide with those of (Arg(Σ), Undercut,
≥wlp,�d).

The first result shows that from each preferred sub-theory is built a
stable extension of PAF (Arg(Σ), Undercut, ≥wlp).
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Theorem 4.5.1. Let Σ = Σ1 ∪ . . . ∪ Σn be a stratified knowledge base. For
every preferred sub-theory S of Σ, it holds that:

• Arg(S) is a stable extension of (Arg(Σ), Undercut, ≥wlp)

• S = Base(Arg(S))

Similarly, we show that the base of each stable extension of (Arg(Σ),
Undercut, ≥wlp) is a preferred sub-theory of Σ and that it contains all ar-
guments that can be built from its base.

Theorem 4.5.2. Let Σ be a stratified knowledge base. For every stable
extension E of (Arg(Σ), Undercut, ≥wlp), it holds that:

• Base(E) is a preferred sub-theory of Σ

• E = Arg(Base(E))

The next theorem shows that there exists a one-to-one correspondence
between preferred sub-theories of Σ and stable extensions of the framework
(Arg(Σ), Undercut, ≥wlp).

Theorem 4.5.3. Let T = (Arg(Σ), Undercut, ≥wlp) be a basic PAF built
from a stratified knowledge base Σ. The stable extensions of T are exactly
Arg(S) where S ranges over the preferred sub-theories of Σ.

From the above result, since any Σ has at least one preferred sub-theory,
it follows that the basic PAF (Arg(Σ), Undercut, ≥wlp) has at least one
stable extension.

Corollary 4.5.2. The PAF (Arg(Σ), Undercut, ≥wlp) has at least one stable
extension.

Example 4.5.3. Let Σ = Σ1 ∪ Σ2 with Σ1 = {x} and Σ2 = {¬y, x → y}
be a stratified propositional knowledge base. There are two preferred sub-
theories, S1 = {x,¬y} and S2 = {x, x → y}. The argumentation framework
(Arg(Σ), Undercut,≥wlp) has exactly two stable extensions: E1 = Arg(S1)
and E2 = Arg(S2). Figure 4.1 shows the two preferred sub-theories of Σ as
well as the two stable extensions of the corresponding PAF.
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Figure 4.1: Preferred sub-theories of Σ and stable extensions of (Arg(Σ),
Undercut, ≥wlp)

xΣ1

¬y

x → yΣ2

Σ

S1 E1

S2 E2
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¬y
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x → y

({x}, x)

({¬y},¬y)

({x,¬y}, x ∧ ¬y)

. . .

({x}, x)

({x → y}, x → y)

({x, x → y}, y)

. . .

4.5.2 Recovering the democratic sub-theories

Cayrol, Royer, and Saurel (1993) have extended the notion of preferred sub-
theory to the case where Σ is equipped with an arbitrary preorder D, i.e.
not necessarily a total one. The basic idea is to define a preference relation
on the power set of Σ. The best elements according to this relation are
called democratic sub-theories.4 The relation that generalises preferred sub-
theories is the democratic relation (Definition 4.4.1).

Definition 4.5.2 (Cayrol et al., 1993). Let Σ be a propositional knowledge
base and D ⊆ Σ × Σ be a partial preorder. A democratic sub-theory is a
set S ⊆ Σ such that S is consistent and (∄S ′ ⊆ Σ) s.t. S ′ is consistent and
S ′ �d S.

From the previous definition, we see that any democratic sub-theory is a
maximal consistent set of Σ. Thus, like in the case of preferred sub-theories,
preferences are used to refine the results obtained without preferences, i.e.
to keep only some and not all maximal consistent sets.

4They are called “demo-preferred sets” by Cayrol et al. (1993).
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Example 4.5.4. Let us suppose the knowledge base Σ = {strad, strad → exp,
¬exp}. Let us suppose that the formula strad → exp is preferred to the two
other formulae, which are themselves incomparable. In this case, there are
exactly two democratic sub-theories, {strad → exp, strad} and {strad →
exp,¬exp}.

It can be shown that democratic sub-theories generalise preferred sub-
theories.

Proposition 4.5.5. Let (Σ,D) be a prioritized knowledge base, D be a total
preorder and let Σ = Σ1 ∪ . . . ∪ Σn be a corresponding stratified knowledge
base, i.e. ∀i, j ∈ {1, . . . , n} ∀x ∈ Σi, ∀y ∈ Σj we have x D y iff i ≤ j. Then:
∀S ⊆ Σ, S is a preferred sub-theory of Σ1 ∪ . . . ∪ Σn iff S is a democratic
sub-theory of (Σ,D).

In order to capture democratic sub-theories, we will use the generalised
version of the preference relation ≥wlp. We use relation ≥gwlp as defined
in Definition 4.2.3. However, two remarks have to be made at this point.
The first is that the relation ≥gwlp is not reflexive. If needed, it can eas-
ily be redefined in order to become reflexive. Another remark is that this
relation does not formally generalize the relation ≥wlp. Namely, when D is
a total preorder, ≥wlp and ≥gwlp do not coincide. However, the strict ver-
sion >gwlp of ≥gwlp generalises the strict version >wlp of the relation based
on the weakest link principle. Since we are using those relations in order
to treat critical attacks, then when D is a total preorder, whether ≥wlp or
≥gwlp is used for calculating R′ is irrelevant since attack are inverted only
in case of strict preference. This shows why we call ≥gwlp a generalisation
of ≥wlp. Note also that in this case (when D is total), there is no refinement.

At this point, it becomes clear that the results from this subsection are
generalisations of the results from the previous one, i.e. (Arg(Σ),Undercut,
≥wlp) and (Arg(Σ),Undercut,≥gwlp,�d) return identical results when D is
a total preorder. However, we presented the particular case first, since we
think that it is easier to understand ideas and proofs in this case, and then
to pass to the more general case.

It can be shown that from each democratic sub-theory of a knowledge base
Σ, a stable extension of (Arg(Σ),Undercut,≥gwlp) is built.

Theorem 4.5.4. Let Σ be a knowledge base which is equipped with a partial
preorder D. For every democratic sub-theory S of Σ, it holds that Arg(S)
is a stable extension of basic PAF (Arg(Σ),Undercut,≥gwlp).
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The following result shows that each stable extension of the basic PAF
(Arg(Σ), Undercut, ≥gwlp) returns a maximal consistent subset of Σ.

Theorem 4.5.5. Let Σ be a knowledge base equipped with a partial preorder
D. For every stable extension E of (Arg(Σ), Undercut ,≥gwlp), it holds that:

• Base(E) is a maximal (for set inclusion) consistent subset of Σ.

• E = Arg(Base(E)).

The following example shows that the stable extensions of (Arg(Σ),
Undercut, ≥gwlp) do not necessarily return democratic sub-theories.

Example 4.5.5. Recall that Σ = {x,¬x, y,¬y}, ¬x D y and ¬y D x. Let
S = {x, y}. It can be checked that the set Arg(S) is a stable extension of
(Arg(Σ), Undercut, ≥gwlp). However, S is not a democratic sub-theory since
{¬x,¬y} ≻d S.

It can also be shown that a knowledge base may have a maximal con-
sistent subset S s.t. Arg(S) is not a stable extension of (Arg(Σ), Undercut,
≥gwlp). Let us consider the following example.

Example 4.5.6. Let Σ = {x,¬x} and x ⊲ ¬x. It is clear that {¬x} is a
maximal consistent subset of Σ while Arg({¬x}) is not a stable extension of
(Arg(Σ), Undercut, ≥gwlp).

The following result establishes a link between the ‘best’ maximal con-
sistent subsets of Σ w.r.t. the democratic relation �d and the ‘best’ sets of
arguments w.r.t. the same relation �d.

Theorem 4.5.6. Let S,S ′ ⊆ Σ be maximal (for set inclusion) consistent
subsets of Σ. It holds that S �d S ′ iff Arg(S) �d Arg(S ′).

Theorem 4.5.7. Let Σ be equipped with a partial preorder D.

• For every democratic sub-theory S of Σ, Arg(S) is a stable extension
of the rich PAF (Arg(Σ), Undercut, ≥gwlp,�d).

• For each stable extension E of (Arg(Σ), Undercut, ≥gwlp,�d), Base(E)
is a democratic sub-theory of Σ.

Finally, we show that there is a one-to-one correspondence between the
democratic sub-theories of a base Σ and the stable extensions of its corre-
sponding rich PAF.

Theorem 4.5.8. The stable extensions of (Arg(Σ), Undercut, ≥gwlp,�d) are
exactly the Arg(S) where S ranges over the democratic subtheories of Σ.

Figure 4.2 synthesizes different links between Σ and the corresponding
PAF and rich PAF.
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Figure 4.2: Democratic sub-theories of Σ and stable extensions of (Arg(Σ),
Undercut, ≥wlp,�d)

Democratic
sub-theories

of Σ

Stable extensions
of (Arg(Σ),Undercut,

≥gwlp,�d)

Maximal
consistent subsets of Σ

Stable extensions of
(Arg(Σ), Undercut, ≥gwlp)

4.6 Conclusion

In this chapter, we have studied the role of preferences in argumentation
frameworks. We started by presenting several examples of preference re-
lations. Then, we showed that there are two roles of preferences, namely
conflict-resolution role and refinement role. A survey of the state of the art
in preference-based argumentation showed that the most of the frameworks
model only the first role. We showed that there are situations when exist-
ing frameworks do not return desirable results. Then, we proposed a new
approach for modeling this role of preferences. Our approach presents two
novelties: First, it takes into account preferences at a semantic level, i.e. it
defines new acceptability semantics which are grounded on attacks and pref-
erences between arguments. Second, a semantics is defined as a dominance
relation that compares any pair of subsets of arguments. We proposed three
particular relations which generalise stable, preferred and grounded seman-
tics. Then, we focused on stable semantics and studied all relations that
generalise this semantics.

We also proposed a way to take into account both roles of preferences,
namely through the definition of rich PAF. At the end, we showed that our
proposition is general and sound since there are full correspondences be-
tween several instantiations of our rich PAF and preferred and democratic
sub-theories.
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Note that in related non-argumentative approaches preferences do not
play the same role as in argumentation. For example, in nonmonotonic
reasoning, preferences are used in order to narrow down the number of
possible belief sets of a base theory (Brewka, Niemela, and Truszczynski,
2008). To say it differently, from a given base theory, a first set of standard
solutions (belief sets) is computed, then a subset of those solutions (called
preferred solutions) is chosen on the basis of available preferences. Thus,
preferences refine the standard solutions.

Brewka, Truszczynski, and Woltran (2010) have proposed another way
to integrate preferences into argumentation. They argue that the extensions
should be calculated without taking into account preferences and that the
set of obtained extensions should be then refined by the use of preferences.
This corresponds exactly to the second role of preferences we have identified
(Amgoud and Vesic, 2010c,b, 2011e). However, we believe that the first
role of preferences cannot be omitted and that the refinement role does not
subsume the conflict-resolution role of preferences in argumentation.

We have shown that preferences intervene twice in an argumentation
framework. They are mandatory for: i) computing the standard solutions
of an AF, and then ii) for narrowing the number of those solutions. We
have seen in this chapter that those two roles of preferences are completely
independent and none of them can be modeled by the other one.

Another work which handles the problem of critical attacks is the frame-
work proposed by Prakken (2011). In that paper, a logic-based instantiation
of Dung’s framework is developed, in which three kinds of attacks are con-
sidered: rebuttal, assumption attack and undercut. For each relation, the
author has found a way to avoid the problem of critical attack and ensured
conflict-free extensions. We think that our work is more general since we
solved the problem at an abstract level (for any set of arguments, any attack
relation and any preference relation).

We would like also to mention the work done by Kaci (2010). In that pa-
per, the author made a survey of the critics presented in existing works (Am-
goud and Vesic, 2009b; Dimopoulos, Moraitis, and Amgoud, 2009) against
existing approaches for PAFs. The author concluded that one should use a
symmetric attack relation in order to avoid the problem of conflicting exten-
sions. That suggestion is certainly not realistic, especially in light of results
by Amgoud and Besnard (2009) stating that there are many cases when
symmetric relations should be avoided.

An extension of our work would be to characterize the different domi-
nance relations that generalise preferred semantics and those which gener-
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alise grounded semantics. A similar work can be done on those semantics
proposed by Baroni, Giacomin, and Guida (2005), ideal semantics (Dung,
Mancarella, and Toni, 2007) and semi-stable semantics (Caminada, 2006b).
Another future work consists of studying how the new semantics can be used
in a decision making context in order to rank order a set of alternatives.
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In my house I’m the boss,

my wife is just the decision maker.

Woody Allen 5
Argumentation-based decision making

In this chapter, we study argumentation-based decision making. We start by
defining a decision-making problem. Then, we survey the most important
works in argumentation-based decision making. In Section 5.2, we recall the
decision model we will be using, initially proposed by Amgoud et al. (2008).
The contribution of this chapter is the study of dynamics of that framework.
In particular, in Section 5.3, we show how the status of options changes when
a new argument is received (Amgoud and Vesic, 2009a, 2011d). The last
section concludes.

5.1 Introduction

Decision making is as a process leading to the selection of an option between
several possible alternatives. We will illustrate the decision making problem
by presenting an example borrowed from Savage (1954).

Example 5.1.1. An agent knows that there are five good eggs in a bowl and
has another egg in his hand. We suppose that he has only three actions
available:

• join, to break the egg to join the other five eggs,

• inspect, to break the egg into a saucer for inspection,

• throw, to throw the egg away without inspection.

The uncertainty is reflected in the fact that the agent does not know if the
egg is good or bad. Consequences of the actions are given in the table bellow:

act / state good egg bad egg
join six-egg omelet no omelet

inspect six-egg omelet, a saucer to wash five-egg omelet, a saucer to wash
throw five-egg omelet five-egg omelet

87



CHAPTER 5. ARGUMENTATION-BASED DECISION MAKING

States of the world (relevant to this problem) are:

• good, the egg is god,

• bad, the egg is bad.

Decision making problem aims at choosing exactly one action between pos-
sible alternatives.

An agent is supposed to have preferences between different outcomes.
For example, an agent may prefer the outcome “six-egg omelet” to the out-
come “no omelet” etc. In the general case, this preference may be difficult to
determine completely. In the best case, an agent can attribute utility value
to every outcome, thus yielding to a total preorder on the set of outcomes.
In that approach, the agent can compare all outcomes, for example (s)he
must be able to say if (s)he prefers “six-egg omelet, a saucer to wash” or
“five-egg omelet”. In other approaches, an agent can express his/her pref-
erences using different criteria. For example, (s)he could, on the one hand
prefer “six-egg omelet” to “five-egg omelet”, and on the other, prefer “no
saucer to wash” to “a saucer to wash”. The task to be solved here is to
aggregate those criteria; this is called multi criteria decision making (Roy,
1985). There is even another case in which an agent has a unique decision
criterion but is involved in group decision making. Aggregation of different
agents’ preferences is studied in social choice theory (Arrow, 1951).

Even if decision making theory is largely inspired by human decision
making, humans may make errors and can sometimes act irrationally in
the sense that the choice they make is not always in accordance with their
preferences. That is why the notion of a rational agent has been defined. A
rational agent is an agent which always chooses to perform the action that
results in the optimal outcome for itself from among all feasible actions.
The action a rational agent takes depends on: the set of actions available to
the agent, the preferences of the agent, the agent’s information about the
current state of the world, and the estimated benefits of the actions.

5.1.1 Argumentation-based decision making

In a decision making context, argumentation has obvious benefits. Indeed, in
everyday life, decision is often based on arguments and counter-arguments.
Argumentation can also be useful for explaining a choice already made.
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Another advantage of argumentation is that it is a powerful approach for
handling inconsistency in knowledge bases. Thus, not only it can rank or-
der options in a decision problem, but it can do that under inconsistent
information.

Argumentation has been used for decision making by different authors.
In particular, Fox and Parsons (1997) have developed an inference-based
decision support system. An implementation of this system was made for
medical applications (Fox and Das, 2000). Another example of argument-
based decision system that is purely based on an inference system is proposed
by Chesnevar et al. (2006) for advising about language usage assessment on
the basis of corpus available on the web.

Bonet and Geffner (1996b) proposed an original approach to qualitative
decision making, inspired by Tan and Pearl (1994), based on action rules
that link a situation and an action with the satisfaction of a positive or a neg-
ative goal. This framework contains: a set of actions, a set of input propo-
sitions where to each proposition is attached a degree of plausibility (e.g.
likely, plausible), two sets of prioritized goals, one containing the positive
goals and the other the negative ones (i.e. those that should be avoided), and
a set of action rules, where the left side contains an action and input literals
and the right side contains a goal (e.g. goBeach ∧ ¬rain → enjoyBeach).
To each action is associated a priority level which is the priority of the goal,
and a plausibility level, which is defined on the base of plausibility of input
literals appearing in the rule. In this approach only input propositions are
weighted in terms of plausibility. Action rules inherit these weights in an
empirical manner which depends on the chosen plausibility scale. The action
rules themselves are not weighted since they are potentially understood as
defeasible rules, although no non-monotonic reasoning system is associated
with them.

Dubois and Fargier (2006) studied a framework where a candidate deci-
sion d is associated with two distinct sets of positive arguments and negative
arguments. The authors provided an axiomatic characterization of different
rules in this setting, with a possibility theory interpretation of their meaning.
For example, a bipolar lexicographic preference relation is characterized.

Another trend of works relating argumentation and decision is mainly
interested in the use of arguments for explaining and justifying multiple
criteria decisions once they have been made using some definite aggregation
function. A systematic study for different aggregation functions was done
by Labreuche (2006).

Besides, a general and abstract argument-based framework for decision
making was proposed by Amgoud and Prade (2009). This framework fol-
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lows two main steps. At the first step, arguments for beliefs and arguments
for options are built and evaluated using classical acceptability semantics.
At the second step, pairs of options are compared using decision princi-
ples. Decision principles are based on the accepted arguments supporting
the options. Three classes of decision principles are distinguished: unipo-
lar, bipolar or non-polar principles depending on whether i) only arguments
pro or only arguments con, or ii) both types, or iii) an aggregation of them
into a meta-argument are used. The abstract model is then instantiated by
expressing formally the mental states (beliefs and preferences) of a decision
maker. In the proposed framework, information is given in the form of a
stratified set of beliefs. The bipolar nature of preferences is emphasized by
making an explicit distinction between prioritized goals to be pursued, and
prioritized rejections that are stumbling blocks to be avoided. A typology
that identifies four types of argument is also proposed. Indeed, each de-
cision is supported by arguments emphasizing its positive consequences in
terms of goals certainly satisfied and rejections certainly avoided. A decision
can also be attacked by arguments emphasizing its negative consequences in
terms of certainly missed goals, or rejections certainly led to by that decision.

While there are several works on modeling decision problems by argumen-
tation techniques, there is no work on the dynamics of these models. To
say it differently, there is no work that shows how the status of options (i.e.
decisions) change when a new argument arrives. The goal of this chapter is
to answer that question. In order to do so, we must study the evolution of
the status of a given argument without having to compute the extensions
of the new argumentation framework, as done by Cayrol et al. (2008). Fur-
thermore, we will study the most general case, i.e. the new argument may
attack and be attacked by an arbitrary number of arguments of the initial
argumentation framework. Finally, we are interested in two acceptability
semantics: grounded and preferred semantics.

5.2 An argumentation-based decision framework

In the rest of this chapter, we are interested by a decision model proposed
by Amgoud et al. (2008). Our choice is mainly motivated by the fact that
this model is general enough to encode different decision criteria.

In what follows, L will denote a logical language, from which a finite set
O = {o1, . . . , on} of n distinct options is identified; the decision maker has to
choose exactly one of them. Note that an option o may be the “conjunction”
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of other options in O. Let us consider the following example borrowed from
Amgoud et al. (2008).

Assume that Carla wants a drink and has to choose between tea,
milk or both. Thus, there are three options: o1: tea, o2: milk,
and o3: tea and milk.

Two kinds of arguments are distinguished: arguments supporting op-
tions, called practical arguments and gathered in a set Ao, and arguments
supporting beliefs, called epistemic arguments and gathered in a set Ab,
such that Ao ∩ Ab = ∅. The structure of these arguments is not specified.
For instance, an epistemic argument may involve beliefs while a practical
argument involves beliefs and benefits/goals that may be reached if the op-
tion supported by that argument is chosen. We will suppose that those
arguments are collected by an agent, thus both Ab and Ao are finite.

Practical arguments are linked to the options they support by a function
H defined as follows:

H: O → 2Ao where ∀i, j if i 6= j then H(oi) ∩ H(oj) = ∅ and
Ao =

⋃n
i=1 H(oi) with O = {o1, . . . , on}.

Each practical argument a supports exactly one option o. We say that o is
the conclusion of the practical argument a, and write Conc(a) = o. Note
that there may exist options that do not have arguments in their favor (i.e.
such that H(o) = ∅).

Example 5.2.1. Let O = {o1, o2, o3}, Ab = {b1, b2, b3}, Ao = {a1, a2, a3} and
let the arguments supporting the three options be as in the table below.

H(o1) = {a1}
H(o2) = {a2, a3}
H(o3) = ∅

Three preference relations between arguments are considered. They ex-
press the fact that some arguments may be stronger than others. The first
preference relation, denoted by ≥b, is a preorder1 on the set Ab. For example,
an argument which is built from more certain information may be considered
as stronger than an argument based on less certain information. The second
relation, denoted by ≥o, is a preorder on the set Ao. It should be based both
on the certainty degrees of the information involved in the arguments and
on the importance of the benefits of the options. Finally, a third preorder,

1Recall that a relation is a preorder iff it is reflexive and transitive.
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denoted by ≥m (m for mixed relation), captures the idea that any epistemic
argument is stronger than any practical argument. The role of epistemic ar-
guments in a decision problem is to validate or to undermine the beliefs on
which practical arguments are built. Thus, (∀a ∈ Ab)(∀a′ ∈ Ao) (a, a′) ∈≥m

∧ (a′, a) /∈≥m . Note that (a, a′) ∈≥x (with x ∈ {b, o,m}) means that a is at
least as good as a′. In what follows, >x denotes the strict relation associated
with ≥x. It is defined as (a, a′) ∈>x iff (a, a′) ∈≥x and (a′, a) /∈≥x.

Three conflict relations among arguments are also distinguished. The
first one, denoted by Rb, captures the conflicts that may hold between epis-
temic arguments. In the framework of Amgoud et al. (2008), the structure
of this relation is not specified. The second relation, denoted Ro, captures
the conflicts among practical arguments. Two practical arguments are con-
flicting if they support distinct options. This is mainly due to the fact
that the options are mutually exclusive and competitive. Formally, for all
a, b ∈ Ao, (a, b) ∈ Ro iff Conc(a) 6= Conc(b). Finally, practical arguments
may be attacked by epistemic ones. The idea is that an epistemic argument
may challenge the belief part of a practical argument. However, practical
arguments are not allowed to attack epistemic ones. This avoids wishful
thinking, i.e. avoids making decisions according to what might be pleasing
to imagine instead of by appealing to evidence. This relation, denoted by
Rm, contains pairs (a, a′) where a ∈ Ab and a′ ∈ Ao.

In the framework of Amgoud et al. (2008), each conflict relation Rx

(with x ∈ {b, o,m}) is combined with the preference relation ≥x into a
unique relation between arguments, called defeat and denoted by Defx, as
follows: For all a, b ∈ Ab ∪ Ao, (a, b) ∈ Defx iff (aRxb and ¬(b ≥x a)).

However, note that we have shown in the previous chapter that this
may lead to contradictory extensions and counter-intuitive results. Recall
also that we concluded that deleting attacks should be avoided; instead,
preferences should be taken into account by inverting arrows corresponding
to critical attacks. Consequently, we will define defeat relations as follows:
∀a, b ∈ Ab∪Ao, (a, b) ∈ Defx iff (aRxb and ¬(b >x a)) or (bRxa and a >x b).

Let Defb, Defo and Defm denote the three defeat relations corresponding
to the three conflict relations. Since arguments in favor of beliefs are always
preferred (in the sense of ≥m) to arguments in favor of options, it trivially
holds that Rm = Defm.

Throughout the paper, we use the following convention when depicting
decision frameworks. Options, put in squares, are on the same line as their
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arguments. Epistemic arguments are separated from practical ones by a
horizontal line.

Example 5.2.2. Let us suppose options and arguments from Example 5.2.1.
Let the graph on the left of Figure 5.1 depict the conflicts (w.r.t. R) among
arguments. Assume that (b2, b3) ∈>b, (a2, a1) ∈>o and (a1, a3) ∈>o. The
graph of Def is depicted on the right of the same figure.

Figure 5.1: Attack relation (left) and corresponding defeat relation (right).

o1

o2

o3

o1
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o3
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a2 a3
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a2 a3

b1 b2 b3 b1 b2 b3

Definition 5.2.1 (Decision framework). A decision framework is a tuple AF =
(O,Ab ∪Ao, Defb ∪ Defo ∪ Defm,H).

In the rest of the chapter, if not specified otherwise, we will use notation
A = Ab ∪ Ao, ≥=≥b ∪ ≥o ∪ ≥m, R = Rb ∪ Ro ∪ Rm and Def = Defb ∪
Defo ∪ Defm. The arguments of A are evaluated in (A, Def) using a given
acceptability semantics.

Until now, we have used the usual definition of argument’s status (i.e.
Definition 2.2.11). That is, in the literature, an argument is credulously
accepted if it is in at least one of the extensions. Thus, each argument that
is sceptically accepted is also credulously accepted. In the framework defined
by Amgoud et al. (2008), this definition was slightly modified. The reason
is that in a decision making context, one looks for a preference relation on
the set of options. Thus, it is important to distinguish between options that
are supported by arguments in all the extensions, and those supported by
arguments in only some extensions. From now on, we will call an argument
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credulously accepted only if it is not sceptically accepted. Formally, we will
use the definition given by Amgoud et al. (2008).

Definition 5.2.2 (Status of arguments). Let AF = (O,A, Def,H) be a deci-
sion framework, let Ext(AF) be the set of its extensions of F = (A, Def)
with respect to a given semantics and let a ∈ A. The status of argument a
is defined as follows:

• a is sceptically accepted (or sceptical) iff a ∈
⋂

E∈Ext(F) E

• a is credulously accepted (or credulous) iff a ∈
⋃

E∈Ext(F) E and a /∈
⋂

E∈Ext(F) E

• a is rejected iff a /∈
⋃

E∈Ext(F) E.

Let Status(a,F) be a function which returns the status of an argument a in
argumentation framework F . By abuse of notation, we will sometimes use
the same notation in the case when F is a decision framework; in that case,
we suppose that the status is calculated using the set of all arguments and
the set of all defeats of the corresponding decision framework.

Example 5.2.3. The decision framework of Figure 5.1 (graph on the right)
has one preferred extension, which is also the grounded one, {a1, b1, b2}.
Thus, the three arguments a1, b1, and b2 are sceptically accepted while a2,
a3 and b3 are rejected.

Let the sets of sceptical, credulous and rejected arguments of a given
framework be denoted by Sc(AF), Cr(AF) and Rej(AF). It is easy to see
that those three sets are disjunct while their union is set A.

From the status of arguments, a status is assigned to each option of the
set O. Four disjoint cases are distinguished. An option may be:

• acceptable if it is supported by at least one sceptically accepted argu-
ment,

• negotiable if it has no sceptically accepted arguments, but it is sup-
ported by at least one credulously accepted argument,

• non-supported if it is not supported at all by arguments,

• rejected if it has arguments but all of them are rejected.

Definition 5.2.3 (Status of options). Let AF = (O,A, Def,H) be a decision
framework and o ∈ O.
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• o is acceptable iff ∃a ∈ H(o) such that a ∈ Sc(AF).

• o is negotiable iff ∄a ∈ H(o) s.t a ∈ Sc(AF) and ∃a′ ∈ H(o) s.t.
a′ ∈ Cr(AF).

• o is non-supported iff H(o) = ∅.

• o is rejected iff H(o) 6= ∅ and ∀a ∈ H(o), a ∈ Rej(AF).

Let us denote by Ox(AF) the set of all options of a framework AF
having status x, where x ∈ {a, n, ns, r}, and a stands for acceptable, n for
negotiable, ns for non-supported and r for rejected. For example, Oa(AF)
is the set of acceptable options of the framework AF .

Example 5.2.4. In Example 5.2.1, option o1 is acceptable, o2 is rejected and
o3 is non-supported under stable, preferred and grounded semantics.

It can be checked that an option has exactly one status. This status may
change in light of new arguments as we will see in the next section. The
following property compares the sets of acceptable options under different
semantics. As expected, since the empty set is an admissible extension for
any argumentation framework, then there are no acceptable options under
this semantics. Consequently, this semantics is not interesting in our appli-
cation. We will not study stable semantics neither, since stable extensions
do not always exist. Thus, in the rest of the chapter, we will concentrate on
grounded and preferred semantics.

The last output of the decision framework proposed by Amgoud et al.
(2008) is a total pre-ordering on the set O. Indeed, it has been argued that
an acceptable option is preferred to any negotiable option. A negotiable
option is preferred to a non-supported one, which is itself preferred to a
rejected option.

5.3 Revising decision frameworks

In the previous section, we introduced an argumentation-based decision
making framework. The goal of this section is to study how the ordering
on options changes in light of a new argument, and what is the impact of
a new argument on the ordering without having to re-compute this latter.
This issue is very important, especially in negotiation dialogues in which
agents use argument-based decision making models for rank-ordering the
possible values of the negotiation object, and for generating and evaluating
arguments. From a strategical point of view, it is important for an agent to
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know what will be the impact of a given argument on the ordering of the
receiving agent. This avoids sending useless arguments.

We assume that the new argument concerns an option. This means that
new information about an option is received. Moreover, the original set of
options remains the same. Thus, the new argument is about an existing op-
tion. We investigate under which conditions this option changes its status,
and under which conditions the new argument does not influence neither
positively nor negatively the quality of this option. Similarly, we investigate
the impact of the new argument on the status of other arguments. For that
purpose, we study how the acceptability of arguments evolves when the de-
cision framework is extended by new arguments. We particularly focus on
the sceptical grounded semantics, and the credulous preferred semantics.

Let AF = (O,Ab ∪ Ao, Defb ∪ Defo ∪ Defm,H) be a decision framework.
Recall that function H relates options of O with the arguments that sup-
port them (i.e. H : O → 2Ao).

Assume that a new argument, denoted e, is received (for instance, from
another agent). Thus, the decision framework AF is extended by this ar-
gument and by new defeats. Let AF ⊕ e = (O′,A′, Def′,H′) denote the
new framework. It is clear that when e ∈ A, then O′ = O, A′ = A,
Def′ = Defb ∪ Defo ∪ Defm and H′ = H. The more interesting case is when
e /∈ A, thus A′ = A ∪ {e}. In this paper, we assume that the argument
e is practical, meaning that it supports an option. Moreover, we assume
this option is already in the set O. Thus, O′ = O and ∃o ∈ O such that
Conc(e) = o.

