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INTRODUCTION

The dissertation deals with modeling credit risk through a structural model approach.
The thesis consists of three papers ([3], [4], [1]) in which we build on the capital structure
of a firm proposed by Leland and we study different extensions of his seminal paper [17]
with the purpose of obtaining results more in line with historical norms and empirical
evidence, studying in details all mathematical aspects.

Modeling credit risk aims at developing and applying option pricing techniques in
order to study corporate liabilities and analyzing which is the market perception about
the credit quality of a firm. The theory is focused on the capital structure of a firm subject
to default risk. In order to study the default process, two different approaches exist in
credit risk literature: structural and reduced form models.

For each firm the decision about its own corporate capital structure is a very complex
choice since it is affected by a large number of economic and financial factors. Structural
models of credit risk represent an analytical framework in which the capital structure of a
firm is analyzed in terms of derivatives contracts. This idea has been proposed at first in
Merton’s work [23] considering Black and Scholes [6] option pricing theory to model the
debt issued by a firm. Structural models consider the dynamic of firm’s activities value as
a determinant of the default time, providing a link between the credit quality of a firm and
its financial and economic conditions. The main idea is that default is strictly related to
the evolution of firm’s activities value. The structural approach considers the value of the
firm as the state variable and assume its dynamic being described by a stochastic process
in order to determine the time of default. From an economic point of view default is
determined by the inability of the firm to cover its debt obligations. From a mathematical
point of view default is triggered by firm’s value crossing a specified level. Depending on the
model, this threshold is assumed to be exogenous or endogenously determined, providing
different economic and mathematical implications. Default is endogenously related to
firm’s parameters and derived within the model following a structural approach, while it
is completely exogenous in reduced form models: this is the reason why structural models
are also defined firm value models while reduced form models are named intensity models.

While a direct link between the evolution of firm’s value and the time of default is
assumed in structural models, the reduced form approach does not consider an explicit
relation between these two factors, specifying a default process governing bankruptcy and
thus providing different insights from both economic and mathematical point of view.
Reduced form approach treats default as the first jump of an exogenously given jump
process (independent from firm’s value), usually a Poisson-like process, from no-default to
default and the probability of a jump in a given time interval is governed by the default

intensity (or hazard rate) (e.g. see [14], [8]): default arrives as a ”surprise”, it is a totally
inaccessible hitting time. Assuming a continuous stochastic process describing firm’s assets
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value and complete information about asset value and default barrier, structural models
treat the bankruptcy time as a predictable stopping time.

Among firm value models, the first structural model is [23]. Merton assumes that the
capital structure of the firm is composed by equity and a single liability with promised
final payoff B. The ability of the firm to cover its obligations depends on the total value of
its assets V . Debt can be seen as a claim on V : it is a zero-coupon bond with maturity T
and face value B. As suggested in [6], by issuing debt, equity holders are selling the firm’s
assets to bond holders and keeping a call option to buy back the assets. Equivalently we
can see the same problem as: equity holders own firm’s assets and buy a put option from
bond holders. In such a framework equity can be represented as a European call option
with underlying asset represented by firm’s value V and strike price equal to face value of
debt B. This model allows for default only at maturity: at time T the firm will default
if its value V is lower that the barrier B. The economic reason is that in such a case the
firm is not able to pay its obligations to bond holders since its assets are below the value
of outstanding debt. The criticism towards this approach relies on the fact that default
can occur only at maturity, which is not quite realistic.

A natural extension are the so called first passage models allowing for possible default
before the maturity of debt. This approach is firstly proposed in [5], where default is
triggered by the first time a certain threshold is reached by firm value. First passage
models define default as the first time the firm’s assets value crosses a lower barrier, letting
default occur at any time. The default barrier can be exogenously fixed or endogenously
determined: when it is an exogenous level, as in [5], [21], it works as a covenant protecting
bond holders, otherwise it is endogenously determined as a consequence of equity holders
maximizing behavior as in [17]. In such a case the the firm is liquidated immediately after
the default triggering event.

Our research focus on structural models of credit risk with endogenous default in
the spirit of Leland’s model [17]1. As starting point the author claims: ”The value of

corporate debt and capital structure are interlinked variables. Debt values (and therefore

yield spreads) cannot be determined without knowing the firm’s capital structure, which

affects the potential for default and bankruptcy. But capital structure cannot be optimized

without knowing the effect of leverage on debt value”.

In the classical Leland [17] framework firm’s assets value evolves as a geometric Brow-
nian motion and an infinite time horizon is considered. The firm realizes its capital from
both debt and equity. Moreover, the firm has only one perpetual debt outstanding, which
pays a constant coupon stream C per instant of time and this determines tax benefits
proportional to coupon payments. This assumption of perpetual debt can be justified, as
Leland suggests, thinking about two alternative scenarios: a debt with very long maturity

1[17] has been awarded with the first Stephen A. Ross Prize in Financial Economics: ”...the prize
committee chose this paper because of the substantial influence it has given on research about capital
structure and corporate debt valuation...”, see [16].
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(in this case the return of principal has no value) or a debt which is continuously rolled over
at a fixed interest rate (as in [19]). Assuming an infinite time horizon is a reasonable first
approximation for long term corporate debt and enables to have an analytic framework
where all corporate securities depending on the underlying variable (firm value) are time
independent, thus obtaining closed form solutions. Bankruptcy is triggered endogenously
by the inability of the firm to raise sufficient capital to meet its current obligations. On
the failure time T , agents which hold debt claims will get the residual value of the firm
(because of bankruptcy costs), and those who hold equity will get nothing (meaning the
strict priority rule holds). The riskiness of the firm is assumed to be constant: given lim-
ited liability of equity, as [15] suggest, equity holders may have incentives to increase the
riskiness of the firm, while the opposite happens for debt holders, since a higher volatility
decreases debt value (asset substitution problem, see also [18]).

While a huge theoretical literature on risky corporate debt pricing exists, less attention
has been paid on empirical tests of these models. The main empirical results in credit risk
literature emphasize a poor job of structural models in predicting credit spreads for short
maturities. To simplify the discussion two main motivations of structural models failure in
predicting bond spreads could be: i) failure in predicting the credit exposure; ii) influence
of other non credit related variables on corporate debt spreads. Moreover, structural
models usually overestimates leverage ratios.

We depart from Leland’s work generalizing the model in different directions with the
aim at obtaining results more in line with empirical evidence, further providing detailed
mathematical proofs of all results. We extend it by introducing payouts in [2, 3], then,
keeping this assumption, in [4] we consider an even more realistic framework under an
asymmetric corporate tax schedule. As Leland suggests in [20], a possible way to follow
in order to improve empirical predictions of structural models is to modify some critical
hypothesis, mainly in the direction of introducing jumps and/or removing the assumption
of constant volatility in the underlying firm’s assets value stochastic evolution. This latter
case is what motivates [1].

In [2], [3] (Paper 1) we extend Leland model [17] to the case where the firm has
net cash outflows resulting from payments to bondholders or stockholders, for instance
if dividends are paid to equity holders, and we study its effect on all financial variables
and on the choice of optimal capital structure. The interest in this problem is posed
in [17] section VI-B, nevertheless the resulting optimal capital structure is not analyzed
in detail. Our aim is twofold: from one hand we complete the study of corporate debt
and optimal leverage in the presence of payouts in all analytical aspects, from the other
hand we study numerically the effects of this variation on the capital structure. Moreover
in [3] we conduct a quantitative analysis on the effects of payouts on the probability
of default, on expected time to default and on agency costs from both an economic and
mathematical point of view. We follow Leland [17] by considering only cash outflows which
are proportional to firm’s assets value but our analysis differs from Leland’s one since we
solve the optimal control problem as an optimal stopping problem (see also [7] for a similar
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approach) and not with ordinary differential equations. We find that the increase of the
payout rate parameter δ affects not only the level of endogenous bankruptcy, but modifies
the magnitude of a change on the endogenous failure level as a consequence of an increase
in risk free rate, corporate tax rate, riskiness of the firm and coupon payments. Further
the introduction of payouts allows to obtain lower optimal leverage ratios and higher yield
spreads, compared to Leland’s [17] results, thus making these empirical predictions more
in line with historical norms. Our analysis suggests that adding payouts has an actual
influence on all financial variables: for an arbitrary coupon level C, a positive payout
rate δ increases equity value and decreases both debt and total value of the firm, making
bankruptcy more likely. In line with [19] suggestion, in [3] we show that the probability
of default is quite dependent on the drift of the process describing firm’s activities value,
thus on payouts. Analyzing cumulative probability of going bankruptcy over a period
longer than 10 years suggests that introducing δ makes debt riskier, strongly increasing
the likelihood of default. Studying the influence of payouts on the asset substitution

problem we find that this problem still exists and its magnitude is increased by payouts,
making higher potential agency costs arising from the model.

In [4] (Paper 2) we keep the introduction of a company’s assets payout ratio δ as in
[2],[3] and extend the model proposed by [17] in the direction of a switching (even debt
dependent) in tax savings. Taxes are a crucial economic variable affecting optimal capital
structure, as early recognized by [24] and observed by [25]. While structural models assume
constant corporate tax rates, Leland argues that default and leverage decisions might be
affected by non constant corporate tax rates, because a loss of tax advantages is possible
for low firm values. The empirical analysis of [11] confirms that the corporate tax schedule
is asymmetric, in most cases it is convex, and [25] suggests that tax convexity cannot be
ignored in corporate financing decisions. We assume the corporate tax schedule based on
two different corporate tax rates: the switching from a corporate tax rate to the other is
determined by firm’s activities value crossing a critical barrier. We consider two different
frameworks: at first, the switching barrier is assumed to be a constant exogenous level;
secondly, we analyze an even more realistic scenario in which this level depends upon the
amount of debt the firm has issued. We obtain an explicit form for the tax benefit claim,
which allows us to study monotonicity and convexity of the equity function, to find the
endogenous failure level in closed form in case of no-payouts and to prove its existence
and uniqueness in the general case with both asymmetric tax scheme and payouts, while
literature in this field usually gives only numerical results. Our approach differs from [17]
since we solve the optimal control problem as an optimal problem in the set of passage
times; the key method is the Laplace transform of the stopping failure time. Our results
show that tax asymmetry increases increases the optimal failure level reduces the optimal
leverage ratio, and that this last effect is more pronounced, thus confirming the results
in [25]. Nevertheless, as far as the magnitude is concerned, introducing payouts increases
this negative effect on both leverage and debt. Optimal leverage ratios are smaller than in
case of a flat tax schedule since the potential loss in tax benefits makes debt less attractive
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and this effect is more pronounced when we deal with a debt dependent switching barrier
(i.e. depending on coupon payments). The joint influence of payouts and corporate tax
asymmetry produces a significant impact on corporate financing decisions: it drops down
leverage ratios to empirically representative values suggesting a possible way to explain
difference in observed leverage across firms facing different tax-code provisions.

In [1] (Paper 3) the aim is to analyze the capital structure of a firm under an infi-
nite time horizon removing the assumption of constant volatility and considering default
as endogenously triggered. We introduce a process describing the dynamic of the diffu-
sion coefficient driven by a one factor mean-reverting process of Orstein-Uhlenbeck type,
negatively correlated with firm’s assets value evolution. Differently from a pure Leland
framework and even from the more general context with payouts and asymmetric corporate
tax rates studied in [2, 3, 4], inside this framework we cannot obtain explicit expressions
for all the variables involved in the capital structure by means of the Laplace transform of
the stopping failure time. The key point relies in the fact that this transform, which was
the key tool used in [2, 3, 4], is not available in closed form under our stochastic volatility
framework. Nevertheless debt, equity, bankruptcy costs and tax benefits are claims on the
firm’s assets, thus we apply ideas and techniques developed in [9] for the pricing of deriva-
tives securities whose underlying asset price’s volatility is characterized by means of its
time scales fluctuations. This approach has been applied in [10] to price a defaultable zero
coupon bond. Here a one-factor stochastic volatility model is considered and single per-
turbation theory as in [9] is applied in order to find approximate closed form solutions for
derivatives involved in our economic problem. Each financial variable is analyzed in terms
of its approximate value through an asymptotic expansion depending on the volatility
mean-reversion speed. Moreover, we study the effects of the stochastic volatility assump-
tion on the endogenous failure level determined by equity holders maximizing behavior.
Under our approach, the failure level derived from standard smooth-fit principle is not the
solution of the optimal stopping problem, but only represents a lower bound which has
to be satisfied due to limited liability of equity. Choosing that failure level would mean a
non-optimal exercise of the option to default. A corrected smooth-pasting condition must
be applied in order to find the endogenous failure level solution of the optimal stopping
problem. Moreover, we show the convergence of our results to Leland case [17] as the
particular case of zero-perturbation. By taking into account the stochastic volatility risk
component of the firm’s asset dynamic, our aim is to better capture extreme returns be-
havior which could be a robust way to improve empirical predictions about spreads and
leverage. Introducing randomness in volatility allows to deal with a structural model in
which the distribution of stock prices returns is not symmetric: in our mind this seems
to be the right way for capturing what structural models are not able to explain with a
constant diffusion coefficient. The numerical results show that the assumption of stochas-
tic volatility model produces relevant effects on the optimal capital structure in terms of
higher credit spreads and lower leverage ratios, if compared with the original Leland case.
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Abstract

In this paper a structural model of corporate debt is analyzed following an approach
of optimal stopping problem. We extend Leland model [7] introducing a payout δ paid
to equity holders and studying its effect on corporate debt and optimal capital struc-
ture. Varying the parameter δ affects not only the level of endogenous bankruptcy,
which is decreased, but modifies the magnitude of a change on the endogenous failure
level as a consequence of an increase in risk free rate, corporate tax rate, riskiness of
the firm and coupon payments. Concerning the optimal capital structure, the intro-
duction of this payout allows to obtain results more in line with historical norms: lower
optimal leverage ratios and higher yield spreads, compared to Leland’s [7] results.

1 Introduction

Many firm value models have been proposed since Merton’s work [11] which provides
an analytical framework in which the capital structure of a firm is analyzed in terms of
derivatives contracts. We focus on the corporate model proposed by Leland [7] assuming
that the firm’s assets value evolves as a geometric Brownian motion. The firm realizes
its capital from both debt and equity. Debt is perpetual, it pays a constant coupon
C per instant of time and this determines tax benefits proportional to coupon payments.
Bankruptcy is determined endogenously by the inability of the firm to raise sufficient equity
capital to cover its debt obligations. On the failure time T , agents which hold debt claims
will get the residual value of the firm (because of bankruptcy costs), and those who hold
equity will get nothing (the strict priority rule holds). This paper examines the case where
the firm has net cash outflows resulting from payments to bondholders or stockholders,
for instance if dividends are paid to equity holders. The interest in this problem is posed
in [7] section VI-B, nevertheless the resulting optimal capital structure is not analyzed in
detail. The aim of this paper is twofold: from one hand we complete the study of corporate
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debt and optimal leverage in the presence of payouts in all analytical aspects, from the
other hand we study numerically the effects of this variation on optimal capital structure.
We will follow Leland [7] by considering only cash outflows which are proportional to
firm’s assets value but our analysis differs from Leland’s one since we solve the optimal
control problem as an optimal stopping problem (see also [3] for a similar approach). As
in Leland model we assume that capital structure decisions, once made, are not changed
through time. This means, for example, that the face value of debt is supposed to be
constant and our analysis approaches the problem of determining the optimal amount of
debt and the optimal endogenous failure level as a two-stage optimization problem (see
also [1]). Equity holders have to chose both: i) the optimal amount of coupon payments
C∗, ii) the optimal endogenous triggering failure level VB

∗. These decisions are strongly
interrelated and not easily considered as separable ones. This interconnection is strictly
related to the conflict between equity and debt holders, since they have different interests
on the firm, leading also to potential agency costs arising from the model (see [8]). When
equity holders have to chose the optimal amount of debt, i.e. coupon maximizing the total
value of the firm, this will obviously depend on the endogenous failure level. At the same
time, when choosing the optimal stopping time of the option to default, meaning finding
the endogenous failure level, this will obviously depend on the amount of debt issued.
An approximation to solve these complicated issues arising from equity and debt holders’
conflict, will be to proceed in a two-step analysis as follows: i) the first-stage optimization
problem is to determine the endogenous failure level; ii) in the second stage we determine
the amount of debt which maximizes the total value of the firm, given the result about
the default triggering level of the first stage.

Our findings show that the increase of the payout parameter δ affects not only the level
of endogenous bankruptcy, which is decreased, but modifies the magnitude of a change on
the endogenous failure level as a consequence of an increase in risk free rate, corporate tax
rate, riskiness of the firm and coupon payments. Further the introduction of payouts allows
to obtain lower optimal leverage ratios and higher yield spreads, compared to Leland’s [7]
results, which are more in line with historical norms.

The paper is organized as follows: Section 2 introduces the model and determines the
optimal failure time as an optimal stopping time, getting the endogenous failure level.
Then, in Section 3 the influence of coupon, payouts and corporate tax rate on all financial
variables is studied. Section 4 describes optimal capital structure as a consequence of
optimal coupon choice. Once determined the endogenous failure level, equity holders aim
is to find the coupon payment which allows to maximize the total value of the firm.

2 A Firm’s Capital Structure with Payouts

In this section we introduce the model, which is very close to Leland’s [7], but we modify
the drift with a parameter δ, which might represent a constant proportional cash flow
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generated by the assets and distributed to security holders. We consider a firm realizing
its capital from both debt and equity. Debt is perpetual and pays a constant coupon C
per instant of time. On the failure time T , agents which hold debt claims will get the
residual value of the firm, and those who hold equity will get nothing. We assume that
the firm activities value is described by the process Vt = V eXt , where Xt evolves, under
the risk neutral probability measure, as

dXt =

�
r − δ − 1

2
σ2

�
dt+ σdWt, X0 = 0, (1)

where W is a standard Brownian motion, r the constant risk-free rate, r, δ and σ > 0.
Following [9] we assume δ being a constant fraction of value V paid out to security holders.
In line with [8], parameter δ represents the total payout rate to all security holders, thus
V represents the value of the net cash flows generated by the firm’s activities (excluding
cash flows related to debt issuance). Moreover we assume that δ is not affected by changes
in leverage (see [9] footnote 4).

When bankruptcy occurs at random time T , a fraction α (0 ≤ α < 1) of firm value
is lost (for instance payed because of bankruptcy procedures), debt holders receive the
rest and stockholders nothing, meaning that the strict priority rule holds. We suppose
that the failure time T is a stopping time. Thus, applying contingent claim analysis in a
Black-Scholes setting, for a given stopping (failure) time T, debt value is

D(V,C, T ) = EV

�� T

0
e−rsCds+ (1− α)e−rTVT

�
, (2)

where the expectation is taken with respect to the risk neutral probability and we denote

EV [·] := E[·|V0 = V ].

We assume that from paying coupons the firm obtains tax deductions, namely τ , 0 ≤ τ < 1,
proportionally to coupon payments at a rate τC until default1, so we get equity value as

E(V,C, T ) = V − EV

�
(1− τ)

�� T

0
e−rsCds

�
+ e−rTVT

�
. (3)

The total value of the (levered) firm can always be expressed as sum of equity and
debt value: this leads to write the total value of the levered firm as the firm’s asset value
(unlevered) plus tax deductions on debt payments C less the value of bankruptcy costs:

v(V,C, T ) = V + EV

�
τ

� T

0
e−rsCds− αe−rTVT

�
. (4)

1
Since we consider only tax benefits in this model, δV can be interpreted as the after-tax net cash flow

before interest, see also [13] footnote 3.
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2.1 Endogenous Failure Level

In this subsection we analyze in detail the first-stage optimization problem faced by equity
holders, i.e. we find the endogenous failure level which maximizes equity value, for a fixed
coupon level. Recall that equity claim in an option-like contract since there is an option to
default embodied in it. The best for equity holders will be to exercise this option when V
will reach a failure level VB endogenously derived (i.e. satisfying a smooth-fit principle).
For this analysis, we suppose the coupon level C being fixed.

On the set of stopping times we maximize the equity value T �→ E(V,C, T ), for an
arbitrary level of the coupon rate C. From optimal stopping theory (see [4]) and following
[2, 3], the failure time, “optimal stopping time”, is known to be a constant level hitting
time. Hence default happens at passage time T when the value V. falls to some constant
level VB. The value of VB is endogenously derived and will be determined with an optimal
rule later. Further we note that, given (1), it holds that

T = inf{t ≥ 0 : Vt ≤ VB} = inf{t ≥ 0 : Xt ≤ log
VB

V
}. (5)

Moreover it holds VT = VB, as the process Vt is continuous.

Thus, the optimal stopping problem of equity holders is turned to maximize the equity
function defined in (3) as a function of VB:

E : VB �→ V − (1− τ)C

r

�
1− EV [e

−rT ]
�
− VBEV [e

−rT ]. (6)

In order to compute the equity value (6) it remains to determine EV
�
e−rT

�
. To this

hand we use the following formula for the Laplace transform of a constant level hitting
time by a Brownian motion with drift ([5] p. 196-197):

Proposition 2.1 Let Xt = µt + σWt and Tb = inf{s : Xs = b}, then, for all γ > 0, it
holds

E[e−γTb ] = exp

�
µb

σ2
− |b|

σ

�
µ2

σ2
+ 2γ

�
.

Since Vt = V exp[(r − δ − 1
2σ

2)t+ σWt] by (1), we get EV [e−rT ] =
�
VB
V

�λ(δ)
where

λ(δ) =
r − δ − 1

2σ
2 +

�
(r − δ − 1

2σ
2)2 + 2rσ2

σ2
. (7)

Remark 2.2 As a function of δ, the coefficient λ(δ) in (7) is decreasing and convex. In

order to simplify the notation, we will denote λ(δ) as λ in the sequel.
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Finally the equity function to be optimized w.r.t. VB is

E : VB �→ V − (1− τ)C

r
+

�
(1− τ)C

r
− VB

��
VB

V

�λ

, (8)

and the following properties must be satisfied:

E(V,C, T ) ≥ E(V,C,∞) and E(V,C, T ) ≥ 0 for all V ≥ VB. (9)

Considering equity function in (8), the first property in (9) is equivalent to

E(V,C, T )− E(V,C,∞) =

�
(1− τ)C

r
− VB

��
VB

V

�λ

≥ 0.

In fact this term is the option to default embodied in equity. Since this is an option to
be exercised by the firm, this must have positive value, so it must be (1−τ)C

r − VB ≥ 0.
Finally we are led to the constraint:

VB ≤ (1− τ)C

r
. (10)

As for the second property in (9), we observe that if VB was chosen by the firm, then the
total value of the firm v would be maximized by setting VB as low as possible. Nevertheless,
because equity has limited liability, then VB cannot be arbitrary small, but E(V,C, T ) must

be nonnegative. Note that E(V,C,∞) = V − (1−τ)C
r ≥ 0 under the following constraint

V ≥ (1− τ)C

r
. (11)

A natural constraint on VB is VB < V, indeed, if not, the optimal stopping time would
necessarily be T = 0 and then

E(V,C, T ) = V − (1− τ)C

r
+

�
(1− τ)C

r
− VB

�
= V − VB < 0.

Finally E(V,C, T ) ≥ 0 for all V ≥ VB and the problem faced by equity holders is:

max
VB∈

�
0, (1−τ)C

r

�E(V, VB, C),

which is equivalent to

max
VB∈

�
0, (1−τ)C

r

�

�
(1− τ)C

r
− VB

��
VB

V

�λ

, (12)

since the risk less component of equity value V − (1−τ)C
r does not depend on VB. This last

formulation (12) represents exactly the optimal stopping problem we want to solve: the
economic meaning is that equity holders have to chose which is the optimal exercise time
of their option to default, or, equivalently, the endogenous failure level solution of (12).
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Proposition 2.3 The endogenous failure level solution of (12) is

VB(C; δ, τ) =
C(1− τ)

r

λ

λ+ 1
, (13)

where λ is given by (7).

Proof In order to obtain the endogenous failure level VB we maximize the function (8),
which turns in maximizing the option to default g(VB) embodied in equity given by

g(VB) : VB �→
�
(1− τ)C

r
− VB

��
VB

V

�λ

.

We have

g�(VB) = −

�
VB
V

�λ
f(VB)

rVB
, g��(VB) = −

λ
�
VB
V

�λ
(f(VB) + C(1− τ))

rVB
2 ,

with
f(VB) = VBr(1 + λ)− λC(1− τ).

Function g(VB) is increasing for 0 < VB < �VB, then decreasing for �VB < VB < (1−τ)C
r ,

with �VB solution of f(VB) = 0:

�VB =
(1− τ)C

r

λ

1 + λ
.

Moreover g(VB) is convex for VB < V̄B, with V̄B solution of g��(VB) = 0

V̄B =
(1− τ)C

r

λ− 1

1 + λ
,

and concave for V̄B < VB < (1−τ)C
r .

Observe what follows:

i) (1−τ)C
r > �VB > V̄B, ∀λ > 0;

i) in case λ < 1, V̄B < 0, meaning g(VB) concave inside [0, C(1−τ)
r ]. The maximum

exists and is unique and it is achieved at point �VB;

ii) in case λ > 1, 0 < V̄B < �VB, meaning g(VB) convex for 0 < VB < V̄B and concave

for V̄B < VB < C(1−τ)
r .
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The sign of g�(VB) is the same of f(VB) = −VBr(1 + λ) + λC(1 − τ). Moreover, we
have

g�(V̄B) > 0, g�
�
(1− τ)C

r

�
< 0,

since

f �(V̄B) = (1− τ)C > 0, f �
�
(1− τ)C

r

�
= −(1− τ)(1 + λ)C < 0,

As a consequence the maximum exists and is unique inside [0, (1−τ)C
r ], for any value of

λ > 0 and it is achieved for �VB such that: g�(VB) = 0 ⇒ (1− τ)Cλ = (λ+ 1)rVB. •

Remark 2.4 Note that (13) satisfies the smooth pasting condition (see [1], [10] footnote

60):

∂E

∂V
|V=VB = 0.

This condition holds since the endogenous failure level (13) is the lowest admissible failure

level equity holders can consistent with both i) limited liability of equity, ii) equity being a

non-negative and increasing function of current firm’s assets value V .

Observe that equity is an increasing function of V when the following constraint is

satisfied:

∂E

∂V
= 1− λ

V

�
VB

V

�λ�(1− τ)C

r
− VB

�
≥ 0. (14)

Moreover, the lowest value V can assume is VB and at point V = VB we have

E(VB, VB) = 0, thus in order to have equity increasing for V ≥ VB it is sufficient

∂E

∂V
|V=VB ≥ 0. (15)

Solving for VB gives

VB ≥ C(1− τ)

r

λ

λ+ 1
,

with the right hand side being exactly (13).

According to [1] we observe that the smooth pasting conditions gives an endogenous

failure level which is also solution of the optimal stopping problem (12), since

∂E(V, VB, C)

∂VB
≤ 0, ∀V̂B < VB <

(1− τ)C

r
,

V̂B being (13).
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We observe that the equity function is convex w.r.t. firm’s current assets value V, as
constraint (10) is satisfied:

VB(C; δ, τ) <
(1− τ)C

r
.

Further (13) has to satisfy VB ≤ V , therefore the following inequality holds:

C(1− τ)

r

λ

λ+ 1
≤ V. (16)

Remark 2.5 As a particular case when δ = 0 we obtain Leland [7], where λ = 2r
σ2

E(V,C, VB) = V − (1− τ)C

r
+

�
(1− τ)C

r
− VB

��
VB

V

�2r/σ2

,

and the failure level is

VB(C; 0, τ) =
C(1− τ)

r + 1
2σ

2
. (17)

Since the application δ �→ λ
λ+1 is decreasing, (17) is greater than (13) for any value of τ :

VB(C; δ, τ) =
C(1− τ)

r

λ

λ+ 1
< VB(C; 0, τ) =

C(1− τ)

r + 1
2σ

2
. (18)

The failure level VB(C; δ, τ) is decreasing with respect to τ, r,σ2 and proportional to
the coupon C, for any value of δ. We note that the dependence of VB(C; δ, τ) on all
parameters τ, r,σ2, C is affected by the choice of the parameter δ. In fact the application
δ �→ ∂VB(C;δ,τ)

∂τ is negative and increasing, while δ �→ ∂VB(C;δ,τ)
∂C is positive and decreasing:

thus introducing a payout δ > 0 implies a lower reduction (increase) of the endogenous
failure level as a consequence of a higher tax rate (coupon), if compared to the case δ = 0.
Similarly a change in the risk free rate r or in the riskiness σ2 of the firm has a different
impact on VB(C; δ, τ) depending on the choice of δ. Figure 1 shows that depending on
both the payout level and the riskiness of the firm, a change in σ can produce an increase
(decrease) on the endogenous failure level with a very different magnitude depending on
the payout. As shown in the plot, considering VB(C; δ, τ) as function of the volatility for
different values of payout means facing different functions, i.e. the shape and the slope
is not constant for each level of σ when δ changes. The distance between two curves
(referring to a different δ) is not constant, meaning that payouts do not simply generate
a traslation.

In line with the results in [7] the endogenous failure level VB(C; δ, τ) in (13) is inde-
pendent of both firm’s assets value V and α, the fraction of firm value which is lost in the
event of bankruptcy (since the strict priority rule holds). The choice of the endogenous
failure level VB(C; δ, τ) is a consequence of equity holders maximizing behavior: this is

8
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Figure 1: Endogenous failure level as function of σ. This plot shows the behavior of the endogenous

failure level VB(C; δ, τ) given by (13) as function of σ, for a fixed level of coupon C = 6.5 satisfying (11).

We assume V = 100, r = 6%, τ = 0.35, α = 0.5.

why it is independent of α. The economic reason behind is related to the option to default
embodied in equity: recall that in order to find the optimal failure level equity holders
face the problem of maximizing VB �→ g(V,C, VB) given by (12) and equity value is not
affected by bankruptcy costs since the strict priority rule holds. The endogenous failure
level will always be lower than face value of debt, hence equity holders will get nothing at
bankruptcy, and in this sense their decision does not depend on parameter α. Only debt
holders will bear bankruptcy costs.

2.2 Expected Time to Default

We have proved that introducing payouts has an actual influence on the endogenous failure
level VB(C; δ, τ): in particular we showed that δ lowers the failure boundary chosen by
equity holders when we consider the coupon being fixed. Also when the coupon is chosen
to maximize the total value of the firm, the optimal failure level V ∗

B(V ; δ, τ) reduces as a
consequence of a higher payout, as we will show in subsection 4. Consistent with our base
case parameters’ values, Table 3 gives an idea of the magnitude of this reduction in terms
of new optimal default triggering level.

