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Liberté in�nitésimale et modèles matriciels
déformés

Le travail e�ectué dans cette thèse concerne les domaines de la théorie
des matrices aléatoires et des probabilités libres, dont on connaît les riches
connexions depuis le début des années 90. Les résultats s'organisent princi-
palement en deux parties : la première porte sur la liberté in�nitésimale, la
seconde sur les matrices aléatoires déformées.

Plus précisément, on jette les bases d'une théorie combinatoire de la
liberté in�nitésimale, au premier ordre d'abord, telle que récemment intro-
duite par Belinschi et Shlyakhtenko, puis aux ordres supérieurs. On en donne
un cadre simple et général, et on introduit des fonctionnelles de cumulants
non-croisés, caractérisant la liberté in�nitésimale. L'accent est mis sur la
combinatoire et les idées d'essence di�érentielle qui sous-tendent cette no-
tion.

La seconde partie poursuit l'étude des déformations de modèles matri-
ciels, qui a été ces dernières années un champ de recherche très actif. Les
résultats présentés sont originaux en ce qu'ils concernent des perturbations
déterministes Hermitiennes de rang non nécessairement �ni de matrices de
Wigner et de Wishart. En outre, un apport de ce travail est la mise en lu-
mière du lien entre la convergence des valeurs propres de ces modèles et
les probabilités libres, plus particulièrement le phénomène de subordination
pour la convolution libre. Ce lien donne une illustration de la puissance des
idées des probabilités libres dans les problèmes de matrices aléatoires.

Mots-clés : Probabilités ; Matrices aléatoires ; Probabilités libres ; Proba-
bilités libres de type B ; Liberté in�nitésimale ; Cumulants non-croisés in�-
nitésimaux ; Système dual de dérivation ; Subordination ; Modèle matriciel
déformé ; Plus grande valeur propre ; Valeur propre extrêmale ; Matrice de
Wigner ; Matrice de covariance empirique.
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In�nitesimal freeness and deformed matrix
models

This thesis is about Random Matrix Theory and Free Probability whose
strong relation is known since the early nineties. The results mainly organize
in two parts : one on in�nitesimal freeness, the other on deformed matrix
models.

More precisely, a combinatorial theory of �rst order in�nitesimal freeness,
as introduced by Belinschi and Shlyakhtenko, is developed and generalized
to higher order. We give a simple and general framework and we introduce
in�nitesimal non-crossing cumulant functionals, providing a characterization
of in�nitesimal freeness. The emphasis is put on combinatorics and on the
essentially di�erential ideas underlying this notion.

The second part carries further the study of deformations of matrix mod-
els, which has been a very active �eld of research these past years. The re-
sults we present are original in the sense they deal with non-necessarily �nite
rank deterministic Hermitian perturbations of Wigner and Wishart matri-
ces. Moreover, these results shed light on the link between convergence of
eigenvalues of deformed matrix models and free probability, particularly the
subordination phenomenon related to free convolution. This link gives an
illustration of the power of free probability ideas in random matrix problems.

Keywords: Probability; Random matrices; Free probability; Free proba-
bility of type B; In�nitesimal freeness; In�nitesimal non-crossing cumulants;
Dual derivation system; Subordination; Deformed matrix model; Largest
eigenvalue; Extreme eigenvalue; Wigner matrix; Sample covariance matrix.
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Notations

Throughout this document, we will use the following notations :

• R,C respectively denote the �elds of real and complex numbers.

• The real and imaginary parts of a complex number z ∈ C are denoted
by <z and =z.

• When A is a commutative unital complex algebra, MN (A) is the set
of square matrices of size N with entries in A, andMN,p(A) is the set
of rectangular matrices with N rows and p columns, and with entries
in A.

• We will use Tr for the trace of a matrix :

∀X ∈MN (A),Tr(X) =
N∑
i=1

Xii,

and tr for the normalized trace :

tr =
1
N

Tr.

• The (real) eigenvalues of a Hermitian matrix are enumerated in the
decreasing order

{λ1 ≥ . . . ≥ λN}.

• A probability triple (Ω,F ,P) is given by a non-empty set Ω, a tribe
F on Ω and a probability measure P on (Ω,F). The expectation is
denoted by E.

• The Lebesgue measure on Rm is denoted by dx.

• The support of a probability measure µ is denoted by supp(µ).

• [m] := {1, . . . ,m}.

• For a map f : X −→ Y , when F is a family of subsets of X, we will
use the notation f(F) for the family {f(A), A ∈ F} of subsets of Y .
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Chapter 1

Introduction to Random

Matrix Theory

1.1 General context

Random Matrix Theory was born in 1928, when J. Wishart suggested, for
statistical data analysis, to study a random matrix of �xed size [Wis28]. This
study has been carried further by several statisticians [Fis39],[Hsu39],[Gir39].
The interest in random matrices was renewed in the �fties by a nuclear physi-
cist, E. Wigner. According to the principles of quantum mechanics, the en-
ergy levels of a system may be described by the eigenvalues of an operator,
the Hamiltonian, aging on a Hilbert space of in�nite dimension. In the case
of a system of highly excited nuclei involved in a slow reaction, the Hamilto-
nian is unknown, and the computations would be anyway too complicated.
Wigner proposed to replace this Hamiltonian by a symmetric random matrix
of large size. This idea was con�rmed by a huge amount of empirical mea-
surements and is the origin of the study of large random matrices ([Meh04]).
Since then, new applications frequently appeared in theoretical physics, to
enumerate planar maps [Zvo97], in chords theory, in the study of growth
models [Kön05], in information theory, particularly in wireless communica-
tion, and in every subject needing the analysis of a great amount of statistical
data, etc.
The object of Random Matrix Theory is the matrix model, that is a mea-
surable map from a probability triple (Ω,F ,P) into a measurable matrix
space. When this latter space is the set of Hermitian matrices HN or sym-
metric matrices SN , as in the following pages, one talks about Hermitian or
symmetric matrix models. Nevertheless, Random Matrix Theory does not
reduce to these particular models : some important matrix models are nei-
ther Hermitian nor symmetric, such as the Haar measure on the unitary and
orthogonal groups, or the Ginibre ensemble [Gin65] and its generalizations.
Once the matrix model chosen, an important question is the asymptotic

11



12 Chapter 1 : Introduction to Random Matrix Theory

global and local behaviors of its spectrum.
The global behavior is the study of the whole spectrum. More precisely,
given a matrix model XN , how should the spectrum be normalized for the
empirical spectral measure

µN :=
1
N

N∑
i=1

δλi

to converge?
The local behavior is concerned with a small amount of eigenvalues. If the
spectrum is real, we will be mainly interested in the largest eigenvalues.
One may also consider the smallest eigenvalues, completing the study of
the edge of the spectrum, or the spacings between neighbouring eigenvalues
picked, roughly speaking, in the bulk of the spectrum. The problem of spac-
ings, which is of physical interest [Meh04], was the object of a conjecture
of Wigner (Wigner's surmise) which was proved to be wrong [Meh60], and
the results obtained ([Meh04], [Joh01a]) seem to establish an analogy with
number theory, and in particular with Riemann Hypothesis on the zeros of
the ζ function [KS99].

1.2 Wigner matrices

Let us begin by the study of the matrix models introduced by Wigner, for
which we will adopt the following de�nition :

De�nition 1.2.1. By real Wigner matrix of size N and associated to the
probability measure µ, we mean a symmetric matrix model WN of size
N such that ((WN )ii)1≤i≤N , ((

√
2WN )ij)1≤i<j≤N are independent random

variables which are identically distributed according to µ.

We also de�ne its complex analogue :

De�nition 1.2.2. By complex Wigner matrix of size N and associated to
the probability measure µ, we mean a Hermitian matrix model WN of size
N such that
((WN )ii)1≤i≤N ,

√
2<((WN )ij)1≤i<j≤N ,

√
2=((WN )ij)1≤i<j≤N are indepen-

dent random variables which are identically distributed according to µ.

The global behavior of Wigner matrices was the object of the �rst asymp-
totic result in Random Matrix Theory : the semicircle law or Wigner's The-
orem.

Theorem 1.2.3. [BS10] Let WN be a (real or complex) Wigner matrix of
size N and associated to a probability measure µ of �nite variance σ2. Then

µ 1√
N
WN

a.s.⇒
N→+∞

µσ,
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where

µσ(dx) =
1

2πσ2

√
4σ2 − x21I[−2σ,2σ](x)dx (1.1)

is the semicircle distribution of parameter σ.

The �rst version of this theorem was proved by Wigner himself in 1955
[Wig55]. His result was the convergence of the mean empirical spectral
measure of a real Wigner matrix associated to a Bernoulli measure. He
noticed a few years later [Wig58] that his method could adapt to a more
general symmetric probability distribution µ all of whose moments are �nite.
This method, based on the convergence of the moments of the mean empirical
spectral measure towards the moments of the limiting distribution, is called
the moments method. An important remark is the identity, for each k ∈ N :∫

R
xkdµ 1√

N
WN

(x) = tr
((WN√

N

)k)
,

allowing to express the k-th moment of the mean empirical spectral measure
as a polynomial in the moments of the entries of the matrix. One thus
obtains :

E
[ ∫

R
xkdµ 1√

N
WN

(x)
]

=
1

N
k+2

2

N∑
i1,...,ik=1

E[(WN )i1i2 · · · (WN )iki1 ].

If k is odd, each term in this sum vanishes, by symmetry of µ. Otherwise, if
k = 2k′ is even, then, among the terms which do not vanish by symmetry of
µ, one identi�es those contributing when N goes to in�nity, and one proves
that their contributions correspond to the k-th moment of the probability
measure µσ : ∫

R
x2k′dµσ(x) = σ2k′ 2k′!

k′!(k′ + 1)!
.

The quantity Ck′ = 2k′!
k′!(k′+1)! is known as the k′-th Catalan number for its

numerous combinatorial interpretations [Sta99].
One may prove this way the convergence in probability of the empirical
spectral measure [Gre63]. Arnold will considerably weaken the hypothesis
made on µ and will also prove an almost sure result [Arn67],[Arn71]. The
case of complex Wigner matrices is similar [Weg76].
There are other proofs of Wigner's Theorem ; one of them characterizes the
empirical spectral measure by its Stieltjes transform :

De�nition 1.2.4. The Stieltjes transform of a �nite positive measure µ on
R is the function Gµ de�ned by :

Gµ(z) =
∫

R

µ(dx)
z − x

,

for any z ∈ C \ R.
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It is easy to see that Gµ is actually de�ned and analytic on C \ supp(µ).
Its behavior in the neighbooring of the support of µ allows to retrieve all the
information on µ :

Lemma 1.2.5. Let µ be a probability measure on R.

(1) The nontangential limit at x ∈ R of (z − x)Gµ(z) exists and is equal
to µ({x}).

(2) The nontangential limit at x ∈ R of =Gµ(z) exists almost everywhere
and is equal to −πf(x), where f is the density of the absolutely con-
tinuous part of µ (with respect to Lebesgue measure).

Another property of Stieltjes transform is its characterization of the con-
vergence of probability measures :

Lemma 1.2.6. Let (µn)n∈N be a sequence of probability measures on R.

(1) If (µn)n∈N weakly converges towards a probability measure µ, then one
has the simple convergence of Gµn towards Gµ on C \ R.

(2) If Gµn simply converges on C \ R towards G, then G is the Stieltjes
transform of a subprobability µ, and (µn)n∈N vaguely converges towards
µ.

The Stieltjes transform of the empirical spectral measure of a matrix
model is the normalized trace of its resolvent : if µN denotes the empirical
spectral measure of a Hermitian matrix model XN , then

∀z ∈ C \ R, GµN (z) = tr((zIN −XN )−1).

This justi�es the name of resolvent method given to the use of Stieltjes
transform in Random Matrix Theory. The proof of Wigner's Theorem by
the resolvent method amounts to showing the convergence of the Stieltjes
transform of the empirical spectral measure of a Wigner matrix towards the
Stieltjes transform of the semicircle distribution, satisfying the remarkable
following functional equation :

∀z ∈ C \ R, σ2Gµσ(z)2 − zGµσ(z) + 1 = 0.

It is interesting that the limit of the empirical spectral measure is both
deterministic and universal, in the sense that this limit is the same (under
the same normalization) for all the Wigner matrices associated to probability
measures µ sharing the same �nite variance.
The second moment plays a crucial role, since the value of the variance
appears in the expression of the limiting distribution (1.1). Ben Arous and
Guionnet studied the global behavior of real Wigner matrices associated to a
probability measure µ whose variance is in�nite [BAG08]. Such a probability
measure may be obtained by choosing a su�ciently heavy tail, as follows :
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De�nition 1.2.7. [Sen76] A function L : R+ −→ R+∗ is said to be slowly
varying when :

∀t > 0,
L(tx)
L(x)

−→
x→+∞

1.

De�nition 1.2.8. [Res07] A probability measure µ on R is said to be heavy-
tailed of index α > 0 if

∀x ≥ 0, µ({t ∈ R | |t| > x}) =
L(x)
xα

,

where L : R+ −→ R+ is a slowly varying function.

For a heavy-tailed probability measure µ of index α > 0, one has

∀k > α,

∫
R
|x|kdµ(x) = +∞.

In particular, when α ∈]0; 2[, the second moment of µ is in�nite.
It is proved in [BAG08] that the empirical spectral measure of Wigner ma-
trices associated to heavy-tailed probability measures of index α ∈]0; 2[ con-
verge under another normalization towards a new limiting distribution (both
depend on the value of α).
In Wigner's Theorem, one may estimate the speed of the convergence of the
empirical spectral measure towards the semicircle distribution by considering
the uniform distance of their repartition functions. This speed is conjectured
to be of order 1

N (see [BS10]).
A consequence of the semicircle law is that the largest eigenvalue of a Wigner
matrix satisfying the assumptions of Theorem 1.2.3 cannot be with positive
probability smaller that the right endpoint 2σ of the support of the limiting
distribution. To be able to prove its almost sure convergence towards 2σ,
one has to bound it almost surely by 2σ. Following [FK81], one uses the
bound

λ2kN
1 ≤ Tr((WN )2kN ), (1.2)

where (kN )N∈N∗ is a sequence of integers going slowly to in�nity, and one
then studies the large trace Tr((WN )2kN ) by a re�nement of the combina-
torics involved in the proof of the semicircle law. This argument is sometimes
called the large traces method. The assumption that progressively appeared
to be minimal for almost sure convergence of the largest eigenvalue towards
2σ is the existence of a �nite fourth moment for µ :

Theorem 1.2.9. [BY88] Let WN be a real or complex Wigner matrix of size
N associated to a centered probability measure µ of variance σ2 and whose
fourth moment is �nite. Then

λ1√
N

a.s.−→
N→+∞

2σ.
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The necessity of the assumption of �nite fourth moment, proved by Bai
and Yin [BY88], was illustrated by the work of Soshnikov �rst [Sos06] and
Au�nger, Ben Arous and Péché [ABAP09] afterwards. They considered real
Wigner matrices associated to a heavy-tailed probability distribution of index
α ∈]0; 2[ for the �rst named, and more generally α ∈]0; 4[ for the others, and
they show that the largest eigenvalues suitably renormalized converge to a
Poisson process. In particular, one has :

Theorem 1.2.10. Let WN be a real Wigner matrix of size N associated to
a heavy-tailed probability distribution µ of index α ∈]0; 2[, or to a centered
heavy-tailed probability distribution µ of index α ∈ [2; 4[, and set

bN := inf{x > 0 | µ(]−∞,−x[∪]x; +∞[) ≤ 2
N(N + 1)

}.

Then

P(
λ1

bN
≤ x) −→

N→+∞
exp(−x−α).

Under the assumptions of Theorem 1.2.9, the largest eigenvalue converg-
ing almost surely towards 2σ, the question of its �uctuations around its limit
is natural. They were identi�ed by Tracy and Widom [TW94], [TW96] in
the case of Wigner matrices associated to the centered Gaussian distribution
of variance σ2 (obviously satisfying the assumptions of Theorem 1.2.9).
A complex Wigner matrix of size N associated to the centered Gaussian
distribution of variance σ2 belongs to the Gaussian Unitary Ensemble of pa-
rameter σ2 (abbreviated G.U.E(N, σ2)). Its distribution on the space HN ,
up to the identi�ation HN ' RN2

, is the following :

PN,σ2,2(dX) =
1

ZN,σ2,2
exp(− 1

2σ2
Tr(X2))dX,

where ZN,σ2,2 is a normalization constant to ensure that∫
HN

PN,σ2,2(dX) = 1.

Parallely, one calls Gaussian Orthogonal Ensemble of parameter σ2 (abbre-
viated G.O.E(N, σ2)) the real Wigner matrix of size N associated to the
centered Gaussian distribution of variance σ2, and whose distribution on the
space SN , up to the identi�ation SN ' RN(N+1)/2, is :

PN,σ2,1(dX) =
1

ZN,σ2,1
exp(− 1

4σ2
Tr(X2))dX,

where ZN,σ2,1 is a normalization constant. One analogously de�nes a Gaus-
sian Symplectic Ensemble.
The name Gaussian Unitary (resp. Orthogonal, Symplectic) Ensemble comes
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from the invariance of its distribution under the conjugation by a matrix from
the unitary group UN (resp. orthogonal group ON , symplectic group SpN ).
Using this property characterizing in a sense the Gaussian Ensembles among
the Wigner matrices (see [Meh04]), Weyl's formula provides an explicit ex-
pression of the joint distribution of the eigenvalues on RN , that one can �nd
in [Dei99] :

QN,σ2,β(dλ) =
1

Z̃N,σ2,β

∏
1≤i<j≤N

|λi − λj |β exp(− β

4σ2

N∑
i=1

λ2
i )dλ,

where β = 2 (resp. β = 1, β = 4) corresponds to G.U.E. (resp. G.O.E.,
G.S.E.). The normalization constant Z̃N,σ2,β may be computed using Sel-
berg's integral [Sel44].
In the case of the G.U.E. (corresponding to β = 2), the point process of the
eigenvalues has a determinantal structure ([Meh04], see also [Sos00]) whose
kernel is expressed in terms of the orthogonal polynomials associated to the
weight exp(− x2

2σ2 ). These are precisely the Hermite polynomials, justifying
the name of Hermite Ensemble sometimes attributed to the spectrum of the
G.U.E.. The local behavior of the G.U.E. is thus linked to the asymptotics
of Hermite polynomials, called Plancherel-Rotach asymptotics [PR29].
The asymptotic corresponding to the edge of the spectrum is linked to the
Fredholm determinant of the operator KAi whose kernel is the Airy kernel :

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
,

where Ai is the Airy function, unique solution on R of the di�erential equa-

tion f ′′(x) = xf(x) satisfying f(x) ∼
x→+∞

(4π
√
x)

1
2 e−

2
3
x

3
2 .

Theorem 1.2.11. Let XN be a G.U.E(N, σ2) matrix, and denote by λ1 its
largest eigenvalue.
Let q : R −→ R be the unique solution of the di�erential equation

q′′(x) = xq(x) + 2q(x)3

such that q(x) ∼
x→+∞

Ai(x). Then

lim
N→+∞

P(N
2
3 (

λ1√
N
− 2σ) ≤ s) = F2(s),

where F2(s) = exp(−
∫ +∞
s (x− s)q2(x)dx).

There is a more general result on the �uctuations of the m largest eigen-
values of the G.U.E. [TW94]. Moreover, from the complex case, Tracy et
Widom [TW96] deduced that the �uctuations of the largest eigenvalue of the
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G.O.E. and the G.S.E. are at the same scale than in the complex case, but
with modi�ed repartition functions

F1(s) =
√
F2(s) exp(−1

2

∫ +∞

s
q(x)dx)

and

F4(s) =
√
F2(s)

1
2

(exp(
1
2

∫ +∞

s
q(x)dx) + exp(−1

2

∫ +∞

s
q(x)dx)).

The distributions whose repartition functions are F1, F2, F4 are now known
as the Tracy-Widom distributions. They appear in the asymptotic study
of percolation models ([BS05],[BM05],[PS00]), of growth models [Joh00], of
the symmetric group ([BDJ99],[BDJ00],[Joh01a], [BR01]). One may consult
[Kön05] for an introduction.
For a wide class of real (resp. complex) Wigner matrices, the universality
of �uctuations of the largest eigenvalues around their limit are conjectured
to be universal, in the sense that these �uctuations do not depend on the
particular choice of µ. Soshnikov's work [Sos99] is a great advance since it
gives a proof of universality of the �uctuations of the largest eigenvalues of
real (resp. complex) Wigner matrices associated to symmetric probability
measures µ with the same variance and satisfying the subgaussian moments
condition :

∃C > 0, ∀k ∈ N∗,
∫

R
x2kdµ(x) ≤ (Ck)k.

In this work, universality of the �uctuations is reduced to universality of the
asymptotics of large traces similar as in (1.2), but with kN going su�ciently

fast to in�nity (kN ∼ N
2
3 ). It remains then to re�ne the large traces method

of [FK81] and [BY88] following [SS98b], [SS98a]. The results of [Sos99] were
improved by the same strategy by Ruzmaikina [Ruz06], Péché and Soshnikov
[PS07], [PS08] and Khorunzhy [KV08], [Kho09], [Kho10].
Notice in [FS08] a new promising approach of the large traces method. Re-
cently, Tao and Vu proved a variant of Soshnikov's universality result, by a
Lindeberg method, without assuming symmetry condition [TV10].
Finally, the spacings between neighbouring eigenvalues of a Wigner matrix
were the object of several recent developments : Johansson [Joh01b], then
Tao and Vu [TV09b], showed that the results known to hold for the G.U.E.
for �fty years ([Meh04]) were quite universal ; Ben Arous and Bourgade
studied the maximal spacings.

1.3 Sample covariance matrices

The interest of statisticians in Random Matrix Theory is mainly focused on
sample covariance matrices, that we de�ne as follows :
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De�nition 1.3.1. A real (resp. complex) sample covariance matrix is a
symmetric (resp. Hermitian) matrix model of size N and of the form XN =
Σ

1
2AA∗Σ

1
2 , where A is a rectangular matrix with N rows and p columns

whose entries are independent identically distributed real (resp. complex)
random variables and Σ is a deterministic symmetric (Hermitian) de�nite
positive matrix of size N . The matrix Σ is called true covariance matrix, p
the number of variables and N the sample size.

The matrix model originally considered by Wishart in [Wis28], named
Wishart matrix, is a particular case of real sample covariance matrix, when
one chooses for the entries of A independent real standard Gaussian vari-
ables.
We �rst deal with white sample covariance matrices, that is whose true co-
variance matrix is Σ = σ2IN.
We restrict ourselves to p ≥ N , by simply noticing that the spectra of AA∗

and A∗A only di�er by p−N zeros.
The distribution of white Wishart matrices, in the case p ≥ N , is absolutely
continuous with respect to the Lebesgue measure on SN , with support in the
set of positive symmetric matrices, and density given by :

1
Zp,N,σ,1

(detX)
p−N−1

2 exp(− 1
2σ2

Tr(X)),

where Zp,N,σ,1 in a normalization constant.
This distribution is invariant under conjugation by a matrix of the orthogonal
group Op and one obtains an explicit expression of the joint distribution of
the eigenvalues, whose support is in (R+)p :

1
Z̃p,N,σ2,1

∏
1≤i<j≤N

|λi − λj |
N∏
i=1

λ
p−N−1

2
i exp(− 1

2σ2

N∑
i=1

λi)dλ.

Once again, the normalization constant Z̃p,N,σ2,1 may be computed using
Selberg integral. The orthogonal polynomials associated to the weight

x
p−N−1

2 exp(− x

2σ2
)

are explicitely known : these are the Laguerre polynomials, providing an
explanation of the name Laguerre Orthogonal Ensemble (L.O.E.) of size N
with p degrees of freedom also attributed to this model. One de�nes analo-
gously the Laguerre Unitary Ensemble (L.U.E.) and the Laguerre Symplectic
Ensemble (L.S.E.).
About the global behavior of white sample covariance matrices, one has the
following result :
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Theorem 1.3.2. Let (p(N))N∈N∗ be a sequence of positive integers such that

p(N)
N

−→
N→+∞

γ ≥ 1,

and let σ > 0, consider the real or complex sample covariance matrix XN =
AA∗ where A is a rectangular matrix with N rows and p(N) columns whose
entries are independent identically distributed random variables of variance
σ2. Then

µ 1
N
XN

a.s.⇒
N→+∞

πγ,σ,

where

πγ,σ(dx) =
1

2πσ2x

√
(b− x)(x− a)1I[a,b](x)dx, (1.3)

setting a = σ2(
√
γ − 1)2 and b = σ2(

√
γ + 1)2.

The distributions πγ,σ were identi�ed for the �rst time by Marchenko and
Pastur in [MP67], and are for this reason called Marchenko-Pastur distribu-
tions. The original proof of [MP67] initiated the use of Stieltjes transform
in Random Matrix theory.
In Theorem 1.3.2, the common value of the variance of the entries of A ap-
pears in the expression of the limiting distribution (1.3). Belinschi, Dembo
and Guionnet studied in [BDG09] the global behavior of white real sample
covariance matrices AA∗ when the entries of A follow a heavy-tailed distri-
bution of index α ∈]0; 2[. The empirical spectral measure converges in this
case, under a new normalization, towards a new limiting distribution (both
depend on the value of α).
As in Wigner's Theorem, one may study the speed of the convergence in
Theorem 1.3.2 : it seems that it is also of order 1

N , even if this has not been
proved yet for a general sample covariance matrix [BS10].
A consequence of Theorem 1.3.2 is that the largest eigenvalue of a sample co-
variance matrix satisfying the assumptions of Theorem 1.3.2 is almost surely

greater than the right endpoint b = σ2(1 +
√

1
γ )2 of the support of the lim-

iting distribution. Assuming that the distribution of the entries of A have a
�nite fourth moment, one gets an almost sure convergence result :

Theorem 1.3.3. [YBK88] Let (p(N))N∈N∗ be a sequence of positive integers
such that

p(N)
N

−→
N→+∞

γ ≥ 1,

and let σ > 0, consider a sample covariance matrix XN = AA∗, where A
is a rectangular matrix with N rows and p(N) columns whose entries are
independent random variables identically distributed according to a centered
distribution of variance σ2 and having a �nite fourth moment. Then

λ1

N

a.s.−→
N→+∞

σ2(
√
γ + 1)2.
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The �rst result of convergence of the largest eigenvalue of a sample co-
variance matrix is due to Geman [Gem80], who proved, by the large traces
method, the almost sure convergence for centered subgaussian entries. The
assumptions were progressively reduced to those of Theorem 1.3.3. The
necessity of the assumption of �nite fourth moment to have almost sure con-
vergence was proved in [BSY88]. Note that, to obtain the convergence in
probability, one knows a weaker necessary and su�cient condition [Sil89].
In [ABAP09], real sample covariance matrices AA∗, with entries of A follow-
ing a centered heavy-tailed distribution of index α ∈]0; 4[, are studied. It is
shown there that the largest eigenvalues, suitably normalized, converge to a
Poisson process.
The �uctuations of the largest eigenvalue around its limit were identi�ed in
the cases of the L.U.E [Joh00] and of the L.O.E. [Joh01c].

Theorem 1.3.4. Denoting by λ1 the largest eigenvalue of a L.U.E. matrix
of size N , with p(N) degrees of freedom, satisfying

p(N)
N

−→
N→+∞

γ ≥ 1,

one has

lim
N→+∞

P(
N

2
3

σ2(1 +
√

p(N)
N )(1 +

√
N
p(N))

1
3

(
λ1

N
−σ2(1+

√
p(N)
N

)2) ≤ s) = F2(s).

Theorem 1.3.5. Denoting by λ1 the largest eigenvalue of a L.O.E. matrix
of size N , with p(N) degrees of freedom, satisfying

p(N)
N

−→
N→+∞

γ ≥ 1,

one has

lim
N→+∞

P(
N

2
3

σ2(1 +
√

p(N)
N )(1 +

√
N
p(N))

1
3

(
λ1

N
−σ2(1+

√
p(N)
N

)2) ≤ s) = F1(s).

As for Wigner matrices, it is conjectured that the �uctuations of the
largest eigenvalues around their limit are universal for a wide class of real
(resp. complex) white sample covariance matrices. This universality was
proved for sample covariance matrices whose entries are symmetric and sub-
gaussian in [Sos02], [Péc09], and more general entries in [TV09a].

We now focus on non-white sample covariance matrices Σ
1
2AA∗Σ

1
2 where

Σ is more general. Although there is a direct statistical interest of this
model, we rather view it as a deformation of the white case and we analyze
the in�uence of Σ on the asymptotic behavior of the spectrum. We restrict
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ourselves to a deterministic symmetric (resp. Hermitian) de�nite positive Σ,
even if some results adapt to random true covariance matrices independent
of A. Such a random diagonal Σ, with independent identically distributed
diagonal entries, is indeed considered in [MP67]. We will also make the
following assumption on Σ :

µΣ ⇒
N→+∞

ρ, (1.4)

where ρ is a compactly supported probability measure on R+.
The in�uence of the deformation on the global behavior is the following :

Theorem 1.3.6. [Sil95] Let (p(N))N∈N∗ be a sequence of positive integers
such that

p(N)
N

−→
N→+∞

γ ≥ 1,

and let Σ be a deterministic Hermitian positive de�nite matrix satisfying
condition (1.4), consider the sample covariance matrix XN = Σ

1
2AA∗Σ

1
2 ,

where A is a rectangular matrix with N rows and N columns, with real or
complex independent entries identically distributed according to a distribution
of variance 1. Then

µ 1
N
XN

a.s.⇒
N→+∞

πγ,ρ,

where πγ,ρ is characterized by :

Gπγ,ρ(z) =
∫

R

1
z − t(1 + γzGπγ,ρ(z))

ρ(dt). (1.5)

We are now in position to examine the convergence and the �uctua-
tions of the largest eigenvalue of a sample covariance matrix. For instance,
Bai and Silverstein proved, under certain additional assumptions compared
to Theorem 1.3.6, the almost sure convergence of the largest eigenvalue of
XN = Σ

1
2AA∗Σ

1
2 towards the right endpoint of the support of the limiting

distribution πγ,ρ [BS98]. They put into evidence a more precise phenomenon,
the exact separation phenomenon : to any compact interval I in the comple-
mentary of the spectrum of Σ, one associates an explicit compact interval J
in the complementary of the spectrum of XN for N su�ciently large, and
moreover there are as many eigenvalues of XN on the right of J as eigenval-
ues of Σ on the right of I [BS99]. In the same direction, El Karoui proved, for
non-white Wishart matrices associated to a large choice of true covariance
matrices, not only convergence of the largest eigenvalue towards the right
edpoint of the limiting support, but also that its �uctuations were governed
by Tracy-Widom distribution [EK07]. However, some choices of Σ perturb
the behavior of the largest eigenvalue. This is sometimes the case with the
spiked population model, introduced by Johnstone [Joh01c].
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De�nition 1.3.7. By spiked population model we mean a sample covariance
matrix whose true covariance matrix Σ is a deterministic diagonal matrix of
size N and of the form :

Σ = Diag(θ1, . . . , θr, 1, . . . , 1),

where θ1 ≥ · · · ≥ θr.

Baik, Ben Arous and Péché established in [BBAP05] a phase transition
for the largest eigenvalue of the spiked population model.

Theorem 1.3.8. Let XN be a Gaussian spiked population model de�ned
above, with r, θ1, . . . , θr �xed independently of N and

p(N)
N

−→
N→+∞

γ ≥ 1,

then :

• if θ1 = . . . = θk > 1 +
√
γ and θk > θk+1,

P(
√
N√

γθ2
1(1− 1

γ(θ1−1)2 )
(
λ1

N
− σ2γθ1(1 +

1
γ(θ1 − 1)

) ≤ s) →
N→+∞

Gk(s),

where Gk is the distribution of the largest eigenvalue of a G.U.E(k, 1).

• if θ1 = . . . = θk = 1 +
√
γ et θk+1 < 1 +

√
γ,

P(
N

2
3γ

1
6

(1 +
√
γ)

4
3

(
λ1

N
− σ2(1 +

√
γ)2) ≤ s) →

N→+∞
Fk+2(s),

where Fk+2 is a modi�cation of Tracy-Widom distribution.

• if θ1 < 1 +
√

1
γ ,

P(
N

2
3γ

1
6

(1 +
√
γ)

4
3

(
λ1

N
− σ2(1 +

√
γ)2) ≤ s) →

N→+∞
F2(s),

where F2 is the Tracy-Widom distribution.

This result was generalized in di�erent directions : to real spiked pop-
ulation models by Paul (at least for the �rst point)[Pau07], singular spiked
population models by Onatski [Ona08], non-Gaussian by Baik and Silver-
stein for the convergence [BS06] and Bai and Yao on the one hand [BY08b],
Féral and Péché on the other hand [FP07], for the �uctuations. The argu-
ments of Bai and Yao allow to deal with non-diagonal Σ (but still with a
�xed number of eigenvalues di�erent of 1). An improved result was recently
proved by Bai and Yao, about the following generalized spiked population
model :
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De�nition 1.3.9. By generalized spiked population model we mean a sam-
ple covariance matrix whose true covariance matrix Σ is a deterministic
Hermitian positive de�nite matrix of size N with r �xed eigenvalues θ1 >
· · · > θr and N − r other eigenvalues (βi,N )1≤i≤N−r.

The result is the following :

Theorem 1.3.10. Let XN be a generalized spiked population model of size
N de�ned above ; assume that r, θ1, . . . , θr are �xed independently of N , that

p(N)
N

−→
N→+∞

γ ≥ 1,

µΣ ⇒
N→+∞

ρ,

max
1≤i≤N−r

dist(βi,N , supp(ρ)) −→
N→+∞

0

and (‖Σ‖)N∈N∗ is bounded. Then, denoting

ψ(θ) = γθ + θ

∫
R

t

θ − t
ρ(dt),

• if θi is the mi-th eigenvalue of Σ (in the decreasing order) and satis�es

ψ′(θi) > 0, one has almost sure convergence of
λmi
N towards ψ(θi) with

Gaussian �uctuations.

• if θi is the mi-th eigenvalue of Σ (in the decreasing order) and satis�es
ψ′(θi) ≤ 0, there are two cases :

� if the maximal interval of the complementary of the support of ρ
contains a subinterval I on which ψ′ is positive, then one has al-

most sure convergence of
λmi
N towards ψ(x) where x is an endpoint

of I ;

� otherwise,
λmi
N almost surely converges to the ρ([0;λmi ])-quantile

of πγ,ρ.

1.4 Additively deformed model

The content of the last part of the preceding Section was the study of the
in�uence of a multiplicative perturbation on the local behavior of sample
covariance matrices. We now investigate the in�uence of an additive pertur-
bation on the local behavior of Hermitian matrix models.
We restrict to �xed (independently of N) rank r perturbations. In this case,
the empirical spectral measure of the deformed model still almost surely con-
verges towards the semicircle distribution (1.1).
For a deformed G.U.E.

WN√
N

+AN ,
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where WN is a G.U.E(N, σ2) matrix and AN is a deterministic Hermitian
matrix of rank r �xed independently of N and whose r nonzero eigenval-
ues are �xed, Johansson, following the work of Brézin and Hikami [BH96],
[BH97], proved in [Joh01b] that the spectrum still has a determinantal struc-
ture, with a modi�ed kernel. His result, which applies to a more general
deformed model, relies on Harish-Chandra-Itzykson-Zuber integral and on
an interpretation in terms of nonintersecting Brownian motions. In [Péc06],
Péché obtains, by a saddle point analysis, the local statistics at the edge of
the spectrum of the deformed G.U.E(N, σ) via the asymptotic of the kernel.
Her approach adapts to a perturbation whose rank is negligible compared
to N . One observes a phase transition phenomenon analogous to Theorem
1.3.8: denoting by θ1 the largest eigenvalue of AN , the limiting value and the
�uctuations of the largest eigenvalue λ1 of WN√

N
+AN depend on the position

of θ1 with respect to σ :

• if θ1 < σ, one has convergence of λ1 towards 2σ with Tracy-Widom
�uctuations.

• if θ1 = σ, one still has convergence of λ1 towards 2σ but with modi�ed
�uctuations.

• if θ1 > σ, one has convergence of λ1 towards ρθ1 := θ1 + σ2

θ1
> 2σ, with

Gaussian �uctuations.

As in the multiplicative case, the phase transition phenomenon exhibits some
universality. Péché and Féral proved indeed in [FP07] that the conclusions
above still hold for a deformed Wigner model

WN√
N

+AN ,

whereWN is a real or complex Wigner matrix of size N associated to a sym-
metric subgaussian distribution with variance σ2, and AN is a deterministic
matrix whose entries are all equal to θ

N where θ is any �xed real number.
Without an explicit formula for the density of the eigenvalues, beyond the
Gaussian case, Féral et Péché's strategy is the large traces method, as devel-
oped by [SS98b], [SS98a], [Sos99]. Recall that, in this method, one links the
convergence and the �uctuations of the largest eigenvalue of a matrix model
to the asymptotics of large traces, for which it is possible, by an ad-hoc com-
binatorics, to prove that they only depend on the values of θ and σ. This
implies that the asymptotic behavior of the largest eigenvalue is the same in
the general case as in the Gaussian case. The result of [FP07] is completed
by the older result of [FK81] on the largest eigenvalue of Wigner matrices
associated to a non-necessarily centered distribution. The results of [FP07]
are limited by the very particular form of the perturbation AN , of rank 1
and all of whose entries are equal.
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More general �nite rank perturbations are considered in the work of Capi-
taine, Donati-Martin and Féral in [CDMF09]. Note that the model, as well
as the method used and the conclusions obtained, are a bit di�erent than the
preceding. More precisely, the model, authorizing more general �nite rank
perturbations, also replaces the subgaussian moments condition on the dis-
tribution µ of the entries of the Wigner matrix, by an assumption of Poincaré
inequality, that is :

De�nition 1.4.1. A probability measure µ on R satis�es a Poincaré inequal-
ity if there exists a positive constant C such that, for all function f : R→ C
of class C1 and such that f and f ′ are in L2(µ),

V(f) ≤ C
∫
|f ′|2dµ,

where V(f) = E(|f − E(f)|2) denotes the variance of f .

The convergence result of the largest eigenvalues in [CDMF09] is the
same phase transition as in previous works.

Theorem 1.4.2. [CDMF09] Let WN be a real or complex Wigner matrix
of size N associated to a symmetric probability measure of variance σ2 and
satisfying a Poincaré inequality, let AN be a �xed rank r deterministic sym-
metric or Hermitian matrix having a �xed number J of real nonzero �xed
distinct eigenvalues

θ1 > · · · > θJ ,

of muliplicities ki (of course
∑J

i=1 ki = r), among which J+σ (resp. J−σ)
are greater than σ (resp. lower than −σ). Then, for 1 ≤ i ≤ J+σ or
J − J−σ + 1 ≤ i ≤ N , the ki eigenvalues

λPi
j=1−1kj+1, . . . , λ

Pi
j=1 kj

of 1√
N
WN +AN (in the decreasing order) converge almost surely towards ρθi .

Moreover,
λPJ+σ

j=1 kj+1

a.s.−→
N→+∞

2σ,

λN−
PJ
j=J−J−σ+1 kj+1

a.s.−→
N→+∞

−2σ.

However, another progress of [CDMF09] is to put into evidence the non-
universality of �uctuations : there are perturbations, a matrix whose only
nonzero entry is at �rst row and �rst column and is greater than σ for in-
stance, which bring �uctuations of the largest eigenvalue depending on the
distribution of the entries of the Wigner matrix. A more careful study of
these non-universal �uctuation is carried in [CDF09].
The plan of the proof of Theorem 1.4.2 follows the proof of the result of
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Baik and Silverstein on sample covariance matrices [BS06], as suggested by
Féral in her PhD dissertation : they �rst show an almost sure inclusion,
for N large enough, of the spectrum of 1√

N
WN + AN in a neighborhood of

the set composed of the support of the semicircle distribution and of the
{ρθi}1≤i≤J . Then, they establish, an exact separation phenomenon between
the spectrum of AN and the spectrum of 1√

N
WN + AN . Nevertheless, the

strategy di�ers from [BS06] in the proof of the inclusion of the spectrum,
prefering a method initiated by Haagerup and Thorbjornsen in [HT05], and
developed further in [Sch05], [CDM07]. This method relies on a precise es-
timation of the Stieltjes transform of the mean empirical spectral measure.
A systematic study of the largest eigenvalues and of their associated eigen-
vectors is carried by Benaych-Georges and Rao in [BR09] for general unitarily
invariant models deformed by �nite rank perturbations. Their elegant proof
mixes arguments from linear algebra and from concentration of measure the-
ory.
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Chapter 2

Introduction to free probability

2.1 From operator algebra to free probability

Free probability is rooted in the theory of operator algebras, more precisely
in the problem of classi�cation of structures named von Neumann algebras,
because the mathematician John von Neumann introduced them in the thir-
ties.