Regarding the relation Def′, it contains all the elements of Def, all the
defeats between e and the arguments of Ao that support other options than
Conc(e), and all the defeats emanating from epistemic arguments in Ab to-
wards the argument e. Recall that a practical argument is not allowed to
attack an epistemic one. The question now is how to recognize an attack
from an epistemic argument towards e? This is done by checking the formal
definition of the attack relation that is used. For instance, if Rm is defined
as undercut, then an argument x ∈ Ab attacks e if the conclusion of x un-
dermines a premise in e. For our purpose, we assume that RL

m contains all
the conflicts that may exist between all the epistemic arguments and the
practical arguments that may be built from the logical language L. Thus,
R′

m = RL
m|A′ .

Defeats between practical arguments of Ao and the new argument e are
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based on i) the conflicts between arguments, and these capture the idea
that two arguments support different options, and ii) a preference relation
between the arguments. The new argument needs then to be compared to
the other arguments of Ao. The question is how this can be done? Here
again by applying the formal definition of the preference relation that is used
in the decision framework. For instance, if ≥o privileges the argument that is
based on the most certain information and the most important benefit, then
the new argument e is compared to any argument in Ao using these criteria
(which should, of course, be defined precisely in each concrete application).
At an abstract level, we assume that this is captured by a new preference
relation, denoted by ≥′

o, on the set A′
o. The definition of Def′ of the extended

framework AF ⊕ e is summarised below.

Def′ = Def ∪ {(x, e) | x ∈ Ab and (x, e) ∈ RL
m} ∪

{(e, y) | y ∈ Ao and Conc(y) 6= Conc(e) and (y, e) /∈>′
o} ∪

{(y, e) | y ∈ Ao and Conc(y) 6= Conc(e) and (e, y) /∈>′
o}.

Extending a decision framework by a new argument may have an im-
pact on the output of the original framework, namely on the status of the
arguments, the status of options, and on the ordering on options. This is
illustrated by the following example.

Figure 5.2: Decision framework before and after the new argument e arrives.

o1

o2

o1

o2

a1 a2

a3

a1 a2

a3 e

b1 b1

Example 5.3.1. Let AF = (O,Ab ∪ Ao, Defb ∪ Defo ∪ Defm,H) be a de-
cision framework such that O = {o1, o2}, Ao = {a1, a2, a3}, Ab = {b1},
H(o1) = {a1, a2}, H(o2) = {a3}, Rb = ∅, and Rm = {(b1, a3)}. Assume
that (a3, a1) ∈>o and (a2, a3) ∈>o. The graph of defeat is depicted on
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the left side of Figure 5.2. It can be checked that the grounded extension
of this framework is GE = {a1, a2, b1}. Thus, Sc(AF) = {a1, a2, b1} and
Rej(AF) = {a3}. Consequently, the option o1 is acceptable while o2 is re-
jected, and o1 is strictly preferred to o2.

Assume now that the framework is extended by a new practical argu-
ment e in favor of option o2 (i.e. Conc(e) = o2), and that this argument
is incomparable with the other practical arguments. The new graph of de-
feat is depicted on the right side of Figure 5.2. The grounded extension
of the extended framework is GE = {b1}. Thus, Sc(AF ⊕ e) = {b1} and
Rej(AF ⊕ e) = {a1, a2, a3, e}. Consequently, the two options o1 and o2 are
rejected, and are thus equally preferred.

The aim of this section is to study the impact of a new practical argu-
ment e on the result of a decision framework. We first study under which
conditions statuses of existing arguments change. Then, we show when an
option changes its status in the new framework.

5.3.1 Revision under grounded semantics

Let AF = (O,Ab ∪ Ao, Defb ∪ Defo ∪ Defm,H) be a decision framework,
and AF ⊕ e = (O,Ab ∪Ao ∪ {e}, Defb ∪ Def′o ∪ Def′m,H′) its extension by a
practical argument e. In this subsection, we assume that arguments in both
AF and AF ⊕ e are evaluated under grounded semantics. In this case, an
argument is either sceptically accepted or rejected. The set of credulously
accepted arguments is empty since there exists exactly one extension under
this semantics. Consequently, an option may be non-supported, acceptable
or rejected (i.e. there are no negotiable options).

Notation: The grounded extensions of a given framework will be denoted
by GE(AF), or GE if there is no risk of confusion. Recall also that a
characteristic function of an argumentation framework is denoted by
F (see Definition 2.2.10). For decision framework AF , we will define
Sci(AF) = F(F(. . . F

︸ ︷︷ ︸

i times

(∅)) . . .). (This notation is mostly used in proofs.)

The following property shows that a new practical argument will never
influence the status of existing epistemic arguments. This means that the
status of any epistemic argument in the framework AF remains the same
in AF ⊕ e. This is mainly due to the fact that practical arguments are not
allowed to attack epistemic ones. Recall that Status(a,AF) be the function
that returns the status of an argument a in the decision framework AF .
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Proposition 5.3.1. Let AF be a decision framework. For all a ∈ Ab,
Status(a,AF) = Status(a,AF ⊕ e).

Example 5.3.1 shows that this result is not always true for the practical
arguments of the set Ao. However, it holds in case the new argument is
defeated by a sceptically accepted epistemic argument. In this case, the
argument e has clearly no impact on the results of the original framework
AF .

Proposition 5.3.2. Let AF be a decision framework. If ∃a ∈ Ab ∩ Sc(AF)
such that (a, e) ∈ Def′m, then

• e ∈ Rej(AF ⊕ e),

• GE(AF) = GE(AF ⊕ e)

• for all a ∈ Ao, Status(a,AF) = Status(a,AF ⊕ e).

In case the new argument e is not defeated by an accepted epistemic
argument, we show that the status of practical arguments in Ao which are
in favor of Conc(e) may either be the same as in the original framework or
improved, moving thus from a rejection to an acceptance. However, things
are different with the practical arguments that support other options than
Conc(e). Indeed, the status of these arguments may either remain the same
or be worsened. This means that the new argument can improve only the
status of the other arguments supporting its own option.

Proposition 5.3.3. Let AF be a decision framework.

• For all a ∈ H(Conc(e)), if a ∈ Sc(AF) then a ∈ Sc(AF ⊕ e).

• For all a ∈ Ao, if a ∈ Rej(AF) and a ∈ Sc(AF ⊕ e), then e ∈
H(Conc(a)).

The result proved in the previous proposition can be summarised as
follows. Let a ∈ H(o) and a′ ∈ H(o′) with o 6= o′. Symbol × means that
the status of the argument does not change in the new framework, symbol
− denotes the fact the argument moves from an acceptance to a rejection,
while + means that the status of the argument is improved (i.e. the argument
moves from a rejection to an acceptance).

There are four possible situations (corresponding to the four columns of
the table). In the first situation, both the argument supporting Conc(e) and
that supporting the other option keep their original status. In the second
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situation, the argument in favor of Conc(e) does not change its status while
the argument supporting the other option is weakened. In the two remaining
situations, the argument in favor of Conc(e) improve its status while the
argument supporting the other options either does not change its status or
is weakened.

1 2 3 4

a ∈ Ao s.t. Conc(a) = Conc(e) × × + +
a′ ∈ Ao s.t. Conc(a′) 6= Conc(e) × − × −

Recall that our main goal is to show under which conditions an option
changes its status. To characterize that situations, we will need the following
notion.

Definition 5.3.1. Let AF = (O,A, Def,H) be a decision framework and let
a ∈ A. We say that a is defended by epistemic arguments in AF , and we
write a ∈ Dbe(AF), iff ∀x ∈ A, if (x, a) ∈ Def then ∃b ∈ Sc(AF) ∩Ab such
that (b, x) ∈ Def.

Example 5.3.2. Let AF be a decision framework such that O = {o1, o2},
Ab = {b1, b2}, Ao = {a1, a2, a3, a4}, H(o1) = {a1, a2, a3} and H(o2) = {a4}.
The defeat relation Def are depicted in Figure 5.3.

Figure 5.3: Defense by epistemic arguments

o1

o2

a1 a2 a3

a4

b1 b2

The grounded extension of this framework is GE = {a1, a2, a3, b1}. It can
be checked that Dbe(AF) = {b1, a2, a3}. Note that a1 /∈ Dbe(AF) even if it
is indirectly defended by argument b1. In fact, definition of Dbe uses only
direct defense.
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It is worth noticing that non-defeated arguments are (trivially) defended
by epistemic arguments.

Let us now come back to the status of options. Recall that, under
grounded semantics, an option may be acceptable, rejected or non-supported.
We are interested in i) the case where an option is rejected in the framework
AF and becomes acceptable in AF ⊕ e, and ii) the case where an option is
acceptable in AF and becomes rejected in AF ⊕ e. From the previous re-
sults, it is clear that the first case holds only for the option that is supported
by the new argument. Indeed, the new argument may improve the status
of its own conclusion. However, it never improves the status of the other
options in the framework. This is formally shown by the following result.
(To see that if e supports a given option and is sceptically accepted then
the option becomes accepted is trivial, however, the other part of theorem
is not trivial, even if it may seem so at the first sight.)

Proposition 5.3.4. Let AF be a decision framework and o ∈ Or(AF). It holds
that o ∈ Oa(AF ⊕ e) iff e ∈ H(o) and e ∈ Sc(AF ⊕ e).

Note that the above result depends on the status of the new argument
in the extended framework. This is why we provide the following result
which characterizes when this argument is sceptically accepted in AF ⊕ e
without computing the grounded extension of this framework. We show
that the new argument is accepted iff for every attack from an argument
x ∈ Ab ∪ Ao to e, there exists an argument which either supports Conc(e)
or is epistemic, which defeats x, and which is in the grounded extension of
the original framework.

Proposition 5.3.5. Let AF = (O,A, Def,H) be a decision framework, and AF
its extension with argument e. It holds that e ∈ Sc(AF⊕e) iff for all a ∈ A,
if (a, e) ∈ Def′, then ∃b ∈ Sc(AF) ∩ (Ab ∪H(Conc(e))) s.t. (b, a) ∈ Def.

Let us now analyze the case where an option is acceptable in AF and
becomes rejected in AF⊕e. This case concerns only the options that are not
supported by the new argument e. Indeed, since practical arguments sup-
porting other options than Conc(e) may be weakened by the new argument,
their conclusions may be weakened as well. The following result shows the
conditions under which this is possible.

Proposition 5.3.6. Let AF be a decision framework and o ∈ Oa(AF). It holds
that o ∈ Or(AF ⊕ e) iff

1. e /∈ H(o), and
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2. ∄a ∈ Ab ∩ Sc(AF) s.t. (a, e) ∈ Def′m, and

3. ∀a ∈ Dbe(AF) ∩H(o), (e, a) ∈ Def′o.

The first condition says that the new argument does not support the
rejected option. The second condition states that the new argument is not
defeated by an epistemic argument which is accepted in the original frame-
work AF . This is important because otherwise the new argument is rejected
in AF ⊕ e and has no impact on the result. The last condition says that
all the practical arguments supporting the option in question which are de-
fended by epistemic arguments are defeated by the new argument.

5.3.2 Revision under preferred semantics

In this subsection, the arguments of a decision framework AF and those
of its extension AF ⊕ e are evaluated under preferred semantics. Thus,
an argument may be either sceptically accepted, credulously accepted or re-
jected. Consequently, an option may have one of the corresponding statuses:
acceptable, negotiable, rejected or non-supported.

Like in the case of grounded semantics, epistemic arguments will not
change their status when a new practical argument is received. This shows
that the system is protected against wishful thinking.

Proposition 5.3.7. Let AF be a decision framework. For all a ∈ Ab,
Status(a,AF) = Status(a,AF ⊕ e).

We now prove that if the new practical argument is attacked by a scep-
tically accepted epistemic argument in AF , then the preferred extensions of
AF and AF⊕e coincide. As a consequence, all the existing arguments keep
their status. Moreover, the new argument e is rejected. This means that
such an argument does not influence the output of the decision framework.

Proposition 5.3.8. Let AF be a decision framework. If ∃a ∈ Ab ∩ Sc(AF)
such that (a, e) ∈ Def′m, then

• e ∈ Rej(AF ⊕ e),

• ∀E ⊆ A, E is a preferred extension of AF iff E is a preferred extension
of AF ⊕ e,

• for all a ∈ Ao, Status(AF , a) = Status(AF ⊕ e, a).

Like in the case of grounded semantics, the status of the arguments
supporting Conc(e) in AF can be improved but never weakened in AF ⊕ e.
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Proposition 5.3.9. Let AF be a decision framework. For all a ∈ Ao such that
Conc(a) = Conc(e), it holds that:

• If a ∈ Sc(AF) then a ∈ Sc(AF ⊕ e)

• If a ∈ Cr(AF) then a ∈ Sc(AF ⊕ e) ∪ Cr(AF ⊕ e)

On the other hand, as in the case of grounded semantics, an argument
supporting an option different that Conc(e) is never improved in AF ⊕ e.

Proposition 5.3.10. Let AF be a decision framework, and a ∈ Ao. If a ∈
Rej(AF) and a ∈ Sc(AF ⊕ e) ∪ Cr(AF ⊕ e) then Conc(a) = Conc(e).

Using the above results on the status of arguments, we can show under
which conditions a given option may change its status in the extended de-
cision framework AF ⊕ e. We have seen that the quality of the arguments
of Ao that support Conc(e) may be improved. Thus, it is expected that
the status of Conc(e) may be improved as well. The following result shows,
in particular, when Conc(e) moves from a rejection to a better status (i.e.
becomes either negotiable or acceptable).

Proposition 5.3.11. Let AF be a decision framework and o ∈ Or(AF). Then
o ∈ Oa(AF ⊕ e) ∪ On(AF ⊕ e) iff e ∈ H(o) ∧ e /∈ Rej(AF ⊕ e).

Since in the previous result the status of the new argument in AF ⊕ e is
used, we provide the characterization of its status, based only on information
from AF .

Proposition 5.3.12. Let AF = (O,Ab∪Ao, Defb∪Defo∪Defm,H) be a decision
framework. It holds that e /∈ Rej(AF⊕e) iff ∃E ⊆ Ab and ∃E ′ ⊆ H(Conc(e))
such that:

1. E ∪ E ′ is conflict-free, and

2. E is a preferred extension of (Ab, Defb), and

3. ∀a ∈ E ′ ∪ {e}, if ∃x ∈ A s.t. (x, a) ∈ Def, then ∃a′ ∈ E ∪ E ′ ∪ {e} s.t.
(a′, x) ∈ Def.

The following result summarises under which conditions an option may
become rejected in the extended decision framework. The first condition
says that for an option to become rejected, it should not be supported by
the new argument. The second condition says that the new argument should
not be attacked by an epistemic argument which is in a preferred extension
that contains arguments in favor of this option. The last condition claims
that the new argument should be preferred to some arguments in favor of
the option.

103



CHAPTER 5. ARGUMENTATION-BASED DECISION MAKING

Proposition 5.3.13. Let AF be a decision framework and o ∈ Oa(AF) ∪
On(AF). Then o ∈ Or(AF ⊕ e) iff

1. e /∈ H(o), and

2. there does not exist a preferred extension E of AF s.t. E ∩ H(o) 6= ∅
and ∃a ∈ E ∩ Ab s.t. (a, e) ∈ Def′m, and

3. there does not exist a preferred extension E of AF s.t. there exists an
admissible set E ′′ of AF with E ′′∩Ao ⊆ E ∩H(o) and E ′′∩Ab = E ∩Ab

and ∀a ∈ E ′′ ∩H(o), (a, e) ∈≻′
o or ∃a′ ∈ E ′′ ∩H(o) s.t. (e, a) /∈≻′

o.

5.4 Conclusion

In this chapter, we showed what a decision making process is, and how
argumentation may be used for decision. We mainly focused on the dynamics
of argumentation-based decision frameworks.

We conducted the first investigation of the impact of a new argument on
an argumentation-based decision framework. We used the decision frame-
work proposed by Amgoud, Dimopoulos, and Moraitis (2008) with slight
modifications. (The modifications are related to the fact that we use our
preference-based argumentation framework which inverts the arrows of crit-
ical attacks instead of deleting them.)

We provided a full characterization of acceptable options that become
rejected, and of rejected options that become acceptable in the extended
framework. A characterization of the evolution of the status of arguments is
also provided. Our study is undertaken under two acceptability semantics:
grounded semantics and preferred one.

These results may be used in negotiation dialogues, namely to determine
strategies. Indeed, at a given step of a dialog, an agent may choose which
argument to send to another agent in order to change the status of an option.
Our results may help to understand which arguments are useful and which
ones are useless in a given situation.
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J’ai entendu vos points de vue. Ils ne

rencontrent pas les miens. La décision

est prise à l’unanimité.

Charles de Gaulle 6
Argumentation-based negotiation

This chapter studies argument-based negotiation. After presenting the most
influential works in the literature, we focus our attention on the impact of
argumentation on the quality of negotiation outcome and answer the ques-
tion: when does argumentation improve the quality of negotiation outcomes?
(Amgoud and Vesic, 2011a,b).

6.1 Introduction

Negotiation is one of the most common approaches used to make decisions
and manage disputes. It occurs between parents and children, managers
and staff, employers and employees, professionals and clients, within and
between organizations and between agencies and the public.

Negotiation is a process that aims at finding some compromise or con-
sensus on an issue between two or more agents having different goals. In the
negotiation literature, the issue under negotiation is called the negotiation
object. Examples of negotiation objects are: the price of a given product,
the date and/or the place of a meeting and so on. In the seminal book
by Walton and Krabbe Walton and Krabbe (1995), the object concerns the
share of some goods or services.

6.2 Main approaches to negotiation

A huge amount of work was done for modeling negotiation. Negotiation tech-
niques are often separated in the three classes: game-theoretic approaches,
heuristic-based approaches and argumentation-based approaches. This clas-
sification was proposed by Jennings et al. (2001), and later adopted by other
researches (e.g. Rahwan et al., 2004).
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6.2.1 Game-theoretic approaches

Game theory models strategic situations, or games, in which an individ-
ual’s success in making choices depends on the choices of others (Myerson,
1997). It has its roots in the work of von Neumann and Morgenstern (1944).
It has been used by many researches to study the interaction between self-
interested negotiating agents (e.g. Rosenschein and Zlotkin, 1994). In game-
theoretic analysis of negotiation, emphasis is on determining the optimal
strategy. This is done by analyzing data and formalizing negotiation as a
game between participants. Those approaches are often based on a set of
formal hypotheses (like game rules, payoffs corresponding to different situa-
tions, goals of negotiating agents). This allows to prove that a given strategy
is (or is not) the optimal one for a participant. It is also assumed that the
participants are rational, in the sense that they make decisions which are
in accordance with their knowledge and their goals. This guarantees that
negotiating parties behave in certain ways (Varian, 1995). However, clas-
sical game-theoretic approaches have some significant limitations from the
computational perspective (Dash, Jennings, and Parkes, 2003). Specifically,
most of these approaches assume that agents have unbounded computa-
tional resources and that the space of outcomes is completely known. In
most realistic environments, however, these assumptions fail due to the lim-
ited processing and communication capabilities of the information systems.

6.2.2 Heuristic-based approaches

As a response to the above limitations of game-theoretic approaches (mostly
strong hypotheses about agent rationality and unbounded computational
resources), a number of heuristic-based negotiation approaches have been
developed. Heuristics are rules of thumb that produce good enough (rather
than optimal) outcomes. On the contrary, those systems are more efficient
and demand for less resources. Of course, the inconvenience is that ev-
ery particular heuristic demands for empirical evaluation and adjustment
of parameters (e.g. Faratin, 2000). When compared with game-theoretic
approaches, these methods offer approximations.

6.2.3 Argumentation-based approaches

Although game theoretic and heuristic based approaches both have desirable
features and are widely studied by researches, they share some limitations.
In most game-theoretic and heuristic models, agents exchange proposals
(i.e. potential agreements or potential deals). This, for example, can be a
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promise to purchase a given object at a specified price. However, agents
are not allowed to exchange any additional information other than what is
expressed in the proposal itself. This can be problematic, for example, in
situations where agents have limited information about the environment,
or where their rational choices depend on those of other agents. Another
limitation of conventional approaches to automated negotiation is that the
agent’s preference relation on the set of offers is supposed to stay fixed during
the interaction.

Consider the following example.
Two professors, say Pr1 and Pr2, want to employ a new research assis-

tant on a European project. Three candidates, Carla, John and Mary are
interested in the position. Unfortunately, the two professors have conflict-
ing preferences. Professor Pr1 prefers Carla to John and John to Mary (i.e.
Carla �1 John �1 Mary). However, professor Pr2 prefers John to Carla
and Carla to Mary (i.e. John �2 Carla �2 Mary). The following negotiation
may take place between the two agents:

Pr1: I suggest to recruit Carla

Pr2: No, I prefer John.

If we suppose that the only object of negotiation is the candidate, then
further negotiation is hard, since there is no obvious way to make a com-
promise. The idea of argumentation-based negotiation (ABN) is to allow
negotiating parties to exchange arguments which contain information that
can change other agents’ beliefs and, consequently, his/her preferences on
the set of options. The previous dialogue can continue if arguments are
exchanged. For example:

Pr1: I suggest to recruit Carla

Pr2: No, I prefer John. He is working on my research topic.

Pr1: But, you know that Carla has a better publication record than John.
Moreover, recently she did a very interesting work on your topic.

Pr2: Really, I didn’t know that. So let’s give her the position then.

In this dialogue, Pr2 received a strong argument in favor of Carla which
leads him to change his preference between John and Carla.

In other words, since game-theoretic and heuristic approaches assume
that agents’ preferences on the set of options are fixed, the only direction
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of negotiation is finding some compromise. One agent cannot directly in-
fluence another agent’s preference model, or any of its internal mental atti-
tudes (e.g. beliefs, desires, goals, etc.) that generate its preference model.
A rational agent would only modify its preferences upon receipt of new in-
formation. Traditional automated negotiation mechanisms do not facilitate
the exchange of this information. That is why exchange of arguments can
be beneficial for negotiation. In the context of negotiation, an argument
is intended to influence another agent in complex ways. Thus, in addition
to accepting a proposal, rejecting it, or proposing another possible deal, an
agent can justify his/her choice and/or criticise another agent’s offer and/or
arguments. By understanding why its counterpart cannot accept a particu-
lar deal, an agent may be in a better position to make an alternative offer
that has a higher chance of being acceptable.

Sycara (1990) was among the first to emphasize the importance of us-
ing argumentation techniques in negotiation. Since then, several works
were done including those by Parsons and Jennings (1996), Reed (1998),
Kraus, Sycara, and Evenchik (1998), Tohmé (1997), Amgoud, Dimopoulos,
and Moraitis (2007), Amgoud, Parsons, and Maudet (2000b), Amgoud and
Prade (2004), or Kakas and Moraitis (2006).

6.3 A formal analysis of the role of argumentation in
negotiation dialogues

As said before, several proposals were made in the literature for modeling
argumentation-based negotiation. Most of them were interested in proposing
protocols which show how arguments and offers can be generated, evaluated
and exchanged in a negotiation dialogue. Unfortunately, except the termi-
nation of each dialogue generated under those protocols, nothing is said on
their quality. In particular, it is not clear what kind of solutions (or out-
comes) are reached by their dialogues. The first reason is that the notion
of optimal solution is not defined for argument-based negotiations. Indeed,
there is no study on the types of outcomes that may be reached in such
negotiations. It is also worth mentioning that before the work done by Am-
goud, Dimopoulos, and Moraitis (2007), it was not formally shown that new
arguments may influence the preferences of an agent. In that paper, each
agent is equipped with a theory which is an argumentation-based decision
making system that computes a preference relation on the set of offers. It
was shown that the theory of an agent may evolve when new arguments
are received, and consequently the initial preference relation may change.
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However, it is not clear how this evolution of agents’ theories may have an
impact on the outcome of a negotiation. In other words, when is this theo-
ries’ evolution beneficial for a negotiation and for the agents?

The goal of the rest of the chapter is twofold. It characterizes for the
first time the possible outcomes of ABN dialogues. Different kinds of out-
comes (solutions) are identified: accepted solution, optimal solution, local
solution, Pareto optimal solution and ideal solution. Accepted, local and
Pareto optimal solutions are the best outcomes at a given step of a dia-
logue while optimal and ideal solutions are the best solutions in general and
are time-independent. The second contribution of this chapter consists in
studying to what extent and under which conditions, argumentation may be
beneficial in a negotiation dialogue. We show that when an ideal solution
exists, argumentation pushes negotiation towards this solution. Even when
such a solution does not exist, arguing may be beneficial, since it can al-
low agents to make decisions under more information (i.e. less uncertainty).
Our study is undertaken at an abstract level since we do not take into ac-
count protocols and strategical issues. Thus, our results are true under any
protocol and using any strategy.

6.3.1 Negotiation framework

In a negotiation dialogue several agents may be involved. In what follows,
in order to simplify notation, we restrict ourselves to the case of only two
agents denoted by Ag1 and Ag2. However, it is easy to see that all the
results can be expressed in the case of n agents. These agents are assumed
to share some background in order to understand each other. They use the
same logical language L and the same definition of an argument. Thus, both
agents recognize any argument in the set of all arguments Arg(L) (we denote
by Arg(L) the set of all arguments that can be constructed from the language
L). Similarly, we suppose that each agent recognizes any conflict in R(L)
(the set of all attacks on Arg(L)) and that they use the same definition
of attack, i.e. they use the same attack relation (for instance, they both
use “undercut”). In addition, each negotiating agent is equipped with an
argumentation-based decision making framework. For the purpose of this
chapter, we will suppose that every agent has a decision framework as the
one which was described in Section 5.2. This framework is used to build
and evaluate practical and epistemic arguments (recall that those sets are
denoted Ao and Ab and are supposed to be disjunct), to evaluate offers, to
compare pairs of offers, and finally to select the best offer. We suppose that
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an offer is a possible value of the negotiation object and that elements of O
represent the possible offers. We will use notation O(L) for the set of all
offers that can be defined from a language L and O for a set of offers of a
particular negotiation we will study.

Thus, the theory of agent i is AFi = (Oi, Ai, Ri, ≥i,Hi) where: Oi is
a finite subset of O(L), Ai the set of his/her arguments, Ri = R(L)|Ai the
attack relation between them, with Ri = Ri

b ∪ Ri
o ∪ Ri

m, ≥i the agent’s
preference relation with ≥i=≥i

b ∪ ≥i
o ∪ ≥i

m, and Hi the function which
relates options with practical arguments, as in the previous chapter. In
what follows, we assume that agents have the same set of offers; furthermore,
we suppose that it does not change during negotiation. We will use O to
denote that set. However, the two agents may not necessarily have the
same arguments in favor of an offer, thus, we will use two distinct functions,
Hi(L) : Argo(L) → O(L), with i ∈ {1, 2}, which for every practical argument
returns the offer it supports. This is because a practical argument e can be
in favor of one offer for Ag1 and in favor of another one for Ag2. For a
practical argument e, we will write Conci(e) = o iff o ∈ O and e ∈ Hi(o)
(i.e. if e is in favour of o for Agi).

We assume that exchanged arguments are not self-defeating. A similar
study can be conducted without this hypothesis, which would not change
much of the chapter. Moreover, we assume that when a new argument is
added to the original set A of arguments, other arguments cannot be built
using the information underlying the new argument and that underlying
arguments of A. This is since we are conducting an abstract and general
study without entering in arguments’ structure, thus, it is impossible to
know which arguments could be generated using information from other
arguments.

Note that by using a decision framework which has only arguments in
favour of offers (and not against them), we are slightly restricting the gener-
ality of our approach. However, since the goal of this work is not to develop
another argumentation-based decision making framework, we are not inter-
ested in adding arguments against the offers (this is left for future work).

Since we suppose that agents must keep their arguments in some sort of
memory, then both A1 and A2 are supposed to be finite subsets of Arg(L).

Note that the preference relation between arguments is expressed on the
whole set Arg(L). This means that an agent is able to express a prefer-
ence between any pair of arguments. Formally, we suppose that ≥i (L) ⊆
Arg(L) × Arg(L) and ≥i=≥i (L)|Ai .
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6.3.1.1 Negotiation dialogues

In order to analyze the role of argumentation in negotiation, we need a
minimal definition of a negotiation dialogue, that is a definition that sheds
light on the basic elements that are exchanged during such a dialogue. In
order to stay as general as possible, we do not focus on protocols; indeed,
our definition can be extended by rules of any possible protocol. The basic
element of a negotiation dialogue is the notion of move through which agents
exchange offers of O and/or arguments of Arg(L).

Definition 6.3.1 (Move). Let θ be a symbol that denotes that neither an ar-
gument nor an offer is sent. A move is a tuple m = 〈p, a, o〉 such that:

1. p ∈ {Ag1, Ag2},

2. a ∈ A1 ∪ A2 ∪ {θ},

3. o ∈ O ∪ {θ}, and

4. (a 6= θ) or (o 6= θ).

The function Player (resp. Argument, Offer) returns the player (resp.
the argument, the offer) of the move. Let M be the set of all moves that can
be built from 〈{Ag1, Ag2},A1 ∪ A2,O〉.

The fourth condition of the above definition states that at each step of
the dialogue, an agent utters an argument, an offer or both. This means
that the set of possible moves is finite.

A negotiation dialogue is a sequence of moves.

Definition 6.3.2 (Negotiation). A negotiation dialogue d between two agents
Ag1 and Ag2 is a finite and non-empty sequence 〈m1, . . . ,ml〉 of moves.
d is argumentative iff ∃i ∈ {1, . . . , l} s.t. Argument(mi) 6= θ. d is non-
argumentative iff it is not argumentative.

It is common in negotiation dialogues that agents propose less preferred
offers in case their best options are all rejected by the other party. Such
offers are called concessions. However, for the purpose of this study, we do
not need to formally define this notion.

6.3.1.2 Impact of new arguments on an agent theory

So far, we have supposed that each agent has an abstract model for deci-
sion making. It takes as input a set of offers, a set of arguments (some of
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them supporting offers), an attack relation among arguments, a preference
relation between arguments and a function which relates arguments with of-
fers. The model computes a total preorder on the set of offers and thus, the
best offer(s). We will now review all the possible changes of a negotiation
framework.