An interesting point should be to analyze not only the influence of payouts on the
failure level, but also on expected time to default. How long does it take for V to reach
the failure level VB? Do payouts have a quantitatively significant effect on it or not?
Since we are considering a framework with infinite horizon, it should be interesting to
analyze whether introducing payouts will have a significant influence on the expected time
to default. We know that firm’s activities value evolves as a log-normal variable, thus the
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expected time for process Vt to reach the constant failure level VB can be studied as shown
in the following Proposition.

Proposition 2.6 Let Tb defined in Proposition 2.1. Consider µ := r − δ − 1
2σ

2 and

b := log VB
V , with V ≥ VB. The following holds:

• if µ > 0, EV [Tb] = −
�
VB
V

� 2µ
σ2 log

VB
V

µ ,

• if µ < 0, EV [Tb] =
log

VB
V

µ .

Proof The result follows by Proposition 2.1 and

EV [Tb] = −∂E[e−γTb ]

∂γ
|γ=0.

•
Proposition 2.6 is useful to show that payouts have an actual influence on the expected

time to default and this impact must be analyzed from two different points of view: i)
payouts influence on the drift µ of process Xt; ii) payouts influence on the endogenous
failure level. From our previous analysis we know that payouts decrease both µ and the
endogenous (and also optimal) failure level chosen by equity holders. But what really
matters is the interaction between these effects. We think that from an empirical point of
view studying the impact of these two combined effects on the expected time to default
could be an alternative way to measure the risk of default associated to the firm’s capital
structure also from both a qualitative and quantitative point of view.

3 Comparative Statics of Financial Variables

In this section we aim at analyzing the dependence of all financial variables on C, δ, τ at
the endogenous failure level VB(C; δ, τ) obtained from the first-stage optimization problem
(12). By substituting its expression (13) into equity, debt and total value of the firm, we
obtain the following functions:

E : (C; δ, τ) �→ V − (1− τ)C

r
+

(1− τ)C

r

1

λ+ 1

�
C(1− τ)

rV

λ

λ+ 1

�λ

(19)

D : (C; δ, τ) �→ C

r
− C

r

�
1− (1− α)(1− τ)

λ

λ+ 1

��
C(1− τ)

rV

λ

λ+ 1

�λ

(20)

v : (C; δ, τ) �→ V +
τC

r
− C

r

�
τ + α

λ(1− τ)

λ+ 1

��
C(1− τ)

rV

λ

λ+ 1

�λ

. (21)

Figure 1 shows the behavior of equity, debt and total value of the firm given by (19)-
(21) as function of the payout rate δ.
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Limit as Behaviour w.r.t.

Variable V → ∞ V → VB C δ τ

E ∼ V − (1−τ)C
r 0 Convex, � � Convex, �

D C
r

λC(1−τ)(1−α)
r(1+λ) Concave, ∩-Shaped � a �

v ∼ V + τC
r

λC(1−τ)(1−α)
r(1+λ) Concave � b �

R r r(1+λ)
λ(1−α)(1−τ) Concave � �

R− r 0 r(1+λ(α+τ−ατ))
λ(1−α)(1−τ) Concave � �

a See Proposition 3.5.
b See Proposition 3.7.

Table 1: Comparative statics of financial variables. The table shows the behaviour
of all financial variables at VB(C; δ, τ) under constraint (11).

3.1 Equity

We analyze equity’s behaviour with respect to δ.

Proposition 3.1 The equity function (19) is decreasing and convex as function of λ.

Proof Equity’s behaviour w.r.t. λ is summarized by

f(λ) =
1

λ+ 1

�
C(1− τ)

rV

λ

1 + λ

�λ

. (22)

The logarithmic derivative of (22) is log(C(1−τ)
rV

λ
λ+1) which is negative by (16). Moreover

f ��(λ) =
1

λ(1 + λ)
f(λ) +

�
log

C(1− τ)

rV
+ log

λ

1 + λ

�
f �(λ) > 0, (23)

thus equity is decreasing and convex w.r.t. λ. •

As a consequence of Proposition 3.1 and Remark 2.2, equity is increasing w.r.t. δ.
Concerning equity’s convexity w.r.t. δ, the following result holds.

Proposition 3.2 The equity function (19) is convex w.r.t. δ if

V > VB(C; δ, τ)e
2r

λ2
√

µ2+2rσ2 (24)

where VB(C; δ, τ) is given by (13).
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Proof In order to study equity’s convexity w.r.t. δ, we evaluate ∂2
δE using (22) and (23),

obtaining:

∂2
δE =

�
1

λ(1 + λ)
f(λ) +

�
log2

C(1− τ)

rV

λ

1 + λ

�
f(λ)

�
λ2

µ2 + 2rσ2

+ f(λ)

�
log

C(1− τ)

rV

λ

1 + λ

�
2r

(µ2 + 2rσ2)
�
µ2 + 2rσ2

(25)

Substituting VB(C; δ, τ) = C(1− τ)λ/(r(1 + λ)) and re-arranging terms gives:

∂2
δE =

f(λ)

µ2 + 2rσ2

�
λ

1 + λ
+ log

VB

V

�
λ2 log

VB

V
+

2r�
µ2 + 2rσ2

��
(26)

As V ≥ VB then log VB
V < 0 for each parameters’ choice, then a sufficient condition for

equity’s convexity w.r.t. δ is

λ2 log
VB

V
+

2r�
µ2 + 2rσ2

< 0,

which is equivalent to (24). •

Remark 3.3 Equity’s dependence on the payout rate δ is strictly related to equity’s de-

pendence on µ. Observe that ∂2
δE = ∂2

µE, since ∂µλ = −∂δλ and ∂2
µλ = ∂2

δλ. Introducing

payouts has a positive effect on equity value.

Studying equity’s behavior w.r.t. C and τ , we can observe that E in (19) is a function
of the product C(1− τ); thus E(C; δ, τ) is: i) decreasing and convex w.r.t. coupon C, ii)
increasing and convex w.r.t. the corporate tax rate τ .

We observe that also in the presence of a payout rate δ > 0, equity holders have
incentives to increase the riskiness of the firm, since λ decreases with higher volatility.
These incentives are higher as the payout rate increases: Figure 3 shows the behavior of
∂E
∂σ as function of V, for three different levels of δ. For each value of V , ∂E

∂σ increases with
δ, meaning that a higher payout produces greater incentives for shareholders to increase
the riskiness of the firm, once debt is issued, thus rising potential agency costs due to
incentive compatibility problem between equity and debt holders. The payout influence
on a potential rise in agency costs is strictly related to the actual distance to default of
the firm, as shown in Figure 3. Observe that we report ∂E

∂σ as function of current assets

value V : if it is true that δ �→ ∂E
∂σ is an increasing function ∀V ≥ VB, this increase in

equity sensitivity to firm riskiness is strongly related to the distance to default. Recall
that the endogenous failure level is independent of V , thus the plot in Figure 3 is built on
an endogenous failure level which changes only with δ (the other parameters being fixed).
The potential increase in agency costs due to a higher ∂E

∂σ is more pronounced when V
is small or very high, meaning for extreme values of the distance to default, since VB is
endogenously given.
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Figure 2: Equity, debt and total value of the firm as function of δ. This plot shows the behavior

of equity (19), debt (20) and total value of the firm (21) as function of δ, for a fixed level of coupon C = 6.5
satisfying (11). We assume V = 100, r = 6%, σ = 0.2, τ = 0.35, α = 0.5.
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Figure 3: Effect of a change in σ on equity value. This plot shows the behavior of
∂E
∂σ as function

of firm’s current assets value V, for a fixed level of coupon C = 6.5 and different values of δ = 0, 0.04. We

consider r = 0.06, σ = 0.2, α = 0.5, τ = 0.35. For each level of the payout rate δ, equity function has

a different support, i.e. V ≥ VB(C; δ, τ), with VB(C; δ, τ) given by (13). As a consequence, each curve

representing equity sensitivity w.r.t. σ is plotted in its own support.

3.2 Debt and Yield Spread

We consider now the debt function D(C; δ, τ) in (20). The application D(C; δ, τ) is
concave w.r.t. coupon C, allowing to analyze the maximum capacity of debt of the firm
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as it is shown in the following Proposition.

Proposition 3.4 The application C �→ D(C; δ, τ) is concave and achieves a maximum at

Cmax(V, δ, τ) =
rV (1 + λ)

λ(1− τ)

�
1

λ(τ + α(1− τ)) + 1

� 1
λ

. (27)

Cmax(V, δ, τ) represents the maximum capacity of the firm’s debt. Substituting this value
for the coupon into debt function D(C; δ, τ) and simplifying yields:

Dmax(V, δ, τ) =
V

1− τ

�
1

λ(τ + α(1− τ)) + 1

� 1
λ

. (28)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

C

D
(C

;δ
,τ

)

 

 

δ = 0

δ = 0.01

δ = 0.04

Figure 4: Debt value as function of the coupon. This plot shows the behaviour of debt value given

in (20) as function of coupon payments C, for different levels of δ. We assume V = 100, r = 0.06, σ = 0.2,
τ = 0.35, α = 0.5. We consider three different levels of δ = 0, 0.01, 0.04. The value C̄ =

rV
(1−τ) is the

maximum value that coupon C can assume due to constraint C(1− τ)− rV < 0. With our base case it is

approximately C̄ = 9.23.

Equation (28) represents the debt capacity of the firm: the maximum value that debt
can achieve by choosing the coupon C. Not surprisingly the debt capacity of the firm is
proportional to firm’s current assets value V , decreases with higher bankruptcy costs α
and increases if the corporate tax rate rises. In the presence of payouts, if τ changes, its
effect on debt capacity is lower than in case δ = 0, since δ �→ ∂Dmax(V ;δ,τ)

∂τ is decreasing.

Under constraint (11), as δ increases, debt decreases as shown in the following Propo-
sition.
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Proposition 3.5 Debt value D(C; δ, τ) defined in (20) is a decreasing function of δ for

V > VB(C, δ, τ)e
τ+α(1−τ)

1+λ(τ+α(1−τ)) , (29)

with VB(C; δ, τ) given in (13).

Proof It is enough to study the monotonicity of debt function with respect to λ. Debt’s
dependence on λ is the opposite of

g(λ) =

�
1− (1− α)(1− τ)

λ

λ+ 1

��
C(1− τ)

rV

λ

λ+ 1

�λ

,

its log-derivative being

h(λ) =
g�

g
(λ) =

�
log

λ

λ+ 1
+

α+ τ − ατ

1 + λ(α+ τ − ατ)
+ log

C(1− τ)

rV

�
,

thus

h(λ) =
g�

g
(λ) =

α+ τ − ατ

1 + λ(α+ τ − ατ)
+ log

VB(C, δ, τ)

V
.

We have h(λ) > 0 for

V < VB(C, δ, τ)e
τ+α(1−τ)

1+λ(τ+α(1−τ)) ,

with VB(C; δ, τ) given in (13). •

As the payout rate δ increases, the maximum capacity of debt reduces (the application
λ �→ Dmax(V ; δ, τ) is increasing) and Cmax increases. The economic reason is that with
a higher payout rate less assets remain in the firm, thus a lower debt issuance can be
supported, giving an insight for a potential influence on agency costs. And our analysis
shows that increasing payouts produces important effects on agency costs. As [6] suggest,
after debt is issued, equity holders can potentially extract value from debt holders by
increasing the riskiness of the firm, since ∂E

∂σ > 0, while the opposite happens for debt

holders, ∂D
∂σ < 0 : a higher volatility decreases debt value under (29). The asset substitution

problem still exists with payouts. Moreover, payouts can strongly modify the magnitude of
potential agency costs arising fro the model. There is an incentive compatibility problem
between debt holders and equity holders: once debt is issued, shareholders will benefit from
an increase in the riskiness of the firm (i.e. deciding to invest in riskier activities/projects),
through transferring value from debt to equity (also if equity is not exactly an ordinary
call option, see [9] footnote 29), and these incentives are higher for equity holders as δ
rises, for each firm’s current assets value V ≥ VB. Analyzing in detail from both analytic
and economic point of view the asset substitution problem is beyond the scope of this
paper, nevertheless we found some interesting insights.
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Figure 5: Effect of a change in σ on equity and debt values. This plot shows the behavior of
∂E
∂σ

(dashed line) and
∂D
∂σ (solid line) as function of firm’s current assets value V, for a fixed level of coupon

C = 6.5. We consider r = 0.06,σ = 0.2,α = 0.5, τ = 0.35 and two different levels of δ = 0, 0.04. Equity

value is given by (19), debt value by (20). For each level of the payout rate δ, equity and debt functions

have a different support, i.e. V ≥ VB(C; δ, τ), with VB(C; δ, τ) given by (13). As a consequence, each curve

representing equity and debt sensitivity w.r.t. σ is plotted in its own support.

In Figure 5 we analyze which is the effect of a change in the volatility level σ on
both equity and debt sensitivity to σ as payouts increase. Following [9] we study the
magnitude of this effect as function of V . Considering two different levels of the payout
rate δ = 0, 0.04 we compute ∂E

∂σ ,
∂D
∂σ and analyze them for different values of V ≥ VB. The

firm will bear potential agency costs for the range of values V such that ∂E
∂σ > 0, ∂D

∂σ < 0,
meaning under (29). Alternative measures of potential agency costs are: i) how wide is
the range of V such that the problem exists; ii) the magnitude of the gap between ∂E

∂σ ,
∂D
∂σ

(see also [9] footnote 30). We refer to agency costs only as potential, since we are assuming
that capital structure decisions, once made, are not subsequently changed. Observe that
δ �→ ∂D

∂σ is not a monotonic function (differently from equity sensitivity), meaning that
once again, the influence of payouts is strongly connected with the actual distance to
default faced by the firm. Payouts have an influence also on the shape of V �→ ∂D

∂σ . In line
with [9], the incentives for increasing risk are positive for both equity and debt holders
when bankruptcy is imminent, i.e. when the distance to default approaches zero. Figure
5 shows that introducing payouts increases the range of V for which potential agency
costs exist, thus rising the problem of adverse incentives between debt holders and equity
holders and so potential agency costs for the firm. This range is V > 66 in case δ = 0 and
V > 60 for a 4% payout, meaning an increase of this range around 6% of current asset’s
value in our base case. The range always starts when current assets value is such that
debt sensitivity w.r.t. σ is null. And this will happen at point V̄ satisfying constraint (29)
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as equality, i.e. for

V̄ := VB(C, δ, τ)e
τ+α(1−τ)

1+λ(τ+α(1−τ)) ,

with VB(C; δ, τ) given in (13).

Notice that V̄ decreases with payouts in our base case, but we stress that the magnitude
of this reduction can be quantitatively different depending on all parameters involved in the
capital structure (i.e. bankruptcy costs, corporate tax rate, risk free rate, volatility), since
they are all interrelated variables. To give an idea of this, considering a lower corporate
tax rate τ = 0.15 and a payout δ = 0.05 the increase (w.r.t. the case δ = 0) in the range
of V for which potential agency costs exist is about 10% of initial assets value V = 100.
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Figure 6: Effect of a change in σ on equity and debt values. This plot shows the magnitude of the

gap between
∂E
∂σ and

∂D
∂σ as function of firm’s current assets value V, for a fixed level of coupon C = 6.5.

We consider r = 0.06,σ = 0.2,α = 0.5, τ = 0.35 and two different levels of δ = 0, 0.04. Equity value is

given by (19), debt value by (20). For each level of the payout rate δ, equity and debt functions have

a different support, i.e. V ≥ VB(C; δ, τ), with VB(C; δ, τ) given by (13). As a consequence, each curve

representing equity and debt sensitivity w.r.t. σ is plotted in its own support.

Figure 6 analyses the magnitude of the gap between ∂E
∂σ > 0 and ∂D

∂σ < 0 inside the
range where the conflict exists. What is interesting is that agency costs are relatively flat
(or slightly decreasing) only for V being between approximately 78− 90. As the distance
to default increases (or decreases), the magnitude of the gap between the two sensibilities
hardly increases, i.e. the incentive compatibility problem becomes more difficult to solve
with a greater payout δ. And this is still true also considering a pure Modigliani-Miller
framework with zero tax benefits and bankruptcy costs, where ∂E

∂σ = −∂D
∂σ . In such a case

the conflict approaches a zero sum game as found in [9] and the introduction of payouts
increases its magnitude (see Figure 7). As observed previously, the payout influence on
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Figure 7: Effect of a change in σ on equity and debt values when α = τ = 0. This plot shows

the behaviour of
∂E
∂σ (dashed line) and

∂D
∂σ (solid line) as function of firm’s current assets value V, for a

fixed level of coupon C = 6.5. We consider r = 0.06,σ = 0.2,α = 0.5, τ = 0.35 and two different levels of

payout rate δ = 0, 0.04. Equity value is given by (19), debt value by (20). For each level of the payout

rate δ, equity function has a different support, i.e. V ≥ VB(C; δ, τ), with VB(C; δ, τ) given by (13). As a

consequence, each curve representing equity sensitivity w.r.t. σ is plotted in its own support.

agency costs strongly depends on firm’s activities value V , thus on the distance to default.
Our base case allows to show that as the distance to default increases or decreases, the
payout can strongly contribute to rise average firm risk, by rising the magnitude of the
gap between equity and debt sensitivity w.r.t. σ, increasing the incentive incompatibility
problem between equity and debt holders. This will produce a direct effect on credit
spreads, increasing them when average firm risk is higher in order to compensate debt
holders.

Finally, a higher coupon C has a positive effect on the interest rate paid by risky debt,
yield, defined as

R(C; δ, τ) :=
C

D(C; δ, τ)
, (30)

with D(C; δ, τ) given in (20).

Actually yield R(C; δ, τ) is increasing as function of C and decreasing as function of
τ . A higher corporate tax rate τ will reduce both yield R(C; δ, τ) and yield spread
R(C; δ, τ)− r by rising debt (lowering the endogenous failure level VB(C; δ, τ), see also [7]

footnote 22): this follows by the relation ∂τR(C; δ, τ) = −C ∂τD(C;δ,τ)

(D(C;δ,τ))2
.
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Proposition 3.6 The function yield R(C; δ, τ) defined in (30) is increasing w.r.t. δ.

Proof As D is an increasing function of λ and ∂λR = −C ∂λD
D2 , we obtain that R is a

decreasing function of λ. Thus by Remark 2.2 R is increasing w.r.t. δ. •

While the introduction of δ reduces debt, the opposite happens for yield spreads, which
are higher. This is due to two main reasons: first, as δ increases, less assets remains in
the firm, thus increasing the likelihood of default. Secondly, introducing the payout rate
produces a direct effect of rising the average firm risk, as shown before. As a consequence,
debt holders must be compensated with higher yield spreads.

Observe that R can be expressed as:

R : (C; δ, τ) �→ rR̄

�
C

V

�
, (31)

with

R̄

�
C

V

�
=

�
1−

�
C

V

�λ�(1− τ)

r

λ

λ+ 1

�λ�
1− (1− α)(1− τ)

λ

λ+ 1

��−1

. (32)

As increasing function of the ratio C
V , the term R̄

�
C
V

�
represents the risk-adjustment factor

paid to debt holders. Introducing payouts rises debt’s volatility as Figure 8 shows: as a
consequence, the compensation paid by the firm to debt holders for the risk assumed must
be higher, and this is why R̄

�
C
V

�
increases.
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Figure 8: Volatility of Equity and Debt. This plot shows the behavior of equity and debt volatility

σE , σD as function of payout rate, for a fixed level of coupon C = 6.5. We consider V = 100, r = 0.06,
σ = 0.2, α = 0.5, τ = 0.35. By Ito calculus formula we derive the behavior of equity and debt volatility

σE ,σD.
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When V → ∞, yield spread R − r approaches to r, ∂D
∂σ → 0 and debt becomes risk

free: this is exactly as in [7], since in such a case, the hypothesis of debt being redeemed
in full becomes quite certain and this is not affected by the choice of the payout rate δ.
Introducing payouts will instead rise R in case V → VB, considering a ”pure” Modigliani-
Miller [12] framework: if α = τ = 0, as V approaches the failure level VB, R → r(1 + 1

λ),
while in case δ = 0 we have R → r+ 1

2σ
2. If there are no bankruptcy costs or tax benefits

of debt, introducing payouts allows to have yield exceeding the risk free rate r by more
than 1

2σ
2, since r

λ > 1
2σ

2, thus providing to bondholders a higher compensation for risk,
if compared to the case δ = 0.

3.3 Total Value

The total value of the firm v(C; δ, τ) in (21) is a concave function of coupon C and an
increasing function of corporate tax rate τ . The following proposition shows the behavior
of the total value of the firm with respect to the payout rate δ.

Proposition 3.7 The total value v(C; δ, τ) defined in (21) is decreasing w.r.t. δ if

V > VB(C; δ, τ)e
τ+α(1−τ)

τ+λ(τ+α(1−τ)) (33)

with VB(C; δ, τ) given in (13).

Proof The behavior of v(C; δ, τ) is the one of the following:

G : λ �→ (τ + λ(τ + α(1− τ))
1

λ+ 1

�
C(1− τ)

rV

λ

λ+ 1

�λ

,

which satisfies:

G�

G
(λ) = h(λ) =

τ + α(1− τ)

τ + λ(τ + α(1− τ))
+ log

�
C(1− τ)

rV

λ

λ+ 1

�
= (34)

=
τ + α(1− τ)

τ + λ(τ + α(1− τ))
+ log

VB(C; δ, τ)

V
. (35)

Actually, the behaviour of G is given by the sign of h(λ), with τ+α(1−τ)
τ+λ(τ+α(1−τ)) > 0 and

log VB(C;δ,τ)
V < 0.

Thus, in case

V > VB(C; δ, τ)e
τ+α(1−τ)

τ+λ(τ+α(1−τ))

we have h(λ) < 0 and the total value of the firm is decreasing w.r.t. δ. •
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The economic intuition behind constraint (33) being satisfied, is that if the initial value
of the firm V is sufficiently greater2 than the failure level, δ �→ v(C; δ, τ) is decreasing due
to the fact that introducing payouts makes bankruptcy more likely, since less assets remain
in the firm.

3.4 Probability of Default

An important issue to take into account in this framework is the probability of the firm
of going bankruptcy. In order to analyze the payout influence on default rates, we now
conduct this study under the historical measure as follows.

The cumulative probability F (s) of going bankruptcy in the interval [0, s) is given by:

F (s) = N

�
b− γs

σ
√
s

�
+ e2bγ/σ

2
N

�
b+ γs

σ
√
s

�
, (36)

where N(·) is the normal cumulative probability function, b := log VB
V and γ := µA − δ −

1
2σ

2, where µA := r+πA and πA being the historical asset risk premium (see also Equation
(15) in [9]). As observed in [9], footnote 27, the probability of default is quite dependent
on the drift assumed for the process Vt. As a consequence, the payout rate δ has an actual
influence on the probability of going bankruptcy F (s). We show qualitative behavior of
F (s) after the introduction of payouts in Figure 9, while Table 2 provides numerical result.
We study cumulative default probability for πA = 7.5% (as in [9]) and πA = 5%, for a
range of payout values.

Looking at cumulative probability over a period between 10 and 25 years shows that
a higher payout makes debt riskier, through rising the likelihood of default. This effect
is more pronounced as the horizon we consider is longer: going from 10 to 25 years the
increase in the probability of default has a greater magnitude. And this effect is higher
if the asset risk premium reduces. As extreme cases we consider that when πA = 7.5%,
looking at a 10-years horizon the probability of default is 2.249% in case δ = 0, while
it becomes 2.405% when δ = 4%, thus the increase is 7% of 2.249%. When we consider
F (25), the probability of default is 2.537% with no cash payouts. The case δ = 4% shows
a rising in the default probability up to 3.857%, meaning an increase of around 52% of its
starting value 2.537%.

A reduction in the risk premium further increases this gap: when πA = 5%, for in-
stance, the 25-years probability of default goes from 3.857% to 9.686%, meaning a rising
of around 150% of the 10-years value.

2
Observe that at point V = VB(C; δ, τ)e

τ+α(1−τ)
τ+λ(τ+α(1−τ)) satisfying (33) as equality, we have

∂E
∂λ = − ∂D

∂λ .

Moreover under (33), constraint (29) is always satisfied, meaning we are inside the range in which agency

costs exist.
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Figure 9: Cumulative Probability of Default. This plot shows the cumulative probability of default

F (s) over the period (0, s], considering Equation (36). The plot shows F (s) for different values of the payout

rate δ = 0, 0.01, 0.02, 0.03, 0.04. Base case parameters’ values are V = 100, r = 0.06, σ = 0.2, α = 0.5,

τ = 0.35; the coupon is chosen optimally. We consider an historical asset risk premium πA = 7.5%.

πA = 7.5% F (10) F (15) F (20) F (25)

δ = 0 0.02249 0.02457 0.02518 0.02537
δ = 0.01 0.02277 0.02579 0.02683 0.02721
δ = 0.02 0.02306 0.02733 0.02904 0.02976
δ = 0.03 0.02346 0.02939 0.03211 0.03341
δ = 0.04 0.02405 0.03211 0.03630 0.03857

πA = 5% F (10) F (15) F (20) F (25)

δ = 0 0.04487 0.05157 0.05429 0.05548
δ = 0.01 0.04644 0.05577 0.06006 0.06217
δ = 0.02 0.04797 0.06066 0.06721 0.07081
δ = 0.03 0.04965 0.06654 0.07626 0.08212
δ = 0.04 0.05158 0.07367 0.08767 0.09686

Table 2: Cumulative Default Probability. The table shows cumulative default probabilities for two

different values of historical assets risk premium πA analyzing the influence of the payout rate δ on the

probability of going bankruptcy F (s) given by Equation (36).

4 Optimal Capital Structure

We now consider the second-stage optimization problem, meaning equity holders have to
find the optimal amount of debt (coupon payments) which maximizes the total value of
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the firm. This will be done, taking into account the result of the first-stage optimization
problem as a relation between coupon payments C and endogenous failure level VB.

The second stage-optimization problem is:

max
C

v(V, VB(C; δ, τ), C), (37)

where the failure level VB is replaced by its endogenous value VB(C; δ, τ) given by Equation
(13).

Finally, solving (37) is equivalent to optimizing the total value of the firm v(C; δ, τ)
given by Equation (21)

v : (C; δ, τ) �→ V +
τC

r
− C

r

�
τ + α

λ(1− τ)

λ+ 1

��
C(1− τ)

rV

λ

λ+ 1

�λ

,

with respect to the coupon C.

The application C �→ (C; δ, τ) is concave since A := τ
r + αλ(1−τ)

r(λ+1) > 0 and λ > 0,
therefore the following result holds.

Proposition 4.1 For any fixed δ, τ , the optimal coupon is:

C∗(V ; δ, τ) =
rV (λ+ 1)

λ(1− τ)

�
τ

λ(τ + α(1− τ)) + τ

� 1
λ

. (38)

We observe that C∗(V ; δ, τ) < Cmax(V ; δ, τ), where Cmax is defined in (27). Moreover,

this max-coupon satisfies V > (1−τ)Cmax

r
λ

λ+1 .
The optimal coupon C∗(V ; δ, τ) is an increasing function of τ . In fact

∂C∗(V, δ, τ)

∂τ
=

�
1

1− τ
+

α

τ(τ(1 + λ) + αλ(1− τ))

�
C∗(V, δ, τ) > 0.

Replacing (38) in (13) yields the optimal failure level

V ∗
B(V ; δ, τ) = V

�
τ

λ(τ + α(1− τ)) + τ

� 1
λ

. (39)

Remark 4.2 In case δ = 0, we have λ = 2r
σ2 and we get the same results as in [7]:

V ∗
B(V ; 0, τ) = V

�
τσ2

2r(τ + α(1− τ)) + τσ2

�σ2

2r

. (40)
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Figure 10: Optimal Coupon. This plot shows the behavior of optimal coupon C∗
(V ; δ, τ) as function

of the payout rate δ and corporate tax rate τ . We consider V = 100, r = 0.06,σ = 0.2,α = 0.5.

Proposition 4.3 Consider the optimal failure level (39). The following results hold:

i) δ �→ V ∗
B(V ; δ, τ) is a decreasing function;

ii) τ �→ V ∗
B(V ; δ, τ) is an increasing function.

Proof i) Using Remark 2.2, it is enough to study the following function

F : λ �→ − 1

λ
log

�
τ + λ(τ + α(1− τ))

τ

�
.

Taking the derivative w.r.t. λ, we obtain:

F �(λ) =
1

λ2

�
log (1 + z)− z

1 + z

�
,

with z := λ
�
1 + α

�
1−τ
τ

��
. It is sufficient to study the sign of

G : z �→ log (z + 1)− z

1 + z
,

with z ∈
�
0, 2r

σ2

�
1 + α

�
1−τ
τ

���
. Since G(0) = 0 and G�(z) ≥ 0, for any z the function F is

increasing. Finally δ �→ V ∗
B(V ; δ, τ) is decreasing.

ii) The result follows by:

∂V ∗
B(V ; δ, τ)

∂τ
:=

∂V ∗
B(C

∗(V ; δ, τ))

∂τ
=

∂V ∗
B(C

∗(V ; δ, τ))

∂C∗
∂C∗(V ; δ, τ)

∂τ
> 0.
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•

We now completely describe the optimal capital structure of the firm.

Let y := λ(τ + α(1− τ)), the following holds:

C∗ =
rV (1 + λ)

λ(1− τ)

�
τ

y + τ

� 1
λ

(41)

V ∗
B = V

�
τ

y + τ

� 1
λ

(42)

D∗ =
V

λ(1− τ)

�
τ

y + τ

� 1
λ
�
λ+

y(1− τ)

y + τ

�
(43)

E∗ = V

�
1−

�
τ

y + τ

� 1
λ 1

λ

�
1 + λ+

τ

y + τ

��
(44)

R∗ =
r(1 + λ)

λ+ y(1−τ)
y+τ

. (45)

Introducing a payouts into (39) has an actual influence: δ �→ V ∗
B(V ; δ, τ) is a decreasing

function for any value of τ, while τ �→ V ∗
B(V ; δ, τ) is increasing for any value of δ. Similarly

optimal coupon C∗(V ; δ, τ) given by (38) will benefit from a higher corporate tax rate and
decrease w.r.t. δ, as Figure 10 shows.