De�nition 2.1.1. Let H be a Hilbert space, a von Neumann algebra in H
is a ∗-subalgebra A of the algebra of bounded linear operators of H equal to
its bicommutant :

A = A′′.

Among von Neumann algebras, let us focus on those built from a dis-
crete group G. On the Hilbert space l2(G), equipped with an orthonormal
basis (eg)g∈G, consider the left regular representation λ on G de�ned by
λ(h)(eg) = ehg. Then L(G) := λ(G)′′ is a von Neumann algebra in l2(G),
called the group von Neumann algebra of G.
The group von Neumann algebra of a discrete group G has a state, that
is a linear functional ϕ which is positive (∀x ∈ L(G), ϕ(x∗x) ≥ 0) nor-
malized (ϕ(1) = 1), and with the special properties of tracialty (∀x, y ∈
L(G), ϕ(xy) = ϕ(yx)), and ultraweak continuity.
Any commutative von Neumann algebra being isomorphic to an algebra of
essentially bounded random variables L∞(Ω,F ,P), which, equipped with
the expectation E, is the framework of classical probability, we adopt the
following de�nition :

De�nition 2.1.2. We call W ∗-probability space the pair (A, ϕ), where A
is a von Neumann algebra in a Hilbert space H, and ϕ is a ultraweakly
continuous state.

We often work in the following simpler and more general structure, which
is the framework of noncommutative probability :

29
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De�nition 2.1.3. We call noncommutative probability space the pair (A, ϕ),
where A is a unital complex algebra, and ϕ is a linear functional on A
satisfying ϕ(1A) = 1.

In a noncommutative probability space (A, ϕ), A plays the role of the set
of random variables L∞(Ω,F ,P) in classical probability, and ϕ the role of
the expectation E. The elements a ∈ A are therefore called noncommutative
random variables.
If n 6= m are two distinct positive integers, we know that the free groups
Fn and Fm are not isomorphic, but the problem to decide whether their
von Neumann algebras are or not isomorphic remains open. The idea of
Voiculescu, motivated by this isomorphism problem, was to translate the
algebraic freeness condition from the level of groups to the level of group
algebras and to develop a noncommutative probability theory, on a noncom-
mutative probability space, in which this new notion of freeness plays the
role of independence in classical probability [Voi85].

De�nition 2.1.4. Let (A, ϕ) be a noncommutative probability space, unital
subalgebras (Ai)i∈I are said to be free if they satisfy the following condition:

If i1, . . . , in ∈ I are such that i1 6= i2 6= . . . 6= in,

and if a1 ∈ Ai1 , . . . , an ∈ Ain are such that ϕ(a1) = · · · = ϕ(an) = 0,
then ϕ(a1 · · · an) = 0.

Subsets of (A, ϕ) are said to be free if the unital subalgebras they generate
are free.

The program of free probability is the development of a free version
of the classical theory of probability. One may distinguish two alternative
approaches : the analytical approach and the combinatorial approach.

2.2 Analytical approach

In a classical probability space (L∞(Ω,F ,P),E), the distribution of a com-
plex random variable X is a probability measure µX on C, de�ned, for each
Borel set B of C, by

µX(B) = P(X−1(B)).

In a W ∗-probability space (A, ϕ), one de�nes the distribution of a non-
commutative random variable a ∈ A, under the extra assumption that it is
normal, that is satisfying a∗a = aa∗, in the following way : using the spectral
theorem, one associates to the linear functional

f 7−→ ϕ(f(a)),
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de�ned on the set of measurable maps on C, a compactly supported proba-
bility measure µa on C satisfying, for each measurable map f , the relation:

ϕ(f(a)) =
∫

R
f(x)dµa(x).

The measure µa is the distribution of the noncommutative random variable
a. For any compactly supported probability measure µ on C, it is possible
to construct a W ∗-probability space (A, ϕ) and a normal noncommutative
random variable a ∈ A with distribution µ.
In the same way as, in classical probability, one may realize in a probability
space two independent random variables of given distributions, one may also
realize in aW ∗-probability space two free noncommutative random variables
of given distributions, by the construction of a free product [VDN92].

2.2.1 Free additive convolution

In the correspondence above between normal noncommutative random vari-
ables and compactly supported probability measures on C, the selfadjoint
variables, satisfying a∗ = a, correspond to compactly supported probability
measures on R. Using the free product, one de�nes an operation on com-
pactly supported probability measures on R, named free additive convolu-
tion, and denoted by � : if µ and ν are two compactly supported probability
measures on R, µ� ν is the distribution of a+ b, when a and b are free self-
adjoint noncommutative random variables of respective distributions µ and
ν [Voi86]. The operation � was successively extended to probability mea-
sures with �nite variance [Maa92], then to general probability measures on
R [BV93].
The linearization of the classical convolution of measures is obtained by the
log-Fourier transform ; its free analogue is called the R-transform [Voi86],
[BV93]. For a probability measure µ on R, the Stieltjes transform Gµ has a
right inverse Kµ de�ned on a domain of the form

∪
α>0
{z = x+ iy : 0 < y < δα, x < αy}.

De�nition 2.2.1. Let µ be a probability measure on R, we call R-transform
of µ the function Rµ de�ned by

Rµ(z) := Kµ(z)− 1
z
.

Theorem 2.2.2. Let µ and ν be two probability measures on R, then there
exists a domain of the complex plane where Rµ�ν , Rµ and Rν are de�ned
and related by :

Rµ�ν = Rµ +Rν .
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Free additive convolution of probability measures has an important prop-
erty, called subordination :

Theorem 2.2.3. Let µ and ν be two probability measures on R, there exists
a unique analytic map ωµ,ν : C+ → C+ such that

∀z ∈ C+, Gµ�ν(z) = Gµ(ωµ,ν(z)),

∀z ∈ C+,=ωµ,ν(z) ≥ =z

and

lim
y↑+∞

ωµ,ν(iy)
iy

= 1.

This phenomenon, �rst observed by Voiculescu under a generic assump-
tion [Voi93], was proved in full generality in [Bia98]. A new proof was
given later, using a �xed point theorem for analytic self-maps of the upper
half-plane [BB07]. Subordination allowed to prove some remarkable regular-
ity properties of the free additive convolution of two probability measures
([Voi93],[BV95],[Bia97a],[BV98],[BB04],[Bel06],[Bel08],[BBGG09]) or to give
a new de�nition of free additive convolution [CG08a].
Following the analogy with classical probability, one proves free versions of
the most famous limit theorems : weak law of large numbers [BP96], central
limit theorem ([Voi86],[BV95],[Kar07]) or Poisson theorem. We state here a
version of the free central limit theorem :

Theorem 2.2.4. Let (an)n∈N∗ be a sequence of free noncommutative random
variables in a noncommutative probability space (A, ϕ), satisfying :

∀n ∈ N∗, ϕ(an) = 0,

lim
n→+∞

1
n

n∑
i=1

ϕ(a2
i ) = σ2 > 0,

sup
i∈N∗

ϕ(aki ) <∞.

Then
µ 1√

n

Pn
i=1 ai

⇒
n→+∞

µσ.

It is remarkable that the limiting distribution in the free central limit
theorem is the semicircle distribution, exactly as in Wigner's Theorem. This
distribution is therefore the free analogue of the Gaussian distribution ; one
sometimes calls it the free Gaussian distribution. The free Poisson distribu-
tions appear as the limits in the free version of the free Poisson theorem:

Theorem 2.2.5. Let γ ≥ 0, σ > 0, then

((1− γ

n
)δ0 +

γ

n
δσ2)�n ⇒

n→+∞
πγ,σ.
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The free Poisson distributions coincide with the Marchenko-Pastur distri-
butions. Free Poisson and free Gaussian distributions are particular cases of
�-in�nitely divisible distributions, whose de�nition is the following rewriting
of the classical de�nition :

De�nition 2.2.6. A probability measure µ on R is said �-in�nitely divisible
if, for each n ∈ N∗, there is a probability measure µn on R such that :

µ = µ�n
n .

In�nitely divisible distributions are important for two reasons : on the
one hand, they are the distributions µ generating a free additive convolution
semigroup (µt)t≥0 (satisfying µ0 = δ0, µ1 = µ, µs � µt = µs+t,∀s, t ≥ 0 and
t −→ µt is continuous for the weak-∗ topology) allowing to de�ne a process
with free and stationnary increments. We denote then µt = µ�t. Notice
that, contrary to the classical case, for each probability measure µ, one may
de�ne a partial free additive convolution semigroup (µt)t≥1 ([BV95],[NS96]).
On the other hand, in�nitely divisible distributions are the possible limits in
free convolution limit theorems [BP00].
The R-transform of a free additive in�nitely divisible distribution has a rep-
resentation, analogous to the Lévy-Hincin representation of the log-Fourier
transform of classical in�nitely divisible distributions [BV93] : there is a
nonnegative real number β ≥ 0 and a �nite positive measure σ on R such
that

∀z ∈ C−, Rµ(z) = β +
∫

R

z + t

1− tz
dσ(t).

The analogy is deeper, since Bercovici et Pata built a bijection between
classical and free in�nitely divisible distributions, with the nice property to
conserve the partial domains of attraction [BP99].
The study of limit theorems, initiated by Bercovici and Pata, was general-
ized to in�nitesimal triangular arrays by Chistyakov and Götze [CG08a] and
Bercovici and Wang [BW08a].

2.2.2 Free multiplicative convolution

Contrary to the classical case, in which the exp function allows to deduce
results on multiplicative convolution of probability measures from results on
additive convolution, free multiplication requires a special study.
Free multiplicative convolution, denoted by �, is an operation de�ned on
two sets of probability measures : probability measures on the unit circle T
and compactly supported probability measures on R+ [Voi87].
Probability measures on T correspond to unitary noncommutative random
variables, that is satisfying a∗a = aa∗ = 1A. The free multiplicative convolu-
tion associates to a pair of probability measures µ and ν on T the distribution
µ�ν of ab, where a and b are free unitary noncommutative random variables
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of a W ∗-probability space (A, ϕ) with respective distributions µ and ν.
Compactly supported probability measures in R+ correspond to noncommu-
tative random variables that one can write as x∗x, for an x ∈ A : they are
said positive. Free multiplicative convolution associates to a pair of com-
pactly probability measures µ and ν on R+ the distribution µ� ν of a

1
2 ba

1
2 ,

where a and b are free positive noncommutative random variables of a W ∗-
probability space with distributions µ and ν. As in the additive case, free
multiplicative convolution was extended to an operation on general probabil-
ity measures on R+ [BV93]. We choose to detail the study of this extended
operation.
The role of Mellin transform in classical probability is played in free proba-
bility by the S-transform [Voi87],[BV93] :

De�nition 2.2.7. Let µ 6= δ0 be a probability measure on R+, the function

ψµ(z) =
∫

C

zt

1− zt
dµ(z)

is invertible on the half-plane iC+, with inverse χµ. We call S-transform of
µ the function Sµ de�ned by :

Sµ(z) =
z + 1
z

χµ(z).

Theorem 2.2.8. Let µ 6= δ0 and ν 6= δ0 be two probability measures on R+,
then there exists a domain of the complex plane where

Sµ�ν = SµSν .

The di�culties set by centered measures are discussed in [RS07] and
[AEPA09]. Free multiplicative convolution also presents a subordination
phenomenon ([Bia98],[BB07]), allowing to deduce regularity results on the
free multiplicative convolution of measures ([Bel03],[BB05]) :

Theorem 2.2.9. Let µ 6= δ0 and ν 6= δ0 be two probability measures on R+,
there exists an analytic map ω : C+ → C+ such that

∀z ∈ C+, ψµ�ν(z) = ψµ(ω(z))

and
∀z ∈ C+, arg(ω(z)) ≥ arg(z).

One de�nes �-in�nitely divisible distributions :

De�nition 2.2.10. A probability measure µ on R+ is said �-in�nitely di-
visible if, for each n ∈ N∗, there exists a probability measure µn on R+ such
that :

µ = µ�n
n .
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According to [BV93], a probability measure µ on R+ is �-in�nitely di-
visible if and only if µ = δ0 or there is a real number a ∈ R, a nonnegative
number b ≥ 0 and a positive measure σ on R such that

∀z ∈ C+, Σµ(z) := Sµ(
z

1− z
) = exp(a− bz +

∫ +∞

0

1 + tz

z − t
dσ(t)).

The study of multiplicative limit theorems, initiated by Bercovici and Pata
[BP00], was generalized to in�nitesimal triangular arrays by Bercovici and
Wang [BW08b] and Chistyakov and Götze [CG08b].

2.3 Combinatorial approach

For the combinatorial approach of free probability, the framework is a non-
commutative probability space (A, ϕ) in which the distribution of a non-
commutative random variable is de�ned as the linear functional µa on C[X]
satisfying :

∀P ∈ C[X], µa(P ) := ϕ(P (a)).

A bene�t of this approach is to take into account n-tuples of noncomutative
random variables. The distribution of a n-tuple of noncommutative random
variables (a1, . . . , an) ∈ An is simply the linear functional on the space of
noncommutative polynomials in n indeterminates C〈X1, . . . , Xn〉 de�ned by:

∀P ∈ C〈X1, . . . , Xn〉, µ(a1,...,an)(P (X1, . . . , Xn)) := ϕ(P (a1, . . . , an)).

We have an algebraic free product construction, allowing to de�ne oper-
ations of free additive and multiplicative convolution on the set of linear
functionals on the space of noncommutative polynomials in n indeterminates
C〈X1, . . . , Xn〉.

2.3.1 Non-crossing partitions

There is a combinatorial approach to classical probability, due to Rota, with
framework the lattices of partitions of �nite sets.
A partition of a �nite set E is a family p = {V1, . . . , Vr} of non-empty and
disjoint subsets of E such that

r
∪
i=1
Vi = E.

The subsets V1, . . . , Vr are called the blocks of p ; the set of blocks of p is
denoted by bl(p), its cardinal by |p|.
Two elements i, j of E belonging to the same block of a partition p are said
linked in p and we denote this by i ∼p j.
On the set ΠE of all partitions of E, one de�nes a partial order ≤, the reverse
re�nement order, by :
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p ≤ q if and only if any block of p is included in a block of q.

In the partially ordered set (ΠE ,≤), any pair (p, q) of partitions has a least
upper bound p ∨ΠE q and a greatest lower bound p ∧ΠE q : (ΠE ,≤) is a
lattice.
The combinatorics of free probability is governed by non-crossing partitions.
Non-crossing partitions, whose study was initiated by Kreweras [Kre72], are
partitions of a totally ordered set (E,≤) without crossing. More precisely,
for a non-crossing partition p of (E,≤), whenever i < j < k < l with i ∼p k
and j ∼p l, one necessarily has i ∼p j.
A blockW of a non-crossing partition p of (E,≤) is called an interval-block if
it is of the form W = {x ∈ E : a ≤ x ≤ b}, for a ≤ b in E. Any non-crossing
partition has an interval-block, and it is easy to check the stronger following
statement : let p be a non-crossing partition of (E,≤), let V be a block of p,
and let a and b be consecutive in V (meaning (i, j) ∩ V 6= ∅). If the interval
(i, j) is itself non-empty, then there exists a block-interval W in p such that
W ⊆ (i, j).
The set (NC(A)(E),≤) of non-crossing partitions of (E,≤) equipped with
the reverse re�nement order is a lattice. Its maximal element 1E has E for
only block ; its minimal element 0E has each singleton of E as a block. When
E = [m] := {1 < . . . < m}, we write NC(A)(m) instead of NC(A)([m]).
It is nice to represent a non-crossing partition p ∈ NC(A)(m) in the fol-
lowing geometric way : represent 1, . . . ,m by equidistants points clockwisely
ordered on a circle, and draw, for each block of p, the convex polygone whose
vertices are the elements of the block. It is necessary and su�cient for a par-
tition to be non-crossing that the polygones built this way do not intersect.
The lattice of non-crossing partitions has two remarkable properties : it is
selfdual and its intervals have a canonical factorization.
The selfduality is a consequence of the existence of an anti-automorphism
discovered by Kreweras [Kre72], the Kreweras complementation map, de-
noted by Kr, and de�ned as follows : given a non-crossing partition p of [m],
Kr(p) is the biggest partition (for the reverse re�nement order) of

[m] := {1 < . . . < m}

such that p ∪Kr(p) is a non-crossing partition of

[m] ∪ [m] = {1 < 1 < . . . < m < m}.

There is an elegant geometric construction of the Kreweras complement of a
non-crossing partition. The number of blocks of the Kreweras complement
of a non-crossing partition is related to the number of blocks of this partition
by the formula :

|p|+ |Kr(p)| = m+ 1, ∀p ∈ NC(A)(m). (2.1)
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Notice also that, for p ∈ NC(A)(m), the description of Kr2(p) is easy
in the geometric representation above : Kr2(p) is obtained from p by a
counterclockwise rotation of angle 2π

m .

In addition to selfduality, the lattice (NC(A)(m),≤) has another important
property : its intervals, that is the sets of the form

[p, q] := {π ∈ NC(A)(m) | p ≤ π ≤ q},

have a canonical factorization :

Theorem 2.3.1. [Spe94] For p, q ∈ NC(A)(m) satisfying p ≤ q, there is a
sequence of integers (k1, . . . , km) ∈ Nm such that

[p, q] ∼= NC(A)(1)k1 × · · · ×NC(A)(m)km .

As a �nite partially ordered set, (NC(A)(m),≤) is the frame of a convo-
lution operation and of a Moebius inversion formula :

Proposition 2.3.2. There is a function

Möb(A) : {(p, q) ∈ NC(A)(m) | p ≤ q} −→ C,

such that, for f, g : NC(A)(m) −→ C, the following formulas are equivalent:

∀p ∈ NC(A)(m), f(p) =
∑
q≤p

g(q). (2.2)

∀p ∈ NC(A)(m), g(p) =
∑
q≤p

f(q)Möb(A)(q, p). (2.3)

Möb(A) is called the Moebius function of NC(A)(m).

2.3.2 Non-crossing cumulant functionals

We adopt the following notation :

Notation 2.3.3. Let A be a unital complex algebra, let (a1, . . . , an) ∈ An,
and let V = {v1 < . . . < vm} ⊆ [n], then we denote

(a1, . . . , an) | V := (av1 , . . . , avm) ∈ Am.

For a family of multilinear maps (rn : An → C)∞n=1, one de�nes, for each
n ∈ N and each π ∈ NC(A)(n), the n-linear functional rπ : An → Ck by

rπ(a1, . . . , an) :=
∏
V ∈π

r|V |((a1, . . . , an) | V ).

A fundamental object in the combinatorial approach of free probability
is the family of non-crossing cumulant functionals, de�ned in [Spe94] by the
free moment-cumulant formula :
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De�nition 2.3.4. Let (A, ϕ) be a noncommutative probability space, the
non-crossing cumulant functionals are the family of multilinear functionals
(κn : An → C)∞n=1, uniquely determined by : for each n ≥ 1 and each
a1, . . . , an ∈ A, ∑

p∈NC(A)(n)

κp(a1, . . . , an) = ϕ(a1 · · · an). (2.4)

The formula (2.4) has an inverse by Moebius inversion :

κn(a1, . . . , an) =
∑

p∈NC(A)(n)

Möb(A)(p, 1n)ϕp(a1, . . . , an), (2.5)

generalizing simply by

κρ =
∑

π∈NC(n), π≤ρ

Möb(A)(π, ρ) · ϕ(A)
π , ∀ ρ ∈ NC(n). (2.6)

The multilinear functionals (ϕn : An → Ck)∞n=1 implicitely used in formula
(2.5) are obviously de�ned by

ϕn(a1, . . . , an) = ϕ(a1 · · · an).

The non-crossing cumulant functionals have the following properties :

Proposition 2.3.5. One has κn(a1, . . . , an) = 0 whenever n ≥ 2,
a1, . . . , an ∈ A, and there is 1 ≤ i ≤ n such that ai ∈ C1A.

Proposition 2.3.6. [KS00] Let x1, . . . , xs be in A, and consider products of
the form

a1 = x1 · · ·xs1 , a2 = xs1+1 · · ·xs2 , . . . , an = xsn−1+1 · · ·xsn ,

where 1 ≤ s1 < s2 < · · · < sn = s. Then

κn(a1, . . . , an) =
∑

π∈NC(s) such

that π∨θ=1s

κπ(x1, . . . , xs),

where θ ∈ NC(s) is the partition :

θ = {{1, . . . , s1}, {s1 + 1, . . . , s2}, . . . , {sn−1 + 1, . . . , sn}}.

The importance of non-crossing cumulant functionals in free probability
comes from the following result, due to Speicher :
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Theorem 2.3.7. [Spe94] Let (A, ϕ) be a noncommutative probability space
and let M1, . . . ,Mn be subsets of A. The following statements are equiva-
lent:
(1)M1, . . . ,Mn are free.
(2) For each m ≥ 2, each i1, . . . , im ∈ {1, . . . , n} not all equal, and each
a1 ∈ Mi1 , . . . , am ∈ Mim , one has κm(a1, . . . , an) = 0. One says that
M1, . . . ,Mn have vanishing mixed cumulants.

An immediate corollary of this result is the simple formula describing the
addition of two free n-tuples of noncommutative random variables :

Proposition 2.3.8. Let (A, ϕ) be a noncommutative probability space, and
M1,M2 be free subsets of A. Then, for each n ≥ 1, and each n-tuples
(a1, . . . , an) ∈Mn

1 , (b1, . . . , bn) ∈Mn
2 , one has :

κn(a1 + b1, . . . , an + bn) = κn(a1, . . . , an) + κn(b1, . . . , bn). (2.7)

More surprisingly, non-crossing cumulants describe the multiplication of
free n-tuples :

Proposition 2.3.9. Let (A, ϕ) be a noncommutative probability space, and
let M1,M2 be free subsets of A. Then, for each n ≥ 1 and each n-tuples
(a1, . . . , an) ∈Mn

1 , (b1, . . . , bn) ∈Mn
2 , one has :

κn(a1b1, . . . , anbn) =
∑

p∈NC(A)(n)

κp(a1, . . . , an)κKr(p)(b1, . . . , bn). (2.8)

These two results may be written in a more compact form by the use
of formal series. For simplicity, we restrict ourselves to the case of a single
variable, and we will use the following notation :

De�nition 2.3.10. Let C be a unital complex algebra, we denote by Θ(A)
C

the set of formal power series of the form

f(z) =
∞∑
n=1

αnz
n,

where the αn's are elements of C.

An important example of formal power series of Θ(A)
C , is the series :

ζ
(A)
C (z) :=

∞∑
n=1

1Czn.

An operation on formal power series with complex coe�cients is introduced
in [NS96], as a convolution on the lattices of non-crossing partitions. Here
is the de�nition, in the case of a single variable, but with coe�cients in any
commutative complex unital algebra.
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De�nition 2.3.11. On Θ(A)
C , one de�nes a binary associative and commu-

tative operation ?
(A)
C , as follows : if

f(z) =
∞∑
n=1

αnz
n ∈ Θ(A)

C

and

g(z) =
∞∑
n=1

βnz
n ∈ Θ(A)

C ,

then f ?
(A)
C g is the formal power series

∑∞
n=1 γnz

n, where

γm =
∑

p∈NC(A)(m)
p:={E1,...,Eh}

Kr(p):={F1,...,Fl}

(
h∏
i=1

αcard(Ei)
) · (

l∏
j=1

βcard(Fj)
).

A formal power series f ∈ Θ(A)
C is invertible with respect to ?

(A)
C if and

only if its coe�cient of degree 1 is itself invertible in the algebra C. In

particular, ζ
(A)
C is invertible with respect to ?

(A)
C , and we call its inverse

the Moebius series, denoted by Möb
(A)
C . The proofs of these statements are

direct adaptations of the proofs one can �nd in [NS96].

De�nition 2.3.12. Let (A, ϕ) be a noncommutative probability space, and
let a ∈ A be a noncommutative random variable. We call moments generat-
ing series of a the formal power series :

Ma(X) =
∞∑
n=1

ϕ(an)Xn ∈ Θ(A)
C , (2.9)

and R-transform of a the formal power series :

Ra(X) =
∞∑
n=1

κn(a, . . . , a)Xn ∈ Θ(A)
C . (2.10)

The free moment-cumulant formula (2.4) and its inverse (2.5) read at the
level of formal power series :

Proposition 2.3.13. Let (A, ϕ) be a noncommutative probability space, and
let a ∈ A be a noncommutative random variable. Then, one has :

Ma = Ra?
(A)
C ζ

(A)
C

Ra = Ma?
(A)
C Möb

(A)
C
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The importance of the operation ?
(A)
C in free probability comes from the

fact, proved in [NS96], that ?
(A)
C furnishes the combinatorial description of

the multiplication of two free noncommutative random variables, in terms of
their R-transforms.

Proposition 2.3.14. [NS96] Let (A, ϕ) be a noncommutative probability
space, and let a, b be free noncommutative random variables in A. Then, one
has

Ra+b = Ra +Rb

and

Rab = Ra?
(A)
C Rb.

Although the proposition above generalizes without di�culty to free n-
tuples of noncommutative random variables, the single variable case has
some special features. One may for example de�ne a Fourier transform for
multiplicative functions on non-crossing partitions [NS97] : this is a map
F associating to a formal power series f(X) in one indeterminate and with
nonzero coe�cient of degree 1 (to ensure invertibility with respect to com-
position of maps) the formal power series F(f)(X) := 1

X f
〈−1〉(X). The map

F has the important property to transform the operation ? into the multi-
plication of formal power series : F(f ?(A)g) = F(f) · F(g). If a ∈ (A, ϕ)
is a non-centered noncommutative random variable in a noncommutative
probability space, the series F(Ra) is the combinatorial approach to the
S-transform.

De�nition 2.3.15. Let (A, ϕ) be a noncommutative probability space, the
S-transform of a non-centered noncommutative random variable a ∈ A is
the formal power series Sa de�ned by :

Sa(X) :=
1
X
R〈−1〉
a (X).

Proposition 2.3.16. Let (A, ϕ) be a noncommutative probability space, and
let a, b ∈ A be two non-centered noncommutative random variables, then one
has :

Sab(X) = Sa(X)Sb(X).

The R- and S-transforms of a compactly supported probability mea-
sure µ are analytic in a neighborhood of 0 and one may thus identify their
power series developments to the formal power series given by the R- and S-
transforms of a noncommutative random variable in a W ∗-probability space
having distribution µ. This is equivalent to identifying a compactly sup-
ported probability measure on R to the sequence of its moments : this is a
simple particular case of the famous moments problem.
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2.4 Relation to Random Matrix Theory

In the �rst chapter, we studied random matrices from the point of view of
classical probability, as random variables with values in a matrix space, in
general noncommutative. We may also take the point of view of noncommu-
tative probability.
We have to restrict ourselves to the algebra MN (L∞−) of matrix models
whose entries are random variables with �nite moments. On this algebra,
the expectation of the normalized trace

ϕ(M) = E[tr(M)]

is a linear normalized (and tracial) functional : we get a noncommutative
probability space.
The fundamental fact, discovered by Voiculescu in 1991 [Voi91], is that free-
ness appears as the asymptotic relative position in this space of certain inde-
pendent matrix models, when their size goes to in�nity : this is asymptotic
freeness.

De�nition 2.4.1. Given a sequence of noncommutative probability spaces
(An, ϕn)n∈N, a sequence of families of noncommutative random variables

((a(n)
i )i∈I)n∈N converges in distribution if there exists a linear functional µ

on C〈Xi, i ∈ I〉 such that

∀P ∈ C〈Xi, i ∈ I〉, ϕn(P ((a(n)
i )i∈I)) −→

n→+∞
µ(P ).

The distribution µ is called the limit distribution.

De�nition 2.4.2. In the preceding notations, if

I = ∪
j∈J

Ij

is a partition of I, the sequence of families (((a(n)
i )i∈Ij )j∈J)n∈N is asymptot-

ically free as n goes to in�nity if it converges in distribution towards µ and
if in addition the families ((Xi)i∈Ij ), j ∈ J are free in the noncommutative
probability space (C〈Xi, i ∈ I〉, µ).

In the results of asymptotic freeness for random matrices we are going
to state, the sequence of noncommutative probability spaces is

(MN (L∞−),E[tr(·)]).

In this particular case, one can sometimes prove stronger asymptotic free-
ness results, for instance show that the convergence of the random variables

tr(P ((X(n)
i )i∈I)) holds not only in mean, but also in probability or almost

surely.
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Asymptotic freeness for Wigner matrices was examined by Voiculescu (see
[Voi91], [Voi98]), Dykema ([Dyk93]), Capitaine and Casalis ([CC04]), Thor-
bjornsen ([Tho00]) and Hiai and Petz ([HP00]). We record the following
theorem, stating that independent Wigner matrices and a family of deter-
ministic Hermitian matrices are asymptotically free.

Theorem 2.4.3. Let (WN (i))i∈I be a family of independent real or complex
Wigner matrices of size N and associated to a centered distribution of L∞−

and of variance 1, and let (DN (j))j∈J be a family of deterministic Hermitian
matrices converging in distribution and satisfying

sup
k∈N∗

max
j∈J

sup
N∈N∗

1
N

tr(|DN (j)|k)
1
k < +∞.

Then, the sequence of families {(DN (j))j∈J}, {WN (i)√
N
}i∈I is asymptotically

free.

This result may be considered as a multi-matricial version of Wigner's
Theorem 1.2.3, and sheds light on the ubiquity of the semicircle distribution
as limiting distribution in the global behavior of Wigner matrices and in the
free central limit theorem. As a corollary, one obtains a description of the
limiting distribution in the global behavior of the deformed Wigner model.
Such asymptotic freeness results are proved for other matrix models : inde-
pendent Wishart matrices ([CC04]), independent Haar unitary or orthogonal
matrices ([Voi91], [Voi98], [Col03]), independent permutation matrices, etc...
These results may sometimes be precised by results of almost sure conver-
gence of operator norms :

∀P ∈ C〈Xi, i ∈ I〉,
∥∥∥P ((X(n)

i )i∈I)
∥∥∥ a.s.−→
n→+∞

‖P ((xi)i∈I)‖ ,

where (xi)i∈I is a family of free noncommutative random variables with dis-
tribution µ in a W ∗-probability space. From such results ([HT05], [Sch05],
[CDM07], [Mal10]), one may deduce, from the point of view of random ma-
trices, the almost sure convergence of the largest or smallest eigenvalue of
deformed models towards an endpoint of the support of the limiting distri-
bution.
The discovery of the relation between Random Matrix Theory and free prob-
ability gave birth to a new approach of random matrices, as middle ground
between classical probability, whose object is independent scalar random
variables, and free probability, whose object is free noncommutative random
variables, realized as operators acting on a Hilbert space of in�nite dimen-
sion. Let us mention that matricial realizations of the Bercovici-Pata bijec-
tions were built in [BG05] and a theory of matricial cumulants was initiated
in [CC06],[CC07].
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2.5 Free probability of type B

The lattices of partitions of a �nite set may be reinterpreted as the inter-
section lattice for the hyperplane arrangement corresponding to the type A
root system [Rei97]. The non-crossing partitions may be seen in particular
as combinatorial objects of type A, justifying the notation NC(A)(E).
This inscription of the lattice of non-crossing partitions in combinatorial ob-
jects of type A was clari�ed by Biane, who gave in [Bia97b] a bijection t
between NC(A)(m) and the set of points lying on a geodesic in the Cayley
graph of the symmetric group Sm, when the set of generators is chosen to
contain all the transpositions. This bijection associates to a non-crossing
partition p ∈ NC(A)(m) the permutation t(p) ∈ Sm whose restriction to
each block V of p is the trace of the cycle (1, . . . ,m) ∈ Sm on V . When
a ∈ [m], t(p)(a) will be called the neighbour of a in p. Geometrically, this is
the �rst point linked with a that one meets when one clockwisely describes
the circle, starting from a.
There are other types of root systems, such as the type B, for which Reiner
built a lattice of non-crossing partitions [Rei97]. To describe the lattice
NC(B)(n) of non-crossing partitions of type B, we consider the totally or-
dered set

[±n] = {1 < 2 < . . . < n < −1 < −2 < . . . < −n}.

One de�nes NC(B)(n) as the subset of NC(A)([±n]) consisting of non-
crossing partitions that are invariant under the action of the inversion map
x 7→ −x.
In such a partition π ∈ NC(B)(n), there is at most one inversion-invariant
block, that we call, whenever it exists, the zero-block of π. The other blocks
of π come two by two : if F is a block which is not inversion-invariant, then
−F is another block (obviously not inversion-invariant). Let us give a special
notation to the subset of non-crossing partition having a zero-block :

NCZ(B)(n) := {π ∈ NC(B)(n) | π with a zero-block}, (2.11)

Immediately, NC(B)(n) is a sublattice of (NC(A)([±n]),≤), with the same
minimal and maximal elements.
Moreover, NC(B)(n) is stable by Kreweras complementation map (consid-
ered onNC(A)([±n])), which, restricted fromNC(A)([±n]) toNC(B)(n), will
give an anti-automorphism of NC(B)(n), still named Kreweras complemen-
tation map (on NC(B)(n)) and denoted by Kr. In this case, the important
relation (2.1) becomes

|π|+ |Kr(π)| = 2n+ 1, ∀π ∈ NC(B)(n).

As a consequence of this formula, for π ∈ NC(B)(n), exactly one of the two
partitions π and Kr(π) has a zero-block. Moreover, the Kreweras comple-
mentation map is a bijection between NCZ(B)(n) and its complementary



2.5 Free probability of type B 45

NC(B)(n) \NCZ(B)(n).
In the description of a non-crossing partition of type B, one uses the map
Abs : [±n] −→ [n] sending ±i on i. One has then the following result :

Theorem 2.5.1. [BGN03] The map π 7→ Abs(π) is a (n + 1)-to-1 cover
from NC(B)(n) onto NC(A)(n).

More precisely, a non-crossing partition of type B π is characterized by
its image p by the map Abs, which is a non-crossing partition of NC(A)(n),
and the choice of the block of p∪Kr(p) (there are indeed n+1 choices for this,
due to relation (2.1)) corresponding to the unique zero-block of π ∪Kr(π).
The lattices NC(B)(m) are the frame of a Moebius inversion ; the Moebius
functions of type B are denoted by Möb(B), and are related to Möb(A) in the
following way :(

σ ≤ τ in NCZ(B)(n)
)
⇒ Möb(B)(σ, τ) = Möb(A)

(
Abs(σ),Abs(τ)

)
.

(2.12)
To prove this, observe that Abs is an isomorphism of partially ordered sets
between the interval [σ, τ ] ⊆ NC(B)(n) and [Abs(σ),Abs(τ)] ⊆ NC(n), and
use the fact that the values of Möb(B)(σ, τ) and Möb(A)

(
Abs(σ),Abs(τ)

)
only depend on the isomorphism classes of these intervals.
The lattice NC(B)(m) of non-crossing partitions of type B may also be ob-
tained as the image by Biane's bijection of the set of points lying on a
geodesic in the Cayley graph of the hyperoctaedral group Wm for a relevant
choice of generating set [BGN03].
One may construct a combinatorial theory of free probability of type B by
replacing the occurences of the symmetrics groups and of the lattices of non-
crossing partitions of type A by their type B analogues, the hyperoctaedral
groups and the non-crossing partitions of type B [BGN03]. A central role is

played by the type B analogue ?(B) of the operation ?
(A)
C .

De�nition 2.5.2. [BGN03]

1. Denote by Θ(B) the set of formal power series

f(z) =
∞∑
n=1

(α′n, α
′′
n)zn,

where the α′n's and α
′′
n's are complex numbers.

2. Let f(z) :=
∑∞

n=1(α′n, α
′′
n)zn and g(z) =

∑∞
n=1(β′n, β

′′
n)zn be in Θ(B).

For each m ≥ 1, consider the scalars γ′m and γ′′m de�ned by

γ′m =
∑

p∈NC(A)(m)
p:={E1,...,Eh}

Kr(p):={F1,...,Fl}

(
h∏
i=1

α′card(Ei)
)(

l∏
j=1

β′card(Fj)
),
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γ′′m =
∑

p∈NC(B)(m)with zero−block
p:={Z,X1,−X1,...,Xh,−Xh}
Kr(p):={Y1,−Y1,...,Yl,−Yl}

(
h∏
i=1

α′card(Xi)
)α′′card(Z)/2

(
l∏

j=1

β′card(Yj)
)

+
∑

p∈NC(B)(m)without zero−block
p:={X1,−X1,...,Xh,−Xh}

Kr(p):={Z,Y1,−Y1,...,Yl,−Yl}

(
h∏
i=1

α′card(Xi)
)β′′card(Z)/2

(
l∏

j=1

β′card(Yj)
).

Then the series
∑∞

n=1(γ′n, γ
′′
n)zn is called the type B convolution of f

and g, and denoted by f ?(B)g.

As noticed in [BGN03], the type B convolution operation coincides with
a type A convolution operation on a certain algebra G.

Theorem 2.5.3. ?(B) =?(A)
G , where G is the two-dimensional Grassman

algebra generated by an element ε satisfying ε2 = 0.
Thus G is the extension of C de�ned by

G = {α+ εβ | α, β ∈ C}, (2.13)

with the following multiplication rule :

(α1 + εβ1) · (α2 + εβ2) = α1α2 + ε(α1β2 + β1α2).

The speci�city of the operation ?(B) leads naturally to de�ne a type B
noncommutative probability space as a system (A, ϕ,V, f,Φ), where

• (A, ϕ) is a usual noncommutative probability space,

• V is a complex vector space,

• f : V −→ C is a linear functional,

• Φ : A× V ×A −→ V is an action of A on V.

Practically, one works in the link-algebra A × V, equipped with its natural
vector space structure and with the multiplication given by :

(a1, ξ1) · (a2, ξ2) := (a1a2,Φ(a1, ξ2, 1A) + Φ(1A, ξ1, a2)).

A type B noncommutative random variable is an element of the link-algebra
(a, ξ) ∈ A× V, its distribution is the linear map from C[X] into G :

P −→ E(P ((a, ξ))),



2.5 Free probability of type B 47

where E((a, ξ)) := ϕ(a) + εf(ξ).
One also de�nes non-crossing cumulant functionals of type B [BGN03] with
values in G by :∑

p∈NC(A)(n)

κ(B)
p ((a1, ξ1), . . . , (an, ξn)) = E((a1, ξ1) · · · (an, ξn)). (2.14)

It is important to notice that the �rst component of a type B non-crossing
cumulant in (A, ϕ,V, f,Φ) is simply a non-crossing cumulant in (A, ϕ).
The notion of freeness of type B for (A1,V1), . . . , (Am,Vm) in the type B
noncommutative probability space (A, ϕ,V, f,Φ) is de�ned in terms of mo-
ments to ensure the vanishing of mixed type B non-crossing cumulants :

De�nition 2.5.4. [BGN03] Given a type B noncommutative probability
space (A, ϕ,V, f,Φ), let A1, . . . ,Am be unital subalgebras of A and let
V1, . . . ,Vm subspaces of V such that each Vj is invariant by the action of
Aj , for each 1 ≤ j ≤ m. Then, (A1,V1), . . . , (Am,Vm) are said to be free of
type B if A1, . . . ,Am are free in (A, ϕ) and

f(am · · · a1ξb1 · · · bn) =


ϕ(a1b1) · · ·ϕ(anbn)f(ξ),
if m = n and i1 = j1, . . . , in = jn

0, else,
(2.15)

whenever

• m,n ≥ 0;

• a1 ∈ Ai1 , . . . , am ∈ Aim , b1 ∈ Aj1 , . . . , bn ∈ Ajn , ξ ∈ Vh, where two
consecutive indices among im, . . . , i1, h, j1, . . . , jn are di�erent ;

• ϕ(am) = · · · = ϕ(a1) = 0 = ϕ(b1) = · · · = ϕ(bn).

Free additive convolution of type B, denoted by �(B), describing the dis-
tribution of the sum of two free (of type B) type B noncommutative random
variables, is an operation on the set of pairs (µ(0), µ(1)) of linear functionals
on C[X] satisfying µ(0)(1) = 1 and µ(1)(1) = 0.
Later, Popa established type B versions of the limit theorems and of the
S-transform [Pop07].
Recently, the analytic aspects of free probability of type B were investigated
by [BS09] ; the authors underline an interesting interpretation of free prob-
ability of type B, in terms of in�nitesimal freeness :

De�nition 2.5.5. Let (A, ϕ) be a noncommutative probability space, let T
be a subset of R having 0 as accumulation point, and let s families {avu(t) |
1 ≤ v ≤ mu}t∈T , indexed by T , of noncommutative random variables in
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(A, ϕ). These families are said to be in�nitesimally free if, for any choice of
noncommutative polynomials P1, . . . , Pn, one has

ϕ((P1(avi1(t), 1 ≤ v ≤ mi1)− ϕ(P1(avi1(t), 1 ≤ v ≤ mi1))) · · ·
(Pn(avin(t), 1 ≤ v ≤ min)− ϕ(Pn(avin(t), 1 ≤ v ≤ min)))) =

t→0
o(t),

whenever i1 6= i2 6= . . . 6= in.