Let AFi
0 be the initial theory of agent i, i.e. his/her theory before a

dialogue d = 〈m1, . . . ,ml〉 starts. At each step t of d, a new theory AFi
t

is computed. Assume that AFi
t−1 = (Oi

t−1,A
i
t−1,R

i
t−1,≥

i
t−1,H

i
t−1). If no

argument is sent, then AFi
t = AFi

t−1. Else, let e = Argument(mt). Then,
AFi

t−1 = (Oi
t,A

i
t,R

i
t,≥

i
t,H

i
t) is defined as:

• Oi
t = Oi

t−1 = O,

• Ai
t = Ai

t−1 ∪ {e}

• Ri
t = Ri(L)|Ai

t
,

• ≥i
t = ≥i (L)|Ai

t
,

• Hi
t = Hi(L)|Ai

t∩Argo(L)

Let us now describe different changes that may occur during negotiation.
Recall that we supposed that the set of offers is fixed during the negotiation.
However, let us note that a more general case (which is left for future work)
is to consider even the case when the set O of offers can change during the
negotiation.

Changing the set of options: By receiving a new argument, an agent
may learn that there exists another option which is not considered in the
set O. Let us illustrate this case by a simple example.

Example 6.3.1. Two agents are negotiating a price and date for a delivery
of 500 kg of strawberries. Thus O = {(0.80e, July 13, 500kg), (0.90e, July
13, 500kg), (0.90e, July 14, 500kg), (1.00e, July 14, 500kg), (0.90e, July 15,
500kg), (1.00e, July 15, 500kg)}. The negotiation process is not going very
well. Then, the seller proposes to accept the delivery date and price per
kg proposed by the buyer, (0.90e, July 14), but under the condition to de-
liver 600 kg. Thus, the set of offers is enlarged by this new offer, and be-
comes O′ = {(0.80e, July 13, 500kg), (0.90e, July 13, 500kg), (0.90e, July
14, 500kg), (1.00e, July 14, 500kg), (0.90e, July 15, 500kg), (1.00e, July
15, 500kg), (0.90e, July 14 , 600kg}.
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The following property characterizes a situation where the new offer
becomes accepted by a receiving agent (the agent who receives the offer
supported by an argument).

Proposition 6.3.1. Let AFi = (Oi,Ai,Ri,≥i,Hi) be the theory of agent i. Let
e ∈ Argo(L) be such that Conci(e) /∈ Oi. If ∀e′ ∈ Ai ∩ Argo(L), e >i e′

and Ri
m = ∅, then Conci(e) will be acceptable (under preferred, grounded

as well as under stable semantics if stable extensions exist) after this offer
and argument have been received.

A new offer can be rejected in the extended theory if it is attacked by
an epistemic argument which is sceptically accepted in the original theory.

Proposition 6.3.2. Let AFi = (Oi,Ai,Ri,≥i,Hi) be the theory of agent i. Let
e ∈ Argo(L) be such that Conci(e) /∈ Oi. If ∃a ∈ Ai ∩ Argb(L) such that
a is sceptically accepted in AFi and (a, e) ∈ R(L), then Conci(e) is rejected
(under preferred, grounded and stable semantics) after the new offer and
argument has been received.

Note again that that this situation does not occur in our framework since
we assumed that the two agents have the same set of offers which remain
fixed during negotiation.

Changing the set of epistemic arguments: Receiving a new epistemic
argument allows an agent to revise his/her beliefs. Consequently, the output
of the theory may change.

Example 6.3.2. Let O = {o1, o2}, Ab = ∅, H(o1) = {e1}, H(o2) = {e2}
and e1 >p e2. This theory has one stable/preferred extension E = {e1}.
Thus, option o1 is acceptable while o2 is rejected. Consequently, o1 ≻ o2.
Assume now that this agent receives an epistemic argument a such that
aRme1 and ¬(aRme2). The new theory has one stable/preferred/grounded
extension which is E ′ = {a, e2}. Thus, o2 is acceptable and o1 is rejected;
consequently, o2 ≻ o1.

Changing the set of practical arguments: A new practical argument
may also have an impact on the outcome of a theory. If the new argument
is not already in Ai ∩ Argo(L), it induces a revision of agent’s theory.

Example 6.3.3. Let O = {o1, o2}, Ab = ∅, H(o1) = {e1}, H(o2) = ∅. This
theory has one stable/preferred/grounded extension E = {e1}. Thus, option
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o1 is acceptable while o2 is non-supported. Consequently, o1 ≻ o2. Assume
now that this agent receives a practical argument e2 in favor of o2 and e2 >p

e1. The new theory has one stable/preferred/grounded extension which is
E ′ = {e2}. Thus, o2 is acceptable and o1 is rejected. This means that
o2 ≻ o1.

Recall that in the previous chapter, we have shown under which condi-
tions an offer may move from acceptance to rejection and vice versa when a
new piece of information arrives.

Changing the attack relation: When the set of arguments changes, the
attack relation may change as well since new attacks may appear between
the new argument and the existing ones. Note that a new argument never
leads to a new attack between two existing arguments since all the possible
attacks should already have been captured by the attack relation of the
agent’s theory.

Changing the preference relation between arguments: Recall that
we supposed that preference relation is static and cannot change. For exam-
ple, it is not possible for an agent to prefer a to b, and after receiving a new
argument c, not prefer a to b. In order to allow the revision of preferences,
we need a theory in which preferences are themselves subject to debate and
are conclusions of arguments. An example of such model is the one proposed
by Prakken and Sartor (1997).

It is easy to see that in the particular case of non-argumentative dialogues,
the output of a theory does not change.

Proposition 6.3.3. Let �i
0 be the output of the theory of agent i before a dia-

logue. For every non-argumentative negotiation dialogue d = 〈m1, . . . ,ml〉,
�i

t = �i
0, for any t ∈ {1, . . . , l}.

This result confirms the intuition that non-argumentative approaches
for negotiation (i.e. game-theoretic and heuristic-based approaches) do not
model any change of the preorder on the set of offers. Allowing agents
to exchange arguments which can influence them to change their beliefs
and goals, is a step towards more realistic and more flexible negotiation
frameworks.
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6.3.2 Negotiation outcomes

In the previous subsection, we have seen that exchanging arguments allows
for a rich and flexible negotiation framework. Intuitively, by exchanging
arguments, negotiation can be ameliorated. However, it has never been for-
mally shown that argumentation positively influences negotiation outcome.
In order to do so, we first need to define a quality of a negotiation outcome.

In other words, we address the question: what is a “good” outcome in
an ABN dialogue? In this subsection, we propose to define two categories
of solutions: time-dependent solutions and global ones. Time-dependent
solutions are the outcomes at a given step of a dialogue. Global solutions
are defined without reference to a specific step of negotiation, i.e. they are
time-independent. In what follows, we discuss each type of solution from an
agent point of view and from a dialogue point of view.

6.3.2.1 Outcomes from agents perspective

From the point of view of a single agent, the best solutions at a given step
of a dialogue are those having the best status (i.e. acceptable) at that step.

Definition 6.3.3 (Accepted solution for an agent). Let d = 〈m1, . . . ,ml〉 be
a negotiation dialogue and AFi

t the theory of agent i at step t ≤ l. An offer
o ∈ O is an accepted solution for agent i at the step t iff o is acceptable in
AFi

t. We will use notation Oa(AF) for the set of acceptable offers w.r.t. agent
theory AF.

The status of accepted solutions may change during a negotiation. In-
deed, it may be the case that at step t, an offer is acceptable for an agent
while it becomes rejected at step t + 1. Thus, such solutions are time-
dependent. Optimal solutions, however, do not depend on a dialogue step.
They are offers that an agent would choose if (s)he had access to all argu-
ments owned by the other agent (or agents in a more general case). New
arguments allow agents to revise their mental states; thus, the best decision
for an agent is the one (s)he makes under ‘complete’ information (i.e. under
minimal uncertainty).

Definition 6.3.4 (Optimal solution for an agent). Let Ag1 and Ag2 be two
agents and AF1 = (O,A1

0,R
1
0,≥

1
0,H

1
0) and AF2 = (O,A2

0,R
2
0,≥

2
0,H

2
0) their

initial theories. Let Au = A1
0∪A

2
0. An offer o ∈ O is an optimal solution for

agent i iff o is acceptable in (O,Au,R(L)|Au ,≥i (L)|Au ,Hi(L)|Au∩Argo(L)).

Note that an optimal solution may differ from one agent to another even
if the agents have the same sets of arguments supporting the same offers.
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This is due to the fact that each agent i uses his/her own preference relation
≥i on arguments. This corresponds to the fact that in real life, from the
same data, people do not necessarily take the same decision.

Example 6.3.4. Let Ag1 and Ag2 negotiate about a restaurant to choose from
two possible alternatives. They both agree that the first one is cheaper and
the second one has better meals, but one agent may prefer the first and the
other the second restaurant.

Proposition 6.3.4. If o is an optimal solution for Agi, then there exists a
dialogue d = 〈m1, . . . ,ml〉, such that o is an accepted solution for Agi at
the end of the dialogue d.

6.3.2.2 Types of negotiation outcomes

Let us now analyze the different types of solutions of negotiation dialogues.
Three types of solutions are distinguished. The first one, called local solution,
is an offer which is accepted for both agents at a given step of a negotiation.

Definition 6.3.5 (Local solution of a negotiation). Let d = 〈m1, . . . ,mt〉 be a
negotiation dialogue. An offer o is a local solution at the step l of d, with
1 ≤ l ≤ t iff o is accepted in both AF1

l and AF2
l .

Local solutions do not always exist, and when they exist, the protocol
should be efficient in order to reach them.

There are cases where non-argumentative dialogues have no local solu-
tions. It is particularly the case when at the beginning of the dialogue the
two agents have no common accepted offer.

Theorem 6.3.1. Let AF1 and AF2 be the initial theories of the two agents
such that Oa(AF

1)∩Oa(AF
1) = ∅. There does not exist a non-argumentative

dialogue d s.t. d has a local solution at some step.

The following result characterizes the case where there exists a local
solution. In order to reach it, the agents should exchange the appropriate
sequence of arguments.

Proposition 6.3.5. Let Ag1 and Ag2 be agents and AF1 = (O,A1,R1,≥1,H1)
and AF2 = (O,A2,R2,≥2,H2) their initial theories. There exists a local
solution iff ∃A′1 ⊆ A1 and ∃A′2 ⊆ A2 s.t.
Oa((O,A1 ∪ A′2,R(L)|A1∪A′2 ,≥1 (L)|A1∪A′2 ,H1(L)|(A1∪A′2)∩Argo(L))) ∩

Oa((O,A′1 ∪A2,R(L)|A′1∪A2 ,≥2 (L)|A′1∪A2 ,H2(L)|(A′1∪A2)∩Argo(L))) 6= ∅.
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The next result studies the situation when agents do not have to agree
on everything but they agree on the arguments related to a given part of the
negotiation, which is separated from other problems. If the first agent owns
more information than the second, then there exists a dialogue in which the
second will agree with the first one.

Theorem 6.3.2. Let Ag1 and Ag2 be agents and AF1 = (O,A1,R1,≥1,H1)
and AF2 = (O,A2,R2,≥2,H2) their initial theories. Let A ⊆ A1 ∪ A2 be a
set s.t. ≥1 |A = ≥2 |A and let A be not attacked w.r.t. R′ by arguments of
(A1∪A2)\A. If A1∩A ⊇ A2∩A and ∃o ∈ O, ∃a ∈ H1(o)∩H2(o)∩A s.t. a
is sceptically accepted in AF1, then there exists a dialogue d = 〈m1, . . . ,ml〉
s.t. o is a local solution at step t ≤ l of d.

Another kind of time-dependent solution is a Pareto optimal solution. It
takes into account the possible concessions that agents may make during a
dialogue. In game-theoretic and heuristic-based approaches for negotiation,
agents look for such solutions.

Definition 6.3.6 (Pareto optimal solution). Let d = 〈m1, . . . ,ml〉 be a nego-
tiation dialogue. An offer o ∈ O is a Pareto optimal solution at step t iff
∄o′ ∈ O s.t. (o′ ≻1

t o and o′ �2
t o) or (o′ �1

t o and o′ ≻2
t o), where �i

t is the
preference relation on O returned by Agi at the step t.

Roughly speaking, the protocols that have been developed in the liter-
ature for generating ABN dialogues lead to local solutions. Examples of
such protocols are the one proposed by Amgoud, Dimopoulos, and Moraitis
(2007) and its extended version (Hadidi, Dimopoulos, and Moraitis, 2010).
Indeed, in those protocols, agents make concessions when they cannot de-
fend their best offers.

It is easy to check that any local solution is also a Pareto optimal solution.
However, the reverse is not true.

Proposition 6.3.6. If an offer is a local solution at the given step of a dialogue,
then it is a Pareto optimal solution at that step of the dialogue.

The last kind of solution is the so-called ideal solution. It is an offer
which is optimal for both agents.

Definition 6.3.7 (Ideal solution of a negotiation). An offer o ∈ O is an ideal
solution for a negotiation iff it is optimal for both Ag1 and Ag2.

We can show that if an ideal solution exists, then there exists at least
one dialogue in which this solution is local.
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Proposition 6.3.7. If an offer o ∈ O is an ideal solution, then there exists a
dialogue d such that o is a local solution at the end of d.

It is natural to expect that two agents who share arguments and who
agree on the preferences between those arguments can find an ideal solution.

Theorem 6.3.3. Let AF1 = (O,A1,R1,≥1,H1) and AF2 = (O,A2,R2,≥2

,H2) be the theories of the two agents s.t. ≥1 (L) = ≥2 (L), H1(L) = H2(L)
and A1 ⊇ A2. If o is an accepted solution for Ag1 before the beginning of a
dialogue, then o is an ideal solution.

6.3.3 Added value of argumentation

The main goal of this chapter is to shed light on the role argumentation may
play in negotiation dialogues. The idea is to study whether argumentation
may improve or decrease the quality of the outcome of a dialogue, and under
which conditions. It is clear that in real life, arguing does not necessarily
lead to an agreement. In other words, it may be the case that two agents
exchange arguments and at the end, the negotiation fails. Does this mean
that arguing was not necessary in this case or it was rather harmful for the
dialogue? In order to answer these questions, we need to compare the best
outcomes that may be reached by non-argumentative dialogues with those
reached by argumentative ones. In this section, we show that argumentation
may improve the quality of the outcome. Indeed, in the best case, arguing
leads to an ideal solution. When this is not possible, it can at least improve
the choices made by the agents.

Let AF1 and AF2 be the initial theories of the two agents. We distinguish
four situations which are the different combinations between local and ideal
solutions.

Case 1. In the first case, there does not exist a local solution before
a dialogue while there exists an ideal solution. In such a situation, argu-
mentation will improve the outcome of a negotiation since it leads towards
reaching such a solution. In the extreme case, it is sufficient for agents to
exchange all their non-common arguments.

Theorem 6.3.4. Let AF1 and AF2 be the initial theories of the two agents.
Let X be the set of ideal solutions and let X 6= ∅. For all o ∈ X, there exists
an argumentative dialogue where o is a local solution at at the end of d.
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Since before a dialogue starts, there is no local solution (i.e. there is
no offer which is accepted for both agents), the agents should exchange
arguments in order to have a chance to reach the ideal solution. This means
that any non-argumentative dialogue will not lead to an ideal solution.

Theorem 6.3.5. Let AF1 and AF2 be the initial theories of the two agents
s.t. Oa(AF

1) ∩ Oa(AF
2) = ∅ and let X 6= ∅ be the set of ideal solutions.

There does not exist a non-argumentative dialogue having o ∈ X as a local
solution at its end.

An important question is: what about Pareto optimal solutions? We
show that it may happen that a non-argumentative dialogue ends with a
Pareto optimal solution which is not an ideal one.

Example 6.3.5. Assume that O = {o1, o2, o3}, o1 ≻1 o3 ≻1 o2 and o2 ≻2

o3 ≻2 o1. It is clear that there is no local solution while o3 is a Pareto
optimal one. If we assume that o2 is the ideal solution, then it is clear that
any non-argumentative dialogue will miss o2.

Conclusion: in this case, argumentative negotiations lead to an ideal solu-
tion (of course provided that the protocols are defined in an efficient way)
while non-argumentative ones never find an ideal solution. Thus, argu-
mentative dialogues yield a strictly better outcome than non-argumentative
ones.

Case 2. Let us study the case where there exists at least one local
solution before any dialogue and there exists an ideal solution. It is clear
that if agents exchange appropriate offers, then a local solution may be
reached even with non-argumentative dialogues.

Proposition 6.3.8. Let AF1 and AF2 be the initial theories of the two agents s.t.
Oa(AF

1) ∩ Oa(AF
2) 6= ∅. There exists a non-argumentative dialogue whose

outcome is a member of Oa(AF
1) ∩Oa(AF

2).

Note that the solution reached by non-argumentative dialogues may be
a non-ideal one. Thus, an exchange of arguments may help to improve
the quality of the output, i.e. to pass from a local solution to an ideal one.
Moreover, according to Theorem 6.3.4, there exits an argumentative dialogue
which leads for sure to an ideal solution. Thus, an argumentative dialogue
will lead to an outcome which is at least as good as the outcome that may be
reached by a non-argumentative dialogue. The following example illustrates
this issue.
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Example 6.3.6. Assume that O = {o1, o2, o3}, o1 ≻1 o3 ≻1 o2 and o1 ≻2

o2 ≻2 o3. It is clear that o1 is a local solution before any dialogue, and thus
it can be reached with a simple exchange of offers. Assume now that o2 is
an ideal solution. Thus, o2 is clearly better than o1 since o2 is a choice that
both agents would make under “complete” information.

Conclusion: in this case, argumentative negotiations lead to an ideal solu-
tion (of course provided that the protocols are defined in an efficient way)
while non-argumentative ones sometimes find an ideal solution and some-
times not. Thus, argumentative dialogues yields a better or equal outcome
than non-argumentative ones.

Case 3. Let us now consider the case where there is no ideal solution
but there exists a local solution at the step 0, and let us show how sending
and requesting arguments can be beneficial in this case.

Example 6.3.7. Let us consider the case where Ag1 wants to sell a house
to Ag2. Let O = {h1, h2}, where h1 and h2 represent two houses. The
argument b represents the fact that the seller has a bonus if he sells h1, s
means that h1 has a swimming-pool, and e means that o2 is energy efficient.
The preferences of the seller are b >1 s, b >1 e. The arguments and defeats
of the seller are depicted on the left, and those of the buyer on the right
side of Figure 6.1. Thus, for both Ag1 and Ag2, o1 is acceptable and o2

is rejected. The buyer has only one argument, but his potential preferences
(formally captured by ≥2 (L), but we write ≥2 to simplify notation) would
be e >2 s >2 b.

Figure 6.1: Buying a house: step 0.

h1

h2

h1

h2

b s

e

s

Thus, the optimal solution for Ag1 is o1, and the optimal solution for
Ag2 is o2. There is no ideal solution. If no arguments are exchanged, agents
agree on o1 and the negotiation ends. o1 is also a Pareto optimal solution
at this step. However, if Ag2 requests information about energetic efficiency
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of houses, and Ag1 sends the argument e, then there is no local solution at
the step 1.

Figure 6.2: Buying a house: step 1.
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h2
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At the first sight, argumentation ruined a possible deal. On the contrary,
we believe that argumentation ameliorated the quality of negotiation, since
Ag2 was misled at the beginning. It is better not to conclude a deal than to
accept a bad offer. There are several points to be made here.

First, at the beginning, if energetic efficiency is the most important cri-
terion for Ag2, then he must request (any good protocol should allow this)
informations about energetic efficiency of the houses (and a “proof” for
them) even if they are not provided by the seller. If Ag1 does not provide
them, Ag2 should be suspicious and hesitate or consult someone else. If Ag1
provides informations about energetic efficiency (in our case, by sending the
argument e), then Ag2 will have a more realistic picture about the decision
to make.

Second, since there is no ideal solution, either one agent will deceive the
other one, or both agents will make concessions. We argue that, from the
“global” perspective, agents are in better situation at the step 1 than at the
step 0; since there is no ideal solution, the solution at the step 0 (since it is
optimal for Ag1) is not a concession. At the step 1, agents are closer to a
concession than at the step 0. Thus, argumentation helps them to find an
offer acceptable for both of them.

Conclusion: in the case where there is no ideal solution, sending and re-
questing arguments can help agents to make better decisions. If this means
braking a deal, then it was certainly not a good one for at least one of the
agents. Thus, we believe that in this case, argumentation leads to more
quality solutions.

However, since the negotiating parties often have conflicting interests, an
agent should take into account that another one may try to mislead him. An
agent must request missing information which is relevant to making decision
in question. If such information is not provided, or cannot be justified, the
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agent must be able to construct new arguments to model that fact. For
example, if Ag1 refused to provide the argument about energetic efficiency,
Ag2 should refuse further negotiations or search for the data (e.g. by asking
a payed independent expert).

Provided a reasonable good protocol, arguing in this case may either
lead to a Pareto optimal solution (if agents accept to make concessions) or
to a failure. We argue that even a failure of negotiations is better for an
agent than a bad solution. Indeed, the aim of a negotiation is not to reach
any solution but to reach a solution which is good for both agents.

Case 4. The last case corresponds to the situation where there is no ideal
solution and no local solution at the step 0. Non-argumentative dialogues
may only find Pareto optimal solutions if agents accept to make concessions.
However, those solutions may be bad for both agents as illustrated by the
following example.

Example 6.3.8. Assume that O = {o1, o2, o3}. The initial theory of Ag1
returns o1 ≻1 o3 ≻1 o2 and the theory of Ag2 returns o2 ≻2 o1 ≻2 o3. It is
clear that there is no local solution. The offers o1 or o2 are Pareto optimal
solutions, and may be accepted in a non-argumentative dialogue. Assume
now that when agents exchange all of their arguments, the new theories of
the two agents return respectively o2 ≻1 o3 ≻1 o1 and o3 ≻2 o2 ≻2 o1. This
means that o1 is the worst offer for both agents. Thus, if the two agents
have sufficient information, they will never opt for o1.

Conclusion: in this case there, exchanging arguments may prevent agents
from accepting a bad compromise and push them towards a better one.

6.4 Conclusion

In this chapter we have studied argumentation-based negotiation. We first
presented existing works, classified in game-theoretic, heuristic-based and
those based on argumentation. Argumentation has been integrated into ne-
gotiation dialogues in the early nineties by Sycara (1990). In that work, the
author emphasized the advantages of using argumentation in negotiation
dialogues, and a specific framework was introduced. In Kraus, Sycara, and
Evenchik (1998), the different types of arguments that are used in a nego-
tiation dialogue, such as threats and rewards, were discussed. Moreover, a
particular framework for negotiation was proposed. Additional frameworks
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were also proposed (Parsons and Jennings, 1996; Tohmé, 1997). Even if all
these frameworks are based on different logics, and use different definitions
of arguments, they all have at their heart an exchange of offers and argu-
ments. However, none of those proposals explain when arguments can be
used within a negotiation, and how they should be dealt with by the agent
that receives them. Thus the protocol for handling arguments was missing.
Another limitation of the above frameworks is the fact that the argumen-
tation frameworks they use are quite poor, since they use a very simple
acceptability semantics. Amgoud, Parsons, and Maudet (2000b) suggested
a negotiation framework that fills that gap. A protocol that handles the
arguments was also proposed. However, the notion of concession is not
modeled in that framework, and it is not clear what is the status of the out-
come of the dialogue. Moreover, it is not explained how an agent chooses
the offer to propose at a given step of the dialogue. Some authors have
focused mainly on this decision problem (Kakas and Moraitis, 2006). They
have proposed an argumentation-based decision framework that is used by
agents in order to choose the offer to propose or to accept during the dia-
logue. In that work, agents are supposed to have a belief base and a goal
base. Amgoud, Dimopoulos, and Moraitis (2007) proposed a more general
setting. Indeed, the authors proposed an abstract argument-based decision
model, and have shown how it is updated when an agent receives a new argu-
ment. Finally, they proposed a simple protocol allowing agents to exchange
offers and arguments. Hadidi, Dimopoulos, and Moraitis (2010) proposed a
slightly different version of that protocol. However, in both papers nothing
is said about the quality of the outcome that may be returned under those
protocols.

To the best of our knowledge the only work that attempted to show that
argumentation is beneficial in negotiation is the work by Rahwan, Pasquier,
Sonenberg, and Dignum (2007). In that paper, agents need resources in or-
der to reach their goals. Thus, they negotiate with each other by exchanging
resources and their goals following an extended version of the bargaining pro-
tocol. The paper shows that an exchange of goals may increase the utility
of the outcome. Our work is more general in the sense that we do not focus
on a particular negotiation object (like resources). Our notion of argument
is much more general, and our analysis is made independently from any pro-
tocol. Finally, in our paper we have identified the different types of outputs
and we have studied the role of argumentation whatever the negotiation
object is.

To summarize, despite the huge number of works on argument-based
approach for negotiation, there is no work which formally studies the impact
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of arguments on a negotiation dialogue as well as the role that is played by
argumentation. We believe that our work is the first attempt in formalizing
and identifying these issues.
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Prediction is very difficult,

especially if it’s about the future.

Niels Bohr 7
Conclusion and perspectives

This chapter concludes the thesis and presents several possible directions for
future work.

7.1 Conclusion

The main contributions of this thesis are:

• the study of equivalence in logic-based argumentation,

• the study of the role(s) played by preferences in argumentation frame-
works,

• the study of dynamics of argumentation-based decision frameworks,
and

• the study of the impact of argumentation on the quality of negotiation
outcomes.

The first contribution of this thesis is defining and studying different
notions of equivalence in argumentation. Despite the obvious benefit of
developing equivalence criteria for argumentation frameworks, this question
has not received much attention. Until now, the only work on equivalence
in argumentation (Oikarinen and Woltran, 2010) is conducted for abstract
argumentation frameworks, which means that the structure of arguments
is supposed to be not known. Only the notion of strong equivalence is ad-
dressed in that paper. But even the results concerning strong equivalence
showed that if there are no self-attacking arguments, two argumentation
frameworks are equivalent only if they coincide. We showed that when
the structure of arguments is taken into account, similarities arise which
are undetectable on the abstract level. We have proposed different equiva-
lence criteria, investigated their links and shown under which conditions two
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frameworks are equivalent w.r.t. each of the proposed criteria. The notion
of equivalence is then used in order to compute the core(s) of an argumen-
tation framework. A core of a framework is an equivalent sub-framework.
We showed that instead of using an argumentation framework which may
be infinite, it is sufficient to consider one of its cores, which are usually finite.

The second part of the thesis concerns the use of preferences in argu-
mentation. We have investigated the roles that preferences may play in
an argumentation framework. Two particular roles have been identified: i)
to privilege strong arguments when computing the standard solutions of a
framework, and ii) to refine those standard solutions. We have shown that
the two roles are completely independent and require different procedures for
modeling them. Besides, we have shown that the existing works have tackled
only the first role. Moreover, the proposed approaches suffer from a draw-
back which consists of returning conflicting extensions. We have proposed
an approach which solves this problem and which presents two novelties:
First, it takes into account preferences at a semantic level, i.e. it defines
new acceptability semantics which are grounded on attacks and preferences
between arguments. Second, a semantics is defined as a dominance relation
that compares any pair of subsets of arguments.

The third part illustrates preference-based argumentation framework (PAF)
in case of decision making and negotiation.

We have studied an instantiation of our PAF which rank-orders options
in a decision making problem, where options are supported by arguments,
which have different strengths and attack each other. Arguments support-
ing beliefs and those supporting options are distinguished. Our particular
attention is drawn to the dynamics of this model. More precisely, we have
shown how the ordering on options changes in light of a new argument. We
have provided conditions under which an accepted option becomes rejected
and vice versa. Our study is undertaken under two acceptability seman-
tics: grounded semantics and preferred one. These results may be used in
negotiation dialogues, namely to determine strategies. Indeed, at a given
step of a dialog, an agent may choose which argument to send to another
agent in order to change the status of an option. Our results may also help
to understand which arguments are useful and which ones are useless in a
given situation.

We have also used our PAF in order to show the benefits of arguing in
negotiation dialogues. Even if it has been claimed by many researches
that exchanging arguments may positively influence the quality of nego-
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tiation outcome, this was never formally shown on an abstract level. To
accomplish this goal, it is necessary to define different types of solutions and
to compare them. We have used an abstract framework for argument-based
negotiation, defined the different types of solutions that may be reached in
such dialogues, and we have formally shown that that arguing is beneficial
during a negotiation. Our work is very general, since it does not depend on
a particular notion of an argument and our analysis is made independently
from any protocol.

7.2 Future work

In Chapter 3, we have studied equivalence between argumentation frame-
works. All the results are shown under stable semantics. Our future work
will include conducting this study for other semantics. Even if the main
ideas will stay the same, there will certainly be changes when arguments are
evaluated using different semantics (at least in proofs).

Chapter 4 is devoted to the study of the role of preferences in argu-
mentation. We have proposed different relations which generalise stable,
preferred and grounded semantics. Then, we have studied all the relations
that can generalise stable semantics. An extension of our work would be
to characterize the different dominance relations that generalise preferred
semantics and those which generalise grounded semantics. A similar work
can be done on those semantics proposed by Baroni et al. (2005), ideal se-
mantics (Dung et al., 2007) and semi-stable semantics (Caminada, 2006b).
Another direction of future work consists of studying how the new seman-
tics can be used in a decision making context in order to rank order a set of
alternatives. Namely, if we are able to compare extensions then we obtain
more information than provided by traditional approaches. We believe that
this information can be used in decision making, since better extensions will
strengthen options supported by arguments of those extensions more than
some weaker extensions and their arguments.

In Chapter 5, we have used an argument-based decision making frame-
work which contains only arguments in favour of options. Future works will
include the study of dynamics of an argumentation-based decision making
framework which contains both arguments in favour and against options.
In the proposed model, a preference relation between offers is defined on
the basis of the partition of the set of offers to acceptable, negotiable, non-
supported and rejected. The future work will be to refine this relation.
Amgoud and Prade (2009) have proposed different criteria for comparing
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decisions which can be used to extend the decision making framework.
In Chapter 6, we have studied a negotiation framework based on ex-

change of arguments. Our future work concerns several points. The first
one is to relax the assumption that the set of possible offers is the same to
both agents. Indeed, it is more natural to assume that agents may have
different sets of offers. Another urgent work would be to study the case
where the preference relations between arguments may evolve. This means
that the decision model should be able to reason about preferences. Also,
we supposed that when an agent receives an argument, no new arguments
are generated from this knowledge and the knowledge already owned by the
agent. Finding a way to relax this hypothesis will also be a part of future
work. The structure of arguments will have to be specified in order to do
this.
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A.1 Proofs for results in Chapter 3

Proposition 3.2.1. Let (A,R) be an argumentation system built from
Σ. If Σ is finite and R satisfies C2, then (A,R) has a finite number of
extensions.