δ C∗ D∗ R∗ R∗ − r E∗ V ∗
B v∗ L∗

0 6.501 96.275 6.753 75.257 32.167 52.821 128.442 74.956 %
0.005 6.459 94.924 6.804 80.437 32.879 51.634 127.804 74.274 %
0.010 6.419 93.547 6.862 86.177 33.602 50.422 127.149 73.573 %
0.015 6.380 92.135 6.925 92.463 34.347 49.177 126.482 72.845 %
0.020 6.344 90.706 6.994 99.401 35.097 47.918 125.803 72.102 %
0.025 6.312 89.272 7.071 107.053 35.847 46.653 125.119 71.350 %
0.030 6.283 87.826 7.154 115.389 36.606 45.377 124.432 70.582 %
0.035 6.258 86.382 7.245 124.457 37.366 44.103 123.748 69.805 %
0.040 6.239 84.960 7.343 134.342 38.111 42.850 123.072 69.033 %
0.045 6.225 83.558 7.450 144.989 38.849 41.615 122.407 68.263 %
0.050 6.217 82.189 7.564 156.424 39.570 40.411 121.759 67.502 %
0.055 6.215 80.859 7.686 168.619 40.272 39.242 121.132 66.753 %

Table 3: Effect of payout rate δ on all financial variables at the optimal leverage ratio. Base

case parameters’ values: V = 100, σ = 0.2, τ = 0.35, r = 0.06, α = 0.5. The first row of the table shows

Leland’s framework with his base case parameters’ values, in particular with δ = 0. L∗
is in percentage

(%), R∗, R∗ − r are in basis points (bps).
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The capital structure of the firm is strongly affected by payouts: Tables 3 and 4 show
the behavior of all financial variables at optimal leverage ratio, when the parameter δ
moves away from zero. Consistent with our base case, these tables report both numerical
results and a qualitative analysis.

Columns 6 and 7 of Table 3 show equity and debt values when the coupon C is chosen
to maximize the total value of the firm. Optimal equity value increases with a higher
payout, while optimal debt decreases (recall that δ does not include cash flows related to
debt financing). These two effects have a different magnitude: δ influence on debt is in
fact greater than δ influence on equity, as a consequence the optimal total value of the
firm, v∗ := D∗ + E∗, reduces. Now consider optimal leverage ratio, defined as L∗ := D∗

v∗ .
The last column of Table 3 shows that increasing payouts decreases optimal leverage ratio
L∗, and this effect is more pronounced as δ is higher. Considering our base case, optimal
leverage can drop from approximately 75% to 66.75% passing from δ = 0 to δ = 0.055. A
higher payout δ will bring to a lower total value of the firm v∗, since a lower leverage ratio
can be supported when less assets remain in the firm, as Leland suggests [8]. Optimal
leverage ratios can be strongly affected by payouts, but their influence is related to the
riskiness of the firm. Figure 9 shows optimal leverage as function of δ for three different
values of σ. For each level of δ, optimal leverage ratio decreases as σ rises. Observe also
that L∗ is decreasing w.r.t. δ for each level of σ, but this reduction in optimal leverage is
lower as the riskiness of the firm rises.
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Figure 11: Optimal leverage ratio as function of δ. This plot show optimal leverage ratio L∗
as

function of δ for three different levels of volatility σ. We consider V = 100, r = 0.06, α = 0.5, τ = 0.35.

Recall from Section 2 that higher payouts rise the probability of going bankruptcy
given by (36): as a consequence, when δ rises, optimal yield R∗ and optimal yield spread
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Figure 12: Optimal spreads as function of δ. This plot show optimal spreads R∗ − r as function of

δ for three different levels of α. We consider V = 100, r = 0.06, σ = 0.2, τ = 0.35.

R∗ − r increase. Two are the main reasons: first, less assets remain in the firm, thus
bankruptcy is more likely; secondly, the average firm risk is higher, thus debt holders
must be compensated for the higher risk assumed. Leland [7] observes that as bankruptcy
costs rise, surprisingly optimal yield spread reduces when the coupon is chosen optimally.
This is due to the fact that a higher α will decrease the optimal coupon. Our analysis
shows that when payouts are introduced, optimal yield spreads are still decreasing w.r.t.
α for each level of δ (see Figure 10). Moreover, payouts influence on optimal yield spreads
is higher as α reduces. Considering as extreme cases δ = 0 and δ = 0.055, optimal yield
spread rises from 71.6778 bps (basis points) to 156.2624 bps with α = 0.8, from 75.2554
bps to 168.6365 bps with α = 0.5 and from 81.2559 bps to 188.424 bps with α = 0.2.

Financial Variables C∗ D∗ R∗ R∗−r E∗ V ∗
B v∗ L∗

Sign of change as δ � < 0 < 0 > 0 > 0 > 0 < 0 < 0 < 0

Table 4: Effect of payout rate δ on all financial variables at the optimal leverage ratio. The

table shows for each financial variable the effect of increasing δ. Considering our base case, we report the

sign of change in each variable as the payout moves away from 0.

We now turn to the study of tax deduction τ influence on all financial variables.
Tables 5 and 6 show the behavior of all financial variables at optimal coupon level C∗ for
different values of the corporate tax rate τ when a payout δ = 0.01 is introduced. As the
tax deduction increases, all financial variables, except equity, will benefit from this. This
result extends Table II in [7] since it allows for a payout δ > 0. Concerning the optimal
failure level V ∗

B(V ; δ, τ) we observe that by (39) the corporate tax rate τ has no influence
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on the optimal failure level at optimal leverage ratio in case α = 0. The same holds for
equity value E∗ at optimal leverage ratio: a change in the corporate tax rate has no effect
on equity value in the absence of bankruptcy costs.

τ C∗ D∗ R∗ R∗ − r E∗ V ∗
B v∗ L∗

0.35 6.419 93.547 6.862 86.177 33.602 50.422 127.149 73.573 %
0.30 5.743 85.077 6.750 75.038 35.742 48.582 120.819 70.417 %
0.25 5.115 77.078 6.636 63.617 38.377 46.360 115.454 66.760 %
0.20 4.513 69.225 6.519 51.928 41.683 43.631 110.908 62.417 %
0.15 3.907 61.062 6.398 39.840 46.020 40.133 107.082 57.023 %

Table 5: Effect of a change in the corporate tax rate τ on all financial variables at the optimal

leverage ratio. This table considers a case in which a payout δ is introduced (δ = 0.01) and studies the

effect of a change in the corporate tax τ . R∗, L∗
are in percentage (%), R∗ − r is in basis points (bps).

Financial Variables C∗ D∗ R∗ R∗−r E∗ V ∗
B v∗ L∗

Sign of change as τ � > 0 > 0 > 0 > 0 < 0a > 0a > 0 > 0
a
No effect if α = 0.

Table 6: Effect of corporate tax rate τ on all financial variables at the optimal leverage ratio.

The table shows for each financial variable the effect of increasing τ for fixed δ = 0.01. Considering our

base case, we report the sign of change in each variable as the corporate tax rate increases.

5 Conclusions

Introducing the payout rate has an actual influence on all financial variables determining
the capital structure of the firm. We are considering δ as the total payout rate to all
security holders excluding cash flows related to debt issuance, see [7]. For an arbitrary
coupon level C, an increasing payout will rise equity and reduce both debt and total
value of the firm, making bankruptcy more likely since less assets will remain in the firm.
Payouts will have a direct and indirect influence on the endogenous failure level VB(C; δ, τ)
chosen by equity holders: this default boundary will be lower as payouts increase (direct
effect). Adding to this, our results suggest that payouts strongly modify the influence of
all parameters r, τ, C,σ2 on the endogenous failure level, through affecting the magnitude
of their influence (indirect effect). Potential agency costs arising from the model due to
the asset substitution problem are not independent of the choice of δ. They are affected
in two main directions. Equity holders will always have greater incentives to increase the
riskiness of the firm when the payout rises, for each value V bigger than the endogenous
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failure level, meaning that equity sensitivity to σ is an increasing and positive function of
δ. At first, the range of values V for which the conflict of interests between equity and
debt holders exists increases with payouts. Secondly, the gap between equity and debt
sensitivity to σ increases dramatically as function of the distance to default when δ is
introduced (only for a small range of values agency costs are relatively flat). Concerning
optimal capital structure Leland’s [7] results show too high leverage ratios (and/or too low
yield spreads): assuming payouts δ > 0 allows to overcome this, providing lower optimal
leverage ratios and higher yield spreads. Leverage ratio reduces because when payouts
increase, less assets is available inside the firm, thus only a lower leverage can be supported
by the firm. Yield spreads increases with payouts due to two main reasons: i) bankruptcy
is more likely; ii) average firm risk rises, since both debt and equity sensitivity to σ rise
(absolute value). Debt becomes riskier and more sensible to a change in the volatility
of the firm, consequently debt holders must be compensated for this. In this paper the
payout δ is considered exogenous and constant through time: relaxing this assumption
and making it dependent on the coupon level will allow to analyze the payout decision
as an endogenous one, trying to study it as the solution of an optimal payout policy.
Moreover, making the payout rate endogenous will provide an interesting framework in
which asymmetric information between equity holders and debt holders can be introduced
as long as a detailed analysis of the asset substitution problem, as idea for future research.
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Abstract

This paper analyzes a structural model of corporate debt in the spirit of Leland
model [17] within a more realistic general context where payouts and asymmetric tax-
code provisions are introduced. We analytically derive the value of the tax benefit
claim in this context and study the joint effect of tax asymmetry and payouts on
optimal corporate financing decisions. Results show a quantitatively significant impact
on both optimal debt issuance and leverage ratios, thus providing a way to explain
differences in observed leverage across firms.

Keywords: structural model; corporate debt; default; optimal stopping; tax benefits of
debt.

1 Introduction

The capital structure of a firm has been analyzed in terms of derivatives contracts since
Merton’s work [23]. The capital structure decision is a complex issue due to many factors
entering in the determinacy of corporate financing policy. Riskiness of the firm, bankruptcy
costs, payouts, interest rates and taxes are important factors to take into account when
defining the capital structure of a firm. According to Modigliani - Miller theorem [24] the
activities of the firm are assumed to be independent from the financial structure when
no taxes and no bankruptcy costs are assumed. When we consider a firm subject to
default risk in a framework with bankruptcy costs and taxes, the owners of the firm can
choose optimally the capital structure, where optimally means the capital structure which
maximizes the total value of the firm. The economic intuition is that deciding the optimal
capital structure means choosing which will be the best allocation of values (effective and
potential) belonging to the firm. All this can produce very different firm’s values due for
example to the trade-off existing between some interacting variables (i.e. debt and tax
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benefits). In particular corporate tax rate are an important determinant of optimal capital
structure, as early recognized by [24] and observed in more recent empirical studies (see
[14, 27]). In this paper the model proposed by [17] is extended by means of a switching
(even debt dependent) in tax savings and the introduction of a company’s assets payout
ratio (as in [3, 4]). We perform a quantitative study of the effects of both components on
the optimal capital structure of the firm, obtaining analytical results in most cases. Our
findings show that the combined effect of tax asymmetry and payouts produces predicted
optimal leverages ratios which are more in line with historical norms (significantly reduced
w.r.t. the ones in [17]) and empirical evidence. As a matter of fact, tax code provisions can
vary across nations, across industries, across activity sector in which the firm is operating
in, and also across time. Suppose for example the tax code being modified to encourage
investments (see [27] footnote 1, [26]). The main empirical insight when analyzing tax
influence on capital structure decisions is that leverage ratios are higher for firms facing
higher corporate tax rates (as it is shown in [30]). The economic insight we want to analyze
is how asymmetry in tax-code provisions are incorporated in firm’s financing decisions and
moreover the quantitative impact of this on optimal debt issuance and leverage decisions.

The total value of the firm is realized from both equity and debt. Equivalently, it can
be achieved by considering firm’s activities value in the unlevered case (meaning when no
debt is issued) plus tax benefits of debt, less bankruptcy costs. We assume bankruptcy
being determined endogenously by the inability of the firm to raise sufficient equity capital
to cover its debt obligations. Following [17] we consider an infinite horizon assuming that
the firm issues debt and debt is perpetual. Debt pays a constant coupon per instant of
time and this determines tax benefits proportional to coupon payments. A payout rate δ is
also introduced as in [3, 4]. On the failure time, agents which hold debt claims will get the
residual value of the firm (because of bankruptcy costs), and those who hold equity will
get nothing (the strict priority rule holds). Structural models assume constant corporate
tax rates, thus tax benefits of debt are constant through time. The original assumption in
[17] is that the firm has deductibility of interest payments for all firm’s assets values above
the failure level, producing a constant tax-sheltering value. Leland argues that default
and leverage decisions might be affected by non constant corporate tax rates, because a
loss of tax advantages is possible for low firm values. Thus in [17] section VI.A the author
suggests that, when assets value decreases, it is more likely that profits will be lower than
coupon payments and the firm will not be able to fully benefit tax savings. The empirical
analysis of [14] confirms that the corporate tax schedule is asymmetric, in most cases it
is convex. The quantitative impact of this asymmetry on the optimal default boundary
and the leverage ratio is considered in [27] under the hypothesis of a piecewise linear tax
function when the state variable is the operating income; the simulation study therein
shows that the effect of tax asymmetry on the optimal leverage ratio is quantitatively
significant, while it is lower on the optimal default boundary. Further [26] examines
the relation between tax convexity and investment in the presence of a strictly convex
(quadratic) tax function.
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In this paper we extend Leland model by incorporating the possibility of two different
corporate tax rates, namely τ1, τ2 and net cash outflows as in [3, 4]. We consider as
state variable firm’s current assets value. The switching from a corporate tax rate to the
other is determined by the firm value crossing a critical level. We consider two alternative
frameworks: at first, the switching barrier is assumed to be a constant exogenous level;
then we analyze a more realistic scenario in which this level depends upon the amount of
debt the firm has issued. In fact, as pointed out in [17], under U.S. tax codes, a necessary
condition required to fully benefit tax savings, is that the firm’s EBIT (earnings before
interest and taxes) must cover payments required for coupons. We obtain an explicit form
for the tax benefit claim, which allows us to study monotonicity and convexity of equity
function, to find the endogenous failure level analytically in the general case with payouts
and to prove its existence and uniqueness in the general case. Further, exploiting the
linearity of the smooth pasting condition with respect to the coupon, we are able to study
the optimal capital structure of the firm. Our approach differs from [17] since we solve
the optimal control problem as an optimal problem in the set of passage times; the key
method is the Laplace transform of the stopping failure time [1], [13], [16].

We introduce parameter θ := τ2
τ1

as a measure of the degree of asymmetry. Our study
shows that tax asymmetry increases the optimal failure level and reduces the optimal
leverage ratio, with a more pronounced effect on optimal leverage ratios, thus confirming
results in [27]. Nevertheless, we find that, as far as the magnitude is concerned, introduc-
ing a payout produces an even more significant reduction in optimal leverage ratios. Thus
the joint effect of tax asymmetries and payouts drops down optimal leverage to empiri-
cally representative values and moreover seems to be a flexible way to capture differences
among firms facing different tax-code provisions. For example observing firms belonging
to different activity sectors, this could be a way to explain differences in observed capital
structure decisions, mainly in leverage ratios. The analysis developed in [3, 4] showed that
introducing payouts in a structural model with a unique corporate tax rate has the effect
of reducing both optimal leverage ratio and optimal failure level. In the present paper we
find that this reduction in both optimal leverage and optimal failure level increases as the
degree of asymmetry of the tax schedule rises, meaning as the difference between the two
corporate tax rates is higher. We study both the impact of asymmetry in tax benefits
on optimal capital structure compared to what happens under a flat tax schedule (i.e. a
unique constant tax rate) as benchmark model, but also how these decisions change as
the asymmetry varies (i.e. for example if the switching barrier moves), showing two alter-
native approaches to measure the impact of asymmetry on corporate decisions. Finally,
the maximum total value of the firm value, as far as optimal debt issuance decrease both
with asymmetry and payouts, since less assets remain in the firm (due to payouts) and
debt becomes less attractive (due to a potential loss of value). Further we study optimal
capital structure when the switching barrier considered an increasing and linear function
of the coupon level, in order to represent a more realistic framework in which EBIT is
considered as a barrier determining a potential loss in coupon payments deductibility. In
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such a case a higher profit is needed in order to fully benefit from tax savings. Given a
payout rate, as the optimal coupon decreases for higher degrees of asymmetry, then also
the optimal switching barrier decreases: this trade-off concerning the potential tax ben-
efits loss leads to empirically representative value in predicted leverage ratios. One may
wonder why payouts and asymmetry are considered in the same model and why their joint
effect is quantitatively significant. Notice that δ and θ have a deeply different nature from
an economic point of view: if it is true that in our model δ is exogenously given, we can
also recognize that it can be partly modified or chosen by the firm, even when it is not a
result of an endogenous decision (i.e. even if it does not depend on coupon payments, as
in our case). What we mean is that, opposite to this, the corporate tax schedule is instead
imposed to the firm by an external authority. Moreover, the corporate tax schedule could
be very different depending for example on the sector in which the firm is operating in.
Thus, we think that analyzing the joint effect of these two factors could be an interesting
and flexible way to analyze and improve empirical findings inside a structural model of
credit risk allowing to explain why a high dispersion in observed leverage ratios exists. We
think that the joint effect in quantitatively significant since this model captures insights
which are internal (payouts) and external to the firm (tax asymmetry). Factors apparently
very far can produce a quantitative joint influence, as in our case.

The paper is organized as follows. In Section 2 we introduce the model where a payout
rate δ is introduced and tax benefits are not constant through time, allowing for a possible
switching in tax savings. We compute the tax benefit claim. In Section 3 the endogenous
failure level is derived and the influence of tax asymmetry on it is analyzed. The optimal
capital structure when the switching barrier is fixed and with debt dependent switching
barrier is achieved in Section 4. Section 5 concludes. Proofs are in Appendix.

2 The Model

In this section we introduce a structural model of corporate debt in the spirit of [17];
nevertheless, our model exhibits two differences: the model for the firm’s activities includes
a parameter δ which represents a constant fraction of value paid to security holders (e.g.
dividends, see also [19, 4]), further, we consider a corporate tax schedule which is not flat,
meaning we suppose the corporate tax rate being not unique and constant through time.
We derive the value of the tax benefit claim in this framework, following Leland [17] in
modeling tax benefits of debt: asymmetry in corporate tax code provisions becomes also
asymmetry in tax benefits of debt. The switching in tax benefits is due to asymmetry in
the corporate tax schedule which we suppose being based on the existence of two different
corporate tax rates. We assume the switching being determined by firm’s assets value
crossing a specified barrier, thus depending on current activities value a firm can face a
different corporate tax rate.

We assume an infinite time horizon, as in [17]. This is a reasonable first approxima-
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tion for long term corporate debt and enables us to have an analytic framework where
all corporate securities depending on the underlying variable are time independent, thus
obtaining closed forms. We consider a firm realizing its capital from both debt and equity.
The firm has only one perpetual debt outstanding, which pays a constant coupon stream
C per instant of time1. This assumption can be justified, as Leland suggests, thinking
about two alternative scenarios: a debt with very long maturity (in this case the return
of principal has no value) or a debt which is continuously rolled over at a fixed interest
rate (as in [19]). Bankruptcy is triggered endogenously by the inability of the firm to raise
sufficient capital to meet its current obligations. On the failure time T , agents which hold
debt claims will get the residual value of the firm, and those who hold equity will get
nothing. Following Leland [17] we do not consider personal taxes, thus we model the tax
benefits claim as a derivative depending directly on corporate tax rate provisions.

Suppose that firm’s activities value is described by process Vt = V eXt , where Xt

evolves, under the risk neutral probability measure, as

dXt =

�
r − δ − 1

2
σ2

�
dt+ σdWt, X0 = 0, (1)

where W is a standard Brownian motion, r the constant risk-free rate, r, δ and σ > 0.
The term δVt represents the firm’s cash flow: we can think of it as an after-tax net cash
flow before interest, since we only consider tax benefits of debt. When bankruptcy occurs
at stopping time T , a fraction α (0 ≤ α < 1) of firm value is lost (for instance payed to
who takes care of the bankruptcy procedures), the debt holders receive the rest and the
stockholders nothing, meaning that the strict priority rule holds. The failure passage time
is determined when the firm value falls to some constant level VB. The value of VB is
endogenously derived and will be determined with an optimal rule later. Define

TVB := inf{t ≥ 0 : Vt = VB} = inf{t ≥ 0 : Xt = log
VB

V
}.

In the spirit of Leland we assume that from paying coupons the firm obtains tax
deductions. Most structural models of credit risk assume a setting in which tax benefits are
constant through time: from paying coupons a firm obtains tax deductions proportionally
to the coupon payment. In [17] the corporate tax rate τ is assumed to be constant;
nevertheless, in Appendix A the author derives the endogenous failure level in the case
when there are no tax benefits for the assets value going under an exogenously specified
level. The empirical analysis of [14] confirms that the corporate tax schedule is asymmetric.
Moreover [27] assumes the hypothesis of a piecewise linear tax function and reports a quite
significant impact of this asymmetry on the optimal leverage ratio. These studies motivate
our extension of Leland’s setting in the direction of a structural model with endogenous
default boundary presenting a more general (even debt dependent) corporate tax schedule.

1Instantaneous coupon payments can be written as C := cF , where F is face value of debt, supposed
to be constant through time, as in Leland [17].
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Following [17, 23] we can always express tax benefits as a claim on the underlying asset
represented by the unlevered value of the firm V·. We now describe the general scheme to
determine the value of this claim for a given corporate tax schedule. On R+

∗ let τ be the
corporate tax function and F the tax benefits function. Tax benefits of debt can be seen
as the value of a claim on Vt paying a continuous instantaneous dividend τ(Vt)C if there
is no default and 0 in the event of bankruptcy. Let

Gt := e−rtF (Vt) +

� t

0
e−rsτ(Vs)Cds,

represent the value of tax benefits at time t, discounted at the risk free rate r, plus
cumulated tax-sheltering value of interest payment τ(Vt)C up to time t, discounted at r.
To avoid arbitrage opportunities we impose such a process to be a local martingale under
the risk neutral probability (see [23]). Assuming that F belongs to C2

b , then G is a true

martingale since the martingale part of the process e−rtF (Vt) is
� t
0 e

−rsF �(Vs)σVsdWs, F �

is bounded and e−rtVt is square integrable on Ω×R+
∗ . Then it follows using Doob theorem:

Lemma 2.1 For any stopping time T the value of the tax benefits of debt is equal to:

F (V ) = EV

�
e−rTF (VT ) +

� T

0
e−rsτ(Vs)Cds

�
, (2)

where the expectation is taken with respect to the risk neutral probability and we denote

EV [·] := E[·|V0 = V ].

In this section the asymmetric tax benefits schedule is specified through the introduc-
tion of an exogenously given level of firm’s assets value at which the tax deduction changes.
We modify Leland [17] assumption about a unique constant level τ, considering a piecewise
linear model in which two different corporate tax rates τ1, τ2 are in force. We assume that
the deductibility of coupon payment generates tax benefits for all value V ≥ VB, but these
tax savings are reduced when V falls to a specified constant value. As the firm approaches
bankruptcy, it will lose tax benefits.

The corporate tax rate switches from τ1 to τ2 when the value of the firm reaches a
certain (exogenous) barrier VS , therefore the corporate tax function is equal to

τ = τ11(VS ,∞) + τ21(VB ,VS) (3)

depending on the firm’s activities value Vt staying upon the prescribed level VS . Obviously
we assume VS > VB. The tax-sheltering value of interest payments will not be constant
through time: it will be τ1C for V ≥ VS , and τ2C in case VB ≤ V < VS . We assume
τ2 ≤ τ1, meaning loss of tax benefits below VS .
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The first passage time at VS is defined

TVS = inf{t ≥ 0 : Vt = VS} = inf{t ≥ 0 : Xt = log
VS

V
}. (4)

Note that VTVB
= VB and VTVS

= VS , as the process Vt is continuous.

Using integral representation of tax benefits we can write (2) as:

F (V ) = EV

�
e−rTVS

∧TVBF (VTVS
∧TVB

) +

� TVS
∧TVB

0
e−rsCτ(Vs)ds

�
. (5)

where τ(Vs) is specified by (3).

It is easily seen that in order to compute (5), it is enough to have explicit formulas for
the Laplace transform of a double boundaries passage time. The formulas for the Laplace
transforms are obtained in Appendix A, Propositions 6.2, 6.3. As VB is a failure level,
we impose that tax benefits are completely lost at failure, then the required boundary
condition is F (VB) = 0. Finally we can state the following result.

Proposition 2.2 Suppose that the deduction tax function τ(·) is defined by (3), then the
tax benefits claim F (V ) in (2) is equal to:

F (V ) =
�
A0 +A1V

−λ1 +A2V
−λ2

�
1(VB ,VS)(V ) +

�
B0 +B2V

−λ2

�
1(VS ,∞)(V ), (6)

where

A0 =
τ2C

r
(7)

A1 =
Cλ2V

λ1
S (τ2 − τ1)

r(λ1 − λ2)
, (8)

A2 = −
�
A1V

−λ1
B +

τ2C

r

�
V λ2
B , (9)

B0 =
τ1C

r
, (10)

B2 = A2 +A1
λ1V

λ2−λ1
S

λ2
. (11)

and λ1, λ2 are defined as

λ1 =
µ−

�
µ2 + 2rσ2

σ2
, λ2 =

µ+
�
µ2 + 2rσ2

σ2
(12)

with

µ := r − δ − 1

2
σ2. (13)
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We comment the above result in order to underline the effects of the tax asymmetry
assumption on the value of the tax benefit claim F (V ). Under the hypothesis τ2 ≤ τ1, it
holds A1 > 0, A2 < 0, B2 < 0. Therefore in both segments V ≥ VS and VB ≤ V < VS ,
the function F (V ) is strictly increasing w.r.t. firm’s current assets value V . Further, we
note that the tax benefits value in the segment V ≥ VS is a strictly concave function of V ,
since B2 is negative. If the tax rate were always τ2, both above and below VS , we would
have

FL(V, τ2) =
τ2C

r
− τ2C

r
VB

λ2V −λ2 ,

which coincides with the result obtained in [17]. We now compare this value with F (V )
in our framework in case VB ≤ V < VS :

F (V ) = A0 +A1V
−λ1 +A2V

−λ2 ,

with A0, A1, A2 given by Equations (7)-(9). Notice that now, for all assets value below
the switching barrier (but obviously above the failure level VB) the value of the claim
F (V ) exhibits three terms instead of two: while the constant term τ2C

r appears in both
models, in Leland framework the term depending on V −λ1 does not appear. The presence
of A1V −λ1 captures the effect of: i) payouts, since in case δ = 0 we have λ1 = −1; ii) most
important, it captures the possible switching from τ2 to a higher level τ1, thus representing
the value of a possible gain in tax savings, through coefficient A1. This is why it is positive
and increasing w.r.t. V . Coefficient A1 reflects exactly the asymmetry in the corporate
tax schedule; it is increasing w.r.t. both τ2 − τ1 and the switching barrier VS . Coefficient
A2 is instead negative and depends on both the asymmetry of the corporate tax schedule
and the default event.

Remark 2.3 In Appendix A [17] the author proposes a structural model in which the
instantaneous tax benefit is zero, if the firm’s value V falls under a prescribed level. His
approach to the problem is that of ordinary differential equations with boundary conditions.
We observe that considering the particular case of δ = 0 and τ2 = 0, we recover the same
result as in [17].

We are now ready to complete the description of the corporate capital structure model.
Applying contingent claim analysis in a Black-Scholes setting, given the stopping (failure)
time TVB , the expression for debt value is given by:

D(V, VB, C) = EV

�� TVB

0
e−rsCds+ (1− α)e−rTVBVB

�
. (14)

It is important to stress that the corporate tax schedule does not affect directly debt
value, thus equation (14) holds for whatever corporate tax schedule. What is important
is knowing that corporate tax provisions have an influence on capital structure decisions
since issuing debt allows to have some tax savings, thus a potential increase in firm’s value.
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But they do not affect directly debt value, which depends only on the coupon level and
obviously, on the default event though bankruptcy costs α and the failure level VB. The
effect of asymmetry in the tax scheme will produce an impact on debt value only through
the choice of the endogenous failure level and thus on the optimal coupon equity holders
will choose.

The total value of the firm v(V ) consists of three terms: firm’s assets value (unlevered),
plus the value of the tax benefits claim F (V ) given in (6), less the value of the claim on
bankruptcy costs:

v(V, VB, C) = V + F (V )− EV [e
−rTVBαVB]. (15)

Since an alternative but equivalent formulation for the total value of the firm is the sum
of equity and debt values, finally it is possible to write equity value as:

E(V, VB, C) = v(V, VB, C)−D(V, VB, C). (16)

Equity holders have to define the capital structure of the firm. In order to do this, they
have to chose both the endogenous failure level and the optimal amount of debt to issue.
As stressed in [4] these are interrelated decisions which can hardly be separated. Our
approach to the problem is to conduct the analysis in two stages: i) at first we determine
the endogenous failure level, ii) then we find the optimal coupon, given the result about
the default boundary.

3 Endogenous Failure Level

The aim of this section is to investigate the effects of introducing a different asymmetric
corporate tax rate schedule on the endogenous failure level chosen by equity holders. We
will conduct a detailed analytical study considering the influence of the corporate tax
function in (3) on the firm’s capital structure. The analysis is conducted for a given and
fixed level of coupon payments, namely C.

3.1 Failure Level with exogenous switching barrier

Given the value of the tax benefits claim F (V ) in (6) we can write debt, equity and total
value of the firm. First consider the debt function, which is not directly affected by (3),
since for the moment we are considering VB as a constant level and C is fixed. Debt value
can be seen as the sum of a risk-free debt C/r plus a positive term depending on the risk
of default. Using Proposition 6.1, (14) becomes:

D(V, VB, C) =
C

r
+

�
(1− α)VB − C

r

��
VB

V

�λ2

. (17)
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Further using Proposition 2.2, the total value of the firm defined in (15) is equal to

v(V, VB, C) = V +

�
τ2C

r
+A1V

−λ1 +A2V
−λ2

�
1(VB ,VS)(V ) (18)

+

�
τ1C

r
+B2V

−λ2

�
1(VS ,∞)(V )− αVB

�
VB

V

�λ2

.

Finally from (16) we obtain

E(V, VB, C) = V +

�
τ2C

r
+A1V

−λ1 +A2V
−λ2

�
1(VB ,VS)(V ) (19)

+

�
τ1C

r
+B2V

−λ2

�
1(VS ,∞)(V )− C

r
− (VB − C

r
)

�
VB

V

�λ2

.