When the family (indexed by T ) of distributions (µt)t∈T of

{avu(t) | 1 ≤ v ≤ mu, 1 ≤ u ≤ s}t∈T

has zeroth and �rst derivatives at 0, that is a pair of linear functionals
(µ(0), µ(1)) satisfying

µ(0) = lim
t→0

µt (2.16)

and

µ(1) =
d

dt |t=0
µt = lim

t→0

1
t
(µt − µ(0)), (2.17)

the condition of in�nitesimal freeness is equivalent to the two following con-
ditions :

µ(0)((P1 − µ(0)(P1)) · · · (Pn − µ(0)(Pn))) = 0 (2.18)

and

µ(1)((P1 − µ(0)(P1)) · · · (Pn − µ(0)(Pn))) = (2.19)
n∑
j=1

µ(0)((P1 − µ(0)(P1)) · · ·µ(1)(Pj) · · · (Pn − µ(0)(Pn))). (2.20)

The link, put into light by [BS09], between in�nitesimal freeness and
freeness of type B has the following consequence : given two families (µt)t∈T
et (νt)t∈T of distributions with zeroth and �rst derivatives at 0, the zeroth
and �rst derivatives at 0 of µt � νt are then given by :

(lim
t→0

(µt � νt),
d

dt |t=0
(µt � νt)) = (lim

t→0
µt,

d

dt |t=0
µt)�(B) (lim

t→0
νt,

d

dt |t=0
νt).

(2.21)
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Presentation of results

We present the main results of the following chapters, which may be orga-
nized in two distinct parts : the �rst one (Chapters 4 and 5) develops a
combinatorial approach of in�nitesimal freeness ; the second one (Chapters
6 and 7) further studies certain additively deformed models.

3.1 First order in�nitesimal freeness

In�nitesimal freeness (see De�nition 2.5.5) appeared in [BS09] as analytic
interpretation of free probability of type B. A possible frame for the com-
binatorial approach of in�nitesimal freeness is thus the type B noncommu-
tative probability space introduced in [BGN03]. We propose another frame,
both simpler and more general, the in�nitesimal noncommutative probability
space:

De�nition 3.1.1. By in�nitesimal noncommutative probability space, we
mean the structure{

(A, ϕ, ϕ′), where A is a complex unital algebra
and ϕ,ϕ′ : A → C are linear with ϕ(1A) = 1, ϕ′(1A) = 0.

(3.1)

A particular case of in�nitesimal noncommutative probability space is
already considered in [BS09] : this is the algebra of noncommutative polyno-
mials in m indeterminates C〈X1, . . . , Xm〉, equipped with linear functionals

ϕ = µ(0), ϕ′ = µ(1)

obtained as zeroth and �rst derivatives at 0 of a family of distributions
(µt)t∈T indexed by a subset T of real numbers having 0 as accumulation
point. Reformulated in our new frame, in�nitesimal freeness from [BS09]
reads :

De�nition 3.1.2. Let (A, ϕ, ϕ′) be an in�nitesimal noncommutative proba-
bility space and let A1, . . . ,Am be unital subalgebras of A. Then A1, . . . ,Am

49
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are said to be in�nitesimally free with respect to (ϕ,ϕ′) when they satisfy
the following condition :

If i1, . . . , in ∈ {1, . . . ,m} are such that i1 6= i2, i2 6= i3, . . . , in−1 6= in,
and if a1 ∈ Ai1 , . . . , an ∈ Ain are such that ϕ(a1) = · · · = ϕ(an) = 0,

then ϕ(a1 · · · an) = 0 and

ϕ′(a1 · · · an) =


ϕ(a1 an)ϕ(a2 an−1) · · ·ϕ(a(n−1)/2 a(n+3)/2) · ϕ′(a(n+1)/2),
if n is odd and i1 = in, i2 = in−1, . . . , in−1

2
= in+3

2
,

0, else.
(3.2)

Taking into account the original link between in�nitesimal freeness and
freeness of type B, it is expected that the structure of in�nitesimal noncom-
mutative probability space is related to the structure of noncommutative
probability space of type B. Given a noncommutative probability space of
type B (A, ϕ,V, f,Φ), the link-algebra (A×V, φ, φ′), equipped with the lin-
ear functionals φ((a, ξ)) := ϕ(a) and φ′((a, ξ)) := f(ξ), is an in�nitesimal
noncommutative probability space. The in�nitesimal noncommutative prob-
ability space is therefore a simpler and more general frame for free probability
of type B.
Some practical di�culties may arise when making computations with the
two linear functionals de�ning an in�nitesimal noncommutative probability
space (A, ϕ, ϕ′). That is why we will often work in the equivalent structure
of scarce G-probability space, introduced in [Oan07] :{

(A, ϕ̃), where A is a unital complex algebra
and ϕ̃ : A → G is C-linear with ϕ̃(1A) = 1,

(3.3)

where G is the two-dimensional Grassman algebra (see De�nition 2.5.3). The
correspondence between in�nitesimal noncommutative probability space and
scarce G-probability space relies on the simple formula :

ϕ̃ = ϕ+ εϕ′.

Notice that the structure of scarce G-probability space (A, ϕ̃) di�ers from
the frame of G-valued free probability, in that the map ϕ̃ is in general not
G-linear.
One of the �rst fundamental facts of the free probability theory is the exis-
tence of a free product, that is the existence of a noncommutative probability
space containing free copies of given noncommutative probability spaces. We
present an in�nitesimal free product construction :

Proposition 3.1.3. Let (A1, ϕ1), . . . , (Am, ϕm) be noncommutative proba-
bility spaces, and consider their free product

(A, ϕ) = (A1, ϕ1) ∗ · · · ∗ (Am, ϕm).
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Assume that, for each 1 ≤ i ≤ m, one has a linear functional ϕ′i : Ai → C
such that ϕ′i(1A) = 0. Then there exists a unique linear functional ϕ′ :
A → C such that ϕ′ | Ai = ϕ′i, 1 ≤ i ≤ m, and such that A1, . . . ,Am are
in�nitesimally free in (A, ϕ, ϕ′).

An important step in the combinatorial approach of in�nitesimal free
probability is the introduction, in addition to Speicher's non-crossing cumu-
lant functionals in the noncommutative probability space (A, ϕ), of in�nites-
imal non-crossing cumulant functionals in the in�nitesimal noncommutative
probability space (A, ϕ, ϕ′) :

De�nition 3.1.4. For each n ≥ 1, consider the multilinear functional κ′n :
An → C de�ned by the formula

κ′n(a1, . . . , an) = (3.4)

∑
π∈NC(n)
V ∈π

[
Möb(π, 1n) ϕ′|V |( (a1, . . . , an) | V )

∏
W∈π
W 6=V

ϕ|W |( (a1, . . . , an) |W )
]
,

for a1, . . . , an ∈ A. The functionals κ′n are called in�nitesimal non-crossing
cumulant functionals associated to (A, ϕ, ϕ′).

We prove that these in�nitesimal non-crossing cumulants play the same
role as the non-crossing cumulants in usual free probability : for instance,
the following in�nitesimal analogue of the famous result of Speicher.

Proposition 3.1.5. Let A1, . . . ,Am be unital subalgebras of A. The follow-
ing statements are equivalet :

(1) A1, . . . ,Am are in�nitesimally free in (A, ϕ, ϕ′).
(2) For each n ≥ 2, each i1, . . . , in ∈ {1, . . . ,m} not all equal, and each
a1 ∈ Ai1 , . . . , an ∈ Ain, one has κn(a1, . . . , an) = κ′n(a1, . . . , an) = 0.

These in�nitesimal non-crossing cumulants may be interpreted from dif-
ferent points of view :

• When ϕ and ϕ′ are obtained as zeroth and �rst derivatives at 0 of a
family of distributions (ϕt)t∈T indexed by a subset T of real numbers
having 0 as accumulation point, the n-th in�nitesimal non-crossing cu-
mulant associated to (A, ϕ, ϕ′) is then the derivative at 0 of the family

(κ(t)
n )t∈T , where κ

(t)
n is the n-th non-crossing cumulant associated to

(A, ϕt).
This gives a recipe for obtaining formula (3.4) : it may be obtained by
taking a formal derivative in the usual free moment-cumulant formula
(2.4).
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• Given an in�nitesimal noncommutative probability space (A, ϕ, ϕ′),
one may de�ne, in the scarce G-probability space associated (A, ϕ̃),
G-valued non-crossing cumulant functionals by rewriting simply the
usual free moment-cumulant formula :

κ̃n =
∑

π∈NC(n)

Möb(A)(π, 1n) · ϕ̃π, n ≥ 1. (3.5)

The in�nitesimal non-crossing cumulants associated to (A, ϕ, ϕ′) ap-
pear then as ε-component of the cumulants κ̃n. This correspondence
between in�nitesimal non-crossing cumulants on the one hand and
the associated cumulants in the scarce G-probability space indicate
a method to easily prove in�nitesimal analogues of classical results
of free probability : it is to check that their G-valued versions hold,
which is often straightforward because the combinatorics involved is
essentially the same as in usual free probability, and to take the ε-
component of formulas obtained this way. We illustrate this method
by the example of the formula for the multiplication of in�nitesimally
free n-tuples, and its consequences on compressions by in�nitesimally
free projections and on the construction of families of variables follow-
ing an in�nitesimally free Poisson distribution.

• The type B essence of in�nitesimal freeness remains in certain formu-
las. For instance, by reindexing the sum in (3.4) by the set of type
B non-crossing partitions with a zero-block, in�nitesimal non-crossing
cumulants may be viewed as type B non-crossing cumulants. More
generally, the formulas describing the alternating products of in�nites-
imally free variables may be rewritten using the type B language.

After noticing that an in�nitesimal noncommutative probability space
(A, ϕ, ϕ′) is obtained by adding to the usual noncommutative probability
space (A, ϕ) another linear functional ϕ′ satisfying ϕ′(1A) = 0, and that in-
�nitesimal freeness of unital subalgebras A1, . . . ,Am with respect to (ϕ,ϕ′)
implies their freeness with respect to ϕ, the folowing question is natural:
given a noncommutative probability space (A, ϕ) and unital subalgebras
A1, . . . ,Am that are free with respect to ϕ, how to construct a linear func-
tional ϕ′ satisfying ϕ′(1A) = 0 and such that A1, . . . ,Am are in�nitesimally
free with respect to (ϕ,ϕ′) ?
In an in�nitesimal noncommutative probability space (A, ϕ, ϕ′), the relation
between ϕ′ and the in�nitesimal non-crossing cumulants (κ′n)n∈N∗ on the
one hand and ϕ and the usual non-crossing cumulants (κn)n∈N∗ on the other
hand may be formalized thanks to the notion of dual derivation system. In
particular, a simple dual derivation system may be built from any derivation
of the algebra A, providing a possible answer to the question above :

Proposition 3.1.6. Let (A, ϕ) be a noncommutative probability space, and
let A1, . . . ,Am be unital subalgebras of A that are free in (A, ϕ). Assume
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that D : A → A is a derivation such that D(Ai) ⊆ Ai for each 1 ≤ i ≤ m.
Then A1, . . . ,Am are in�nitesimally free in (A, ϕ, ϕ′), where ϕ′ = ϕ ◦D.

3.2 Higher order in�nitesimal freeness

For a family (µt)t∈T of distributions indexed by a subset T of R having 0 as
accumulation point, one has already de�ned its zeroth and �rst derivatives at
0 by formulas (2.16) and (2.17). Assuming that the limits considered exist,
it is possible to de�ne recursively higher order derivatives by :

∀i ≥ 2,
µ(i)

i!
:= lim

t→0

1
ti

(µt −
i−1∑
j=0

tj

j!
µ(j)).

When (µt)t∈T and (νt)t∈T are two such families with as many derivatives
at 0 as necessary, we investigate the problem of the derivatives at 0 of the
family (µt � νt)t∈T of their free additive convolutions. We know by [BS09]
that

(lim
t→0

(µt � νt),
d

dt |t=0
(µt � νt)) = (lim

t→0
µt,

d

dt |t=0
µt)�(B) (lim

t→0
νt,

d

dt |t=0
νt).

The appearance of the type B convolution in this formula comes from the
link found by Belinschi and Shlyakhtenko between free probability of type
B and in�nitesimal freeness de�ned for time-indexed families by De�nition
2.5.5. To get the higher order derivatives, one generalizes the notion of
in�nitesimal freeness to any order k ∈ N :

De�nition 3.2.1. Let (A, ϕ) be a noncommutative probability space, let T
be a subset of R having 0 as accumulation point, and let s families {avu(t) |
1 ≤ v ≤ mu}t∈T , indexed by T , of noncommutative random variables in
(A, ϕ). These families are said in�nitesimally free of order k ∈ N if, for any
choice of noncommutative polynomials P1, . . . , Pn, one has

ϕ((P1(avi1(t), 1 ≤ v ≤ mi1)− ϕ(P1(avi1(t), 1 ≤ v ≤ mi1))) · · ·
(Pn(avin(t), 1 ≤ v ≤ min)− ϕ(Pn(avin(t), 1 ≤ v ≤ min)))) =

t→0
o(tk),

whenever i1 6= i2 6= . . . 6= in.

The combinatorial approach of in�nitesimal freness of order k has for
natural frame the in�nitesimal noncommutative probability space of order k,
built by adding not only one but k linear functionals to a usual noncommu-
tative probability space (A, ϕ) :

De�nition 3.2.2. By in�nitesimal noncommutative probability space of or-
der k we mean a structure (A, (ϕ(i))0≤i≤k), where A is a unital complex
algebra, ϕ(0) : A −→ C is a linear functional satisfying ϕ(0)(1A) = 1, and
ϕ(i) : A −→ C, 1 ≤ i ≤ k, are linear functionals such that ϕ(i)(1A) = 0.
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The distribution of a n-tuple of in�nitesimal noncommutative random
variables of order k is the family of k+1 linear functionals (µ(i))0≤i≤k de�ned
on C〈X1, . . . , Xn〉 by :

∀P ∈ C〈X1, . . . , Xn〉, µ(i)(P (X1, . . . , Xn)) := ϕ(i)(P (a1, . . . , an)).

The practical di�culties arising when dealing with k + 1 linear functionals
lead us to work in the structure, equivalent to (A, (ϕ(i))0≤i≤k), in which the
k+ 1 linear functionals ϕ(i), 0 ≤ i ≤ k, are consolidated in only one C-linear
map ϕ̃ = (ϕ(i))0≤i≤k with values in the algebra Ck of dimension k+ 1, which
generalizes the two-dimensional Grassman algebra G :

De�nition 3.2.3. Let Ck be the commutative complex (k + 1)-dimensional
algebra Ck+1, equipped with its usual vector space structure and the follow-
ing multiplication : if α = (α(0), . . . , α(k)) ∈ Ck and β = (β(0), . . . , β(k)) ∈ Ck,
then

α · β = (γ(0), . . . , γ(k))

is de�ned by

γ(i) :=
i∑

j=0

Cji α
(j)β(i−j). (3.6)

The structure de�ned this way is called a scarce Ck-noncommutative prob-
ability space.

De�nition 3.2.4. By scarce Ck-noncommutative probability space, we mean
a pair (A, ϕ̃), where A is a unital complex algebra and ϕ̃ : A → Ck is a C-
linear map satisfying ϕ̃(1A) = 1Ck .

The transposition to this frame of the de�nition of in�nitesimal freeness
of order k is not easy to formalize, and is not clear enough to be taken
as a de�nition. We adopt the idea to �rst introduce the in�nitesimal non-
crossing cumulant functionals of order k, and then to de�ne in�nitesimal
freeness of order k by the condition of vanishing mixed in�nitesimal non-
crossing cumulants of order k.

De�nition 3.2.5. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommutative
probability space of order k. The in�nitesimal non-crossing cumulant func-

tionals of order k are a family of multilinear functionals (κ(i)
n : An → C, 0 ≤

i ≤ k)∞n=1, uniquely determined by : for each n ≥ 1, each 0 ≤ i ≤ k and each
a1, . . . , an ∈ A, one has∑

p∈NC(A)(n)
p:={V1,...,Vh}

∑
λ∈Λh,i

Cλ1,...,λh
i κ(λ)

p (a1, . . . , an) = ϕ(i)(a1 · · · an), (3.7)

where

Λh,i := {λ = (λ1, . . . , λh) ∈ Nh |
h∑
j=1

λj = i}. (3.8)
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As in �rst order in�nitesimal free probability, one may interpret the in-
�nitesimal non-crossing cumulants of order k :

• When (ϕ(i))0≤i≤k are obtained as successive derivatives at 0 of a fam-
ily of distributions (ϕt)t∈T indexed by a subset T of R having 0 as
accumulation point, the n-th in�nitesimal non-crossing cumulants of
order k associated to (A, (ϕ(i))0≤i≤k) are then the derivatives at 0 of
the family (κ(n,t))t∈T , where κ(n,t) is the n-th non-crossing cumulant
associated to (A, ϕt).
Thus, the formula (3.7) may be obtained by taking i times the formal
derivative in usual free moment-cumulant formula (2.4).

• On the other hand, given (A, (ϕ(i))0≤i≤k) an in�nitesimal noncommu-
tative probability space of order k, one may de�ne, in the associated
scarce Ck-probability space (A, ϕ̃) the Ck-valued non-crossing cumu-
lants by simply copying the usual free moment-cumulant formula :

κ̃n =
∑

π∈NC(n)

Möb(A)(π, 1n) · ϕ̃π, n ≥ 1. (3.9)

The n-th in�nitesimal non-crossing cumulants of order k associated
to (A, (ϕ(i))0≤i≤k) appear then as the components of the cumulant
functionals κ̃n. As in the �rst order, one may use this correspondence
between in�nitesimal non-crossing cumulants of order k and cumulants
of the associated scarce Ck-probability space to write direct proofs of
in�nitesimal analogues of classical results of free probability.

• The last possible point of view on in�nitesimal non-crossing cumulants
of order k is related to their combinatorial nature : to develop it, we are
led to introduce and study a new set of non-crossing partitions likely
to index the sums de�ning these in�nitesimal cumulants. This is the
set NC(k)(n) of non-crossing partitions of type k geeralizing the set
of type B non-crossing partitions (which correspond to the particular
case k = 1). It still has the important property to be a cover of the set
of non-crossing partitions of type A.

As announced, we use the in�nitesimal non-crossing cumulants of order k to
de�ne the in�nitesimal freeness of order k via a condition of vanishing mixed
cumulants :

De�nition 3.2.6. SubsetsM1, . . . ,Mn of an in�nitesimal noncommutative
probability space of order k are in�nitesimally free of order k if they satisfy
the vanishing of mixed in�nitesimal cumulants condition, that is, for each
0 ≤ i ≤ k,

κ(i)
m (a1, . . . , am) = 0

whenever a1 ∈Mi1 , . . . , am ∈Mim and ∃1 ≤ s < t ≤ m, such that is 6= it.
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De�ned this way, in�nitesimal freeness of order k coincides with De�ni-
tion 3.2.1, providing a characterization in terms of moments.

Theorem 3.2.7. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommutative
probability space of order k, and A1, . . . ,An unital subalgebras of A. Then
A1, . . . ,An are in�nitesimally free of order k if and only if, for each l ∈ N∗,
and each a1 ∈ Ai1 , . . . , al ∈ Ail , one has

ϕt((a1 − ϕt(a1)) · · · (al − ϕt(al))) = o(tk), (3.10)

whenever i1 6= . . . 6= il, where ϕt :=
∑k

i=0
ϕ(i)

i! t
i. The condition (3.10) is

equivalent to the k + 1 following equations :

∀i ∈ {0, . . . , k},
i∑

j=0

∑
λ∈Λl,i−j

(−1)#{m≥1,λm>0}µ(j)(µ̂(λ1)(P1) · · · µ̂(λl)(Pl)) = 0,

(3.11)
where µ̂(λ)(P ) := P − µ(0)(P ) if λ = 0, and µ̂(λ)(P ) := µ(λ)(P ) else.

In�nitesimally free convolutions �(k) and �(k), describing the distribu-
tions of the sum and of the multiplication of two variables that are in�nites-
imally free of order k, provide the k �rst derivatives of the free convolutions
of time-indexed families of distributions :

Proposition 3.2.8. Let {µt}t∈T (resp. {νt}t∈T ) be a family of linear func-
tionals on C〈Xu, 1 ≤ u ≤ m〉 (resp. C〈Yu, 1 ≤ u ≤ m〉) such that µ(i) =
di

dti |t=0
µt (resp. ν

(i) = di

dti |t=0
νt) exist for 0 ≤ i ≤ k. Let us set

(η(i))0≤i≤k := (µ(i))0≤i≤k �
(k) (ν(i))0≤i≤k,

(θ(i))0≤i≤k := (µ(i))0≤i≤k �
(k) (ν(i))0≤i≤k.

Then η(i) = di

dti
|t=0 µt � νt and θ(i) = di

dti
|t=0 µt � νt.

3.3 Eigenvalues of spiked deformations of Wigner
matrices

The results on Wigner models deformed by a deterministic Hermitian matrix
of �nite rank, recalled in Section 1.4, may be interpreted in terms of free
probability.
First, the asymptotic freeness result stated in Theorem 2.4.3 gives a new
proof to the global behavior of the deformed Wigner model

MN :=
WN√
N

+AN ,
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where WN is a complex Wigner matrix of size N associated to a centered
distribution in L∞− and of variance σ2 and AN is a deterministic �xed
rank Hermitian matrix : since the empirical spectral distributions of WN√

N
and AN converge respectively towards the semicircle distribution µσ and
the distribution δ0, one obtains the convergence of the empirical spectral
distribution of MN towards µσ � δ0 = µσ.
For the convergence of the largest eigenvalue of MN , one distinguishes in
Theorem 1.4.2, and actually in the results of [Péc06],[FP07],[CDMF09], two
situations : denoting by θ1 the largest eigenvalue of AN and λ1 the largest
eigenvalue of MN , one has :

• if θ1 ≤ σ, λ1 converges towards 2σ.

• si θ1 > σ, λ1 converges towards ρθ1 := θ1 + σ2

θ1
> 2σ.

The semicircular distribution µσ being in�nitely divisible for free additive
convolution, the subordination function of µσ � ν with respect to any com-
pactly supported probability measure ν satis�es the conclusions of the fol-
lowing proposition :

Proposition 3.3.1. [Bia97a] Let µ, ν two probability measures, µ being �-
in�nitely divisible, one de�nes Hν,µ on C+ by :

∀z ∈ C+, Hν,µ(z) = z +Rµ(Gν(z)).

Then the subordination function ων,µ is a conformal bijection from C+ onto
a domain Ων,µ of C+, whose inverse is the restriction of Hν,µ to Ων,µ.

In particular,

∀z ∈ C+, Hδ0,µσ(z) = z +
σ2

z
.

The condition θ > σ rewrites then :

θ /∈ supp(δ0) = 0 , H ′δ0,µσ(θ) > 0.

Moreover, when this condition is satis�ed, the limit of the largest eigenvalue
is

ρθ = Hδ0,µσ(θ).

For the Gaussian spiked population model (see De�nition 1.3.7), the asymp-
totic freeness result for a Wishart matrix and a deterministic Hermitian
positive matrix, combined with Marchenko-Pastur Theorem 1.3.2, o�ers a
new point of view on the global behavior : the empirical spectral measure
converges towards the distribution πγ,1�δ1 = πγ,1. The subordination equa-
tion of πγ,1 � δ1 with respect to δ1, written in terms of Stieltjes transform,
gives :

∀z ∈ C+, Gπγ,1(z) = Gδ1

( 1
1− 1

zGπγ,1 (z)

)
.
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The inverse of the function z 7−→ 1
1− 1

zGπγ,1 (z)

is ψ : z 7−→ γz + z
z−1 and the

condition
θ /∈ supp(δ1) = 1 , ψ′(θ) > 0

is equivalent to the condition

θ > 1 +
√
γ

appearing in the work of [BBAP05], [Ona08],[Pau07],[BS06], as necessary
and su�cient condition for the largest eigenvalue to converge outside of the
support of πγ,1. Moreover, the limit of the largest eigenvalue when this con-
dition is satis�ed is exactly ψ(θ).
The relevance of this interpretation in terms of subordination function is
con�rmed by the results of Theorem 1.3.10 on the generalized spiked popu-
lation model : the function ψ in the statement is indeed the inverse of the
function involved when one writes the subordination equation of πγ,1 � ρ
with respect to ρ in terms of Stieltjes transforms.
In Chapter 6, we use this interpretation of the behavior of eigenvalues of
deformed models in terms of free probability to establish a more precise re-
sult on the eignevalues of the deformed Wigner model MN = 1√

N
WN +AN

where

• WN is a complex Wigner matrix of size N associated to a symmetric
distribution µ with variance σ2 and satisfying a Poincaré inequality.

• AN is a deterministic Hermitian matrix converging in distribution to-
wards a compactly supported probability measure ν. We also assume
that there exists a �xed integer r ≥ 0 (independently of N) such that
AN has N − r eigenvalues βj,N satisfying

max
1≤j≤N−r

dist(βj(N), supp(ν)) −→
N→∞

0.

The other eigenvalues are J �xed real numbers θ1 > . . . > θJ outside
the support of ν such that θi is an eigenvalue of AN with multiplicity
ki (
∑

i ki = r). The θi are called the spikes of AN .

In this particular case, the condition

θ 6∈ supp(ν) , H ′ν,µσ(θ) > 0,

is equivalent to
θ 6∈ Uν,µσ ,

where Uν,µσ is the open set introduced by Biane in [Bia97a] :

Uν,µσ :=
{
u ∈ R,

∫
R

dν(x)
(u− x)2

>
1
σ2

}
.
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The main result we prove gives a precise description of the convergence of
eigenvalues of MN according to the position of the θi's with respect to Uν,µσ
and to the connected components of the support of ν :

Theorem 3.3.2. For each spike θi, let ni−1 + 1, . . . , ni−1 + ki, be the de-
scending ranks of θi among the eigenvalues of AN .

1) If θi 6∈ Uν,µσ , the ki eigenvalues (λni−1+j(MN ), 1 ≤ j ≤ ki) converge
almost surely outside the support of µσ � ν towards ρθi = Hν,µσ(θi).

2) If θi ∈ Uν,µσ , then we denote [sli , tli ] (1 ≤ li ≤ m) the connected
component of Uν,µσ containing θi.

a) If θi is on the right (resp. on the left) of every connected com-
ponent of supp(ν) included in [sli , tli ], then the ki eigenvalues
λni−1+j(MN ), 1 ≤ j ≤ ki, almost surely converge towards the
endpoint Hν,µσ(tli) (resp. Hν,µσ(sli)) of the support of µσ � ν.

b) If θi is between two connected components of supp(ν) included in
[sli , tli ], then the ki eigenvalues (λni−1+j(MN ), 1 ≤ j ≤ ki) almost
surely converge towards the αi-quantile of µσ � ν (i.e. qαi de�ned
by αi = (µσ � ν)(] −∞, qαi ])) where αi = 1 − limN (ni−1/N) =
ν(]−∞, θi]).

As a byproduct of our analysis, we obtain the following proposition in
the non-spiked case :

Proposition 3.3.3. If the model MN is non-spiked, i.e. r = 0, the largest
(resp. smallest) eigenvalues λ1+k(MN ) (resp. λN−k(MN )) almost surely
converge towards the right (resp. left) endpoint of the support of µσ � ν.

The heuristic underlying our results is the following : the eigenvalues
of MN are the poles of GµMN , which is well approximated by Gµσ�µAN

.
This last Stieltjes transform has poles outside the support of the limiting
distribution given, using subordination equation

Gµσ�µAN
= GµAN ◦ ωµAN ,µσ ,

by some HµAN ,µσ
(θi).

The proof mainly follows the overall plan of [BS06], as in [CDMF09] :

1. we show, for N large enough, an almost sure inclusion of the spectrum
of MN in a neighborhood of the set formed by the support of µσ � ν
and the ρθi ;

2. then, we establish an exact separation phenomenon between the spec-
tra of MN and AN .
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More precisely, to obtain the �rst point, we give a precise estimation of
gN (z)− g̃N (z), where gN = E(GµMN ) and g̃N = Gµσ�µAN

:

Proposition 3.3.4. For z ∈ C \ R,∣∣∣∣gN (z)− g̃N (z) +
EN (z)
N

∣∣∣∣ ≤ P (|=z|−1)
N2

(3.12)

where P is a polynomial with nonnegative coe�cients and EN (z) is given by

EN (z) = {σ2g̃
′
N (z)− 1} κ4

2N2∑
i,l

[(GAN (z − σ2gN (z)))2]ii[GAN (z − σ2gN (z))]ii([GAN (z − σ2gN (z))]ll)2.

The proof relies on a "approximate matricial subordination equation",
thanks to an integration by parts lemma, exact in the Gaussian case, ap-
proximate in general.
We deduce the required inclusion in two steps : on the one hand, an adap-
tation of the method used by Haagerup and Thorbjornsen in [HT05], and
developed further in [Sch05], [CDM07], [CDMF09], [Mal10], leads to the in-
clusion of the spectrum ofMN in a neighborhood of the support of µσ�µAN ;
on the other hand, the study of the support of a free additive convolution by
a semicircular distribution carried by Biane in [Bia97a] allows to show that:

Theorem 3.3.5. For each ε > 0,

supp(µσ � µAN ) ⊂ supp(µσ � ν)
⋃{

ρθi , θi ∈ R \ Uν,µσ
}

+ (−ε, ε),

for N large enough.

Finally, the second point is the following result :

Theorem 3.3.6. If iN satis�es

λiN+1(AN ) < ωσ,ν(a) and λiN (AN ) > ωσ,ν(b), (3.13)

one has

P[λiN+1(MN ) < a and λiN (MN ) > b, for all large N ] = 1. (3.14)

Let us insist on the fact that the inclusion of the spectrum of the deformed
model in a neighborhood of the support of a certain free convolution of
measures and the exact separation phenomenon are the additive analogues
of those described in [BS98], [BS99] for sample covariance matrices. Note
however that Bai and Silverstein do not use the language of free probability
and obtain the inclusion of the spectrum by considering Stieltjes transforms
of not averaged empirical spectral measures.
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3.4 Largest eigenvalues of additive deformations of
Wishart matrices

In Chapter 7, we adapt the same method to the study of the largest eigen-
values of the additively deformed Wishart model :

MN (p(N)) =
1
N
XN +AN

• XN is a white complex Wishart matrix of size N and p(N) degrees of
freedom,

• limN→+∞
p(N)
N = α > 0,

• AN is a deterministic diagonal matrix converging in distribution to
a compactly supported probability measure ν. We also assume that
there is a �xed integer r ≥ 0 (independent of N) such that AN has
N − r eigenvalues βj,N satisfying

max
1≤j≤N−r

dist(βj(N), supp(ν)) −→
N→∞

0.

The other eigenvalues are J �xed real numbers θ1 > . . . > θJ indepen-
dent of N outside the support of ν and such that θi is an eigenvalue
of AN with multiplicity ki (

∑
i ki = r). The θi are called the spikes of

AN .

Our study follows the same scheme as in the deformed Wigner model: one
writes an "approximated matricial subordination equation" by integrating
by parts, which provides a precise estimate of gN (z) − g̃N (z), where gN =
E(GµMN (p(N))

) and g̃N = Gπα,1�µAN
:

Proposition 3.4.1. ∀z ∈ C+,

|gN (z)− g̃N (z)| ≤ (|z|+K)a
P (|=z|−1)

N2
(3.15)

where K and a are positive numbers and P is a polynomial with nonnegative
coe�cients.

One deduces the almost sure inclusion of the spectrum of MN (p(N)) in
a neighborhood of the support of πα,1 � µAN , by a variant of the method of
Haagerup and Thorbjornsen, then one studies this support, to obtain :

Theorem 3.4.2. ∀ε > 0,

P(For N su�ciently large, Spect(MN (p(N))) ⊂{
x,dist(x, supp(πα,1 � ν) ∪

{
Hν,πα,1(θi), 1 ≤ i ≤ J

}
) ≤ ε

}
) = 1.
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Notice that we cannot rely, in the study of the support of a free addi-
tive convolution by a Marchenko-Pastur distribution, on the work of Biane
[Bia97a], like we did in the semicircular case, because his work only focuses
on the semicircular distribution. Among the original results of the Chapter
7, one gives a descritption of supp(πα,1�ν), analogous to this of supp(µσ�ν)
as the image by a homeomorphism of the closure of the open set Uν,µσ :

Proposition 3.4.3. Hτ,πγ,1 is an increasing di�eomorphism from R\Fτ,πγ,1
onto R \ supp(πγ,1 � τ), where

Fτ,πγ,1 = R \ R ∩ ∂Ωτ,πγ,1 ∪ {x ∈ R; τ({x}) > γ}.

Finally, one proves a weak exact separation phenomenon, only allowing
to conclude the convergence of the largest eigenvalue of MN (p(N)) :

Theorem 3.4.4. (1) If θ1 > maxFν,πα,1, the k1 eigenvalues

(λj(MN (p(N)), 1 ≤ j ≤ k1)

almost surely converge outside the support of πα,1 � ν towards ρθ1 =
Hν,πα,1(θ1).

(2) If θ1 ≤ maxFν,πα,1, then, for each k ∈ N, the �rst k eigenvalues
(λj(MN (p(N)), 1 ≤ j ≤ k) almost surely converge to the right end-
point of the support of πα,1 � ν.



Chapter 4

First order in�nitesimal

freeness

This chapter is the text of the article �In�nitesimal non-crossing cumulants
and free probability of type B� [FN10], written in collaboration with A. Nica
and published in Journal of Functional Analysis.

4.1 Introduction

4.1.1 The framework of the chapter

This chapter is concerned with a form of free independence for noncommuta-
tive random variables, which can be called �freeness of type B� or �in�nites-
imal freeness�, and occurs in relation to objects of the form{

(A, ϕ, ϕ′), where A is a unital algebra over C
and ϕ,ϕ′ : A → C are linear with ϕ(1A) = 1, ϕ′(1A) = 0.

(4.1)

The motivation for considering objects as in (4.1) is three-fold.

(a) This framework generalizes the link-algebra associated to a noncom-
mutative probability space of type B, in the sense introduced by Biane,
Goodman and Nica [BGN03]. One can thus take the point of view that (4.1)
provides us with an enlarged framework for doing �free probability of type
B�. This point of view is justi�ed by the fact that lattices of non-crossing
partitions of type B do indeed appear in the underlying combinatorics � see
e.g. Theorem 4.5.4 below, concerning alternating products of in�nitesimally
free random variables.

(b) It turns out to be bene�cial to consolidate the functionals ϕ,ϕ′ from
(4.1) into only one functional

ϕ̃ : A → G, ϕ̃ := ϕ+ εϕ′, (4.2)

63
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where G denotes the two-dimensional Grassman algebra generated by an
element ε which satis�es ε2 = 0. Thus G is the extension of C de�ned as

G = {α+ εβ | α, β ∈ C}, (4.3)

with multiplication given by (α1 +εβ1) · (α2 +εβ2) = α1α2 +ε(α1β2 +β1α2),
and the structure from (4.1) could equivalently be treated as{

(A, ϕ̃), where A is a unital algebra over C
and ϕ̃ : A → G is C-linear with ϕ̃(1A) = 1.

(4.4)

The framework (4.4) was discussed in the PhD Thesis of Oancea [Oan07],
under the name of �scarce 1 G-probability space�. Speci�cally, Chapter 7 of
[Oan07] studies a concept of G-freeness for a family of unital subalgebras in
a G-probability space, which is de�ned via a vanishing condition for mixed
G-valued cumulants, and generalizes the concept of freeness of type B from
[BGN03].

(c) The recent paper [BS09] by Belinschi and Shlyakhtenko discusses a
concept of �in�nitesimal distribution� (C〈X1, . . . , Xk〉, µ, µ′) which is exactly
as in (4.1), with C〈X1, . . . , Xk〉 denoting the algebra of polynomials in non-
commuting indeterminates X1, . . . , Xk. This remarkable paper brings forth
the idea that interesting in�nitesimal distributions arise when µ is the limit
at 0 and µ′ is the derivative at 0 for a family of k-variables distributions
(µt : C〈X1, . . . , Xk〉 → C)t∈T , where T is a set of real numbers having 0 as
accumulation point. As we will show below, this ties in really nicely with
the G-valued cumulant considerations mentioned in (b); indeed, one could
say that [BS09] puts the ε from (4.3) in its right place � it is a sibling of the
ε's from calculus, only that instead of just having �ε2 much smaller than ε�
one goes for the radical requirement that ε2 = 0.

Upon consideration, it seems that what goes best with the framework
from (4.1) is the �in�nitesimal� terminology from (c), which is in particular
adopted in the next de�nition. Throughout the paper some terminology
inspired from (a) and (b) will also be used, in the places where it is suggestive
to do so (e.g. when talking about �soul companions for ϕ� in subsection 4.1.3
below).

De�nition 4.1.1. 1o A structure (A, ϕ, ϕ′) as in (4.1) will be called an
in�nitesimal noncommutative probability space (abbreviated as incps).

2o Let (A, ϕ, ϕ′) be an incps and let A1, . . . ,Ak be unital subalgebras
of A. We will say that A1, . . . ,Ak are in�nitesimally free with respect to
(ϕ,ϕ′) when they satisfy the following condition:

1The adjective �scarce� is used in order to distinguish from the concept of �G-probability
space� from operator-valued free probability, where one would require the functional ϕ̃ to
be G-linear.
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If i1, . . . , in ∈ {1, . . . , k} are such that i1 6= i2, i2 6= i3, . . . , in−1 6= in,
and if a1 ∈ Ai1 , . . . , an ∈ Ain are such that ϕ(a1) = · · · = ϕ(an) = 0,

then ϕ(a1 · · · an) = 0 and

ϕ′(a1 · · · an) =


ϕ(a1 an)ϕ(a2 an−1) · · ·ϕ(an−1

2
an−1

2
)ϕ′(a(n+1)/2),

if n is odd and i1 = in, i2 = in−1, . . . , in−1
2

= in+3
2
,

0, otherwise.
(4.5)

Recall that in the free probability literature it is customary to use the
name noncommutative probability space for a pair (A, ϕ) where A is a unital
algebra over C and ϕ : A → C is linear with ϕ(1A) = 1. Thus the concept
of in�nitesimal noncommutative probability space is obtained by adding to
(A, ϕ) another functional ϕ′ as in (4.1). It is also immediate that De�nition
4.1.1.2o of in�nitesimal freeness is obtained by adding the condition (4.5) to
the �usual� de�nition for the freeness of A1, . . . ,Ak in (A, ϕ) (as appearing
e.g. in [VDN92], De�nition 2.5.1).

De�nition 4.1.1.2o is a reformulation of the concept with the same name
from De�nition 13 of [BS09]. The relations with [BS09], [BGN03] are dis-
cussed more precisely in Section 4.2 (cf. Remarks 4.2.8, 4.2.9). Section 4.2
also collects a few miscellaneous properties of in�nitesimal freeness that fol-
low directly from the de�nition. Most notable among them is that one can
easily extend to in�nitesimal framework the well-known free product con-
struction of noncommutative probability spaces (A1, ϕ1) ∗ · · · ∗ (Ak, ϕk), as
presented e.g. in Lecture 6 of [NS06]. More precisely: if (A1, ϕ1) ∗ · · · ∗
(Ak, ϕk) =: (A, ϕ) and if we are given linear functionals ϕ′i : Ai → C such
that ϕ′i(1A) = 0, 1 ≤ i ≤ k, then there exists a unique linear functional
ϕ′ : A → C such that ϕ′ | Ai = ϕ′i, 1 ≤ i ≤ k, and such that A1, . . . ,Ak are
in�nitesimally free in (A, ϕ, ϕ′). (See Proposition 4.2.4 below.) The result-
ing incps (A, ϕ, ϕ′) can thus be taken, by de�nition, as the free product of
(A, ϕi, ϕ′i) for 1 ≤ i ≤ k.

4.1.2 Non-crossing cumulants for (A, ϕ, ϕ′)

An important tool in the combinatorics of free probability is the family
of non-crossing cumulant functionals (κn : An → C)n≥1 associated to a
noncommutative probability space (A, ϕ). These functionals were introduced
in [Spe94]; for a detailed presentation of their basic properties, see Lecture
11 of [NS06]. For every n ≥ 1, the multilinear functional κn : An → C
is de�ned via the summation formula (2.5) over the lattice NC(n) of non-
crossing partitions of {1, . . . , n}. Here we only pick a special value of n that
we use for illustration, e.g. n = 3. In this special case one has, for all
a1, a2, a3 ∈ A,

κ3(a1, a2, a3) = ϕ(a1a2a3)− ϕ(a1)ϕ(a2a3)− ϕ(a2)ϕ(a1a3)
−ϕ(a3)ϕ(a1a2) + 2ϕ(a1)ϕ(a2)ϕ(a3).