Proof. Let S1, . . . , Sn ⊆ Σ be all the consistent subsets of Σ. We will use the
notation Ai = {a ∈ A | Supp(a) = Si}, with i ∈ {1, . . . , n}. (Note that some
of the sets in A1, . . . ,An may be empty, but that is not important for the
proof.) We will now prove that for every stable extension E ∈ Ext(F), for
any i ∈ {1, . . . , n}, for any a, a′ ∈ Ai we have a ∈ E iff a′ ∈ E . Let us suppose
that a ∈ E and a′ /∈ E . Since E is a stable extension, then ∃b ∈ E s.t. bRa′.
Since R satisfies C2 and Supp(a) = Supp(a′), then bRa, which contradicts
the fact that E is a stable extension. Therefore, if a ∈ E then a′ ∈ E . This
means that for any i ∈ {1, . . . , n}, any extension either contains all elements
of Ai or neither of them. Formally, ∀E ∈ Ext(F), ∀i ∈ {1, . . . , n}, we have
E ∩ Ai = Ai or E ∩ Ai = ∅. Consequently, there is at most 2n different
extensions.

Theorem 3.2.1. Let F and F ′ be two argumentation frameworks built
on the same logic (L,CN). Table A.1 summarises the dependencies in the
following form: (F ≡c F

′) ⇒ (F ≡c′ F
′).

Proof. Since there are 18 criteria available, there are 324 cases of this the-
orem. That is why we do not provide all the proofs. However, we provide
proofs of several implications to show the reasoning behind them and we be-
lieve that the reader can use the similar reasoning to prove the other parts.
Some counter-examples are also provided. Throughout the proof, we use
notation F = (A,R) and F ′ = (A′,R′).
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EQi/EQj 1 11 12 13 2 21 22 23 3 31 32 33 4 4b 5 5b 6 6b
1 + + + + + + + + + + + + + + + + + +
11 + + + + + + +
12 + + + + + + +
13 + + + +
2 + + + + + +
21 + + +
22 + + + +
23 + +
3 + + + + + +
31 + + +
32 + + + +
33 + +
4 + +
4b +
5 + +
5b +
6 + +
6b +

Table A.1: Links between criteria. For two criteria, c in row i, and c′ in col-
umn j, sign + means that c implies c′, more precisely, if two argumentation
frameworks are equivalent w.r.t. c then they are equivalent w.r.t. c′.

Example A.1.1. Let L = {r1, r2, r3, r4, r5, c} with CN being defined as fol-
lows: for all X ⊆ L,

CN(X) =







L \ {c}, if c /∈ X and X 6= ∅
L, if c ∈ X
∅, if X = ∅

and CN{r1} = CN{r2} = CN{r3} = CN{r4} = CN{r5} = L \ {c}. Let
a1 = ({r1}, r1), a2 = ({r1}, r2), a3 = ({r1}, r3), a4 = ({r1}, r4), a5 =
({r1}, r5). Let A = {a1, a2, a3}, R = {(a2, a3), (a3, a2)}, A′ = {a4, a5} and
R′ = {(a4, a5), (a5, a4)}. Sc(F) = {a1}, Sc(F ′) = ∅. F ≡EQ11 F ′ since
a bijection verifying conditions of EQ11 can be defined as: f : Ext(F) →
Ext(F ′), f({a1, a2}) = {a4}, f({a1, a3}) = {a5}.

This example illustrates the fact that EQ11 does not imply EQ1, EQ12,
EQ2, EQ21, EQ22, EQ23, ...

We will now show that EQ11 implies EQ31. Let a ∈ Cr(F). We will
prove that ∃a′ ∈ Cr(F ′) s.t. a ≈1 a′. Since a ∈ Cr(F) then ∃E ∈ Ext(F)
s.t. a ∈ E . Let f be a bijection from EQ11 and let E ′ = f(E). From
EQ11, E ∼1 E ′, thus ∃a′ ∈ E ′ s.t. a ≈1 a′. This means that ∀x ∈ Cr(F),
∃x′ ∈ Cr(F ′) such that x ≈1 x′. To prove that ∀a′ ∈ Cr(F ′), ∃a ∈ Cr(F)
such that a ≈1 a′ is similar. Thus, Cr(F) ∼1 Cr(F

′).
Note that EQ11 does not imply EQ4b in the general case as illustrated

by Example A.1.1.
If EQ11 is true then EQ6 is true: Let E ∈ Ext(F) and E ′ = f(E).

We can check that Base(E) = Base(E ′). This means that ∀E ∈ Ext(F),
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∃E ′ ∈ Ext(F ′) s.t. Base(E) = Base(E ′) and ∀E ′ ∈ Ext(F ′), ∃E ∈ Ext(F) s.t.
Base(E) = Base(E ′).

Example A.1.2. Let (L,CN) be the logic from Example A.1.1. Let a1 =
({r1}, r1), a2 = ({r2}, r1), a3 = ({r3}, r1), a4 = ({r4}, r1), a5 = ({r5}, r1).
Let A = {a1, a2, a3}, R = {(a2, a3), (a3, a2)}, A′ = {a4, a5} and R′ =
{(a4, a5), (a5, a4)}. Sc(F) = {a1}, Sc(F

′) = ∅.

Example A.1.2 shows that EQ12 does not imply EQ1, EQ11, EQ2, EQ21,
EQ22, EQ23, ...

Let us prove that EQ12 implies EQ6b. Let B ∈ Bases(F). Then,
∃E ∈ Ext(F) s.t. B = Base(E). Let f be a bijection from EQ12 and let
E ′ = f(E); then we have Base(E ′) ∼= B.

We will now show that EQ33 implies EQ5b. Let x ∈ Outputcr(F). This
means that ∃a ∈ A s.t. a ∈ Cr(F) and Conc(a) = x. Since F ≡EQ33 F ′,
then ∃a′ ∈ A′ s.t. a′ ∈ Cr(F ′) and a ≈3 a′. Let x′ = Conc(a′). From
a ≈3 a′, we have x ≡ x′. Since x was arbitrary then ∀x ∈ Outputcr(F)
∃x′ ∈ Outputcr(F

′) s.t. x ≡ x′. To show that ∀x′ ∈ Outputcr(F
′) ∃x ∈

Outputcr(F) s.t. x ≡ x′ is similar. Thus, Outputcr(F) ∼= Outputcr(F
′),

which means that F ≡EQ5b F
′.

Example A.1.3. Let (L,CN) be propositional logic and let A = {({x∧y}, x)},
A′ = {({x ∧ z}, x)}, R = ∅, R′ = ∅. Outputsc(F) = Outputsc(F

′) = {x}.

Example A.1.3 shows that EQ4 does not imply EQ1, EQ11, EQ12, EQ13,
EQ2, EQ21, EQ22, EQ23, EQ3, EQ31, EQ32, EQ33, EQ6, EQ6b.

Proposition 3.2.3. Let (A,R) be an argumentation framework s.t. R
verifies C1′ and C2. For all a, a′, b, b′ ∈ A, (a ≈1 a′ and b ≈1 b′) ⇒
(aRb iff a′Rb′).

Proof. Let a ≈1 a′ and b ≈1 b′ and let aRb. Since Supp(b) = Supp(b′) then
from C2 we have that aRb′. From C1’ and Conc(a) ≡ Conc(a′), we obtain
a′Rb′. To show that a′Rb′ implies aRb is similar.

Proposition 3.2.4. Let (A,R) be an argumentation framework s.t. R
enjoys C1′ and C2. For all a, a′ ∈ A, if a ≈1 a′, then ∀E ∈ Ext(F),
a ∈ E iff a′ ∈ E .

Proof. ⇒ Let E ∈ Ext(F), a ≈1 a′ and a ∈ E . We will prove that a′ ∈ E .
Let c ∈ A. Proposition 3.2.3 implies that aRc iff a′Rc and cRa iff cRa′.
From these facts, we conclude that E ∪ {a′} is conflict-free, since in the case
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of contrary, if for b ∈ E , we had a′Rb or bRa′, Proposition 3.2.3 would imply
aRb or bRa, which is impossible. Since E is a stable extension then it is
a maximal conflict-free set. This is why the case a′ /∈ E is not possible;
consequently a′ ∈ E .

⇐ If a /∈ E , then a′ /∈ E . The contrary would, from a′ ∈ E (like in the
first part of the proof) imply that a ∈ E , contradiction.

Proposition 3.2.5. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), and let R and R′ verify C1′

and C2, and F ≡EQ11 F ′. For all a ∈ A and for all a′ ∈ A′, if a ≈1 a′ then
Status(a,F) = Status(a′,F ′).

Proof. If F has no extensions, then all arguments in F and F ′ are rejected.
Thus, in the rest of the proof, we study the case when Ext(F) 6= ∅. We
will first prove that for any extension E of F , a ∈ E iff a′ ∈ f(E), where
f : Ext(F) → Ext(F ′) is a bijection which satisfies EQ11. Let E ∈ Ext(F),
let a ∈ E and let a′ ∈ A′ with a ≈1 a′. Let E ′ = f(E); we will prove that
a′ ∈ E ′. From EQ11, one obtains ∃a′′ ∈ E ′ s.t. a ≈1 a′′. (Note that we do not
know whether a′ = a′′ or not.) We will prove that {a′} ∪ E ′ is conflict-free.
Let us suppose the contrary. This means that ∃x ∈ E ′ s.t. xR′a′ or a′R′x.
From xR′a′ and C2, we have xR′a′′ which contradicts the fact that E ′ is
a stable extension. Else, from a′R′x, condition C1’ implies a′′R′x which is
not possible neither. We conclude that {a′} ∪ E is conflict-free. Since E ′ is
a stable extension, it attacks any argument y /∈ E ′. Since E ′ does not attack
a′, then a′ ∈ E ′.

This means that we showed that for any E ∈ Ext(F), if a ∈ E then
a′ ∈ f(E). Let a /∈ E and let us prove that a′ /∈ f(E). Suppose the contrary,
i.e. suppose that a′ ∈ f(E). Since we made exactly the same hypothesis on
F and F ′, by using the same reasoning as in the first part of the proof, we
can prove that a ∈ E , contradiction. This means that a′ /∈ f(E). So, we
proved that for any extension E ∈ Ext(F), we have a ∈ E iff a′ ∈ f(E).

If a is sceptically accepted, then for any E ∈ Ext(F), a ∈ E . Let E ′ ∈
Ext(F ′). Then, from EQ11, there exists E ∈ Ext(F) s.t. E ′ = f(E). Since
a ∈ E , then a′ ∈ E ′. If a is not sceptically accepted, then ∃E ∈ Ext(F) s.t.
a /∈ E . It is clear that E ′ = f(E) is an extension of F ′ and that a′ /∈ E ′.
Thus, in this case a′ is not sceptically accepted in F ′.

Let a be credulously accepted in F and let E ∈ F be an extension s.t.
a ∈ E . Then, a′ ∈ f(E), thus a′ is credulously accepted in F ′. It is easy to see

132



A.1. PROOFS FOR RESULTS IN CHAPTER 3

that the case when a is not credulously accepted in F and a′ is credulously
accepted in F ′ is not possible.

If a is rejected in F , then a is not credulously accepted, thus a′ is not
credulously accepted which means that it is rejected.

Theorem 3.2.2. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1′ and C2.
If F ≡EQ11 F ′, then F ≡x F ′ with x ∈ {EQ21, EQ23, EQ4b}.

Proof. Let us prove that EQ21 is verified. If Ext(F) = ∅, then from EQ11,
Ext(F ′) = ∅. In this case, EQ21 is trivial, since Sc(F) = Sc(F ′) = ∅. Else,
let Ext(F) 6= ∅.

Let Sc(F) = ∅. We will prove that Sc(F ′) = ∅. Suppose the contrary
and let a′ ∈ Sc(F ′). Let E ′ ∈ Ext(F ′). Argument a′ is sceptically accepted,
thus a′ ∈ E ′. Let f be a bijection from EQ11, and let us denote E =
f−1(E ′). From F ≡EQ11 F ′, we obtain E ∈ Ext(F). Furthermore, E ∼1 E ′,
and, consequently, ∃a ∈ E s.t. a ≈1 a′. Proposition 3.2.5 implies that a is
sceptically accepted in F , contradiction.

Let Sc(F) 6= ∅ and let a ∈ Sc(F). Since EQ11 is verified, and a is in at
least one extension, then ∃a′ ∈ A′ s.t. a′ ≈1 a. Since EQ11 is verified then,
from Proposition 3.2.5, a′ is sceptically accepted in F ′. Thus ∀a ∈ Sc(F),
∃a′ ∈ Sc(F ′) s.t. a′ ≈1 a. To prove that ∀a′ ∈ Sc(F ′), ∃a ∈ Sc(F) s.t.
a ≈1 a′ is similar.
Since EQ21 implies EQ23 and EQ4b in the general case, as shown in Theo-
rem 3.2.1, then we conclude that F and F ′ must be equivalent w.r.t. EQ21,
EQ23 and EQ4b.

Proposition 3.2.6. Let (A,R) be an argumentation framework s.t.
R enjoys C1 and C2′. For all a, a′, b, b′ ∈ A, (a ≈2 a′ and b ≈2 b′) ⇒
(aRb iff a′Rb′).

Proof. Similar to Proposition 3.2.3.

Proposition 3.2.7. Let (A,R) be an argumentation framework s.t. R
enjoys C1 and C2′. For all a, a′ ∈ A, if a ≈2 a′ then ∀E ∈ Ext(F), a ∈
E iff a′ ∈ E .

Proof. Similar to Proposition 3.2.4.

Proposition 3.2.8. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1 and
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C2′, and F ≡EQ12 F ′. For all a ∈ A and for all a′ ∈ A′, if a ≈2 a′ then
Status(a,F) = Status(a′,F ′).

Proof. Similar to Proposition 3.2.5.

Theorem 3.2.3. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1 and C2′.
If F ≡EQ12 F ′, then F ≡x F ′ with x ∈ {EQ22, EQ23, EQ4, EQ4b}.

Proof. Similar to Theorem 3.2.2.

Proposition 3.2.9. Let (A,R) be an argumentation framework s.t. R
enjoys C1′ and C2′. For all a, a′, b, b′ ∈ A, (a ≈3 a′ and b ≈3 b′) ⇒
(aRb iff a′Rb′).

Proof. Similar to Proposition 3.2.3.

Proposition 3.2.10. Let (A,R) be an argumentation framework s.t.
R enjoys C1′ and C2′. For all a, a′ ∈ A, if a ≈3 a′ then ∀E ∈ Ext(F),
a ∈ E iff a′ ∈ E .

Proof. Similar to Proposition 3.2.4.

Proposition 3.2.11. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1′ and C2′,
and F ≡EQ13 F ′. For all a ∈ A and for all a′ ∈ A′, if a ≈3 a′ then
Status(a,F) = Status(a′,F ′).

Proof. Similar to Proposition 3.2.5.

Theorem 3.2.4. Let F = (A,R), F ′ = (A′,R′) be two argumentation
frameworks built from the same logic (L,CN), R and R′ verify C1′ and C2′.
If F ≡EQ13 F ′, then F ≡x F ′ with x ∈ {EQ23, EQ4b}.

Proof. Similar to Theorem 3.2.2.

Theorem 3.2.5. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1′ and C2 and A ∼1 A′, then F ≡EQ11 F ′.

134



A.1. PROOFS FOR RESULTS IN CHAPTER 3

Proof. Let us first suppose that Ext(F) 6= ∅ and let us define the function
f ′ : 2A → 2A

′

as follows: f ′(B) = {a′ ∈ A′ | ∃a ∈ B s.t. a′ ≈1 a}.
Let f be the restriction of f ′ to Ext(F). We will prove that the image

of this function is Ext(F ′) and that f is a bijection between Ext(F) and
Ext(F ′) which verifies EQ11.

• First, we will prove that for any E ∈ Ext(F), f(E) ∈ Ext(F ′). Let
E ∈ Ext(F) and let E ′ = f(E). We will prove that E ′ is conflict-free.
Let a′, b′ ∈ E ′. There must exist a, b ∈ E s.t. a ≈1 a′ and b ≈1 b′.
Since E is an extension, ¬(aRb) and ¬(bRa). By applying Proposition
3.2.3 on (Arg(L),R(L)), we have that ¬(a′R′b′) and ¬(b′R′a′). Let
x′ ∈ A′ \ E ′. Then ∃x ∈ A s.t. x ≈1 x′. Note also that it must be
that x /∈ E . Since E ∈ Ext(F), then ∃y ∈ E s.t. yRx. From A ∼1 A′,
∃y′ ∈ E ′ s.t. y′ ≈1 y. From Proposition 3.2.3, y′R′x′.

• We have shown that the image of f is the set Ext(F ′). We will now
prove that f : Ext(F) → Ext(F ′) is injective. Let E1, E2 ∈ Ext(F)
with E1 6= E2 and E ′ = f(E1) = f(E2). We will show that if E1 ∼1 E2

then E1 = E2. Let us suppose that E1 ∼1 E2 and E1 6= E2. Without
loss of generality, let ∃x ∈ E1 \ E2. Then, from E1 ∼1 E2, ∃x′ ∈ E2, s.t.
x′ ≈1 x. Then, since x ∈ E1 and x /∈ E2, from Proposition 3.2.4 we
obtain that x′ ∈ E1 and x′ /∈ E2. Contradiction with x′ ∈ E2. Thus, we
proved that E1 ∼1 E2 implies E1 = E2. Consequently, it must be that
¬(E1 ∼1 E2). Without loss of generality, ∃a1 ∈ E1 \ E2 s.t. ∄a2 ∈ E2

s.t. a1 ≈1 a2. Let a′ ∈ A′ s.t. a′ ≈1 a1. Recall that E ′ = f(E2). Thus,
∃a2 ∈ E2 s.t. a2 ≈1 a′. Contradiction.

• We show that f : Ext(F) → Ext(F ′) is surjective. Let E ′ ∈ Ext(F ′),
and let us show that ∃E ∈ Ext(F) s.t. E ′ = f(E). Let E = {a ∈
A | ∃a′ ∈ E ′ s.t. a ≈1 a′}. From Proposition 3.2.3 we see that E is
conflict-free. For any b ∈ A \ E , ∃b′ ∈ A′ \ E ′ s.t. b ≈1 b′. Since
E ′ ∈ Ext(F ′), then ∃a′ ∈ E ′ s.t. a′R′b′. Now, ∃a ∈ E s.t. a ≈1 a′; from
Proposition 3.2.3, aRb. Thus, E is a stable extension in F .

• We will now show that f : Ext(F) → Ext(F ′) verifies the condition of
EQ11. Let E ∈ Ext(F) and E ′ = f(E). Let a ∈ E . Then, ∃a′ ∈ A′ s.t.
a′ ≈1 a. From the definition of f , it must be that a′ ∈ E ′. Similarly, if
a′ ∈ E ′, then must be an argument a ∈ A s.t. a ≈1 a′, and again from
the definition of the function f , we conclude that a ∈ E .

From all above, we conclude that F ≡EQ11 F ′. Let us take a look at the
case when Ext(F) = ∅. We will show that Ext(F ′) = ∅. Suppose not and
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let E ′ ∈ Ext(F ′). Let us define E = {a ∈ A | ∃a′ ∈ E ′ s.t. a ≈1 a′}. From
Proposition 3.2.3, E must be conflict-free. The same proposition shows that
for any b ∈ A \ E , ∃a ∈ E s.t. aRb. Thus, E is a stable extension in F .
Contradiction with the hypothesis that Ext(F) = ∅.

Corollary 3.2.1. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1′ and C2 and A ∼1 A′, then F ≡x F ′ with
x ∈ {EQ13, EQ21, EQ23, EQ31, EQ33, EQ4b, EQ5b, EQ6, EQ6b}.

Proof. From Theorem 3.2.5, we conclude that F ≡EQ11 F ′. Equivalences
w.r.t. EQ13, EQ31, EQ33, EQ5b, EQ6 and EQ6b are consequences of EQ11,
as shown in Theorem 3.2.1. Theorem 3.2.2 yields a conclusion that EQ21,
EQ23 and EQ4b are verified.

Theorem 3.2.6. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1 and C2′ and A ∼2 A′, then F ≡EQ12 F ′.

Proof. Similar to Theorem 3.2.5.

Corollary 3.2.2. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1 and C2′ and A ∼2 A′, then F ≡x F ′ with
x ∈ {EQ13, EQ22, EQ23, EQ32, EQ33, EQ4, EQ4b, EQ5, EQ5b, EQ6b}.

Proof. Similar to Corollary 3.2.1.

Theorem 3.2.7. Let (L,CN) be a fixed logic, Arg(L) a set of arguments and
R(L) ⊆ Arg(L) × Arg(L). F ′ = (A′,R′) be two argumentation frameworks
s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ = R(L)|A′ . If R(L) satisfies C1′

and C2′ and A ∼3 A′, then F ≡EQ13 F ′.

Proof. Similar to Theorem 3.2.5.

Corollary 3.2.3. Let (L,CN) be a fixed logic, Arg(L) a set of arguments
and R(L) ⊆ Arg(L) × Arg(L). Let F = (A,R) and F ′ = (A′,R′) be
two argumentation frameworks s.t. A,A′ ⊆ Arg(L) and R = R(L)|A,R′ =
R(L)|A′ . If R(L) satisfies C1′ and C2′ and A ∼3 A′, then F ≡x F ′ with
x ∈ {EQ23, EQ33, EQ4b, EQ5b, EQ6b}.
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Proof. Similar to Corollary 3.2.1.

Corollary 3.3.1. Let F = (A,R) and F ′ = (A′,R′) be two argumentation
frameworks built from a Tarskian logic (L,CN), s.t. R(L) ⊆ Arg(L)×Arg(L)
verifies C1’ and C2, R = R(L)|A and R′ = R(L)|A′ . If F ≡EQ11S,
then F ≡x F ′ with x ∈ {EQ13S,EQ21S,EQ23S,EQ31S,EQ33S, EQ4bS,
EQ5bS,EQ6S, EQ6bS}.

Proof. Let B ⊆ Arg(L). Since F ≡EQ11S F ′, then F⊕B ≡EQ11 F ′⊕B. From
Corollary 3.2.1, F ⊕ B ≡x F ′ ⊕ B, with x ∈ {EQ13, EQ21, EQ23, EQ31,
EQ33, EQ4b,EQ5b,EQ6, EQ6b}. Since B was arbitrary, we conclude that
F ≡x F ′ with x ∈ {EQ13S,EQ21S, EQ23S, EQ31S, EQ33S, EQ4bS,
EQ5bS, EQ6S,EQ6bS}.

Theorem 3.3.1. Let F = (A,R) and F ′ = (A′,R′) be two argumentation
frameworks built from a Tarskian logic (L,CN), s.t. R(L) ⊆ Arg(L)×Arg(L)
verifies C1’ and C2, R = R(L)|A and R′ = R(L)|A′ . If A ∼1 A′, then
F ≡EQ11S F ′.

Proof. Let B ⊆ Arg(L). Since A ∼1 A′ then clearly A∪B ∼1 A′ ∪ B. From
Theorem 3.2.5, we obtain that F⊕B ≡EQ11 F ′⊕B. Thus, F ≡EQ11S F ′.

Theorem 3.4.1. Let F be an argumentation framework and F ′ one of its
cores. Then: F ≡EQ11 F ′.

Proof. The result is obtained by applying Theorem 3.2.5 on F and F ′.

Corollary 3.4.1. Let F be an argumentation framework and F ′ one of its
cores. Then:

• Sc(F) ∼1 Sc(F
′)

• Cr(F) ∼1 Cr(F
′)

• Outputsc(F) ∼= Outputsc(F
′)

• Outputcr(F) ∼= Outputcr(F
′)

• Bases(F) = Bases(F ′)

Proof. From Theorem 3.4.1, F ≡EQ11 F ′. From Theorems 3.2.1 and 3.2.2,
we have F ≡x F ′, with x ∈ {EQ21, EQ31, EQ4b,EQ5b,EQ6}, which ends
the proof.
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Proposition 3.4.1. Let F = (A,R) be an argumentation framework
and let a, a′ ∈ A be two arguments such that Supp(a) = Supp(a′). Then:
Status(a,F) = Status(a′,F).

Proof. We will prove that for every stable extension E , we have a ∈ E iff
a′ ∈ E . Let us suppose that a ∈ E and a′ /∈ E . Since E is a stable extension,
then ∃b ∈ E s.t. bRa′. From C2, we have that bRa which contradicts the
fact that E is a stable extension. The case a /∈ E and a′ ∈ E is symmetric.
This means that each extension of F either contains both a and a or does
not contain any of those two arguments. Consequently, the statuses of those
arguments must coincide.

Proposition 3.4.2. Let F = (A,R) be an argumentation framework and
F ′ = (A′,R′) its core.

• If a ∈ A′ then Status(a,F) = Status(a,F ′),

• If a /∈ A′ then Status(a,F) = Status(b,F ′), where b ∈ A′ is an
arbitrary argument s.t. Supp(a) = Supp(b).

Proof.

• From Proposition 3.4.1, F ≡EQ11 F ′. Now, from Proposition 3.2.5,
Status(a,F) = Status(a,F ′).

• From the first part of the proposition, Status(b,F) = Status(b,F ′).
From Proposition 3.4.1, Status(a,F) = Status(b,F). Thus, it must
be Status(a,F) = Status(b,F ′).

Theorem 3.4.2. Let F = (A,R) be an argumentation framework built
over a knowledge base Σ (i.e. let A ⊆ Arg(Σ)). If Cncs(Σ)/ ≡ is finite, then
any core of F is finite.

Proof. Let F ′ = (A′,R′) be a core of F and let us prove that F ′ is finite.
Since Σ is finite, then {Supp(a) | a ∈ A′} must be finite. If for all H ∈
{Supp(a) | a ∈ A′}, the set {a ∈ A′ | Supp(a) = H}, is finite, then the set
A′ is clearly finite. Else, there exists H0 ∈ {Supp(a) | a ∈ A′}, s.t. the set
AH0 = {a ∈ A′ | Supp(a) = H0} is infinite. By the definition of A′, one
obtains that ∀a, b ∈ AH0 , Conc(a) 6≡ Conc(b). It is clear that ∀a ∈ AH0 ,
Conc(a) ∈ Cncs(Σ). This implies that there are infinitely many different
formulae having pairwise non-equivalent conclusions in Cncs(Σ), formally,
the set Cncs(Σ)/ ≡ is infinite, contradiction.
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Lemma A.1.1. Let (Ac,Rc) be a core of F↓ = (A↓ = Arg(Σ)↓,R↓ = R(L)|A↓
)

and let A1 be an arbitrary set which contains Ac, i.e. Ac ⊆ A1 ⊆ Arg(Σ).
We define R1 = R|A1 , as expected, and F1 = (A1,R1). Let S1, . . . , Sn be
all the maximal consistent subsets of Σ, and let E1 = Arg(S1)∩A1, . . . , En =
Arg(Sn) ∩A1. Then, Ext(F1) = {E1, . . . , En}.

Proof. We will first prove that for any maximal consistent subset Si of Σ,
the set Ei = Arg(Si) ∩ A1 is a stable extension of F1. It is easy to see that
if Si is consistent then Arg(Si) is conflict-free. Let us prove that Ei attacks
any argument in A1 \ Ei. Let a′ ∈ A1 \ Ei. Since a′ /∈ Ei, then ∃h ∈ Supp(a′)
s.t.
h /∈ Si. Since Supp(a′) ⊆ Σ and Si is a maximal consistent subset of Σ, it
follows that Si∪{h} is inconsistent. Then, there exists a minimal set C ⊆ Si

s.t.
C ∪ {h} is inconsistent. Let a = (C,¬h). Then, since a uses only atoms
from Σ (since h ∈ Σ) and since (Ac,Rc) is a core of F↓ then ∃a1 ∈ Ac s.t.
a1 ≈1 a. Since Supp(a1) ⊆ Si then a1 ∈ Ei. Also, a1R1a

′. Hence, Ei is a
stable extension of F1.

We will now prove that for any E ′ ∈ Ext(F1), there exists a maximal
consistent subset of Σ, denoted S′, s.t.
E ′ = Arg(S′)∩A1. To show this, we will show that: 1) Base(E ′) is consistent,
2) Base(E ′) is a maximal consistent set in Σ, 3) E ′ = Arg(Base(E ′)) ∩ A1 .

1. Let S′ = Base(E ′). Suppose that S′ is an inconsistent set and let
C ⊆ S′ be a minimal inconsistent subset of S′. Let C = {f1, . . . , fk},
and let us construct the following argument: a = (C\{f1},¬f1). Since
E ′ is conflict-free, then a /∈ E ′ and ∄a1 ∈ E ′ s.t. a1 ≈1 a. Since Ac ⊆ A1,
then there exists an argument a1 ∈ A1 s.t. a1 ≈1 a. This means that,
a1 ∈ A1\E

′. Since E ′ is a stable extension, E ′ must attack a1. Formally,
∃a′ ∈ E ′ s.t. a′R1a1. So, Conc(a′) ≡ ¬f2 or Conc(a′) ≡ ¬f3, . . ., or
Conc(a′) ≡ ¬fk. Without loss of generality, let Conc(a′) ≡ ¬fk. Since
fk ∈ S′, then there exists at least one argument ak in E ′ s.t.
fk ∈ Supp(ak). Consequently, E ′ is not conflict-free, since a′ attacks
at least one argument in E ′.

2. Let S′ = Base(E ′) and suppose that S′ is not a maximal consistent set
in Σ. According to (1) S′ is consistent, hence ∃f ∈ Σ \ S′ s.t.
S′ ∪ {f} is consistent. Thus, for the argument b = ({f}, f), we have
that ∃b1 ∈ A1 \ E

′ s.t. b1 ≈ b, but no argument in E ′ attacks b1. (This
is since ¬f cannot be inferred from S′; consequently, no argument can
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be constructed from S′ having its conclusion logically equivalent to
¬f .)

3. It is easy to see that for any set of arguments E ′, we have E ′ ⊆
Arg(Base(E ′)). Since S ′ = Base(E ′) is a consistent set, then set
of arguments Arg(Base(E ′)) ∩ A1 must be conflict-free. From the
fact that E ′ is a stable extension of F1, we conclude that the case
E ′ ( Arg(Base(E ′)) ∩ A1 is not possible (since every stable extension
is a maximal conflict-free set).

We will now show that if S, S′ are two different maximal consistent subsets
of Σ, E = Arg(S) ∩A1 and E ′ = Arg(S′) ∩A1, then E 6= E ′. Without loss of
generality, let f ∈ S \ S′. Let af ∈ A1 be an argument s.t.
Supp(af ) = {f} and Conc(af ) ≡ f . Such an argument must exist since A1

contains Ac, and (Ac, Rc) is a core of F↓. It is clear that a ∈ E \ E ′, which
shows that E 6= E ′. This ends the proof.