Equity function must reflect its nature of an option-like contract. For any C, we have
E(VB, VB, C) = 0 meaning that when V falls to VB there is no equity to cover the firm’s
debt obligations, thus equity holders will chose to default. We first analyze the equity
value for VB ≤ V < VS :

E(V, VB, C) = V − (1− τ2)
C

r
+A1V

−λ1 +

�
−A1V

−λ1
B +

C

r
(1− τ2)− VB

��
V

VB

�−λ2

,

(20)
where A1 defined in (8) is positive if τ2 < τ1. Observe that the first term V − (1− τ2)

C
r is

nothing but equity value considering a constant tax-sheltering value of interest payments
τ2C, unless limit of time (when there is no risk of default). The term A1V −λ1 is strictly
related to our tax benefits assumption: since in this model the corporate tax rate can
switch from τ1 to τ2, coefficient A1 captures this effect. It depends on both the switching
barrier VS and the difference between the two tax levels, it disappears when considering a
unique corporate tax rate (i.e. τ2 = τ1, as in [17]), and achieves its maximum in case τ2 = 0,
meaning full loss of tax benefits below VS . Coefficient A1 represents the opportunity-cost of
V being in [VB, VS) instead of [VS ,∞). In fact, considering Leland [17] framework, equity
value is increasing with respect to τ : our assumption about the tax deductibility scheme
modifies the unique constant τ introducing an asymmetry. Suppose V being in [VB, VS ]:
this asymmetry becomes an opportunity, since τ2 < τ1. As a consequence, coefficient A1

is positive and increasing w.r.t. τ2− τ1, decreasing w.r.t. the switching barrier VS . As the
difference τ2− τ1 increases, A1 increases too: the possible gain in tax benefits in the event
of V = VS is higher. As VS becomes higher, coeteris paribus, the probability of V reaching
VS before reaching VB is reduced, thus obtaining a gain in tax benefits becomes less likely
and A1 will be lower. The last term is exactly the option to default which is embodied
in equity. Observe that in this case, the option to default will compensate equity holders
also for the tax deductibility asymmetry, through the term −A1V

−λ1
B . Therefore it must

hold

−A1V
−λ1
B +

C

r
(1− τ2)− VB > 0. (21)

10



Analogously we consider the equity value for V ≥ VS :

E(V, VB, C) = V−(1− τ1)C

r
+A1

λ1

λ2
V λ2−λ1
S V −λ2+

�
−A1V

−λ1
B +

C

r
(1− τ2)− VB

��
V

VB

�−λ2

.

(22)
The first term V − (1− τ1)

C
r represents equity value when there is no risk of default, with

a constant corporate tax rate τ1. The second term captures two different effects: one due
to the switching in tax benefits, the other related to default, both arising in the event
of V falling to VS . Observe that the second term A1

λ1
λ2
V λ2−λ1
S is negative, reflecting the

possible partial loss of tax benefits below VS . Its negative effect on equity increases with
an increase in the switching barrier VS and also as a consequence of a higher difference
τ2 − τ1. What remains is the option to default, which will be activated only if V reaches
VS . As previously, the option to default must have positive value, meaning constraint (21)
being satisfied.

In the following proposition we analyze the verification of constraint (21) to get equity
convex in V.

Proposition 3.1 Suppose that τ2 < τ1, then condition (21) is satisfied for VB < V B such
that

1

1 +A1

C(1− τ2)

r
< V B <

C(1− τ2)

r
.

Remark 3.2 If δ = 0, then condition (21) becomes −A1VB+ C
r (1−τ2)−VB > 0, therefore

VB <
1

1 +A1

C(1− τ2)

r
. (23)

The convexity condition required in [17] is VB < C(1−τ2)
r ; note that,as A1 > 0,

1

1 +A1

C(1− τ2)

r
<

C(1− τ2)

r
.

On the other side, under the hypothesis δ > 0 and a unique constant corporate tax rate
τ1 = τ2, then A1 = 0 and the condition (21) becomes VB < C(1−τ2)

r , as found in [3, 4].
This emphasizes the fact that the difference between these two convexity constraints is due
to asymmetry in tax benefits: introducing asymmetry in tax benefits makes the convexity
constraint on VB more tight if compared to the case of a unique constant tax-sheltering
value of τ2C. This result does not depend on payouts, it is true for each level of δ.

Proposition 3.1 gives an upper bound for VB; nevertheless, due to limited liability of
equity, the failure level VB cannot be chosen arbitrarily small, but E(V, VB, C) must be
non negative for all values V ≥ VB. To this end we write equity function (20) as:

E(V, VB, C) = f(V,C) + g(V, VB, C),

11



where

f(V,C) = V − (1− τ2)
C

r
+A1V

−λ1 , (24)

and

g(V, VB, C) =

�
−A1V

−λ1
B +

C

r
(1− τ2)− VB

��
V

VB

�−λ2

. (25)

Constraint (21) is needed in order to make the option embodied in equity having positive
value and its value g(V, VB, C) in (25) being a convex and decreasing function of V . The
value g(V, VB, C) increases as V approaches VB, therefore compensating equity holders
for the reduction in equity due to a lower V . The function f(V,C) in (24) represents
equity value with no risk of default unless limit of time, when asymmetry in tax benefits is
assumed. Under constraint (21) f is increasing and convex when V ∈ [VB, VS). At point
V = VB, g(V, VB, C) and f(V,C) have exactly the same value, with opposite sign. Thus
the following proposition provides a condition such that an increment in V must produce
an impact on equity value without default risk f(V,C) higher than its effect on the option
to default g(V, VB, C). This allows to keep E(V, VB, C) ≥ 0 when the option to default
approaches its exercise instant, i.e. V → VB.

Proposition 3.3 The function V �→ E(V, VB, C) is increasing and strictly convex in
VB ≤ V < VS if VB satisfies constraints (21) and

VB(1 + λ2) +A1VB
−λ1(λ2 − λ1) ≥

C(1− τ2)

r
λ2, (26)

Moreover E(V, VB, C) ≥ 0 for V ≥ VB.

Remark 3.4 If δ = 0, constraint (26) becomes

VB ≥ 2(1− τ2)VSC

VS(σ2 + 2r) + 2C(τ1 − τ2)
. (27)

Recalling also constraint (23), in order to have equity increasing and convex w.r.t. V , the
endogenous failure level has to satisfy:

2(1− τ2)VSC

VS(σ2 + 2r) + 2C(τ1 − τ2)
≤ VB ≤

�
2 +

σ2

r

�
(1− τ2)VSC

VS(σ2 + 2r) + 2C(τ1 − τ2)
.

We consider the coupon rate C being fixed and maximize equity value in order to find
the endogenous failure level. To this end we impose the smooth-pasting condition (see [17]
footnote 20 and [22] footnote 60):

∂E

∂V
|V=VB = 0. (28)

12



Theorem 3.5 Suppose constraint (21) holds, then the endogenous failure level VB(C; τ1, τ2; δ)
which satisfies (28) exists and is unique, under the condition

VS ≥ (1− τ1)C

r

λ2

1 + λ2
. (29)

We note that condition (28) is equivalent to

∂f

∂V
|V=VB = − ∂g

∂V
|V=VB ,

where f and g are defined in (24) and (25). Thus a solution of (28) is an implicit solution
of 2

(1 + λ2) =
λ2C

r
V −1
B

��
VS

VB

�λ1

(τ2 − τ1) + (1− τ2)

�
. (31)

Remark 3.6 Note that this choice of bankruptcy level also optimizes VB �→ E(V, VB, C).

Under constraints (21) and (29), equity is increasing (and convex) w.r.t. assets value
V if VB ≥ VB(C; τ1, τ2; δ), where VB(C; τ1, τ2; δ) satisfies the smooth pasting condition,
being the minimum failure level that equity holders can choose due to limited liability
of equity. Consider the function g in (25) which is the option to default embodied in

equity. The endogenous failure level VB(C; τ1, τ2; δ) satisfies ∂E(V,VB ,C)
∂VB

= 0 if and only

if ∂g(V,VB ,C)
∂VB

= 0. Further ∂g(V,VB ,C)
∂VB

= 0 is equivalent to equation (31), which is exactly
the optimal stopping problem equation. It gives the optimal exercise time of the option to
default embodied in equity. Differentiating equity value w.r.t. VB, we have ∂VBE = ∂VBg
which has the same sign as the decreasing function

VB �→ A1V
−λ1
B (λ1 − λ2) + λ2

C

r
(1− τ2)− VB(1 + λ2).

This function is positive then negative and cancel at point VB exactly solution to Equation
(31).

If δ = 0, explicit solution can be obtained by solving equation (31) with respect to VB

VB(C; τ1, τ2; 0) =
2CVS(1− τ2)

VS(σ2 + 2r) + 2C(τ1 − τ2)
, (32)

2In particular if we assume a switch to zero tax level, i.e. τ2 = 0, we obtain the optimal failure
VB(C; τ1, 0; δ) as implicit solution of

(1 + λ2) =
λ2C
r

V −1
B

�
1− τ1

�
VS

VB

�λ1
�
. (30)

This result completes the analysis in [19] Appendix B, in the case where we let the maturity T → ∞ since
the authors analyze the switch to zero tax level only in the no-dividend case.
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thus extending [17] Appendix A (case τ2 = 0).

Finally in case τ2 = τ1 =: τ we obtain:

VB(C; τ, τ ; δ) =
λ2C(1− τ)

r(1 + λ2)
, (33)

which is the endogenous failure level in case of a unique constant tax-sheltering value of
interest payment τC with a payout rate δ. This result extends that found in [17] equation
(14) to the case when the firm’s assets value model accounts for a non zero payout rate.
See [4] for a detailed analysis of this case.

Remark 3.7 Observe that under constraint (29), the endogenous failure level VB(C; τ1, τ2; 0)
is lower than the switching barrier exogenously given VS. The following inequality

2(1− τ2)VSC

VS(σ2 + 2r) + 2C(τ1 − τ2)
≤ VS (34)

holds under

VS ≥ 2C(1− τ1)

(σ2 + 2r)
(35)

which is exactly constraint (29) in case δ = 0.

3.1.1 Effect of corporate tax rate asymmetry on the endogenous failure level

In this paragraph we analyze the impact of the corporate tax function τ(·) defined in (3)
on the endogenous failure level. We fix τ1 and VS , and we study the influence of τ2 on the
endogenous failure level, given the coupon C. Introducing asymmetry makes debt more or
less attractive hence it should increase or decrease the optimal leverage ratio. Asymmetry
also makes more or less attractive to keep a loss-making firm alive, hence it should raise
or decrease the endogenous failure level and bring default closer or farer.

In order to work with explicit formulas we consider the no-payout case δ = 0: therefore
λ1 = −1 and λ2 =

2r
σ2 . In the general case we will resort to numerical comparisons.

Let us consider: the endogenous failure level obtained with the constant instantaneous
tax benefits in [17]

VBL(C; τ1; 0) =
2C(1− τ1)

σ2 + 2r
, (36)

the level (32) obtained in the case of switching between two tax levels and, as a particular
case of (32) with τ2 = 0, the switch to zero tax benefits (as in [17] Appendix A)

VB(C; τ1, 0; 0) =
2CVS

VS(σ2 + 2r) + 2τ1C
. (37)
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Proposition 3.8 The function

τ2 �→ VB(C; τ1, τ2; 0)

defined in (32) is decreasing. In particular VB(C; τ1, 0; 0) in (37) is greater than VB(C; τ1, τ2; 0)
in (32). Further for any τ1 > τ2

VB(C; τ1, τ2; 0) > VBL(C; τ1; 0), VBL(C; τ2; 0) > VB(C; τ1, τ2; 0).

We can observe that under our asymmetric corporate tax schedule, a higher τ2 will
increase equity value (for each coupon level C), and reduce the endogenous failure level
VB(C; τ1, τ2; 0).Thus, increasing tax deductions could be a way to support firms in crisis
times.

Finally we conclude that in the model where δ = 0 a higher asymmetry in the tax
deductibility will increase the failure level endogenously chosen. We can introduce θ := τ2

τ1
as a measure of the degree of asymmetry of the corporate tax schedule: θ = 1 represents
Leland framework (no asymmetry), θ = 0 is the maximum asymmetry case, meaning
full loss of tax shelter below VS . Any other case 0 ≤ θ ≤ 1 represent nothing but an
intermediate asymmetric scenario. As asymmetry increases, meaning θ := τ2

τ1
closer to

0, the endogenous failure level VB(C; τ1, τ2; 0) increases for any value of the exogenous
switching barrier. In such a case, in fact, below VS the firm will have less tax benefits,
due to the lower τ2, bringing the endogenous failure level higher.

Remark 3.9 Suppose for a moment τ2 being fixed. Note that the application τ1 �→
VB(C; τ1, τ2; 0) is decreasing. This is in line with a reduction in the degree of asymmetry of
the corporate tax schedule (i.e. θ closer to 1). A higher τ1 allows the firm to have greater
tax savings above VS , bringing equity value higher both above and below (coefficient A1 will
be higher) the switching barrier VS , thus bringing down the endogenous failure level.

The impact of the deductibility asymmetry affects the endogenous failure level also
through the exogenous switching barrier VS . In the no-payout case it is easily seen the
following.

Proposition 3.10 The following result holds: the failure level VB(C; τ1, τ2; 0) in (32):
i) is decreasing with respect to the exogenous barrier VS if τ2 > τ1,
ii) is increasing with respect to the exogenous barrier VS if τ2 < τ1.

Assume that τ2 < τ1. Given a certain degree of asymmetry, meaning θ := τ2
τ1

being
fixed, suppose to change the exogenous switching barrier VS . This means that a higher
VS will increase the endogenous default boundary. Starting from V ≥ VS , the switching
from τ1 to τ2 will be more likely, thus it will be more likely losing some tax benefits. As
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extreme case we can consider what happens as VS increases: the model will approach
Leland framework with a unique constant tax-sheltering value on interest payments τ2C.
Equity holders will lose the opportunity to switch from τ2 to a higher tax savings region,
thus equity will be lower and the endogenous failure level higher, as shown in Proposition
3.8. All this holds since for the moment we are conducting an analysis supposing the
coupon C being fixed. Notice that these results can also be seen as those ones obtained in
a limit-model with constant τ2: when the coupon is fixed, the endogenous failure level is
decreasing w.r.t. the corporate tax rate (see [17]), confirming our results in this subsection.

A change in θ, as far as a change in VS , should be an alternative way to analyze how the
impact of a variation in the asymmetry of the corporate tax schedule can affect optimal
capital structure decisions, as we will do in Section 4. Observe that a change in θ or a
change in VS produce a different effect on the asymmetry of the tax schedule: we propose
to interpret θ as a vertical measure of asymmetry, VS as horizontal measure. What we
mean is that θ modifies the degree of asymmetry, by acting on the distance between the
two corporate tax rates, thus measuring the potential instantaneous loss of tax benefits
at point V = VS . A change in VS represents an horizontal measure of asymmetry since it
modifies the range of firm’s values for which the firm faces a higher (lower) deductibility.
When θ → 1, or VS → VB, the limit-model is a framework with a flat corporate tax
schedule with a constant corporate tax rate τ1, but the economic intuition behind is
completely different. Consider a coeteris paribus analysis in which all variables except θ
are constant: as θ moves, what is changing is only the measure of the potential loss in tax
benefits, meaning the distance between the two levels. As opposite case, when VS is the
only variable to move, the potential loss in tax benefits is still the same, what changes is
the probability of reaching the barrier, thus the likelihood of the potential loss.

3.2 Failure level with debt dependent switching barrier

In section 3.1 we assumed that the switching barrier VS being exogenously given. Never-
theless this hypothesis is not completely realistic, and we expect that VS will depend on
the amount of debt issued by the firm (see [17] section VI.A). If assets value falls, it is
more likely that profits will be lower than coupon payments, thus the firm will not fully
benefit tax savings. Under U.S. tax codes, a necessary condition required to fully benefit
tax savings, is that the firm’s EBIT (earnings before interest and taxes) must cover pay-
ments required for coupons (see [17]). We now introduce the rate of EBIT and suppose it
is related3 to assets value in the following way:

EBIT := aV − k, (38)

with 0 < a < 1, k > 0, where k represents costs and a is a fraction of firm’s current
assets value. In this case the gross profit falls to 0 when V equals k

a . We assume that the

3In [17] EBIT is modeled as a linear function of V , and also in [18] is supposed to be equal to a constant
fraction of firm’s assets value.
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corporate tax rate is τ1 in case EBIT − C ≥ 0, and τ2 otherwise, with τ2 ≤ τ1. Under
this specification the switching barrier VS depends upon the amount of debt issued by the
firm in the following way:

VS = k +
1

a
C. (39)

In this scenario the switching barrier is not exogenously given: it depends on a constant
term k due to costs needed to determine the rate of EBIT, then it is a linear function of
the coupon level. The switching barrier VS increases with both k, C: a higher profit is
required to cover higher costs k and/or higher interest payments, in order to benefit tax
savings from issuing debt.

We now analyze how this different definition of the switching barrier VS affects the
endogenous failure level. The endogenous failure level is optimally chosen by equity holders
by applying the smooth pasting condition; when applying the smooth pasting condition,
we differentiate equity w.r.t. V and then evaluate this derivative at point VB. We stress
that definition (39) makes the switching barrier dependent and linear on C, but VS does
not depend on firm’s current assets value V . Thus we can use results from Section 3.1
about equity value in order to find the default boundary in this case. In the case δ = 0 we
consider equation (32) and modify it according to the debt dependent switching barrier
(39), the endogenous failure level becomes:

VB
c(C; τ1, τ2; 0; k, a) =

2C(ak + C)(1− τ2)

(ak + C)(σ2 + 2r) + 2aC(τ1 − τ2)
. (40)

Look at increasing costs k or reducing a, the fraction of firm’s value necessary to determine
the rate of EBIT: this will bring default closer, rising the endogenous failure level in (40)
optimally chosen by equity holders.

Proposition 3.11 The endogenous failure level VB
c(C; τ1, τ2; 0; k, a) defined in (40) is:

i) increasing and concave w.r.t. k;
ii) decreasing and convex w.r.t. a;
iii) increasing and concave w.r.t. C.

Consider a comparative static analysis: if k increases and/or a reduces, EBIT is lower for
each firm’s assets value V·, thus the default boundary is higher since debt has a greater
likelihood of losing its tax benefits, meaning for the firm is more likely to lose potential
value.

We analyze the relation between total coupon payments supported by the firm and the
endogenous failure level chosen by equity holders under this debt dependent asymmetry
framework. A comparison between (32), (36) and (40) shows that under the assumption of
tax benefits asymmetry, the endogenous failure level is an increasing and concave function
of the coupon level, instead of being a linear increasing function of C (in case of a unique
constant corporate tax rate). It is still true that the endogenous failure level is independent
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of firm’s current assets value V and the fraction (of firm’s value) α which is lost because
of bankruptcy procedures 4. When the corporate tax rate is unique, a change in the
coupon level affects the optimal equity holders’ choice in the same way for all coupon
levels. A debt-dependent asymmetry, meaning the switching barrier depending on coupon,
introduces a different effect through modifying the shape of the endogenous failure level as
function of C. As a consequence, a change in C modifies the endogenous failure level with
different magnitudes, depending on the value of outstanding debt. If the firm is supporting
very high interest payments, a reduction (increase) in the coupon level will produce a
small effect on the failure level, while in case of low coupon payments, a variation in C
will strongly affect the endogenous default boundary, producing a bigger impact on it.
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Figure 1: Endogenous failure level. This plot shows the behavior of the endogenous failure level

w.r.t. coupon level C. We consider four alternative scenarios: two with a constant corporate tax rate

representing Leland framework respectively with τ1, τ2 alternatively. Then we consider asymmetric tax

benefits cases: VB(C; τ1, τ2; 0) when the switching barrier is exogenous, VB(C; τ1, τ2; 0; k, a) when it is debt

dependent. Parameters values are: σ = 0.2, r = 0.05, δ = 0, τ1 = 0.35, θ = 0.4, VS = 90. We then consider

k = 60, a = 1
6 , giving VS

c = 60 + 6C. Recall that θ := τ2
τ1

represents the degree of asymmetry in tax

benefits.

Figure 1 shows the behavior of the endogenous failure level when different frameworks
are considered: two constant tax benefits cases (alternatively a unique constant τ1 or τ2),
two switching scenarios, one with VS exogenous (VS = 90), the other with the switching
barrier debt dependent (VS

c = 60+6C). Leland frameworks with constant τ1, τ2 represent

4The independence w.r.t. α means that bankruptcy costs does not directly affect the endogenous
failure level, since the strict priority rule holds. Bankruptcy costs will instead affect the optimal failure
level through the choice of the optimal coupon C∗ which maximizes total firm value.
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two extreme boundaries between which both the endogenous failure levels obtained under
asymmetric tax benefits lie. We now compare (32) and (40): they are both increasing
and concave w.r.t. coupon level C. When coupon payments are low, (32) is greater than
(40), though their difference is very small. As coupon increases, the behavior completely
changes: the debt dependent switching barrier causes the failure level to be higher than
in case VS constant, and the difference between the two levels increases too. The reason
is that the debt dependent switching barrier (39) increases with coupon level, so a firm
paying a high coupon C is facing a higher switching barrier, thus a greater probability of
losing tax benefits, since now EBIT must cover a greater value of interest payments.

Proposition 3.12 Consider VB(C; τ1, τ2; 0) in (32) and VB
c(C; τ1, τ2; 0; k, a) in (40). The

following holds:

VB(C; τ1, τ2; 0) > VB
c(C; τ1, τ2; 0; k, a), if VS >

C

a
+ k

VB(C; τ1, τ2; 0) = VB
c(C; τ1, τ2; 0; k, a), if VS =

C

a
+ k

VB(C; τ1, τ2; 0) < VB
c(C; τ1, τ2; 0; k, a), if VS <

C

a
+ k.

4 Optimal Capital Structure

In this section we determine the optimal capital structure within the model assuming
the corporate tax function (3) in both cases of exogenous and debt dependent switching
barrier. In both cases we give numerical results in the general framework with both
asymmetry and payouts. As particular case, we show also what happen for δ = 0 in order
to isolate the asymmetry effect on corporate financing decisions.

Before considering optimal capital structure, the coupon was supposed to be fixed. We
now turn to the optimization of the total value of the firm depending on the endogenous
failure level solution of the optimal stopping problem faced by equity holders. Once
determined this default boundary as en endogenous one, equity holders will incorporate
this decision into the total value of the firm. Then maximize it w.r.t. C in order to
find the optimal amount of debt to issue, that one which guarantees the maximum total
value of the firm due to the limited liability constraint. Thus the optimal coupon, namely
C∗, maximize total firm value. Once found, we replace C∗ in all expressions of previous
subsections in order to fully describe the optimal capital structure.

We then consider and show numerical results analyzing each financial variable at its
optimal level and study effects of both i) corporate tax asymmetry and ii) payout rate
on optimal coupon C∗, optimal debt value D∗, optimal equity value E∗, optimal default
boundary VB

∗ and optimal total value of the firm v∗. We also analyze the optimal yield
spread R∗−r where R∗ := C∗

D∗ , and the optimal leverage ratio, defined as the ratio between

optimal debt and optimal total value L∗ := D∗

v∗ (when coupon is at its optimal level C∗).
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4.1 Exogenous switching barrier

Here we show how optimal capital structure is affected by both asymmetry and payouts
when the switching barrier is exogenously given.

The optimal coupon C∗ must be chosen in order to maximize

C �→ v(V, VB(C; τ1, τ2; δ), C),

where v(V, VB(C; τ1, τ2; δ), C) is defined in (18). The optimal failure level is not given
in closed form, nevertheless the following result allows us to study the optimal capital
structure.

Proposition 4.1 The function VB �→ C(VB; τ1, τ2; δ) is increasing, where VB is implicitly
given by equation (31).

It follows that the study of the influence of the coupon C on the total value of the firm v,
is equivalent to study v as function of VB. Thus, optimizing C �→ v(V, VB(C; τ1, τ2; δ), C)
is equivalent to optimize VB �→ v(V, VB, C(VB; τ1, τ2; δ)).

Remark 4.2 Even if we are not able to get an analytical expression of the optimal coupon
C∗, we obtain that it has to satisfy constraints (21) and (26). We numerically determine
the optimal coupon and verify that these constraints are satisfied for our case studies.

In the case δ = 0 the endogenous failure level is given in closed form by equation (32).
Then we study the optimal capital structure by maximizing the application

C �→ v(V, VB(C; τ1, τ2; 0), C).

Proposition 4.3 The function C �→ v(V, VB(C; τ1, τ2; 0), C) is a concave function achiev-

ing a maximum at point C∗ as solution of ∂v(V,VB(C;τ1,τ2;0),C)
∂C = 0, under the condition5

τ1 <
2
3 + τ2

3 . Thus an optimal capital structure exists and is unique.

Finally the optimal failure level V ∗
B(V ; τ1, τ2; δ) is obtained by plugging the optimal

coupon C∗ into the endogenous failure level given by Theorem 3.5, that is VB(C∗(V ); τ1, τ2; δ).

In order to study the asymmetry effect on these variables we consider θ := τ2
τ1
, θ ≥ 0,

measuring the vertical degree of asymmetry of the corporate tax schedule.

Notice that θ = 1 represents a non asymmetric case: moreover, considering also δ = 0
will lead exactly to results obtained by Leland [17]. The case δ �= 0, θ = 1 is the one noted
in Remark (33), which is comparable with our analysis in [4], where a detailed analysis

5This conditions is always satisfied with our parameter values, since we always consider τ1 < 2
3 .
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Figure 2: Optimal failure level as function of δ, θ. This plot shows the behavior of the optimal failure

level VB
∗ as function of dividend δ and degree of asymmetry θ. The switching barrier VS is exogenous

and parameters values are: σ = 0.2, r = 0.06, τ1 = 0.35,α = 0.5, VS = 90, V = 100. Recall that θ := τ2
τ1

represents the degree of asymmetry in tax benefits.

about the influence of payouts on optimal capital structure decisions is conducted from
both a qualitative and quantitative point of view. Asymmetry increases as θ goes to 0,
achieving its maximum for θ = 0 (maximum asymmetry case). This scenario represents
a switching from a tax level τ1 to zero-tax benefits: this happens when tax benefits are
completely lost for V < VS .

First notice that tax asymmetry raises the optimal failure level V ∗
B(V ; τ1, τ2; δ): for any

value of δ (and for values of VS < V ), as the tax asymmetry increases then the optimal
failure level V ∗

B(V ; τ1, τ2; δ) increases. The opposite happens when considering the payout
influence, given a degree of asymmetry θ. For any fixed value of θ, the optimal failure
level decreases as δ increases from 0 to 0.04. Results are in Table 1, while Figure 2 shows
the behavior of the optimal failure level as function of both δ, θ. From [4] we know that
only introducing payouts will bring to a lower optimal failure level when the corporate tax
rate is unique and constant through time. This more general scenario, where both payouts
and asymmetry in tax benefits are in force, shows through our numerical analysis that the
final joint effect can be quantitatively significant. Consider as extreme cases θ = 1, δ = 0
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and θ = 0, δ = 0.04: passing from no asymmetry and no payouts, to a payout rate equal
to a 4% of current assets value, brings to a reduction in optimal failure level of around
8.8%, passing from 52.82 to 44.02.
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Figure 3: Optimal Leverage as function of δ, θ. This plot shows the behavior of optimal leverage

ratio L∗ as function of dividend δ and degree of asymmetry θ. The switching barrier VS is exogenous

and parameters values are: σ = 0.2, r = 0.06, τ1 = 0.35,α = 0.5, VS = 90, V = 100. Recall that θ := τ2
τ1

represents the degree of asymmetry in tax benefits.

Further optimal leverage ratio is strongly affected by asymmetry in the corporate tax
schedule as shown in Figure 3. In order to isolate the asymmetry effect, consider Table 1
in case δ = 0: results are due only to the switching in tax benefits and bring to a reduction
in optimal debt, optimal total value of the firm and also optimal leverage ratios.

Extending the analysis by considering the general case in which both δ > 0, 0 ≤ θ < 1
shows that for each level of payouts, increasing the degree of asymmetry reduces optimal
leverage and this effect is stronger when the the payout rate is higher. Consider the last
column of Table 1: comparing the two extreme cases θ = 1 and θ = 0, the difference in
optimal leverage ratio is 4.5% when δ = 0, 6% when δ = 0.01 and 12% when δ = 0.04.
Tax asymmetry has a negative effect on optimal leverage ratios L∗: for any value of δ
considered, L∗ decrease as the degree of asymmetry increases, that is as θ → 0. The
decrease of the optimal leverage is quantitatively more significant as the payout rate rises.
Analogously, as observed in [3, 4] the capital structure of a firm is strongly affected by
payouts. From [3, 4] we know that introducing payouts in a structural model with a unique
corporate tax rate τ has the effect of reducing optimal leverage ratios. Table 1 allows us to
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confirm this result also when the tax schedule is asymmetric. We consider as extreme cases
to compare δ = 0 and δ = 0.04. Considering a unique corporate tax rate means θ = 1: in
such a case we know from [3, 4] that the difference in optimal leverage ratio is quite 6%.
We now introduce convexity and look at θ = 0.8, θ = 0.4, θ = 0: this difference in optimal
leverage becomes respectively 7%, 11% and 13%. A higher payout will lower the optimal
total value of the firm v∗, since a lower debt issuance can be supported because less assets
remain in the firm. As a consequence, this will bring down leverage ratios. But also the
asymmetry effect is to reduce leverage ratios, since the potential loss in tax benefits due
to the existence of the switching barrier makes debt less attractive: considering a scenario
where both effects exist, will bring to a strong reduction in predicted optimal total value
of the firm, optimal debt and optimal leverage ratios. We now consider Leland [17] case,
i.e. θ = 1, δ = 0, and compare it with a scenario in which both payouts and asymmetry
exists, meaning θ = 0, δ = 0.04 in order to capture the joint effect of these two realistic
generalizations. Observe that passing from no asymmetry and no payouts, to a payout
rate equal to a 4% of current assets value V , brings to a dramatic reduction in optimal
leverage: in such a case, this joint influence of δ, θ brings to an optimal leverage ratio of
57.36%, with a significant reduction of 17% from Leland result of a 75%-leveraged firm,
leading to a value which is more in line with historical norms6. This strong impact on
optimal leverage ratios suggests that asymmetry and payouts seem to be important factors
involved in the determinacy of corporate capital structure decisions.