(4.6)
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The expression on the right-hand side of (4.6) has 5 terms (premultiplied
by integer coe�cients 2 such as 1,−1, or 2), corresponding to the fact that
|NC(3)| = 5.

Let now (A, ϕ, ϕ′) be an incps as in De�nition 4.1.1. Then in addition to
the non-crossing cumulant functionals κn : An → C associated to ϕ we will
de�ne another family of multilinear functionals (κ′n : An → C)n≥1, which
involve both ϕ and ϕ′. For every n ≥ 1, the functional κ′n is obtained by
taking a formal derivative in the formula for κn, where we postulate that
the derivative of ϕ is ϕ′ and we invoke linearity and the Leibnitz rule for
derivatives. For instance for n = 3 the term ϕ(a1a2a3) on the right-hand
side of (4.6) is derivated into ϕ′(a1a2a3), the term ϕ(a1)ϕ(a2a3) is derivated
into ϕ′(a1)ϕ(a2a3) + ϕ(a1)ϕ′(a2a3), etc, yielding the formula for κ′3 to be

κ′3(a1, a2, a3) = ϕ′(a1a2a3)− ϕ′(a1)ϕ(a2a3)− ϕ(a1)ϕ′(a2a3)
−ϕ′(a2)ϕ(a1a3)− ϕ(a2)ϕ′(a1a3)− ϕ′(a3)ϕ(a1a2)
−ϕ(a3)ϕ′(a1a2) + 2ϕ′(a1)ϕ(a2)ϕ(a3)
+2ϕ(a1)ϕ′(a2)ϕ(a3) + 2ϕ(a1)ϕ(a2)ϕ′(a3).

(4.7)

We will refer to the functionals κ′n as in�nitesimal non-crossing cumulants
associated to (A, ϕ, ϕ′). The precise formula de�ning them appears in Def-
inition 4.3.7 below. The passage from the formula for κn to the one for κ′n
is related to a concept of dual derivation system on a space of multilinear
functionals on A, which is discussed in Section 4.7 of the chapter.

The role of in�nitesimal non-crossing cumulants in the study of in�nites-
imal freeness is described in the next theorem.

Theorem 4.1.2. Let (A, ϕ, ϕ′) be an incps and let A1, . . . ,Ak be unital
subalgebras of A. The following statements are equivalent:
(1) A1, . . . ,Ak are in�nitesimally free.
(2) For every n ≥ 2, for every i1, . . . , in ∈ {1, . . . , k} which are not all
equal to each other, and for every a1 ∈ Ai1 , . . . , an ∈ Ain , one has that
κn(a1, . . . , an) = κ′n(a1, . . . , an) = 0.

Theorem 4.1.2 provides an in�nitesimal version for the basic result of
Speicher (Theorem 2.3.7) which describes the usual freeness of A1, . . . ,Ak
in (A, ϕ) in terms of the cumulants κn.

In the remaining part of this subsection we point out some other inter-
pretations of the formula de�ning κ′n (all corresponding to one or another of
the points of view (a), (b), (c) listed at the beginning of subsection 4.1.1).
The easy veri�cations required by these alternative descriptions of κ′n are
shown at the beginning of Section 4.4.

First of all one can consider, as in [BS09], the situation when ϕ,ϕ′ in (4.1)
are obtained as the in�nitesimal limit of a family of functionals {ϕt | t ∈ T}.

2The meaning of these coe�cients is that they are special values of the Möbius function
of NC(3), see Proposition 2.3.2.
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Here T is a subset of R which has 0 as an accumulation point, every ϕt is
linear with ϕt(1A) = 1, and we have

ϕ(a) = lim
t→0

ϕt(a) and ϕ′(a) = lim
t→0

ϕt(a)− ϕ(a)
t

, ∀ a ∈ A. (4.8)

(Note that such families {ϕt | t ∈ T} can in fact always be found, e.g. by
simply taking ϕt = ϕ + tϕ′, t ∈ (0,∞).) In such a situation, the formal
derivative which leads from κn to κ′n turns out to have the same e�ect as a
� ddt � derivative. Consequently, we get the alternative formula

κ′n(a1, . . . , an) =
[ d

dt
κ(t)
n (a1, . . . , an)

]
t=0 , (4.9)

where κ
(t)
n denotes the nth non-crossing cumulant functional of ϕt.

Second of all, it is possible to take a direct combinatorial approach to the
functionals κ′n, and identify precisely a set of non-crossing partitions which
indexes the terms in the summation de�ning κ′n(a1, . . . , an). This set turns
out to be the set NCZ(B)(n) de�ned by (2.11). Hence in a terminology
focused on types of non-crossing partitions, one could call the functionals
κn and κ′n �non-crossing cumulants of type A and of type B�, respectively.
The idea put forth here is that, in some sense, summations over NCZ(B)(n)
appear as �derivatives for summation over NC(n)�. A more re�ned formula
supporting this idea is shown in Proposition 4.6.6 below, in connection to
the concept of dual derivation sytem.

In the case n = 3 that we are using for illustration, the 10 terms appearing
on the right-hand side of (4.7) are indexed by the 10 partitions with zero-
block inNC(B)(3). The relation between a partition τ and the corresponding
term is easy to follow: the zero-block Z of τ produces the ϕ′( · · · ) factor,
and every pair V,−V of non-zero-blocks of τ produces a ϕ( · · · ) factor.

Finally (third of all) one can also give a description of κ′n which corre-
sponds to the �G-valued� point of view appearing as (b) on the list from
subsection 4.1.1. This goes as follows. Let ϕ̃ = ϕ + εϕ′ : A → G be as in
(4.2), and consider the family of C-multilinear functionals (κ̃n : An → G)n≥1

de�ned by the same summation formula as for the usual non-crossing cumu-
lant functionals (κn : An → C)n≥1, only that now we use ϕ̃ instead of ϕ in
the summations. So, for example, for n = 3 we have, for each a1, a2, a3 ∈ A,

κ̃3(a1, a2, a3) = ϕ̃(a1a2a3)− ϕ̃(a1)ϕ̃(a2a3)− ϕ̃(a2)ϕ̃(a1a3)
−ϕ̃(a3)ϕ̃(a1a2) + 2ϕ̃(a1)ϕ̃(a2)ϕ̃(a3) ∈ G.

(4.10)

It then turns out that the functional κ′n can be obtained by reading the
ε-component of κ̃n.

We take the opportunity to introduce here a piece of terminology from the
literature on Grassman algebras (see e.g. [DeW92], pp. 1-2): the complex
numbers α, β which give the two components of a Grassman number γ =
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α+εβ ∈ G will be called the body and respectively the soul of γ; it will come
in handy throughout the paper to denote them 3 as

α = Bo(γ), β = So(γ). (4.11)

This notation will also be used in connection to a G-valued function f de�ned
on some set S � we de�ne functions Bo f and So f from S to C by

(Bo f)(x) = Bo (f(x)), (So f)(x) = So (f(x)), ∀x ∈ S. (4.12)

Returning then to the functionals κ̃n : An → G from the preceding para-
graph, their connection to the κ′n (and also to the κn) can be recorded as

Bo κ̃n = κn, So κ̃n = κ′n, ∀n ≥ 1. (4.13)

Due to (4.13), κ̃n can be used as a simplifying tool in calculations with
κ′n (in the sense that it may be easier to run the corresponding calculation
with κ̃n, in G, and only pick soul parts at the end of the calculation). In
particular, this will be useful when proving Theorem 4.1.2, since the con-
dition κn(a1, . . . , an) = κ′n(a1, . . . , an) = 0 from Theorem 4.1.2(2) amounts
precisely to κ̃n(a1, . . . , an) = 0.

4.1.3 Using derivations to �nd �soul companions�

When studying in�nitesimal freeness it may be of interest to consider the
situation where we have �xed a noncommutative probability space (A, ϕ) and
a family A1, . . . ,Ak of unital subalgebras of A which are free in (A, ϕ). In
this situation we can ask: how do we �nd interesting examples of functionals
ϕ′ : A → C with ϕ′(1A) = 0 and such that A1, . . . ,Ak become in�nitesimally
free in (A, ϕ, ϕ′)? A nice name for such functionals ϕ′ is suggested by the
G-valued point of view described in subsection 4.1.1 : since ϕ and ϕ′ are
the body part and respectively the soul part of the consolidated functional
ϕ̃ : A → G, one may say that we are looking for a suitable soul companion ϕ′

for the given �body functional� ϕ (and in reference to the given subalgebras
A1, . . . ,Ak).

Let us note that the remark made at the end of subsection 4.1.1 can be
interpreted as a statement about soul companions. Indeed, this remark says
that if (A, ϕ) is the free product of (A1, ϕ1), . . . , (Ak, ϕk), then a ϕ′ from
the desired set of soul companions is parametrized precisely by a family of
linear functionals ϕ′i : Ai → C such that ϕ′i(1A) = 0, 1 ≤ i ≤ k.

The point we follow here, with inspiration from [BS09], is that some
interesting recipes to construct �soul companions� for a given ϕ : A → C

3Besides being amusing, �Bo� and �So� give a faithful analogue for the common nota-
tions �Re� and �Im� used when one introduces C as a 2-dimensional algebra over R.
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arise from ideas pertaining to di�erentiability. This is intimately related to
the fact that κ′n is a formal derivative for κn, hence to equations of the form

dn(κn) = κ′n, ∀n ≥ 1,

where (dn)n≥1 is a dual derivation system on A. Indeed, suppose we are
given a derivation D : A → A; then one has a natural dual derivation
system associated to it, which acts by

(dnf)(a1, . . . , an) =
n∑

m=1

f
(
a1, . . . , am−1, D(am), am+1, . . . , an

)
, (4.14)

for f : An → C multilinear and a1, . . . , an ∈ A. By using the dn from (4.14),
we obtain the following theorem.

Theorem 4.1.3. Let (A, ϕ, ϕ′) be an incps, and let κn and κ′n be the non-
crossing cumulant functionals associated to it. Suppose D : A → A is a
derivation with the property that ϕ′ = ϕ ◦ D. Then for every n ≥ 1 and
a1, . . . , an ∈ A one has

κ′n(a1, . . . , an) =
n∑

m=1

κn(a1, . . . , am−1, D(am), am+1, . . . , an). (4.15)

Moreover, when combined with Theorem 4.1.2, the formula for in�nites-
imal cumulants obtained in (4.15) has the following immediate consequence.

Corollary 4.1.4. Let (A, ϕ) be a noncommutative probability space, and let
A1, . . . ,Ak be unital subalgebras of A which are free in (A, ϕ). Suppose we
found a derivation D : A → A such that D(Ai) ⊆ Ai for every 1 ≤ i ≤ k.
Then A1, . . . ,Ak are in�nitesimally free in (A, ϕ, ϕ′), where ϕ′ = ϕ ◦D.

For comparison, let us also look at the parallel statement arising in con-
nection to in�nitesimal limits. This is essentially the same as Remark 15
from [BS09], and goes as follows.

Proposition 4.1.5. Let (A, ϕ) be a noncommutative probability space, and
let A1, . . . ,Ak be unital subalgebras of A which are free in (A, ϕ). Suppose
we found a family of linear functionals (ϕt : A → C )t∈T with ϕt(1A) = 1
for every t ∈ T and such that:

(i) A1, . . . ,Ak are free in (A, ϕt) for every t ∈ T .
(ii) limt→0 ϕt(a) = ϕ(a), for every a ∈ A.
(iii) The limit ϕ′(a) := limt→0(ϕt(a)− ϕ(a))/t exists, for every a ∈ A.

Then A1, . . . ,Ak are in�nitesimally free in (A, ϕ, ϕ′), where ϕ′ : A → C is
de�ned by condition (iii).

A natural example accompanying Proposition 4.1.5 comes in connection
to �-convolution powers of joint distributions of k-tuples (cf. Example 4.7.9
below). In Section 4.8 we also discuss a couple of natural situations when
Corollary 4.1.4 applies (cf. Example 4.7.7).
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4.1.4 Outline of the rest of the chapter

Besides the introduction, the chapter has six other sections. In Section 4.2
we collect some basic properties of in�nitesimal freeness, and we discuss the
relations between De�nition 4.1.1 and the frameworks of [BS09], [BGN03]. In
Section 4.3 we introduce the non-crossing in�nitesimal cumulants, we verify
the equivalence between their various alternative descriptions, and we prove
Theorem 4.1.2.

Sections 4.4 and 4.5 address the topic of alternating products of in-
�nitesimally free random variables. Section 4.4 uses this topic to illustrate
a �generic� method to obtain in�nitesimal analogues for known results in
usual free probability: one replaces C by G in the proof of the original re-
sult, then one takes the soul part in the G-valued statement that comes out.
By using this method we obtain the in�nitesimal versions of two important
facts related to alternating products that were originally found in [NS96] �
one of them is about compressions by free projections, the other concerns a
method of constructing free families of free Poisson elements. In Section 4.5
we remember that the concept of incps has its origins in the considerations
�of type B� from [BGN03], and we look at how the essence of these consid-
erations persists in the framework of the present paper. The main point of
the section is that, when taking the soul part of the G-valued formulas for
alternating products of in�nitesimally free random variables, one does indeed
obtain nice analogues of type B (with summations over NC(B)(n)) for the
type A formulas. In particular, this o�ers another explanation for why the
in�nitesimal cumulant functional κ′n can be described by using a summation
formula over NCZ(B)(n).

In Section 4.6 we return to the point of view of treating κ′n as a derivative
of the usual non-crossing cumulant functional κn, and we discuss the related
concept of dual derivation system on a unital algebra A. Finally, Section 4.7
elaborates on the discussion about soul companions from the above subsec-
tion 4.1.3. In particular, we show how the dual derivation system provided
by a derivation D : A → A leads to the setting for in�nitesimal freeness
from Corollary 4.1.4. Section 4.7 (and the chapter) concludes with a cou-
ple of examples related to the settings of Corollary 4.1.4 and of Proposition
4.1.5.

4.2 Basic properties of in�nitesimal freeness

In this section we collect some basic properties of in�nitesimal freeness, and
we discuss the relations between De�nition 4.1.1 and the frameworks from
[BS09], [BGN03].

De�nition 4.2.1. Here are some standard variations of De�nition 4.1.1.

1o The concept of in�nitesimal freeness carries over to ∗-algebras. More
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precisely, we will use the name ∗-incps for an incps (A, ϕ, ϕ′) where A is a
unital ∗-algebra and where

(i) ϕ is positive de�nite, that is, ϕ(a∗a) ≥ 0, ∀ a ∈ A;
(ii) ϕ′ is selfadjoint, that is, ϕ′(a∗) = ϕ′(a), ∀ a ∈ A.
2o Another standard variation of the de�nitions is that in�nitesimal free-

ness can be considered for arbitrary subsets of A (which don't have to be sub-
algebras). So if (A, ϕ, ϕ′) is an incps (respectively a ∗-incps) and if X1, . . . ,Xk
are subsets of A, then we will say that X1, . . . ,Xk are in�nitesimally free (re-
spectively in�nitesimally ∗-free) when the unital subalgebras (respectively
∗-subalgebras) generated by X1, . . . ,Xk are so.

Remark 4.2.2. Let (A, ϕ) be a noncommutative probability space and let
A1, . . . ,Ak be unital subalgebras of A which are free in (A, ϕ). It is very
easy to see (cf. Remark 2.5.2 in [VDN92] or Examples 5.15 in [NS06]) that
the way how ϕ acts on Alg(A1 ∪ · · · ∪ Ak) can be reconstructed from the
restrictions ϕ | Ai, 1 ≤ i ≤ k. The simplest illustration for how this works
is provided by the formula

ϕ(ab) = ϕ(a)ϕ(b), ∀ a ∈ Ai1 , b ∈ Ai2 , with i1 6= i2, (4.16)

which is obtained by expanding the product and then collecting terms in the

equation ϕ
(

(a− ϕ(a)1A) · (b− ϕ(b)1A)
)

= 0.
A similar phenomenon turns out to take place when dealing with in-

�nitesimal freeness: the way how ϕ′ acts on Alg(A1 ∪ · · · ∪ Ak) can be
reconstructed from the restrictions of ϕ and of ϕ′ to Ai, 1 ≤ i ≤ k. For
example, the counterpart of Equation (4.16) says that

ϕ′(ab) = ϕ′(a)ϕ(b) + ϕ(a)ϕ′(b), ∀ a ∈ Ai1 , b ∈ Ai2 , where i1 6= i2. (4.17)

This is obtained by expanding the product and then collecting terms in the

equation ϕ′
(

(a− ϕ(a)1A) · (b− ϕ(b)1A)
)

= 0 (which is a particular case of

Equation (4.5)), and by taking into account that ϕ′(1A) = 0.
We leave it as an easy exercise to the reader to verify that the similar

calculation for an alternating product of 3 factors (which makes a more
involved use of Equation (4.5)) leads to the formula

ϕ′(a1ba2) = ϕ′(a1a2)ϕ(b) + ϕ(a1a2)ϕ′(b), (4.18)

for a1, a2 ∈ Ai1 , b ∈ Ai2 , with i1 6= i2.

Remark 4.2.3. (Traciality.) Another well-known fact in usual free proba-
bility is that if the unital subalgebras A1, . . . ,Ak ⊆ A are free in (A, ϕ) and
if ϕ | Ai is a trace for every 1 ≤ i ≤ k, then ϕ is a trace on Alg(A1∪· · ·∪Ak).
This too extends to the in�nitesimal framework: if A1, . . . ,Ak are in�nites-
imally free in (A, ϕ, ϕ′) and if ϕ | Ai, ϕ′ | Ai are traces for every 1 ≤ i ≤ k,
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then ϕ and ϕ′ are traces on Alg(A1 ∪ · · · ∪ Ak). Rather than writing an
ad-hoc proof of this fact based directly on De�nition 4.1.1, we �nd it more
instructive to do this by using cumulants � see Proposition 4.3.16 below.

We next move to describing the free product of in�nitesimal noncommu-
tative probability spaces announced at the end of Section 4.1.1.

Proposition 4.2.4. Let (A1, ϕ1), . . . , (Ak, ϕk) be noncommutative probabil-
ity spaces, and consider the free product (A, ϕ) = (A1, ϕ1) ∗ · · · ∗ (Ak, ϕk)
(as described e.g. in Lecture 6 of [NS06]). Suppose that for every 1 ≤ i ≤ k
we are given a linear functional ϕ′i : Ai → C such that ϕ′i(1A) = 0. Then
there exists a unique linear functional ϕ′ : A → C such that ϕ′ | Ai = ϕ′i,
1 ≤ i ≤ k, and such that A1, . . . ,Ak are in�nitesimally free in (A, ϕ, ϕ′).

Proof. We start by reviewing a few basic facts and notations related to
(A, ϕ). Each of A1, . . . ,Ak is identi�ed as a unital subalgebra of A, such
that ϕ | Ai = ϕi. For 1 ≤ i ≤ k we denote Aoi = {a ∈ Ai | ϕ(a) = 0}, and
for every n ≥ 1 and 1 ≤ i1, . . . , in ≤ k such that i1 6= i2, . . . , in−1 6= in we
put

Wi1,...,in := span
{
a1 · · · an | a1 ∈ Aoi1 , . . . , an ∈ A

o
in

}
. (4.19)

It is known that Wi1,...,in is canonically isomorphic to the tensor product
Aoi1 ⊗ · · · ⊗ A

o
in
, via the identi�cation a1 · · · an ' a1 ⊗ · · · ⊗ an, for a1 ∈

Aoi1 , . . . , an ∈ A
o
in
. Moreover it is known that the spaces Wi1,...,in de�ned in

(4.19) realize a direct sum decomposition of the kernel of ϕ. (See [NS06],
pp. 81-84.)

Due to the direct sum decomposition mentioned above, we may de�ne
the required functional ϕ′ by separately prescribing its behaviour at 1A and
on each of the subspaces Wi1,...,in . We put ϕ′(1A) := 0. We also prescribe
ϕ′ to be 0 on Wi1,...,in whenever n is even, and whenever n is odd but it
is not true that im = in+1−m for all 1 ≤ m ≤ (n − 1)/2. Suppose next
that n = 2m − 1, odd, and that the indices i1, . . . , in are such that i1 =
i2m−1, i2 = i2m−2, . . . , im−1 = im+1. By using the identi�cation Wi1,...,in '
Aoi1 ⊗ · · · ⊗ A

o
in

it is immediate that we can de�ne a linear map on Wi1,...,in

by the requirement that

a1 · · · a2m−1 7→ ϕi1(a1a2m−1)ϕi2(a2a2m−2) · · ·ϕim−1(am−1am+1) · ϕ′im(am),

for every a1 ∈ Aoi1 , . . . , an ∈ A
o
in
; we take this as the prescription for how ϕ′

is to act on Wi1,...,in .
Directly from De�nition 4.1.1 it is immediate that, with ϕ′ : A → C

de�ned as in the preceding paragraph, A1, . . . ,Ak are in�nitesimally free in
(A, ϕ, ϕ′). The uniqueness of ϕ′ with this property is also immediate.

De�nition 4.2.5. Let (A1, ϕ1, ϕ
′
1), . . . , (Ak, ϕk, ϕ′k) be in�nitesimal non-

commutative probability spaces. We de�ne their free product to be (A, ϕ, ϕ′)
where (A, ϕ) = (A1, ϕ1)∗· · ·∗(Ak, ϕk) and where ϕ′ : A → C is the functional
provided by Proposition 4.2.4.
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Remark 4.2.6. In the context of Proposition 4.2.4, suppose that the proba-
bility spaces (A1, ϕ1), . . . , (Ak, ϕk) are ∗-noncommutative probability spaces.
Then so is the free product (A, ϕ) (see [NS06], Theorem 6.13). If moreover
each of the functionals ϕ′i : Ai → C given in Proposition 4.2.4 is selfadjoint,
then it is easily checked that the resulting functional ϕ′ : A → C is selfad-
joint too. Hence, if in De�nition 4.2.5 each of (Ai, ϕi, ϕ′i) is a ∗-incps, then
the free product (A, ϕ, ϕ′) is a ∗-incps as well.

Example 4.2.7. For an illustration of the above, we look at a simple exam-
ple where the spaces Wi1,...,in are all 1-dimensional. Consider the k-fold free
product group Z2 ∗ · · · ∗ Z2 and let ϕ be the canonical trace on the group
algebra A := C[Z2 ∗ · · · ∗ Z2]. So A is a unital ∗-algebra freely generated by
k unitaries u1, . . . , uk of order 2, and has a linear basis B given by

B = {1A} ∪
{
ui1 · · ·uin

n ≥ 1, 1 ≤ i1, . . . , in ≤ k,
with i1 6= i2, . . . , in−1 6= in

}
. (4.20)

The linear functional ϕ : A → C acts on the basis B by

ϕ(1A) = 1, and ϕ(b) = 0, ∀ b ∈ B \ {1A}.

It is easy to verify (see e.g. Lecture 6 in [NS06]) that we have (A, ϕ) =
(A1, ϕ1) ∗ · · · ∗ (Ak, ϕk), where for 1 ≤ i ≤ k we denote Ai = span{1A, ui}
(2-dimensional ∗-subalgebra of A), and where ϕi := ϕ | Ai. The direct sum
decomposition of A with respect to this free product structure simply has

Wi1,...,in = 1-dimensional space spanned by ui1 · · ·uin ,

for every n ≥ 1 and every alternating sequence i1, . . . , in as described in
(4.20).

Now let ϕ′i : Ai → C be linear functionals such that ϕ′i(1A) = 0, 1 ≤ i ≤
k. Clearly, these functionals are determined by the values

ϕ′1(u1) =: α′1, . . . , ϕ
′
k(uk) =: α′k.

The free product extension ϕ′ : A → C then acts by

ϕ′(ui1 · · ·uin) =


α′im , if n is odd, n = 2m− 1,

and i1 = i2m−1, . . . , im−1 = im+1

0, otherwise.
(4.21)

Note that formula (4.21) looks particularly nice in the case when k = 2 �
indeed, in this case the requirement that i1 = i2m−1, . . . , im−1 = im+1 is
automatically satis�ed whenever n = 2m− 1 and i1, . . . , in are as in (4.20).

Remark 4.2.8. (Relation to [BS09]). De�nition 13 of [BS09] introduces
a concept of in�nitesimal freeness for unital subalgebras A1,A2 ⊆ A in an
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incps (A, µ, µ′). As explained there (immediately following to De�nition 13),
and reviewed in (2.18), (2.19), this amounts to two requirements: thatA1,A2

are free in (A, µ), and that they satisfy the following additional condition:

µ′
( (
p1 − µ(p1)1A

)
· · ·
(
pn − µ(pn)1A

) )
= (4.22)

n∑
m=1

µ
(

(p1 − µ(p1)1A) · · ·µ′(pm) · · · (pn − µ(pn)1A)
)

for p1 ∈ Ai1 , . . . , pn ∈ Ain , where i1 6= i2, . . . , in−1 6= in. By denoting
pm − µ(pm)1A =: qm and by taking into account that µ′(qm) = µ′(pm),
1 ≤ m ≤ n, one sees that condition (4.22) is equivalent to its particular case
requesting that

µ′(q1 · · · qn) =
n∑

m=1

µ(q1 · · · qm−1qm+1 · · · qn) · µ′(qm) (4.23)

for q1 ∈ Ai1 , . . . , qn ∈ Ain , where i1 6= i2, . . . , in−1 6= in and where µ(q1) =
· · · = µ(qn) = 0.

But now, let A1,A2 be unital subalgebras of A which are free in (A, µ).
A standard calculation from usual free probability (see e.g. Lemma 5.18 on
page 73 of [NS06]) says that, with q1, . . . , qn as in (4.23), one has

µ(q1 · · · qm−1qm+1 · · · qn) = 0

unless it is true that m − 1 = n − m and that im−1 = im+1, im−2 =
im+2, . . . , i1 = in; moreover, if the latter conditions are satis�ed, then

µ(q1 · · · qm−1qm+1 · · · qn) = µ(qm−1qm+1)µ(qm−2qm+2) · · ·µ(q1qn).

This clearly implies that the sum on the right-hand side of (4.23) has at most
one term which is di�erent from 0; and moreover, when such a term exists,
it is exactly as described in Equation (4.5) of De�nition 4.1.1.

Hence, modulo an immediate reformulation, the concept of in�nitesimal
freeness from [BS09] is the same as the one used in this chapter (which
justi�es the fact that we are calling it by the same name).

Remark 4.2.9. (Relation to [BGN03]). A noncommutative probability space
of type B is de�ned in [BGN03] (see also Section 2.5) as a system

(A, ϕ,V, f,Φ),

where (A, ϕ) is a noncommutative probability space, V is a complex vector
space, f : V → C is a linear functional, and Φ : A × V × A → V is a two-
sided action. We will write for short aξb and respectively aξ, ξb instead of
Φ(a, ξ, b) and respectively Φ(a, ξ, 1A), Φ(1A, ξ, b), for a, b ∈ A and ξ ∈ V. Let
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A1, . . . ,Ak be unital subalgebras of A and let V1, . . . ,Vk be linear subspaces
of V, such that Vi is closed under the two-sided action of Ai, 1 ≤ i ≤ k.
De�nition 7.2 of [BGN03] (De�nition 2.5.4) introduces a concept of what it
means for (A1,V1), . . . , (Ak,Vk) to be free in (A, ϕ,V, f,Φ). This amounts to
two requirements: that A1, . . . ,Ak are free in (A, ϕ), and that the following
additional condition is satis�ed:

f(am . . . a1ξb1 . . . bn) =


ϕ(a1b1) · · ·ϕ(anbn)f(ξ),
if m = n and i1 = j1, . . . , in = jn

0, otherwise,
(4.24)

holding for m,n ≥ 0 and a1 ∈ Ai1 , . . . , am ∈ Aim , b1 ∈ Aj1 , . . . , bn ∈
Ajn , ξ ∈ Vh, where any two consecutive indices among im, . . . , i1, h, j1, . . . , jn
are di�erent from each other, and where ϕ(am) = · · · = ϕ(a1) = 0 =
ϕ(b1) = · · · = ϕ(bn).

Now, to (A, ϕ,V, f,Φ) as above one associates a link-algebra, which is
simply the direct product M = A × V endowed with the natural structure
of complex vector space and with multiplication

(a, ξ) · (b, η) = (ab, aη + ξb), ∀ a, b ∈ A, ξ, η ∈ V. (4.25)

If we de�ne ψ,ψ′ :M→ C by

ψ( (a, ξ) ) := ϕ(a), ψ′( (a, ξ) ) := f(ξ), ∀ (a, ξ) ∈M, (4.26)

then (M, ψ, ψ′) becomes an incps. Let again A1, . . . ,Ak be unital subalge-
bras of A and V1, . . . ,Vk be linear subspaces of V such that Vi is closed under
the two-sided action of Ai, 1 ≤ i ≤ k. Then M1 := A1 × V1, . . . ,Mk :=
Ak × Vk are unital subalgebras of the link-algebraM, and we claim that (A1,V1), . . . , (Ak,Vk)

are free in (A, ϕ,V, f,Φ),
in the sense of [BGN03]

 ⇔

 M1, . . . ,Mk are free
in (M, ψ, ψ′), in the

sense of De�nition 4.1.1

 .

(4.27)
In order to prove the implication �⇐� in (4.27), we only have to write

f(am . . . a1ξb1 . . . bn) = ψ′
(

(am, 0V) · · · (a1, 0V) · (0A, ξ) · (b1, 0V) · · · (bn, 0V)
)

and then invoke Equation (4.5). For the implication �⇒�, consider some
elements (a1, ξ1) ∈ Mi1 , . . . , (an, ξn) ∈ Min where i1 6= i2, . . . , in−1 6= in
and where ψ( (a1, ξ1) ) = · · · = ψ( (an, ξn) ) = 0 (which just means that
ϕ(a1) = · · · = ϕ(an) = 0). By using how the multiplication onM and how
ψ′ are de�ned, we see that

ψ′
(

(a1, ξ1) · · · (an, ξn)
)

=
n∑

m=1

f(a1 · · · am−1ξmam+1 · · · an). (4.28)
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But because of (4.24), at most one term in the sum on the right-hand side
of (4.28) can be di�erent from 0; moreover such a term can only occur for
m = (n + 1)/2, if (n is odd and) i1 = i2m−1, . . . , im−1 = im+1. Finally, if
the latter equalities of indices are satis�ed, then the unique term left in the
sum from (4.28) is ϕ(a1a2m−1) · · ·ϕ(am−1am+1)f(ξm), and the conditions
de�ning the in�nitesimal freeness ofM1, . . . ,Mk in (M, ψ, ψ′) follow.

Hence, by focusing on the link-algebra, one can incorporate the freeness
of type B from [BGN03] into the framework of this chapter.

4.3 In�nitesimal cumulants

Remark 4.3.1. We will work with the Grassman algebra G from subsection
4.1.1, and with the maps Bo, So : G → C de�ned in subsection 4.1.2. It is
immediate that the multiplication of G is commutative, and that the �body�
map Bo : G → C is a homomorphism of unital algebras. Concerning how
the �soul� map So behaves with respect to multiplication, we record the
immediate formula

So(γ1 · · · γn) =
n∑
i=1

(
So(γi) ·

∏
1≤j≤n,
j 6=i

Bo(γj)
)
, ∀n ≥ 1, ∀ γ1, . . . , γn ∈ G.

(4.29)

Notation 4.3.2. In the following, we �x a pair (A, ϕ̃) where A is a unital
algebra over C and ϕ̃ : A → G is C-linear with ϕ̃(1A) = 1. In connection to
this ϕ̃ we will repeat all the constructions of functionals described in subsec-
tion 2.3.2, with the only di�erence that the range space of these functionals
is now G. So for every n ≥ 1 we put

ϕ̃n(a1, . . . , an) = ϕ̃(a1 · · · an).

Then for every π ∈ NC(n) we de�ne ϕ̃π : An → G by

ϕ̃π(a1, . . . , an) :=
∏
V ∈π

ϕ̃|V |
(

(a1, . . . , an) | V
)
, a1, . . . , an ∈ A. (4.30)

This is followed by de�ning a family of cumulant functionals ( κ̃n : An →
G )n≥1, where

κ̃n =
∑

π∈NC(n)

Möb(A)(π, 1n) · ϕ̃π, n ≥ 1. (4.31)

Finally, for every π ∈ NC(n) we de�ne κ̃π : An → G by

κ̃π(a1, . . . , an) :=
∏
V ∈π

κ̃|V |
(

(a1, . . . , an) | V
)
, a1, . . . , an ∈ A. (4.32)
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It is easily seen that, exactly as in the C-valued case, the families of func-
tionals {κ̃π | π ∈ NC(n)} and {ϕ̃π | π ∈ NC(n)} are related by moment-
cumulant formulas (i.e. by summation formulas as shown in Equations (2.4),
(2.5). We only record here the special case of moment-cumulant formula
which expresses ϕ̃1n as a sum of cumulant functionals, and thus says that

ϕ̃(a1 · · · an) =
∑

π∈NC(n)

κ̃π(a1, . . . , an) ∈ G, ∀ a1, . . . , an ∈ A. (4.33)

Remark 4.3.3. The next thing to do concerning (A, ϕ̃) is to see if the
analogue of Theorem 2.3.7 holds. Both conditions (1) and (2) from the
statement of that theorem can be faithfully transcribed to the G-valued
framework, but it turns out they are no longer equivalent to each other � the
implication (2)⇒ (1) still holds, but its converse does not. This is discussed
in more detail in Remark 4.3.14 below.

In the remaining part of this subsection we will point out two other facts
from the theory of usual non-crossing cumulants where (unlike for Theorem
2.3.7) both the statement and the proof can be transcribed without any
problems from the C-valued to the G-valued framework.

Proposition 4.3.4. One has that κ̃n(a1, . . . , an) = 0 whenever n ≥ 2,
a1, . . . , an ∈ A, and there exists 1 ≤ m ≤ n such that am ∈ C1A.

Proof. This is the analogue of Proposition 11.15 in [NS06]. It is straightfor-
ward (left to the reader) to see that the proof shown on p. 182 of [NS06]
goes without any changes to the G-valued framework.

Proposition 4.3.5. Let x1, . . . , xs be in A and consider some products of
the form

a1 = x1 · · ·xs1 , a2 = xs1+1 · · ·xs2 , . . . , an = xsn−1+1 · · ·xsn ,

where 1 ≤ s1 < s2 < · · · < sn = s. Then

κ̃n(a1, . . . , an) =
∑

π∈NC(s) such

that π∨θ=1s

κ̃π(x1, . . . , xs), (4.34)

where θ ∈ NC(s) is the partition with interval blocks {1, . . . , s1}, {s1 +
1, . . . , s2}, . . . , {sn−1 + 1, . . . , sn}.

Proof. This is the analogue of Theorem 11.20 in [NS06], and the proof of
this theorem (as shown on pp. 178-180 of [NS06]) goes without any changes
to the G-valued framework.
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Notation 4.3.6. Throughout this whole section we �x an incps (A, ϕ, ϕ′).
We will use the notation �κn� for the non-crossing cumulant functionals
associated to ϕ, as described in Section 2.3.2. Moreover, we will denote,
same as in the introduction:

ϕ̃ = ϕ+ εϕ′ : A → G

and we will consider the family of non-crossing cumulant functionals (κ̃n :
An → G)n≥1 which are associated to ϕ̃ as in formula (4.31).

De�nition 4.3.7. For every n ≥ 1, consider the multilinear functional κ′n :
An → C de�ned by the formula

κ′n(a1, . . . , an) = (4.35)∑
π∈NC(n)
V ∈π

[
Möb(π, 1n) ϕ′|V |( (a1, . . . , an) | V )

∏
W∈π
W 6=V

ϕ|W |( (a1, . . . , an) |W )
]
,

for a1, . . . , an ∈ A. The functionals κ′n will be called in�nitesimal non-
crossing cumulant functionals associated to (A, ϕ, ϕ′).

A moment's thought shows that Equation (4.35) is indeed obtained from
the fomula (2.5) de�ning κn, where one uses the formal derivation procedure
announced in subsection 4.1.2 of the introduction.

We next state precisely (in Propositions 4.3.8, 4.3.10 and Remark 4.3.9)
the equivalence between De�nition 4.3.7 and the other facets of κ′n that were
mentioned in subsection 4.1.2.

Proposition 4.3.8. Suppose that ϕ,ϕ′ are the in�nitesimal limit of a family
{ϕt | t ∈ T}, in the sense described in Equation (4.8). Let us use the notation

κ
(t)
n for the non-crossing cumulant functional of ϕt, for t ∈ T and n ≥ 1.

Then for every n ≥ 1 and every a1, . . . , an ∈ A one has that

κn(a1, . . . , an) = lim
t→0

κ(t)
n (a1, . . . , an),

and

κ′n(a1, . . . , an) =
[ d

dt
κ(t)
n (a1, . . . , an)

]
t=0 .

Proof. Fix n ≥ 1 and a1, . . . , an ∈ A. For every t ∈ T we have that

κ(t)
n (a1, . . . , an) =

∑
π∈NC(n)

Möb(A)(π, 1n) ·
∏
V ∈π

ϕt
(

(a1, . . . , an) | V
)
. (4.36)

From (4.36) it is clear that limt→0 κ
(t)
n (a1, . . . , an) = κn(a1, . . . , an). More-

over, it is immediate that the function of t appearing on the right-hand side
of (4.36) has a derivative at 0; and upon using linearity and the Leibnitz
formula to compute this derivative, one obtains precisely the formula (4.35)
that de�ned κ′n(a1, . . . , an).
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Remark 4.3.9. As observed in Section 2.5, the set

{(π, V ) | π ∈ NC(n), V ∈ π}

which indexes the sum on the right-hand side of Equation (4.35) is the image
of NCZ(B)(n) via the bijection(

τ ∈ NCZ(B)(n) with zero-block Z
)
7→ (Abs(τ),Abs(Z) ).

When τ and (π, V ) correspond to each other via this bijection, we have that
Möb(B)(τ, 1±n) = Möb(A)(π, 1n) (cf. implication (2.12)) ; moreover, the rest
of the product indexed by (π, V ) on the right-hand side of Equation (4.35)

is precisely equal to ϕ
(B)
τ (a1, . . . , an), where we anticipate here the notation

ϕ
(B)
τ from Equation (4.77). In conclusion, the change of variable from (V, π)

to τ converts (4.35) into a summation formula �of type B�,

κ′n =
∑

τ∈NCZ(B)(n)

Möb(B)(τ, 1±n) · ϕ(B)
τ . (4.37)

It is easy to see that (4.37) is equivalent to a plain summation formula
which writes ϕ′(a1 · · · an) in terms of cumulants (cf. Remark 4.5.5 below,
where one also sees that the absence of terms indexed by partitions from
NC(B)(n) \NCZ(B)(n) is caused by the fact that ϕ′(1A) = 0).

Proposition 4.3.10. For every n ≥ 1 one has that Bo κ̃n = κn and So κ̃n =
κ′n.

Proof. For the �rst statement we only have to take the body part on both
sides of Equation (4.31) and use the fact that Bo : G→ C is a homomorphism
of unital algebras. For the second statement we take soul parts in (4.31) and
then use the multiplication formula (4.29).

We now go to Theorem 4.1.2. Note that, in view of Proposition 4.3.10,
the equalities �κn(a1, . . . , an) = κ′n(a1, . . . , an) = 0� from condition (2) of
Theorem 4.1.2 may be replaced with �κ̃n(a1, . . . , an) = 0�. We will prove
Theorem 4.1.2 in this alternative form, which is stated below as Proposition
4.3.12.

Lemma 4.3.11. Suppose that n is a positive integer and π is a partition in
NC(n), such that the following two properties hold:
(i) For every 1 ≤ i ≤ n − 1, the numbers i and i + 1 do not belong to the
same block of π.
(ii) π has at most one block of cardinality 1.
Then n is odd, and π is the partition{

{1, n}, {2, n− 1}, . . . , {(n− 1)/2, (n+ 3)/2}, {(n+ 1)/2}
}
.
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Proof. We will use the observation about interval-blocks of non-crossing par-
titions that was recorded in Subsection 2.3.1. Clearly, condition (i) implies
that π cannot have interval-blocks V with |V | ≥ 2; by also taking (ii) into ac-
count we thus see that π has a unique interval-block Vo, of the form Vo = {p}
for some 1 ≤ p ≤ n.

Let V be a block of π, distinct from Vo. We claim that

| V ∩ [1, p) | ≤ 1, | V ∩ (p, n] | ≤ 1. (4.38)

Indeed, assume for instance that we had | V ∩ [1, p) | ≥ 2. Then we could
�nd i, j ∈ V such that i < j < p and (i, j)∩V = ∅. Note that j 6= i+ 1, due
to condition (i); but then, as observed in Subsection 2.3.1, the partition π
must have an interval-block W ∩ (i, j), in contradiction to the fact that the
unique interval-block of π is Vo.