Theorem 3.4.3. Let F = (Arg(Σ),R) and F↓ = (Arg(Σ)↓,R↓). For all
a ∈ Arg(Σ)↓, Status(a,F) = Status(a,F↓).

Proof. Let S1, . . . , Sn be all the maximal consistent subsets of Σ. Since
(Arg(Σ)↓,R↓) and (Arg(Σ),R) both contain at least one core of (Arg(Σ)↓,R↓)
(in fact, they both contain all cores of this set) then Lemma A.1.1 im-
plies that extensions of (Arg(Σ),R) are exactly Arg(Si), and extensions of
(Arg(Σ)↓,R↓) are exactly Arg(Si) ∩ Arg(Σ)↓, when 1 ≤ i ≤ n. Thus, the
two frameworks have the same number of extensions and any argument of
Arg(Σ)↓ is in the same number of extensions in them. Consequently, its
status must be the same in both frameworks.

Theorem 3.4.4. Let F = (Arg(Σ),R) be an argumentation framework
built over Σ. For all a ∈ Arg(Σ) \ Arg(Σ)↓, Status(a,F) = Status(b,F)
where b ∈ Arg(Σ)↓ and Supp(a) = Supp(b).

Proof. Let a ∈ Arg(Σ)\Arg(Σ)↓ and b ∈ Arg(Σ)↓ and let Supp(a) = Supp(b).
From Proposition 3.4.1, Status(a,F) = Status(b,F).

Proposition 3.4.3. It holds that |Arg(Σ)↓/ ≈1 | ≤ 2n ·22m
, where n = |Σ|

and m = |Atoms(Σ)|.

Proof. There are at most 2n different supports of arguments. It is well-
known that there are at most 22m

logically non-equivalent Boolean functions
of m variables. Thus, for any support H, there are at most 22m

different non-
equivalent arguments, where m is the number of different atoms in Σ.
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Theorem 3.4.5. Let F = (A = Arg(Σ),R) be an argumentation framework
built over a knowledge base Σ, let F ′ = (A′ = Arg(Σ)↓,R

′), with R′ = R|A′ ,
and let G be a core of F ′. Then, Outputsc(F) = {x ∈ L s.t.Outputsc(G) ⊢
x}.

Proof. Let G = (Ag,Rg).
⇒ Let h ∈ Outputsc(F). This means that ∃a ∈ A s.t. a ∈ Sc(F). Let
a = (H,h) and let H = {f1, . . . , fk}. Since a is an argument, then H is
consistent and no formula in H can be deduced from other formulae in H.
Then, a′ = (H, f1 ∧ . . . ∧ fk) must also be an argument. Note that its con-
clusion contains only atoms from Σ, thus a′ ∈ A′. Consequently, there must
exist an argument ag ∈ Ag s.t.
ag ≈1 a′. G is a core of F ′, thus they are equivalent w.r.t. EQ11 (Theo-
rem 3.4.1). Since equivalent arguments have the same status in equivalent
frameworks (Proposition 3.2.5) then ag is sceptically accepted in G. So,
Outputsc(G) ⊢ f1 ∧ . . . ∧ fk. Consequently, Outputsc(G) ⊢ h.

⇐ Let f be a propositional formula that can be deduced from Outputsc(G).
Let S1, . . . , Sn be all the maximal consistent subsets of Σ. According to
Lemma A.1.1, ∃a ∈ Ag s.t.Supp(a) ⊆ S1 ∩ . . .∩Sn and Conc(a) = f . Let us
denote H = Supp(a). Obviously, H ⊢ f . Furthermore, H ⊆ S1 ∩ . . . ∩ Sn.
From those two facts, we conclude that it must exist an argument a′ ∈
Arg(Σ) s.t.
Supp(a′) ⊆ H and Conc(a′) = f . From Lemma A.1.1, a′ is sceptically ac-
cepted in F . Thus, f ∈ Outputsc(F).

Theorem 3.5.1. Let F = (A,R) be an argumentation framework which
contains a core of G = (Ag = Arg(Σ),Rg = R(L)|Ag ) and let E ⊆ Arg(Σ).
Then:

• F ≡EQ11 F ⊕ E

• ∀a ∈ A, Status(a,F) = Status(a,F ⊕ E)

• ∀e ∈ E \ A, Status(e,F ⊕ E) = Status(a,F), where a ∈ A is any
argument s.t. Supp(a) = Supp(e).

Proof. Let F ′ = F ⊕ E with F ′ = (A′,R′) and let H = (Ah,Rh) be a core
of G s.t. Ah ⊆ A. We will first show that H is a core of both F and F ′.

• Let us first show that H is a core of F . We will show that all conditions
of Definition 3.4.1 are verified.
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– We have already seen why Ah ⊆ A.

– We will show that ∀a ∈ A, ∃!a′ ∈ Ah s.t. a′ ≈1 a. Let a ∈ A.
Since a ∈ Ag and H is a core of G, then ∃!a′ ∈ Ah s.t. a′ ≈1 a.

– Since R = R(L)|A and Rh = R(L)|Ah
then from Ah ⊆ A we

obtain that Rh = R|Ah
.

Thus, H is a core of F . Let us now show that H is also a core of F ′:

– Since Ah ⊆ A and A ⊆ A′ then Ah ⊆ A′.

– Let a ∈ A′. Since a ∈ Ag and H is a core of framework G, then
∃!a′ ∈ Ah s.t. a′ ≈1 a.

– Since R′ = R(L)|A′ , Rh = R(L)|Ah
and Ah ⊆ A′, then we obtain

that Rh = R′|Ah
.

We have shown that H is a core of F and of F ′. From Theorem
3.4.1, F ≡EQ11 H and F ′ ≡EQ11 H. Since ≡EQ11 is an equivalence
relation, then F ≡EQ11 F ′. Let a ∈ A. From Proposition 3.2.5,
Status(a,F) = Status(a,F ′).

Let e ∈ A′ \ A and let a ∈ A be an argument such that Supp(a) =
Supp(e). From Proposition 3.4.1, we obtain that Status(e,F ′) =
Status(a,F ′). Since we have seen that Status(a,F ′) = Status(a,F),
then Status(e,F ′) = Status(a,F).

A.2 Proofs for results in Chapter 4

Proposition 4.3.1. Let T = (A,R,≥) be a PAF. If a dominance relation
� satisfies postulate P1, then each element of the set �max is conflict-free
w.r.t. R.

Proof. Let T = (A,R,≥) be a PAF. Assume that � is a dominance relation
which satisfies postulate P1. Let us show that each element of the set �max

is conflict-free w.r.t. R.
Assume that E ∈ �max. Thus, ∀E ′ ∈ P(A), E � E ′. In particular, E � ∅.

Since ∅ ∈ CF(T ), then from Postulate P1, E ∈ CF(T ).

Theorem 4.3.1. Let F = (A,R) be an argumentation framework and
� ⊆ P(A)×P(A). Let Ext(F) be the set containing all the stable extensions
of F . The equality Ext(F) = �max holds iff ∀E ∈ P(A),
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1. if E /∈ CF(F) then ∃E ′ ∈ P(A) s.t. not(E � E ′), and

2. if E ∈ CF(F) and ∀a′ /∈ E , ∃a ∈ E s.t. aRa′, then ∀E ′ ∈ P(A), E � E ′,
and

3. if E ∈ CF(F) and ∃a′ ∈ A \ E s.t. ∄a ∈ E s.t. aRa′, then ∃E ′ ∈ P(A)
s.t. not(E � E ′).

Proof. Let F = (A,R) be an AF and � ⊆ P(A) × P(A).

⇒ Assume that Ext(F) = �max and let us prove that the three conditions
are satisfied.

1. Assume that E ∈ P(A) and E /∈ CF(F). So, E /∈ Ext(F), consequently,
E /∈ �max. Thus, ∃E ′ ∈ P(A) s.t. ¬(E � E ′).

2. Assume that E ∈ CF(F) and that ∀x′ /∈ E , ∃x ∈ E s.t. xRx′. Thus, E
is a stable extension of (A,R), which means that E ∈ �max. Conse-
quently, ∀E ′ ∈ P(A), E � E ′.

3. Assume that E ∈ CF(F) and ∃x′ ∈ A \ E s.t. ∄x ∈ E and xRx′. It is
obvious that E is not a stable extension of (A,R), thus E /∈ Ext(F).
Since Ext(F) = �max, it follows that E /∈ �max. Thus, ∃E ′ ∈ P(A)
s.t. not (E � E ′).

⇐ Assume that relation � satisfies the three conditions and let us prove
that Ext(F) = �max.

• Let E be a stable extension of (A,R) and let E ′ ∈ P(A). From the
second condition, E � E ′. Thus, E ∈ �max.

• Assume that E ∈ �max and let us prove that E ∈ Ext(F). Thus, for
all E ′ ∈ P(A), E � E ′. From the first condition, it follows that E is
conflict-free. Assume that E /∈ Ext(F). Thus, ∃x /∈ E and E does not
attack x. From the third condition, ∃E ′ ∈ P(A) s.t. not E � E ′. This
contradicts the fact that E ∈ �max.

Proposition 4.3.2. The relation �s satisfies postulates P1, P2 and P3.

Proof. Let us show that the relation �s satisfies postulates P1, P2 and P3.
From the first condition of Definition 4.3.5, it is clear that postulate P1 is
satisfied.
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Let x and x′ be two arguments. Since we assumed throughout the paper
that there are no self-attacking arguments, then {x} and {x′} are conflict-
free. Assume now that xRx′, ¬(x′Rx) and ¬(x′ > x). From the second
condition of Definition 4.3.5, it follows that {x} ≻s {x

′}. Thus, �s satisfies
postulate P2.

Assume now that xRx′ and x′ > x. From the second condition of Def-
inition 4.3.5, it follows that {x′} �s {x}. Also, ¬({x} �s {x′}). Thus,
{x′} ≻s {x}. Consequently, postulate P3 is satisfied by �s.

Theorem 4.3.2. The relation �s generalises stable semantics.

Proof. Let us show that the relation �s generalises stable semantics. Let
T = (A,R,≥) be a PAF. Assume that ∄a, b ∈ A s.t. aRb and b > a.

⇒ Assume that E ′ ∈�s
max and let us show that E ′ is a stable extension

of (A,R).

• Since E ′ ∈�s
max then it is conflict-free.

• We will now prove that E ′ defends all its elements. Let us suppose
that (∃a ∈ E ′) (∃x ∈ A) s.t. (x, a) ∈ R ∧ (∄y ∈ E ′) (y, x) ∈ R. Since
E ′ is conflict-free, then x /∈ E ′. Let E = {x} ∪ {t ∈ E ′ | (x, t) /∈ R ∧
(t, x) /∈ R}. It is clear the E is conflict-free since E is the union of two
conflict-free sets which do not attack one another. Since E ′ ∈�max

then E ′ �s E . In particular, since x ∈ E \ E ′, then (∃x′ ∈ E ′ \ E) s.t.
((x′, x) ∈ R ∧ (x, x′) /∈>) ∨ (x′, x) ∈>. Since (∄y ∈ E ′) (y, x) ∈ R,
then it must be the case that (x′, x) /∈ R and (x′, x) ∈>. Since x′ ∈ E ′

and x′ /∈ E then, with respect to definition of E , from x′ /∈ E we
have that (x, x′) ∈ R or (x′, x) ∈ R. Since we have just seen that
(x′, x) /∈ R, it must be that (x, x′) ∈ R. Recall that we have (x′, x) ∈>.
But we supposed that (∄z, z′ ∈ A) s.t. (z, z′) ∈ R and (z′, z) ∈>.
Contradiction. Thus, E ′ defends its arguments.

• We have just shown that E ′ is admissible, i.e. it is conflict-free and
it defends all its arguments. We will now prove that E ′ attacks all
arguments in A \ E ′. Let x /∈ E ′ be an argument and suppose that
(∄y ∈ E ′) (y, x) ∈ R. Either x attacks some argument of E ′ or not. If
it is the case, i.e. if (∃a ∈ E ′) s.t. (x, a) ∈ R then, since E ′ defends all its
elements, it holds that (∃y ∈ E ′) s.t. (y, x) ∈ R. Contradiction. So, it
must be that (∄a ∈ E ′) s.t. (x, a) ∈ R. This means that E = E ′∪{x} is
conflict-free. According to Proposition 4.3.3, it holds that ¬(E ′ �s E).
Contradiction with the fact that E ′ ∈�s

max.
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So, E ′ is conflict-free and it attacks all arguments in A\E ′. This means
that E ′ is a stable extension of the framework (A,R).

⇐ Let E ′ be a stable extension of the framework (A,R) and let us prove
that E ′ ∈�s

max.

• Since E ′ is stable then it is conflict-free.

• We will prove that for an arbitrary conflict-free set of arguments E it
holds that E ′ �s E . Let E ⊆ A be a conflict-free set. If E \ E ′ = ∅ the
proof is over. If it is not the case, let x ∈ E \E ′. Since x /∈ E ′ and E ′ is
a stable extension, then (∃x′ ∈ E ′) s.t. (x′, x) ∈ R. We supposed that
(∄z, z′ ∈ A) s.t. (z, z′) ∈ R and (z′, z) ∈>. Thus, (x, x′) /∈>. Since
x ∈ E \ E ′ was arbitrary, it holds that E ′ �s E .

• From Proposition 4.3.3, it follows that E ′ ∈�s
max.

Proposition 4.3.4. The relation �p satisfies postulates P1, P2 and P3.

Proof. Let us show that the relation �p satisfies postulates P1, P2 and P3.
The definition of �p implies that P1 is ensured. Let us now suppose that
for x, x′ ∈ A we have xRx′, ¬(x′Rx) and ¬(x′ > x). Since there are no self-
attacking arguments, both {x} and {x′} are conflict-free. From Definition
4.3.6, we obtain {x} �p {x′} and ¬({x′} �p {x}). Thus, P2 is verified.
Let xRx′ and x′ > x. From the same definition, this time we have that
¬({x} �p {x′}) and {x′} �p {x}. In other words, {x′} ≻p {x}, which means
that P3 is verified.

Theorem 4.3.3. The relation �p generalises preferred semantics.

Proof. We will prove that preferred extensions of (A,R) are exactly maximal
elements of relation �p. Since we supposed that (∄x, y ∈ A) s.t. (x, y) ∈ R
∧ (y, x) ∈> then E ′ �p E iff (∀x′ ∈ E ′) (∀x ∈ E) if (x, x′) ∈ R then (∃y′ ∈ E ′)
s.t. (y, x) ∈ R.

⇒ Let E ′ be a preferred extension of (A,R).

• Since E ′ is a preferred extension then it is conflict-free.

• Let us prove that E ′ ∈�p
max. Suppose the contrary. This means that

one of the following is true:
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1. (∃E ⊆ A) s.t. E is conflict-free and ¬(E ′ �p E)

2. (∃E ⊆ A) s.t. E is conflict-free ∧ E ′ ( E ∧ (∀E ′′ ⊆ A) E �p E ′′

Let (1) be the case. Since ¬(E ′ �p E) then (∃x′ ∈ E ′)(∃x ∈ E) s.t.
(x, x′) ∈ R ∧ (∄y′ ∈ E ′) s.t. (y′, x) ∈ R. This leads to the conclusion
that E ′ does not defend its arguments, thus it cannot be a preferred
extension. Contradiction. So, it must be that (2) holds. Since E ′ is
preferred and E ′ ( E then E is not admissible. From the fact that E
is conflict-free, one concludes that it does not defend its arguments.
Thus, (∃x′′ ∈ E ′′ \ E ′) s.t. (∃y ∈ A) s.t. (y, x′′) ∈ R ∧ (∄z′′ ∈ E ′′) s.t.
(z′′, y) ∈ R. Hence, ¬(E ′′ �p {y}). Contradiction.

⇐ Let E ′ ∈�p
max. We will prove that E ′ is a preferred extension of Dung’s

argumentation framework (A,R).

• Since E ′ ∈�p
max then it is conflict-free.

• Let us prove that E ′ defends all its arguments. Suppose not. This
means that (∃y ∈ A) s.t. (y, x′) ∈ R ∧ (∄z′ ∈ E ′) s.t. (z′, y) ∈ R. This
means that ¬(E ′ �p {y}). Contradiction.

• We have just seen that E ′ is admissible. Let us prove that E ′ is a
preferred extension of (A,R). Suppose the contrary, i.e. (∃E ⊆ A) s.t.
E is a preferred extension and E ′ ( E . Since E ′ ∈�p

max then E /∈�p
max.

On the other hand, since E is a preferred extension, then E ∈�p
max, as

we have proved in the first part of this theorem. Contradiction.

Theorem 4.3.4. For any (A,R,≥), it holds that �s
max ⊆ �p

max.

Proof. We will prove that for any (A,R,≥), every pref-stable extension of
this framework is a pref-preferred extension of that framework. In order to
simplify the notation, we will write xDy instead of (xRy and not (y > x))
or (yRx and x > y). It has been proved by Amgoud and Vesic (2010a) that
if E ∈�s

max then E is a Dung’s stable extension of the framework (A,D).
Then, the results by Dung (1995) imply that that E is a preferred extension
of the framework (A,D). Now, we only have to prove that E ∈�p

max. It is
obvious that E ∈ CF . Let E ′ ⊆ A. One can easily see that E �p E ′. Let us
prove that ∄E ′′ s.t. E ( E ′′ and ∀E ′, E ′′ �p E ′. Suppose the contrary; this
would mean that E ′′ is admissible in (A,D) which contradicts the fact that
E is a preferred extension of (A,D). Thus, it must be that E ∈�p

max, which
ends the proof.
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Proposition 4.3.5. The equality | �g
max | = 1 holds.

Proof. In the proof of this proposition, we will use Properties 50 and 51
from the paper by Baroni and Giacomin (2007) which imply that for any
argumentation framework (A,R), for any x ∈ A, we have that x ∈ GE iff
sd′(x, GE), where GE is the standard notation for grounded extension which
will be used throughout the proof and sd′ is the notion of strong defense as
defined in Definition 13 of the paper by Baroni and Giacomin (2007). Note
that for any a ∈ A, for any A ⊆ E , we have that sd(a, E) iff (∀b ∈ A if bDa
then ∃c ∈ E \ {a} s.t. cDb and sd(c, E \ {a})), where we use xDy as abbre-
viation for (xRy and not (y > x)) or (yRx and x > y). This proof will be
based on the fact that we have sd(a, E) in (A,R,≥) if and only if we have
sd′(a, E) in (A,D). Thus, when we write sd(a, E), we refer to framework
(A,R,≥), and when we use the function sd′ and write sd′(a, E), we refer
to the corresponding framework (A,D). By using this equivalence, we will
prove that any set E ⊆ A is a pref-grounded extension of (A,R,≥) iff E is
the grounded extension of (A,D).

⇒ Let E be the grounded extension of (A,D). It is obvious that E ∈ CF . Let
E ′ ⊆ A. Since E is a grounded extension of (A,D), then from the results by
Baroni and Giacomin (2007), we have x ∈ E ⇒ sd′(x, E). This means that
we have sd(x, E) in (A,R,≥). Thus, sd(x, E , E ′) for any E ′, which means
that ∀E ′, E �g E ′. Let us prove that ∄E ′ s.t. E ′ ∈ CF and E ( E ′ and ∀E ′′,
E ′ �g E ′′. Suppose the contrary. Suppose also that ∀x ∈ E ′, sd(x, E ′). This
means that ∀x ∈ E ′, sd′(x, E ′) in (A,D). Thus, from Proposition 51 (Baroni
and Giacomin, 2007), E ′ ⊆ E , since E is the grounded extension of (A,D).
Contradiction, so it must be that ∃x ∈ E ′ s.t. ¬sd(x, E ′). Thus, ∃y ∈ A s.t.
¬(E �g {y}). Contradiction, so we proved that E ∈�g

max.

⇐ Let E ∈�g
max. It is clear that ∀x ∈ E , sd(x, E) in (A,R,≥). Thus,

∀x ∈ E , sd′(x, E) in (A,D). From Proposition 51 (Baroni and Giacomin,
2007) we obtain E ⊆ GE, where GE is the grounded extension of (A,D). Let
us suppose that E ( GE. In the first part of this proof, we have shown that
the grounded extension of (A,D) is in �g

max. Contradiction, since we have
supposed that E ∈�g

max and we have E ( GE. Thus, E = GE.

This shows that E ∈�g
max iff E is the grounded extension of the framework

(A,D). Since it has been shown by Dung (1995) that every argumentation
framework (without preferences) has exactly one grounded extension, we
conclude that �g

max has exactly one element.
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Proposition 4.3.6. The relation �g satisfies postulates P1, P2 and P3.

Proof. It is easy to see that P1 is satisfied. Let xRx′, ¬(x′Rx) and ¬(x′ >
x). From the definition of pref-grounded semantics, we have that {x} �g

{x′} since sd(x, {x}, {x′}). On the other hand, the fact that ¬sd(x′, {x′}, {x})
implies that ¬({x′} �g {x}). Thus, P2 is verified. Let us now prove that �g

verifies P3. Let xRx′ and x′ > x. In this case, we obtain ¬sd(x, {x}, {x′})
and sd(x′, {x′}, {x}), which means that {x′} ≻g {x}.

Theorem 4.3.5. The relation �g generalises grounded semantics.

Proof. Let (A,R,≥) be a PAF s.t. ∄x, y ∈ A s.t. xRy and y > x. We
show that the grounded extension of (A,R) is the only maximal element
w.r.t. �g. Since there are no critical attacks, we can simplify Definition
4.3.7 which becomes: sd(x, E ′, E) iff (∀y ∈ E) (if (y, x) ∈ R then (∃z ∈
E ′ \ {x}) s.t. ((z, y) ∈ R ∧ sd(z, E ′ \ {x}, E))). In this particular case when
no attacked argument is strictly preferred to its attacker, our definition of
sd(x, E) becomes exactly the same as Definition 13 in the work by Baroni
and Giacomin (2007). Thus, using Proposition 50 and Proposition 51 of the
same paper, we conclude that x ∈ GE iff sd(x, GE), where GE is the grounded
extension of the framework (A,R).
⇒ Let E ′ be the grounded extension of (A,R).

• Since E ′ is the grounded extension then it is conflict-free.

• We will prove that for an arbitrary conflict-free set E ⊆ A it holds that
E ′ �g E . Let E ⊆ A be conflict-free. Since E ′ is the grounded extension
then x ∈ E ′ ⇒ sd(x, E ′). On the other hand, (∀x ∈ E ′) sd(x, E ′) implies
that sd(x, E ′, E). Thus, E ′ �g E . Since E was arbitrary, then (∀E ⊆ A),
(E ′ �g E)).

• We will now prove that (∄E ⊆ A) s.t. E is conflict-free and E ′ ( E
and (∀E ′′ ⊆ A), E �g E ′′. Suppose the contrary. Suppose also that
(∀x ∈ E) sd(x, E). If this is the case, according to Proposition 51 in
the paper by Baroni and Giacomin (2007), E ⊆ GE. Contradiction.
So, it must be that (∃x ∈ E) s.t. ¬sd(x, E). Thus, (∃y ∈ A) s.t.
¬sd(x, E , {y}). Consequently, ¬(E �g {y}). Contradiction. So, we
have proved that E ′ ∈�g

max.

⇐ Let E ′ ∈�g
max and let us prove that E ′ = GE. Since (∀x ∈ A) E ′ �g {x}

then (∀x′ ∈ E ′) sd(x′, E ′). From the fact that (∀x′ ∈ E ′) sd(x′, E ′) and
Proposition 51 (Baroni and Giacomin, 2007) we have that E ′ ⊆ GE. Let us
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now prove that E ′ = GE. Suppose not, i.e. suppose that E ′ ( GE. We have
proved in the first part of this theorem that GE ∈�g

max. Contradiction, since
we have supposed that E ′ ∈�g

max and we have E ′ ( GE.

Theorem 4.3.6. For any (A,R,≥), if E ∈�g
max then E ⊆

⋂

Ei∈�
p
max

Ei.

Proof. Let us suppose that E is the pref-grounded extension of (A,R,≥).
By using the same reasoning as in the proof of Proposition 4.3.5, we con-
clude that E is the grounded extension of the framework (A,D), where xDy
is defined as ((xRy and not (y > x)) or (yRx and x > y)). Dung (1995)
has shown that the grounded extension of any argumentation framework is
a subset of the intersection of all preferred extensions of that framework.
Thus, in order to prove this property, it is sufficient to show that ∀E , if
E ∈�p

max, then E is a preferred extension of (A,D), since this will imply
that the intersection of preferred extensions of (A,R,≥) is a subset of the
intersection of pref-preferred extensions of (A,D).

Let E ∈�p
max. Obviously, E ∈ CF . Let us prove that E is admissible in

(A,D). Let a ∈ E , a′ /∈ E and a′Da. Since we supposed that E ∈�p
max,

then E �p {a′}. Consequently, ∃b ∈ E s.t. bDa′, so E is admissible in
(A,D). Let us suppose that ∃E ′ ⊆ A, s.t. E ( E ′ and E ′ is admissible
in (A,D). Then, ∀E ′′, we have E ′ �p E ′′. Consequently, from the sec-
ond item of Definition 4.3.2, we have that E /∈�p

max, contradiction. Thus,
it must be that E is a preferred extension of (A,D). Since every pref-
preferred extension of (A,R,≥) is a preferred extension of (A,D), then
⋂

Ei∈�
p
max

Ei ⊆
⋂

Ej is a preferred extension of (A,D) Ej , which ends the proof of
this property.

Proposition 4.3.7. Let � ⊆ P(A) × P(A). If � satisfies postulates P4
and P5, then it also satisfies postulates P2 and P3.

Proof. Let x, x′ ∈ A. Since there are no self-attacking arguments, then
{x}, {x′} ∈ CF . Let xRx′, ¬(x′Rx) and ¬(x′ > x). From the first part of
Postulate 5 we have that {x} � {x′}. From Postulate 4, we have ¬({x′} �
{x}). Thus, Postulate 2 is verified. Let xRx′ and x′ > x. From Postulate
5, {x′} � {x}. Furthermore, Postulate 4 implies ¬({x} � {x′}). In sum,
{x′} ≻ {x}, which means that Postulate 3 is verified.

Proposition 4.3.8. �s is a pref-stable relation.

Proof. To show that �s is a pref-stable relation, we show that it satisfies
postulates P4, P5, P6. Postulate 6 is satisfied since from the second item of
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the same definition, when comparing two sets E and E ′, common elements
are not taken into account. The second condition of the definition of �s

is exactly the negation of the condition of Postulate 4. Since Postulate 5
implies the second item of this definition, then it is verified.

Theorem 4.3.7. Let T = (A,R,≥) be a PAF and �,�′ ⊆ P(A) × P(A).
If � and �′ are pref-stable relations, then �max = �′

max.

Proof. We prove that all pref-stable relations return the same set of exten-
sions.

⇒ Let E ∈ �max. We will prove that E �′
max. From Postulate 1, E ∈ CF .

Let E ′ ⊆ A. If E ′ is not conflict-free then, from Postulate 1, E �′ E ′. Else,
from Postulate 6, E �′ E ′ iff E\E ′ �′ E ′\E . Let E1 = E\E ′ and E2 = E ′\E . E1

and E2 are disjunct conflict-free sets. If condition of Postulate 5 is satisfied
for E1 and E2, then E1 �′ E2. Let us study the case when this condition is
not satisfied. Condition of Postulate 4 is not satisfied since E ∈ �max. Thus,
it must be that (∃x′ ∈ E2) s.t. (∄x ∈ E1)((x, x′) ∈ R∧ (x′, x) /∈>)∨ ((x′, x) ∈
R∧ (x, x′) ∈>) and (∃x ∈ E1)(x, x′) ∈>. Let X = {x ∈ E1|(x, x′) ∈>}. X is
conflict-free. From Postulate 4, ¬(E1 \ X � {x′}). Postulate 6 implies that
¬(E1\X∪(X∪(E∩E ′)) � {x′}∪(X∪(E∩E ′))), i.e. ¬(E � {x′}∪(X∪(E∩E ′))).
Contradiction with E ∈ �max. Thus, condition of Postulate 5 is satisfied for
E1 and E2, and E1 �′ E2. Consequently, E �′ E ′. This means that E ∈�′

max.

⇐ In the first part of proof, we showed that for all pref-stable relations
�1,�2, it holds that if E ∈�1

max then E ∈�2
max. Contraposition of this

rule gives specifies that if E /∈�2
max then E /∈�1

max. Since this was proved
for arbitrary relations which satisfy P1, P4, P5 and P6, we conclude: if
E /∈�′

max then E /∈�max.

Proposition 4.3.9. There exists no transitive relation which generalises
stable semantics and satisfies postulates P1 and P5.

Proof. Let us suppose that there exists a transitive relation which satisfies
P1 and P5 and which generalises stable semantics. Let us now consider the
framework depicted in Figure A.1. Suppose that attacks are as depicted
and that ≥= {(w,w) | w ∈ A}. From P1, we have that for any E ′ /∈ CF ,
it holds that {x} � E ′. From P5, {x} � {a}, {a} � {x}, {x} � {y},
{y} � {z}, {x} � ∅. From those relations and transitivity of �, we have
{x} � {x} and {x} � {z}. Thus, {x} ∈ �max. This contradicts the fact
that � generalises stable semantics, since {x} is not a stable extension of
the framework (A,R).
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Figure A.1: No transitive relation generalises stable semantics and verifies
P1 and P5.

x

a

y

z

Theorem 4.3.8. Let T = (A,R,≥) be a PAF. Any pref-stable relation
� ⊆ P(A) × P(A) generalises stable semantics.

Proof. We will show that extensions of (A,R) coincide with maximal ele-
ments of � for any preference-based argumentation framework T , such that
(∄a, b ∈ A)(a, b) ∈ R ∧ (b, a) ∈>. Let Ext(F) denote stable extensions of
F = (A,R).

⇒ Let E ∈ Ext(F). We prove that E ∈�max. Let E ′ ∈ P(A). If E ′ /∈ CF
then, from Postulate 1, E � E ′. Let E ′ ∈ CF . Since E ∈ Ext(F) then
(∀x′ ∈ E ′ \ E)(∃x ∈ E \ E ′)(x, x′) ∈ R. We supposed (∄a, b ∈ A)(a, b) ∈
R ∧ (b, a) ∈>. Thus, from Postulate 5, E \ E ′ � E ′ \ E . Now, Postulate 6
implies E � E ′. Since E ′ was arbitrary, then E ∈ �max.