Figure 4 shows the behavior of optimal coupon C∗ as function of δ and θ. Observe
that for each degree of convexity 0 ≤ θ < 1 the optimal coupon is decreasing w.r.t. δ,
extending results in [3, 4] to the case of asymmetric corporate tax schedule. What we
stress now in this general framework where both payouts and an asymmetric tax scheme
interact, is that this negative effect of payouts on C∗ is greater as the asymmetry in tax
benefits increases, i.e. as θ → 0. From Figure 4 we can also observe that the optimal
coupon C∗ decreases as θ → 0 for each level of the payout rate δ. The economic reason is
that introducing asymmetry in tax benefits makes debt less attractive for the firm, thus
leading to a not negligible reduction in the optimal coupon level choice. The decrease in
C∗ due to the asymmetric tax benefits scheme will be higher as payouts increase, as we can
note considering the slope in Figure 4 w.r.t. θ for each level of δ. Payouts and asymmetry
in tax benefits influence each other by increasing the magnitude of their own effects on
the optimal coupon, bringing to a joint influence on optimal coupon which is quantitative
significant. To analyze the interaction between δ and θ on C∗ consider for example three
alternative scenarios θ = 1, 0.4, 0: when δ goes from 0 to 0.04, the optimal coupon reduces
from 6.5% to 6.23% in case θ = 1, from 6.03% to 5.2% in case θ = 0.4, from 5.78% to
4.32% in case θ = 0. The reduction in C∗ due to an increased payout is considerably higher
as asymmetry in tax benefits increases: when tax benefits are completely lost under VS

the reduction of optimal coupon is more than 5 times the reduction in case of a constant
τ . Our analysis in this paper confirms our results in [3, 4] and moreover extend their

6Leland [17] in his Section D observes that a leverage of 52% is quite in line with historical norms.
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δ = 0
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

0 5.784 84.149 87.389 35.519 56.435 119.668 70.318 %
0.1 5.844 85.136 86.467 35.253 56.142 120.389 70.717 %
0.2 5.906 86.163 85.489 34.975 55.837 121.138 71.128 %
0.3 5.971 87.234 84.454 34.683 55.518 121.918 71.552 %
0.4 6.038 88.352 83.357 34.378 55.186 122.730 71.989 %
0.5 6.107 89.519 82.195 34.057 54.838 123.576 72.441 %
0.6 6.179 90.741 80.965 33.719 54.474 124.461 72.908 %
0.7 6.254 92.022 79.660 33.363 54.092 125.386 73.391 %
0.8 6.333 93.367 78.278 32.987 53.691 126.355 73.893 %
0.9 6.415 94.783 76.812 32.590 53.267 127.372 74.414 %
1.0 6.501 96.274 75.256 32.167 52.820 128.442 74.956 %

δ = 0.01
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

0 5.539 79.524 96.489 38.047 53.868 117.571 67.639 %
0.1 5.613 80.658 95.868 37.683 53.604 118.341 68.157 %
0.2 5.689 81.838 95.167 37.306 53.325 119.144 68.688 %
0.3 5.768 83.069 94.384 36.914 53.030 119.983 69.234 %
0.4 5.850 84.355 93.515 36.506 52.720 120.861 69.795 %
0.5 5.935 85.701 92.554 36.080 52.391 121.781 70.373 %
0.6 6.024 87.112 91.497 35.634 52.043 122.746 70.969 %
0.7 6.116 88.594 90.336 35.166 51.673 123.760 71.585 %
0.8 6.212 90.155 89.067 34.674 51.281 124.829 72.223 %
0.9 6.313 91.802 87.680 34.154 50.865 125.957 72.884 %
1.0 6.419 93.545 86.169 33.604 50.420 127.149 73.571 %

δ = 0.04
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

0 4.637 63.933 125.230 47.526 44.023 111.459 57.360 %
0.1 4.772 65.630 127.059 46.690 44.048 112.321 58.431 %
0.2 4.911 67.390 128.708 45.844 44.043 113.234 59.514 %
0.3 5.054 69.220 130.171 44.981 44.007 114.201 60.612 %
0.4 5.203 71.129 131.439 44.100 43.942 115.229 61.729 %
0.5 5.357 73.129 132.503 43.194 43.845 116.323 62.867 %
0.6 5.517 75.230 133.352 42.261 43.716 117.491 64.031 %
0.7 5.684 77.447 133.974 41.292 43.553 118.739 65.224 %
0.8 5.860 79.794 134.354 40.284 43.356 120.078 66.452 %
0.9 6.044 82.291 134.477 39.227 43.121 121.518 67.719 %
1 6.239 84.957 134.326 38.114 42.847 123.072 69.031 %

Table 1: Effect of payouts and asymmetry in the tax schedule on all financial variables at

their optimal level when the switching barrier VS is exogenous. Base case parameter values:
V0 = 100, σ = 0.2, τ1 = 0.35, r = 6%, α = 0.5. This table reports results considering an exogenous
barrier VS = 90 and three different cases: δ = 0, δ = 0.01, δ = 0.04. Remember that asymmetry increases
(decreases) as θ decreases (increases). The last row of the table shows the case θ = 1 for each level of δ:
the tax rate is unique (no asymmetry). This row represents the model presented in [3, 4]. In case δ = 0 it
represents Leland [17] results. Leverage is in percentage (%), spreads in basis points (bps).
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Figure 4: Optimal Coupon as function of δ, θ. This plot shows the behavior of the optimal coupon

C∗ as function of payout rate δ and degree of asymmetry θ. The switching barrier VS is exogenous and

parameters values are: σ = 0.2, r = 0.05, τ1 = 0.35,α = 0.5, VS = 90, V = 100. Recall that θ := τ2
τ1

represents the degree of asymmetry in tax benefits.

validity under asymmetry in tax benefits. Adding to this, the contribution of the present
work is also to show how optimal capital structure is much more affected by payouts when
considering a more realistic framework allowing also for asymmetry in the corporate tax
schedule.

As it concerns optimal equity value and optimal spreads we note that the joint effect of
asymmetry and payouts raises both optimal equity and optimal spreads. We can explain
this as a consequence of two main insights arising from the model.

i) First, when payouts are introduced, less assets remain in the firm, thus making
possible only a lower optimal debt issuance. Adding to this, asymmetry makes debt
less attractive, due to a possible switching to lower tax benefits, thus a potential loss of
value has to be taken into account. As a consequence, the joint effect is to reduce both
the optimal coupon C∗ and the optimal amount7 of debt D∗.Equity value increases at
its optimal level due to the joint effect of δ, θ on both C∗, V ∗

B: recall that the optimal
(endogenous) failure level increases as the degree of asymmetry is higher.

7As noted in [17] for δ = 0, and also supported by results in [4] for δ > 0, the firm will always
chose a coupon level which is lower than that one corresponding to the maximum capacity of debt. As
a consequence, a lower coupon means a lower debt value. Moreover, as in [17] we are assuming the face
value of debt being constant.
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ii) Secondly, we can also think about the joint effect of payouts and asymmetry in
tax benefits as something which contributes to increase the average riskiness of the firm
and moreover makes bankruptcy more likely. This is why, despite lower optimal leverage
ratios, optimal spreads increase, in line with [17] suggestions. When θ → 0, the potential
loss in tax benefits due to passing from τ1 to τ2 increases.

Optimal debt will be lower, equity higher but the first effect will always dominate the
second one, bringing to lower optimal total values of the firm. This is because payouts
and corporate tax asymmetry increase the likelihood of default. Debt holders must be
compensated, this is why optimal spreads predicted in this model are considerably higher
w.r.t. the case θ = 1, δ = 0, capturing all these economic insights.

Table 2 reports the qualitative behavior of financial variables at their optimal level
when the exogenous switching barrier VS and the payout rate δ are fixed, while the ver-
tical degree of asymmetry increases, i.e. θ → 0, aiming at isolating and capturing only
this asymmetry influence on optimal capital structure decisions made by the firm in a
comparative static analysis.

Fin. Var. C∗ D∗ R∗ − r E∗ V ∗
B v∗ L∗

θ → 0 < 0 < 0 > 0 > 0 > 0 < 0 < 0

Table 2: Effect of a change in the vertical degree of asymmetry of the corporate tax schedule on

financial variables at optimal leverage ratio as θ → 0 when VS is exogenous. The table shows
for each financial variable the effect of increasing asymmetry in the corporate tax schedule, i.e. for θ → 0,
given the payout rate δ and the exogenous switching barrier VS . We report the sign of change in each
variable as the degree of asymmetry increases.

Concerning the asymmetry of the corporate tax schedule a similar analysis could be
done analyzing how optimal capital structure decisions are affected when the exogenous
switching barrier VS moves, meaning when the horizontal degree of asymmetry changes,
fixing both θ and the payout rate δ. Numerical results show that different values of the
barrier can significantly modify optimal choices, meaning the corporate tax schedule is
an important determinant in leverage decisions. Table 3 shows numerical result for this
case, Table 4 reports only the qualitative behavior of all financial variables at their optimal
level as VS increases. The switching barrier being exogenously given, results show in which
direction a higher VS will move optimal capital structure decisions.

A possible explanation of what we observe in Table 4 could be that, coeteris paribus,
as VS rises (decreases), the horizontal degree of asymmetry changes. As extreme case, our
framework tends to a limit-model in which the tax sheltering value of interest payments is
constant and equal to the lower τ2C (higher τ1C). And this represents the limit-model for
each degree of asymmetry θ and payout level δ. A reduction (increase) in the corporate tax
rate produces exactly the effects shown by our results: each variable at its own optimal
level decreases (increases), except equity value which instead rises (reduces). And this
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δ = 0, θ = 0.8
VS C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

85 6.371 93.831 78.983 32.818 53.810 126.649 74.087 %
86 6.363 93.736 78.845 32.855 53.787 126.591 74.046 %
87 6.356 93.642 78.705 32.891 53.763 126.533 74.006 %
88 6.348 93.549 78.564 32.925 53.739 126.474 73.967 %
89 6.340 93.458 78.422 32.957 53.715 126.415 73.930 %
90 6.333 93.367 78.278 32.987 53.691 126.355 73.893 %
91 6.325 93.278 78.132 33.017 53.665 126.295 73.857 %
92 6.318 93.189 77.985 33.044 53.640 126.234 73.823 %
93 6.311 93.102 77.837 33.070 53.614 126.172 73.789 %
94 6.303 93.015 77.686 33.095 53.587 126.110 73.757 %
95 6.296 92.929 77.534 33.119 53.560 126.047 73.725 %

δ = 0.01, θ = 0.4
VS C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

85 5.971 85.731 96.453 35.908 53.168 121.640 70.480 %
86 5.946 85.448 95.868 36.037 53.080 121.485 70.336 %
87 5.922 85.168 95.281 36.161 52.992 121.330 70.196 %
88 5.898 84.894 94.694 36.280 52.902 121.174 70.059 %
89 5.874 84.622 94.106 36.395 52.812 121.018 69.926 %
90 5.850 84.355 93.515 36.506 52.720 120.861 69.795 %
91 5.827 84.091 92.923 36.613 52.626 120.704 69.667 %
92 5.804 83.830 92.328 36.716 52.531 120.546 69.542 %
93 5.781 83.572 91.732 36.816 52.435 120.388 69.419 %
94 5.758 83.316 91.132 36.912 52.338 120.228 69.299 %
95 5.736 83.063 90.530 37.005 52.238 120.068 69.179 %

δ = 0.04, θ = 0
VS C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗

85 4.848 66.084 133.629 46.254 45.218 112.339 58.826 %
86 4.804 65.635 131.884 46.525 44.976 112.160 58.519 %
87 4.760 65.196 130.174 46.787 44.737 111.982 58.220 %
88 4.718 64.766 128.497 47.040 44.498 111.806 57.927 %
89 4.677 64.346 126.850 47.286 44.260 111.632 57.641 %
90 4.637 63.933 125.230 47.526 44.023 111.459 57.360 %
91 4.597 63.528 123.636 47.759 43.786 111.287 57.085 %
92 4.558 63.129 122.065 47.987 43.549 111.116 56.814 %
93 4.520 62.736 120.515 48.210 43.312 110.946 56.546 %
94 4.483 62.348 118.985 48.428 43.075 110.776 56.283 %
95 4.446 61.965 117.473 48.643 42.838 110.608 56.022 %

Table 3: Effect of asymmetry in the tax schedule on all financial variables at optimal level.

Base case parameter values: V0 = 100, σ = 0.2, τ1 = 0.35, r = 6%, α = 0.5. This table reports results
considering an exogenous barrier VS varying from 80 to 95 and different scenarios for payouts and degree
of asymmetry θ: δ = 0, θ = 0.8, δ = 0.01, θ = 0.4, δ = 0.04, θ = 0. Leverage is in percentage (%), spreads
in basis points (bps).

result is robust w.r.t. each payout level. The behavior we find in this limit-model is in
line with [17] Table II, where δ = 0: all variables except equity are increasing w.r.t. the
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constant corporate tax rate τ . Moreover, when payouts are introduced in a flat corporate
tax schedule model, results are still in line with [4] Table 5. This behavior of financial
variables holds for each level of payout δ and each vertical degree of asymmetry θ: what is
different among different scenarios is only the magnitude of the effect, obviously depending
on the joint influence. And the joint influence is higher as payouts increase and θ → 0.
Consider as an example a switching barrier of 95: in case δ = 0.04 and θ = 0 the model
predicts a 56% optimal leverage, while in case δ = 0 and θ = 0.8 this optimal ratio is
around 73%. This second case is very close to Leland’s results [17] with constant τ2, and
the difference in leverage is quite negligible, i.e. 2%, while the first case brings to a huge
19%-reduction in leverage ratios.

Fin. Var. C∗ D∗ R∗ − r E∗ V ∗
B v∗ L∗

VS � < 0 < 0 < 0 > 0 < 0 < 0 < 0

Table 4: Effect of a change in the asymmetry of the corporate tax schedule on financial

variables at optimal leverage ratio as VS increases. The table shows for each financial variable the
effect of changing the asymmetry in the corporate tax schedule when the exogenous switching barrier VS

increases. These results are given for a fixed θ and payout rate δ. We report the sign of change in each
variable as VS increases.

4.2 Debt dependent switching barrier

In this section we study optimal capital structure when the switching barrier considered
is increasing with coupon C, being defined as VS := k + 1

aC. We will show not only the
case δ = 0 for which we have closed form solution for the endogenous failure level, but
also numerical results for the general case δ > 0 where a payout rate is considered.

In case δ = 0, we define the optimal capital structure by substituting the endogenous
failure level VB

c(C; τ1, τ2; 0; k, a) obtained in (40) into the total value of the firm v and
then maximizing it w.r.t. C. This will give the optimal coupon C∗, allowing to analyze
optimal leverage and optimal capital structure decisions as reported in Table 5. In the
general case δ > 0 we do not have a closed form for the endogenous failure level, and the
smooth pasting condition is not linear w.r.t. C, since also the switching barrier depends
on C. Thus we numerically analyze the existence of an optimal capital structure and show
in this subsection our results.

The peculiarity of this model is that as the optimal coupon decreases for higher vertical
degree of asymmetry θ → 0, then also the optimal switching barrier V ∗

S decreases, meaning
that also the horizontal degree of asymmetry is changed. From the opposite point of view,
we observe that as θ → 1 the debt dependent switching barrier approaches current firm’s
activities value V : in the limit, for θ = 1, asymmetry disappears, meaning the corporate
tax schedule tends to a flat one.
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δ = 0
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗ VS
∗

0 5.079 76.816 61.192 42.294 50.969 119.110 64.491% 90.474
0.1 5.184 78.286 62.185 41.474 51.086 119.760 65.369% 91.104
0.2 5.296 79.847 63.270 40.608 51.221 120.455 66.288% 91.776
0.3 5.414 81.487 64.399 39.712 51.361 121.199 67.234% 92.484
0.4 5.539 83.219 65.592 38.779 51.511 121.998 68.213% 93.234
0.5 5.673 85.065 66.903 37.795 51.683 122.860 69.238% 94.038
0.6 5.815 87.015 68.275 36.776 51.861 123.791 70.292% 94.890
0.7 5.968 89.102 69.795 35.700 52.066 124.802 71.394% 95.808
0.8 6.133 91.336 71.475 34.568 52.298 125.905 72.544% 96.798
0.9 6.310 93.720 73.283 33.392 52.547 127.112 73.730% 97.860
1.0 6.501 96.274 75.256 32.167 52.820 128.442 74.956 % 99.006

δ = 0.01
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗ VS
∗

0 4.855 72.545 69.236 44.808 48.414 117.353 61.818% 89.130
0.1 4.968 74.100 70.447 43.922 48.542 118.022 62.785% 89.808
0.2 5.088 75.745 71.729 42.993 48.682 118.738 63.792% 90.528
0.3 5.216 77.492 73.102 42.016 48.835 119.508 64.843% 91.296
0.4 5.352 79.342 74.545 40.995 48.998 120.338 65.933% 92.112
0.5 5.498 81.318 76.108 39.917 49.180 121.236 67.075% 92.988
0.6 5.655 83.431 77.804 38.780 49.383 122.211 68.268% 93.930
0.7 5.823 85.683 79.599 37.592 49.598 123.275 69.506% 94.938
0.8 6.006 88.115 81.611 36.326 49.848 124.441 70.808% 96.036
0.9 6.203 90.720 83.755 35.006 50.114 125.726 72.157% 97.218
1.0 6.419 93.545 86.169 33.604 50.420 127.149 73.571% 98.514

δ = 0.04
θ C∗ D∗ R∗ − r E∗ V ∗

B v∗ L∗ VS
∗

0 4.121 58.897 99.700 53.172 39.483 112.068 52.554% 84.726
0.1 4.263 60.709 102.201 52.060 39.714 112.769 53.835% 85.578
0.2 4.416 62.651 104.860 50.877 39.964 113.528 55.185% 86.496
0.3 4.581 64.732 107.682 49.620 40.233 114.352 56.608% 87.486
0.4 4.758 66.955 110.622 48.296 40.511 115.252 58.095% 88.548
0.5 4.951 69.361 113.804 46.877 40.818 116.238 59.672% 89.706
0.6 5.161 71.959 117.210 45.364 41.148 117.323 61.334% 90.966
0.7 5.391 74.782 120.897 43.744 41.510 118.526 63.093% 92.346
0.8 5.644 77.858 124.910 42.008 41.905 119.866 64.954% 93.864
0.9 5.925 81.235 129.362 40.135 42.349 121.370 66.932% 95.550
1.0 6.239 84.957 134.326 38.114 42.847 123.072 69.031% 97.434

Table 5: Effect of payouts and asymmetry in the tax schedule on all financial variables at

their optimal level when the switching barrier VS is debt dependent. Base case parameter values:
V0 = 100, σ = 0.2, τ1 = 0.35, r = 6%, α = 0.5, k = 60, a = 1/6. This table reports results considering an
exogenous barrier VS = 90 and three different cases: δ = 0, δ = 0.01, δ = 0.04. Remember that asymmetry
increases (decreases) as θ decreases (increases). The last row of the table shows the case θ = 1 for each
level of δ: the tax rate is unique (no asymmetry). This row represents the model presented in [3, 4]. In
case δ = 0 it represents Leland [17] results.
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If compared to the case considered in previous subsection, where VS is exogenously
given, this more realistic framework allows to analyze the joint effect of a change in both
the vertical and horizontal degrees of asymmetry of the corporate tax schedule. As θ
moves, the optimal coupon changes, and this in turns modifies the optimal switching
barrier VS

∗. A change in the vertical degree of asymmetry will affect optimal capital
structure decisions, both directly and indirectly, in this last case by changing the range of
firm’s values for which tax benefits depend alternatively on τ1, τ2.

Fin. Var. C∗ D∗ R∗ − r E∗ V ∗
B v∗ L∗

θ → 0 < 0 < 0 < 0 > 0 < 0 < 0 < 0

Table 6: Effect of a change in the degree of asymmetry of the corporate tax schedule on

financial variables at optimal leverage ratio as θ → 0 when VS is debt dependent. The table
shows for each financial variable the effect of changing the degree of asymmetry in the corporate tax
schedule as θ → 0 and the switching barrier is debt dependent. Results hold for each level of the payout
rate δ ≥ 0. We report the sign of change in each variable as θ → 0.

When the switching barrier depends on the amount of debt issued, a higher profit
is needed in order to have higher coupon paymentsfully deductible. Recall that we are
assuming EBIT has to cover coupon payments in order to benefit from tax savings. In this
even simplified but more realistic framework, greater debt has a greater likelihood of losing
its tax benefits, and optimal leverage drops significantly. This reduction is quantitative
higher than what we found in case VS being exogenously given, for each level of payout.
The decrease in optimal leverage is a 19%-reduction in case δ = 0.04, much more than
12% in case of VS fixed. Leverage can reach a 52% in line with historical norms (see [17]).
Table 6 shows that optimal credit spreads decreases in this scenario, reflecting the lesser
leverage, in line with suggestions in [17]. In this simplified framework we model EBIT
as a linear function of V and this allows to show that operational costs could be another
variable to analyze in order to explain observed leverage ratios. As k and/or a rise, this
will affect the optimal amount of debt issued, since a higher profit is necessary to fully
benefit from coupon deductibility. An increase in k and/or a will drop predicted leverage.

The economic insight we want to give is that this simple model is flexible to analyze
the impact of many factors on optimal capital structure decisions, providing a framework
to develop in the direction of a more empirical research, allowing to explain differences in
observed leverages among firms facing different tax-code provisions. What we find is in
line with what [14] observe: when the corporate tax rate is higher, observed leverage ratios
are higher. Nevertheless our model also analyzes how a change in tax-code provisions can
affect a single firm’s corporate decisions. The general result is that asymmetry always
lowers optimal debt, optimal leverage ratios and the maximum total value of the firm
since less tax savings (actual and/or potential) are available, meaning there is always a
loss of potential value for the firm8.

8As in Leland [17] this model does not consider tax loss carryforwards which could be an interesting
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5 Conclusions

Corporate capital structure is a complex decision since it is affected by a large number
of factors. We analyze a structural model with endogenous bankruptcy starting from
Leland framework [17] and extending it in two main directions. We consider a more
general model in which we introduce a payout rate δ and an asymmetric corporate tax
schedule. Rather than considering a flat tax scheme, i.e. a unique corporate tax rate, we
analyze asymmetric tax code provisions allowing for a switching in corporate tax rates.
The switching from a corporate tax rate to the other is determined by the firm value
crossing i) an exogenous barrier, ii) a debt dependent switching barrier (allowing to model
EBIT). We investigate the joint effects of this corporate tax scheme and payouts on optimal
default level and optimal capital structure. We propose alternative ways to measure the
degree of asymmetry of the corporate tax schedule: i) the degree of vertical asymmetry,
related to the gap between tax rates; ii) the degree of horizontal asymmetry, related to
the range of firm’s values above and/or below the switching barrier. We derive the value
of the tax benefit claim in this framework, following Leland [17] about how to model tax
benefits of debt. Asymmetry in corporate tax code provisions becomes also asymmetry
in tax benefits of debt. Optimal capital structure in analyzed through the derivation of
the endogenous failure level chosen by equity holders, and optimal coupon (maximizing
total firm’s value). Our results support [14], [27] suggestion that tax-code provisions
should be considered when studying corporate financing decisions. We observe that all
financial variables at their optimal level are affected by this asymmetric tax schedule, if
compared to Leland [17] results with a flat tax-code (a unique constant corporate tax rate,
meaning no asymmetry). Moreover, we analyze the joint effect on optimal capital structure
of payouts and asymmetry in tax benefits. Result show that payouts and asymmetry
always lowers optimal debt, optimal leverage ratios and the maximum total value of the
firm. This because less assets remain in the firm (due to payouts), in line with [3, 4],
and also less tax savings (actual and/or potential) are available for the firm, meaning
a loss of potential value for the firm. Leverage ratios are significantly affected from a
quantitative point of view by both factors: they drop down from 75% in Leland case to
a 52% in case of a 4% payout rate and maximum asymmetry case (when we consider
the deb dependent switching barrier). These are two extreme cases, but we find a huge
impact on leverage ratios for most cases between these two scenarios. Our analysis in
this paper confirms our results in [4] and shows how optimal capital structure is much
more affected by the introduction of a payout rate δ > 0 inside a more realistic framework
allowing for asymmetry in tax-code provisions. These two factors influence each other
with a resulting quantitative huge joint effect on optimal debt and leverage. The degree of
vertical asymmetry in the corporate tax schedule (θ := τ2

τ1
) is a parameter imposed to the

firm by external authorities. Moreover, this parameter can vary strongly depending on the
sector in which the firm is operating in, and can also vary in time, for example to encourage

point to develop, since they will introduce path dependence, making the model even more realistic.
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investments. Thus, our analysis provides a way to measure the economic influence (from
both a qualitative and quantitative point of view) of such an important and external factor
on internal and endogenous optimal choices made by the firm. Moreover, we also analyze
effects on corporate decisions produced by its joint influence with payout rates, which are
supposed to be constant (but we know that they should be even partly modified by the
firm). We think that this framework should be a flexible way to follow in order to better
explain differences in observed leverage ratios across firms belonging to different activity
sectors, facing different tax-code provisions, as an idea to apply for a future more empirical
research.

6 Appendix A

The following result contains the formula for the Laplace transform of a constant level
hitting time by a Brownian motion with drift ([15] p. 196-197):

Proposition 6.1 Let Xt = µt+ σWt and Tb = inf{s : Xs = b}, then for all γ > 0,

E[e−γTb ] = exp

�
µb

σ2
− |b|

σ

�
µ2

σ2
+ 2γ

�
.

The computation of the Laplace transform of double passage times, TVS ∧ TVB is con-
tained in the following result ([15] p. 99-100).

Proposition 6.2 Let Tb = inf{t, Wt = b}. Then if b < 0 < c,

E0[e
−γTb1{Tb<Tc}] =

sinh(c
√
2γ)

sinh((c− b)
√
2γ)

; E0[e
−γTc1{Tc<Tb}] =

sinh(−b
√
2γ)

sinh((c− b)
√
2γ)

.

We now turn to compute such expectation for a geometric Brownian motion with drift.

Proposition 6.3 Let T = inf{t, log V + µt+ σWt = log VB} and TS = inf{t, log V + µt+
σWt = log VS}. Then if VB < V < VS ,

EV [e
−rT1{T<TS}] =

�
VB

V

�µ/σ2

sinh(log[(VS/V )
√

2r+µ2/σ2

σ ])

sinh(log[(VS/VB)
√

2r+µ2/σ2

σ ])
noted as g(V, VS , VB),

EV [e
−rTS1{TS<T}] =

�
VS

V

�µ/σ2

sinh(log[(V/VB)
√

2r+µ2/σ2

σ ])

sinh(log[(VS/VB)
√

2r+µ2/σ2

σ ])
noted as f(V, VS , VB).
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Proof It follows by Proposition 6.2 using a change of probability measure. The process
t �→ W̃t = µt+σWt is a Q Brownian motion with Q = LP, with the P− martingale defined
as

dLt = −Lt
µ

σ
dWt.

Equivalently, P = Z.Q, with dZt = Zt
µ
σdW̃t. Remark that Zt = exp(µσW̃t − 1

2(
µ
σ )

2t). Thus

EV [e−rT1{T<TS}] = EQ
0 [ZT e−rT1{T<TS}] with now

T = inf{t, W̃t = log(
VB

V
)1/σ}.

So we get

EV [e
−rT1{T<TS}] = E0[exp(

µ

σ
W̃T − 1

2
(
µ

σ
)2T − rT )1{T<TS}].

We can use the fact that, by continuity, W̃T = log(VB
V )1/σ, so

EV [e
−rT1{T<TS}] = (

VB

V
)µ/σ

2E0[exp(−(
1

2
(
µ

σ
)2 + r)T )1{T<TS}].

Finally, we use Proposition 6.2 with γ = 1
2(

µ
σ )

2 + r, b = log(VB
V )1/σ, c = log(VS

V )1/σ to
conclude:

EV [e
−rT1{T<TS}] = (

VB

V
)µ/σ

2
sinh((log VS

V )1/σ
�

(µσ )
2 + 2r)

sinh((log VS
VB

)1/σ
�

(µσ )
2 + 2r)

.

The second proof is quite similar. •

Corollary 6.4 Using sinh ◦ log(xβ) = 1
2(x

β − x−β), we get:

EV [e
−rT1{T<TS}] =

VB
λ2(VS)

λ2−λ1V −λ2 − VB
λ2V −λ1

(VS)λ2−λ1 − V λ2−λ1
B

(41)

EV [e
−rTS1{TS<T}] =

(VS)
λ2(VB)

λ2−λ1V −λ2 − (VS)
λ2V −λ1

VB
λ2−λ1 − (VS)

λ2−λ1
(42)

with

λ1 =
µ−

�
µ2 + 2rσ2

σ2
, λ2 =

µ+
�
µ2 + 2rσ2

σ2
.

and

µ = r − δ − 1

2
σ2.

33



7 Appendix B

Proof (of Proposition 2.2) Using integral representation of tax benefits we get:

- if V ≥ VS

F (V ) = EV

�
e−rTVSF (VTVS

) +

� TVS

0
e−rsτ1C1(VS ,∞)(Vs)ds

�

- if VB ≤ V < VS :

F (V ) = EV

�
e−rTVS

∧TVBF (VTVS
∧TVB

) +

� TVS
∧TVB

0
e−rsτ2C1(VB ,VS)(Vs)ds

�

=
τ2C

r
+ (F (VS)−

τ2C

r
)EV

�
e−rTVS1TVS

≤TVB

�
+

+ (F (VB)−
τ2C

r
)EV

�
e−rTVB1TVB

<TVS

�

From boundary condition F (VB) = 0 we get

F (V ) =
τ2C

r

�
1− EV

�
e−rTVB1TVB

<TVS

��
+ (F (VS)−

τ2C

r
)EV

�
e−rTVS1TVS

≤TVB

�

Therefore we obtain

F (V ) =

�
τ1C

r
+

�
F (VS)−

τ1C

r

��
VS

V

�λ2
�
1(VS ,∞)

+

�
τ2C

r
+

(F (VS)− τ2C
r )V λ2

S + τ2C
r V λ2

B

V λ2−λ1
S − V λ2−λ1

B

V −λ1 −
V −λ1
B (F (VS)− τ2C

r ) + V −λ1
S

τ2C
r

V λ2−λ1
S − V λ2−λ1

B

(VBVS)
λ2V −λ2

�
1(VB ,VS)

Further F is a C1 function, thus imposing continuity of the derivative at point VS yields:

−λ2V
−1
S (F (VS)−

τ1C

r
) = −λ1V

−1
S

(F (VS)− τ2C
r )V λ2−λ1

S

V λ2−λ1
S − V λ2−λ1

B

+ λ1V
−1
S

− τ2C
r V λ2

B V −λ1
S

V λ2−λ1
S − V λ2−λ1

B

+λ2V
−1
S

(F (VS)− τ2C
r )V λ2−λ1

B

V λ2−λ1
S − V λ2−λ1

B

− λ2V
−1
S

− τ2C
r V −λ1

S V λ2
B

V λ2−λ1
S − V λ2−λ1

B

.

Finally

F (VS) =
C(λ2τ1 − λ1τ2)

r(λ2 − λ1)
+

λ2C(τ2 − τ1)

r(λ2 − λ1)
V λ1−λ2
S V λ2−λ1

B − τ2C

r
V −λ2
S V λ2

B .

•
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Proof (of Proposition 3.1) Condition (21) can be written as

f(VB) > g(VB)

with f(VB) = −A1V
−λ1
B and g(VB) = VB− C

r (1−τ2) and we study the problem for VB ≥ 0.

Observe that:

• f(0) = 0, f(VB) ≤ 0 , ∀VB ≥ 0 since A1 > 0 for τ2 < τ1,

• f �(VB) = λ1A1V
−λ1−1
B < 0,

• g(0) = −C
r (1− τ2) < 0,

• g� = 1.