For every block V 6= Vo of π it then follows that

| V ∩ [1, p) | =| V ∩ (p, n] | = 1.

Indeed, if in (4.38) one of the sets V ∩ [1, p), V ∩ (p, n] would be empty, then
it would follow that |V | = 1 and hypothesis (ii) would be contradicted.

The list of blocks of π which are distinct from Vo can thus be written in
the form{

V1 = {i1, j1}, . . . , Vm = {im, jm}, where
i1 < p < j1, . . . , im < p < jm, and i1 < i2 < · · · < im.

(4.39)

Observe that in (4.39) we must have j1 > j2 > · · · > jm. Indeed, if it
was true that js < jt for some 1 ≤ s < t ≤ m, then it would follow that
is < it < p < js < jt, and the blocks Vs, Vt would cross. Hence we have
obtained i1 < · · · < im < p < jm < · · · < j1; together with (4.39), this
implies that n = 2m + 1 and that π is precisely the partition indicated in
the lemma.

Proposition 4.3.12. Let A1, . . . ,Ak be unital subalgebras of A. The fol-
lowing statements are equivalent:
(1) A1, . . . ,Ak are in�nitesimally free in (A, ϕ, ϕ′).
(2) For every n ≥ 2, for every i1, . . . , in ∈ {1, . . . , k} which are not all
equal to each other, and for every a1 ∈ Ai1 , . . . , an ∈ Ain, one has that
κ̃n(a1, . . . , an) = 0.

Proof. �(1) ⇒ (2)�. We prove the required statement about cumulants by
induction on n. For the base case n = 2, consider elements a1 ∈ Ai1 and
a2 ∈ Ai2 , where i1 6= i2. By using the formulas which de�ne κ2 and κ′2 and
by invoking Equations (4.16) and (4.17) from Remark 4.2.2 we �nd that{

κ2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2) = 0 and
κ′2(a1, a2) = ϕ′(a1a2)− ϕ′(a1)ϕ(a2)− ϕ(a1)ϕ′(a2) = 0,
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hence κ̃2(a1, a2) = κ2(a1, a2) + εκ′2(a1, a2) = 0.
We now prove the induction step: assume that the vanishing of mixed

cumulants is already proved for 1, 2, ..., n − 1, where n ≥ 3. We consider
elements a1 ∈ Ai1 , . . . , an ∈ Ain where not all indices i1, . . . , in are equal
to each other, and we want to prove that κ̃n(a1, . . . , an) = 0. By invoking
Proposition 4.3.4 we may replace every am with am −ϕ(am)1A, 1 ≤ m ≤ n,
and therefore assume without loss of generality that ϕ(a1) = · · · = ϕ(an) =
0. Observe that this implies ϕ̃(ap)ϕ̃(aq) = (εϕ′(ap)) · (εϕ′(aq)) = 0, hence
that

κ̃2(ap, aq) = ϕ̃(apaq)− ϕ̃(ap)ϕ̃(aq) = ϕ̃(apaq), ∀ 1 ≤ p < q ≤ n. (4.40)

Another assumption that can be made without loss of generality is that
im 6= im+1, ∀ 1 ≤ m < n. Indeed, if there exists 1 ≤ m < n such that
im = im+1, then we invoke the special case of Proposition 4.3.5 which states
that

κ̃n−1(a1, . . . , amam+1, . . . , an) = κ̃n(a1, . . . , an) (4.41)

+
∑

π∈NC(n)with |π|=2
π separatesm andm+1

κ̃π(a1, . . . , an).

The induction hypothesis gives us that the left-hand side and every term
in the sum on the right-hand side of Equation (4.41) are equal to 0, and it
follows that κ̃n(a1, . . . , an) must be 0 as well.

Hence for the rest of the proof of this induction step we will assume that
ϕ(a1) = · · · = ϕ(an) = 0 and that i1 6= i2, . . . , in−1 6= in. This makes
a1, . . . , an be exactly as in De�nition 4.1.1, so we get that ϕ(a1 · · · an) = 0
and that ϕ′(a1 · · · an) is as described in Equation (4.5). In terms of the
functional ϕ̃, we have

ϕ̃(a1 · · · an) = εϕ′(a1 · · · an) = (4.42)

=


εϕ(a1 an)ϕ(a2 an−1) · · ·ϕ(a(n−1)/2 a(n+3)/2) · ϕ′(a(n+1)/2),

if n is odd and i1 = in, i2 = in−1, . . . , i(n−1)/2 = i(n+3)/2,

0, otherwise.

Now let us consider the relation (4.33), written in the equivalent form

κ̃n(a1, . . . , an) = ϕ̃(a1 · · · an)−
∑

π∈NC(n),

π 6=1n

κ̃π(a1, . . . , an). (4.43)

Observe that if a partition π ∈ NC(n) has two distinct blocks {p}, {q} of
cardinality one, then the term indexed by π on the right-hand side of (4.43)
vanishes, because it contains the subproduct κ̃1(ap)κ̃1(aq) = ϕ̃(ap)ϕ̃(aq) =
0. On the other hand if π ∈ NC(n) has a block V which contains two
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consecutive numbers i and i + 1, then the term indexed by π on the right-
hand side of (4.43) vanishes as well, due to the induction hypothesis. Hence
the sum subtracted on the right-hand side of (4.43) can only get non-zero
contributions from partitions π ∈ NC(n) which satisfy the hypotheses of
Lemma 4.3.11; from the lemma it then follows that the sum in question is 0
for n even, and is equal to

κ̃2(a1, an)κ̃2(a2, an−1) · · · κ̃2(a(n−1)/2, a(n+3)/2) · κ̃1(a(n+1)/2) (4.44)

for n odd.
Let us focus for a moment on the quantity that appeared in (4.44).

The vanishing of mixed cumulants of order 2 (which is part of our induc-
tion hypothesis) implies that this quantity vanishes unless i1 = in, i2 =
in−1, . . . , i(n−1)/2 = i(n+3)/2. In the case that the latter equalities of indices
hold, we can continue (4.44) with

= ϕ̃(a1an)ϕ̃(a2an−1) · · · ϕ̃(a(n−1)/2a(n+3)/2) · ϕ̃(a(n+1)/2) (due to (4.40))

= εϕ(a1an)ϕ(a2an−1) · · ·ϕ(a(n−1)/2a(n+3)/2) · ϕ′(a(n+1)/2). (4.45)

(The equality (4.45) holds because ϕ̃(a(n+1)/2) = εϕ′(a(n+1)/2), and due to
how the multiplication on G works.)

So all in all, what we have obtained is that

κ̃n(a1, . . . , an) = (4.46)
ϕ̃(a1 · · · an)− εϕ(a1an)ϕ(a2an−1) · · ·ϕ(an−1

2
an+3

2
) · ϕ′(an+1

2
),

if n is odd and i1 = in, i2 = in−1, . . . , in−1
2

= in+3
2
,

ϕ̃(a1 · · · an), otherwise.

By comparing Equations (4.46) and (4.42) we see that, in all cases, we have
κ̃n(a1, . . . , an) = 0. This concludes the induction argument, and the proof
of the implication (1)⇒ (2) of the proposition.

�(2)⇒ (1)�. Consider indices i1, . . . , in ∈ {1, . . . , k} such that

i1 6= i2, . . . , in−1 6= in

and elements a1 ∈ Ai1 , . . . , an ∈ Ain such that

ϕ(a1) = · · · = ϕ(an) = 0.

We have to prove that ϕ(a1 · · · an) = 0 and that ϕ′(a1 · · · an) is as described
in formula (4.5) from De�nition 4.1.1. To this end we consider the G-valued
moment ϕ̃(a1 · · · an) = ϕ(a1 · · · an) + εϕ′(a1 · · · an), and write it in terms of
G-valued cumulants as in the beginning of the section :

ϕ̃(a1 · · · an) =
∑

π∈NC(n)

∏
V ∈π

κ̃|V |( (a1, . . . , an) | V ). (4.47)
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An argument very similar to the one used in the proof of the implication
(1) ⇒ (2) above shows that the sum on the right-hand side of (4.47) can
only get non-zero contributions from partitions π ∈ NC(n) which satisfy
the hypotheses of Lemma 4.3.11. If n is even then there is no such partition,
and we obtain ϕ̃(a1 · · · an) = 0. If n is odd, then the sum in (4.47) reduces
to only one term and we obtain that

ϕ̃(a1 · · · an) = κ̃2(a1, an)κ̃2(a2, an−1) · · · κ̃2(a(n−1)/2, a(n+3)/2) · κ̃1(a(n+1)/2).
(4.48)

Moreover, in the case when n is odd, the hypothesis that mixed cumu-
lants vanish gives us that the right-hand side of (4.48) is equal to 0 unless
we have i1 = in, . . . , i(n−1)/2 = i(n+3)/2. And �nally, if the latter equali-
ties of indices hold, then the right-hand side of (4.48) gets converted into
εϕ(a1an)ϕ(a2an−1) · · ·ϕ(a(n−1)/2a(n+3)/2) · ϕ′(a(n+1)/2), by the same argu-
ment that led to (4.45) in the proof of the implication (1) ⇒ (2). The
conclusion is that ϕ(a1 · · · an) = 0 (in all cases), and that ϕ′(a1 · · · an) is as
in Equation (4.5), as required.

Corollary 4.3.13. Let X1, . . . ,Xk be subsets of A. The following statements
are equivalent:

(1) X1, . . . ,Xk are in�nitesimally free in (A, ϕ, ϕ′).
(2) For every n ≥ 2, for every i1, . . . , in ∈ {1, . . . , k} which are not all
equal to each other, and for every x1 ∈ Xi1 , . . . , xn ∈ Xin, one has that
κ̃n(x1, . . . , xn) = 0.

Proof. This is a faithful copy of the proof giving the analogous result over
C (cf. Theorem 11.20 in [NS06]). For the reader's convenience, we repeat
here the highlights of the argument. Let Ai denote the unital subalgebra
of A generated by Xi, 1 ≤ i ≤ k. The in�nitesimal freeness of X1, . . . ,Xk
is by de�nition equivalent to the one of A1, . . . ,Ak, hence to the fact that
condition (2) from Proposition 4.3.12 holds. We must thus prove that �(2) in
Proposition 4.3.12� is equivalent to �(2) in Corollary 4.3.13�. The implication
�⇒� is trivial. For �⇐� it su�ces (by multilinearity of κ̃n and Proposition
4.3.4) to prove that κ̃n(a1, . . . , an) = 0 when

a1 = x1 · · ·xs1 , a2 = xs1+1 · · ·xs2 , . . . , an = xsn−1+1 · · ·xsn (4.49)

for n ≥ 2 and s1 < s2 < · · · < sn, with x1, . . . , xs1 ∈ Xi1 , xs1+1, . . . , xs2 ∈
Xi2 , . . . , xsn−1+1, . . . , xsn ∈ Xin , and where the indices i1, . . . , in are not all
equal to each other. But for a1, . . . , an as in (4.49), Proposition 4.3.5 gives
us the cumulant κ̃n(a1, . . . , an) as a sum of cumulants κ̃π(x1, . . . , xsn); and a
direct combinatorial analysis (exactly as on p. 186 of [NS06]) shows that all
the latter cumulants vanish because of condition (2) form Corollary 4.3.13.
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Remark 4.3.14. Since the functional ϕ̃ : A → G and its associated cumu-
lants κ̃n play such a central role in the proof of Theorem 4.1.2, it is natural
to ask: can't one actually characterize in�nitesimal freeness by the same
kind of moment condition as in the de�nition of usual freeness, with the
only modi�cation that one now uses ϕ̃ instead of ϕ? To be precise, consider
the following condition which a family of unital subalgebras A1, . . . ,Ak ⊆ A
may or may not satisfy:

For every n ≥ 1 and 1 ≤ i1, . . . , in ≤ k such that i1 6= i2, . . . , in−1 6= in,
and every a1 ∈ Ai1 , . . . , an ∈ Ain such that ϕ̃(a1) = · · · = ϕ̃(an) = 0,
one has that ϕ̃(a1 · · · an) = 0.

(4.50)
Isn't then condition (4.50) equivalent to in�nitesimal freeness?

On the positive side it is immediate, directly from De�nition 4.1.1, that
(4.50) is indeed implied by in�nitesimal freeness. However, the converse
statement is not true : it may happen that (4.50) is satis�ed and yet
A1, . . . ,Ak are not in�nitesimally free. What causes this to happen is that
one cannot generally �center� an element a ∈ A with respect to ϕ̃ (the scalars
available are from C, and there may be no λ ∈ C such that ϕ̃(a−λ1A) = 0).
This limits the scope of condition (4.50), and makes it insu�cient for recom-
puting ϕ̃ on Alg(A1 ∪ · · · ∪ Ak) from the restrictions ϕ̃ | Ai, 1 ≤ i ≤ k.

For a simple concrete example showing how (4.50) may fail to imply in-
�nitesimal freeness, suppose we are in the situation from Example 4.2.7, with
A = C[Z2 ∗ · · · ∗ Z2] and where A1 = span{1A, u1}, . . ., Ak = span{1A, uk}
are the k copies of C[Z2] canonically embedded into A. Suppose moreover
that the linear functionals ϕ,ϕ′ : A → C are such that ϕ̃ = ϕ+ εϕ′ satis�es

ϕ̃(1A) = 1, ϕ̃(u1) = · · · = ϕ̃(uk) = ε. (4.51)

Then, no matter how ϕ̃ acts on words of length ≥ 2 made with u1, . . . , uk,
it will be true that A1, . . . ,Ak satisfy condition (4.50) with respect to ϕ̃;
this is due to the simple reason that the restrictions ϕ̃ | Ai (1 ≤ i ≤ k) are
one-to-one. But on the other hand, Remark 4.2.2 tells us that if A1, . . . ,Ak
are to be in�nitesimally free in (A, ϕ, ϕ′), then ϕ̃ is uniquely determined by
(4.51); for example, the formulas given for illustration in Equations (4.16),
(4.17) imply that we must have ϕ̃(u1u2) = ϕ̃(u1)ϕ̃(u2) = ε2 = 0. Hence any
choice of ϕ̃ as in (4.51) and with ϕ̃(u1u2) 6= 0 provides an example for how
condition (4.50) does not imply in�nitesimal freeness.

We conclude this section by establishing the fact about traciality that
was announced in Remark 4.2.3.

Lemma 4.3.15. Let B be a unital subalgebra of A, and suppose that ϕ̃ | B
is a trace. Then

κ̃n(b1, b2, . . . , bn) = κ̃n(b2, bn, . . . , b1), ∀n ≥ 2, b1, . . . , bn ∈ B. (4.52)
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Proof. Let Γ be the cyclic permutation of {1, . . . , n} de�ned by Γ(1) =
2, . . . ,Γ(n − 1) = n,Γ(n) = 1. It is easy to see (cf. Exercise 9.41 on p.
153 of [NS06]) that Γ induces an automorphism of the lattice NC(n) which
maps π = {V1, . . . , Vp} ∈ NC(n) to Γ · π := {Γ(V1), . . . ,Γ(Vp)}.

Now let some b1, . . . , bn ∈ B be given. The right-hand side of (4.52) is
κ̃n(bΓ(1), . . . , bΓ(n)), which is by de�nition equal to∑

π∈NC(n)

Möb(A)(π, 1n) · ϕ̃π(bΓ(1), . . . , bΓ(n)). (4.53)

By taking into account the traciality of ϕ̃ on B it is easily veri�ed that
ϕ̃π(bΓ(1), . . . , bΓ(n)) = ϕ̃Γ·π(b1, . . . , bn), ∀π ∈ NC(n). Since Möb(A)(Γ ·π, 1n)
= Möb(A)(Γ ·π,Γ ·1n) = Möb(A)(π, 1n), ∀π ∈ NC(n), it becomes clear that
the change of variable Γ · π =: ρ will convert the sum from (4.53) into the
one which de�nes κ̃n(b1, . . . , bn).

Proposition 4.3.16. Let A1, . . . ,Ak be unital subalgebras of A that are
in�nitesimally free in (A, ϕ, ϕ′). If ϕ | Ai and ϕ′ | Ai are traces for every
1 ≤ i ≤ k, then ϕ and ϕ′ are traces on Alg(A1 ∪ · · · ∪ Ak).

Proof. The given hypothesis and the required conclusion can be rephrased
by saying that ϕ̃ is a trace on every Ai, and respectively that ϕ̃ is a trace on
Alg(A1 ∪ · · · ∪ Ak). Clearly, the rephrased conclusion will follow if we prove
that

ϕ̃(x1 · · ·xn−1xn) = ϕ̃(xnx1 · · ·xn−1) (4.54)

where x1 ∈ Ai1 , . . . , xn ∈ Ain with n ≥ 2 and 1 ≤ i1, . . . , in ≤ k. Let us
�x such n, i1, . . . , in and x1, . . . , xn. It is moreover convenient to denote
y1 := xn, y2 := x1, . . . , yn := xn−1, so that (4.54) takes the form ϕ̃(x1 · · ·xn)
= ϕ̃(y1 · · · yn).

Let πo be the partition of {1, . . . , n} de�ned by the requirement that for
1 ≤ p < q ≤ n we have

(
p, q in the same block of πo

)
⇔ ip = iq. The

hypothesis that A1, . . . ,Ak are in�nitesimally free and Proposition 4.3.12
imply that

ϕ̃(x1 · · ·xn) =
∑

π∈NC(n) such

that π≤πo

κ̃π(x1, . . . , xn). (4.55)

(Note that πo may not belong to NC(n), but the inequality π ≤ πo still
makes sense, in reverse re�nement order.) Now, by using Lemma 4.3.15 it is
easily checked that for every π ∈ NC(n) such that π ≤ πo one has

κ̃π(x1, . . . , xn) = κ̃Γ·π(y1, . . . , yn), (4.56)

where �Γ ·π� has the same signi�cance as in the proof of Lemma 4.3.15. If we
combine (4.55) with (4.56) and then make the change of variable Γ · π =: ρ,
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we arrive to

ϕ̃(x1 · · ·xn) =
∑

ρ∈NC(n) such

that ρ≤Γ·πo

κ̃ρ(y1, . . . , yn). (4.57)

Finally, we invoke once more the in�nitesimal freeness of A1, . . . ,Ak and
Proposition 4.3.12, to conclude that the right-hand side of (4.57) is precisely
the moment-cumulant expansion for ϕ̃(y1 · · · yn).

4.4 Alternating products of in�nitesimally free ran-
dom variables

In Proposition 4.3.12 we saw that in�nitesimal freeness can be described
as a vanishing condition for mixed G-valued cumulants. Because of this
fact and because G is commutative, (which makes practically all calcula-
tions with non-crossing cumulants go without any change from C-valued to
G-valued framework) we get a �generic method� for proving in�nitesimal
versions of various results presented in the monograph [NS06] � replace C
by G in the proof of the original result, then take the soul part of what
comes out. Note that the in�nitesimal results so obtained do not have G in
their statement, hence could also be attacked by using other approaches to
in�nitesimal freeness (in which case, however, proving them may be more
than a straightforward routine).

In this section we show how the generic method suggested above works
when applied to the topic of alternating products of in�nitesimally free ran-
dom variables. In particular, we will obtain the in�nitesimal versions for two
important facts related to this topic, that were originally found in [NS96] �
one of them is about compressions by free projections, the other concerns
a method of constructing free families of free Poisson elements. Since the
proofs of the G-valued formulas that we need are identical to those of their
C-valued counterparts, we will not give them here, but we will merely indi-
cate where in [NS06] can the C-valued proofs be exactly found. The starting
point is provided by the following formulas, obtained by doing the C-to-G
change in Theorem 14.4 of [NS06].

Proposition 4.4.1. Let (A, ϕ, ϕ′) be an incps and let A1,A2 be unital sub-
algebras of A which are in�nitesimally free. Consider the functional ϕ̃ =
ϕ+εϕ′ : A → G and the associated cumulant functionals (κ̃n : An → G)n≥1.
Recall that for every n ≥ 1 and π ∈ NC(n) we also have functionals
ϕ̃π, κ̃π : An → G, as de�ned in Notation 4.3.2.
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1o For every a1, . . . , an ∈ A1 and b1, . . . , bn ∈ A2 one has that

ϕ̃(a1b1 · · · anbn) =
∑

π∈NC(n)

κ̃π(a1, . . . , an) · ϕ̃Kr(π)(b1, . . . , bn). (4.58)

2o For every a1, . . . , an ∈ A1 and b1, . . . , bn ∈ A2 one has that

κ̃n(a1b1, . . . , anbn) =
∑

π∈NC(n)

κ̃π(a1, . . . , an) · κ̃Kr(π)(b1, . . . , bn). (4.59)

�

We now start on the application to free compressions.

De�nition 4.4.2. Let (A, ϕ, ϕ′) be an incps, and let p ∈ A be an idempotent
element such that ϕ(p) 6= 0. We denote ϕ(p) =: α and ϕ′(p) = α′. The
compression of (A, ϕ, ϕ′) by p is then de�ned to be the incps (B, ψ, ψ′) where

B := pAp = {b ∈ A | pb = b = bp} (4.60)

and where ψ,ψ′ : B → C are de�ned by

ψ(b) =
1
α
ϕ(b), ψ′(b) =

1
α
ϕ′(b)− α′

α2
ϕ(b), b ∈ B. (4.61)

Remark 4.4.3. 1o In the preceding de�nition, note that the consolidated
functional ψ̃ = ψ + εψ′ : B → G is given by the simple formula

ψ̃(b) =
1
α̃
ϕ̃(b), b ∈ B, (4.62)

where α̃ := α+ εα′ ∈ G.
2o If in the preceding de�nition (A, ϕ, ϕ′) is a ∗-incps and p is a projection,

then by using the relations p = p∗ = p2 we immediately infer that 0 < α ≤ 1
and α′ ∈ R. As a consequence, (B, ψ, ψ′) de�ned there is a ∗-incps as well.

Theorem 4.4.4. Let (A, ϕ, ϕ′) be an incps. Let p ∈ A be an idempotent
element such that ϕ(p) 6= 0. Denote ϕ(p) =: α, ϕ′(p) =: α′, and consider
the compressed incps (B, ψ, ψ′) from De�nition 4.4.2. For every n ≥ 1 let
κn, κ

′
n : An → C and κn, κ

′
n : Bn → C be the nth non-crossing cumulant and

in�nitesimal cumulant functional associated to (A, ϕ, ϕ′) and to (B, ψ, ψ′),
respectively. Let X be a subset of A which is in�nitesimally free from {p}.
Then we have

κn(px1p, . . . , pxnp) =
1
α
κn(αx1, . . . , αxn), ∀n ≥ 1, x1, . . . , xn ∈ X (4.63)

and{
κ′1(px1p) = κ′1(x1),∀x1 ∈ X ,
κ′n(px1p, . . . , pxnp) = (n−1)α′

α2 κ′n(αx1, . . . , αxn), n ≥ 2, x1, . . . , xn ∈ X .
(4.64)
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Proof. It is easily veri�ed that Equations (4.63) and (4.64) are the body part
and respectively the soul part for the formula

κ̃n(px1p, . . . , pxnp) = α̃n−1 · κ̃n(x1, . . . , xn) ∈ G, ∀n ≥ 1, x1, . . . , xn ∈ X ,
(4.65)

where the �tilde� notations have their usual meaning (κ̃n = κn + ε · κ′n,
α̃ = α + ε · α′). But the latter formula is just the G-valued counterpart for
Theorem 14.10 in [NS06]; its proof is obtained by faithfully doing the C-to-G
transcription of the proof of that theorem in [NS06], with the minor change
that the powers of α̃ must be kept outside the cumulant functionals (one
cannot write �κ̃n(α̃x1, . . . , α̃xn)�, since A is only a C-algebra). Note that
the argument obtained in this way is indeed an application of Proposition
4.4.1, in the same way as Theorem 14.10 is an application of Theorem 14.4
in [NS06].

Corollary 4.4.5. Let (A, ϕ, ϕ′) be an incps. Let p ∈ A be an idempotent el-
ement with ϕ(p) 6= 0, and consider the compressed incps (B, ψ, ψ′) de�ned as
above. Let X1, . . . ,Xk be subsets of A such that {p},X1, . . . ,Xk are in�nites-
imally free in (A, ϕ, ϕ′). Put Yi = pXip ⊆ B, 1 ≤ i ≤ k. Then Y1, . . . ,Yk
are in�nitesimally free in (B, ψ, ψ′).

Proof. This is an immediate consequence of Corollary 4.3.13, where the
needed vanishing of mixed cumulants follows from the explicit formulas found
in Theorem 4.4.4.

We now go to the construction of families of in�nitesimally free Poisson
elements. We will use the in�nitesimal (a.k.a �type B�) versions of semicir-
cular and of free Poisson elements that appeared in [Pop07] in connection
to limit theorems of type B, and are discussed in detail in Sections 4 and 5
of [BS09]. For the present chapter it is most convenient to introduce these
elements in terms of their in�nitesimal cumulants, as stated in De�nitions
4.4.6 and 4.4.8 below.

De�nition 4.4.6. Let (A, ϕ, ϕ′) be a ∗-incps. A selfadjoint element x ∈ A
will be called in�nitesimally semicircular when it satis�es

κn(x, . . . , x) = κ′n(x, . . . , x) = 0, ∀n ≥ 3. (4.66)

If in addition to that we also have

κ1(x) = 0, κ2(x, x) = 1, (4.67)

then we will say that x is a standard in�nitesimally semicircular element.

Remark 4.4.7. 1o By using the multilinearity of κn, κ
′
n and Proposition

4.3.4, it is immediately seen that if x is in�nitesimally semicircular then so
is α(x− β1A) for any α > 0 and β ∈ R. Moreover, leaving aside the trivial
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case when κ2(x, x) = 0, one can always pick α and β so that α(x− β1A) is
standard.

2o Let x be standard in�nitesimally semicircular in (A, ϕ, ϕ′). Then all
moments ϕ(xn) and ϕ′(xn) for n ≥ 1 are completely determined by the real
parameters 4 α′1, α

′
2 de�ned by

α′1 := κ′1(x) = ϕ′(x), and α′2 := κ′2(x, x) = ϕ′(x2). (4.68)

It is in fact very easy to calculate what these moments are. Indeed, one
can calculate the G-valued moments ϕ̃(xn) = ϕ(xn) + εϕ′(xn) by using the
moment-cumulant formula (4.33), where one takes into account that

κ̃1(x) = εα′1, κ̃2(x, x) = 1 + εα′2, and κ̃n(x, . . . , x) = 0 for all n ≥ 3.

The expansion of ϕ̃(xn) in terms of {κ̃π(x, . . . , x) | π ∈ NC(n)} can get
non-zero contributions only from such partitions π where every block V of π
has |V | ≤ 2 and where there is at most one block of π of cardinality 1 (the
latter condition coming from the fact that (κ̃1(x))2 = 0). We distinguish
two cases, depending on the parity of n.

Case 1. n is even, n = 2m. We get a sum extending over non-crossing
pairings in NC(n), which gives us

ϕ̃(x2m) = Cm · (1 + εα′2)m = Cm · (1 + εmα′2),

or in other words

ϕ(x2m) = Cm, ϕ′(x2m) = α′2 · (mCm), (4.69)

where Cm stands for the mth Catalan number.

Case 2. n is odd, n = 2m + 1. Here we get a sum extending over the
partitions π ∈ NC(n) which have one block of 1 element and m blocks of 2
elements. There are (2m+ 1)Cm such partitions; so we obtain

ϕ̃(x2m+1) = (2m+ 1)Cm ·
(

(εα′1) (1 + εα′2)m
)
,

leading to

ϕ(x2m+1) = 0, ϕ′(x2m+1) = α′1 ·
(
(2m+ 1)Cm

)
. (4.70)

4Any two numbers α′1, α
′
2 ∈ R can appear here. Indeed, Example 4.7.7 shows situations

where one has α′1 = 1, α′2 = 0 and respectively α′1 = 0, α′2 = 2. One can rescale the
functionals ϕ′ of these two special cases to get standard in�nitesimal semicirculars x1, x2

having any pairs of parameters α′1, 0 and respectively 0, α′2; then due to Proposition 4.2.4
one may assume that x1, x2 are in�nitesimally free, and form the average (x1 + x2)/

√
2,

which is standard in�nitesimally semicircular with generic parameters in (4.68).
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De�nition 4.4.8. Let (A, ϕ, ϕ′) be a ∗-incps, and let λ, β′, γ′ be real param-
eters, where λ > 0. A selfadjoint element y ∈ A will be called in�nitesimally
free Poisson of parameter λ and 5 in�nitesimal parameters β′, γ′ when it has
non-crossing cumulants given by{

κn(y, . . . , y) = λ,
κ′n(y, . . . , y) = β′ + nγ′, ∀n ≥ 1.

(4.71)

Theorem 4.4.9. Let (A, ϕ, ϕ′) be a ∗-incps. Let x ∈ A be a standard
in�nitesimally semicircular element, and let S be a subset of A which is
in�nitesimally free from {x}. Then for every n ≥ 1 and a1, . . . , an ∈ S we
have

κn(xa1x, . . . , xanx) = ϕ(a1 · · · an) (4.72)

and

κ′n(xa1x, . . . , xanx) = ϕ′(a1 · · · an) + nϕ′(x2) · ϕ(a1 · · · an). (4.73)

Proof. Equations (4.72) and (4.73) are the body part and respectively the
soul part for the formula

κ̃n(xa1x, . . . , xanx) =
(
κ̃2(x, x)

)n · ϕ̃(a1 · · · an) ∈ G. (4.74)

The proof of the latter formula is obtained by doing the C-to-G transcription
either for the arguments used in Proposition 12.18 and Example 12.19 on
pp. 207-208 of [NS06], or for the arguments in Propositions 17.20 and 17.21
on pp. 283-284 of [NS06].

The ensuing construction of families of in�nitesimally free Poisson el-
ements is stated in the next corollary. Part 2o of the corollary has also
appeared as Corollary 36 of [BS09].

Corollary 4.4.10. Let (A, ϕ, ϕ′) be a ∗-incps, and let x ∈ A be a standard
in�nitesimally semicircular element. Let e1, . . . , ek ∈ A be projections such
that ei ⊥ ej for 1 ≤ i < j ≤ k and such that {e1, . . . , ek} is in�nitesimally
free from {x}. Then

1o The elements xe1x, . . . , xekx form an in�nitesimally free family in
(A, ϕ, ϕ′).

2o For every 1 ≤ i ≤ k, xeix is in�nitesimally free Poisson with pa-
rameter λi and in�nitesimal parameters β′i, γ

′
i given by λi = ϕ(ei), β′i =

ϕ′(ei), γ′i = ϕ′(x2) · ϕ(ei).

5A more complete de�nition of these elements would also use a 4th parameter r > 0,
and have each of λ, β′, γ′ multiplied by rn in Equations (4.71). For the sake of simplicity,
here we have set this additional parameter to r = 1.
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Proof. 1o This is an immediate consequence of Corollary 4.3.13, where the
needed vanishing of mixed cumulants follows from the explicit formulas found
in Theorem 4.4.9.

2o By putting a1 = · · · = an := ei in (4.72) and (4.73) we see that the
cumulants of xeix have the form required in De�nition 4.4.8, with parameters
λi, β

′
i, γ
′
i as stated.

4.5 Relations with the lattices NC(B)(n)

In this section we remember that the concept of incps has its origins in the
considerations �of type B� from [BGN03], and we look at how the essence of
these considerations persists in the framework of the present chapter.

The strategy of [BGN03] was to study the type B analogue for the op-
eration of boxed convolution ?(A) from De�nition 2.3.11. The focus on ?(A)

was motivated by the fact that it provides in some sense a �middle ground�
between alternating products of free random variables and the structure of
intervals in the lattices NC(n) (see discussion on pp. 2282-2283 of [BGN03]).
The key point discovered in [BGN03] (stated in the form of the equation ?(B)

= ?
(A)
G in Theorem 2.5.3) was that boxed convolution of type B can still be

de�ned by the formulas from type A, provided that one uses scalars from G.
For a detailed discussion on ?(A) we refer the reader to Lecture 17 of

[NS06]. What is important for us here is that the formula used to de�ne ?(A)

(cf. Equation (17.1) on p. 273 of [NS06]) has already made an appearance,
in G-valued context, in Equations (4.58), (4.59) of the preceding section. So

then, the present incarnation of the � ?(B) = ?
(A)
G � principle from Theorem

2.5.3 should just amount to the following fact: if one takes the soul parts
of Equations (4.58) and (4.59), then summations over NC(B)(n) must arise.
This is stated precisely in Theorem 4.5.4 below, which is actually an easy
application of the fact that the absolute value map Abs : NC(B)(n) →
NC(n) is an (n+ 1)-to-1 cover (see Theorem 2.5.1).

We start by introducing some notations that will be used in Theorem

4.5.4, namely the type B analogues for the functionals ϕ
(A)
π and κ

(A)
π from

subsection 3.2.

Notation 4.5.1. Let (A, ϕ, ϕ′) be an incps and consider the families of
non-crossing cumulant functionals (κn, κ′n)n≥1. For every n ≥ 1 and every

τ ∈ NC(B)(n), de�ne a multilinear functional κ
(B)
τ : An → C, as follows.

Case 1. If τ ∈ NCZ(B)(n), τ = {Z, V1,−V1, . . . , Vp,−Vp}, then we put

κ(B)
τ (a1, . . . , an) := κ′ |Z|

2

(
(a1, . . . , an) | Abs(Z)

)
·∏p

j=1 κ|Vj |
(

(a1, . . . , an) | Abs(Vj)
)
, (4.75)

for every a1, . . . , an ∈ A.
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Case 2. If τ ∈ NC(B)(n)\NCZ(B)(n), τ = {V1,−V1, . . . , Vp,−Vp}, then
we put

κ(B)
τ (a1, . . . , an) :=

p∏
j=1

κ|Vj |
(

(a1, . . . , an) | Abs(Vj)
)
, (4.76)

for a1, . . . , an ∈ A.

Notation 4.5.2. Let (A, ϕ, ϕ′) be an incps. Consider the families of multi-
linear functionals (ϕn, ϕ′n : An → C)n≥1 de�ned by

ϕn(a1, . . . , an) = ϕ(a1 · · · an),

ϕ′n(a1, . . . , an) = ϕ′(a1 · · · an).

Then for every n ≥ 1 and every τ ∈ NC(B)(n) we de�ne a multilinear

functional ϕ
(B)
τ : An → C by the same recipe as in Notation 4.5.1 (with

discussion separated in 2 cases), where every occurrence of κm (respectively
κ′m) is replaced by ϕm (respectively ϕ′m). For example, the analogue of Case
1 is like this: for n ≥ 1 and for τ = {Z, V1,−V1, . . . , Vp,−Vp} in NCZ(B)(n)
we de�ne ϕ

(B)
τ An → C by putting

ϕ(B)
τ (a1, . . . , an) := ϕ′|Z|

2

(
a1, . . . , an) | Abs(Z)

)
·∏p

j=1 ϕ|Vj |
(

(a1, . . . , an) | Abs(Vj)
)
, (4.77)

for a1, . . . , an ∈ A.

Remark 4.5.3. 1o It is immediate that for τ ∈ NC(B)(n) \NCZ(B)(n) one
has

κ(B)
τ = κ

(A)
Abs(τ), ϕ(B)

τ = ϕ
(A)
Abs(τ). (4.78)

2o The functionals introduced in Notation 4.5.1 extend both families κn
and κ′n. Indeed, we have that κ′n = κ

(B)
1±n

and that κn = κ
(A)
1n

= κ
(B)
τ for

every n ≥ 1 and any τ ∈ NC(B)(n) such that Abs(τ) = 1n (e.g. τ =
{ {1, . . . , n}, {−1, . . . ,−n} }). A similar remark holds in connection to the

functionals ϕ
(B)
τ � they extend both families ϕn and ϕ′n.

Theorem 4.5.4. Let (A, ϕ, ϕ′) be an incps, and consider multilinear func-
tionals on A as in Notations 4.5.1, 4.5.2. Let A1,A2 be unital subalgebras
of A which are in�nitesimally free. Then for every a1, . . . , an ∈ A1 and
b1, . . . , bn ∈ A2 one has

ϕ′(a1b1 · · · anbn) =
∑

σ∈NC(B)(n)

κ(B)
σ (a1, . . . , an) · ϕ(B)

Kr(σ)(b1, . . . , bn) (4.79)

and

κ′n(a1b1, . . . , anbn) =
∑

σ∈NC(B)(n)

κ(B)
σ (a1, . . . , an) ·κ(B)

Kr(σ)(b1, . . . , bn). (4.80)
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Proof. Let π be a partition in NC(n), and consider the expression

So
(
κ̃π(a1, . . . , an) κ̃Kr(π)(b1, . . . , bn)

)
= So

( ∏
V ∈π

κ̃|V |
(
(a1, . . . , an) | V

)
·

∏
W∈Kr(π)

κ̃|W |
(
(b1, . . . , bn) |W

) )
.

In view of the formula (4.29) describing the soul part of a product, the latter
expression is equal to a sum of n + 1 terms, some of them indexed by the
blocks V ∈ π, and the others indexed by the blocks W of Kr(π). We leave
it as a straightforward exercise to the reader to write these n + 1 terms
explicitly, and verify that the natural correspondence to the n+ 1 partitions
in {τ ∈ NC(B)(n) | Abs(τ) = π} leads to the formula

So
(
κ̃π(a1, . . . , an) κ̃Kr(π)(b1, . . . , bn)

)
(4.81)

=
∑

τ∈NC(B)(n) such

that Abs(τ)=π

κ(B)
τ (a1, . . . , an) · ϕ(B)

Kr(τ)(b1, . . . , bn).

(Note: the Kreweras complement Kr(τ) from (4.81) is taken in the lattice
NC(B)(n); we use here the fact that Abs(τ) = π ⇒ Abs(Kr(τ)) = Kr(π) �
cf. Lemma 1.4 in [BGN03].)

By summing over π ∈ NC(n) on both sides of (4.81), we obtain that

So
(
right-hand side of (4.58)

)
= (right-hand side of (4.81)).

Since the soul part of the left-hand side of Equation (4.58) is ϕ′(a1b1 · · · anbn),
this proves that (4.79) holds. The veri�cation of (4.80) is done in exactly
the same way, by starting from Equation (4.59) of Proposition 4.4.1.

Remark 4.5.5. If in the preceding theorem we makeA1 = A andA2 = C1A,
and if we take b1 = · · · = bn = 1A, then we obtain the formula

ϕ′(a1 · · · an) =
∑

σ∈NCZ(B)(n)

κ(B)
σ (a1, . . . , an), ∀ a1, . . . , an ∈ A. (4.82)

The terms indexed by σ ∈ NC(B)(n) \ NCZ(B)(n) have disappeared in
(4.82), due to the fact that ϕ′(1A) = 0. This formula could also be obtained,
by a suitable Möbius inversion argument, directly from the formula (4.35)
de�ning κ′n.



94 Chapter 4 : First order in�nitesimal freeness

4.6 Dual derivation systems

Notation 4.6.1. Let A be a unital algebra over C, and for every n ≥ 1
let Mn denote the vector space of multilinear functionals from An to C.
If π = {V1, . . . , Vp} is a partition in NC(n) where the blocks V1, . . . , Vp
are listed in increasing order of their minimal elements, then we de�ne a
multilinear map

Jπ : M|V1| × · · · ×M|Vp| 3 (f1, . . . , fp)→ f ∈Mn, (4.83)

where

f(a1, . . . , an) :=
p∏
j=1

fj
(

(a1, . . . , an) | Vj
)
, ∀ a1, . . . , an ∈ A. (4.84)

Remark 4.6.2. 1o The formula (4.84) from the preceding notation is the

same as those used to de�ne the families of functionals {ϕ(A)
π | π ∈ NC(n)}

and {κ(A)
π | π ∈ NC(n)} in Subsection 2.3.2. Hence if (A, ϕ) is a non-

commutative probability space and if (κn)n≥1 are the non-crossing cumulant
functionals associated to ϕ, then for π = {V1, . . . , Vp} ∈ NC(n) as in Nota-
tion 4.6.1 we get that

Jπ(κ|V1|, . . . , κ|Vp| ) = κ(A)
π . (4.85)

Likewise, for the same (A, ϕ) and π we get

Jπ(ϕ|V1|, . . . , ϕ|Vp| ) = ϕ(A)
π . (4.86)

2o Let π = {V1, . . . , Vp} ∈ NC(n) be as in Notation 4.6.1, and let 1 ≤
j ≤ p be such that Vj is an interval-block of π. Denote |Vj | =: m and

let
∨
π∈ NC(n −m) be the partition obtained by removing the block Vj out

of π and by redenoting the elements of {1, . . . , n} \ Vj as 1, . . . , n − m, in
increasing order. On the other hand, let us denote by γ ∈ NC(n) the
partition of {1, . . . , n} into the two blocks Vj and {1, . . . , n} \ Vj . It is then
immediate that for every f1 ∈M|V1|, . . . , fp ∈M|Vp| we can write

Jπ(f1, . . . , fp) = Jγ(g, fj) where g := J∨
π
(f1, . . . fj−1, fj+1, . . . , fp). (4.87)

Due to this observation and to the fact that every non-crossing partition
has interval-blocks, considerations about the multilinear functions Jπ from
Notation 4.6.1 can sometimes be reduced (via an induction argument on |π|)
to discussing the case when |π| = 2.