⇐ Let E ∈ �max. We will show that E ∈ Ext(F). From Postulate 1,
E ∈ CF . Let x′ /∈ E . Since E ∈ �max then it must be E � {x′}. From
Postulate 4, (∃x ∈ E)(x, x′) ∈ R ∨ (x, x′) ∈>. If (∃x ∈ E)(x, x′) ∈ R, the
proof is over. Let us suppose the contrary. Then (∄x ∈ E)(x, x′) ∈ R. Let
X = {x ∈ E|x > x′}. From Postulate 4, ¬(E \ X � {x′}). This fact and
Postulate 6 imply ¬(E � (X ∪ {x′})). Contradiction with E ∈ �max. Thus,
E ∈ Ext(F).

Proposition 4.3.10. �gn is a pref-stable relation.

Proof. It is easy to show that relation �gn satisfies P1, P4, P5 and P6.
Postulate 1 is satisfied since from the first item of the definition of �gn, any
conflict-free set is preferred to any conflicting set. Postulate 6 is satisfied
since from the second item of the same definition, when comparing two sets
E and E ′, common elements are not taken into account. Postulate 4 implies
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that the second item of Definition 4.3.10 is not satisfied. Postulate 5 is
trivially verified.

Proposition 4.3.11. �sp is a pref-stable relation.

Proof. Let us show that �sp satisfies P1, P4, P5 and P6. We see from the
first item of Definition 4.3.11 that all (conflict-free and non conflict-free)
sets are better than non conflict-free sets. A non conflict-free set, however,
cannot be better than conflict-free set. Thus, Postulate 1 is satisfied. Pos-
tulates 4, 5 and 6 are verified for the same reasons as in the case of relation
�gn.

Theorem 4.3.9. Let T = (A,R,≥) be a PAF and E , E ′ ∈ P(A). Let � be
a pref-stable relation.

• If E �gn E ′ then E � E ′.

• If E � E ′ then E �sp E ′.

Proof. We will show that for any relation � which satisfies P1, P4, P5 and
P6, we have that if E �gn E ′ then E � E ′ and if E � E ′ then E �sp E ′.

• Let E �gn E ′. This means that E ∈ CF(T ). If E ′ /∈ CF(T ), then
from Postulate 1, E � E ′. We study the case when E ′ ∈ CF(T ). From
Postulate 6, we have E � E ′ iff E \ E ′ � E ′ \ E . From Definition 4.3.10
and Postulate 5, E \ E ′ � E ′ \ E . Thus, E � E ′.

• If E , E ′ /∈ CF(T ) then, Definition 4.3.11 implies E �sp E ′. Case E /∈
CF(T ), E ′ ∈ CF(T ) is not possible because of Postulate 1. If E ∈
CF(T ), E ′ /∈ CF(T ), then from Definition 4.3.11, E �sp E ′. In the
non-trivial case, when E , E ′ ∈ CF(T ), from Postulate 6, E \E ′ � E ′ \E .
Suppose that ¬(E\E ′ �sp E ′\E). Now, Definition 4.3.11 implies (∃x′ ∈
E ′\E)(∄x ∈ E\E ′) s.t. (x, x′) ∈> or (x, x′) ∈ R∧(x′, x) /∈>. From this
fact and Postulate 4, it holds that ¬(E \ E ′ � E ′ \ E). Contradiction.

Theorem 4.3.10. Let T = (A,R,≥) be a PAF and � be a pref-stable
relation.
E ∈ �max iff:

• E ∈ CF(T ), and

• ∀a′ ∈ A \ E , ∃a ∈ E such that (aRa′ and not(a′ > a)) or (a′Ra and
a > a′).
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Proof. We will now prove that a set is a pref-stable extension iff it is conflict-
free and its arguments win in all conflicts with exterior ones. Throughout
the proof, we will use notation �gn

max to refer to the set of maximal elements
w.r.t. relation �gn.

Since both relations � and �gn verify Postulates 1, 4, 5 and 6, then from
Theorem 4.3.7, �max=�gn

max. This means that it is sufficient to prove that
E ∈�gn

max iff the two conditions of theorem are satisfied.

⇒ Let E ∈�gn
max. Since E is a pref-extension, according to Proposition 4.3.1,

E ∈ CF . Let x′ ∈ A \ E . We supposed that (∄a ∈ A) s.t. (a, a) ∈ R, so it
must be that {x′} is conflict-free. Since E ∈�gn

max, it holds that E �gn {x′}.
Since E and {x′} are conflict-free, Definition 4.3.10 implies (∃x ∈ E) s.t.
(((x, x′) ∈ R ∧ (x′, x) /∈>) ∨ ((x′, x) ∈ R ∧ (x, x′) ∈>)).

⇐ Let E be a conflict-free set and let (∀x′ ∈ A\E) (∃x ∈ E) s.t. (((x, x′) ∈ R
∧ (x′, x) /∈>) ∨ ((x′, x) ∈ R ∧ (x, x′) ∈>)). Let us prove that E ∈�gn

max.

• Since E ∈ CF then for every non conflict-free set E ′ it holds that
E �gn E ′.

• Let E ′ ⊆ A be an arbitrary conflict-free set of arguments. If E ′ ⊆ E , the
second condition of theorem is trivially satisfied. Else, let x′ ∈ E ′ \ E .
From what we supposed, we have that (∃x ∈ E \ E ′) s.t. ((x, x′) ∈ R
∧ (x′, x) /∈>) or ((x′, x) ∈ R ∧ (x, x′) ∈>). Thus, E �gn E ′.

From those two items, we have that E ∈�gn
max.

Theorem 4.3.11. Let T = (A,R,≥) be a PAF, let �p be a relation from
Definition 4.3.6 and let �p

max be the set of maximal elements of T w.r.t.
that relation. Then, E ∈�p

max iff:

• E ∈ CF(T ), and

• (∀a′ ∈ E ′) (∀a ∈ A \ E ′) if (((a, a′) ∈ R ∧ (a′, a) /∈>) or ((a′, a) ∈ R
∧ (a, a′) ∈>)) then (∃b′ ∈ E ′) s.t. ((b′, a) ∈ R and (a, b′) /∈>) or
((a, b′) ∈ R and b′ > a), and

• E ′ is a maximal set (w.r.t. set inclusion) which satisfies previous two
items.

Proof. ⇒ Let us suppose that E ′ ∈�p
max and let us prove that the three

conditions stated in this theorem are satisfied.
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• E ′ is conflict-free.

• Let a /∈ E ′ be an arbitrary argument which does not belong to E ′.
Since {a} is conflict-free, then E ′ �p {a}. This means that (∀a′ ∈ E ′)
if (((a, a′) ∈ R ∧ (a′, a) /∈>) or ((a′, a) ∈ R ∧ (a, a′) ∈>)) then
(∃b′ ∈ E ′) s.t. ((b′, a) ∈ R and (a, b′) /∈>) or ((a, b′) ∈ R and b′ > a).

• Let us suppose that (∃E ′′ ⊆ A) s.t. E ′′ is conflict-free and E ′ ( E ′′ and
(∀a′ ∈ E ′′) (∀a ∈ A \ E ′′) if (((a, a′) ∈ R ∧ (a′, a) /∈>) or ((a′, a) ∈ R
∧ (a, a′) ∈>)) then (∃b′ ∈ E ′′) s.t. ((b′, a) ∈ R and (a, b′) /∈>) or
(a, b′) ∈ R and b′ > a). We will prove that this means that E ′ /∈�p

max.

– E ′′ is conflict-free, trivial.

– We will now prove that (∀E ⊆ A) if E is conflict-free then E ′′ �p E .
Let E ⊆ A and let a ∈ E . Let a /∈ E ′′. Then, from what we
supposed, we have that if (((a, a′) ∈ R ∧ (a′, a) /∈>) or ((a′, a) ∈
R ∧ (a, a′) ∈>)) then (∃b′ ∈ E ′) s.t. ((b′, a) ∈ R and (a, b′) /∈>) or
((a, b′) ∈ R and b′ > a). This means that E ′′ �p E . Let a ∈ E ′′.
Since E ′′ is conflict-free, then the condition in question is trivially
satisfied. In this case, also E ′′ �p E .

The two previous items imply that E ′ /∈�p
max. Contradiction.

⇐ Let us suppose that E ′ ⊆ A satisfies three conditions given in the theorem
and let us prove that E ′ ∈�p

max.

• E ′ is conflict-free. Trivial.

• Let E ⊆ A be an arbitrary conflict-free set of arguments. Let us
prove that E ′ �p E . Let a ∈ E and (((a, a′) ∈ R ∧ (a′, a) /∈>) or
((a′, a) ∈ R ∧ (a, a′) ∈>)). Since E ′ is conflict-free then a /∈ E ′. From
the second item it holds that (∃b′ ∈ E ′) s.t. ((b′, a) ∈ R and (a, b) /∈>)
or ((a, b′) ∈ R and b′ > a). Therefore, E ′ �p E .

• Let us suppose that there exists E ′′ ⊆ A such that E ′′ is conflict-free
and E ′ ( E ′′ and (∀E ⊆ A), E ′′ �p E . We will prove that this is in
contradiction with the third item of the theorem.

– It is obvious that E ′′ is conflict-free.

– Let a ∈ A \ E ′′. Since (∀E ⊆ A) E ′′ �p E , then E ′′ �p {a}. This
means that (∀a′ ∈ E ′) if (((a, a′) ∈ R ∧ (a′, a) /∈>) or ((a′, a) ∈ R
∧ (a, a′) ∈>)) then (∃b′ ∈ E ′′) s.t. ((b′, a) ∈ R and (a, b′) /∈>) or
((a, b′) ∈ R and b′ > a).
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Since E ′′ satisfies first and second item of this theorem and E ′ ( E ′′

then E ′ does not satisfy the third item of the theorem. Contradiction
since we supposed that E ′ satisfies all the three items.

Theorem 4.3.12. Let T = (A,R,≥) be a PAF, let �g be a relation from
Definition 4.3.8 and let �g

max be the set of maximal elements of T w.r.t.
that relation. Then, E ∈�g

max iff:

• E ∈ CF(T ), and

• (∀a ∈ E) sd(a, E) and

• E is a maximal set (w.r.t. set inclusion) which satisfies previous two
items.

Proof. ⇒ Let us suppose that E ′ ∈�g
max. We will prove that E ′ satisfies the

three items of theorem.

• E ′ is conflict-free.

• Let a′ ∈ E ′ and a ∈ A. Since E ′ ∈�g
max, then sd(a′, E ′, {a}). Since a′

was arbitrary, we have sd(a′, E ′).

• Let us suppose that (∃E ′′ ∈ A) s.t. E ′′ is conflict-free and E ′ ( E ′′ and
E ′′ satisfies the first two items. In that case:

– E ′′ is conflict-free.

– Since (∀x′′ ∈ E ′′) sd(x′′, E ′′) then (∀E ⊆ A) E ′′ �g E .

From the two previous items, we see that E ′ /∈�g
max, contradiction.

⇐ Let us suppose that the three conditions of the theorem are satisfied by
E ′ ⊆ A and let us prove that E ′ ∈�g

max.

• E ′ is conflict-free, trivial.

• Let E ⊆ A be an arbitrary conflict-free set and let us prove that (∀x′ ∈
E ′) sd(x′, E ′, E). Since we supposed that (∀x′ ∈ E ′) sd(x′, E ′,A), which
means that set E ′ strongly defends all its elements against attacks of
all other elements, then sd(x′, E ′, E). Thus, E �g E ′.

• Let us suppose that (∃E ′′ ⊆ A) s.t. E ′′ is conflict-free and E ′ ( E ′′ and
E ′′ ∈�max. In that case, it can be proven that E ′′ satisfies two first
items of this theorem:
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– E ′′ is conflict-free.

– Let x′′ ∈ E ′′ and let us prove that sd(x′′, E ′′). Let y ∈ A and let
us prove that sd(x′′, E ′′, {y}). This follows from the fact that {y}
is conflict-free and E ′′ ∈�g

max.

Since E ′′ is conflict-free, E ′′ satisfies the two first items of this theorem,
and E ′ ( E ′′, then E ′ does not satisfy the third item of this theorem.
Contradiction.

Theorem 4.3.13. Let T = (A,R,≥) be a PAF and let R′ = {(a, b) | a, b ∈
A, (aRb and not(b > a)) or (bRa and a > b)}, and let �g

max be the set of
all maximal elements w.r.t. �g. Then: �g

max contains only one set which is
exactly the grounded extension of (A,R′).

Proof. For an argument a and a set E , let sd′(a, E) be defined as follows:
sd′(a, E) iff ∀b ∈ A if bR′a then ∃c ∈ E \ {a} s.t. cR′b and sd′(c, E \ {a}).
From Theorem 4.3.12 and from definition of R′, we see that for E ⊆ A we
have E ∈�g

max iff:

• E ∈ CF(T ), and

• (∀a ∈ E) sd′(a, E) and

• E is a maximal set (w.r.t. set inclusion) which satisfies previous two
items.

In the rest of the proof, we will show that E ⊆ A is a grounded extension of
(A,R′) iff the three previous conditions are verified. Let GE be the grounded
extension of (A,R′). Using Proposition 50 and Proposition 51 (Baroni and
Giacomin, 2007), we conclude that ∀x ∈ A, x ∈ GE iff sd′(x, GE). We will
now prove that E ′ verifies the three conditions above iff E ′ = GE.

⇒ Let E ′ = GE.

• Since E ′ is the grounded extension then it is conflict-free.

• Since E ′ is the grounded extension, from Propositions 50 and 51 (Ba-
roni and Giacomin, 2007), it strongly defends all its elements, i.e.
∀a ∈ E ′, sd′(a, E ′).

156



A.2. PROOFS FOR RESULTS IN CHAPTER 4

• Let us suppose that the third condition is not verified. This would
mean that ∃a′ ∈ A \ E ′ s.t. sd′(a, E). From Propositions 50 and 51
(Baroni and Giacomin, 2007) and the fact that E ′ = GE, ∀x ∈ A,
x ∈ E ′ iff sd(x, E ′). Since a′ /∈ E ′ then ¬sd′(a, E). Contradiction.

⇐ Let the three conditions be verified and let us prove that E ′ = GE. From
(∀a ∈ E ′) sd′(a, E ′) and Proposition 51 (Baroni and Giacomin, 2007) we have
that E ′ ⊆ GE. Let us now prove that E ′ = GE. Suppose not, i.e. suppose that
E ′ ( GE. We have proved in the first part of this theorem that GE verifies
the three conditions stated above. Contradiction, since we have supposed
that E ′ is a maximal set verifying the first two conditions, while GE verifies
both of them.

Proposition 4.4.2. Let T = (A,R,≥) be a basic PAF s.t. R is irreflexive
and ≥ is a linear order.

• Stable, preferred and grounded extensions of T coincide.

• T has exactly one stable extension.

• If |A| = n, then this extension is computed in O(n2) time.

Proof. Let us consider the following algorithm.

input:

A: set of arguments

R: attack relation

>=: preference relation

output:

in: the only stable/preferred/grounded ext.

out: rejected arguments w.r.t. those semantics

/* Put all arguments in und. */

in = {};

out = {};

und = A;

/* While und is not empty,

sort arguments from und to in and out. */

while (not (und == {}) {

157



APPENDIX A. APPENDIX

/* Select the best argument in und,

and move it to in. */

let a be the only argument in the set

{x in und | for all x’ in und, x > x};

in = in union {a};

und = und - {a};

/* Since a is accepted, all arguments being

in conflict with it must be rejected. */

del = {x in und | x R a or a R x};

out = out union del;

und = und - del;

}

Let us prove that in is a stable extension of T . It is clear that in is conflict-
free. Let x′ /∈ in. From the previous algorithm, it is easy to see that there
exists x ∈ in s.t. x > x′ and (xRx′ or x′Rx). In other words, xR′x′. Thus,
in is a stable extension of T .

It has been proved by Dung (1995) that every stable extension is a
preferred and a complete extension. Thus, in is a preferred and complete
extension of T .

Let us prove that in is the only complete extension. Suppose that E ⊆ A,
with E 6= in is another complete extension. Since none of the arguments
of in is attacked (w.r.t. R′), it is clear that every complete extension must
contain those arguments, i.e. in ( E . But, since in is a stable extension, it
is maximal conflict-free set, contradiction. So, we have shown that in is the
only complete extension.

It has been shown by Dung (1995) that grounded extension is exactly the
intersection of all complete extensions. Hence, in is the grounded extension
of T .

Let us now prove that in is the only stable and the only preferred exten-
sion. Suppose not, thus there exists another stable or preferred extension E ,
such that E 6= in. Since we supposed that E is stable or preferred, then E is
for sure complete (Dung, 1995). But we have already shown that in was a
unique complete extension, contradiction. Thus, in is the unique stable and
preferred extension of T .

The while loop is executed at most n times, where n is the number
of arguments, and its execution contains at most n comparisons. Thus,
algorithm’s time complexity is O(n2).
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Proposition 4.5.1. Let Σ be a propositional knowledge base and (Arg(Σ),
Undercut) the argumentation framework built from Σ.

• For any consistent set S ⊆ Σ, S = Base(Arg(S)).

• The function Base : Arg(Σ) → Σ is surjective.

• For any E ⊆ Arg(Σ), E ⊆ Arg(Base(E)).

• The function Arg : Σ → Arg(Σ) is injective.

Proof.

• We show that x ∈ S iff x ∈ Base(Arg(S)) where S is a consistent
subset of Σ.
⇒ Let x ∈ S. Since S is consistent, then the set {x} is consistent as
well. Thus, ({x}, x) ∈ Arg(S). Consequently, x ∈ Base(Arg(S)).
⇐ Assume that x ∈ Base(Arg(S)). Thus, ∃a ∈ Arg(S) s.t. x ∈
Supp(a). From the definition of argument, Supp(a) ⊆ S. Conse-
quently, x ∈ S.

• Let us show that the function Base is surjective. Let S ⊆ Σ. From
the first item of this property, the equality Base(Arg(S)) = S holds.
It is clear that Arg(S) ⊆ Arg(Σ).
The following counter-example shows that the function Base is not
injective for any Σ: Let Σ = {x, x → y}, E = {({x}, x), ({x → y}, x →
y)} and E ′ = {({x}, x), ({x, x → y}, y)}. Since Base(E) = Base(E ′) =
Σ, with E 6= E ′ then Base is not injective.

• If a ∈ E where E ⊆ Arg(Σ), then Supp(a) ⊆ Base(E). Consequently,
a ∈ Arg(Base(E)).

• Let us prove that Arg is injective. Let S,S ′ ⊆ Σ with S 6= S ′. Then,
it must be that S \ S ′ 6= ∅ or S ′ \ S 6= ∅ (or both). Without loss of
generality, let S \ S ′ 6= ∅ and let x ∈ S \ S ′. If {x} is consistent, then,
({x}, x) ∈ Arg(S) \ Arg(S ′). Thus, Arg(S) 6= Arg(S ′).
We will now present an example that shows that this function is not
surjective. Let Σ = {x, x → y} and E = {({x}, x), ({x → y}, x → y)}.
It is clear that there exists no S ⊆ Σ s.t. E = Arg(S), since such
a set S would contain Σ and, consequently, Arg(S) would contain
({x, x → y}, y), an argument not belonging to E .
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Proposition 4.5.2. A set S ⊆ Σ is consistent iff Arg(S) is conflict-free.

Proof. Let S ⊆ Σ.

• Assume that S is consistent and Arg(S) is not conflict-free. This means
that there exist a, a′ ∈ Arg(S) s.t. a undercuts a′. From the definition
of undercut, it follows that Supp(a)∪Supp(a′) is inconsistent. Besides,
from the definition of argument, Supp(a) ⊆ S and Supp(a′) ⊆ S. Thus,
Supp(a) ∪ Supp(a′) ⊆ S. Then, S is inconsistent. Contradiction.

• Assume now that S is inconsistent. This means that there exists a
finite set S ′ = {h1, . . . , hk} s.t.

– S ′ ⊆ S

– S ′ ⊢ ⊥

– S ′ is minimal (w.r.t. set inclusion) s.t. previous two items hold.

Since S ′ is a minimal inconsistent set, then {h1, . . . , hk−1} and {hk}
are consistent. Thus, ({h1, . . . , hk−1},¬hk), ({hk}, hk) ∈ Arg(S). Fur-
thermore, those two arguments are conflicting (the former undercuts
the latter). This means that Arg(S) is not conflict-free.

Proposition 4.5.3. Let T = (Arg(Σ),Undercut,≥) be a basic PAF and
let ≥ be a total preorder (i.e. any pair of arguments is comparable). Then:
for all stable extensions E and E ′ of T , if E 6= E ′, then ¬(E �d E ′).

Proof. Let A = Arg(Σ), R = Undercut, E , E ′ be two stable extensions of
(A,R,≥), and E �d E ′ with E 6= E ′. It is clear that ¬(E ⊆ E ′) and ¬(E ′ ⊆ E).
Let a′′ ∈ E \ E ′ be an argument s.t. ∀x ∈ E \ E ′, a′′ ≥ x. Since E ′ is a stable
extension, then E ′ attacks (w.r.t. R′) argument a′′. Thus ∃a′ ∈ E ′ \ E s.t.
¬(a′′ > a′). Since ≥ is total, then a′ ≥ a′′. Thus, ∀b ∈ E \ E ′, a′ ≥ b. Since
E �d E ′, then ∃a ∈ E \ E ′, s.t. a > a′, contradiction.

Theorem 4.5.1. Let Σ = Σ1 ∪ . . .∪Σn be a stratified knowledge base. For
every preferred sub-theory S of Σ, it holds that:

• Arg(S) is a stable extension of (Arg(Σ), Undercut, ≥wlp)

• S = Base(Arg(S))
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Proof. Let R = Undercut, and for S ⊆ Σ, for i ∈ {1, . . . , n}, let us denote
Si = S ∩Σi. Let S be a preferred sub-theory of a knowledge base Σ. Thus,
S is consistent. From Proposition 4.5.2, it follows that Arg(S) is conflict-
free. Assume that ∃a /∈ Arg(S). Since a /∈ Arg(S) and S is a maximal
consistent subset of Σ (according to Proposition 4.5.4), then ∃h ∈ Supp(a)
s.t. S ∪ {h} ⊢ ⊥. Assume that h ∈ Σj. Thus, Level(Supp(a)) ≥ j.

Since S is a preferred sub-theory of Σ, then S1 ∪ . . . ∪ Sj is a maximal
(for set inclusion) consistent subset of Σ1 ∪ . . . ∪ Σj. Thus, S1 ∪ . . . ∪ Sj ∪
{h} ⊢ ⊥. This means that there exists an argument (S ′,¬h) ∈ Arg(S) s.t.
S ′ ⊆ S1 ∪ . . . ∪ Sj. Thus, Level(S ′) ≤ j. Consequently, (S ′,¬h) ≥wlp a.
Moreover, (S ′,¬h)Ra. Thus, (S ′,¬h)R′a.
The second part of the theorem follows directly from Proposition 4.5.1.

Theorem 4.5.2. Let Σ be a stratified knowledge base. For every stable
extension E of (Arg(Σ), Undercut, ≥wlp), it holds that:

• Base(E) is a preferred sub-theory of Σ

• E = Arg(Base(E))

Proof. Throughout the proof, for S ⊆ Σ and i ∈ {1, . . . , n}, we will use
notation Si = S ∩ Σi. Also, PST will denote the set of all preferred sub-
theories of Σ.

• We will first show that if S ⊆ Σ, E = Arg(S) and E is a stable extension
then S ∈ PST. We will suppose that S /∈ PST and we will prove that
E is not a stable extension. If S is not consistent, then Proposition
4.5.2 implies that E is not conflict-free. Let us study the case when
S is consistent but it is not a preferred subtheory. Thus, there exists
i ∈ {1, . . . , n} such that S1 ∪ . . . ∪ Si is not a maximal consistent set
in Σ1, . . . ,Σi. Let i be minimal s.t. S1 ∪ . . . ∪ Si is not a maximal
consistent set in Σ1, . . . ,Σi. This means that there exists x /∈ S s.t.
x ∈ Σi and S1 ∪ . . .∪Si ∪ {x} is consistent. Let a′ = ({x}, x). Since E
is a stable extension, then (∃a ∈ E) s.t. aR′a′. Since S1 ∪ . . .∪Si∪{x}
is consistent then no argument in E having level at most i cannot be
in conflict with a′. Thus, we have that ∄a ∈ E s.t. aR′a′, which proves
that E is not a stable extension.

• We will now prove that if E ⊆ A is a stable extension of (A,R,≥)
and S = Base(E) then E = Arg(S). Suppose the contrary. From
Proposition 4.5.1, E ⊆ Arg(Base(E)), thus E ( Arg(Base(E)).
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– Let us suppose that S is consistent. Since S is consistent, then
Proposition 4.5.2 implies that Arg(S) is conflict-free. Since we
supposed that E ( Arg(S), then E is not maximal conflict-free,
contradiction.

– Let us study the case when S is inconsistent. This means that
there can be found a set S ′ = {h′

1, . . . , h
′
k} s.t.

∗ S ′ ⊆ S

∗ S ′ ⊢ ⊥

∗ S ′ is a minimal s.t. the previous two conditions are satisfied.

Let us consider the set E ′ containing the following k arguments:
E ′ = {a′1, . . . , a

′
k}, where a′i = (S ′\h′

i,¬h′
i). Since (∀h′

i ∈ S ′)(∃a ∈
E) s.t. h′

i ∈ Supp(a) and since E is conflict-free then (∄b ∈ E)
s.t. Conc(b) ∈ {¬h′

1, . . .¬h′
k}. Hence, (∀a′i ∈ E ′) we have that

a′i /∈ E . Formally, E ∩ E ′ = ∅. This also means that, w.r.t. R,
no argument in E attacks any of arguments a′1, . . . , a

′
k. Formally,

(∀a′ ∈ E ′)(∄a ∈ E) s.t. aRa′. Since E is a stable extension then
arguments of E ′ must be attacked w.r.t. R′. We have just seen
that they are not attacked w.r.t. R. This means that:

(∀i ∈ {1, . . . , k})(∃ai ∈ E)(a′iRai) ∧ (ai > a′i).

For undercuts to exist, it is necessary that:

(∀i ∈ {1, . . . , k}) (h′
i ∈ Supp(ai)) ∧ (ai > a′i).

From (∀i ∈ {1, . . . , k})ai > a′i we have (∀i ∈ {1, . . . , k})
Level({hi}) ≤ Level(Supp(ai)) < Level(Supp(a′i)).
This means that:

(∀i ∈ {1, . . . , k}) Level({h′
i}) < maxj 6=iLevel({h

′
j}).

Let li = Level(h′
i), for all i ∈ {1, . . . , k} and let lm ∈ S ′ be s.t.

lm = max{l1, . . . , lk}. Then, from the previous facts, we have:

l1 < lm

. . .

lm < max({l1, . . . , lk} \ {lm})

. . .

lk < lm
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The row m, i.e. lm < max({l1, . . . , lk} \ {lm}) is an obvious con-
tradiction since we supposed that lm is the maximal value in
{l1, . . . , lk}.

• Now, we have proved that:

1. If S ⊆ Σ, E = Arg(S) and E is a stable extension, then S ∈ PST,

2. If E is a stable extension then E = Arg(Base(E)).

Let E be a stable extension and let S = Base(E). Then, from (2),
E = Arg(S). From (1), S ∈ PST.

Theorem 4.5.3. Let T = (Arg(Σ), Undercut, ≥wlp) be a basic PAF built
from a stratified knowledge base Σ. The stable extensions of T are exactly
the Arg(S) where S ranges over the preferred sub-theories of Σ.

Proof. Let us use the notation PST for the set of all preferred sub-theories
of Σ and Ext for the set of stable extensions of T .

• Theorem 4.5.1 shows that Arg(PST) ⊆ Ext.

• Proposition 4.5.1 implies that Arg is injective.

• Let E ∈ Ext and let S = Base(E). From Theorem 4.5.2, we have
E = Arg(S). Theorem 4.5.2 yields also the conclusion that S ∈ PST.
Thus, Arg : PST → Ext is surjective.

Proposition 4.5.5. Let (Σ,D) be a prioritized knowledge base, D be
a total preorder and let Σ = Σ1 ∪ . . . ∪ Σn be a corresponding stratified
knowledge base, i.e. ∀i, j ∈ {1, . . . , n} ∀x ∈ Σi, ∀y ∈ Σj we have x D y iff
i ≤ j. Then: ∀S ⊆ Σ, S is a preferred sub-theory of Σ1 ∪ . . . ∪ Σn iff S is a
democratic sub-theory of (Σ,D).

Proof. ⇒ Let S be a preferred sub-theory and let us suppose that S is not a
democratic sub-theory. Thus, ∃S ′ s.t. S ′ �d S and S ′ 6= S. Since S and S ′

are both maximal consistent sets, then S \ S ′ 6= ∅. Let i ∈ {1, . . . , n} be the
minimal number s.t. Si \ S

′
i 6= ∅ and x ∈ Si \ S

′
i. Since S ′ �d S, then ∃j < i,

∃y ∈ S ′
j \ Sj . This means that S1 ∪ . . . ∪ Sj ( S ′

1 ∪ . . . ∪ S ′
j. Consequently,

S1 ∪ . . . ∪ Sj is not a maximal consistent set in Σ1 ∪ . . .∪Σj. Contradiction
with the hypothesis that S is a preferred sub-theory.
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⇐ Let S be a democratic sub-theory, and let us suppose that S is not a
preferred sub-theory. Thus, there exists j ∈ {1, . . . , n} s.t. S1 ∪ . . . ∪ Sj is
not a maximal consistent set in Σ1∪ . . .∪Σj. Let x ∈ Σj \S be an argument
s.t. S1∪ . . .∪Sj ∪{x} be a consistent set. Let S ′ = S1∪ . . .∪Sj ∪{x}. Then,
S ′ �d S. Thus, S is not a democratic sub-theory.

Theorem 4.5.4. Let Σ be a knowledge base which is equipped with a
partial preorder D. For every democratic sub-theory S of Σ, it holds that
Arg(S) is a stable extension of basic PAF (Arg(Σ),Undercut,≥gwlp).

Proof. Let us denote by DMS(Σ) (or just DMS) the set of all democratic sub-
theories of Σ. We also write x⊲x′ iff x D x′ and not x′ D x. Let E = Arg(S).
From Proposition 4.5.2, we see that E is conflict-free. We will prove that
it attacks (w.r.t. R′) any argument in its exterior. Let a′ ∈ A \ E be an
arbitrary argument. Since a′ /∈ E then ∃h′ ∈ Supp(a′) s.t. h′ /∈ S. From
S ∈ DMS(Σ) we have that S is a maximal consistent set. It is clear that
S ∪ {h′} ⊢ ⊥. Let us identify all its minimal conflicting subsets. Formally,
let C1, . . . , Ck be all sets which satisfy the following three conditions:

1. Ci ⊆ S

2. Ci ∪ {h′} ⊢ ⊥

3. Ci is minimal (w.r.t. set inclusion) s.t. the two previous conditions are
satisfied.

Those sets allow to construct the following k arguments: a1 = (C1,¬h′), . . . ,
ak = (Ck,¬h). It is obvious that each of them attacks a′ w.r.t. R. If at least
one of them attacks a′ w.r.t. R′, then the proof is over. Suppose the con-
trary. This would mean that ∀i ∈ {1, . . . , k}, a′ > ai. Thus, (∀i ∈ {1, . . . , k})
(∃hi ∈ Ci) s.t. h′ ⊲ hi. In other words, for every argument ai, there exists
one formula hi ∈ Supp(ai), such that h′ ⊲ hi. Let H = {h1, . . . , hk}.