Since f(VB) is negative, f is decreasing function of VB, g is an increasing function of VB

and g(0) < f(0) = 0, we can state that a solution V̄B of f(V̄B) = g(V̄B) exists and it is
unique and V̄B < C

r (1− τ2), since g(Cr (1− τ2)) = 0.

Further we obtain a lower bound for V̄B, by studying f as function of δ. As ∂f(VB ,δ)
∂δ =

∂f(VB ,δ)
∂λ1

∂λ1
∂δ and

∂f(VB, δ)

∂λ1
= −

�
1

λ2 − λ1
+ log

VS

VB

�
f(VB, δ) < 0 ;

∂λ1

∂δ
=

λ1�
µ2 + 2rσ2

< 0,

thus δ �→ f(VB, δ) is increasing. This implies that the intercept V̄B of f and g is increasing,
so that V̄B > V̄B(0), where we denoted by V̄B(0) the bound resulting from condition (21) in

the special case δ = 0. In fact in this case (21) solves explicitly giving V̄B(0) =
1

1+A1

C(1−τ2)
r

(see also Remark 3.2). •

Proof (of Proposition 3.3) Under constraint (21) the option to default has positive
value. In order to prove that equity be is increasing, we split the equity function (20) as
the sum of two terms

f(V,C) = V − (1− τ2)
C

r
+A1V

−λ1 , (43)

and

g(V, VB, C) =

�
−A1V

−λ1
B +

C

r
(1− τ2)− VB

��
V

VB

�−λ2

. (44)

Observe that:
i) the application V �→ f(V,C) is increasing and convex for V ≥ VB;
ii) the application V �→ g(V, VB, C) is decreasing and convex for V ≥ VB.

As a consequence, in order to ensure V �→ E(V, VB, C) to be increasing for V ≥ VB, we
need that

∂f(V,C)

∂V
|V=VB ≥ −∂g(V, VB, C)

∂V
|V=VB (45)
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which leads to constraint (26). In such a case, by i) and ii), V �→ E(V, VB, C) is also
convex. •

Proof (of Theorem 3.5) Since the optimal failure level, if it exists, has to be lower
than the switching barrier VS , we study the existence and uniqueness of the solution
VB(C; τ1, τ2; δ) of Equation (31) in [0, VS ]. Imposing the smooth pasting condition gives
that VB(C; τ1, τ2; δ) has to satisfy

f(VB) = g(VB) (46)

where f(VB) = (1+λ2)VB and g(VB) = A+BV −λ1
B , with the constants A and B given by

A =
λ2C

r
(1− τ2) (47)

B = V λ1
S

λ2C

r
(τ2 − τ1). (48)

Observe that f(VB) is a linear and increasing function of VB since λ2 > 0, going from 0 to
(1 + λ2)VS in [0, VS ]. On the other side g(VB) is decreasing as g�(VB) = −λ1BV −λ1

B < 0

since λ1 < 0 and B < 0 for τ2 < τ1. Observe that g(VS) =
λ2C(1−τ1)

r .

Therefore there exists a solution to (46) if and only if (1+λ2)VS > λ2C(1−τ1)
r , or equivalently

VS > λ2C(1−τ1)
r(1+λ2)

.

Similarly a solution VB(C; τ1, τ2; δ) exists and is unique in case τ2 > τ1. •

Proof (of Proposition 3.8) Compute

∂VB(C; τ1, τ2; 0)

∂τ2
= −λ2CVS (rVS(1 + λ2)− Cλ2(1− τ1))

(−rVS(1 + λ2)− Cλ2(τ1 − τ2))
2 (49)

= −
2CVS

�
VS(σ2 + 2r) + 2C(τ1 − 1)

�

(VS(σ2 + 2r) + 2C(τ1 − τ2))
2 , (50)

then, by condition (35), it follows that ∂VB(C;τ1,τ2;0)
∂τ2

< 0. This proves both the monotonic-
ity of τ2 �→ VB(C; τ1, τ2; 0) and the inequality VB(C; τ1, 0; 0) > VB(C; τ1, τ2; 0). •

Proof (of Proposition 3.10) Consider Equation (32); the derivative of this endoge-
nous failure level VB(C; τ1, τ2; 0) with respect to VS is:

∂VB(C; τ1, τ2; 0)

∂VS
=

4C2(1− τ2)(τ1 − τ2)

(VS(σ2 + 2r) + 2C(τ1 − τ2))2
.

•

Proof (of Proposition 3.11) i) It is sufficient to consider:

∂VB
c(C; τ1, τ2; 0; k, a)

∂k
=

4C2a2(τ2 − 1)(τ2 − τ1)

[(ak + C)(σ2 + 2r) + 2aC(τ1 − τ2)]
2 > 0
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∂2VB
c(C; τ1, τ2; 0; k, a)

∂k2
=

8C2a3(1− τ2)(τ2 − τ1)(σ2 + 2r)

[(ak + C)(σ2 + 2r) + 2aC(τ1 − τ2)]
3 < 0.

ii) Evaluating the first and second derivative of the failure level w.r.t. a:

∂VB
c(C; τ1, τ2; 0; k, a)

∂a
=

4C3(τ2 − 1)(τ1 − τ2)

[(ak + C)(σ2 + 2r) + 2aC(τ1 − τ2)]
2 < 0,

∂2VB
c(C; τ1, τ2; 0; k, a)

∂a2
=

8C3(1− τ2)(τ1 − τ2)(2C(τ1 − τ2) + k(σ2 + 2r))

[(ak + C)(σ2 + 2r) + 2aC(τ1 − τ2)]
3 > 0.

iii) The following holds:

∂VB
c(C; τ1, τ2; 0; k, a)

∂C
=

2(1− τ2)[(σ2 + 2r)(C + ak)2 + 2aC2(τ1 − τ2)]

[(ak + C)(σ2 + 2r) + 2aC(τ1 − τ2)]
2 > 0,

∂2VB
c(C; τ1, τ2; 0; k, a)

∂C2
=

8a3k2(1− τ2)(σ2 + 2r)(τ2 − τ1)

[(ak + C)(σ2 + 2r) + 2aC(τ1 − τ2)]
3 < 0.

•

Proof (of Proposition 3.12) From Proposition 3.10 when an asymmetric tax benefits
scheme is introduced, the endogenous failure level increases with the switching barrier.
Thus, it is sufficient to compare the two switching barriers, since they are both independent
on firm’s current assets value V . •

Proof (of Proposition 4.1) Solving Equation (31) with respect to C we have:

C(VB; τ1, τ2; δ) =
VBr(1 + λ2)

λ2
�
VS

λ1VB
−λ1(τ2 − τ1) + (1− τ2)

� (51)

In this case, taking the derivative of C with respect to the failure level VB we get:

∂C(VB; τ1, τ2; δ)

∂VB
=

r(1 + λ2)

λ2
.

�
VS

λ1VB
−λ1(τ2 − τ1)(1 + λ1) + (1− τ2)

�
�
VS

λ1VB
−λ1(τ2 − τ1) + (1− τ2)

�2 (52)

Notice that
�
VS

λ1VB
−λ1(τ2 − τ1)(1 + λ1) + 1− τ2

�
is greater than

inf (1− τ2, (τ2 − τ1)(1 + λ1) + (1− τ2))

since VS
λ1VB

−λ1 ∈ [0, 1]. Obviously 1− τ2 > 0, and

(τ2 − τ1)(1 + λ1) + 1− τ2 > 0

since it is a linear decreasing function of λ1, with λ1 < 0. This function decreases from
+∞ to 1− τ1 > 0, as λ1 → −∞ and λ1 → 0 respectively. •
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Proof (of Proposition 4.3) Here we consider the case δ = 0.
From the smooth pasting condition we have:

VB(C; τ1, τ2; 0) =
2CVS(1− τ2)

VS(σ2 + 2r) + (τ1 − τ2)C
.

The application C �→ VB(C; τ1; τ2; 0) is increasing and concave. Substituting this expres-
sion for VB(C; τ1, τ2; 0) and setting λ2 =

2r
σ2 we have that v is the sum of a linear function

of C and the following non linear function of C:

f(C) := −
�
2C(τ1 − τ2)

VS(σ2 + 2r)
VB(C; τ1; τ2; 0) +

τ2C

r
+ αVB(C; τ1; τ2; 0)

��
VB(C; τ1; τ2; 0)

V

� 2r
σ2

.

(53)
We want to prove is that the application C �→ v(VB(C; τ1; τ2; 0)) is a concave function. It
is sufficient to prove that the above function f is concave. It is useful to rewrite Equation
(53) in the following way, studying separately the three terms:

f(C) = − (f1(C) + f2(C) + f3(C))V − 2r
σ2

with

f1(C) =
2(τ1 − τ2)

VS(σ2 + 2r)
CVB(C; τ1; τ2; 0)

2r
σ2+1 (54)

f2(C) =
τ2C

r
VB(C; τ1; τ2; 0)

2r
σ2

f3(C) = αVB(C; τ1; τ2; 0)
2r
σ2+1

Applications C �→ f1(C) and C �→ f2(C) are convex, since:

∂2f1(C)

∂C2
=

2(τ1 − τ2)

VS(σ2 + 2r)

2VB(C; τ1; τ2; 0)
2r
σ2+1(σ2 + 2r)2V 2

S (σ
4 + 3rσ2 + 2r2)

σ4(VS(σ2 + 2r) + (τ1 − τ2)C)2C
> 0(55)

∂2f2(C)

∂C2
=

τ2
r

2VB(C; τ1, τ2; 0)
2r
σ2 rV 2

S (σ
2 + 2r)(σ4 + 4rσ2 + 4r2)

σ4(VS(σ2 + 2r) + (τ1 − τ2)C)2C
> 0. (56)

The application C �→ f3(C) is convex:

∂2f3(C)

∂C2
=

2αVB(C; τ1, τ2; 0)
2r
σ2+1(σ2 + 2r)2(VS(σ2 + 2r) + (τ2 − τ1)C)

σ4(VS(σ2 + 2r) + (τ1 − τ2)C)2C2
> 0

if

VS >
(τ1 − τ2)C

σ2 + 2r
(57)

On the other side by (35) it holds that

VS >
2(1− τ1)C

(σ2 + 2r)
,
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therefore constraint (57) holds if 2−2τ1 > τ1−τ2, which is equivalent to τ1 <
2
3+

τ2
3 . Under

this last condition, constraint (57) is always satisfied for 0 ≤ τ2 ≤ τ1, meaning that f3(C)
is convex ∀τ2 : 0 ≤ τ2 ≤ τ1. Finally the application f(C) : C �→ − (f1(C) + f2(C) + f3(C))
is concave since it is the sum of three concave functions.

•
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Thesis University of Toulouse, http://www.lsp.ups-tlse.fr/Fp/Dorobantu/

[11] DUFFIE D. and SINGLETON K.J. (2003), Credit risk: Pricing, Measurement, and
Management, Princeton : Princeton University Press.

[12] EL KAROUI N. (1981), Les Aspects Probabilistes du Contrôle Stochastique, Lecture
Notes in Mathematics 876, p.73-238, Springer-Verlag, Berlin.

39



[13] GERBER H.U. and SHIU E.S.W. (1994), “Martingale Approach to Pricing Perpetual
American Options”, ASTIN Bulletin 24, 195-220.

[14] GRAHAM, J.R. and SMITH, C.W., (1999), “Tax Incentives to Hedge”, Journal of
Finance, 54, 2241-2262.

[15] KARATZAS I. and SHREVE S. (1988), Brownian Motion and Stochastic Calculus,
Springer, Berlin, Heidelberg, New York.

[16] KYPRIANOU A.E. and PISTORIUSM.R. (2003), “Perpetual Options and Canadiza-
tion through Fluctuation Theory”, The Annals of Applied Probability 13(3), 1077-
1098.

[17] LELAND H.E. (1994), “Corporate Debt Value, Bond Covenant, and Optimal Capital
Structure”, The Journal of Finance, 49, 1213-1252.

[18] LELAND H.E. (1998), “Agency Costs, Risk Management, and Capital Structure”,
Working Paper.

[19] LELAND H.E. and TOFT K.B. (1996), “Optimal Capital Structure, Endogenous
Bankruptcy and the Term Structure of Credit Spreads”, The Journal of Finance, 51,
987-1019.

[20] LONGSTAFF F. and SCHWARTZ E. (1995), “A Simple Approach to Valuing Risky
Fixed and Floating Rate Debt and Determining Swap Spreads”, The Journal of Fi-
nance, 50, 798-819.

[21] MAUER, D. and SARKAR, S., (2005), “Real options, agency conflicts, and optimal
capital structure”, Journal of Banking & Finance, 29, 1405-1428.

[22] MERTON R. C. (1973), “A Rational Theory of Option Pricing”, Bell Journal of
Economics and Management Science, 4, 141-183.

[23] MERTON R. C. (1974), “On the Pricing of Corporate Debt: The Risk Structure of
Interest Rates”, The Journal of Finance, 29, 449-470.

[24] MODIGLIANI F. and MILLER M. (1958) “The Cost of Capital, Corporation Finance
and the Theory of Investment”, American Economic Review, 48, 267-297.

[25] PHAM H. (2007), Optimisation et Contrôle Stochastique Appliqués à la Finance,
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Abstract

This paper analyzes the capital structure of a firm in an infinite time horizon
framework following Leland [12] under the more general hypothesis that the firm’s
assets value process belongs to a fairly large class of stochastic volatility models.
In such a scheme, we describe and analyze the effects of stochastic volatility on all
variables which constitute the capital structure. The endogenous failure level is derived
in order to exploit the optimal amount of debt chosen by the firm. To this aim we
derive and propose a corrected version of the smooth-fit principle under volatility
risk in order to determine the optimal stopping problem solution. Exploiting optimal
capital structure we found that the stochastic volatility framework seems to be a robust
way to improve results in the direction of both higher spreads and lower leverage ratios
in a quantitatively significant way.

Keywords: structural model; volatility risk; volatility time scales; endogenous default;
optimal stopping.

1 Introduction

In this paper we extend the study of the optimal capital structure with endogenous default
proposed by Leland [12] assuming that the firm value process belongs to a fairly large class
of stochastic volatility models. The main empirical results in credit risk literature have
emphasized a poor job of structural models in predicting credit spreads [5]; this weakness
of the modeling could be related to the diffusion assumptions made in the papers by
[12, 13]. Thus Leland suggests in [14] that a possible improvement to these results could
ensue from introducing jumps and/or removing the assumption of constant volatility in
the underlying firm value stochastic evolution. The former extension has been addressed
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in [10] who extend the analysis to allow the value of the firm’s assets to make downward
jumps, in particular they suppose that the dynamics of the firm’s assets is driven by the
exponential of a Levy process; the authors find explicit expression for the bankruptcy level,
while for the value of the firm and the value of its debt they no longer have closed form
expressions. In [4] models the firm’s asset as a double exponential jump-diffusion process
and [11] study Black-Cox credit framework under the assumption that the log-leverage
ratio is a time changed Brownian motion. Further [6] consider a pure jump process of
the Variance-Gamma type. To the best of our knowledge, the latter extension of [12] to
a general class of stochastic volatility models has not be addressed. Thus the aim of this
paper is to study the optimal capital structure of a firm inside a structural model with
endogenous bankruptcy in the spirit of [12], but assuming a stochastic volatility for the
firm’s assets.

We introduce a process describing the dynamic of the diffusion coefficient driven by a
one factor mean-reverting process of Orstein-Uhlenbeck type, negatively correlated with
firm’s assets value evolution. Differently from the classical Leland framework and even
from the more general context with payouts and asymmetric corporate tax rates studied
in [1, 2, 3], the key point relies in the fact that inside this framework we cannot obtain
explicit expressions for all the variables involved in the capital structure by means of the
Laplace transform of the stopping failure time, because this transform, which was the key
tool, is not available in closed form in our stochastic volatility framework. Nevertheless
debt, equity, bankruptcy costs and tax benefits are claims on the firm’s assets, thus we
apply ideas and techniques developed in [7] for the pricing of derivatives securities whose
underlying asset price’s volatility is characterize by means of its time scales fluctuations.
This approach has been applied in [8] to the pricing of a defaultable zero coupon bond.
Here we consider a one-factor stochastic volatility model and apply single perturbation
theory as in [7] in order to find approximate closed form solutions for variables involved
in our problem. We analyze all financial variables and study the effects of the stochas-
tic volatility assumption on the endogenous failure level determined by equity holders
maximizing behavior. All claims have a more complicated expression with respect to the
constant volatility case, depending not only on the process describing firm’s activities
value, but also on the process driving the diffusion coefficient. Equity holders still face
the problem of optimizing equity value w.r.t. the failure level. Nevertheless under our
approach, the failure level derived from standard smooth pasting principle is not the solu-
tion of the optimal stopping problem, but only represents a lower bound which has to be
satisfied due to limited liability of equity. Choosing that failure level would mean an early
exercise of the option to default. A corrected smooth pasting condition must be applied
in order to find the endogenous failure level solution of the optimal stopping problem.
Moreover, we show the convergence of our results to Leland case [12] as the particular
case of zero-perturbation.

Pricing and hedging problems related to equity markets suggest that a pricing model
with stochastic volatility is seen a fundamental feature in modeling the underlying assets
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dynamic. Empirical findings about structural models of credit risk show that this kind of
models usually underestimates spreads and default probabilities, while predicted leverage
ratios are too high. In [1, 2, 3], we showed how to modify a pure Leland model in order
to obtain a more realistic framework and also empirical predictions about default rates,
leverage and spreads more in line with historical norms.

In this paper by taking into account the stochastic volatility risk component of the
firm’s asset dynamic, our aim is to better capture extreme returns behavior which could
be a robust way to improve empirical predictions about spreads and leverage. Introducing
randomness in volatility allows to deal with a structural model in which the distribution
of stock prices returns is not symmetric: in our mind this seems to be the right way for
capturing what structural models are not able to explain with a constant diffusion co-
efficient. The numerical results show that the assumption of stochastic volatility model
produces relevant effects on the optimal capital structure in terms of higher credit spreads
and lower leverage ratios, if compared with the original Leland case. Moreover the cor-
rected smooth-fit principle seems to be an issue to develop in order to analyze the optimal
exercise time of American-style options under a stochastic volatility pricing model (see
also [15]).

The paper is organized as follows. Section 2 describes the stochastic volatility pric-
ing model. Section 3 provides a detailed analysis of defaultable claims valuation in all
mathematical aspects. In Section 4 we fully exploit the capital structure of the firm under
volatility risk providing approximate values for all derivatives depending on firm’s cur-
rent assets value. Section 5 shows numerical results about optimal capital structure, then
Section 6 gives some concluding remarks.

2 The model

We introduce a process describing the dynamic of the diffusion coefficient driven by a
one factor mean-reverting process of Orstein-Uhlenbeck type, negatively correlated with
firm’s assets value evolution. From an economic point of view how to chose the diffusion
coefficient, i.e. how to model volatility is a fundamental issue. Assuming the diffusion
coefficient being constant means assuming that the riskiness of the firm does not change
through time. While volatility is not an observable variable, market data suggest that
the riskiness of the firm can deeply vary in time. Therefore the economic intuition is that
analyzing the capital structure of a firm in a stochastic volatility pricing framework should
be a robust and flexible way to improve structural models predictions bringing them closer
to empirical evidence. We stress robust and flexible since we will suppose firm’s activities
value belonging to a fairly large class of stochastic volatility models.

We consider a firm whose (unlevered) activities value dynamic is described by process
Vt. Process Yt is introduced to describe the evolution of the diffusion coefficient. Under
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the physical measure P the dynamics of the model are described by the following SDEs
in R2:

dVt = µVtdt+ f(Yt)VtdWt, (1)

dYt = η(m− Yt)dt+ βd�Wt, (2)

where d�W,�W �t = ρdt and β2 = 2ν2η, η = 1/�, and f(·) is supposed to be bounded and
Lipschitz. Parameter µ represents the expected rate of return of firm’s assets value. We
also suppose f(Y·) ∈ L

2(Ω× [0,∞]) and that there exist two constants a and A such that
0 < a ≤ f ≤ A to avoid explosion. The above SDE admits a unique strong solution. Yt is
a Gaussian process, which is explicitly known given the initial condition Y0 = y:

Yt = m+ (y −m)e−ηt + β

�
t

0
e
−η(t−s)

d�Ws, (3)

The invariant distribution of Yt, obtained as t → ∞ is N(m,
β2

2η ) and the important feature
to stress is that it does not depend on the initial condition y.
Substituting β2 = 2ν2η and η = 1

� , we have:

Y
�
t = m+ (y −m)e−

t
� + ν

�
2

�

�
t

0
e
− (t−s)

� d�Ws.

If we consider � → 0, then almost surely Y
�
t → m, so does diffusion parameter f(Yt) →

f(m). Moreover, following [7] (pg. 40-41) we assume ρ < 0. Analyzing financial data
suggests the existence of a negative leverage effect between stock prices and volatility,
i.e. ρ < 0, since real data shows that prices tend to decrease when volatility rises. In
our model we consider this correlation ρ being constant, also if we know that it could be
varying through time.

From structural models theory we know that each component of the capital structure
of the firm can be seen as a claim on the underlying assets represented by firm’s activities
value V . Thus, in order to find the values of these claims, the pricing problem is addressed
under a risk neutral probability measure Q , where the asset’s evolution follows the SDEs
(cf. [7] p. 31):

dVt = rVtdt+ f(Yt)VtdWt, (4)

dYt = (η(m− Yt)− βΛ(Yt)) dt+ βdW̃t, (5)

where r is the constant risk free rate and Λ(Yt) is defined as:

Λ(Yt) = ρ
µ− r

f(Yt)
+ γ(Yt)

�
1− ρ2, (6)

where µ−r

f(Yt)
is the excess return-to-risk ratio, and γ(Yt) is the risk premium factor or

market price of volatility risk which allows to take into account the second source of
randomness �Wt driving the volatility process. Following [8] we assume γ(·) being bounded
and a function of y only1.

1As particular case we will also consider γ being a constant when facing the hedging problem.
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From now on the aim is to develop a pricing model for the capital structure of a firm
whose underlying assets value is Vt, without specifying a particular function f(·). This will
allow to present results which are not strictly dependent on a specific volatility process
but instead related to a fairly general class of one-factor processes and in this sense they
are robust, i.e. model-independent.

Following structural models approach the aim is to analyze the capital structure of
a firm in terms of derivative contracts. In the spirit of [12] we consider an infinite time
horizon and a firm which is issuing both equity and debt. The firm issues debt and debt
is perpetual. Debt holders receive a constant coupon C per instant of time. We assume
that from issuing debt the firm obtains tax deductions proportional to coupon payments.
The corporate tax rate τ is assumed to be constant, thus the firm will benefit of a tax-
sheltering value of interest payments τC. The firm is subject to the risk of default, thus:
when coupon payments are low, the total value of the firm rises with an increase in C

due to tax benefits of debt, but as C reaches a certain level, the total value of the firm
decreases, due to bankruptcy costs. This is the trade-off between taxes and bankruptcy
costs. Default is endogenously triggered.The economic intuition is that default arrives
when the firm is not able to cover its debt obligations, meaning when equity value is null
(due to limited liability). The mathematical tool to treat default is that the failure passage
time is determined when firm’s activities value falls to some constant level VB. The value
of VB is endogenously derived by equity holders in order to maximize equity value.

We define the stopping time

TVB = inf{t ≥ 0 : Vt = VB},

moreover, since process V is right continuous, it holds VTB = VB.

Following [12, 17] contingent claim valuation can be used, so it is possible to express
each component of the capital structure as a claim on the underlying assets representing
firm activities value (see also [1, 2, 3]).

3 Pricing Defaultable Claims under Volatility Risk

In this section we apply ideas and techniques developed in [7] for the pricing of derivatives
securities whose underlying asset price’s volatility is characterized by means of its time
scales fluctuations. We consider a one-factor stochastic volatility model and apply single
perturbation theory as in [7] in order to find approximate values for defaultable deriva-
tives involved in our problem. This approach has been applied in [8] to the pricing of a
defaultable zero coupon bond. We will conduct the analysis considering the more general
case of defaultable paying-dividend derivatives.

We are assuming that firm’s activities value belongs to a fairly large class of stochastic
volatility models. In this framework we obtain very general expressions for all claims
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describing the components of the capital structure, each one of them depending on both
processes V· and Y·. Actually both processes V· and Y· depend on the parameter � but we
will omit it to have a simpler notation. The aim is to determine how the capital structure
is affected by volatility risk, meaning both a qualitative and quantitative analysis of such
an influence.

Let the price of a general claim be F �(Vt, Yt), function F
� being supposed to be C2

b
, de-

pending on the parameter �. We consider this general claim as a dividend-paying contract,
thus by no arbitrage hypothesis, the process

t �→ e
−rt

F
�(Vt, Yt) + d

�
t

0
e
−rs

ds

which represents the value of the claim at time t, discounted at the risk free rate r, plus
cumulated dividends up to time t, discounted at r and d is the constant dividend paid by
the claim, has to be a local martingale. Moreover, being a true martingale ∀T stopping
time, yields:

E

�
e
−rT

F
�(VT , YT ) + d

�
T

0
e
−rs

ds|V0 = x, Y0 = y

�
= F

�(x, y), (7)

where the expectation is taken in the risk neutral measure (see [17]).

Thus, the function F
�(x, y) has to satisfy the following partial derivatives equation:

d− rF
�(x, y) + rx∂xF

�(x, y) +

�
1

�
(m− y)− ν

√
2√
�
Λ(y)

�
∂yF

�(x, y) + (8)

+
1

2
x
2
f
2(y)∂2

x2F
�(x, y) + ρν

�
2

�
f(y)x∂2

xyF
�(x, y) + ν2

1

�
∂2
y2
F

�(x, y) = 0.

Re-arranging terms we have:

d− rF
�(x, y) + rx∂xF �(x, y) + 1

2x
2
f
2(y)∂2

x2F
�(x, y) (9)

+1
�

�
(m− y)∂yF �(x, y) + ν2∂2

y2
F

�(x, y)
�

+ρν
�

2
� f(y)x∂

2
xyF

�(x, y)− ν
√
2√
�
Λ(y)∂yF �(x, y) = 0.

Since differential equation (9) involves terms of order 1
� ,

1√
�
, 1, we introduce the follow-

ing notation for any C
2
b
function g(x, y):

L0g(x, y) = (m− y)∂yg(x, y) + ν2∂y2g(x, y),

L1g(x, y) = ρ
√
2νf(y)x∂xyg(x, y)−

√
2νΛ(y)∂yg(x, y), (10)

(LBS(f))g(x, y) = d− rg(x, y) + rx∂xg(x, y) +
1

2
x
2
f
2(y)∂x2g(x, y).

where
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• L0 is the infinitesimal generator of an ergodic Markov process, involving only y

variable;

• L1 is the operator depending on the mixed derivative ∂xy, since we are supposing a
correlation ρ between the Brownian motions of processes V· and Y·;

• ∂tf +LBS(f) is the Black-Scholes operator when the volatility level is f(y) and the
claim pays a constant dividend d.

It is now possible to write differential equation (9) in the following way:
�
1

�
L0 +

1√
�
L1 + LBS(f)

�
F

�(x, y) = 0, x ∈ R+
∗ , y ∈ R. (11)

We now discuss the boundary conditions of this problem. Since we are considering an
infinite horizon, a terminal condition requires F

�(x,y)
x

being bounded ∀� when x → ∞
in order to avoid bubbles (see [4]). Further a boundary condition at default is given by
F

�(xB, y) = f∗(xB) where f∗(xB) depends on the specific claim we are considering and
xB is the failure level. This last boundary condition is strictly related to the economic
meaning of each specific claim (i.e. for equity we have fE(xB) = 0, while for debt fD(xB) =
(1 − α)xB since the strict priority rule holds). From an economic point of view this last
boundary condition simply means that tax benefits are completely lost in the event of
bankruptcy. The solution F

�(x, y) of Equation (11) exists and is unique ∀� > 0.

Following [7], we expand the solution F
� in powers of

√
�:

F
� = P0 +

√
�P1 + �P2 + �

√
�P3 + ..., (12)

where P0, P1, P2, ... are functions of (x, y) to be determined such that P0(x,y)
x

will be
bounded as x → ∞ and P0(xB, y) = 0.

Substituting Equation (12) into Equation (11) we have
�
1

�
L0 +

1√
�
L1 + LBS(f)

��
P0 +

√
�P1 + �P2 + �

√
�P3 + ...

�
= 0.

So we obtain:
1

�
L0P0 +

1√
�
L1P0 + LBS(f)P0 +

√
�LBS(f)P1 +

1√
�
L0P1 + L1P1

�L0P2 +
√
�L1P2 + �LBS(f)P2 +

√
�L0P3 + �L1P3 + �

√
�LBS(f)P3 + ... = 0

Re-arranging terms (ref. Eq. (5.16) pag. 90):

1

�
L0P0 +

1√
�
(L1P0 + L0P1) + (13)

+ (LBS(f)P0 + L1P1 + L0P2)

+
√
� (L0P3 + L1P2 + LBS(f)P1)

+ ... (14)

= 0.
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Equating terms of order 1
� , we must have

L0P0 = 0.

Since the operator L0 in Equation (10) is the infinitesimal generator of an ergodic Markov
process acting only on y variable, (and P0 has to be bounded) P0 must depend only on x

variable.

Similarly, to eliminate the term of order 1√
�
, we must have:

L1P0 + L0P1 = 0.

Observe that the operator L1 in Equation (10) involves only the derivative w.r.t. y variable.
Since P0 only depends on x variable, as a consequence we have L1P0 = 0 and what remains
is L0P1 = 0. Using the same argument as above for the operator L0, we have to find P1

as function of x variable only.

Remark 3.1 Observe that if we consider only P0 and P1 terms, this implies that we are

looking for an approximate value of the claim

F
�(x) ≈ P0(x) +

√
�P1(x),

and this solution does not depend on y variable, meaning that it does not depend on the

present volatility f
2(y).

Now recall Equation (13). What we have to do is continuing to eliminate terms of order
1,
√
�, ... and so on. The idea is to study asymptotic approximations for F � which become

more accurate as � → 0. At this point the problem is to solve the following equation:

LBS(f)P0 + L1P1 + L0P2 = 0. (15)

Since L1 involves the mixed derivative ∂xy and P1 must depend only on x variable, we are
sure that

L1P1 = 0.

What remains is:
LBS(f)P0 + L0P2 = 0 (16)

The variable x being fixed, focusing on the dependence of LBS(f) on y, Equation (16) is
a Poisson equation (cf.[7], p. 91) which admits a unique solution P2 only if

�LBS(f)P0� = 0,

where

�g� :=
�

R
g(y)Φ(y)dy, (17)
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and Φ(y) denotes the density function of the Gaussian distribution N (m, ν2).