De�nition 4.6.3. Let A be a unital algebra over C and let the spaces
(Mn)n≥1 and the multilinear functions {Jπ | π ∈ ∪∞n=1NC(n)} be as in
Notation 4.6.1. We will call dual derivation system a family of linear maps
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(dn : Dn →Mn)n≥1 where, for every n ≥ 1, Dn is a linear subspace of Mn,
and where the following two conditions are satis�ed.

(i) Let π = {V1, . . . , Vp} ∈ NC(n) be as in Notation 4.6.1. Then for
every f1 ∈ D|V1|, . . . , fp ∈ D|Vp| one has that Jπ(f1, . . . , fp) ∈ Dn and that

dn
(
Jπ(f1, . . . , fp)

)
=

p∑
j=1

Jπ(f1, . . . , fj−1, d|Vj |(fj), fj+1, . . . , fp). (4.88)

(ii) For every f ∈ D1 and every n ≥ 1 one has that f ◦Multn ∈ Dn and
that

dn
(
f ◦Multn) = (d1 f) ◦Multn, (4.89)

where Multn : An → A is the multiplication map.

Remark 4.6.4. 1o When verifying condition (i) in De�nition 4.6.3, it su�ces
to check the particular case when |π| = 2. Indeed, the general case of
Equation (4.88) can then be obtained by induction on |π|, where one invokes
the argument from (4.87).

2o In the setting of De�nition 4.6.3, let us use the notation f × g for the
functional obtained by �concatenating� f ∈ Mm and g ∈ Mn. So f × g ∈
Mm+n acts simply by

(f × g)(a1, . . . , am, b1, . . . , bn) = f(a1, . . . , am)g(b1, . . . , bn),

for all a1, . . . , am, b1, . . . , bn ∈ A.
Clearly one can write f ×g = Jγ(f, g) where γ ∈ NC(m+n) is the partition
with two blocks {1, . . . ,m} and {m + 1, . . . ,m + n}. By using Equation
(4.88) we thus obtain that

dm+n(f × g) =
(
dm(f)× g

)
+
(
f × dn(g)

)
, ∀m,n ≥ 1, f ∈Mm, g ∈Mn.

(4.90)
So a dual derivation system gives in particular a derivation on the algebra
structure de�ned by using concatenation on ⊕∞n=1Mn. Note however that
Equation (4.90) alone is not su�cient to ensure condition (i) from De�nition
4.6.3 (since it cannot control Jπ for partitions such as π = { {1, 3}, {2} } ∈
NC(3)).

Proposition 4.6.5. Let A be a unital algebra over C and let (dn : Dn →
Mn)n≥1 be a dual derivation system on A. Let ϕ be a linear functional in D1,
and denote d1(ϕ) =: ϕ′. Consider the incps (A, ϕ, ϕ′), and let (κn, κ′n)n≥1 be
the non-crossing cumulant and in�nitesimal cumulant functionals associated
to this incps. Then for every n ≥ 1 we have that

κn ∈ Dn and dn(κn) = κ′n. (4.91)
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Proof. Denote as usual ϕn := ϕ ◦Multn, ϕ
′
n := ϕ′ ◦Multn, n ≥ 1. Since

ϕ ∈ D1, condition (ii) from De�nition 4.6.3 implies that ϕn ∈ Dn and
dn(ϕn) = ϕ′n for every n ≥ 1.

Now let π = {V1, . . . , Vp} be a partition in NC(n), with V1, . . . , Vp writ-
ten in increasing order of their minimal elements. By using Equation (4.86)
from Remark 4.6.2 and condition (i) in De�nition 4.6.3 we �nd that

dn(ϕ(A)
π ) =

p∑
j=1

Jπ
(
ϕ|V1|, . . . , ϕ|Vj−1|, ϕ

′
|Vj |, ϕ|Vj+1|, . . . , ϕ|Vp|

)
(4.92)

(where the latter formula incorporates the fact that d|Vj |(ϕ|Vj |) = ϕ′|Vj |).

We next consider the formula (2.5) which expresses a cumulant functional

κn in terms of the functionals {ϕ(A)
π | π ∈ NC(n)}. From this formula it

follows that κn ∈ Dn and that

dn(κn) =
∑

π∈NC(n)
π={V1,...,Vp}

Möb(π, 1n)
( p∑
j=1

Jπ
(
ϕ|V1|, . . . , ϕ

′
|Vj |, . . . , ϕ|Vp|

) )
.

(4.93)
It is immediate that on the right-hand side of (4.93) we have obtained pre-
cisely the sum over {(π, V ) | π ∈ NC(n), V block of π} which was used to
introduce κ′n in De�nition 4.3.7.

Proposition 4.6.6. Let (A, ϕ, ϕ′) be an incps, and consider the multilinear

functionals ϕ
(A)
π (π ∈ NC(n), n ≥ 1) which were introduced in Subsection

2.3.2. Suppose that for every n ≥ 1 the set {ϕ(A)
π | π ∈ NC(n)} is linearly

independent in Mn; let Dn denote its span, and let dn : Dn → Mn be the
linear map de�ned by the requirement that

dn(ϕ(A)
π ) =

∑
τ∈NCZ(B)(n) such

that Abs(τ)=π

ϕ(B)
τ , ∀π ∈ NC(n), (4.94)

with ϕ
(B)
τ as in Notation 4.5.2. Then (dn)n≥1 is a dual derivation system,

and d1(ϕ) = ϕ′.

Proof. It is obvious that the unique partition τ ∈ NCZ(B)(n) such that
Abs(τ) = 1n is τ = 1±n. Thus if we put π = 1n in Equation (4.94) we obtain

that dn(ϕ(A)
1n

) = ϕ
(B)
1±n

; in other words, this means that

dn(ϕ ◦Multn) = ϕ′ ◦Multn, ∀n ≥ 1. (4.95)

The particular case n = 1 of (4.95) gives us that d1(ϕ) = ϕ′. Moreover, it
becomes clear that

dn(f ◦Multn) = (d1f) ◦Multn, ∀n ≥ 1 and f ∈ Cϕ;
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since in this proposition we have D1 = Cϕ, we thus see that condition (ii)
from De�nition 4.6.3 is veri�ed.

The rest of the proof is devoted to verifying (i) from De�nition 4.6.3. We
�x a partition π = {V1, . . . , Vp} ∈ NC(n) for which we will prove that Equa-
tion (4.88) holds. Both sides of (4.88) behave multilinearly in the arguments
f1 ∈ D|V1|, . . . , fp ∈ D|Vp|; hence, due to how D|V1|, . . . ,D|Vp| are de�ned, it
su�ces to prove the following statement: for every π1 ∈ NC(|V1|), . . . , πp ∈
NC(|Vp|) we have that Jπ(ϕ(A)

π1 , . . . , ϕ
(A)
πp ) ∈ Dn and that

dn
(
Jπ(ϕ(A)

π1
, . . . , ϕ(A)

πp )
)

= (4.96)

p∑
j=1

Jπ(ϕ(A)
π1
, . . . , ϕ(A)

πj−1
, d|Vj |(ϕ

(A)
πj ), ϕ(A)

πj+1
, . . . , ϕ(A)

πp ).

In what follows we �x some partitions π1 ∈ NC(|V1|), . . . , πp ∈ NC(|Vp|),
for which we will prove that this statement holds.

Observe that, in view of how the maps d|Vj | are de�ned, on the right-hand
side of (4.96) we have

p∑
j=1

∑
τ∈NCZ(B)(n) such

that Abs(τ)=πj

Jπ(ϕ(A)
π1
, . . . , ϕ(A)

πj−1
, ϕ(B)

τ , ϕ(A)
πj+1

, . . . , ϕ(A)
πp ).

But let us recall from Section 2.5 that the partitions in {τ ∈ NCZ(B)(n) |
Abs(τ) = πj} are indexed by the set of blocks of πj . More precisely, for
every 1 ≤ j ≤ p and V ∈ πj let us denote by τ(j, V ) the unique partition in
NCZ(B)(n) such that Abs(τ) = πj and such that the zero-block Z of τ has
Abs(Z) = V ; then the double sum written above for the right-hand side of
Equation (4.96) becomes

p∑
j=1

∑
V ∈πj

Jπ(ϕ(A)
π1
, . . . , ϕ(A)

πj−1
, ϕ

(B)
τ(j,V ), ϕ

(A)
πj+1

, . . . , ϕ(A)
πp ). (4.97)

Now to the left-hand side of (4.96). For every 1 ≤ j ≤ p let π̂j be
the partition of Vj obtained by transporting the blocks of πj via the unique
order preserving bijection from {1, . . . , |Vj |} onto Vj . Then π̂1, . . . , π̂p form
together a partition ρ ∈ NC(n) which re�nes π, and it is immediate that

Jπ(ϕ(A)
π1 , . . . , ϕ

(A)
πp ) = ϕ

(A)
ρ . In particular this shows of course that

Jπ(ϕ(A)
π1
, . . . , ϕ(A)

πp ) ∈ Dn.

Moreover, by using how dn(ϕ(A)
ρ ) is de�ned, we obtain that the left-hand

side of (4.96) is equal to
∑

W∈ρ ϕ
(B)
σ(W ), where for every W ∈ ρ we denote



98 Chapter 4 : First order in�nitesimal freeness

by σ(W ) the unique partition in NCZ(B)(n) such that Abs(σ(W )) = ρ and
such that the zero-block Z of σ(W ) has Abs(Z) = W .

Finally, we observe that the set of blocks of ρ is the disjoint union of the
sets of blocks of the partitions π̂1, . . . , π̂p, and is hence in natural bijection
with {(j, V ) | 1 ≤ j ≤ p and V ∈ πj}. We leave it as a straightforward
(though somewhat notationally tedious) exercise to the reader to verify that
whenW ∈ ρ corresponds to (j, V ) via this bijection, then the term indexed by

(j, V ) in (4.97) is precisely equal to ϕ
(B)
σ(W ). Hence the double sum from (4.97)

is identi�ed term by term to
∑

W∈ρ ϕ
(B)
σ(W ) via the bijection W ↔ (j, V ), and

the required formula (4.96) follows.

Remark 4.6.7. The linear independence hypothesis in Proposition 4.6.6 is
necessary, otherwise we need some relations to be satis�ed by ϕ and ϕ′. In-

deed, suppose for example that the set {ϕ(A)
π | π ∈ NC(2)} is linearly depen-

dent in M2. It is immediately veri�ed that this is equivalent to the fact that ϕ
is a character of A (ϕ(ab) = ϕ(a)ϕ(b), ∀ a, b ∈ A). Hence κ2 = 0, so if Propo-
sition 4.6.6 is to work then we should have κ′2 = d2(κ2) = 0 as well, implying
that ϕ′ satis�es the condition ϕ′(ab) = ϕ(a)ϕ′(b) + ϕ′(a)ϕ(b), ∀ a, b ∈ A.

4.7 Soul companions for a given ϕ

In this section we elaborate on the facts announced in the Subsection 4.1.3
of the introduction. We start by recording some basic properties of the set
of functionals ϕ′ which can appear as soul-companions for ϕ, when (A, ϕ)
and A1, . . . ,Ak are given.

Proposition 4.7.1. Let (A, ϕ) be a noncommutative probability space and
let A1, . . . ,Ak be unital subalgebras of A which are freely independent in
(A, ϕ).

1o The set of linear functionals

F ′ :=
{
ϕ′ : A → C ϕ′ linear, ϕ′(1A) = 0, and A1, . . . ,Ak

are in�nitesimally free in (A, ϕ, ϕ′)

}
(4.98)

is a linear subspace of the dual of A.
2o Suppose that Alg(A1 ∪ · · · ∪ Ak) = A, and consider the linear map

F ′ 3 ϕ′ 7→ (ϕ′ | A1, . . . , ϕ
′ | Ak) ∈ F ′1 × · · · × F ′k, (4.99)

where F ′ is as in (4.98) and where for 1 ≤ i ≤ k we denote F ′i = {ϕ′ : Ai →
C | ϕ′ linear, ϕ′(1A) = 0}. The map from (4.99) is one-to-one.

Proof. 1o This is immediate from De�nition 4.1.1, and speci�cally from the
fact that ϕ′ makes a linear appearance on the right-hand side of Equation
(4.5).
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2o Let ϕ′ ∈ F ′ be such that ϕ′ | Ai = 0, ∀ 1 ≤ i ≤ k. Then from Equation
(4.5) it is immediate that ϕ′(a1 · · · an) = 0 for all choices of a1, . . . , an ∈
A1∪· · ·∪Ak. The linear span of the products a1 · · · an formed in this way is
the algebra generated by A1 ∪ · · · ∪Ak, hence is all of A, and the conclusion
that ϕ′ = 0 follows.

Remark 4.7.2. In the framework of Proposition 4.7.1, the linear map (4.99)
may not be surjective. For an example, consider the full Fock space over C2,

T = CΩ⊕ C2 ⊕ (C2 ⊗ C2)⊕ · · · ⊕ (C2)⊗n ⊕ · · · ,

and let L1, L2 ∈ B(T ) be the left-creation operators associated to the two
vectors in the canonical orthonormal basis of C2. Then L1, L2 are isometries
with mutually orthogonal ranges; this is recorded in algebraic form by the
relations

L∗1L1 = L∗2L2 = 1 (identity operator on T ), L∗1L2 = 0.

For i = 1, 2 let Ai denote the unital ∗-subalgebra of B(T ) generated by Li,
and let A = Alg(A1 ∪ A2), the unital ∗-algebra generated by L1 and L2

together. It is well-known (see e.g. Lecture 7 of [NS06]) that A1 and A2 are
free in (A, ϕ) where ϕ is the vacuum-state on A. Let ϕ′2 : A2 → C be any
linear functional such that ϕ′2(1A) = 0 and ϕ′2(L2) = 1. Then there exists
no linear functional ϕ′ : A → C such that ϕ′ | A2 = ϕ′2 and such that A1,A2

are in�nitesimally free in (A, ϕ, ϕ′). Indeed, if such ϕ′ would exist then from
Equation (4.18) of Remark 4.2.2 it would follow that

ϕ′(L∗1L2L1) = ϕ(L∗1L1)ϕ′(L2) + ϕ′(L∗1L1)ϕ(L2) = 1 · 1 + 0 · 0 = 1,

which is not possible, since L∗1L2L1 = 0.

Remark 4.7.3. The example from the above remark shows that we can't
always extend a given system of functionals ϕ′i in order to get a soul com-
panion ϕ′ for ϕ. But Proposition 4.2.4 gives us an important case when
we are sure this is possible, namely the one when (A, ϕ) is the free product
(A1, ϕ1) ∗ · · · ∗ (Ak, ϕk).

In the remaining part of this section we will look at the two recipes for
obtaining a soul companion that were stated in Corollary 4.1.4 and Proposi-
tion 4.1.5. For the �rst of them, we start by verifying that a derivation on A
does indeed de�ne a dual derivation system as indicated in Equation (4.14).

Proposition 4.7.4. Let A be a unital algebra over C and let D : A → A
be a derivation. For every n ≥ 1 let Mn denote the space of multilinear
functionals from An to C, and de�ne dn : Mn →Mn by putting

(dnf)(a1, . . . , an) :=
n∑

m=1

f
(
a1, . . . , am−1, D(am), am+1, . . . , an

)
, (4.100)
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for f ∈ Mn and a1, . . . , an ∈ A. Then (dn)n≥1 is a dual derivation system
on A.

Proof. We �rst do the immediate veri�cation of condition (ii) from De�nition
4.6.3. Let f be a functional in M1, let n be a positive integer, and denote
g = f ◦Multn ∈Mn. Then for every a1, . . . , an ∈ A we have

(dng)(a1, . . . , an) =
n∑

m=1

f
(
a1 · · · am−1 ·D(am) · am+1 · · · an

)
= f

(
D(a1 · · · an)

)
(where at the �rst equality sign we used the de�nitions of dn and of g, and
at the second equality sign we used the derivation property of D). Since d1f
is just f ◦D, it is clear that we have obtained dng = (d1f)◦Mn, as required.

For the remaining part of the proof we �x π = {V1, . . . , Vp} ∈ NC(n) and
f1 ∈M|V1|, . . . , fp ∈M|Vp| as in (i) of De�nition 4.6.3, and we verify that the
formula (4.88) holds. Denote f := Jπ(f1, . . . , fp) ∈ Mn. In the summation
which de�nes dnf in Equation (4.100) we group the terms by writing

p∑
j=1

( ∑
m∈Vj

f
(
a1, . . . , am−1, D(am), am+1, . . . , an

))
. (4.101)

It will clearly su�ce to prove that, for every 1 ≤ j ≤ p, the term indexed
by j in the sum (4.101) is equal to the term indexed by j on the right-hand
side of (4.88).

So then let us also �x a j, 1 ≤ j ≤ p. We write explicitly the block Vj of π
as {v1, . . . , vs} with v1 < · · · < vs. From the de�nition of f as Jπ(f1, . . . , fp)
it is then immediate that for m = vr ∈ Vj we have

f
(
a1, . . . , am−1, D(am), am+1, . . . , an

))
= (4.102)

=
( ∏

1≤i≤p,
i 6=j

fi
(

(a1, . . . , an) | Vi
) )
· fj

(
av1 , . . . , D(avr), . . . , avs

)
.

When summing over 1 ≤ r ≤ s in (4.102), the sum only a�ects the last factor
of the product on the right-hand side, which sums to (dsfj)

(
av1 , . . . , avs

)
.

The result of this summation is hence that∑
m∈Vj

f
(
a1, . . . , D(am), . . . , an

))
= Jπ

(
f1, . . . , d|Vj |(fj), . . . , fp

)
,

as required.
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Corollary 4.7.5. Let (A, ϕ) be a noncommutative probability space, and let
D : A → A be a derivation. De�ne ϕ′ := ϕ ◦D. Let the non-crossing and
the in�nitesimal non-crossing cumulant functionals associated to (A, ϕ, ϕ′)
be denoted by κn and respectively by κ′n, in the usual way. Then for every
n ≥ 1 and a1, . . . , an ∈ A one has

κ′n(a1, . . . , an) =
n∑

m=1

κn

(
a1, . . . , am−1, D(am), am+1, . . . , an

)
. (4.103)

Proof. This follows from Proposition 4.6.5, where we use the speci�c dual
derivation system put into evidence in Proposition 4.7.4.

Corollary 4.7.6. In the notations of Corollary 4.7.5, let A1, . . . ,Ak be uni-
tal subalgebras of A which are freely independent with respect to ϕ, and such
that D(Ai) ⊆ Ai for 1 ≤ i ≤ k. Then A1, . . . ,Ak are in�nitesimally free in
(A, ϕ, ϕ′).

Proof. We verify that condition (2) from Theorem 4.1.2 is satis�ed. The van-
ishing of mixed cumulants κn follows from the hypothesis thatA1, . . . ,Ak are
free in (A, ϕ). But then the speci�c formula obtained for the in�nitesimal cu-
mulants κ′n in Corollary 4.7.5, together with the hypothesis that A1, . . . ,Ak
are invariant under D, imply that the mixed in�nitesimal cumulants κ′n van-
ish as well.

Example 4.7.7. Consider the situation where A is the algebra of noncom-
mutative polynomials in k indeterminates, denoted by C〈X1, . . . , Xk〉. We
will view A as a ∗-algebra, with ∗-operation uniquely determined by the
requirement that each of X1, . . . , Xk is selfadjoint. Consider the unital ∗-
subalgebras A1, . . . ,Ak ⊆ A where Ai = span{Xn

i | n ≥ 0}, 1 ≤ i ≤ k. We
will look at two natural derivations on A that leave A1, . . . ,Ak invariant,
and we will examine some examples of in�nitesimal freeness given by these
derivations.

(a) Let D : A → A be the linear operator de�ned by putting D(1) = 0,
D(Xi) = 1 ∀ 1 ≤ i ≤ k, and

D(Xi1 · · ·Xin) =
n∑

m=1

Xi1 · · ·Xim−1Xim+1 · · ·Xin , (4.104)

for all n ≥ 2, and all 1 ≤ i1, . . . , in ≤ k.
It is immediate that D is a derivation on A, which is selfadjoint (in the
sense that D(P ∗) = D(P )∗, ∀P ∈ A). For every 1 ≤ i ≤ k we have that
D(Ai) ⊆ Ai and that D acts on Ai as the usual derivative (in the sense that
D(P (Xi) ) = P ′(Xi), ∀P ∈ C[X]).

Now let µ : A → C be a positive de�nite functional with µ(1) = 1 and
such that A1, . . . ,Ak are free in (A, µ). Then Corollary 4.7.6 implies that
A1, . . . ,Ak are in�nitesimally free in the ∗-incps (A, µ, µ′), where µ′ := µ◦D.
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Note that in this special example we actually have

κ′n(Xi1 , . . . , Xin) = 0, ∀n ≥ 2, ∀ 1 ≤ i1, . . . , in ≤ k; (4.105)

this is an immediate consequence of the the formula (4.103), combined with
the fact that a non-crossing cumulant vanishes when one of its arguments is
a scalar.

Equation (4.105) gives in particular that

κ′n(Xi, . . . , Xi) = 0, ∀n ≥ 2 and 1 ≤ i ≤ k.

So if µ is de�ned such that every Xi has a standard semicircular distribution
in (A, µ), then every Xi will become a standard in�nitesimal semicircular
element in (A, µ, µ′), in the sense of Remark 4.4.7, and where in Equation
(4.68) we take α′1 = 1, α′2 = 0.

(b) Let D# : A → A be the linear operator de�ned by putting D#(1) = 0
and

D#(Xi1 · · ·Xin) = nXi1 · · ·Xin , ∀n ≥ 1, ∀ 1 ≤ i1, . . . , in ≤ k. (4.106)

Then D# is a selfadjoint derivation, sometimes called �the number operator�
on A. It is clear that D# leaves every Ai invariant, 1 ≤ i ≤ k. Hence if
µ : A → C is as in part (a) above (such that A1, . . . ,Ak are free in (A, µ)),
then Corollary 4.7.6 implies that A1, . . . ,Ak are in�nitesimally free in the
∗-incps (A, µ, µ′#), where µ′# := µ ◦D#.

Since D#(Xi) = Xi for 1 ≤ i ≤ k, the formula (4.103) for in�nitesimal
non-crossing cumulants now gives

κ′n(Xi1 , . . . , Xin) = n · κn(Xi1 , . . . , Xin), ∀n ≥ 1, ∀ 1 ≤ i1, . . . , in ≤ k.
(4.107)

In the particular case when µ is such that every Xi is standard semicircu-
lar in (A, µ), it thus follows that every Xi becomes a standard in�nitesimal
semicircular element in (A, µ, µ′#), where we set the parameters from Equa-
tion (4.68) to be α′1 = 0 and α′2 = 2. On the other hand, if µ is de�ned
such that every Xi has a standard free Poisson distribution in (A, µ) (with
κn(Xi, . . . , Xi) = 1 for all n ≥ 1), then the Xi will become in�nitesimal free
Poisson elements in (A, µ, µ′#), in the sense of De�nition 4.4.8 and where we
take β′ = 0, γ′ = 1 in Equation (4.71).

We now move to the situation described in Proposition 4.1.5. Clearly,
this is just an immediate consequence of Proposition 4.3.8.

Corollary 4.7.8. In the notations of Proposition 4.3.8, suppose that the
unital subalgebras A1, . . . ,Ak of A are freely independent with respect to ϕt
for every t ∈ T . Then A1, . . . ,Ak are in�nitesimally free in (A, ϕ, ϕ′).
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Proof. Consider elements a1 ∈ Ai1 , . . . , an ∈ Ain where the indices i1, . . . , in
are not all equal to each other. The freeness of A1, . . . ,Ak in (A, ϕt) implies

that κ
(t)
n (a1, . . . , an) = 0 for every t ∈ T . The limit and derivative at 0

of the function t 7→ κ
(t)
n (a1, . . . , an) must therefore vanish, which means (by

Proposition 4.3.8) that κn(a1, . . . , an) = κ′n(a1, . . . , an) = 0. Hence condition
(2) from Theorem 4.1.2 is satis�ed, and the conclusion follows.

Example 4.7.9. Consider again the situation where A is the ∗-algebra
C〈X1, . . . , Xk〉, as in Example 4.7.7, and where µ : A → C is a positive
de�nite functional with µ(1) = 1. Let (κn)n≥1 be the non-crossing cumulant

functionals of µ, and let {κ(A)
π | π ∈ ∪∞n=1NC(n)} be the extended family of

multilinear functionals.

For every t > 0, let µt : A → C be the linear functional de�ned by
putting µt(1) = 1 and

µt(Xi1 , . . . , Xin) =
∑

π∈NC(n)

(t+ 1)|π| · κπ(Xi1 , . . . , Xin), (4.108)

for all n ≥ 1 and 1 ≤ i1, . . . , in ≤ k. As is easily seen, µt is uniquely

determined by the fact that its non-crossing cumulant functionals (κ(t)
n )n≥1

satisfy

κ(t)
n (Xi1 , . . . , Xin) = (t+ 1) · κn(Xi1 , . . . , Xin), ∀n ≥ 1, 1 ≤ i1, . . . , in ≤ k.

(4.109)
Due to this fact, µt is called the �(t + 1)-th convolution power of µ� with
respect to the operation � of free additive convolution � see pp. 231-233 of
[NS06] for details.

From (4.108) it is clear that the family {µt | t > 0} has in�nitesimal limit
(µ, µ′) at t = 0, where µ is the functional we started with, while µ′ is de�ned
by putting µ′(1) = 0 and

µ′(Xi1 · · ·Xin) =
∑

π∈NC(n)

|π| ·κπ(Xi1 , . . . , Xin), ∀n ≥ 1, 1 ≤ i1, . . . , in ≤ k.

(4.110)
Note also that by using Equation (4.109) and by invoking Proposition 4.3.8
we get

κ′n(Xi1 , . . . , Xin) = κn(Xi1 , . . . , Xin), ∀n ≥ 1, 1 ≤ i1, . . . , in ≤ k. (4.111)

Now let A1, . . . ,Ak be the unital ∗-subalgebras of A that were also con-
sidered in Example 4.7.7, Ai = span{Xn

i | n ≥ 0} for 1 ≤ i ≤ k. Suppose
that A1, . . . ,Ak are free in (A, µ). Then they are free in (A, µt) for every
t > 0; this follows from Equation (4.109) and the description of freeness in
terms of non-crossing cumulants (cf. Theorem 2.3.7), where we take into
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account that Ai is the unital algebra generated by Xi. Hence this is a sit-
uation where Corollary 4.7.8 applies, and we conclude that A1, . . . ,Ak are
in�nitesimally free in (A, µ, µ′).

Note also that if Xi has a standard semicircular distribution in (A, µ),
then Equation (4.111) implies that Xi becomes an in�nitesimal semicircular
element in (A, µ, µ′), where the parameters α′1, α

′
2 from Remark 4.4.7 are

taken to be α′1 = 0, α′2 = 1. Likewise, if Xi is a standard free Poisson in
(A, µ), then Equation (4.111) implies that Xi becomes an in�nitesimal free
Poisson element in (A, µ, µ′), where the parameters β′, γ′ from De�nition
4.4.8 are taken to be β′ = 1, γ′ = 0.



Chapter 5

Higher order in�nitesimal

freeness

This chapter is the text of the paper �Higher order in�nitesimal freeness�
[Fev10], submitted for publication.

5.1 Framework of higher order in�nitesimal free-
ness

Throughout this chapter, the integer k ∈ N is �xed. In this section, we intro-
duce the two equivalent structures of in�nitesimal noncommutative probabil-
ity space and of scarce Ck-noncommutative probability space and we discuss
their relations to previously de�ned structures.

5.1.1 In�nitesimal probability space of order k

The object of this subsection is to introduce the structure which is the frame-
work for our notion of in�nitesimal freeness of order k, namely the in�nites-
imal noncommutative probability space of order k.

De�nition 5.1.1. We call in�nitesimal noncommutative probability space
of order k a structure (A, (ϕ(i))0≤i≤k) where A is a unital algebra over C,
ϕ(0) : A −→ C is a linear map with ϕ(0)(1A) = 1, and ϕ(i) : A −→ C,
1 ≤ i ≤ k, are linear maps with ϕ(i)(1A) = 0.

Remark 5.1.2. The notion of in�nitesimal noncommutative probability
space of order 1 coincides with the notion of in�nitesimal noncommutative
probability space introduced in De�nition 4.1.1. The structure de�ned above
is therefore a generalization of this latter object, and the use of the adjective
in�nitesimal is justi�ed.

An element a ∈ (A, (ϕ(i))0≤i≤k) of an in�nitesimal noncommutative prob-
ability space of order k is called an in�nitesimal noncommutative random

105
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variable of order k. The in�nitesimal distribution of order k of a n-tuple
(a1, . . . , an) ∈ An of in�nitesimal noncommutative random variables of or-
der k is the (k + 1)-tuple (µ(i))0≤i≤k of linear functionals on C〈X1, . . . , Xn〉
de�ned by :

µ(i)(P (X1, . . . , Xn)) := ϕ(i)(P (a1, . . . , an)).

The range of in�nitesimal distributions is the set of in�nitesimal laws of
order k, introduced below.

De�nition 5.1.3. An in�nitesimal law (of order k) on n variables is a (k+1)-
tuple of linear functionals (µ(i))0≤i≤k, where µ

(i) : C〈X1, . . . , Xn〉 → C is
de�ned on the algebra of noncommutative polynomials and satis�es µ(i)(1) =
δ0
i .

For some purposes, it is handy to consider, instead of k + 1 linear func-
tionals as in De�nition 5.1.1, an equivalent unique linear map with values
in a (k + 1)-dimensional algebra. The relevant algebra, denoted by Ck, is
described below.

5.1.2 The algebra Ck
In Subsection 4.1.1, the two linear maps ϕ and ϕ′ of an in�nitesimal noncom-
mutative probability space (A, ϕ, ϕ′) are consolidated in a single linear map
ϕ̃ on A with values in the two-dimensional Grassman algebra G generated
by an element ε which satis�es ε2 = 0 :

G = {α+ εβ | α, β ∈ C}.

This algebra has a quite natural (k+1)-dimensional generalization introduced
below.

De�nition 5.1.4. Let Ck denote the (k + 1)-dimensional complex algebra
Ck+1 with usual vector space structure and multiplication given by the fol-
lowing rule: if α = (α(0), . . . , α(k)) ∈ Ck and β = (β(0), . . . , β(k)) ∈ Ck, then

α · β = (γ(0), . . . , γ(k))

is de�ned by

γ(i) :=
i∑

j=0

Cji α
(j)β(i−j). (5.1)

The algebra Ck is a unital complex commutative algebra. Its unit is
1Ck = (1, 0, . . . , 0). An element is invertible in the algebra Ck if and only if
its �rst coordinate is non-zero.
The analogy between formula (5.1) de�ning the product in Ck and the well-
known Leibniz rule giving the recipe for computing the derivatives of the
product of two smooth functions makes it easy to establish the formula
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for the product β = α1 · · ·αn of n elements α1, . . . , αn ∈ Ck. Precisely,

if αj = (α(0)
j , . . . , α

(k)
j ) and β = (β(0), . . . , β(k)), one has :

β(i) =
∑
λ∈Λn,i

Cλ1,...,λn
i

n∏
j=1

α
(λj)
j ,

where

Cλ1,...,λn
i =

i!
λ1! · · ·λn!

and

Λn,i := {λ = (λ1, . . . , λn) ∈ Nn |
n∑
j=1

λj = i}. (5.2)

There is an alternative description of the algebra Ck : it may be identi�ed
with the algebra of (k + 1)-by-(k + 1) upper triangular Toeplitz matrices
(with usual matricial operations) as follows :

(α(0), . . . , α(k)) '


α(0) α(1) . . . α(k−1)

(k−1)!
α(k)

k!

0 α(0) . . . . . . α(k−1)

(k−1)!

. . . . . . . . . . . . . . .

. . . . . . . . . α(0) α(1)

0 0 . . . . . . α(0)

 .

Consider

ε :=


0 1 . . . 0 0
0 0 . . . . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . 0 1
0 0 . . . . . . 0

 .

It is easy to compute the values of εi for 0 ≤ i ≤ k + 1 ; in particular
εk+1 = 0Ck and any element α = (α(0), . . . , α(k)) ∈ Ck may be uniquely
decomposed

α =
k∑
i=0

α(i) ε
i

i!
. (5.3)

The family ( ε
i

i! , 0 ≤ i ≤ k) is thus a linear basis of Ck, to which we will refer as
the canonical basis of Ck. In particular, Ck ' C[ε] = Ck[ε] ' C[X]/(Xk+1).
In the de�nition of a usual noncommutative probability space, if one asks
for the state to be Ck-valued, one obtains a slightly di�erent structure, in-
troduced in the next section.
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5.1.3 Scarce Ck-noncommutative probability space

De�nition 5.1.5. By scarce Ck-noncommutative probability space, we mean
a couple (A, ϕ̃), where A is a unital algebra over C and ϕ̃ : A → Ck is a
C-linear map satisfying ϕ̃(1A) = 1Ck .

Remark 5.1.6. The notion of scarce noncommutative probability space
was introduced in [Oan07], but only in the particular case of scarce G-
noncommutative probability space.

Remark 5.1.7. To any in�nitesimal noncommutative probability space of
order k, denoted (A, (ϕ(i))0≤i≤k), we may associate a natural scarce Ck-
noncommutative probability space (A, ϕ̃), by putting

ϕ̃ :=
k∑
i=0

ϕ(i) ε
i

i!
. (5.4)

Reciprocally, given a scarce Ck-noncommutative probability space (A, ϕ̃), the
linear decomposition of ϕ̃ in the canonical basis of Ck gives rise to k+1 linear
functionals (ϕ(i))0≤i≤k, and consequently to an in�nitesimal noncommutative
probability space of order k : (A, (ϕ(i))0≤i≤k).
This equivalence between an in�nitesimal noncommutative probability space
of order k and its associated scarce Ck-noncommutative probability space
(A, ϕ̃) is fundamental in what follows. Indeed, we will continuously switch
from one structure to the other, according to the principle that our interest
is in the in�nitesimal structure whereas the computations are easier in the
scarce Ck structure, in the sense that they mimetize those from usual free
probability.

An element a of a scarce Ck-noncommutative probability space (A, ϕ̃)
is called a Ck-noncommutative random variable. We associate to such an
a ∈ A the sequence of its Ck-valued moments (ϕ̃(an))n∈N∗ . We call Ck-valued
distribution of a the whole sequence of its moments, or equivalently, the
linear map from C[X] into Ck which maps any polynomial P to ϕ̃(P (a)).
One may �nd easier to collect all the Ck-valued moments in a formal power
series, as follows :

De�nition 5.1.8. Let (A, ϕ̃) be a scarce Ck-noncommutative probability

space. The Ck-valued moment series of a ∈ A is the power series M̃a ∈ Θ(A)
Ck

de�ned as follows :

M̃a(z) :=
∞∑
n=1

ϕ̃(an)zn.

The notion of Ck-valued distribution is easily generalized to n-tuples of
variables :
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De�nition 5.1.9. The Ck-valued distribution of a n-tuple (a1, . . . , an) ∈
An of Ck-noncommutative random variables in a scarce Ck-noncommutative
probability space (A, ϕ̃) is the linear map µ̃(a1,...,an) : C〈X1, . . . , Xn〉 → Ck
de�ned by

µ̃(a1,...,an)(P (X1, . . . , Xn)) := ϕ̃(P (a1, . . . , an)).

As mentioned in Remark 4.2.9, scarce G-noncommutative probability
spaces and in�nitesimal noncommutative probability spaces provide a nice
framework to do free probability of type B. The equivalent structures de�ned
above are therefore the natural setting for generalizing free probability of
type B. There is another structure linked to free probability of type B that
one may �nd interesting to generalize here : the noncommutative probability
space of type B, proposed in the original work on free probability of type
B [BGN03], and reviewed in Section 2.5. Its natural generalization is the
noncommutative probability space of type k :

De�nition 5.1.10. By a noncommutative probability space of type k we un-
derstand a system (V(0), f (0), . . . ,V(k), f (k), (Φi,j)0≤i,j≤k), where (V(0), f (0))
is a noncommutative probability space of type A, V(i), 1 ≤ i ≤ k, are
complex vector spaces, f (i) : V(i) −→ C, 1 ≤ i ≤ k, are linear maps,
Φi,j : V(i) × V(j) −→ V(i+j),0 ≤ i, j ≤ k, are bilinear maps satisfying

Φh+i,j(Φh,i(x, y), z) = Φh,i+j(x,Φi,j(y, z)),

∀h, i, j ∈ N, ∀x ∈ V(h),∀y ∈ V(i), ∀z ∈ V(j).

To make the preceding de�nition work, we put V(i) = {0}, when i ≥
k + 1. The following fact noticed in Remark 4.2.9 still holds : noncom-
mutative probability spaces of type k are particular cases of scarce Ck-
noncommutative probability spaces. Indeed, given a noncommutative proba-
bility space of type k (V(0), f (0), . . . ,V(k), f (k), (Φi,j)0≤i,j≤k), the direct prod-
uct

∏k
i=0 V(i) can be endowed with a complex unital algebra structure,

via the maps (Φi,j)0≤i,j≤k. This algebra, together with the linear map
ϕ̃(x0, . . . , xk) := (f (0)(x0), . . . , f (k)(xk)), forms a scarce Ck-noncommutative
probability space.

There are natural equivalent notions of freeness on the structures intro-
duced above, generalizing both in�nitesimal freeness from De�nition 4.1.1
and freeness of type B from [BGN03] (see De�nition 2.5.4). In De�nition
4.1.1, in�nitesimal freeness in (A, ϕ, ϕ′) is de�ned by two conditions on the
linear functionals ϕ,ϕ′ ; its generalization to an in�nitesimal noncommuta-
tive probability space of order k denoted by (A, (ϕ(i))0≤i≤k) would require
k + 1 conditions on the linear functionals (ϕ(i))0≤i≤k. In�nitesimal freeness
being also equivalent to the vanishing of the in�nitesimal non-crossing cumu-
lants (cf. Theorem 4.1.2), we adopt this approach and de�ne the in�nitesimal
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freeness of order k by the vanishing of some multilinear functionals, called
in�nitesimal non-crossing cumulant functionals of order k and introduced in
the next section.

5.2 In�nitesimal non-crossing cumulants of order k

We begin this section by introducing a total order on the set of blocks of a
non-crossing partition, which will be useful in the sequel.

De�nition 5.2.1. Let p ∈ NC(A)(m), and V,W ∈ bl(p).
1o V is said to be nested in W if minW < minV ≤ maxV < maxW .
2o V is said to be on the left of W if maxV < minW .
3o V @W ⇔ V is nested in W or V is on the left of W .

The proof of the next proposition is trivial and left to the reader.

Proposition 5.2.2. @ is a total order on bl(p).

If p ∈ NC(A)(m), we have seen that p∪Kr(p) is a non-crossing partition
of [m]∪ [m] in m+1 blocks. These blocks will be listed in two di�erent ways.
The �rst way is to list them all together in the increasing order @ : we will
write Mix(p, i) for the i-th block of p ∪Kr(p) in the increasing order @, for
1 ≤ i ≤ m+ 1.
For some purposes, it is nice to list separately the blocks of p and of Kr(p),
and we will write Sep(p, i) to denote the i-th block of p in the increasing
order @ if 1 ≤ i ≤ |p| and to denote the (i − |p|)-th block of Kr(p) in the
increasing order @ if |p|+ 1 ≤ i ≤ m+ 1.
It is interesting to look at the �rst blocks in the two resulting lists : Mix(p, 1)
is a singleton in [m] ∪ [m], Sep(p, 1) is an interval in [m]. In particular, we
can deduce the well-known fact that a non-crossing partition always owns
an interval-block.

5.2.1 Ck-non-crossing cumulant functionals

In this subsection, we de�ne non-crossing cumulant functionals in the frame-
work of a scarce Ck-noncommutative probability space by the free moment-
cumulant formula from usual free probability, with the only di�erence that
the computations take place in the algebra Ck instead of the �eld of complex
numbers C.