Now, we can define a set S ′ as follows: S ′ = S ∪ {h′} \ H. We will show
that S ′ is consistent. Suppose the contrary. Since S is consistent, then any
inconsistent subset of S ′ must contain h′. Let K1, . . . ,Kj be all sets which
satisfy the following conditions:

1. Ki ⊆ S ′ \ {h′}

2. Ki ∪ {h′} ⊢ ⊥
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3. Ki is a minimal set s.t. the previous two conditions hold.

Let K = {K1, . . . ,Kj} and C = {C1, . . . , Ck}. It is easy to see that K ⊆ C
(this follows immediately from the fact that S ′ \ {h′} ⊆ S). Furthermore,
since (∀Ci ∈ C) (∃h ∈ H) s.t. h ∈ Ci then (∀Ki ∈ K) (∃h ∈ H) s.t. h ∈ Ki.
Since for all Ki, we have that Ki ∩ H = ∅ then it must be that j = 0, i.e.
K = ∅. In other words, there are no inconsistent subsets of S′, which means
that S′ is consistent.

We can notice that S ′ \ S = {h′} and S \ S ′ = {h1, . . . , hk}. Since S ′ is
consistent, we see that S ′ ≻ S. Contradiction with S ∈ DMS(Σ).

Theorem 4.5.5. Let Σ be a knowledge base equipped with a partial
preorder D. For every stable extension E of (Arg(Σ), Undercut ,≥gwlp), it
holds that:

• Base(E) is a maximal (for set inclusion) consistent subset of Σ.

• E = Arg(Base(E)).

Proof. Let S = Base(E).

• Let us suppose that S is consistent but that it is not a maximal con-
sistent set. This means that ∃h ∈ Σ\S s.t. S∪{h} is consistent. From
Proposition 4.5.2, E ′ = Arg(S ∪ {h}) is consistent. From Proposition
4.5.1, E ⊆ E ′. The same result implies that E 6= E ′. Thus, E ( E ′,
which means that E is not a maximal conflict-free set. Contradiction
with the fact that E is a stable extension.

• Suppose now that S is inconsistent. This means that there can be
found a set S′ = {h′

1, . . . , h
′
k} s.t.

– S ′ ⊆ S

– S ′ ⊢ ⊥

– S ′ is a minimal s.t. the previous two conditions are satisfied.

Let us consider the set E ′ containing the following k arguments: E ′ =
{a′1, . . . , a

′
k}, where a′i = (S ′ \ h′

i,¬h′
i). Since (∀h′

i ∈ S ′)(∃a ∈ E) s.t.
h′

i ∈ Supp(a) and since E is conflict-free then (∄b ∈ E) s.t. Conc(b) ∈
{¬h′

1, . . .¬h′
k}. Hence, (∀a′i ∈ E ′) we have that a′i /∈ E . Formally,

E ∩ E ′ = ∅. This also means that, w.r.t. R, no argument in E attacks
any of arguments a′1, . . . , a

′
k. Formally, (∀a′ ∈ E ′)(∄a ∈ E) s.t. aRa′.
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Since E is a stable extension then arguments of E ′ must be attacked
w.r.t. R′. We have just seen that they are not attacked w.r.t. R. This
means that:

(∀i ∈ {1, . . . , k})(∃ai ∈ E)(a′iRai) ∧ (ai > a′i).

For undercuts to exist, it is necessary that:

(∀i ∈ {1, . . . , k}) (h′
i ∈ Supp(ai)) ∧ (ai > a′i).

For i = 1, we have: ∃i1 ∈ {1, . . . , k} s.t. h′
1 ⊲ h′

i1
. For i = i1, we

have that ∃i2 ∈ {1, . . . , k} s.t. h′
i1

⊲ h′
i2

, thus, h′
1 ⊲ h′

i1
⊲ h′

i2
. After k

consecutive applications of the same rule, we obtain: h′
1 ⊲h′

i1
⊲. . . ⊲h′

ik
.

It is clearly a contradiction since on one hand, all the formulae in the
chain are different because of the strict preference between them, and,
on the other hand, set {h′

1, . . . , h
′
k} contains k formulae, thus at least

two of them in a chain of k + 1 formulae must coincide.

This ends the first part of the proof. Let us now prove that E = Arg(S).
From Proposition 4.5.1, we have that E ⊆ Arg(S). Suppose that E ( Arg(S).
In the first part of the proof, we have showed that S is a maximal consistent
set. Thus, from Proposition 4.5.2, we have that Arg(S) is conflict-free. This
simply means that E is not a maximal conflict-free set, contradiction.

Theorem 4.5.6. Let S,S ′ ⊆ Σ be maximal (for set inclusion) consistent
subsets of Σ. It holds that S �d S ′ iff Arg(S) �d Arg(S

′).

Proof. ⇒ Let S �d S ′. Let a′ ∈ E ′ \ E . Then ∃h′ ∈ Supp(a′) s.t. h′ ∈ S ′ \ S.
Since S �d S ′ then ∃h ∈ S \ S ′ s.t. h ⊲ h′. Let a = ({h}, h). It is clear that
a ∈ S \ S ′ and a > a′. Thus, E �d E ′.

⇐ Let E �d E ′. Let h′ ∈ S ′ \ S. Then a′ = ({h′}, h′) ∈ E ′ \ E . Thus,
∃a ∈ E \ E ′ s.t. a > a′. Since a ∈ E \ E ′, then ∃h ∈ Supp(a) s.t. h ∈ S \ S ′.
It is clear that h ⊲ h′.

Theorem 4.5.7. Let Σ be equipped with a partial preorder D.

• For every democratic sub-theory S of Σ, Arg(S) is a stable extension
of the rich PAF (Arg(Σ), Undercut, ≥gwlp,�d).

• For each stable extension E of (Arg(Σ), Undercut, ≥gwlp,�d), Base(E)
is a democratic sub-theory of Σ.
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Proof. Let R = Undercut and let DMS(Σ) denote the set of all democratic
sub-theories of Σ.

• From Theorem 4.5.4, we have that E is an extension of basic PAF
(A,R,≥). We will prove that it is also an extension of rich PAF
(A,R,≥,�d). Let us suppose the contrary, i.e. suppose that there
exists E ′ s.t. E ′ is a stable extension and E ′ ≻d E . Let S ′ = Base(E ′).
From Theorem 4.5.5, E ′ = Arg(S ′). From the same theorem, we have
that S ′ is maximal consistent set and from Theorem 4.5.6 that S ′ ≻d S.
Contradiction.

• Theorem 4.5.5 implies that S is a maximal conflict-free set and that
E = Arg(S). Suppose that S /∈ DMS(Σ). This means that ∃S ′ ⊆ Σ
s.t. S ′ ∈ DMS(Σ) and S ′ ≻d S. From Theorem 4.5.4, E ′ = Arg(S ′) is a
stable extension of a basic PAF. Theorem 4.5.6 implies that E ′ ≻d E ,
contradiction.

Theorem 4.5.8. The stable extensions of (Arg(Σ), Undercut, ≥gwlp,�d)
are exactly the Arg(S) where S ranges over the democratic subtheories of
Σ.

Proof. Let us denote by Ext the set of all extensions of rich PAF T =
(Arg(Σ), Undercut, ≥gwlp,�d) and by DMS the set of the democratic sub-
theories of Σ. We will prove that Arg : DMS → Ext is a bijection.

• Theorem 4.5.7 shows that Arg(DMS) ⊆ Ext.

• Proposition 4.5.1 implies that Arg is injective.

• Let E ∈ Ext and let S = Base(E). From Theorem 4.5.5, we have
E = Arg(S). Theorem 4.5.7 yields the conclusion that S ∈ DMS. Thus,
Arg : DMS → Ext is surjective.

A.3 Proofs for results in Chapter 5

Proposition 5.3.1. Let AF be a decision framework. For all a ∈ Ab,
Status(a,AF) = Status(a,AF ⊕ e).
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Proof. Let a ∈ Ab. Since under grounded semantics, an argument can
be either sceptically accepted or rejected, it is sufficient to show that a ∈
Sc(AF) ⇒ a ∈ Sc(AF ⊕ e) and a ∈ Rej(AF) ⇒ a ∈ Rej(AF ⊕ e).

• Assume that a ∈ Sc(AF) and a ∈ Rej(AF ⊕ e). This means that
(1) (∃i ∈ {1, 2, 3, . . .}) (∃ai ∈ Sci(AF) ∩ Rej(AF ⊕ e) ∩ Ab).
Let us now prove that:
(2) if (∃i ∈ {2, 3, . . .}) (∃ai ∈ Sci(AF) ∩ Rej(AF ⊕ e) ∩ Ab) then
(∃j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ Scj(AF) ∩ Rej(AF ⊕ e) ∩ Ab).

Suppose that (∃i ∈ {2, 3, . . .}) (∃ai ∈ Sci(AF) ∩ Rej(AF ⊕ e) ∩ Ab).
Since ai ∈ Rej(AF ⊕ e) then (∃x ∈ A ∪ {e}) (x, ai) ∈ Def′ ∧ (∄b ∈
Sc(AF ⊕ e)) (b, x) ∈ Def′. Note that from ai ∈ Ab and (x, ai) ∈ Def′

we conclude that x ∈ Ab. Since e is practical, then x 6= e. Thus, x has
already existed before the agent has received the argument e. This
implies (∃x ∈ Ab) (x, ai) ∈ Def. From ai ∈ Sci(AF) we conclude that
some sceptically accepted argument defends argument ai, i.e. (∃j ∈
{1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ Scj(AF)∩Ab). Since (∄b ∈ Sc(AF⊕e))
(b, x) ∈ Def′ it must be that aj ∈ Rej(AF ⊕ e). From (1) and (2) we
get: ∃a1 ∈ Sc1(AF)∩ Rej(AF ⊕ e) ∩Ab. Hence, a1 is not defeated in
AF and it is defeated in AF ⊕ e. So, (e, a1) ∈ Def′. Contradiction,
since e is practical and a is epistemic.

• Let a ∈ Ab be an epistemic argument such that a ∈ Rej(AF). Let us
suppose that a ∈ Sc(AF ⊕ e). This means that
(1) (∃i ∈ {1, 2, 3, . . .}) (∃ai ∈ Sci(AF ⊕ e) ∩ Rej(AF) ∩ Ab).
Let us now prove that:
(2) if (∃i ∈ {2, 3, . . .}) (∃ai ∈ Sci(AF ⊕ e) ∩ Rej(AF) ∩ Ab) then
(∃j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ Scj(AF ⊕ e) ∩ Rej(AF) ∩ Ab).

Suppose that (∃i ∈ {2, 3, . . .}) (∃ai ∈ Sci(AF ⊕ e) ∩ Rej(AF) ∩ Ab).
Since ai ∈ Rej(AF) then (∃x ∈ A) (x, ai) ∈ Def ∧ (∄b ∈ Sc(AF)
(b, x) ∈ Def. Since (x, ai) ∈ Def and ai ∈ Ab then x ∈ Ab. But
ai ∈ Sci(AF ⊕ e) implies that (∃j ∈ {1, 2, 3, . . .}) (j < i) s.t. (∃aj ∈
Scj(AF⊕e)∩Ab) s.t. (aj , x) ∈ Def′. From (aj , x) ∈ Def′ and x ∈ Ab we
have that aj is also epistemic (since practical arguments cannot attack
epistemic ones). The fact that aj ∈ Ab and e is practical implies that
aj 6= e. Thus, aj existed before agent has received the new argument
e. Since (∄b ∈ Sc(AF)) (b, x) ∈ Def then aj ∈ Rej(AF). Now we have
proved (1) and (2). From (1) and (2) we have directly the following:
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(∃a1 ∈ Sc1(AF ⊕ e) ∩ Rej(AF) ∩ Ab). From a1 ∈ Sc1(AF ⊕ e) we
have (∄y ∈ A ∪ {e}) (y, a1) ∈ Def′ and from a1 ∈ Rej(AF) we have
(∃y ∈ A) (y, a1) ∈ Def. Contradiction.

Proposition 5.3.2. Let AF be a decision framework. If ∃a ∈ Ab∩Sc(AF)
such that (a, e) ∈ Def′m, then

• e ∈ Rej(AF ⊕ e),

• GE(AF) = GE(AF ⊕ e)

• for all a ∈ Ao, Status(a,AF) = Status(a,AF ⊕ e).

Proof.

• Let a ∈ Ab ∩ Sc(AF). From Proposition 5.3.1, a ∈ Sc(AF ⊕ e).
Thus, e /∈ GE(AF ⊕ e) since GE(AF ⊕ e) is conflict-free. Consequently,
e ∈ Rej(AF ⊕ e).

• ⇒ We will now prove that Sc(AF) ⊆ Sc(AF⊕e). Suppose not. Then
(∃b ∈ A) s.t. b ∈ Sc(AF) ∧ b ∈ Rej(AF ⊕ e). We will prove that:

1. (∃i ∈ {1, 2, 3, . . .}) (∃ai ∈ Sci(AF) ∩ Rej(AF ⊕ e))

2. if (∃i ∈ {2, 3, . . .}) (∃ai ∈ Sci(AF) ∩ Rej(AF ⊕ e)) then (∃j ∈
{1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ Scj(AF) ∩ Rej(AF ⊕ e)).

Note that (1) is already proved. Let us now prove (2). Suppose
that (∃i ∈ {2, 3, . . .}) (∃ai ∈ Sci(AF) ∩ Rej(AF ⊕ e)). Since ai ∈
Rej(AF ⊕ e) then (∃x ∈ A ∪ {e}) (x, ai) ∈ Def′ ∧ (∄b ∈ Sc(AF ⊕ e))
(b, x) ∈ Def′. Suppose now that e = x. But (∃a ∈ Ab ∪ Sc(AF))
(a, e) ∈ Def. Contradiction with (∄b ∈ Sc(AF ⊕ e)) (b, x) ∈ Def′.
Thus, x 6= e, and x was present in the framework AF . Since x ∈ A
and (x, ai) ∈ Def, from ai ∈ Sci(AF) we conclude that some scep-
tically accepted argument defends argument ai in AF , i.e. (∃j ∈
{1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ Scj(AF) ∩ Ab) ∧ (aj , x) ∈ Def. Since
(∄b ∈ Sc(AF ⊕ e)) (b, x) ∈ Def it must be that aj ∈ Rej(AF ⊕ e). So,
we proved (2). As the consequence of (1) and (2) together, it holds
that: ∃a1 ∈ Sc1(AF) ∩ Rej(AF ⊕ e). This means that (∄b ∈ A) s.t.
(b, a1) ∈ Def and (∃b ∈ A ∪ {e}) (b, x) ∈ Def′. So, (e, a1) ∈ Def′.
Note that e is the only argument that defeats a1 in AF ⊕ e. But
(∃a ∈ Sc(AF ⊕ e)) (a, e) ∈ Def′. Hence, a1 is defended against all

169



APPENDIX A. APPENDIX

defeaters and, consequently, a1 ∈ Sc(AF ⊕ e). Contradiction.

⇐ We will now prove that Sc(AF ⊕ e) ⊆ Sc(AF). Suppose not.
Then (∃ai ∈ A) ai ∈ Sc(AF ⊕ e) ∧ ai ∈ Rej(AF). We will prove that:

1. (∃i ∈ {1, 2, 3, . . .}) (∃ai ∈ Sci(AF ⊕ e) ∩ Rej(AF))

2. if (∃i ∈ {2, 3, . . .}) (∃ai ∈ Sci(AF ⊕ e) ∩ Rej(AF)) then (∃j ∈
{1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ Scj(AF ⊕ e) ∩ Rej(AF)).

Note that the (1) is already proved. Let us now prove (2). Suppose
that (∃i ∈ {2, 3, . . .}) (∃ai ∈ Sci(AF ⊕ e) ∩ Rej(AF)). Since ai ∈
Rej(AF) then (∃x ∈ A) (x, ai) ∈ Def ∧ (∄b ∈ Sc(AF) (b, x) ∈ Def.
Since (x, ai) ∈ Def and ai ∈ Sci(AF ⊕ e) then (∃j ∈ {1, 2, 3, . . .})
(j < i) ∧ (∃aj ∈ Scj(AF ⊕ e) ∩ Rej(AF)). From (∄b ∈ Sc(AF)
(b, x) ∈ Def we obtain that aj ∈ Rej(AF). Now we have proved (1)
and (2). From (1) and (2) we have directly the following: (∃a1 ∈
Sc1(AF ⊕ e) ∩ Rej(AF)). From a1 ∈ Sc1(AF ⊕ e) we have (∄y ∈
A ∪ {e}) (y, a1) ∈ Def and from a1 ∈ Rej(AF) we have (∃y ∈ A)
(y, a1) ∈ Def. Contradiction.

• Since GE(AF) = GE(AF ⊕ e), then all arguments keep their original
status.

Lemma A.3.1. Let o ∈ O, ai ∈ H(o), ai ∈ Sci(AF) and x ∈ A such that
(x, ai) ∈ Def.

1. If x ∈ Ab then (∃j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ Ab ∩ Scj(AF))
(aj , x) ∈ Def,

2. If x ∈ Ao then (∃j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ (Ab ∪ H(o)) ∩
Scj(AF)) (aj , x) ∈ Def.

Proof. We first prove that if ai ∈ H(o), ai ∈ Sci(AF), x ∈ A and (x, ai) ∈
Def, then (∃j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ (Ab ∪ H(o)) ∩ Scj(AF))
(aj , x) ∈ Def.

Assume that (∄j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ H(o) ∪ Ab) aj ∈
Scj(AF) ∧ (aj , x) ∈ Def. Since ai is sceptically accepted and defeated,
then it is defended, so (∃j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ Ao \ H(o))
aj ∈ Scj(AF) ∧ (aj , x) ∈ Def. Hence, (∃o′ ∈ O) (o′ 6= o) and aj ∈ H(o′).
Since both ai and aj are in the grounded extension, there is no defeat be-
tween them. But, since ai ∈ H(o) and aj ∈ H(o′), with o′ 6= o, then
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(ai, aj) ∈ Ro and (aj , ai) ∈ Ro. Contradiction, since we must have either
aiDefaj or ajDefai (or both).

Suppose now that x ∈ Ab. We have proved that (∃j ∈ {1, 2, 3, . . .}) (j < i) ∧
(∃aj ∈ (Ab ∪H(o))∩ Scj(AF)) (aj , x) ∈ Def. Suppose that aj ∈ H(o). This
means that a practical argument attacks an epistemic one. Contradiction.
So, aj ∈ Ab.

Proposition 5.3.3. Let AF be a decision framework.

• For all a ∈ H(Conc(e)), if a ∈ Sc(AF) then a ∈ Sc(AF ⊕ e).

• For all a ∈ Ao, if a ∈ Rej(AF) and a ∈ Sc(AF ⊕ e), then e ∈
H(Conc(a)).

Proof. Let o ∈ O such that e ∈ H(o).

• Suppose that ∃a ∈ Sc(AF) ∩ Rej(AF ⊕ e). We will prove that:

1. (∃i ∈ {1, 2, 3, . . .}) (∃ai ∈ (Sci(AF) ∩ Rej(AF ⊕ e) ∩H(o))

2. if (∃i ∈ {2, 3, . . .}) (∃ai ∈ (Sci(AF) ∩ Rej(AF ⊕ e) ∩ H(o)) then
(∃j ∈ {1, 2, 3, . . .}) (j < i) ∧
(∃aj ∈ (Scj(AF) ∩ Rej(AF ⊕ e) ∩H(o))

Note that we have already proved (1). Let us now prove (2). Suppose
that (∃i ∈ {2, 3, . . .}) (∃ai ∈ (Sci(AF) ∩ Rej(AF ⊕ e) ∩ H(o)). Since
argument ai is rejected in the new framework, then (∃x ∈ A ∪ {e})
(x, ai) ∈ Def′ ∧ (∄y ∈ Sc(AF ⊕ e)) (y, x) ∈ Def′. Note that x 6= e,
because e ∈ H(o) and arguments in favor of same option do not attack
each other. Since (ai ∈ Sc(AF)) and (x, ai) ∈ Def, then according to
Lemma A.3.1, (∃j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ Scj(AF)) (aj ∈
H(o) ∪ Ab) ∧ (aj , x) ∈ Def. Note that aj 6= e, because aj ∈ Scj(AF)
and e /∈ Sc(AF). Since (∄y ∈ Sc(AF ⊕ e)) (y, x) ∈ Def′, then aj ∈
Rej(AF ⊕ e). Argument aj is practical, since aj ∈ Ab, according to
Proposition 5.3.1, implies aj ∈ Sc(AF ⊕ e) which is in contradiction
with the fact that aj ∈ Rej(AF ⊕ e). So, aj ∈ H(o). Now that we see
that (1) and (2) are true, we may conclude that (∃a1 ∈ (Sc1(AF) ∩
Rej(AF ⊕ e) ∩ H(o)). Since a1 was not defeated in AF and it is
defeated in AF ⊕ e, it holds that (e, a1) ∈ Def′. Contradiction, since
a1 ∈ H(o) and e ∈ H(o), and arguments in favor of same option do
not defeat each other.
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• Suppose the contrary. Then, (∃a ∈ Rej(AF) ∩ Sc(AF ⊕ e) ∩ H(o))
and e /∈ H(o). Since e is practical, it holds that (∃o′ ∈ O) o′ 6= o ∧
e ∈ H(o′). We will prove that:

1. (∃i ∈ {1, 2, 3, . . .}) (∃ai ∈ (Rej(AF) ∩ Sci(AF ⊕ e) ∩H(o))

2. if (∃i ∈ {2, 3, . . .}) (∃ai ∈ (Rej(AF) ∩ Sci(AF ⊕ e) ∩H(o)) then
(∃j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ H(o) ∩ Scj(AF ⊕ e) ∩
(Rej(AF))

Since a ∈ H(o), a ∈ Rej(AF) and a ∈ Sc(AF ⊕ e), we see that
(1) is true. So, let us prove (2). Suppose (∃i ∈ {2, 3, . . .}) (∃ai ∈
(Rej(AF)∩Sci(AF⊕e)∩H(o)). Since ai was rejected, ai ∈ Rej(AF),
then (∃x ∈ A) (x, ai) ∈ Def ∧ (∄y ∈ Sc(AF)) (y, x) ∈ Def. Since ai ∈
Sc(AF⊕e) then, according to Lemma A.3.1, (∃j ∈ {1, 2, 3, . . .}) (j < i)
s.t. (∃aj ∈ (Scj(AF ⊕ e) ∩ (H(o) ∪ Ab)) s.t. (aj , x) ∈ Def′. We have
aj 6= e because aj ∈ H(o) and e /∈ H(o). So, aj ∈ A. If aj ∈ Ab, then,
according to Proposition 5.3.1, aj ∈ Sc(AF). Contradiction with the
fact (∄y ∈ Sc(AF)) (y, x) ∈ Def. So, aj ∈ H(o). On the other hand,
since ai ∈ Rej(AF) then (∄y ∈ Sc(AF)) (y, x) ∈ Def. Hence, since
aj ∈ A, then, it must be the case that aj ∈ Rej(AF). From (1) and
(2) we have the following: (∃a1 ∈ (Rej(AF)∩Sc1(AF⊕e)∩H(o)). So,
a1 is not defeated in AF ⊕ e and a1 is defeated in AF . Contradiction.

Proposition 5.3.4. Let AF be a decision framework and o ∈ Or(AF). It
holds that o ∈ Oa(AF ⊕ e) iff e ∈ H(o) and e ∈ Sc(AF ⊕ e).

Proof. ⇒ Let o ∈ Oa(AF ⊕ e).

1. Let us prove that e ∈ H(o). Suppose not. Then (∃o′ ∈ O) o 6= o′ ∧
e ∈ H(o′). But, according to Proposition 5.3.3., all rejected arguments
in favor of o will remain rejected, i.e. H(o) ⊆ Rej(AF⊕e). This means
that o ∈ Or(AF ⊕ e).

2. Let us now prove that e ∈ Sc(AF ⊕ e). Suppose not. So, e ∈
Rej(AF⊕e). Since o ∈ Oa(AF⊕e) then (∃a ∈ H(o)) a ∈ Sc(AF⊕e).
Note that a 6= e because a ∈ Sc(AF ⊕ e) and e ∈ Rej(AF ⊕ e). This
is equivalent to
(a) (∃i ∈ {1, 2, 3, . . .}) (∃ai ∈ H(o)) (ai ∈ Sci(AF ⊕ e) ∩ Rej(AF)).
Let us prove that:
(b) if (∃i ∈ {2, 3, . . .}) (∃ai ∈ H(o)) (ai ∈ Sci(AF ⊕ e) ∩ Rej(AF))
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then (∃j ∈ {1, 2, 3, . . .}) (j < i) ∧ (∃aj ∈ H(o)) (aj ∈ Sci(AF ⊕ e) ∩
Rej(AF)).

Suppose (∃i ∈ {2, 3, . . .}) (∃ai ∈ H(o)) (ai ∈ Sci(AF ⊕ e)∩ Rej(AF)).
Since ai ∈ Rej(AF) then (∃x ∈ A) (x, ai) ∈ Def ∧ (∄y ∈ Sc(AF))
(y, x) ∈ Def. Since ai ∈ Sc(AF ⊕ e) then, according to Lemma A.3.1,
(∃aj ∈ Scj(AF ⊕ e)) s.t. (aj ∈ H(o) ∪ Ab) ∧ (aj , x) ∈ Def′. Here, we
have aj 6= e because aj ∈ Sc(AF ⊕ e) and e /∈ Sc(AF ⊕ e). So, aj

was already present before the agent has received the new argument
e. Since (∄y ∈ Sc(AF)) (y, x) ∈ Def then aj ∈ Rej(AF). Suppose
that aj ∈ Ab. Then, according to Proposition 5.3.1, aj ∈ Rej(AF⊕e),
contradiction. So, aj ∈ H(o). Now, when we have proved both (1) and
(2), we conclude that (∃a1 ∈ H(o)) (a1 ∈ Sc1(AF ⊕ e) ∩ Rej(AF)).
Since a1 is not defeated in AF ⊕ e, than it is not defeated in AF .
Contradiction with a1 ∈ Rej(AF).

⇐ If e ∈ H(o) and e ∈ Sc(AF ⊕ e), then Conc(e) Then, the option o is
acceptable according to Definition 5.2.3.

Proposition 5.3.5. Let AF = (O,A, Def,H) be a decision framework,
and AF ⊕ e its extension with argument e. It holds that e ∈ Sc(AF ⊕ e)
iff for all a ∈ A, if (a, e) ∈ Def′, then ∃b ∈ Sc(AF) ∩ (Ab ∪H(Conc(e))) s.t.
(b, a) ∈ Def.

Proof. Let o ∈ O be an option such that Conc(e) = o.
⇒ Since e ∈ Sc(AF ⊕ e), then (∃i ∈ N ) s.t. e ∈ Sci(AF ⊕ e) and e /∈
Sci−1(AF ⊕ e). Let us now suppose that this property does not hold, i.e.
that:

(∃x ∈ A)(xDef′e∧ (∀a ∈ A)(aDefx ⇒ a /∈ Sc(AF)∩ (Ab ∪H(o)))) (A.1)

Suppose x ∈ Ab. Then, since e ∈ Sc(AF ⊕ e) it holds that (∃α ∈ Ab ∩
Sc(AF ⊕ e)) s.t. (α, x) ∈ Def′. From Proposition 5.3.1, α ∈ Sc(AF), which
ends the proof.

We will now study the case when x ∈ Ao. Since e ∈ Sc(AF ⊕ e) then
from Lemma A.3.1 (∃y ∈ Sc(AF ⊕ e)) s.t. (y, x) ∈ Def′∧ y ∈ Ab∪H(o). Let
us suppose that (∀x ∈ A)(x, e) ∈ Def′ ⇒ (∃α ∈ Sc(AF⊕e)∩Ab) s.t. (α, x) ∈
Def′. Then, since for α ∈ Ab it holds that α ∈ Sc(AF) iff α ∈ Sc(AF ⊕ e),
the proof is over. Else, (∃x ∈ A) s.t. (x, e) ∈ Def′ ∧ (∄α ∈ Sc(AF ⊕ e)∩Ab)
s.t. (α, x) ∈ Def′. From the previous facts and from (A.1), we have that
for at least one such x, it holds that (∀l < i)(∀al ∈ Scl(AF ⊕ e) ∩ H(o))
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if alDef
′x then al ∈ Rej(AF). Since at least one al verifies the previous

condition, we have:

(∃l < i)(∃al ∈ Scl(AF ⊕ e) ∩ H(o) ∩ Rej(AF)) s.t. (al, x) ∈ Def′. (A.2)

It is clear that al 6= e, since e /∈ Sci(AF ⊕ e).

We will prove that:

(∀k ∈ {1, . . . , l})( if Sck(AF ⊕ e) ∩H(o) ∩ Rej(AF) 6= ∅ then

(∃j ∈ {1, . . . , k − 1}) s.t. Scj(AF ⊕ e) ∩H(o) ∩ Rej(AF) 6= ∅). (A.3)

Let (∃ak ∈ (Sck(AF ⊕ e)) ∩ H(o)) s.t. ak ∈ Rej(AF). Note that ak 6= e
since e /∈ Sci−1(AF ⊕ e). Since ak /∈ Sc(AF) then (∃b ∈ A)(b, ak) ∈ Def. It
is impossible that for all such b ∈ A (∃α ∈ Sc(AF ⊕ e) ∩ Ab)(α, b) ∈ Def′

since that would mean α ∈ Sc(AF) ∧ (α, b) ∈ Def so ak ∈ Sc(AF), con-
tradiction. Thus, from this fact and by using Lemma A.3.1, we obtain
that (∃b ∈ A)(b, ak) ∈ Def and ∃j < k (∃aj ∈ Scj(AF ⊕ e) ∩ H(o))) s.t.
(aj , b) ∈ Def. Here again, aj 6= e since e /∈ Sci−1(AF ⊕ e). If for every such
an argument b ∈ A (s.t. (b, ak) ∈ Def ∧ (∄α ∈ Sc(AF)) s.t. (α, b) ∈ Def)
it holds that (∃aj ∈ Sc(AF)) s.t. ajDefb, then we have that ak ∈ Sc(AF),
contradiction. Thus, it must be that (∃j < k)(∃aj ∈ Scj(AF ⊕ e) ∩ H(o))
s.t. aj ∈ Rej(AF), with j < k. This ends the proof for (A.3). Together with
(A.2), this implies a contradiction, since this obviously creates an infinite,
strictly decreasing sequence of natural numbers.