Following [7] we define the effective volatility as

σ̄2 =
�
f
2
�
. (18)

As a consequence, �LBS(f)� = LBS(σ̄), and the zero-order term P0 will be the solution of

LBS(σ̄)P0 = 0 (19)

as shown in the following Proposition.

Proposition 3.2 Equation (19) admits as unique solution the zero-order term P0 with

the following form:

P0(x) = k∗ + l∗(
xB

x
)λ (20)

with

λ =
2r

σ̄2
, (21)

and k∗, l∗ depend on the specific dividend and boundary conditions of each claim.

Proof We are looking for a solution P0 satisfying the following ODE

LBS(σ̄)P0 = 0,

with boundary conditions: P0(x)
x

to be bounded as x → ∞, and P0(xB) = f∗(xB), where
f∗(xB) depends on the specific claim we are considering.

Recalling Equation (10) for Black-Scholes operator LBS(σ̄), we have to find P0(x) depend-
ing only on x variable, as solution of

d− rP0(x) + rxP
�
0(x) +

1

2
σ̄2

x
2
P

��
0 (x) = 0, (22)

where d is the dividend paid by the claim considered. Equation (22) is exactly what
we have to solve when considering Leland framework assuming a constant volatility σ̄.
Boundary conditions for each claim are needed to determine k∗, l∗ as we will show later.
•

The following Proposition provides the value of each specific claim describing the cap-
ital structure of the firm, i.e. equity value, debt, tax benefits, bankruptcy costs and total
value of the firm, under a pricing model with constant volatility equal to σ̄.
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Proposition 3.3 Under our assumption of stochastic volatility, the capital structure of

the firm has the following P0 terms:

P0
TB(x, xB) =

τC

r
− τC

r

�
xB

x

�λ
, (23)

P0
D(x, xB) =

C

r
+

�
(1− α)xB − C

r

��
xB

x

�λ
, (24)

P0
BC(x, xB) = αxB

�
xB

x

�λ
, (25)

P0
E(x, xB) = x− (1− τ)C

r
+

�
(1− τ)C

r
− xB

��
xB

x

�λ
, (26)

P0
V (x, xB) = x− (1− τ)C

r
+

�
(1− τ)C

r
− xB

��
xB

x

�λ
. (27)

Proof From Proposition 3.2 we know that each claim will be of the form

P0(x) = k∗ + l∗(
xB

x
)λ

with

λ =
2r

σ̄2
.

We will define a claim on x for each component of the capital structure: equity (E),
tax benefits (TB), debt (D), bankruptcy costs (BC) and the total value of the firm (V).
Recall that d denote the dividend paid by each claim. Boundary conditions specific for
each claim will give k∗ and l∗ as shown in the table below. •

Claim ∗ TB D BC E V

P0∗(xB, xB) 0 (1− α)xB αxB 0 (1− α)xB

k∗ = limx→∞
P0

∗(x,xB)
x

τC
r

C

r
0 x− (1−τ)C

r
x+ τC

r

l∗ − τC
r

(1− α)xB − C

r
αxB

(1−τ)C
r

− xB −
�
αxB + τC

r

�

d∗ τC C 0 −(1− τ)C τC

Table 1: This table shows boundary conditions for each specific claim: row 1 describes boundary condi-

tions at default, i.e. for x → xB ; row 2 describes boundary conditions as x → ∞.

We now search for the the second order correction term P2, in order to be able to
define an equation allowing us to find P1. The following proposition holds.
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Proposition 3.4 The solution of Equation (16) is the second-order correction term P2

depending on both x and y variables as follows:

P2(x, y) = −1

2
φ(y)x2

∂2
P0(x)

∂x2
, (28)

with P0(x) given by Equation (20) and φ(y) being solution of

ν2φ��(y) + (m− y)φ�(y) = f(y)2 − σ̄2
, (29)

or equivalently

ν2Φ(y)φ�(y) =

�
y

−∞
(f2(z)− σ̄2)Φ(z)dz. (30)

Proof We are searching the second order correction term P2 as solution of Equation (16).
Since LBS(σ̄)P0 = 0, we can write

LBS(f)P0(x) = LBS(f)P0(x)− LBS(σ̄)P0(x) =
1

2

�
f(y)2 − σ̄2

�
x
2∂

2
P0(x)

∂x2
.

So, from Equation (16), it remains to find P2 such that

L0P2 = −1

2

�
f(y)2 − σ̄2

�
x
2∂

2
P0(x)

∂x2
,

where L0 is given by Equation (10) being an operator involving only the derivative w.r.t.
y variable. Thus

P2(x, y) = −1

2
φ(y)x2

∂2
P0(x)

∂x2
,

with φ(y) being solution of
L0φ(y) =

�
f(y)2 − σ̄2

�
.

•
Following the same methodology as before, we have to impose the coefficient of

√
� in

Equation (13) being null:

L0P3 + L1P2 + LBS(f)P1 = 0. (31)

We now have a Poisson equation which admits a unique solution P3 only if

�L1P2 + LBS(f)P1� = 0. (32)

Equation (32) and (28) will lead us to find the first order correction term P1(x) for each
claim defining a specific component of firm’s capital structure (i.e. equity, debt, tax
benefits of debt, bankruptcy costs, total value) as we show in the following Proposition.
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Proposition 3.5 Under our assumption of stochastic volatility, assuming boundary con-

ditions P1(xB, xB, C) = 0 and limx→∞ P1(x, xB, C) = 0, the capital structure of the firm

has the following component for first correction terms P1(x, xB):

P1
TB(x, xB) = −l

TB
H · (xB

x
)λ log

xB

x
(33)

P1
D(x, xB) = −l

D
H · (xB

x
)λ log

xB

x
(34)

P1
BC(x, xB) = −l

BC
H · (xB

x
)λ log

xB

x
(35)

P1
E(x, xB) = −l

E
H · (xB

x
)λ log

xB

x
(36)

P1
V (x, xB) = −l

V
H · (xB

x
)λ log

xB

x
(37)

where

H =
4r

σ̄4

�√
2

2
ν�Λφ��+ 2r

σ̄2
v3

�
, v3 = ρ

√
2

2
ν�fφ��, (38)

and

l
TB = −τC

r
, l

D = (1− α)xB − C

r
, l

BC = αxB, (39)

l
E =

(1− τ)C

r
− xB, l

V = −
�
αxB +

τC

r

�
.

Proof We can rewrite Equation (32) in this way

(LBS(σ̄)P1)(x) = −
�

R
L1P2(x, y)Φ(y)dy. (40)

Recall equation (28) for the second order correction term P2:

P2(x, y) = −1

2
φ(y)x2

∂2
P0(x)

∂x2

and Definition (10) for the operator L1. We have

L1P2(x, y) = ρ
√
2νf(y)x∂2

xy

�
−1

2
x
2∂

2
P0

∂x2
φ(y)

�
−

√
2νΛ(y)∂y

�
−1

2
x
2∂

2
P0

∂x2
φ(y)

�
(41)

= ρ
√
2νf(y)x∂x

�
−1

2
x
2∂

2
P0

∂x2

�
φ�(y)−

√
2νΛ(y)φ�(y)

�
−1

2
x
2∂

2
P0

∂x2

�
(42)
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In order to find P1 we have to solve the following equation

LBS(σ̄)P1(x, xB, C) = v3x
3∂

3
P0

∂x3
+ v2x

2∂
2
P0

∂x2
, (43)

with v2 =
√
2ρν

�
fφ��−

√
2

2
ν
�
Λφ�� = 2v3 −

√
2

2
ν
�
Λφ��

, (44)

v3 = ρ

√
2

2
ν
�
fφ��

, (45)

meaning equation

LBS(σ̄)P1(x, xB, C) = ρ

√
2

2
ν
�
fφ��

x
3∂

3
P0

∂x3
+

�
√
2ρν

�
fφ��−

√
2

2
ν
�
Λφ��

�
x
2∂

2
P0

∂x2
. (46)

Recall the general structure given by Equations (20) for the zero order terms P0(x):

P0(x) = k∗ + l∗(
xB

x
)λ,

with

λ =
2r

σ̄2
,

where k∗, l∗ are given in Table 3. Observe that k∗ is constant w.r.t. x for all claims except
equity and for equity value it is linear w.r.t. x.

The following holds for each claim, namely ∗:

∂P0∗(x)

∂x
=

∂k∗
∂x

− l∗λxB
λ
x
−λ−1 (47)

∂2
P0∗(x)

∂x2
= l∗λ(λ+ 1)xB

λ
x
−λ−2 (48)

∂3
P0∗(x)

∂x3
= −l∗λ(λ+ 1)(λ+ 2)xB

λ
x
−λ−3 (49)

Finally

LBS(σ̄)P1(x, xB, C) = −l
∗λ2 (λ+ 1)

√
2

2
ρν

�
fφ��

�
xB

x

�λ
−

√
2

2
ν
�
Λφ��

l
∗λ(λ+ 1)

�
xB

x

�λ

= l
∗λ(λ+ 1) (v2 − (λ+ 2)v3)

�
xB

x

�λ

= l
∗λ(λ+ 1)

�
2v3 −

√
2

2
ν
�
Λφ��− (λ+ 2)v3

��
xB

x

�λ

LBS(σ̄)P1(x, xB, C) = −l
∗λ(λ+ 1)

�√
2

2
ν
�
Λφ��+ λv3

��
xB

x

�λ
. (50)
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Recall Definition (10) of the Black-Scholes operator:

LBS(σ̄)P1(x, xB, C) = d− rP1(x, xB, C) + rxP
�
1(x) +

1

2
σ̄2

x
2
P

��
1 (x)

Thus P1 is the solution of:

d− rP1(x) + rxP
�
1(x) +

1

2
σ̄2

x
2
P

��
1 (x) = Bx

−λ (51)

with

B = l∗ λ(λ+ 1) (v2 − (λ+ 2)v3)xB
λ
, (52)

= −l∗ λ(λ+ 1)

�√
2

2
ν
�
Λφ��+ λv3

�
xB

λ
. (53)

This second order ODE admits P1 given by Equation (36) as unique solution, taking into
account boundary conditions

lim
x→∞

P1(x, xB) = 0, (54)

P1(xB, xB) = 0. (55)

The solution is
P1(x, xB) = A0 +A1x+A2x

−λ +A3x
−λ log x,

From boundary condition (54)-(55) we have respectively :

A0 = 0, A1 = 0;A2 = −A3 log xB,

thus the P1 component of the first correction term is of the form

P1(x, xB) = −A3x
−λ log

xB

x
,

with A3 = − 2B
2r+σ̄2 , meaning :

A3 = −2l∗λ(λ+ 1) (v2 − (λ+ 2)v3)xBλ

2r + σ̄2

=
2l∗λ(λ+ 1)

�√
2
2 ν�Λφ��+ λv3

�
xB

λ

2r + σ̄2

= l
∗ 4r

σ̄4

�√
2

2
ν
�
Λφ��+ 2r

σ̄2
v3

�
xB

λ
. (56)

P1 = − l
∗λ2 (λ+ 1)

√
2ρν �fφ��xBλ

2r + σ̄2
x
−λ log

xB

x
.
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Finally we can write P1 in terms of v3 as:

P1 = −l
∗ 4r

σ̄4

�√
2

2
ν
�
Λφ��+ 2r

σ̄2
v3

��
xB

x

�λ
log

xB

x
.

The final result with this method is:

P1(x, xB) = −l
∗ρ
√
2ν�fφ��4r

2

σ6

�
xB

x

�λ
log

�
xB

x

�
. (57)

Therefore we can write:
P1

∗(x) = −l
∗
H · (xB

x
)λ log

xB

x
, (58)

where

H = −2λ(λ+ 1)(v2 − (λ+ 2)v3)

2r + σ̄2
, (59)

which simplifies to

H =
4r

σ̄4

�√
2

2
ν
�
Λφ��+ 2r

σ̄2
v3

�
, (60)

and for each specific claim, the term l
∗ is given in Table 3, row 3:

l
TB = −τC

r
, l

D = (1− α)xB − C

r
, l

BC = αxB,

l
E =

(1− τ)C

r
− xB, l

V = −
�
αxB +

τC

r

�
.

•

4 Capital Structure of the Firm under Volatility Risk

We now analyze in detail all financial variables defining the capital structure of the firm
by using previous results in order to determine how their values are affected by volatility
risk. We can interpret each financial variable as a derivative contract, thus the aim is to
understand how the price of each claim must be corrected due to volatility risk. We are
assuming the driving Ornstein-Uhlenbeck process for the diffusion coefficient being a fast
mean reverting process, with η := 1

� as speed of mean-reversion. By applying singular
perturbation theory, each component of the capital structure will be defined as a claim
whose value can be found through an asymptotic expansion of the price in power of

√
�.

One of the main problems concerning perturbation theory is that, once we have explicit
expressions for the approximate value of our claims, we have to calibrate parameters. The
main issue is how to estimate σ̄ from market data since a volatility process is not observable
in financial markets. Usually the approach is to estimate σ̄ from historical data and then
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to calibrate the small parameters V2, V3. In this paper we do not address the issue of how
to calibrate parameters, but we take results from [7], [8], [9] where a specific and detailed
analysis of this topic is conducted.

The value of each claim F
�(x, xB) will be approximate with the following corrected

pricing formula:
F̃ (x, xB) = P0(x, xB) +

√
�P1(x, xB), (61)

where P0(x, xB) and P1(x, xB) are obtained, respectively, as solutions of Equations (19),
(46).

Remark 4.1 i) Let P̃1(x, xB) :=
√
�P1(x, xB). Observe that an equivalent formulation

for F̃ (x, xB) is to write directly each approximate claim as solution of

LBS(σ̄)(P0(x, xB) + P̃1(x, xB)) = V2x
2∂

2
P0

∂x2
+ V3x

3∂
3
P0

∂x3
, (62)

with

V2 =
√
�v2 , V3 =

√
�v3,

and v2, v3 are given by Equations (44)-(45). Coefficients V2, V3 correspond to the notation

used in [7] (Equations (5.39-5.40), page 95 where parameter α in the book corresponds to

our η = 1
� ).

This result follows by applying LBS(σ̄) to function P0 +
√
�P1 (for P1 look at Equation

(46)). Following [7] we can interpret the right hand side of Equation (62) as a path depen-
dent payment stream which corrects the price accounting for volatility randomness during

the path before the default time. Notice that it may be positive or negative depending on

the specific P0 claim we are dealing with, since it involves its second and third derivatives

w.r.t. x, meaning that it will be strictly related to the value of each claim in a pure Leland

[12] model. More specifically, this expression involves Greeks of the corresponding price in

a Black and Scholes setting with constant volatility σ̄. While the second derivative is well

known to be the Γ of the P0 derivative, [7] propose to name the third derivative Epsilon
defined as

∂Γ
∂x .

ii) As a consequence of i), we can observe what follows about the sign of coefficient H

given in Equation (59):

H = −2λ(λ+ 1)(v2 − (λ+ 2)v3)

2r + σ̄2
=

2r

σ̄4

√
2ν

�
�Λφ��+ 2r

σ̄2
ρ�fφ��

�
, (63)

thus the sign of H is the same as �Λφ��+ 2r
σ2 ρ�fφ��.

iii) Following [8] we will assume ρ < 0, V2 < 0 meaning ρ�fφ�� < �Λφ�� and V3 > 0
meaning ρ�fφ�� > 0 (see [7] and [9] for a detailed analysis about parameters calibration),

thus obtaining H > 0.
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From previous results we can now write each approximate claim, namely ∗, on x with
the following structure:

F̃∗(x, xB) = P0∗(x, xB)−
√
�l∗H

�
xB

x

�λ
log

xB

x
, (64)

with

H =
2r

σ̄4

√
2ν

�
�Λφ��+ 2r

σ̄2
ρ�fφ��

�
> 0,

and l∗ given in Table 3 depending for each specific claim on its own boundary conditions.

Notice that:

i) assuming H > 0, the sign of the correction term P̃1(x, xB) is the same as l∗, thus can
be positive or negative depending only the specific boundary conditions of each derivative
contract. More specifically, from an economic point of view, it will depend on the final
payoff of each derivative. An important feature to stress is that this term allows to correct
the price accounting for randomness in volatility during the path of process xt, i.e. for
x > xB in a model-independent way. Results hold for a large class of processes, since we
are not specifying a particular function f(·) for the diffusion coefficient.

ii) H-dependence on V2, V3 is fundamental in order to analyze the stochastic volatil-
ity effects on all defaultable claims defining the capital structure of the firm, since both
coefficients V2 and V3 involved in our pricing problem have a precise economic interpreta-
tion. From [8] we know that calibrating V2, V3 from market data suggests to assume these
small parameters being respectively: V2 < 0, V3 > 0. Typically coefficient V2 < 0 since it
represents a correction for the price in terms of volatility level, while V3 is the skew effect
related to the third moment of stock prices returns. Assuming a negative correlation ρ < 0
in this pricing model with stochastic volatility will produce its effect on the distribution
of stock prices returns, making it asymmetric. In particular it will strongly modify the
left tail of returns distributions, making it fatter.

An important issue to consider is the accuracy of these approximations. Let F �(x, xB)
be the true unknown value of the claim under stochastic volatility with terminal condition
F

�(x, xB) = z(x). As analyzed in detail in [7] (see Chapter 5), it can be shown that when
z(x) is smooth and bounded, we have

|F �(x, xB)− (P0(x, xB) + P̃1(x, xB))| ≤ k · �,

where k is a constant which does not depend on the speed of mean reversion of the volatility
process but may depend on its current level y.

Remark 4.2 It is important to stress that as � → 0 the model becomes a pure Leland model

with constant volatility σ̄, while V3 in Equation (62) vanishes as ρ becomes 0, meaning

the uncorrelated case becomes a pure Leland model with constant volatility equal to the
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corrected effective volatility σ∗ =
√
σ̄2 − 2V2 �= σ̄. The difference between the two cases

will be only a volatility level correction due to the market price of risk which exists also

if we assume ρ = 0,Λ �= 0: V2 will still correct claims values for the market price of

volatility risk. Typically, the effective corrected volatility σ∗ is higher that the historical

average volatility σ̄ and this is why market data suggest to assume V2 < 0.
These two cases coincide only if we assume ρ = 0,Λ = 0.

All these features will produce important economic implications on the analysis of the
capital structure of the firm, as shown in what follows.

4.1 Equity

We now consider equity value under stochastic volatility.

Using singular perturbation theory we have approximate equity value Ẽ(x, xB) with
the following form:

Ẽ(x, xB) = P0
E(x, xB) +

√
�P1

E(x, xB),

with P0
E and P1

E given by Equations (26), (36). Its explicit expression is:

Ẽ(x, xB) = x− (1− τ)C

r
+

�
(1− τ)C

r
− xB

��
xB

x

�λ �
1−

√
�H log

xB

x

�
, (65)

with

H =
2r

σ̄4

√
2ν

�
�Λφ��+ 2r

σ̄2
ρ�fφ��

�
> 0.

Consider now Equation (65): re-arranging terms we can always express approximate
equity value as the sum of two different components by isolating equity value without risk
of default and the option to default embodied in equity under this pricing model with
stochastic volatility:

Ẽ(x, xB) = f(x,C) + g̃(x, xB),

with

f(x,C) = x− (1− τ)C

r
,

g̃(x, xB) =

�
(1− τ)C

r
− xB

��
xB

x

�λ
h�(x, xB), (66)

and

h�(x, xB) :=

�
1 +

√
�H log

x

xB

�
. (67)
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Since H > 0, we have

h�(x, xB) > 1 ∀x ≥ xB, xB ∈ [0, x]. (68)

We can interpret approximate equity Ẽ(x, xB) as a ’new’ derivative contract whose value
derives from two different sources. From an economic point of view f(x,C) is equity value
without risk of default and unless limit of time, and it is exactly the same value we have in
a pure Leland [12] framework because this function doesn’t depend directly on the failure
level xB. As a consequence, the stochastic volatility assumption does not produce any
effect on it, since this term is independent of the probability of x reaching the barrier xB.
Its value is always positive under

x >
(1− τ)C

r
. (69)

Function g̃(x, xB) depends directly on firm’s current assets value x, on coupon payments C,
on the failure level xB and also on all parameters describing the volatility mean reverting
process. And this because g̃(x, xB) represents nothing but a defaultable contract: since it
is an option, it must have positive value, thus we must impose

xB <
(1− τ)C

r
. (70)

We can interpret g̃(x, xB) as a corrected option to default embodied in equity having

positive value ∀x ≥ xB, with xB ∈ [0, (1−τ)C
r

]. Notice that constraint (69) and (70) are the
same we have in a pure Leland model. We have no more constraints considering separately
the two components f(x,C), g̃(x, xB) since the randomness in volatility does not produce
any effect when i) there is no risk of default, i.e. on f(x,C) value; ii) at default, i.e. when

x = xB, thus on the payoff l
E = (1−τ)C

r
−xB taken by equity holders at the exercise time.

Observe that we can write the option to default as g̃(x, xB) = g(x, xB)h�(x, xB), where

g(x, xB) :=
�
(1−τ)C

r
− xB

� �
xB
x

�λ
is the value of the option to default in a pure Leland

framework with constant volatility σ̄. As a consequence we can interpret h�(x, xB) as a
path-dependent correction for the price due to our stochastic volatility assumption. The
idea is to interpret it as a correction for the price due to randomness in volatility when
x > xB, meaning in each instant before the default event: only when the option is ’alive’
but still not exercised.

In this case it will be a correction for the option value only before default, while
at failure x = xB the option value is the same as in Leland, since the correction term
h�(x, xB) becomes 1 and the first order correction term P1 disappears at boundary. This
interpretation seems to be analogous to the European case treated in [7]: the stochastic
volatility effect is null at maturity. Results presented in the book, also for barrier options
(pg. 128), seem to be in the direction of constructing and studying a new claim with the
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same structure of the P0 term, only corrected for stochastic volatility before the exercise
time, in our case meaning before the barrier is touched, thus before default is triggered.
Let’s think about a single bond under a stochastic volatility pricing model. What happens
is that as the maturity date approaches, bond price volatility tends to zero, becoming
exactly zero at expiration date. And this must hold: otherwise, to keep bond price equal to
its (fixed) face value at maturity, the underlying assets process should have an indefinitely
increasing drift (i.e. tending to +∞) in order to compensate a potential volatility effect
at expiration date. And this why the correction term h�(x, xB) becomes 1 for x = xB.

In this framework with volatility risk what is strongly affected by this assumption is
the probability of x reaching xB. Let’s think for example about the present value of one
unit of money obtained at failure. Under volatility risk, this value is different from its
present value in a constant volatility case. In a pure Leland setting with constant volatility
σ̄, such a value is given by

f1(x, xB) =
�
xB

x

�λ
, (71)

while in this model the corrected present value of 1 unit of money at default is

f2(x, xB) = f1(x, xB)h�(x, xB) > f1(x, xB), (72)

since the holder of the contract has to be compensated for randomness of volatility, i.e.
the uncertainty of the riskiness of his contract. Figure 1 shows how stochastic volatility
affects these values during the path.
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Figure 1: Behavior of Functions f1(x, xB), f2(x, xB). The plot shows f1(x, xB), f2(x, xB) given by
(71)-(72) as functions of the failure level xB ∈ [0, x]. Base case parameters values are: Λ = 0, r = 0.06,
σ̄ = 0.2, α = 0.5, τ = 0.35, C = 6.5, V3 = 0.003, V2 = 2V3, ρ < 0.

Remark 4.3 Analyzing this option to default embodied in equity we can also observe what
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follows:

g̃(x, xB, C, �) =

�
(1− τ)C

r
− xB

��
xB

x

�λ
h�(x, xB, C),

which is equal to

g̃(x, xB, C, �) =

�
(1− τ)C

r
− xB

��
xB

x

�λ
�
1 +

√
�H log

x

xB

�
.

Indicating with P0
g(x, xB) := g(x, xB) the option to default in Leland framework with

volatility σ̄, we can write the approximate option to default as:

g̃(x, xB, C, �) = P0
g(x, xB) + P̃1

g

(x, xB),

where

P̃1
g

(x, xB) = −
√
�H ·

�
(1− τ)C

r
− xB

�
log

xB

x

�
xB

x

�λ
.

As expected, the first correction term P̃1
g

(x, xB) is the same as P̃1
E

(x, xB), since this is

exactly the option to default embodied in equity, meaning the defaultable contract.

From Remark 4.1 we know that H > 0. As a consequence, observe that the first
correction term P1

E(x, xB) for the price of equity claim due to stochastic volatility has
positive value ∀x > xB, meaning that it always has the effect of increasing equity claim
value. The economic reason is that holding equity claim is now riskier since randomness
in volatility is introduced, thus modifying the riskiness of the firm. Equity holders have
to be compensated for this.

From now on, we will use the following formulation for approximate equity:

Ẽ(x, xB) = x− (1− τ)C

r
+

�
(1− τ)C

r
− xB

��
xB

x

�λ
h�(x, xB), (73)

with h�(x, xB) =
�
1−

√
�H log xB

x

�
.

4.1.1 First Order Correction

We now want to analyze which is the effect of the first-order correction term P̃1
E

(x, xB)
on the behavior of approximate equity w.r.t. current firm’s assets value x, as shown in
the following Proposition.

Proposition 4.4 The first correction term

P̃1
E

(x, xB) = −
√
�H ·

�
(1− τ)C

r
− xB

�
log

xB

x

�
xB

x

�λ
,

increases equity value for x > xB. The maximum correction effect is achieved when the

distance to default is log xB
x

= − 1
λ .
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Figure 2: Approximate Equity. The plot shows approximate equity value Ẽ(x, xB)and P0
E(x, xB)

term as function of the failure level xB ∈ [0, x]. Base case parameters values are: Λ = 0, r = 0.06, σ̄ = 0.2,
α = 0.5, τ = 0.35, C = 6.5, V3 = 0.003, V2 = 2V3, ρ < 0, x = 100.

Proof We now consider the behavior of P̃1
E

(x, xB) > 0 studying its partial derivative
w.r.t. x, as follows:

∂P̃1
E

(x, xB)

∂x
=

√
�H ·

�
(1−τ)C

r
− xB

�

x

�
xB

x

�λ �
λ log

xB

x
+ 1

�
,

The sign of ∂P̃1
E
(x,xB)
∂x is the same as f(x, xB) := λ log xB

x
+ 1. The application x �→

f(x, xB) is a decreasing function going from f(xB, xB) = 1 to −∞. So the sign of
∂P̃1

E
(x,xB)
∂x is :

∂P̃1
E

(x, xB)

∂x
≥ 0 for x ≤ xBe

1
λ ,

∂P̃1
E

(x, xB)

∂x
< 0 for x > xBe

1
λ .

Thus, the application x �→ P̃1
E

(x, xB) admits a unique maximum at point x = xBe
1
λ .

•

4.1.2 Endogenous Failure Level

We now turn to analyze the endogenous failure level chosen by equity holders. The eco-
nomic problem is that equity holders want to maximize equity value, but due to limited
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liability of equity they cannot chose an arbitrary small failure level. A natural constraint
on xB can be found by imposing:

∂Ẽ(x, xB)

∂x
|x=xB ≥ 0 ∀x ≥ xB,

which guarantees equity being a non-negative and increasing function of firm’s current
assets value x for x ≥ xB. The following Proposition determines the failure level which
satisfies this condition.

Proposition 4.5 Under λ >
√
�H, the endogenous failure level chosen by equity holders

in order to maximize xB �→ Ẽ(x, xB) has to belong to the following interval:

�
x̄B,

(1− τ)C

r

�
, (74)

where

x̄B :=
(1− τ)C

r

λ−
√
�H

1 + λ−
√
�H

> 0 (75)

is solution of the traditional smooth-pasting condition:

∂Ẽ(x, xB)

∂x
|x=xB = 0.

Proof Observe that

∂Ẽ(x, xB)

∂x
|x=xB =

∂(P0
E(x, xB) + P̃1

E

(x, xB))

∂x
|x=xB ,

thus in order to have equity a non-negative and increasing function of current assets value
x it is sufficient to impose:

∂Ẽ(x, xB)

∂x
|x=xB ≥ 0 ∀x ≥ xB.

This in turns lead to

1− l
E

xB
(λ−

√
�H) ≥ 0, (76)

with l
E = (1−τ)C

r
− xB > 0 due to (70).

Finally, under λ−
√
�H > 0, (76) is satisfied for xB ≥ x̄B with x̄B solution of:

1− l
E

xB
(λ−

√
�H) = 0. (77)

This solution x̄B satisfies also x̄B <
(1−τ)C

r
, thus the interval

�
x̄B,

(1−τ)C
r

�
is not empty.

•
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Remark 4.6 Notice that this lower bound x̄B > 0 for the endogenous failure level depends

on all parameters involved in the volatility diffusion process, since it depends on �, and H,

thus on V2, V3. To be more precise, this lower bound is strictly related to the market price

of risk, to the skew effect and also to the speed of convergence chosen for the volatility

mean reverting process.

Observe that as particular case, for � → 0, this lower bound is exactly the lower bound

arising from a pure Leland framework xBL with constant volatility σ̄:

xBL :=
(1− τ)C

r

λ

1 + λ
.

In our more general case, we stress that x̄B reduces as the speed of mean reversion in-

creases, since the application
√
� �→ x̄B is decreasing and the speed of mean reversion is

1
� . This means that under our stochastic volatility framework equity holders can chose a

failure level which is lower that in a pure Leland model.

The lower bound x̄B is also decreasing w.r.t. H > 0, thus its dependence on the market

price of volatility and on the leverage effect ρ has the same sign of H-dependence on the

same parameters.

Remark 4.6 is useful to formulate the optimal stopping problem faced by equity holders
in this framework of stochastic volatility:

max
xB∈[x̄B ,

(1−τ)C
r ]

Ẽ(x, xB, C, �), (78)

with x̄B given in (75).

From traditional optimal stopping theory we know that, under appropriate hypothesis,
applying the smooth pasting condition to the function which has to be optimized, will give
a failure level which is exactly the solution of the optimal stopping problem. What we
showed in all analytical aspects in [2, 3], is an example of a framework in which applying
the smooth pasting condition (which is a low contact condition) gives the same failure level
we obtain by maximizing equity value w.r.t. the constant default barrier. An analogous
relation exists when we analyze American-style options under Black and Scholes model
(see also [7]). Working inside a Black and Scholes pricing framework means that the
smooth pasting condition applied to equity value gives not only a lower bound for the
failure level chosen by equity holders, but directly the endogenous failure level solution of
the optimal stopping problem.