De�nition 5.2.3. Let (A, ϕ̃) be a scarce Ck-noncommutative probability
space. The Ck-non-crossing cumulant functionals are a family of multilinear
maps (κ̃n : An → Ck)∞n=1, uniquely determined by the following equation :
for every n ≥ 1 and every a1, . . . , an ∈ A,∑

p∈NC(A)(n)

κ̃p(a1, . . . , an) = ϕ̃(a1 · · · an). (5.5)
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In usual free probability, the formula above is known as the free moment-
cumulant formula (see (2.4)). The only di�erence is that computations here
take place in the unital commutative complex algebra Ck instead of C. How-
ever, as already mentioned in Section 4.3, the proofs (see [NS06]) of the
following classical results remain valid in this setting. That is why we record
them without proof.
For every n ≥ 1 and every a1, . . . , an ∈ A we have that:

κ̃n(a1, . . . , an) =
∑

p∈NC(A)(n)

Möb(A)(p, 1n)ϕ̃p(a1, . . . , an). (5.6)

Obviously, the multilinear maps (ϕ̃n : An → Ck)∞n=1 implicitely used in
formula (5.6) are de�ned by ϕ̃n(a1, . . . , an) = ϕ̃(a1 · · · an).

Proposition 5.2.4. One has that κ̃n(a1, . . . , an) = 0 whenever n ≥ 2,
a1, . . . , an ∈ A, and there exists 1 ≤ i ≤ n such that ai ∈ C1A.

Proposition 5.2.5. Let x1, . . . , xs be in A and consider some products of
the form

a1 = x1 · · ·xs1 , a2 = xs1+1 · · ·xs2 , . . . , an = xsn−1+1 · · ·xsn ,

where 1 ≤ s1 < s2 < · · · < sn = s. Then

κ̃n(a1, . . . , an) =
∑

π∈NC(s) such

that π∨θ=1s

κ̃π(x1, . . . , xs),

where θ ∈ NC(s) is the partition :

θ = {{1, . . . , s1}, {s1 + 1, . . . , s2}, . . . , {sn−1 + 1, . . . , sn}}.

Given a Ck-noncommutative random variable a ∈ (A, ϕ̃), the quantities
κ̃n(a, . . . , a) are called its Ck-valued cumulants, and they are collected in a
power series :

De�nition 5.2.6. Let (A, ϕ̃) be a scarce Ck-noncommutative probability

space. The Ck-valued R-transform of a ∈ A is the power series R̃a ∈ Θ(A)
Ck

de�ned as follows :

R̃a(z) :=
∞∑
n=1

κ̃n(a, . . . , a)zn.

Following the well-known result of [Spe94] stating roughly that, in a
usual noncommutative probability space, subsets are free if and only if they
satisfy the vanishing of mixed cumulants condition (see Theorem 2.3.7), we
generalize this condition to our setting :
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De�nition 5.2.7. Let (A, ϕ̃) be a scarce Ck-noncommutative probability
space and M1, . . . ,Mn be subsets of A. We say that M1, . . . ,Mn have
vanishing mixed Ck-cumulants if

κ̃m(a1, . . . , am) = 0

whenever a1 ∈Mi1 , . . . , am ∈Mim and ∃1 ≤ s < t ≤ m such that is 6= it.

As announced, in�nitesimal freeness of order k is de�ned by the vanishing
of mixed Ck-cumulants condition. More precisely :

De�nition 5.2.8. We will say that subsets M1, . . . ,Mn ⊆ A of a scarce
Ck-noncommutative probability space (A, ϕ̃) are in�nitesimally free of order
k if they have vanishing mixed Ck-cumulants.

Remark 5.2.9. Using a classical argument in free probability, one can prove
that, if A1, . . . ,An are unital subalgebras which are in�nitesimally free of
order k in a scarce Ck-noncommutative probability space (A, ϕ̃), then one
has :

ϕ̃(a1 · · · am) = 0

whenever a1 ∈ Ai1 , . . . , am ∈ Aim with i1 6= . . . 6= im satisfy ϕ̃(a1) = . . . =
ϕ̃(am) = 0.
The converse in our Ck-valued situation is not true, because one cannot use
the nice "centering trick", as noticed in Remark 4.3.14.

In the next subsection, we switch to the in�nitesimal framework, and de-
�ne in�nitesimal non-crossing cumulant functionals, with the intuition that
they should appear as the coe�cients in the decomposition of the Ck-non-
crossing cumulant functionals in the canonical basis of Ck.

5.2.2 In�nitesimal non-crossing cumulant functionals

In this short subsection, we focus on an in�nitesimal noncommutative prob-
ability space of order k structure (A, (ϕ(i))0≤i≤k). The aim is to de�ne
cumulants and freeness in this setting, in a consistent way with the last
subsection. For convenience, we will use the following notation :

Notation 5.2.10. For a family of multilinear maps (r(i)
n : An → C, 0 ≤ i ≤

k)∞n=1, we de�ne for any n ∈ N, any π = {V1 @ · · · @ Vh} ∈ NC(A)(n) and

any λ ∈ Λn,h (de�ned by (5.2)) the n-linear functional r
(λ)
π : An → C by

r(λ)
π (a1, . . . , an) :=

h∏
i=1

r
(λi)
|Vi| ((a1, . . . , an) | Vi).
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The underlying idea is to consider the Ck-non-crossing cumulant func-
tionals (κ̃n : An → Ck)∞n=1 in the associated scarce Ck-noncommutative
probability space (A, ϕ̃) (see Remark 5.1.7), and then to de�ne the required
n-th in�nitesimal non-crossing cumulant functionals as the n-linear forms
appearing as coe�cients in the linear decomposition of κ̃n : An → Ck in the
canonical basis of Ck. This leads to the following de�nition:

De�nition 5.2.11. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommuta-
tive probability space of order k. The in�nitesimal non-crossing cumulant

functionals of order k are a family of multilinear maps (κ(i)
n : An → C, 0 ≤

i ≤ k)∞n=1, uniquely determined by the following equation : for every n ≥ 1,
every 0 ≤ i ≤ k and every a1, . . . , an ∈ A we have that:∑

p∈NC(A)(n)
p:={V1,...,Vh}

∑
λ∈Λh,i

Cλ1,...,λh
i κ(λ)

p (a1, . . . , an) = ϕ(i)(a1 · · · an). (5.7)

In�nitesimal freeness in the framework of an in�nitesimal noncommu-
tative probability space of order k is obviously de�ned by the vanishing of
mixed in�nitesimal cumulants.

De�nition 5.2.12. We will say that subsetsM1, . . . ,Mn of an in�nitesimal
noncommutative probability space of order k are in�nitesimally free of order
k if they have vanishing mixed in�nitesimal cumulants, which means that,
for each 0 ≤ i ≤ k,

κ(i)
m (a1, . . . , am) = 0

whenever a1 ∈Mi1 , . . . , am ∈Mim and ∃1 ≤ s < t ≤ m such that is 6= it.

Remark 5.2.13. It is straightforward to check, using formula (5.7), that the
in�nitesimal non-crossing cumulant functionals of an in�nitesimal noncom-
mutative probability space of order k are indeed linked to the Ck-non-crossing
cumulant functionals of the associated scarce Ck-noncommutative probability
space by :

κ̃n =
k∑
i=0

κ(i)
n

εi

i!
. (5.8)

A consequence of formulas (5.6) and (5.8) is the validity of the following
inverse formula:

κ(i)
n (a1, . . . , an) =

∑
p∈NC(A)(n)
p:={V1,...,Vh}

∑
λ∈Λh,i

Möb(A)(p, 1n)Cλ1,...,λh
i ϕ(λ)

p (a1, . . . , an),

(5.9)
and of the following proposition :

Proposition 5.2.14. One has that κ
(i)
n (a1, . . . , an) = 0 whenever 0 ≤ i ≤ k,

n ≥ 2, a1, . . . , an ∈ A, and there exists 1 ≤ j ≤ n such that aj ∈ C1A.
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Another consequence of relation (5.8) is that subsetsM1, . . . ,Mn of an
in�nitesimal noncommutative probability space of order k are in�nitesimally
free of order k if and only if they are in�nitesimally free of order k in the
associated scarce Ck-noncommutative probability space.

Remark 5.2.15. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommutative
probability space of order k, and consider its in�nitesimal non-crossing cu-

mulant functionals (κ(i)
n : An → C, 0 ≤ i ≤ k)∞n=1. It is interesting to notice

that the multilinear maps (κ(0)
n : An → C)∞n=1 and (κ(1)

n : An → C)∞n=1 are
respectively the usual non-crossing cumulant functionals in the noncommu-
tative probability space (A, ϕ(0)) and the in�nitesimal non-crossing cumulant
functionals of De�nition 4.3.7 in the in�nitesimal noncommutative probabil-
ity space (A, ϕ(0), ϕ(1)). This implies that subsets that are in�nitesimally
free of order k are in particular free in (A, ϕ(0)) and in�nitesimally free in
(A, ϕ(0), ϕ(1)) in the sense of De�nition 4.1.1.
In�nitesimal freeness of unital subalgebras in De�nition 4.1.1, as well as free-
ness of type B in [BGN03], is de�ned in terms of moments. Section 8 will
provide such a characterization of the in�nitesimal freeness of order k of
unital subalgebras of an in�nitesimal noncommutative probability space of
order k in terms of moments.

As stated in Remark 5.2.15, in�nitesimal freeness of order k of unital sub-
algebras A1, . . . ,An ⊆ (A, (ϕ(i))0≤i≤k) of an in�nitesimal noncommutative
probability space of order k implies freeness of A1, . . . ,An in the noncom-
mutative probability space (A, ϕ(0)). Conversely, is it possible to "upgrade"
freeness of given unital subalgebras of a noncommutative probability space
to in�nitesimal freeness of order k ? This question is discussed in the next
subsection.

5.2.3 Upgrading freeness to in�nitesimal freeness of order k

Given a noncommutative probability space (A, ϕ) and free unital subalgebras
A1, . . . ,An of A, the question of how to build a linear form ϕ′ on A such
that A1, . . . ,An are in�nitesimally free in the in�nitesimal noncommutative
probability space (A, ϕ, ϕ′) is adressed in Section 4.7. Among the answers
given there, there is the idea to de�ne ϕ′ := ϕ◦D, whereD is a derivation ofA
(a linear map D : A −→ A satisfying ∀a, b ∈ A, D(a · b) = D(a) · b+a ·D(b))
such that D(Aj) ⊆ Aj for each 1 ≤ j ≤ n. We examine the question
of how to build linear forms ϕ(1), . . . , ϕ(k) on A such that A1, . . . ,An are
in�nitesimally free of order k in the in�nitesimal noncommutative probability
space (A, ϕ, ϕ(1), . . . , ϕ(k)). The natural idea consisting in de�ning ϕ(i) :=
ϕ◦Di where D is a derivation of A such that D(Aj) ⊆ Aj for each 1 ≤ j ≤ n
is a possible answer, as proved below :
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Proposition 5.2.16. Let (A, ϕ) be a noncommutative probability space and
let D : A → A be a derivation. De�ne ϕ(i) := ϕ ◦Di. Let the in�nitesimal
non-crossing cumulant functionals associated to (A, ϕ, ϕ(1), . . . , ϕ(k)) be de-

noted by (κ(i)
n : An → C, 0 ≤ i ≤ k)∞n=1. Then, for every n ≥ 1, 0 ≤ i ≤ k

and a1, . . . , an ∈ A one has

κ(i)
n (a1, . . . , an) =

∑
λ∈Λn,i

Cλ1,...,λn
i κn(Dλ1(a1), . . . , Dλn(an)).

Proof. De�ne the family of multilinear functionals (η(i)
n : An → C, 0 ≤ i ≤

k)∞n=1 by the following formulas : for every n ≥ 1, 0 ≤ i ≤ k and b1, . . . , bn ∈
A

η(i)
n (b1, . . . , bn) =

∑
λ∈Λn,i

Cλ1,...,λn
i κn(Dλ1(b1), . . . , Dλn(bn)).

Our aim is then to prove that, for every n ≥ 1, 0 ≤ i ≤ k, η
(i)
n = κ

(i)
n . We

verify that the functionals (η(i)
n , 0 ≤ i ≤ k)∞n=1 satisfy the equations (5.7)

de�ning the in�nitesimal non-crossing cumulant functionals. The left-hand
side of this formula writes :∑

p∈NC(A)(n)
p:={V1,...,Vh}

∑
λ∈Λh,i

Cλ1,...,λh
i η(λ)

p (a1, . . . , an). (5.10)

Each η
(λj)

|Vj | ((a1, . . . , an) | Vj) in the latter is a sum indexed by Λ|Vj |,λj , involv-

ing variables ai, i ∈ Vj . Given p := {V1, . . . , Vh} ∈ NC(A)(n), there is a very
natural bijection between {(λ, (λ1, . . . , λh)) ∈ Λh,i×Λn,i | λj ∈ Λ|Vj |,λj} and
the set Λn,i. Thus :

(5.10) =
∑

p∈NC(A)(n)

∑
λ∈Λn,i

Cλ1,...,λn
i κp(Dλ1(a1), . . . , Dλn(an)).

By exchanging the summation signs, the usual free moment-cumulant for-
mula appears, and one obtains :

(5.10) =
∑
λ∈Λn,i

Cλ1,...,λn
i ϕ(Dλ1(a1) · · ·Dλn(an)). (5.11)

Using Leibniz rule in the right-hand side of (5.11), one may conclude :

(5.10) = ϕ(
∑
λ∈Λn,i

Cλ1,...,λn
i Dλ1(a1) · · ·Dλn(an))

= ϕ(Di(a1 · · · an))
= ϕ(i)(a1 · · · an).
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Corollary 5.2.17. In the notations of Proposition 5.2.16, let A1, . . . ,An
be unital subalgebras of A which are free in (A, ϕ), and such that D(Aj) ⊆
Aj for 1 ≤ j ≤ n. Then A1, . . . ,An are in�nitesimally free of order k in
(A, ϕ, ϕ(1), . . . , ϕ(k)).

5.3 Addition and multiplication of in�nitesimally
free variables

In this section, we consider n-tuples of in�nitesimal noncommutative ran-
dom variables (a1, . . . , an), (b1, . . . , bn) ∈ An (where (A, (ϕ(i))0≤i≤k) is an
in�nitesimal noncommutative probability space of order k), with respective
in�nitesimal distributions (µ(i))0≤i≤k and (ν(i))0≤i≤k. We assume that the
sets {a1, . . . , an} and {b1, . . . , bn} are in�nitesimally free of order k and we
are interested in the distributions of the sum (a1, . . . , an) + (b1, . . . , bn) and
of the product (a1b1, . . . , anbn).

5.3.1 Addition of in�nitesimally free random variables

We do not provide a proof of the following result, which is a straightforward
calculation using multilinearity of the in�nitesimal cumulant functionals and
de�nition of in�nitesimal freeness.

Proposition 5.3.1. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommuta-
tive probability space of order k. Consider subsets M1,M2 of A that are
in�nitesimally free of order k. Then, one has, for each n ≥ 1, each n-tuples
(a1, . . . , an) ∈Mn

1 , (b1, . . . , bn) ∈Mn
2 and each 0 ≤ i ≤ k :

κ(i)
n (a1 + b1, . . . , an + bn) = κ(i)

n (a1, . . . , an) + κ(i)
n (b1, . . . , bn). (5.12)

Using formulas (5.7) and (5.9), we see that the quantities

κ(i)
m (ai1 , . . . , aim), κ(i)

m (bj1 , . . . , bjm),

where 0 ≤ i ≤ k,m ≥ 1, {i1, . . . , im}, {j1, . . . , jm} ⊆ [n], called respec-
tively in�nitesimal cumulants of (a1, . . . , an) and (b1, . . . , bn) completely de-
termine and are completely determined by the in�nitesimal distributions of
(a1, . . . , an) and (b1, . . . , bn). Proposition 5.3.1 thus has the following corol-
lary.

Corollary 5.3.2. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommutative
probability space of order k, and (a1, . . . , an), (b1, . . . , bn) be n-tuples of ele-
ments of A with respective in�nitesimal distributions (µ(i))0≤i≤k, (ν(i))0≤i≤k.
If the sets {a1, . . . , an} and {b1, . . . , bn} are in�nitesimally free of order
k, then the in�nitesimal distribution of (a1, . . . , an) + (b1, . . . , bn) only de-
pends on (µ(i))0≤i≤k and (ν(i))0≤i≤k. It is called the in�nitesimal free ad-
ditive convolution of order k of (µ(i))0≤i≤k and (ν(i))0≤i≤k and denoted by
(µ(i))0≤i≤k �(k) (ν(i))0≤i≤k.
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The corollary above means that the in�nitesimal free additive convolu-
tion of order k de�nes an operation on in�nitesimal laws. The practical way
to compute the in�nitesimal free additive convolution of order k of two in-
�nitesimal laws is to use consecutively the inverse of the in�nitesimal version
of the free moment-cumulant formula (formula (5.9)), the additivity of in-
�nitesimal cumulants (formula (5.12)), and �nally the in�nitesimal version
of the free moment-cumulant formula (formula (5.7)). One may �nd easier
to make the computations in a scarce Ck-noncommutative probability space.
Taking into account the link (5.8) between in�nitesimal cumulant function-
als and Ck-non-crossing cumulant functionals, Proposition 5.3.1 admits the
following corollaries :

Corollary 5.3.3. Let (A, ϕ̃) be a scarce Ck-probability space. Consider sub-
sets M1,M2 of A that are in�nitesimally free of order k. Then, one has,
for each n ≥ 1 and each n-tuples (a1, . . . , an) ∈Mn

1 , (b1, . . . , bn) ∈Mn
2

κ̃n(a1 + b1, . . . , an + bn) = κ̃n(a1, . . . , an) + κ̃n(b1, . . . , bn).

Corollary 5.3.4. Let (A, ϕ̃) be a scarce Ck-probability space. Consider a, b ∈
A that are in�nitesimally free of order k, then

R̃a+b = R̃a + R̃b.

Remark 5.3.5. Using Corollary 5.3.3, it is possible to state and prove Ck-
valued versions of some famous limit theorems of free probability. We dis-
cuss this without going into the details ; for a more complete discussion
of limit theorems in free probability of type B, we refer to [Pop07] and
[BS09]. In a scarce Ck-noncommutative probability space (A, ϕ̃), consider
a sequence (an)n∈N ∈ AN of centered in�nitesimally free identically dis-
tributed Ck-valued noncommutative random variables. Then the moments
of the rescaled sum

1√
N

N∑
n=1

an

converge to a Ck-valued distribution characterized by the vanishing of all
of its cumulants except the second one : this is the Ck-valued version of
the free central limit theorem. The distributions that appear as limits in
the preceding result deserve to be named Ck-valued semicircular elements.
Their moments may be computed using the Ck-valued free moment-cumulant
formula. Paralelly, a Ck-valued version of the free Poisson theorem may also
be stated and proved, and thus a Ck-valued Poisson distribution may be
de�ned.

5.3.2 Multiplication of in�nitesimally free random variables

We now investigate the distribution of the product of n-tuples of noncom-
mutative random variables that are in�nitesimally free of order k. We �rst
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focus on a Ck-noncommutative probability space because, the combinatorics
being the same in this setting as in usual free probability, the proofs and
results will be straightforward adaptations of the usual ones, which can be
found in [NS06] for instance.

Proposition 5.3.6. Let (A, ϕ̃) be a scarce Ck-noncommutative probability
space. Consider subsets M1,M2 of A that are in�nitesimally free of or-
der k. Then, one has, for each n ≥ 1 and each n-tuples (a1, . . . , an) ∈
Mn

1 , (b1, . . . , bn) ∈Mn
2

κ̃n(a1b1, . . . , anbn) =
∑

p∈NC(A)(n)

κ̃p(a1, . . . , an)κ̃Kr(p)(b1, . . . , bn). (5.13)

Proof. Using Proposition 5.2.5, the left-hand side of (5.13) is equal to∑
π∈NC(2n) such

that π∨θ=1s

κ̃π(a1, b1, a2, . . . , bn−1, an, bn),

where θ is the partition {{1, 2}, . . . , {2n− 1, 2n}}.
By the vanishing of mixed cumulants condition, the only contributing terms
are those indexed by non-crossing partitions π which are reunion of a non-
crossing partition p of {1, 3, . . . , 2n − 1} and a non-crossing partition q of
{2, 4, . . . , 2n}. The condition π ∨ θ = 1s for such a partition π may be
reinterpreted as q = Kr(p) (up to the identi�cations {1, 3, . . . , 2n− 1} ↔ [n]
and {2, 4, . . . , 2n} ↔ [n]).

Switching to the in�nitesimal framework, one can state the following
result.

Corollary 5.3.7. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommutative
probability space of order k, and (a1, . . . , an), (b1, . . . , bn) ∈ An be n-tuples
with respective in�nitesimal distributions (µ(i))0≤i≤k and (ν(i))0≤i≤k.
If the sets {a1, . . . , an} and {b1, . . . , bn} are in�nitesimally free of order
k, then the in�nitesimal distribution of (a1b1, . . . , anbn) only depends on
(µ(i))0≤i≤k and (ν(i))0≤i≤k. It is denoted by (µ(i))0≤i≤k �(k) (ν(i))0≤i≤k and
called the in�nitesimal free multiplicative convolution of order k of (µ(i))0≤i≤k
and (ν(i))0≤i≤k.

If a, b ∈ A are Ck-noncommutative random variables that are in�nitesi-
mally free of order k in a scarce Ck-noncommutative probability space, the
Ck-valued R-transform of a · b is R̃a·b = R̃a?CkR̃b, where ?Ck is the version
of the boxed convolution operation introduced in [NS96], but with scalars in
Ck (see De�nition 2.3.11) :

Proposition 5.3.8. Let (A, ϕ̃) be a scarce Ck-noncommutative probability
space. Consider a, b ∈ A that are in�nitesimally free of order k, then
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R̃a·b = R̃a ?
(A)
Ck R̃b.

Proposition 2.3.13 also has an in�nitesimal analogue, as stated in the next
proposition. It is indeed straightforward to check that, in the particular case
of single variables, the formulas (5.5) and (5.6) may be read at the level of
power series as follows :

Proposition 5.3.9. Let (A, ϕ̃) be a scarce Ck-noncommutative probability
space and consider a Ck-noncommutative random variable a ∈ A. Then
the Ck-valued moment series M̃a and the Ck-valued R-transform R̃a of a are

related by the equivalent formulas : M̃a = R̃a?
(A)
Ck ζ

(A)
Ck , R̃a = M̃a?

(A)
Ck Möb

(A)
Ck .

As noticed in [Pop07], the combinatorial proofs remaining valid for se-
ries with Ck-valued coe�cients such that the coe�cient of degree one is in-
vertible, one has a Fourier transform construction leading to the Ck-valued
S-transform.

De�nition 5.3.10. Let (A, ϕ̃) be a scarce Ck-noncommutative probability
space. The Ck-valued S-transform of an in�nitesimal noncommutative ran-
dom variable a ∈ A such that ϕ̃(a) is invertible in Ck is the power series

S̃a ∈ Θ(A)
Ck de�ned as follows:

S̃a(z) :=
1
z
R̃〈−1〉
a (z).

Proposition 5.3.11. Let (A, ϕ̃) be a scarce Ck-noncommutative probability
space. Consider a, b ∈ A that are in�nitesimally free of order k, and such
that ϕ̃(a) and ϕ̃(b) are invertible in Ck, then the Ck-valued S-transform S̃a·b
of a · b satis�es:

S̃a·b(z) = S̃a(z)S̃b(z).

Practically speaking, the computation of the distribution of the product
of two in�nitesimally free in�nitesimal noncommutative random variables
requires a good understanding of the Ck-valued version of the boxed convo-
lution. More precisely, in the notations of De�nition 2.3.11, it would be of

interest to have a formula for γ
(i)
m as a function of the α

(j)
n 's and the β

(j)
n 's.

As mentioned before, the version of the boxed convolution with scalars in
C0 = C is a classical operation in free probability. The version of the boxed
convolution with scalars in C1 = G has already been considered in [BGN03],
where it is shown to coincide with the boxed convolution based on non-
crossing partitions of type B, in connection with free probability of type B
(see Theorem 5.4.19). This leads to the natural question : does the opera-

tion ?
(A)
Ck coincide with a boxed convolution based on a certain set of special

non-crossing partitions. In Section 5.4, we will give a positive answer to this
problem, by introducing the non-crossing partitions of type k.



120 Chapter 5 : Higher order in�nitesimal freeness

5.4 Non-crossing partitions of type k

This section is devoted to the introduction and study of a set of non-crossing
partitions, namely the set of non-crossing partitions of type k, which has to
be a cover of NC(A)(n) related to the version of the boxed convolution with
scalars in Ck.

5.4.1 De�nition and �rst properties

De�nition 5.4.1. Let n be a positive integer. We call reduction mod n map
the map

Red(k)
n : [(k + 1)n]→ [n]

sending each i ∈ [(k + 1)n] to its congruence class mod n.

Remark 5.4.2. For k = 0, the map Red
(0)
n is simply the identity map on

[n].
For k = 1, up to identifying [2n] with [±n], the map Red

(1)
n is identi�ed with

the map Abs de�ned in Section 2.5.

De�nition 5.4.3. A non-crossing partition π of [(k + 1)n] is said to satisfy

the mod n reduction property if Red
(k)
n (π) is a non-crossing partition of [n]

and if Red
(k)
n (Kr(π)) is a non-crossing partition of [n].

Non-crossing partitions of type k are the non-crossing partitions of the
set [(k + 1)n] satisfying the mod n reduction property.

De�nition 5.4.4. We write NC(k)(n) for the set of non-crossing partitions
of type k, that is non-crossing partitions of [(k + 1)n] satisfying the mod n
reduction property.

Remark 5.4.5. All non-crossing partitions of [n] trivially satisfy the mod

n reduction property (since Red
(0)
n is simply the identity map). Hence

NC(0)(n) = NC(A)(n).

The next proposition states that the non-crossing partitions of type k are
a generalization of the non-crossing partitions of type B.

Proposition 5.4.6. If we identify [±n] with [2n] and Abs with Red(1)
n ,

then NC(B)(n) = NC(1)(n).

Proof. That π ∈ NC(B)(n) satis�es the mod n reduction property is a corol-
lary of Theorem 2.5.1 and Lemma 1 in [BGN03].
For the converse, let π ∈ NC(1)(n) satisfy the mod n reduction property,
and assume that there exist two elements x, y ∈ [±n] such that x ∼π y ,
−x 6∼π −y. By reduction mod n property, we necessarily have −y ∼π x ∼π
y ∼π −x, which is a contradiction.
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Remark 5.4.7. The proof above and Lemma 1 in [BGN03] show that, for a
non-crossing partition π of [2n], the mod n reduction property is equivalent

to the only requirement that Red
(1)
n (π) is a non-crossing partition of [n].

In De�nition 5.4.3, the reduction mod n property for a non-crossing par-

tition π of [(k + 1)n] consists of two requirements : Red
(k)
n (π) has to be

a non-crossing partition of [n] and Red
(k)
n (Kr(π)) has to be a non-crossing

partition of [n]. Actually, there is a slightly stronger characterization stated
in the next proposition.

Proposition 5.4.8. A non-crossing partition π of [(k + 1)n] satis�es the

reduction mod n property if and only if Red(k)
n (π ∪Kr(π)) is a non-crossing

partition of [n] ∪ [n].

Proof. If Red
(k)
n (π ∪ Kr(π)) is a non-crossing partition of [n] ∪ [n], since

Red
(k)
n (π) is a family of subsets of [n] and Red

(k)
n (Kr(π)) is a family of subsets

of [n], they have to be non-crossing partitions of [n] and [n] respectively ; in
other words π has to satisfy the reduction mod n property.
We assume now that π is a non-crossing partition of [(k+ 1)n] satisfying the
reduction mod n property, and aim at proving that Red

(k)
n (π ∪ Kr(π)) is a

non-crossing partition of [n] ∪ [n].
By the reduction property, Red

(k)
n (π ∪ Kr(π)) = Red

(k)
n (π) ∪ Red(k)

n (Kr(π))
is the union of a partition of [n] and of a partition of [n], and hence a
partition of [n] ∪ [n]. To prove that this partition is non-crossing, consider
four elements a < b < c < d of [n] ∪ [n], such that a ∼

Red
(k)
n (π∪Kr(π))

c and

b ∼
Red

(k)
n (π∪Kr(π))

d. We have to show that a ∼
Red

(k)
n (π∪Kr(π))

b.

Let 1 ≤ i0 ≤ (k + 1)n + 1 be minimal with the property that Mix(π, i0)
contains an element x such that Red

(k)
n (x) ∈ {a, b, c, d}. Choose also the

smallest such x. We may assume that Red
(k)
n (x) = a (the other cases are

similar). By assumption, c ∈ Red
(k)
n (Mix(π, i0)) : there is an element z ∈

Mix(π, i0) such that Red
(k)
n (z) = c. Our choice of x ensures that x < z

and there is necessarily an element x < y < z such that Red
(k)
n (y) = b. By

minimality of i0, y ∈ Mix(π, i0), hence b ∈ Red
(k)
n (Mix(π, i0)) is linked to a

in Red
(k)
n (π ∪Kr(π)) and we are done.

Remark 5.4.9. When k = 0, the reduction mod n property is satis�ed by
any non-crossing partition of [n] and is in particular equivalent to the only
empty requirement : π ∈ NC(A)(n) satis�es the reduction mod n property

if and only if Red
(0)
n (π) is a non-crossing partition of [n].

As explained in Remark 5.4.7, this is also the case when k = 1 : π ∈
NC(A)(2n) satis�es the reduction mod n property if and only if Red

(1)
n (π) is

a non-crossing partition of [n].
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Assume now that k ≥ 2 ; the situation then is di�erent.
As an example, for k = 2 and n = 2, consider the partition

π := {{1, 2, 3}, {4, 5, 6}} ∈ NC(A)(6).

It is straightforward to check that Red
(2)
2 (π) = {1, 2} is a non-crossing par-

tition of [2]. However, from the easy computation

Kr(π) = {{1}, {2}, {4}, {5}, {3, 6}},

we deduce that Red
(2)
2 (Kr(π)) is not a partition of [6] and consequently that

π does not satisfy the reduction mod 2 property.

The following proposition states that the Kreweras complementation map
may be considered as an order-reversing bijection of NC(k)(n).

Proposition 5.4.10. The restrictions from NC(A)((k + 1)n) to NC(k)(n)
of Kr is an order-reversing bijection of NC(k)(n).

The name of Kreweras complementation map and the notation Kr will
be conserved as there is no ambiguity about the meaning of Kr(π) whether
π is viewed as an element of NC(k)(n) or of NC(A)((k + 1)n).

Proof. It is clearly su�cient to prove that the non-crossing partition Kr(π)
of [(k + 1)n] satis�es the reduction mod n property whenever π does. As-
sume that the non-crossing partition π of [(k + 1)n] satis�es the reduction

mod n property. By assumption, Red
(k)
n (Kr(π)) is a non-crossing partition

of [n]. It remains to prove that Red
(k)
n (Kr2(π)) is a non-crossing partition of

[n].
From the geometric description of Kr2(π) given in Subsection 2.3.1, we de-

duce that Red
(k)
n (Kr2(π)) is obtained from Red

(k)
n (π) by a rotation. By

reduction mod n property, Red
(k)
n (π) is a non-crossing partition of [n], so

Red
(k)
n (Kr2(π)) is itself a non-crossing partition of [n]. Thus the proof is

complete.

Given π ∈ NC(k)(n), Kr(Red(k)
n (π)) and Red

(k)
n (Kr(π)) are thus two

non-crossing partitions of [n]. The following lemma, generalizing Lemma 1
of [BGN03], states that these two partitions coincide.

Proposition 5.4.11. ∀π ∈ NC(k)(n),Kr(Red(k)
n (π)) = Red(k)

n (Kr(π)).

Proof. Let π be a non-crossing partition of type k. By Proposition 5.4.8,

Red
(k)
n (π)∪Red(k)

n (Kr(π)) = Red
(k)
n (π∪Kr(π)) is a non-crossing partition of

[n]∪ [n]. Since Kr(Red(k)
n (π)) is maximal with the property that Red

(k)
n (π)∪

Kr(Red(k)
n (π)) is non-crossing, it follows that

Red(k)
n (Kr(π)) ≤ Kr(Red(k)

n (π)).
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There is equality if, for any x having a neighbour y > x in Kr(Red(k)
n (π)),

y is linked to x in Red
(k)
n (Kr(π)). For such elements x, y ∈ [n], we call

V the block of π containing x + 1. The reduction property implies that

Red
(k)
n (V ) is a block of the partition Red

(k)
n (π). By construction of the Krew-

eras complement, x + 1 is the smallest element of both V and Red
(k)
n (V ),

and y is the greatest element of Red
(k)
n (V ). Consider now the greatest el-

ement z of V . Notice that x + 1 ≤ Red
(k)
n (z) ≤ y. By construction of

the Kreweras complement again, x is linked to z in Kr(π), then x is linked

to Red
(k)
n (z) = Red

(k)
n (z) in Red

(k)
n (Kr(π)) and therefore in Kr(Red(k)

n (π)).
This means that, if Red

(k)
n (z) < y, y would not be the neighbour of x in

Kr(Red(k)
n (π)), which is a contradiction. So Red

(k)
n (z) = y or, in other words,

x is linked to y in Red
(k)
n (Kr(π)).

A deeper description of non-crossing partitions of type k is given in the
next subsection.

5.4.2 Structure of non-crossing partitions of type k

The goal of this subsection is to describe the structure of a non-crossing
partition of type k. In the next proposition, t denotes the bijection between
non-crossing partitions and permutations lying on a geodesic in the Cayley
graph of the symmetric group, introduced by Biane in [Bia97b], and de-
scribed in Section 2.5. We warn the reader that we choose to use the same
notation t for this bijection, de�ned either on NC(n) or NC((k + 1)n). We
hope that this choice, made in the sake of simplicity, will not be a source of
confusion in the reader's mind. The content of this proposition is, roughly
speaking, that a type k non-crossing partition π is characterized by the two

requirements : Red
(k)
n (π) is a non-crossing partition of NC(A)(n) and the el-

ements of each of the blocks of π come in the same order as their congruence

classes in its reduction Red
(k)
n (π).

Proposition 5.4.12. For π ∈ NC(A)((k + 1)n) such that Red(k)
n (π) ∈

NC(A)(n), π ∈ NC(k)(n) if and only if

∀x ∈ [(k + 1)n],Red(k)
n (t(π)(x)) = t(Red(k)

n (π))(Red(k)
n (x)). (5.14)

Proof. Assume �rst that π ∈ NC(k)(n) and �x x ∈ [(k + 1)n]. Set y :=
t(π)(x).
By construction of t, y is the neighbour of x in π and t(Red(k)

n (π))(Red(k)
n (x))

is the neighbour of Red
(k)
n (x) in Red

(k)
n (π). By construction of the Kreweras

complement, x is the neighbour of y − 1 in Kr(π), and Red
(k)
n (x) is the

neighbour of t(Red(k)
n (π))(Red(k)

n (x))− 1 in Kr(Red(k)
n (π)) = Red

(k)
n (Kr(π))
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(the latter equality holds because of Proposition 5.4.11). By reduction prop-

erty, Red
(k)
n (y − 1) is linked to Red

(k)
n (x). It follows that the neighbour of

Red
(k)
n (x) in Red

(k)
n (π), t(Red(k)

n (π))(Red(k)
n (x)), is the �rst point coming af-

ter Red
(k)
n (y − 1) linked to Red

(k)
n (x) : it is Red(k)

n (y) and we are done. For

the converse, let π ∈ NC(A)((k + 1)n) be such that Red
(k)
n (π) ∈ NC(A)(n)

and assume that condition (5.14) holds. We have to prove that Red
(k)
n (Kr(π))

is a non-crossing partition of [n]. Let x ∈ [(k + 1)n], its neighbour in Kr(π)
is t(π)−1(x+ 1), by construction of the Kreweras complement. It follows of

condition (5.14) that Red
(k)
n (t(π)−1(x+1)) = t(Red(k)

n (π))−1(Red(k)
n (x+1)).

Hence the congruence class of the neighbour of x in Kr(π) only depends on

the congruence class of x, and moreover Red
(k)
n (Kr(π)) = Kr(Red(k)

n (π)) and
we are done.

The preceding proposition has some important consequences.

Corollary 5.4.13. Let π ∈ NC(A)((k+ 1)n) and V be a block of π∪Kr(π).
The cardinal of Red(k)

n (V ) divides the cardinal of V . We call multiplicity of
V the quotient

multπ∪Kr(π)(V ) :=
card(V )

card(Red(k)
n (V ))

.

This is a positive integer lower or equal than k+1. The blocks of multiplicity
1 will be called simple.

Proof. For x ∈ V , the cardinal of V is the smallest positive i verifying

(t(π))i(x) = x.

A repeated use of Proposition 5.4.12 gives that, for such an i,

(t(Red(k)
n (π)))i(Red(k)

n (x)) = Red(k)
n (x). (5.15)

Thus i is a multiple of the cardinal of Red
(k)
n (V ), which is also characterized

by the fact that it is the smallest positive i veriying condition (5.15).

It is not so di�cult to see that, if there is a block of multiplicity k+ 1 in
π ∪Kr(π), for π ∈ NC(A)((k+ 1)n), the other blocks are necessarily simple,
because one cannot link two elements of the same congruence class without
crossing the block of multiplicity k + 1. This is in fact a particular case of
the following result :

Corollary 5.4.14. For π ∈ NC(k)(n),∑
V ∈bl(π∪Kr(π))

(multπ∪Kr(π)(V )− 1) = k.
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Proof. This is a simple computation. First notice that∑
V ∈bl(π∪Kr(π))

(multπ∪Kr(π)(V )− 1) =

∑
V ∈bl(π∪Kr(π))

multπ∪Kr(π)(V )− |π ∪Kr(π)|. (5.16)

The �rst term in (5.16) is∑
W∈bl(Red(k)

n (π∪Kr(π)))

∑
V ∈bl(π∪Kr(π)):Red

(k)
n (V )=W

multπ∪Kr(π)(V ).

But for any block W of Red
(k)
n (π ∪Kr(π)), one has∑

V ∈bl(π∪Kr(π)):Red
(k)
n (V )=W

multπ∪Kr(π)(V ) = k + 1.

Applying twice formula (2.1), we get∑
V ∈bl(π∪Kr(π))

(multπ∪Kr(π)(V )− 1) =(k + 1)(n+ 1)− |π ∪Kr(π)|

= (k + 1)(n+ 1)− ((k + 1)n+ 1)
= k.

For a partition π ∈ NC(k)(n), one may de�ne a vector λπ with integer
coordinates as follows :

(λπ)i =
∑

V ∈bl(π∪Kr(π)):Red
(k)
n (V )=Mix(Red

(k)
n (π∪Kr(π)),i)

(multπ∪Kr(π)(V )− 1).

The vector λπ ∈ Λn+1,k is called the shape of π.

Remark 5.4.15. A type B non-crossing partition π is determined by its
absolute value p := Abs(π) and the choice of the block Z ∈ bl(p ∪ Kr(p)),
which has to be lifted to the zero-block of π. This latter choice is encoded
in the shape λπ of π. Indeed, type B corresponds to the case k = 1 of
non-crossing partitions of type k and therefore the shape λπ belongs to the
set Λn+1,1 consisting of the n + 1 vectors ei = (δji )1≤j≤n+1, 1 ≤ i ≤ n + 1.
That λπ = ei means exactly that we have to choose the block Mix(p, i)
as the absolute value of the zero-block. The conclusion is that a type B
non-crossing partition, considered as a non-crossing partition of type 1, is
determined by its reduction (or absolute value in the type B language) and
its shape. Unfortunately, this is not the case when k ≥ 2. It is interesting
to ask how to determine a general non-crossing partition of type k. This
question is investigated in the proof of the next proposition.
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Proposition 5.4.16. Let λ ∈ Λn+1,k. The number of π ∈ NC(k)(n) having
shape λ and reduction a �xed non-crossing partition p ∈ NC(A)(n) is the
same for any choice of p ∈ NC(A)(n). We will denote this quantity by r(λ).