⇐ Let us suppose that e is defended from all attacks in AF ⊕ e by ar-
guments of Sc(AF) ∩ (H(o) ∪Ab). From Proposition 5.3.1 and Proposition
5.3.3 we have that

Sc(AF) ∩ (H(o) ∪Ab) ⊆ Sc(AF ⊕ e) ∩ (H(o) ∪ Ab).

This means that e is defended from all attacks in AF ⊕ e by arguments of
Sc(AF ⊕ e). Consequently, e ∈ Sc(AF ⊕ e).

Lemma A.3.2. It holds that under grounded semantics Dbe(AF) ⊆ Sc(AF).

Proof. Let AF = (O,A, Def,H) and a ∈ Dbe(AF). Let Att(a) = {xi ∈ A |
(xi, a) ∈ Def}. Since the set A of arguments is finite, let us denote Att(a) =
{x1, . . . , xn}. From a ∈ Dbe(AF), we obtain (∀xi ∈ A) (∃α ∈ Sc(AF)∩Ab)
such that (α, xi) ∈ Def. Let Defends(a) = {α1, . . . , αk} be a set such
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that Defends(a) ⊆ Ab ∩ Sc(AF) and (∀xi ∈ Att(a)) (∃αj ∈ Defends(a))
(αj , xj) ∈ Def. Since Defends(a) ⊆ Sc(AF) then (∀αi ∈ Defends(a))
(∃mi ∈ {1, 2, 3, . . .}) s.t. αi ∈ Scmi(AF). Let m = max{m1, . . . ,mk}. It
holds that Defends(a) ⊆ Scm(AF). Then, according to the definition of
grounded semantics, it holds that a ∈ Scm+1(AF), since argument a is de-
fended by arguments of Scm(AF)against all attacks. From a ∈ Scm+1(AF),
we have a ∈ Sc(AF).

Proposition 5.3.6. Let AF be a decision framework and o ∈ Oa(AF). It
holds that o ∈ Or(AF ⊕ e) iff

1. e /∈ H(o), and

2. ∄a ∈ Ab ∩ Sc(AF) s.t. (a, e) ∈ Def′m, and

3. ∀a ∈ Dbe(AF) ∩H(o), (e, a) ∈ Def′o.

Proof. ⇒ Since o ∈ Oa(AF), then (∃a ∈ H(o)) a ∈ Sc(AF). Let o ∈
Or(AF ⊕ e).

1. Suppose e ∈ H(o). Then, according to Proposition 5.3.3, a ∈ Sc(AF⊕
e). Consequently, o ∈ Oa(AF ⊕ e), contradiction.

2. Suppose that (∃x ∈ Ab ∩ Sc(AF)) (x, e) ∈ Def. According to Proposi-
tion 5.3.2, Sc(AF ⊕ e) = Sc(AF) and Rej(AF ⊕ e) = Rej(AF)∪{e}.
So, a ∈ Sc(AF) implies a ∈ Sc(AF ⊕ e). Contradiction with the fact
that o ∈ Or(AF ⊕ e).

3. Suppose that (∃a ∈ Dbe(AF)∩H(o)) (e, a) /∈ Def′. Since a ∈ Dbe(AF),
Lemma A.3.2 implies that a ∈ Sc(AF). From o ∈ Or(AF ⊕ e) we ob-
tain a ∈ Rej(AF⊕e). So, (∃x ∈ A) (x, a) ∈ Def′ s.t. (∄b ∈ Sc(AF⊕e))
(b, x) ∈ Def′. Note that x 6= e because (x, a) ∈ Def′ and (e, a) /∈ Def′.
So, x ∈ A. From a ∈ Dbe(AF) we have (∃α ∈ Ab ∩ Sc(AF) s.t.
(α, x) ∈ Def. From Proposition 5.3.1, we have α ∈ Sc(AF ⊕ e). Con-
tradiction with (∄b ∈ Sc(AF ⊕ e)) (b, x) ∈ Def′.

⇐ Let e /∈ H(o) ∧ (∄x ∈ Ab∩Sc(AF)) (x, e) ∈ Def′ ∧ (∀a ∈ Dbe(AF)∩H(o))
(e, a) ∈ Def′. Suppose that o /∈ Or(AF ⊕ e). Thus, o ∈ Oa(AF ⊕ e). This
means that (∃a ∈ H(o)) a ∈ Sc(AF ⊕ e). We will prove the following:

1. (∃i ∈ {1, 2, 3, . . .}) (∃ai ∈ H(o)) (ai ∈ Sci(AF ⊕ e)).

2. if (∃i ∈ {2, 3, . . .}) (∃ai ∈ H(o)) s.t. (ai ∈ Sci(AF ⊕ e)) then (∃j ∈
{1, 2, 3, . . .}) s.t. (j < i) ∧ (∃aj ∈ H(o)) s.t. (aj ∈ Scj(AF ⊕ e)).
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Note that we have already proved (1), since (∃a ∈ H(o)) a ∈ Sc(AF⊕e). Let
us prove (2). Suppose that (∃i ∈ {2, 3, . . .}) (∃ai ∈ H(o)) (ai ∈ Sci(AF⊕e)).
Let us explore two possibilities: a ∈ Dbe(AF) and a /∈ Dbe(AF). Suppose
that ai ∈ Dbe(AF). Since ai ∈ Dbe(AF) ∩ H(o) then (e, ai) ∈ Def′. Since
ai ∈ Sc(AF ⊕ e) and (e, a) ∈ Def′ then, according to Lemma A.3.1, (∃j ∈
{1, 2, 3, . . .}) j < i ∧ (∃aj ∈ Scj(AF ⊕ e)) (aj ∈ Ab ∪H(o)) ∧ (aj , e) ∈ Def.
We will now show that aj ∈ H(o). Suppose that aj ∈ Ab. According to
Proposition 5.3.1, aj ∈ Sc(AF). Contradiction with (∄x ∈ Ab ∩ Sc(AF))
(x, e) ∈ Def. Let us now explore the case when ai /∈ Dbe(AF). From
Definition 5.3.1, we have (∃x ∈ A) (x, ai) ∈ Def ∧ (∄aj ∈ Ab ∩ Sc(AF ⊕ e))
(aj , x) ∈ Def. Since ai ∈ Sc(AF⊕e) and (x, ai) ∈ Def′, Lemma A.3.1 implies
that (∃j ∈ {1, 2, 3, . . .}) s.t. j < i ∧ (∃aj ∈ Scj(AF⊕e)) s.t. (aj ∈ Ab∪H(o))
∧ (aj , e) ∈ Def′. Since (∄aj ∈ Ab ∩ Sc(AF ⊕ e)) s.t. (aj , x) ∈ Def′ then
aj ∈ H(o).

Now, we have proved (1) and (2). As the consequence, we have that:
(∃a1 ∈ H(o)) s.t. (a1 ∈ Sc1(AF ⊕ e)). This means that a1 is not defeated
by any argument in AF ⊕ e. This implies that a1 is not defeated by any
argument in AF , i.e. a1 ∈ Sc1(AF). Consequently, a1 ∈ Dbe(AF). So,
(e, a1) ∈ Def′. Contradiction with the fact that a1 is not defeated in AF ⊕
e.

Lemma A.3.3. Let AF = (A,R,≥) be an argumentation framework, with
A = Ab ∪ Ao, R = Rb ∪ Rm ∪ Ro and ≥=≥b ∪ ≥m ∪ ≥o, and let AFb =
(Ab,Rb,≥b) be its epistemic part.

1. If E is a preferred extension of AF , then E∩Ab is a preferred extension
of AFb.

2. If E is a preferred extension of AFb, then ∃E ′ ⊆ Ao s.t. E ∪ E ′ is a
preferred extension of AF .

Proof.

1. Let E be a preferred extension of AF and let E ′ = E ∩Ab. It is trivial
that E ′ is conflict-free. If (∃x ∈ Ab)(∃y ∈ E ′) s.t. (x, y) ∈ Def and
(∄z ∈ E ′) s.t. (z, y) ∈ Def then E is not admissible in AF because of
the same attack in AF . So, E ′ must be admissible in AFb. If E ′ is
not preferred in AFb then there exists E ′′ ⊆ Ab s.t. E ′ ( E ′′ and E ′′ is
preferred in AFb. In this case, E ∪E ′′ admissible in AF , contradiction.

2. Let E be a preferred extension of AFb. It is conflict-free and admissible
in AF . If it is not preferred, then exists E ′′ ⊆ A such that E ⊆ E ′′
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and E ′′ is preferred extension of AF . If E ′′∩Ab = E , the proof is over.
Else, from the first part of this property, we have that (E ′′ ∩ Ab) is a
preferred extension of AFb. Contradiction with the fact that E is a
preferred extension, since there exists a proper superset of E which is
admissible, contradiction.

Proposition 5.3.7. Let AF be a decision framework. For all a ∈ Ab,
Status(a,AF) = Status(a,AF ⊕ e).

Proof. Let a ∈ Ab.

1. Suppose that a ∈ Sc(AF) and a /∈ Sc(AF ⊕ e). This means that
exists an extension E in AF ⊕ e s.t. a /∈ E . Let E ′ = E ∩ Ab. Note
that the argumentation framework AFb = (Ab, Defb) does not change
when a new practical argument is received. From Lemma A.3.3, E ′

is a preferred extension of AFb. From the same lemma, there exists
E ′′ ⊆ Ao s.t. E ′ ∪E ′′ is a preferred extension of AF . Thus, there exists
a preferred extension E ′∪E ′′ such that a /∈ E ′∪E ′′. Contradiction with
the fact that a ∈ Sc(AF).

2. Suppose that a ∈ Cr(AF) and a ∈ Sc(AF ⊕ e). This means that
there exists an extension E in AF such that a /∈ E . Let E ′ = E ∩ Ab.
From Lemma A.3.3, E ′ is a preferred extension of AFb. From the same
lemma, exists E ′′ ⊆ Ao ∪ {e} s.t. E ′ ∪ E ′′ is a preferred extension of
AF ⊕ e. Thus, there exists a preferred extension E ′ ∪ E ′′ such that
a /∈ E ′ ∪ E ′′. Contradiction with the fact that a ∈ Sc(AF ⊕ e).
Assume now that a ∈ Cr(AF) and a ∈ Rej(AF ⊕ e). This means
that exists an extension E in AF such that a ∈ E . Let E ′ = E ∩ Ab.
from Lemma A.3.3, E ′ is a preferred extension of AFb. From the same
lemma, exists E ′′ ⊆ Ao ∪ {e} s.t. E ′ ∪ E ′′ is a preferred extension of
AF ⊕ e. Thus, there exists a preferred extension E ′ ∪ E ′′ of such that
a ∈ E ′ ∪ E ′′. Contradiction with the fact that a ∈ Rej(AF ⊕ e).

3. Suppose that a ∈ Rej(AF) and a /∈ Rej(AF). This means that then
exists an extension E in AF ⊕ e such that a ∈ E . Let E ′ = E ∩ Ab.
From Lemma A.3.3, E ′ is a preferred extension of AFb. From the
same lemma, exists E ′′ ⊆ Ao s.t. E ′ ∪ E ′′ is a preferred extension of
AF . Thus, there exists a preferred extension E ′ ∪ E ′′ of AF such that
a ∈ E ′ ∪ E ′′. Contradiction with the fact that a ∈ Rej(AF).
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Proposition 5.3.8. Let AF be a decision framework. If ∃a ∈ Ab∩Sc(AF)
such that (a, e) ∈ Def′m, then

• e ∈ Rej(AF ⊕ e),

• ∀E ⊆ A, E is a preferred extension of AF iff E is a preferred extension
of AF ⊕ e,

• for all a ∈ Ao, Status(AF , a) = Status(AF ⊕ e, a).

Proof.

1. By Lemma A.3.3, from α ∈ Sc(AF), we have that α ∈ Sc(AF ⊕
e). Since e is attacked by a sceptically accepted argument, it must
be rejected since every extension contains α and every extension is
conflict-free, thus no extension can contain argument e.

2. ⇒ Let E be a preferred extension of AF . It is obvious that it is
conflict-free. It is admissible in AF⊕e since it defends all its elements
in AF . So, it trivially defends the arguments in AF ⊕ e from all at-
tacks except from attacks of e. Since sceptically accepted arguments
are in all extensions, a ∈ E . So, a defends E from attacks of e in
AF ⊕ e. Thus, E is admissible in AF ⊕ e. Suppose now that E is not
a preferred extension of AF ⊕ e. Then, there exists E ′ ⊆ A∪{e} such
that E ′ is preferred extension in AF⊕e and E ( E ′. Since e is rejected
then e /∈ E ′. But it is now easy to see that E ′ is then an admissible set
in AF , thus E is not a preferred extension of AF .

⇐ Let E be a preferred extension in AF ⊕ e. Since e is rejected
then e /∈ E . It is clear that E is conflict-free. Since E is admissible in
AF ⊕ e, i.e. it defends all its elements, then it is easy to conclude that
it defends all its elements in AF . We will now see that E is preferred
in AF . Let us suppose the contrary. Then, there exists E ′ ⊆ A such
that E ′ is preferred in AF and E ( E ′. As shown above, this means
that E ′ is admissible in AF ⊕ e.

3. Since extensions do not change, statuses of arguments do not change.

Lemma A.3.4. Let (O,A, Def,H) be a decision framework, and let E be one
of its preferred extensions. Let a ∈ E ∩ Ao and x ∈ A s.t. (x, a) ∈ Def.
Then:

(∃ai ∈ E ∩ (Ab ∪H(Conc(a)))) s.t. (ai, x) ∈ Def
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Proof. Let o ∈ O be such that a ∈ H(o) and let (x, a) ∈ Def. Since a ∈ E
then (∃ai ∈ E)(ai, x) ∈ Def. If (∃ai ∈ E)(ai, x) ∈ Def ∧ ai ∈ E ∩ (Ab ∪H(o))
the proof is over. Else, we have that (∀ai ∈ E)(ai, x) ∈ Def ⇒ ai ∈ Ao\H(o).
Thus, a ∈ E and ai ∈ E with Conc(a) 6= Conc(ai). This means that aDefai

or aiDefa, contradiction.

Proposition 5.3.9. Let AF be a decision framework. For all a ∈ Ao such
that Conc(a) = Conc(e), it holds that:

• If a ∈ Sc(AF) then a ∈ Sc(AF ⊕ e)

• If a ∈ Cr(AF) then a ∈ Sc(AF ⊕ e) ∪ Cr(AF ⊕ e)

Proof. Let o ∈ O, a ∈ Ao and let a, e ∈ H(o).

• Assume that a ∈ Sc(AF) and a /∈ Sc(AF ⊕ e). This means that there
exists a preferred extension of AF⊕e, E ′, such that a /∈ E ′. It is easy to
see that E ′\{e}\H(o) is admissible in AF : it is trivial that it is conflict-
free, and from Lemma A.3.4 we see that it defends all its elements
since every practical argument can be defended either by an epistemic
argument or by a practical argument having the same conclusion. Note
also that, according to Lemma A.3.3, E ′ ∩ Ab is a preferred extension
of the belief part AFb = (Ab,Rb,≥b) of the framework AF . So,
there exists E ′′ ⊆ A s.t. (E ′ \ {e} \ H(o)) ⊆ E ′′ and E ′′ is preferred
extension of AF . Note that, since E ′∩Ab is a preferred extension of the
belief part AFb = (Ab,Rb,≥b), and E ′′∩Ab (also according to Lemma
A.3.3) is a preferred extension of AFb and E ′ ∩ Ab ⊆ E ′′ ∩ Ab, then
E ′ ∩ Ab = E ′′ ∩ Ab. Since a ∈ Sc(AF) it must be that a ∈ E ′′. Since
practical arguments in favor of different options attack each other,
then E ′′ ∩ Ao ⊆ H(o). Thus, E ′ ∩ Ao ⊆ H(o). Let us study the set
E ′ ∪ (E ′′ ∩H(o)). Clearly, we have (E ′ ∪ (E ′′ ∩H(o))) ∩Ao ⊆ H(o) Let
us show that set E ′ ∪ (E ′′ ∩H(o)) is admissible in AF ⊕ e:

– it is conflict-free as union of two conflict-free sets which do not
attack each other since arguments in H(o) do not attack other
arguments in H(o) and arguments in H(o) ∩ E ′′ are not attacked
by arguments in E ′∩Ab (which is equal to E ′′∩Ao, and is a subset
of a preferred extension).

– it defends its elements since E ′ is admissible in AF ⊕ e and E ′′ ∩
(H(o)∪Ab) is admissible in AF ⊕ e and union of two admissible
sets which do not attack each another is an admissible set.
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Contradiction, since E ′ is a preferred extension in AF ⊕ e and there
exists its strict superset E ′∩(E ′′∪H(o)) which is admissible in AF⊕e.

• Since a ∈ Cr(AF) then (∃E ⊆ A) s.t. E is a preferred extension in AF
and a ∈ E . As a consequence of Lemma A.3.4, E ′ = (H(o)∪Ab)∩E is
admissible in AF ⊕ e. Thus, (∃E ′′ ⊆ A∪ {e}) s.t. E ′ ⊆ E ′′ and E ′′ is a
preferred extension of AF ⊕ e. This proves that a /∈ Rej(AF ⊕ e).

Proposition 5.3.10. Let AF be a decision framework, and a ∈ Ao. If
a ∈ Rej(AF) and a ∈ Sc(AF ⊕ e) ∪ Cr(AF ⊕ e) then Conc(a) = Conc(e).

Proof. Let a ∈ Rej(AF) and a /∈ Rej(AF ⊕ e). Since a /∈ Rej(AF ⊕ e)
then there exists E ⊆ A ∪ {e} s.t. a ∈ E and E is a preferred extension of
AF ⊕ e. Let Conc(e) = o, with o ∈ O. Set E ′ \H(o) is admissible in AF : it
is conflict-free (since it is conflict-free in AF ⊕ e) and from Lemma A.3.4,
it defends all its elements. Since a ∈ Rej(AF) then a cannot be in any
admissible set of AF since for every admissible set there exists its superset
which is a preferred extension, thus a would be in at least one preferred
extension which could not be the case. Consequently, a /∈ E \ H(o). From
a ∈ E and a /∈ E \ H(o′) it follows that a ∈ H(o).

Proposition 5.3.11. Let AF be a decision framework and o ∈ Or(AF).
Then o ∈ Oa(AF ⊕ e) ∪ On(AF ⊕ e) iff e ∈ H(o) ∧ e /∈ Rej(AF ⊕ e).

Proof. ⇒ Let us suppose that option o ∈ O was rejected before the argument
e was received, i.e. o ∈ Rej(AF) and that its status was improved, formally
o ∈ Oa(AF ⊕ e) ∪On(AF ⊕ e). This means that all the arguments in H(o)
were rejected, and that in the framework AF ⊕ e there exists at least one
argument in favor of o which is not rejected. We see that e /∈ H(o) is not
possible since, that would mean that some of arguments in H(o) improved
its status, and according to Proposition 5.3.10 that e ∈ H(o). So, we proved
that e ∈ H(o). Let us now prove that e /∈ Rej(AF ⊕ e). Suppose the
contrary, i.e. let e ∈ Rej(AF ⊕ e). This means that ∃E ⊆ A s.t. E is a
preferred extension in AF ⊕ e and that (∃a ∈ H(o) ∩ E). In other words,
there exists a non-rejected argument in favor of o. From Lemma A.3.4 we see
that set E ∩ (Ab ∪H(o)) is admissible in AF ⊕ e. It must also be admissible
in AF . This means that a /∈ Rej(AF) and, consequently o /∈ Rej(AF).
Contradiction.
⇐ This part of proof is trivial, since it follows directly from Definition
5.2.3.
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Proposition 5.3.12. Let AF = (O,Ab ∪ Ao, Defb ∪ Defo ∪ Defm,H) be
a decision framework. It holds that e /∈ Rej(AF ⊕ e) iff ∃E ⊆ Ab and
∃E ′ ⊆ H(Conc(e)) such that:

1. E ∪ E ′ is conflict-free, and

2. E is a preferred extension of (Ab, Defb), and

3. ∀a ∈ E ′ ∪ {e}, if ∃x ∈ A s.t. (x, a) ∈ Def, then ∃a′ ∈ E ∪ E ′ ∪ {e} s.t.
(a′, x) ∈ Def.

Proof. Let o ∈ O such that o = Conc(e).
⇒ Let e /∈ Rej(AF ⊕ e). In other words, ∃E ′ ⊆ A∪{e} s.t. E ′ is a preferred
extension in AF ⊕ e and e ∈ E ′. Let Eb = E ′ ∩ Ab and Eo = E ′ ∩H(o).

1. It is obvious that Eb ∪ Eo is conflict-free.

2. Since E ′ is a preferred extension in AF⊕e, then from Lemma A.3.3 we
have that Eb is a preferred extension of framework AFb = (Ab,Rb,≥b).

3. Let a ∈ Eo ∪ {e} and let (x, a) ∈ Def. Since E ′ is a preferred extension
in AF ⊕ e, then ∃a′ ∈ E ′ s.t. (a′, x) ∈ Def.

⇐ Let us suppose that the three conditions are satisfied and let us prove
that e /∈ Rej(AF ⊕ e). We define E ′ as follows: E ′ = Eb ∪ Eo ∪ {e}. Recall
that Eb ∪ Eo is conflict-free. Since Eo ⊆ H(o) then Eo ∪ {e} is conflict-free.
Argument e being practical, it cannot attack the arguments in Eb. Suppose
now that Eb attacks e, i.e. (∃α ∈ Eb)(α, e) ∈ Def. In that case, from the third
item, (∃β ∈ Eb)(β, α) ∈ Def, contradiction with the fact Eb is conflict-free.
Thus, E ′ is conflict-free. Set Eb is a preferred extension in (A,Rb,≥b). From
Lemma A.3.3, it is a preferred extension in epistemic part (A′,R′

b,≥
′
b) of

framework AF ⊕ e. Consequently, it defends its arguments. From the third
item, E ′ defends arguments of Eo ∪ {e}. Thus, E ′ is an admissible extension
of argumentation framework AF ⊕ e. Then, ∃E ⊆ A∪{e} s.t. E ′ ⊆ E , e ∈ E
and E is a preferred extension of AF ⊕ e. So, e /∈ Rej(AF ⊕ e).

Proposition 5.3.13. Let AF be a decision framework and o ∈ Oa(AF)∪
On(AF). Then o ∈ Or(AF ⊕ e) iff

1. e /∈ H(o), and

2. there does not exist a preferred extension E of AF s.t. E ∩ H(o) 6= ∅
and ∃a ∈ E ∩ Ab s.t. (a, e) ∈ Def′m, and
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3. there does not exist a preferred extension E of AF s.t. there exists an
admissible set E ′′ of AF with E ′′∩Ao ⊆ E ∩H(o) and E ′′∩Ab = E ∩Ab

and ∀a ∈ E ′′ ∩H(o), (a, e) ∈>′
o or ∃a′ ∈ E ′′ ∩H(o) s.t. (e, a) /∈>′

o.

Proof. ⇒ Let o ∈ Oa(AF)∪On(AF) and let us suppose that o ∈ Or(AF⊕e).
We prove that the three conditions stated in the proposition are satisfied.

1. From Proposition 5.3.9 we have that in the case when e ∈ H(o), all
sceptically accepted arguments in H(o) will stay sceptically accepted
and that all credulously accepted arguments in H(o) will either stay
credulously accepted or become sceptically accepted. So, it must be
that e /∈ H(o).

2. Let us suppose that there exists a preferred extension of AF , denoted
E , s.t. a ∈ E ∩H(o) and (∃α ∈ E ∩Ab)(α, e) ∈ R. In that case, set E is
admissible in AF⊕e, since it is conflict-free (trivial) and it defends all
its elements: this come from the fact that E is admissible in AF and
that it attacks e. So, there exists E ′ ⊆ A ∪ {e} which is a preferred
extension in AF ⊕ e, such that E ⊆ E ′. Hence, a /∈ Rej(AF ⊕ e).
Consequently, o /∈ Or(AF ⊕ e). Contradiction.

3. Let us suppose that the third condition of proposition is not satisfied,
and let E ′′ ⊆ A s.t. E ′′ ∩ Ao ⊆ E ∩ H(o) and E ′′ ∩ Ab = E ∩ Ab and
E ′′ is admissible in AF and ((∀a ∈ E ′′ ∩ H(o))(a, e) ∈>o or (∃a′ ∈
E ′′ ∩ H(o) s.t. ¬(e, a) ∈>o)). Since E ′′ is admissible in AF , then it is
conflict-free and it defends all its arguments from all attacks in AF .
To check whether or not it is admissible in AF ⊕ e, it is sufficient
to see that it defends itself also from attacks of e: in the case when
(∀a ∈ E ′′ ∩ H(o))(a, e) ∈>o then it is not defeated by e, in the case
when (∃a′ ∈ E ′′∩H(o))¬(e, a) ∈>o, we have (a, e) ∈ Def so in this case
also we have that E ′′ is admissible. This means that o /∈ Rej(AF ⊕ e),
contradiction.

⇐ Let us suppose that o ∈ Oa(AF)∪On(AF) and that three conditions of
the proposition are satisfied. We prove that o ∈ Or(AF ⊕ e). Suppose the
contrary. This would mean that (∃E ⊆ A∪{e}) s.t. E is a preferred extension
of AF ⊕ e and E ∩ H(o) 6= ∅. Let E ′ = E ∩ (H(o) ∪ Ab). From Proposition
5.3.9, E ′ is admissible in AF⊕e. Since e /∈ H(o) then (∀a ∈ E ′∩H(o))(e, a) ∈
R ∧ (a, e) ∈ R. Let us suppose that (∃α ∈ E ∩ Ab)(α, e) ∈ R. Since E ′ is
admissible in AF ⊕ e then E ′ is admissible in AF . This is in contradiction
with the second condition of the proposition. Thus, (∄α ∈ E∩Ab)(α, e) ∈ R.
Since E ′ is admissible in both AF and AF ⊕ e, and (∄α ∈ E ∩ Ab)(α, e) ∈
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R then either e does not defeat any of arguments in E ′ ∩ H(o), formally
(∀a ∈ E ′′ ∩H(o))(a, e) ∈>o or E ′ ∩H(o) defeats e, formally (∃a′ ∈ E ′′ ∩H(o)
s.t. ¬(e, a) ∈>o). This is in contradiction with the third condition of the
proposition since from the fact that E ′ is admissible in AF it holds that there
exists a preferred extension of AF , denoted E ′′, such that E ′ ⊆ E ′′. Note
that it must be E ′ ∩Ab = E ′′ ∩Ab since in the case when E ′ ∩Ab ( E ′′ ∩Ab,
according to Lemma A.3.3, E ′′ ∩ Ab would have been a preferred extension
of AFb, which is not possible since E ′ ∩ Ab is preferred extension of AFb.
Thus, the hypothesis that o /∈ Or(AF ⊕ e) was false.

A.4 Proofs for results in Chapter 6

Proposition 6.3.1. Let AFi = (Oi,Ai,Ri,≥i,Hi) be the theory of agent
i. Let e ∈ Argo(L) be such that Conci(e) /∈ Oi. If ∀e′ ∈ Ai∩Argo(L), e >i e′

and Ri
m = ∅, then Conci(e) will be acceptable (under preferred, grounded

as well as under stable semantics if stable extensions exist) after this offer
and argument have been received.

Proof. The argument e is not attacked w.r.t. R′. Let E be a preferred
extension of the new framework. E does not attack e. e does not attack E
since that would mean that E is not admissible. Thus, E ∪ {e} is conflict-
free, contradiction. Since e is not attacked, it must be in the grounded
extension. Let E be a stable extension s.t. e /∈ E . But E does not attack e,
contradiction.

Proposition 6.3.2. Let AFi = (Oi,Ai,Ri,≥i,Hi) be the theory of agent i.
Let e ∈ Argo(L) be such that Conci(e) /∈ Oi. If ∃a ∈ Ai ∩ Argb(L) such that
a is sceptically accepted in AFi and (a, e) ∈ R(L), then Conci(e) is rejected
(under preferred, grounded and stable semantics) after the new offer and
argument has been received.

Proof. From Proposition 5.3.1, a is sceptically accepted in the new frame-
work. This means that it is in every extension. Thus, e is rejected since all
extensions are conflict-free.

Proposition 6.3.4. If o is an optimal solution for Agi, then there exists a
dialogue d = 〈m1, . . . ,ml〉, such that o is an acceptable solution for Agi at
the end of the dialogue d.

Proof. Let AF1 = (O,A1
0,R

1
0,≥

1
0,H

1
0) and AF2 = (O,A2

0,R
2
0,≥

2
0,H

2
0) be the

initial agents’ theories and Au = A1
0 ∪ A2

0. From Definition 6.3.4, o is
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acceptable in (O,Au,R(L)|Au ,≥i (L)|Au ,Hi(L)|Au∩Argo(L)). This means
that in a dialogue in which all arguments are exchanged, o is acceptable for
Agi at the end of that dialogue.

Proposition 6.3.2. Let Ag1 and Ag2 be agents and AF1 = (O,A1,R1,≥1

,H1) and AF2 = (O,A2,R2,≥2,H2) their initial theories. Let A ⊆ A1 ∪ A2

be a set s.t. ≥1 |A = ≥2 |A and let A be not attacked w.r.t. R′ by arguments
of (A1∪A2)\A. If A1∩A ⊇ A2∩A and ∃o ∈ O, ∃a ∈ H1(o)∩H2(o)∩A s.t. a
is sceptically accepted in AF1, then there exists a dialogue d = 〈m1, . . . ,ml〉
s.t. o is a local solution at step t ≤ l of d.

Proof. Let d = (m1, . . . ,ml) be a dialogue in which Ag2 does not send any
arguments and Ag1 sends exactly all arguments from A1∩A to Ag2. Status
of the argument a did not change for Ag1 from the beginning until the step l,
and the status of this argument will be the same for Ag1 and Ag2 after this
step. Since a is sceptically accepted for Ag1, than it is sceptically accepted
for Ag2. Thus, offer o is now acceptable by both agents; consequently it is
a local solution at step l.
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set
conflict-free, 10

solution
accepted, 115
ideal, 117
local, 116
optimal, 115
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argument status, 14, 94
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stratified knowledge base, 49
strong defense, 67
strong equivalence, see equivalence

undercut, 19
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