In this stochastic volatility pricing model the traditional smooth pasting condition

applied to approximate equity ∂Ẽ(x,xB)
∂x |x=xB = 0 gives only a lower bound x̄B > 0 for the

endogenous failure level which has to be satisfied (due to limited liability of equity) in
order to have equity as an increasing function of firm’s assets value.
In the constant volatility case, this lower bound is also solution of the optimal stopping
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problem, i.e. maxxB E(x, xB), meaning that equity holders will always choose the lowest
admissible failure level. But this is not still true when volatility risk s introduced in the
model. The failure level x̄B is not the solution of the optimal stopping problem (78). We
show this in the following Proposition.

Proposition 4.7 The endogenous failure level solution of the optimal stopping problem

max
xB∈[x̄B ,

(1−τ)C
r ]

Ẽ(x, xB, C, �), where x̄B =
(1− τ)C

r

λ−H
√
�

1 + λ−H
√
�
,

is x̃B, solution of

�
1 +

√
�H log

x

xB

��
λ(1− τ)C

r
− (λ+ 1)xB

�
−H

√
�

�
(1− τ)C

r
− xB

�
= 0. (79)

Proof Equity holders face the following optimal stopping problem:

max
xB∈[x̄B ,

(1−τ)C
r ]

Ẽ(x, xB, C, �). (80)

Recall that Ẽ(x, xB, C, �) = f(x,C)+ g̃(x, xB, C, �), where f(x,C) does not depend on
the failure level xB.
As a consequence, our problem (80) is equivalent to

max
xB∈[x̄B ,

(1−τ)C
r ]

g̃(x, xB, C, �),

where

g̃(x, xB, C, �) :=

�
(1− τ)C

r
− xB

��
xB

x

�λ
�
1 +

√
�H log

x

xB

�

is the corrected option to default embodied in equity. To study g̃ behavior, we turn to its
derivative computation writing it in this compact formuation:

∂xB g̃(x, xB, C) =
�
xB

x

�λ
�
h�(x, xB)

�
−1 +

λlE

xB

�
−

√
�
l
E
H

xB

�
,

where l
E = (1−τ)C

r
− xB. Actually, the sign of partial derivative of g̃ w.r. t. xB is the one

of function
g1(xB) = −xBh�(x, xB) + l

E
�
λh�(x, xB)−

√
�H

�
, (81)

explicitly given by

g1(xB) = −xB

�
1 +

√
�H log

x

xB

��
(1− τ)C

r
− xB

��
λ

�
1 +

√
�H log

x

xB

�
−

√
�H

�
.
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Remark that the smallest value of xB, i.e. the lower bound x̄B = (1−τ)C
r

λ−H
√
�

1+λ−H
√
�
is

solution of:

1− l
E

xB
(λ−

√
�H) = 0,

thus, letting l̄E := (1−τ)C
r

− x̄B => 0, at point xB = x̄B we have

√
�
Hl̄E

x̄B
= −1 +

λl̄E

x̄B
.

As a consequence,
g1(x̄B) =

√
�Hl̄E (h�(x, x̄B)− 1) > 0,

in explicit form

g1(x̄B) = H
√
� log

x

x̄B

(1− τ)C

r

�
H
√
�

1 + λ−H
√
�

�
> 0,

Concerning the biggest value �xB := (1−τ)C
r

, we have

g1 (�xB) = −�xBh� (x, �xB) < 0.

Now, we turn to:

g
�
1(xB) = −h� (x, xB) (1 + λ) + h

�
�(x, xB)(λl

E − xB) +
√
�H,

g
��
1(xB) = −h

�
�(x, xB)

�
1 +

λlE

xB
+ 2λ

�
> 0,

since h
�
�(x, xB) < 0. Respectively, their explicit form is:

g
�
1(xB) = −

�
1 +

√
�H log

x

xB

�
(1 + λ)−

√
�H

�
λ(1− τ)C

rxB
− (λ+ 1)

�
+

√
�H,

g
��
1(xB) =

√
�H

xB

�
1 + λ

�
1 +

(1− τ)C

rxB

��
> 0.

This function g
�
1(xB) is increasing, so g1(xB) is convex, starting from positive value

to negative value, thus there exists a unique solution x̃B which realizes the maximum of
equity and it is solution of g1(xB) = 0, whose equation is explicitly given by

�
1 +

√
�H log

x

xB

��
λ(1− τ)C

r
− (λ+ 1)xB

�
−H

√
�

�
(1− τ)C

r
− xB

�
= 0. (82)

•
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Remark 4.8 i) Let xBL := (1−τ)C
r

λ
1+λ being Leland endogenous failure level.

Observe that our corrected option to default embodied in equity has a negative first deriva-

tive w.r.t. xB at point xBL since the sign of g1 given in (81) at that point is:

g1(xBL) = −
√
�H

(1− τ)C

r(1 + λ)
< 0,

meaning that the endogenous failure level x̃B satisfies (using g1 convexity)

x̄B < x̃B < xBL.

Notice that these three points coincides as � → 0.

ii) We can rewrite Equation (79) as:

h�(x, xB)−
l
E

xB

�
λh�(x, xB)−

√
�H

�
= 0,

and observe that the only term which depends on coupon is l
E = (1−τ)C

r
− xB which is

linear w.r.t. C. Solve it w.r.t. the endogenous coupon C̃ as:

C̃ =
rxB

1− τ

(λ+ 1)h�(x, xB)−
√
�H

λh�(x, xB)−
√
�H

, (83)

explicitly given by

C̃ =
rxB

1− τ

(λ+ 1)(1 +
√
�H log x

xB
)−

√
�H

λ(1 +
√
�H log x

xB
)−

√
�H

.

The application xB �→ C̃ is increasing.

We now analyze Equation (79) which gives the endogenous failure level x̃B in order to
define a corrected smooth-pasting condition inside a pricing model of stochastic volatility.

Proposition 4.9 Corrected Smooth-Pasting.
At point x̃B implicit solution of (79), the following ’corrected smooth-pasting’ condition

holds:

∂P0
E

∂x
|x=xBh�(x, xB) +

∂P̃E

1

∂x
|x=xB = 0, (84)

where P̃
E

1 =
√
�P1

E
.

Proof What we want to show is that finding the solution of ∂g̃(x,xB ,C,ε)
∂xB

= 0 is equivalent
to find the solution of what we define a corrected smooth-pasting condition. In this case
also the smooth pasting condition must take into account the perturbation given by the
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stochastic volatility effect, and in this sense we call it ’corrected’. Consider Equation (79)
and observe that we can rewrite it under the following equivalent formulation:

h�(x, xB)

�
−1 +

λlE

xB

�
−

√
�
l
E
H

xB
= 0.

Moreover, we have:

∂P0
E

∂x
|x=xB = 1− λlE

xB
,

∂P̃E

1

∂x
|x=xB =

√
�H

l
E

xB
.

•

As in a pure Leland model, the endogenous failure level chosen by equity holders x̃B
does not depend on bankruptcy costs, since the strict priority rule still holds, but instead
depends on coupon, risk free rate and tax rate. Coeteris paribus, it is increasing w.r.t the
coupon level and decreasing w.r.t. the corporate tax rate τ .

When volatility risk is introduced, equity holders will choose the default barrier which
maximizes equity value depending on both the market price of volatility and the leverage
effect, since coefficient H in Equation (79) captures both these effects.

Moreover, what is completely new for an endogenous failure level derived inside a
structural model framework is its dependence on the initial firm’s assets value x. This
dependence could be related to the fact that also the ’standard’ smooth-pasting condition
∂Ẽ(x,xB)

∂x |x=xB = 0 does not give the endogenous failure level, but only a lower bound for
it. And this lower bound is not the solution of the optimal stopping problem. Equation
(84) suggests that the endogenous failure level is the solution of a corrected smooth-
pasting condition in the sense that we must take into account the randomness introduced
in volatility. As we observed in Proposition 4.4 the correction for the price is not constant
through the path, achieving a maximum correction effect when the distance to default
is log xB

x
= − 1

λ . Figure 2 shows the behavior of both approximate equity Ẽ(x, xB) and

P0
E(x, xB) w.r.t. the failure level xB. As we can see, Ẽ(x, xB) achieves its maximum

before P0
E(x, xB), meaning for a lower failure level.

Remark 4.10 Recall Equation (84). Observe that we can interpret its solution x̃B as the

failure level at which the following conditions hold:

h�(x, x̃B) = −
∂P̃1

E

∂x |x=x̃B

∂P0
E

∂x x=x̃B

= −
∂P̃1

E

∂x |x=x̃B

∆
P0

E(x̃B)

, (85)

where ∆ denotes the Greek of the P0
E

derivative evaluated at point x = x̃B, or

√
�H log

x̃B

x
=

∂Ẽ
∂x |x=x̃B

∆
P0

E(x̃B)

. (86)
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Figure 3: . The plot shows approximate equity value Ẽ(x, xB), and P0
E(x, xB), P̃1

E
(x, xB) terms as

function of current assets’ value x. The support of each function is [x̄B , x]. Base case parameters values
are: Λ = 0, r = 0.06, σ̄ = 0.2, α = 0.5, τ = 0.35, C = 6.5, V3 = 0.003, V2 = 2V3, ρ < 0. The endogenous
failure level x̃B is determined for x = 100.

i) First recall that the lower bound x̄B solution of
∂Ẽ(x,xB)

∂x |x=xB = 0 is independent of

current assets value x. Equivalently, it guarantees:

1 = −
∂P̃1

E

∂x |x=x̄B

∆
P0

E(x̄B)

,

meaning the slope of P0
E

and P̃1
E

have the same absolute value, but opposite sign. This

only guarantees equity being an increasing and non-negative function of x as shown in

Figure 3.

ii) Secondly, observe that the two equivalent formulations (85)-(86) for equation (84)

are useful to better understand the economic optimality of the endogenous failure level

x̃B and its dependence on firm’s activities value x. The left hand side of both equation

is the only one depending on x. Choosing x̃B means choosing the endogenous level cor-
responding to the optimal exercise time: due to current assets value x, before and after

x̃B the correction for the price h�(x, xB) does not exactly compensate the ratio between

the instantaneous variations (due to an instantaneous variation in x) in the first order

correction term and the ∆ of the corresponding Black and Scholes contract P0
E(x, xB).

Equation (86) suggests the same dependence relating the distance to default and the ratio

between the instantaneous variations in approximate claim Ẽ(x, xB) and, again, the ∆-

sensitivity of P0
E(x, xB). The endogenous failure level can be seen as an equilibrium level

which increases as current assets value x rises.
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In this sense, looking at Equation 85, the correction term h�(x, xB) can be interpret as

an elasticity measure at equilibrium.

By simply applying ∂Ẽ(x,xB)
∂x |x=xB = 0 will give a failure level x̄B which is independent

of firm’s current activities value x. Choosing this failure barrier corresponds to a non-
optimal exercise of the option to default embodied in equity. The corrected smooth-
pasting condition leads to an endogenous failure level x̃B which is greater than its lower
bound, and moreover depends on firm’s assets value x. This is a new insight arising from
a structural modeling approach.

A possible explanation of this dependence is that under volatility risk, assuming ρ < 0
makes the distribution of stock price returns not symmetric. In particular, extreme returns
behavior is better captured, since with our assumptions the left tail of their distribution
is fatter: this is why it is not optimal to exercise at the standard smooth pasting level but
choosing a failure level greater than this. The starting point of process xt now matters in
the choice of the the optimal stopping time, since volatility is not constant. The correction
for the price represented by h�(x, xB) is a path-dependent correction depending on current
assets value x: therefore, the optimal exercise time must consider this.

Inside this framework the riskiness of the firm is taken into account from two different
points of view: i) its market price through Λ, ii) the leverage effect through ρ. Observe
that even in the uncorrelated case ρ = 0, the endogenous failure level still depend on x and
it is still different from the lower bound x̄B. In such a case the correction for the volatility
level due to coefficient V2 is still in force. As � → 0 the dependence of the endogenous
failure level on x disappears (and also in case ρ = 0,Λ = 0).

4.2 Debt, Tax Benefits, Bankruptcy Costs and Total Value of the Firm

Using contingent claim valuation, debt value can be expressed as a claim on the underlying
asset describing firm’s activities value x. Under stochastic volatility assumption we have
the following expressions for approximate values of debt, tax benefits and bankruptcy
costs:

D̃(x, xB) =
C

r
+

�
(1− α)xB − C

r

��
xB

x

�λ
h�(x, xB), (87)

˜TB(x, xB) =
τC

r
− τC

r

�
xB

x

�λ
h�(x, xB), (88)

B̃C(x, xB) = αxB
�
xB

x

�λ
h�(x, xB), (89)

with the correction term h�(x, xB) =
�
1 +

√
�H log x

xB

�
, andH = 2r

σ̄4

√
2ν

�
�Λφ��+ 2r

σ̄2 ρ�fφ��
�
.

Due (only) to the assumption of infinite horizon, in this setting debt holders receive C

r

without limit of time in the event of no default and (1− α)xB − C

r
in case of x reaching
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Figure 4: Approximate Debt. The plot shows approximate debt value D̃(x, xB) and P0
D(x, xB) term

as functions of the failure level xB ∈ [0, x]. Base case parameters values are: Λ = 0, r = 0.06, σ̄ = 0.2,
α = 0.5, τ = 0.35, C = 6.5, V3 = 0.003, V2 = 2V3, x = 100, ρ < 0.

xB, meaning C

r
the component of debt value without default risk. Observe that this is

the same as in Leland framework, meaning that at boundaries stochastic volatility does
not produce effect. What is different from Leland framework is that the correction term
P1 modifies the claim value for x > xB. The value of approximate tax benefits of debt
has a downward correction: the first-order correction term P1

TB(x, xB) is negative for all
values x > xB, and this is due to the volatility risk influence on the likelihood of default.

In order to completely describe the capital structure we can write the total value of
the firm as the sum of equity and debt value or equivalently as current assets value plus
tax benefits of debt, less bankruptcy costs.

Alternative and equivalent definitions for the total value of the firm are:

ṽ(x, xB, C, �) := Ẽ(x, xB, C, �) + D̃(x, xB, C, �) = x+ ˜TB(x, xB)− B̃C(x, xB). (90)

Approximate total value of the firm is given by:

ṽ(x, xB, C) = x+
τC

r
−

�
αxB +

τC

r

�
h�(x, xB)

�
xB

x

�λ
. (91)

The correction term h�(x, xB) = 1 +
√
�H log x

xB
is a fundamental quantity in this frame-

work of stochastic volatility. Its contribution is that one of a path dependent correction
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Figure 5: Approximate Tax Benefits of Debt. The plot shows approximate tax benefits of debt
˜TB(x, xB) and P0

TB(x, xB) term as functions of the failure level xB ∈ [0, x]. Base case parameters values
are: Λ = 0, r = 0.06, σ̄ = 0.2, α = 0.5, τ = 0.35, C = 6.5, V3 = 0.003, V2 = 2V3, x = 100, ρ < 0.

for prices due to randomness in volatility.

Our focus to understand if the stochastic volatility effect can increase credit spreads
and reduce leverage ratios predicted by the model. Recall that credit spreads are defined
as

R(x, xB) :=
C

D(x, xB)
− r,

where D(x, xB) := P0
D(x, xB). We will denote with R(x, xB) the credit spread under a

pure Leland framework and with

R̃(x, xB) :=
C

D̃(x, xB)
− r

approximate credit spread under stochastic volatility. Figure 6 shows that randomness in
volatility moves credit spreads exactly in the expected direction, rising them before the
default time in order to compensate investors for the new source of risk.
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Figure 6: Approximate Credit Spreads. The plot shows approximate credit spreads R̃(x, xB) − r
and R(x, xB) − r as functions of the failure level xB ∈ [0, x]. Base case parameters values are: Λ = 0,
r = 0.06, σ̄ = 0.2, α = 0.5, τ = 0.35, C = 6.5, V3 = 0.003, V2 = 2V3, x = 100, ρ < 0.

5 Optimal Capital Structure

We now analyze the capital structure of the firm considering that equity holders will chose
the coupon C in order to maximize the total value of the firm. We recall our approximate
total value of the firm, given by Equation (91).

ṽ(x, xB, C) = x+
τC

r
−

�
αxB +

τC

r

��
1 +

√
�H log

x

xB

��
xB

x

�λ
. (92)

The problem is now to optimize:

g : C �→ ṽ(x, x̃B(C), C)

where x̃B(C) is the endogenous failure level solution of (79). Since we do not have x̃B is
explicit form, by exploiting the linearity of (79) w.r.t. coupon C as noted in Remark 4.8,
we will proceed following the same idea proposed in [3]. Consider xB �→ C̃(xB), where C̃

is solution of (79). Thus, an equivalent problem will be to optimize w.r.t. xB the following
function:

xB �→ ṽ(x, xB, C̃(xB)).

We now numerically compute the optimal capital structure of the firm, i.e. all financial
variables at their optimal level in order to analyze the volatility risk influence.

We consider Leland [12] results as a benchmark in order to understand the effect
produced by volatility risk on all financial variables. The aim is to analyze both sources
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of risk induced by the model: at first only the skew effect, captured by ρ, then its joint
influence with the correction for the volatility level, related to the difference between the
effective volatility σ∗ and the average volatility σ̄. Table 2 shows how optimal corporate

ρ C̃
∗

D̃
∗

R̃
∗

R̃
∗ − r Ẽ

∗
x̃B

∗
ṽ
∗

L̃
∗

0 6.501 96.274 6.753 75.255 32.168 52.820 128.442 74.956 %
-0.05 5.910 84.158 7.022 102.197 39.581 44.916 123.739 68.012 %
-0.06 5.741 81.452 7.049 104.862 41.417 43.413 122.870 66.292 %
-0.07 5.569 78.796 7.067 106.744 43.255 41.961 122.051 64.560 %
-0.08 5.397 76.233 7.080 107.991 45.054 40.575 121.287 62.853 %
-0.09 5.230 73.792 7.087 108.748 46.787 39.264 120.578 61.198 %
-0.1 5.203 73.398 7.088 108.835 47.068 39.053 120.465 60.929 %

Table 2: Skew effect on optimal capital structure. The table shows financial variables at their

optimal level when only the skew effect is considered, i.e. ρ < 0,Λ = 0. The first row of the table reports

Leland [12] results as benchmark, as particular case of ρ = 0,Λ = 0. We consider r = 0.06, σ̄ = 0.2,

α = 0.5, τ = 0.35. Recall V3 :=
√
�ρ

√
2

2 ν�fφ��. We consider V3 = −0.06ρ, V2 = 2V3, see also [8]. L∗, R∗

are in percentage (%), R∗ − r in basis points (bps).

decisions are influenced by the introduction of a negative correlation ρ between assets
value dynamic and the volatility process. We leave ρ varying from ρ = −0.05 to ρ = −0.1,
in order to capture its effects on corporate decisions. The first step is to conduct the
analysis by assuming Λ = 0, meaning the correction for the volatility level being null.
Numerical results show that only the skew effect induced by ρ < 0 produces a significant
impact on corporate financing decisions. Skewness in the underlying dynamics makes
debt less attractive. What emerges is that optimal coupon, debt, total value of the firm
and leverage ratios drop down. And in some cases, this reduction is significant. Only a
slightly negative correlation ρ = −0.05 bring down leverage of around 8%, while a 15%-
reduction is achieved with ρ = −0.1. The maximum total value of the firm is also reduced,
since the increase in optimal equity value is always lower that the reduction in optimal
debt. The coupon level chosen to maximize total firm value is decreasing with the skew
effect, generating a downward jump in optimal debt from 96.3 in case ρ = 0 to 73.4 in
case ρ = −0.1, which is absolutely a not negligible one. Despite lower leverage ratios,
yield spreads are increasing with |ρ|. This behavior can be explained thinking about the
likelihood of default, which should be increased by the skew effect. The market perception
about the credit risk of the firm changes and the firm becomes a riskier activity. There
is uncertainty about its volatility, and its riskiness moves in time. Investing in this firm
requires a higher compensation.

Letting ρ = 0, and introducing the correction for the volatility level will bring the
model to a pure Black and Scholes setting with constant volatility σ∗. This is not the case
we are interested in. As a second step we consider both sources of risk associated to firm

34



value. Table 3 shows how financial variables are modified when also the correction for the
volatility level is considered in a framework with negative leverage effect, i.e. ρ < 0. The
relation existing between the corrected effective volatility σ∗ and the average volatility σ̄
is:

σ∗ =
�
σ̄2 − 2V2,

with V2 = −
√
2
2 ν �Λφ�� < 0 under ρ = 0. As noted in [7], markets data suggest that

usually the corrected effective volatility is higher than the average volatility, this is why
we consider σ∗

>
√
σ̄. As example we consider a negative correlation ρ = −0.05 and

a gap between σ∗ and σ̄ of 1%, 2%, respectively. The skew effect and the volatility level
correction seem to represent an interesting feature to develop applied to credit risk models.
Optimal financing decisions move w.r.t. a pure Leland model, and where both sources of
risk are considered together, their joint influence is strong. The optimal amount of debt is
reduced and leverage ratios can drop down from 75% to 62% only with a slightly negative
correlation ρ = −0.05 and a volatility level correction of 2%.

σ∗
C̃

∗
D̃

∗
R̃

∗
R̃

∗ − r Ẽ
∗

x̃B
∗

ṽ
∗

L̃
∗

σ̄ 6.501 96.274 6.753 75.255 32.168 52.820 128.442 74.956 %
σ̄ + 0.01 5.701 80.266 7.103 110.252 42.011 42.955 123.260 65.120 %
σ̄ + 0.02 5.597 77.350 7.236 123.597 43.495 41.887 124.041 62.358 %

Table 3: Skew effect and volatility level correction: influence on optimal capital structure.

The table shows financial variables at their optimal level when ρ = −0.05 and also a volatility correction

is considered. Recall that σ∗ =
√
σ̄2 − 2V2. We consider r = 0.06, σ̄ = 0.2, α = 0.5, τ = 0.35, V3 = 0.003.

L∗, R∗ are in percentage (%), R∗ − r in basis points (bps).

Numerical results emphasize interesting insights arising from a model where a negative
correlation among assets returns and shocks in volatility and a volatility level correction
coexist. Thus suggesting a possible direction to follow aiming at improving empirical pre-
dictions inside a structural model with endogenous bankruptcy. Introducing a process
describing the evolution of assets volatility makes possible to capture how prices are mod-
ified due to the market’s perception of firm’s credit risk: there is uncertainty about the
volatility level and its evolution in time. Due to possible shocks in volatility, the firm
becomes a riskier activity for the market. Investors will require higher compensations for
this, thus yield spreads must be higher despite lower leverage ratios.

6 Conclusions

The focus in this paper is to introduce volatility risk inside a structural model of credit
risk with endogenous default. The capital structure of a firm is analyzed in a framework
of infinite time horizon following Leland’s idea [12] but assuming a stochastic volatility
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model for the firm’s assets. In particular we consider a stochastic volatility pricing model
where a one-factor process of Orstein-Uhlenbeck type describing the dynamic of the dif-
fusion coefficient is introduced. Moreover, following [7], assets value process belongs to
a fairly large class of stochastic volatility models and from this point of view results are
model-independent. The idea of the paper is to better capture extreme returns behavior,
making stock prices returns distribution asymmetric and with fatter left tails. Inside this
framework we describe and analyze the effects of volatility risk on all financial variables
describing the capital structure to understand if introducing volatility risk could be a way
to improve empirical predictions of structural models (i.e. higher spreads, lower lever-
age ratios). We analyze each component of the capital structure as a derivative contract
whose value can be derived by applying singular perturbation techniques as in [7]. If
compared to the classical Leland model [12], the value of each claim must be corrected
to compensate the holder of each derivative contract for volatility risk. This correction
acts only during the path of processes, i.e. not when the contract is riskless, not when
default arrives. This correction is due to two main sources of risk associated with the
introduced randomness in volatility: i) the skew effect, arising by assuming a correlation ρ
between assets and volatility dynamics; ii) a volatility level correction. Equity holders still
face the problem of optimizing equity value w.r.t. the failure level. Under this approach,
the failure level derived from standard smooth pasting principle is not the solution of the
optimal stopping problem, but only represents a lower bound which has to be satisfied due
to limited liability of equity in order to have equity an increasing function of x. Choosing
that failure level is not optimal since it would mean an early exercise of the option to
default embodied in equity. A corrected smooth pasting condition must be applied in
order to find the endogenous failure level solution of the optimal stopping problem. What
is new in our approach, is that we are dealing in a structural model framework and the
failure level solution of the optimal stopping problem depends on current firm’s activities
value. An idea is to better exploit this insight trying to understand how it is affected by
the mean-reversion speed, meaning studying the distance between the lower bound x̄B

and the optimal solution x̃B under our framework. Under volatility risk, there is uncer-
tainty about the current riskiness of the firm, thus the actual value of firm’s activities
matters. Numerical results obtained by exploiting optimal capital structure suggest that
this stochastic volatility pricing model seems to be a robust way to improve results in
the direction of both higher spreads and lower leverage ratios in a quantitatively signifi-
cant way. The market perception of the credit risk associated to the firm is captured by
approximate corrected prices: yield spreads are higher, despite lower leverage, since the
required compensation for risk increases.
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CONCLUSIONS

The thesis analyzes credit risk modeling following a structural model approach with
endogenous default. We extend the classical Leland [5] framework in three main directions
with the aim at obtaining results more in line with empirical evidence. We introduce pay-
outs in [2, 3], and then also consider corporate tax rate asymmetry [4]: numerical results
show that these lead to predicted leverage ratios closer to historical norms, through their
joint influence on optimal capital structure. Finally, in [1], we introduce volatility risk.
Following Leland suggestions in [6], we consider a framework in which the assumption of
constant volatility in the underlying firm’s assets value stochastic evolution is removed.
Analyzing defaultable claims involved in the capital structure of the firm we derive their
corrected prices under a fairly large class of stochastic volatility models by applying sin-
gular perturbation theory as in [9]. Exploiting optimal capital structure, the stochastic
volatility framework seems to be a robust way to improve results in the direction of both
higher spreads and lower leverage ratios in a quantitatively significant way.

Some ideas for future research deal with both theoretical and empirical issues. At first,
we would like to extend Leland [5] model in the direction of a dynamic capital structure
framework with endogenous default. Allowing for variations in the coupon payments level
should be a way to understand how equity holders can adjust the capital structure as a
more realistic feature to analyze.

The main empirical results in credit risk literature emphasize a poor job of structural
models in predicting credit spreads for short maturities. In our minds the stochastic
volatility framework is able to better capture the credit exposure of the firm and this is
why we would like to work more to develop our application in [1]. For example, studying
how volatility time scales (fast and slow factors) can interact and affect spreads and default
probability inside a structural model framework with finite horizon.

In the same direction, but from a different point of view, we would like to improve
results obtained by calibrating Merton-like structural models under a stochastic volatility
framework (see in [12], [8]). In [7] the classical Merton model [10] is studied inside an
empirical (regression) analysis showing that, supporting partly findings in [11], even this
simple setting is able to predict bond returns sensitivity with respect to changes in stock
returns (hedge ratios). Nevertheless, volatility risk seems to be a fundamental issue to deal
with. Among existing literature about credit risk, [12] propose to consider credit default
swap (CDS) premiums as a direct measure of credit spreads, suggesting that the volatility
and jump risks of a firm are able to predict most of the variation in their levels. Our
aim, following this idea, is to use high-frequency equity prices in order to better capture
the volatility risk component through a volatility estimator robust with respect to the
micro-structure noise.



References

[1] BARSOTTI F. (2011), “Optimal Capital Structure with Endogenous Bankruptcy and
Volatility Risk ”, Working paper.

[2] BARSOTTI F., MANCINO M.E., PONTIER M. (2010), “Capital Structure with
Firm’s Net Cash Payouts”, accepted for publication on a Special Volume edited by
Springer, Quantitative Finance Series, editors: Cira Perna, Marilena Sibillo.

[3] BARSOTTI F., MANCINO M.E., PONTIER M. (2011), “An Endogenous
Bankruptcy Model with Firm’s Net Cash Payouts”, Working paper.

[4] BARSOTTI F., MANCINO M.E., PONTIER M. (2011), “Corporate Debt Value with
Switching Tax Benefits and Payouts”, Working paper.

[5] LELAND H.E. (1994), “Corporate debt value, bond covenant, and optimal capital
structure”, The Journal of Finance, 49, 1213-1252.

[6] LELAND H.E. (2009), “Structural Models and the Credit Crisis”, China International
Conference in Finance.

[7] BARSOTTI F., DEL VIVA L. (2010), “Merton Model of credit risk: New Evi-
dence from Corporate Bond Returns Sensitivity”, Working paper, available on-line
at http://papers.ssrn.com/sol3/papers.cfm?abstract id=1683639 Submitted to Journal of Em-
pirical Finance.

[8] BRUCHE M. (2009), ”Estimating Structural Models of Corporate Debt and Equity”,
Working paper.

[9] FOUQUE J.P., PAPANICOLAOU G., RONNIE K.R., Derivatives in Financial Mar-
kets with Stochastic Volatility, Cambridge University Press (2000).

[10] MERTON R. C. (1974), “On the Pricing of Corporate Debt: The Risk Structure of
Interest Rates”, The Journal of Finance, 29, 449-470.

[11] SCHAEFER S.M., STREBULAEV I.A. (2008), “Structural Models of Credit Risk
are Useful: Evidence from Hedge Ratios on Corporate Bonds”, Journal of Financial
Economics, 90(1), 1–19.

[12] ZHANG B.Y., ZHOU H., ZHU H. (2008), ”Explaining Credit Default Swap Spreads
with the Equity Volatility and Jump Risks of Individual Firms”, Working Paper.


	INTRODUCTION
	I Paper An Endogenous Bankruptcy Modelwith Firm’s Net Cash Payouts
	1 Introduction
	2 A Firm’s Capital Structure with Payouts
	2.1 Endogenous Failure Level
	2.2 Expected Time to Default

	3 Comparative Statics of Financial Variables
	3.1 Equity
	3.2 Debt and Yield Spread
	3.3 Total Value
	3.4 Probability of Default

	4 Optimal Capital Structure
	5 Conclusions

	II Corporate Debt Value with Switching Tax Benefits and Payouts
	1 Introduction
	2 The Model
	3 Endogenous Failure Level
	3.1 Failure Level with exogenous switching barrier
	3.2 Failure level with debt dependent switching barrier

	4 Optimal Capital Structure
	4.1 Exogenous switching barrier
	4.2 Debt dependent switching barrier

	5 Conclusions
	6 Appendix A
	7 Appendix B

	III Optimal Capital Structure with Endogenous Default and Volatility Risk
	1 Introduction
	2 The model
	3 Pricing Defaultable Claims under Volatility Risk
	4 Capital Structure of the Firm under Volatility Risk
	4.1 Equity
	4.2 Debt, Tax Benefits, Bankruptcy Costs and Total Value of the Firm

	5 Optimal Capital Structure
	6 Conclusions

	CONCLUSIONS