Proof. As announced, we investigate how to determine a type k non-crossing
partition π ∈ NC(k)(n), once its reduction p ∈ NC(A)(n) and its shape
λ ∈ Λn+1,k are given. We know that Mix(p, 1) is a singleton of [n] ∪ [n].
For simplicity, we assume that it is a singleton {i} of [n]. We need to know
how to form the blocks of π reducing to {i}. The number of admissible
ways to form these blocks depends on the value of λ1 but of course not
on p, because the actual value of i does not come into the game. Assume
that these blocks are formed; this gives a decomposition of [(k + 1)n] \
{x | Red(k)

n (x) = i} ∪ [(k + 1)n] into λ1 + 1 sets, according to the following
process : let us denote by {i + l1n, . . . , i + lmn} the smallest (with respect
to @) of the blocks we have just formed that is not simple (if there is no
such block, i.e. when λ1 = 0, our decomposition is trivial) ; each of the
{i+ ljn, . . . , i− 1 + lj+1n} becomes a set in our decomposition after erasing
the i+ ln, lj ≤ l ≤ lj+1, for each 1 ≤ j ≤ m− 1. Then remove all elements x
such that i+l1n ≤ x ≤ i+lmn and repeat the process by considering the new
smallest block with respect to @ among the remaining blocks that are not
simple. Notice that the sets obtained this way may be identi�ed with sets of
the form [l(n− 1)]∪ [l(n− 1)], for some l ≤ k+ 1, up to identifying the �rst
and last elements of the sets. This can be done, because these elements are
necessarily linked by construction of the Kreweras complement. On each of
these sets, π induces a non-crossing partition that belongs to NC(l)(n− 1).
All such induced non-crossing partitions have the same reduction p̃ obtained
by erasing in p∪Kr(p) the element i and by identifying i− 1 with i (which are
also necessarily linked in Kr(p)). The shapes of the induced partitions sum
to the shape λ of π. Hence a non-crossing partition of type k is determined
by its reduction p, its shape λ, an admissible way to form the blocks reducing
to Mix(p, 1), an admissible decomposition of λ and the choice of the induced
non-crossing partitions in sets NC(l)(n − 1), having reduction p̃ and shape
the summands in the decomposition of λ.
Our argument goes by induction on n. For n = 1 and any k, there is only
one possible reduction, because card(NC(A)(1)) = 1 and consequently there
is nothing to prove in that case. Assume that, for any l, the number of
partitions in NC(l)(n− 1) with given shape and reduction does not depend
on the choice of the reduction. According to our analysis of the �rst part
of the proof, the number of partitions π ∈ NC(k)(n) with given shape λ
and reduction p does not depend on the choice of the reduction, because we
noticed that the number of admissible ways to form the blocks reducing to
Mix(p, 1) does not depend on p, the shape decomposition depend only on λ
and the way the latter blocks are formed, and by induction, the numbers of
choices for the induced partitions only depend on their shapes.
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Remark 5.4.17. For small values of k, one may easily compute the values
of r(λ) for each λ ∈ Λn+1,k.
In the simplest case k = 0,

Λn+1,0 = {(0, . . . , 0)},

r((0, . . . , 0)) = 1.

For k = 1,
Λn+1,1 = {ei}i=1,...,n+1,

and one has
∀1 ≤ i ≤ n+ 1, r(ei) = 1.

For k = 2,
Λn+1,2 = {ei + ej}i,j=1,...,n+1.

The value of r(ei + ej) depends on whether i = j or not:

∀1 ≤ i ≤ n+ 1, r(2ei) = 1.

∀1 ≤ i < j ≤ n+ 1, r(ei + ej) = 3.

We investigate in the next subsection some properties of the set NC(k)(n).

5.4.3 Study of the poset NC(k)(n)

The set NC(k)(n), being a subset of (NC(A)((k + 1)n),≤), inherits its par-
tially ordered set (abbreviated poset) structure. Contrary to NC(B)(n),
which is a sublattice of (NC(A)(2n),≤) (up to the identi�cation [±n] = [2n]),
(NC(k)(n),≤) is unfortunately not a sublattice of (NC(A)((k + 1)n),≤),
when k ≥ 2.

Remark 5.4.18. When k = 2 and n = 2, consider the partitions

π := {{2, 3, 4, 5}, {1, 6}} ∈ NC(2)(2)

and
ρ := {{1, 2}, {3, 4, 5, 6}} ∈ NC(2)(2).

It is an easy exercise to determine the meet of these two partitions in the
lattice (NC(A)(6),≤):

π ∧NC(A)(6) ρ = {{1}, {2}, {3, 4, 5}, {6}}.

It is immediate that π ∧NC(A)(6) ρ is not an element of NC(2)(2) which is

consequently not a sublattice of (NC(A)(6),≤) ; the same kind of argument
would prove that NC(k)(n) is never a sublattice of (NC(A)((k+ 1)n),≤), as
soon as k ≥ 2.
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It is natural to ask whether NC(k)(n) is or not a lattice in its own right
for the reverse re�nement order ≤. We do not know the answer to this
question.

We now state and prove the main result of this section.

Theorem 5.4.19. π 7→ Red(k)
n (π) is a 1

(k+1)n+1C
k+1
(n+1)(k+1)-to-1 map from

NC(k)(n) onto NC(A)(n).

Proof. We �x p ∈ NC(A)(n). The shape λπ of a π ∈ NC(k)(n) satisfying

Red
(k)
n (π) = p is an element of the set Λn+1,k, and for each λ ∈ Λn+1,k, there

are exactly r(λ) non-crossing partitions of type k with reduction p and shape
λ. Hence there are

∑
λ∈Λn+1,k

r(λ) non-crossing partitions of type k with re-
duction p, and we know by Proposition 5.4.16 that this number does not de-
pend on p. It remains to prove that

∑
λ∈Λn+1,k

r(λ) = 1
(k+1)n+1C

k+1
(n+1)(k+1),

by counting the non-crossing partitions of type k with reduction 1[n]. The set
formed by these partitions is precisely the set NCn(k) of non-crossing parti-
tions of [(k+1)n] having blocks of size divisible by n. The latter set appears
in [BBCC07], where it is proved that its cardinal is 1

(k+1)n+1C
k+1
(n+1)(k+1).

We end this section by de�ning a subset of NC(k)(n) that will be used
in Section 5.5.

De�nition 5.4.20. We write NC
(k)
∗ (n) for the set of non-crossing partitions

of type k without non-simple blocks in their Kreweras complement.

Remark 5.4.21. In the shape of a non-crossing partition π ∈ NC(k)
∗ (n), the

coordinates corresponding to blocks of Kr(π) are zero ; there is therefore a
straightforward bijection between the set of shapes of non-crossing partitions

π ∈ NC(k)
∗ (n) satisfying Redkn(π) = p and the set Λ|p|,k. Notice also that,

given p ∈ NC(A)(n) and λ ∈ Λ|p|,k, there are exactly r(λ) non-crossing par-

titions π ∈ NC(k)
∗ (n) with reduction p and, with a small abuse of language,

shape λ.

Non-crossing partitions of type k give a combinatorial description of the
version of the boxed convolution with scalars in Ck, as explained in the next
section.

5.5 Boxed convolution of type k

As for type A and B, there is a boxed convolution operation associated to
the non-crossing partitions of type k. It is de�ned on formal power series
with coe�cients in Ck+1, as follows.
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De�nition 5.5.1. 1. We denote by Θ(k) the set of power series of the
form

f(z) =
∞∑
n=1

(α(0)
n , . . . , α(k)

n )zn,

where, for each n ≥ 1 and 0 ≤ i ≤ k, α(i)
n is a complex number.

2. Let f(z) =
∑∞

n=1(α(0)
n , . . . , α

(k)
n )zn and g(z) =

∑∞
n=1(β(0)

n , . . . , β
(k)
n )zn

be in Θ(k). For every m ≥ 1 and every 0 ≤ i ≤ k, consider the numbers

γ
(i)
m de�ned by

γ(i)
m =

∑
π∈NC(i)(m)

C
(λπ)1,...,(λπ)m+1

i

r(λπ)

|Red(i)
m (π)|∏
j=1

α
((λπ)j)

card(Sep(Red
(i)
m (π),j))

·

m+1∏
j=|Red(i)

m (π)|+1

β
((λπ)j)

card(Sep(Red
(i)
m (π)),j)

.

Then the series
∑∞

n=1(γ(0)
n , . . . , γ

(k)
n )zn is called the boxed convolution

of type k of f and g, and is denoted by f ?(k)g.

It turns out that, up to identifying the two sets Θ(k) and Θ(A)
Ck , the two

operations ?(k) and ?
(A)
Ck are actually the same, as stated in the next theorem.

Theorem 5.5.2. ?(k) =?(A)
Ck

Proof. Let

f(z) =
∞∑
n=1

(α(0)
n , . . . , α(k)

n )zn ∈ Θ(k)

and

g(z) =
∞∑
n=1

(β(0)
n , . . . , β(k)

n )zn ∈ Θ(k).

Write

f ?(k)g =
∑∞

n=1(γ(0)
n , . . . , γ

(k)
n )zn

and

f ?
(A)
Ck g =

∑∞
n=1(δ(0)

n , . . . , δ
(k)
n )zn.

We �x a positive integer n, for which we will show that

(γ(0)
n , . . . , γ(k)

n ) = (δ(0)
n , . . . , δ(k)

n ).
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Let us look at γ
(i)
n . First, we have

γ(i)
n =

∑
π∈NC(i)(n)

C
(λπ)1,...,(λπ)n+1

i

r(λπ)

|Red(i)
m (π)|∏
j=1

α
((λπ)j)

card(Sep(Red
(i)
m (π),j))

·

n+1∏
j=|Red(i)

m (π)|+1

β
((λπ)j)

card(Sep(Red
(i)
m (π)),j)

.

For every π ∈ NC(i)(n), 1 ≤ j ≤ n+ 1 and 0 ≤ λ ≤ k, we put p = Red
(i)
n (π)

and

θ(λ)(p, j) :=

{
α

(λ)
card(Sep(p,j)) if j ≤ |p|,
β

(λ)
card(Sep(p,j)) if j > |p|,

The summation over NC(i)(n) can be reduced to one over NC(A)(n), by
using the cover Red

(i)
n : NC(i)(n)→ NC(A)(n). When doing so, and taking

into account the explicit description of (Red(i)
n )−1(p), p ∈ NC(A)(n) provided

by the proof of Theorem 5.4.19, one gets

γ(i)
n =

∑
p∈NC(A)(n)

∑
λ∈Λn+1,i

C
λ1,...,λn+1

i

n+1∏
j=1

θ(λj)(p, j).

On the other hand, by recalling the de�nition of the operation ?
(A)
Ck , we see

that δ
(i)
n equals

∑
p∈NC(A)(n)

∑
λ∈Λn+1,i

C
λ1,...,λn+1

i

n+1∏
j=1

θ(λj)(p, j).

By comparing, we obtain (γ(0)
n , . . . , γ

(k)
n ) = (δ(0)

n , . . . , δ
(k)
n ), as desired.

Corollary 5.5.3. The operation ?(k) is associative, commutative and the

series ∆(k)(z) = ∆(A)
Ck (z) is its unit element. A series f ∈ Θ(k) is invertible

with respect to ?(k) if and only if its coe�cient of degree one has a non-zero
�rst component.

Remark 5.5.4. Theorem 5.5.2 tells us that the operation ?(k) is a boxed
convolution of type A, for which one may de�ne a generalization to power
series in several noncommuting indeterminates. This means that there exists
an operation ?(k) on power series in several noncommuting indeterminates.
We do not �nd interesting to record here the formulas involved in this oper-
ation.
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Non-crossing partitions of type k are thus the combinatorial objects de-
scribing the version of the boxed convolution of type A with scalars in the
algebra Ck.

It is now easy to rewrite the main formulas involving in�nitesimal non-
crossing cumulants with sums indexed by the set of non-crossing partitions
of type k. This is the content of the next proposition :

Proposition 5.5.5. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommutative
probability space of order k. The in�nitesimal non-crossing cumulant func-
tionals satisfy, for every n ≥ 1, every 0 ≤ i ≤ k and every a1, . . . , an ∈ A,

ϕ(i)(a1 · · · an) =
∑

π∈NC(i)
∗ (n)

C
(λπ)1,...,(λπ)|π|
i

r(λπ)
κ

(λπ)

Red
(i)
n (π)

(a1, . . . , an).

Proposition 5.5.6. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommuta-
tive probability space of order k. Consider subsets M1,M2 of A that are
in�nitesimally free of order k. Then, one has, for each n ≥ 1, each n-tuples
(a1, . . . , an) ∈Mn

1 , (b1, . . . , bn) ∈Mn
2 and each 0 ≤ i ≤ k :

κ(i)
n (a1b1, . . . , anbn) =

∑
π∈NC(i)(n)

C
(λπ)1,...,(λπ)n+1

i

r(λπ)
κ

(λπ)

Red
(i)
n (π∪Kr(π))

(a1, b1, . . . , an, bn).

We move to the main application of in�nitesimal freeness.

5.6 Application to derivatives of the free convolu-
tion

In this �nal section, we give an application of in�nitesimal freeness of order
k. We consider the situation already examined in [BS09] : let {avu(t) | 1 ≤
v ≤ mu}t∈T be s families of noncommutative random variables in a (usual)
noncommutative probability space (A, ϕ). These families are indexed by a
subset T of R having zero as an accumulation point, and we are interested
in the joint distribution µt of {avu(t) | 1 ≤ v ≤ mu, 1 ≤ u ≤ s} when t is
going to 0, in other words for in�nitesimal values of t. Recall that µt is the
linear functional on C〈Xv

u, 1 ≤ v ≤ mu, 1 ≤ u ≤ s〉 de�ned by :

µt(P ((Xv
u)1≤v≤mu,1≤u≤s)) = ϕ(P ((avu(t))1≤v≤mu,1≤u≤s)).

In what follows, we will consider a family {µt}t∈T of linear functionals on
C〈Xv

u, 1 ≤ v ≤ mu, 1 ≤ u ≤ s〉 without any further reference to the variables
{avu(t) | 1 ≤ v ≤ mu, 1 ≤ u ≤ s}t∈T . For each value of t ∈ T , one may obvi-
ously de�ne the non-crossing cumulant functionals ((κt)n : (C〈Xv

u, 1 ≤ v ≤
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mu, 1 ≤ u ≤ s〉)n → C)∞n=1 associated to the noncommutative probability
space (C〈Xv

u, 1 ≤ v ≤ mu, 1 ≤ u ≤ s〉, µt). A way to capture the behavior of
µt for in�nitesimal values of t is to introduce recursively its derivatives at 0
by :

µ(0) := lim
t→0

µt, (5.17)

µ(i)

i!
:= lim

t→0

1
ti

(µt −
i−1∑
j=0

tj

j!
µ(j)), 1 ≤ i ≤ k. (5.18)

We will assume that the limits in formulas (5.17) and (5.18) exist and use

the notation µ(i) = di

dti |t=0
µt. Notice that, in [BS09], only µ(0) and µ(1) were

studied. It follows from formulas (5.17) and (5.18) that

µt =
k∑
i=0

µ(i)

i!
ti + o(tk).

Notice that (µ(i))0≤i≤k is an in�nitesimal law (of order k) on
∑s

u=1mu vari-
ables and therefore (C〈Xv

u, 1 ≤ v ≤ mu, 1 ≤ u ≤ s〉, (µ(i))0≤i≤k) is an
in�nitesimal noncommutative probability space of order k. Associated to
this in�nitesimal noncommutative probability space of order k, we have in-

�nitesimal non-crossing cumulant functionals (κ(i)
n : An → C, 0 ≤ i ≤ k)∞n=1,

as de�ned by formula (5.7). These in�nitesimal cumulant functionals are
linked to ((κt)n)∞n=1 as follows :

Proposition 5.6.1. For every n ≥ 1 and 0 ≤ i ≤ k,

κ(i)
n =

di

dti |t=0
(κt)n.

Proof. By the inverse of the free moment-cumulant formula, one has

∀t ∈ K, (κt)n =
∑

p∈NC(A)(n)

Möb(A)(p, 1n)(µt)p. (5.19)

By the assumption made above, the right-hand side of formula (5.19) has

k derivatives at 0, hence di

dti |t=0
(κt)n is well-de�ned and, using linearity of

derivation and Leibniz rule, one obtains :

di

dti |t=0
(κt)n =

∑
p∈NC(A)(n)
p:={V1,...,Vh}

∑
λ∈Λh,i

Möb(A)(p, 1n)Cλ1,...,λh
i µ(λ)

p .

One recognizes in the right-hand side above the right-hand side of formula
(5.9), and we are done.
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This proposition will be the main tool to characterize in�nitesimal free-
ness of order k in terms of moments in Theorem 5.6.3. We �rst give a recipe
to deduce the in�nitesimal behaviour of the free convolution of two families
of distributions from their individual in�nitesimal behaviours.

Proposition 5.6.2. Let {µt}t∈K (resp. {νt}t∈K) be a family of linear func-
tionals on C〈Xu, 1 ≤ u ≤ m〉 (resp C〈Yu, 1 ≤ u ≤ m〉) such that µ(i) =
di

dti |t=0
µt (resp. ν

(i) = di

dti |t=0
νt) exist for 0 ≤ i ≤ k. Set :

(η(i))0≤i≤k := (µ(i))0≤i≤k �
(k) (ν(i))0≤i≤k,

(θ(i))0≤i≤k := (µ(i))0≤i≤k �
(k) (ν(i))0≤i≤k.

Then η(i) = di

dti
|t=0 µt � νt and θ(i) = di

dti
|t=0 µt � νt.

Proof. For each t ∈ K, we consider the free product

(C〈Xu, Yu, 1 ≤ u ≤ m〉, µt ? νt).

Since di

dti |t=0
µt and

di

dti |t=0
νt exist by assumption for each 0 ≤ i ≤ k, we ob-

tain the existence of di

dti |t=0
(µt ? νt) for each 0 ≤ i ≤ k and these functionals

are completely determined by the µ(i)'s and the ν(i)'s. In the in�nitesi-
mal noncommutative probability space (C〈Xu, Yu, 1 ≤ u ≤ m〉, ( di

dti |t=0
(µt ?

νt))0≤i≤k), the unital subalgebras A1 = C〈Xu, 1 ≤ u ≤ m〉 and A2 =
C〈Yu, 1 ≤ u ≤ m〉 are in�nitesimally free of order k : indeed, if n ≥ 1, 0 ≤
i ≤ k and P1 ∈ Ai1 , . . . , Pn ∈ Ain are such that i1, . . . , in are not all equal,
then

κ(i)
n (P1, . . . , Pl) =

di

dti |t=0
(κt)n(P1, . . . , Pl),

where (κt)n is the n-th non-crossing cumulant functional in the noncom-
mutative probability space (C〈Xu, Yu, 1 ≤ u ≤ m〉, µt ? νt), by Proposi-
tion 5.6.1. But it follows from the construction of the free product that

(κt)n(P1, . . . , Pl) = 0 for each t ∈ K. In particular κ
(i)
n (P1, . . . , Pl) = 0.

The in�nitesimal distribution of the m-tuple (X1 + Y1, . . . , Xm + Ym) (resp.
(X1 · Y1, . . . , Xm · Ym)) is, on the one hand ( d

i

dti |t=0
(µt � νt))0≤i≤k (resp.

( d
i

dti |t=0
(µt�νt))0≤i≤k) by construction of the free product and, on the other

hand, (η(i))0≤i≤k (resp. (θ(i))0≤i≤k) by the argument above.

We conclude by a characterization of in�nitesimal freeness of order k in
terms of moments. Its formulation and proof rely on the Proposition 5.6.1.

Theorem 5.6.3. Let (A, (ϕ(i))0≤i≤k) be an in�nitesimal noncommutative
probability space of order k, and A1, . . . ,An be unital subalgebras of A. Then
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A1, . . . ,An are in�nitesimally free of order k if and only if for any positive
integer l ∈ N∗, and any a1 ∈ Ai1 , . . . , al ∈ Ail , one has

ϕt((a1 − ϕt(a1)) · · · (al − ϕt(al))) = o(tk), (5.20)

whenever i1 6= . . . 6= il, where ϕt :=
∑k

i=0
ϕ(i)

i! t
i. The condition (5.20)

translates into k + 1 requirements :

∀i ∈ {0, . . . , k},
i∑

j=0

∑
λ∈Λl,i−j

(−1)#{m≥1,λm>0}µ(j)(µ̂(λ1)(P1) · · · µ̂(λl)(Pl)) = 0,

(5.21)
where µ̂(λ)(P ) := P − µ(0)(P ) if λ = 0, and µ̂(λ)(P ) := µ(λ)(P ) else.

Proof. We assume that condition (5.20) holds and prove that A1, . . . ,An sat-
isfy the vanishing of mixed in�nitesimal cumulants condition. Using Propo-
sition 5.6.1, it is equivalent to prove that for l ≥ 2, and a1 ∈ Ai1 , . . . , al ∈ Ail

(κt)l(a1, . . . , al) = o(tk) (5.22)

whenever ∃r 6= s, ir 6= is, where (κt)l is the l-th non-crossing cumulant
functional in (A, ϕt).
We proceed by induction on l ≥ 2.
It is easy to see that

(κt)2(a1, a2) = ϕt((a1 − ϕt(a1))((a2 − ϕt(a2)). (5.23)

If a1 ∈ Ai1 , a2 ∈ Ai2 with i1 6= i2, the right-hand side of (5.23) is o(tk)
by assumption. We assume then that the vanishing of mixed in�nitesimal
cumulants is proved for 2, 3, . . . , l−1 variables, and consider (κt)l(a1, . . . , al)
with a1 ∈ Ai1 , . . . , al ∈ Ail such that ∃r 6= s, ir 6= is. By Propositions 5.2.4,
5.2.5 and the induction hypothesis, we may assume that ϕt(a1) = . . . =
ϕt(al) = 0 and i1 6= . . . 6= il. Write then the free moment-cumulant formula:

∀t ∈ K,ϕt(a1 · · · al)−
∑

p∈NC(A)(l)
p 6=1l

(κt)p(a1, . . . , al) = (κt)l(a1, . . . , al).

By assumption, (ϕt)(a1 · · · al) = o(tk). Any non-crossing partition p 6= 1l
owns an interval-block V0, as noticed in Section 3. If V0 is a singleton,

(κt)p(a1, . . . , al) = (ϕt)|V0|((a1, . . . , al) | V0)
∏
V 6=V0

(κt)|V |((a1, . . . , al) | V )

= 0.

Otherwise, V0 contains two following, hence distinct, indices, and, by induc-
tion hypothesis,

(κt)|V0|((a1, . . . , al) | V0) = o(tk).
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Since, for each V ∈ bl(p), (κt)|V |((a1, . . . , al) | V ) is bounded in a neighbor-
hood of 0, one may a�rm that

(κt)p(a1, . . . , al) = o(tk).

We conclude that
(κt)l(a1, . . . , al) = o(tk),

as required.
For the converse, we assume that the vanishing of mixed in�nitesimal cumu-
lants is satis�ed, or equivalently that equation (5.22) holds. We write then
the free moment-cumulant formula :

∀t ∈ K, (ϕt)(a1 − ϕt(a1) · · · al − ϕt(al)) = (5.24)∑
p∈NC(A)(l)

(κt)p(a1 − ϕt(a1), . . . , al − ϕt(al)). (5.25)

If a1 ∈ Ai1 , . . . , al ∈ Ail with i1 6= . . . 6= in, the same argument as above
gives that (5.25) is o(tk). This concludes the proof.
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Chapter 6

Eigenvalues of spiked

deformations of Wigner

matrices

This chapter is the text of the paper �Free convolution with a semi-circular
distribution and eigenvalues of spiked deformations of Wigner matrices�,
written in collaboration with M. Capitaine, C. Donati-Martin and Délphine
Féral [CDFF10], and submitted for publication.

In this chapter, we consider the following general deformed Wigner model
MN = 1√

N
WN +AN such that :

• WN is a complex Wigner matrix of size N associated to a symmet-
ric distribution µ of variance σ2 satisfying a Poincaré inequality (see
De�nition 1.4.1).

• AN is a deterministic Hermitian matrix whose eigenvalues γ
(N)
i , de-

noted for simplicity by γi, are such that the spectral measure µAN :=
1
N

∑N
i=1 δγi converges to some probability measure ν with compact sup-

port. We assume that there exists a �xed integer r ≥ 0 (independent
from N) such that AN has N − r eigenvalues βj(N) satisfying

max
1≤j≤N−r

dist(βj(N), supp(ν)) →
N→∞

0,

where supp(ν) denotes the support of ν. We also assume that there
are J �xed real numbers θ1 > . . . > θJ independent of N which are
outside the support of ν and such that each θj is an eigenvalue of AN
with a �xed multiplicity kj (with

∑J
j=1 kj = r). The θj 's will be called

the spikes or the spiked eigenvalues of AN .

137
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Throughout this chapter, we will use the following notations.

- GN denotes the resolvent of MN

- gN denotes the mean of the Stieltjes transform of the spectral measure
of MN , that is

gN (z) = E(trGN (z)), z ∈ C \ R

- µσ denotes the semicircle distribution of parameter σ de�ned by (1.1).

- g̃N denotes the Stieltjes transform of the probability measure µσ�µAN .

- When we state that some quantity ∆N (z), z ∈ C \ R, is O( 1
Np ), this

means precisely that:

|∆N (z)| ≤ (|z|+K)a
P (|=z|−1)

Np

for some K ≥ 0, a > 0 and some polynomial P with nonnegative
coe�cients.

- For any set S in R, we denote the set {x ∈ R, dist(x, S) ≤ ε} (resp.
{x ∈ R, dist(x, S) < ε}) by S + [−ε,+ε] (resp. S + (−ε,+ε)).

We recall some useful properties of the resolvent (see [KKP96], [CDM07]).

Lemma 6.0.4. For a N × N Hermitian or symmetric matrix M , for any
z ∈ C \ Spect(M), we denote by G(z) := (zIN −M)−1 the resolvent of M .
Let z ∈ C \ R,

(i) ‖G(z)‖ ≤ |=z|−1 where ‖.‖ denotes the operator norm.

(ii) |G(z)ij | ≤ |=z|−1 for all i, j = 1, . . . , N .

(iii) For p ≥ 2,
1
N

N∑
i,j=1

|G(z)ij |p ≤ (|=z|−1)p. (6.1)

(iv) The derivative with respect to M of the resolvent G(z) satis�es:

G′M (z).B = G(z)BG(z) for any matrix B.

(v) Let z ∈ C such that |z| > ‖M‖; we have

‖G(z)‖ ≤ 1
|z| − ‖M‖

.
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6.1 Free convolution by a semicircular distribution

In [Bia97a], P. Biane provides a deep study of the free convolution by a
semicircular distribution. We �rst recall here some of his results that will be
useful in our approach.
Let ν be a probability measure on R. P. Biane [Bia97a] introduces the set

Ωσ,ν := {u+ iv ∈ C+, v > vσ,ν(u)},

where the function vσ,ν : R→ R+ is de�ned by

vσ,ν(u) = inf
{
v ≥ 0,

∫
R

dν(x)
(u− x)2 + v2

≤ 1
σ2

}
and proves the following

Proposition 6.1.1. [Bia97a] The map

Hσ,ν : z 7−→ z + σ2Gν(z)

is a homeomorphism from Ωσ,ν to C+∪R which is conformal from Ωσ,ν onto
C+. Let Fσ,ν : C+ ∪ R→ Ωσ,ν be the inverse function of Hσ,ν . One has,

∀z ∈ C+, Gµσ�ν(z) = Gν(Fσ,ν(z))

and then
Fσ,ν(z) = z − σ2Gµσ�ν(z). (6.2)

Note that in particular the Stieltjes transform g̃N of µσ � µAN satis�es

∀z ∈ C+, g̃N (z) = GµAN (z − σ2g̃N (z)). (6.3)

Considering Hσ,ν as an analytic map de�ned in the whole upper half-plane
C+, P. Biane identi�es Ωσ,ν as the connected component of the set H−1

σ,ν(C+)
which contains iy for large y. In fact, it is proved in [BB05] that Ωσ,ν =
H−1
σ,ν(C+), or equivalently, that H−1

σ,ν(C+) is connected. We give here an-
other proof of this result in the particular case of the free convolution by a
semicircular distribution:

Proposition 6.1.2.

Ωσ,ν = H−1
σ,ν(C+).

Proof of Proposition 6.1.2: It is clear from the discussion above that Ωσ,ν

is included in H−1
σ,ν(C+).

Fix u+ iv ∈ H−1
σ,ν(C+) ; we have to prove that v > vσ,ν(u).

Since u+ iv ∈ H−1
σ,ν(C+), we have:

=Hσ,ν(u+ iv) = v(1− σ2

∫
R

dν(x)
(u− x)2 + v2

) > 0.
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This, together with v > 0, implies∫
R

dν(x)
(u− x)2 + v2

<
1
σ2

and consequently v ≥ vσ,ν(u). If we assume that v = vσ,ν(u), then vσ,ν(u) >
0 and �nally ∫

R

dν(x)
(u− x)2 + v2

=
1
σ2

by Lemma 2 in [Bia97a]. This is a contradiction : necessarily v > vσ,ν(u) or,
in other words, u+ iv ∈ Ωσ,ν and we are done. �

The previous results of P. Biane allow him to conclude that µσ � ν is abso-
lutely continuous with respect to the Lebesgue measure and to obtain the
following description of the support.

Theorem 6.1.3. [Bia97a] De�ne Ψσ,ν : R→ R by:

Ψσ,ν(u) = Hσ,ν(u+ ivσ,ν(u)) = u+ σ2

∫
R

(u− x)dν(x)
(u− x)2 + vσ(u)2

.

Ψσ,ν is a homeomorphism and, at the point Ψσ,ν(u), the measure µσ � ν has
a density given by

pσ,ν(Ψσ,ν(u)) =
vσ,ν(u)
πσ2

.

De�ne the set

Uσ,ν :=
{
u ∈ R,

∫
R

dν(x)
(u− x)2

>
1
σ2

}
= {u ∈ R, vσ,ν(u) > 0} .

The support of the measure µσ�ν is the image of the closure of the open set
Uσ,ν by the homeomorphism Ψσ,ν . Ψσ,ν is strictly increasing on Uσ,ν .

Hence,

R \ supp(µσ � ν) = Ψσ,ν(R \ Uσ,ν).

One has Ψσ,ν = Hσ,ν on R \ Uσ,ν and Ψ−1
σ,ν = Fσ,ν on R \ supp(µσ � ν).

In particular, we have the following description of the complement of the
support:

R \ supp(µσ � ν) = Hσ,ν(R \ Uσ,ν). (6.4)

Let ν be a compactly supported probability measure. We are going to
establish a characterization of the complement of the support of µσ � ν
involving the support of ν and Hσ,ν . We will need the following preliminary
lemma.

Lemma 6.1.4. The support of ν is included in Uσ,ν .
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Proof of Lemma 6.1.4: Let x0 be in R \ Uσ,ν . Then, there is some ε > 0
such that [x0 − ε, x0 + ε] ⊂ R \ Uσ,ν . For any integer n ≥ 1, we de�ne
αk = x0 − ε + 2kε/n for all 0 ≤ k ≤ n. Then, as the sets [αk, αk+1] are
trivially contained in R \ Uσ,ν , one has that:

∀u ∈ [αk, αk+1],
1
σ2
≥
∫ αk+1

αk

dν(x)
(u− x)2

≥ ν([αk, αk+1])
(αk+1 − αk)2

.

This readily implies that

ν([x0 − ε, x0 + ε]) ≤
n−1∑
k=0

ν([αk, αk+1]) ≤ (2ε)2

σ2n
.

Letting n → ∞, we get that ν([x0 − ε, x0 + ε]) = 0, which implies that
x0 ∈ R \ supp(ν). �

From the continuity and strict convexity of the function u 7→
∫

R
dν(x)

(u−x)2

on R \ supp(ν), it follows that

Uσ,ν = supp(ν) ∪ {u ∈ R \ supp(ν),
∫

R

dν(x)
(u− x)2

≥ 1
σ2
} (6.5)

and

R \ Uσ,ν = {u ∈ R \ supp(ν),
∫

R

dν(x)
(u− x)2

<
1
σ2
}.

Now, asHσ,ν is analytic on R\supp(ν), the following characterization readily
follows:

R \ Uσ,ν = {u ∈ R \ supp(ν), H ′σ,ν(u) > 0}.

and thus, according to (6.4), we get

Proposition 6.1.5.

x ∈ R\supp(µσ�ν)⇔ ∃u ∈ R\supp(ν) such that x = Hσ,ν(u), H ′σ,ν(u) > 0.

Remark 6.1.6. Note that Hσ,ν is strictly increasing on R \ Uσ,ν since, if
a < b are in R \ supp(ν), one has, by Cauchy-Schwarz inequality, that

Hσ,ν(b)−Hσ,ν(a) = (b− a)
[
1− σ2

∫
R

dν(x)
(a− x)(b− x)

]
≥ (b− a)

[
1− σ2

√
(−g′ν(a))(−g′ν(b))

]
.

which is nonnegative if a and b belong to R \ Uσ,ν .

Remark 6.1.7. Each connected component of Uσ,ν contains at least one
connected component of supp(ν).
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Indeed, let [sl, tl] be a connected component of Uσ,ν . If sl or tl is in
supp(ν), [sl, tl] contains at least a connected component of supp(ν) since
supp(ν) is included in Uσ,ν . Now, if neither sl nor tl is in supp(ν), according
to (6.5), we have ∫

R

dν(x)
(sl − x)2

=
∫

R

dν(x)
(tl − x)2

=
1
σ2
.

Assume that [sl, tl] ⊂ R \ supp(ν), then, by strict convexity of the function

u 7−→
∫

R
dν(x)

(u−x)2 on R \ supp(ν), one obtains that, for any u ∈]sl, tl[,∫
R

dν(x)
(u− x)2

<
1
σ2
,

which leads to a contradiction. �

Remark 6.1.8. One can readily see that

Uσ,ν ⊂ {u,dist(u, supp(ν)) ≤ σ}

and deduce, since supp(ν) is compact, that Uσ,ν is a relatively compact open
set. Hence, Uσ,ν has a �nite number of connected components and may be
written as the following �nite disjoint union

Uσ,ν =
1⋃

l=m

[
sl, tl

]
with sm < tm < . . . < s1 < t1. (6.6)

We close this section with a proposition pointing out a relationship be-
tween the distribution functions of ν and µσ � ν.

Proposition 6.1.9. Let [sl, tl] be a connected component of Uσ,ν , then

(µσ � ν)([Ψσ,ν(sl),Ψσ,ν(tl)]) = ν([sl, tl]).

Proof of Proposition 6.1.9: Let ]a, b[ be a connected component of Uσ,ν .
Since a and b are not atoms of ν and µσ � ν is absolutely continuous, it is
enough to show

(µσ � ν)([Ψσ,ν(a),Ψσ,ν(b)]) = ν([a, b]).

From Cauchy's inversion formula, µσ � ν has a density given by pσ(x) =
− 1
π=(Gν(Fν,σ(x)) and

(µσ � ν)([Ψσ,ν(a),Ψσ,ν(b)]) = − 1
π
=

(∫ Ψσ,ν(b)

Ψσ,ν(a)
Gν(Fν,σ(x))dx

)
.
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We set z = Fσ,ν(x), then x = Hσ,ν(z) and z = u + ivσ,ν(u). Note that
vσ,ν(u) > 0 for u ∈]a, b[ and vσ,ν(a) = vσ,ν(b) = 0 (see [Bia97a]). Then,

(µσ � ν)([Ψσ,ν(a),Ψσ,ν(b)])

= − 1
π
=
(∫ b

a
Gν(u+ ivσ,ν(u))H ′σ,ν(u+ ivσ,ν(u))(1 + iv′σ,ν(u))du

)
= − 1

π
=
(∫ b

a
Gν(u+ ivσ,ν(u))(1 + σ2G′ν(u+ ivσ,ν(u)))(1 + iv′σ,ν(u))du

)
= − 1

π
=
(∫ b

a
Gν(u+ ivσ,ν(u))(1 + iv′σ,ν(u))du+

σ2

2
[G2

ν(u+ ivσ,ν(u))]ba

)
= − 1

π
=
∫ b

a
Gν(u+ ivσ,ν(u))(1 + iv′σ,ν(u))du = − 1

π
=
∫
γ
Gν(z)dz,

where

γ = {z = u+ ivσ,ν(u), u ∈ [a, b]}.

Now, we recall that, since a and b are points of continuity of the distri-
bution function of ν,

ν([a, b]) = lim
ε→0
− 1
π
=
(∫ b

a
Gν(u+ iε)du

)
= lim

ε→0
− 1
π
=
(∫

γε

Gν(z)dz
)
,

where γε = {z = u+ iε, u ∈ [a, b]}. Thus, it remains to prove that:

lim
ε→0

(
=
(∫

γ
Gν(z)dz

)
−=

(∫
γε

Gν(z)dz
))

= 0. (6.7)

Let ε > 0 such that ε < sup[a,b] vσ,ν(u). We introduce the contour

γ̂ε = {z = u+ i(vσ,ν(u) ∧ ε), u ∈ [a, b]}.

From the analyticity of Gν on C+, we have∫
γ
Gν(z)dz =

∫
γ̂ε

Gν(z)dz.

Let Iε = {u ∈ [a, b], vσ,ν(u) < ε} = ∪Ci(ε), where Ci(ε) are the connected
components of Iε. Then, Iε ↓ε→0 {a, b}. For u ∈ Iε,

|=Gν(u+ iε)| = ε

∫
dν(x)

(u− x)2 + ε2
≤ ε

∫
dν(x)

(u− x)2 + v2
σ,ν(u)

≤ ε

σ2

and ∫
Iε

|=Gν(u+ iε)|du ≤ ε

σ2
(b− a).
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On the other hand, for u ∈ Iε,

|=Gν(u+ ivσ,ν(u))| = vσ,ν(u)
∫

dν(x)
(u− x)2 + vσ,ν(u)2

≤ ε

σ2
.

Moreover,

<Gν(u+ ivσ,ν(u))v′σ,ν(u) =
Ψσ,ν(u)− u

σ2
v′σ,ν(u)

and∫
Iε

<Gν(u+ ivσ,ν(u))v′σ,ν(u)du =
∫
Iε

Ψσ,ν(u)− u
σ2

v′σ,ν(u)du

=
1
σ2

∑
i

[(Ψσ,ν(u)− u)vσ,ν(u)]Ci(ε)

− 1
σ2

∫
Iε

(Ψ′σ,ν(u)− 1)vσ,ν(u)du,

by integration by parts. Now (see [Bia97a] or Theorem 6.1.3),∫
Iε

Ψ′σ,ν(u)vσ,ν(u)du = πσ2(µσ � ν)(Ψσ,ν(Iε)) →
ε→0

0.

∫
Iε

vσ,ν(u)du ≤ ε(b− a).

Since Ψσ,ν is increasing on [a, b],∑
i

[Ψσ,ν(u)vσ,ν(u)]Ci(ε) ≤ ε(Ψσ,ν(b)−Ψσ,ν(a))

and ∑
i

[uvσ,ν(u)]Ci(ε) ≤ ε(b− a).

The above inequalities imply (6.7). �

6.2 Approximate subordination equation for gN

We look for an approximative equation for gN (z) of the form (6.3). To es-
timate gN (z), we �rst handle the simplest case where WN is a GUE matrix
and then see how the equation is modi�ed in the general Wigner case. We
shall rely on an integration by parts formula. The �rst integration by parts
formula concerns the Gaussian case; the distribution µ associated to WN is
a centered Gaussian distribution with variance σ2 and the resulting distribu-
tion of XN = WN/

√
N is denoted by GUE(N, σ2/N). Then, the integration

by parts formula can be expressed in a matricial form.
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Lemma 6.2.1. Let Φ be a complex-valued C1 function on (MN (C)sa) and

XN ∼ GUE(N, σ
2

N ). Then,

E[Φ′(XN ).H] =
N

σ2
E[Φ(XN )Tr(XNH)], (6.8)

for any Hermitian matrix H, or by linearity for H = Ejk, 1 ≤ j, k ≤ N ,
where (Ejk)1≤j,k≤N is the canonical basis of the complex space of N × N
matrices.

For a general distribution µ, we shall use an �approximative" integration
by parts formula, applied to the variable ξ =

√
2<((XN )kl) or

√
2=((XN )kl),

k < l, or (XN )kk. Note that for k < l the derivative of Φ(XN ) with respect to√
2<((XN )kl) (resp.

√
2=((XN )kl)) is Φ′(XN ).ekl (resp. Φ′(XN ).fkl), where

ekl = 1√
2
(Ekl+Elk) (resp. fkl = i√

2
(Ekl−Elk)) and for any k, the derivative

of Φ(XN ) with respect to (XN )kk is Φ′(XN ).Ekk.

Lemma 6.2.2. Let ξ be a real-valued random variable such that E(|ξ|p+2) <
∞. Let φ be a function from R to C such that the �rst p+ 1 derivatives are
continuous and bounded. Then,

E(ξφ(ξ)) =
p∑
a=0

κa+1

a!
E(φ(a)(ξ)) + ε, (6.9)

where κa are the cumulants of ξ, |ε| ≤ C supt |φ(p+1)(t)|E(|ξ|p+2), C only
depends on p.

Let U be a unitary matrix such that

AN = U∗diag(γ1, . . . , γN )U

and let G stand for GN (z). Consider G̃ = UGU∗. We describe the approach
in the Gaussian case and present the corresponding results in the general
Wigner case but detail some technical proofs in the Appendix.

a) Gaussian case: We apply (6.8) to Φ(XN ) = Gjl , H = Eil, 1 ≤
i, j, l ≤ N , and then take 1

N

∑
l to obtain, using the resolvent equation

GXN = −I + zG−GAN (see [CDMF09]),

Zji := σ2E[Gjitr(G)] + δij − zE(Gji) + E[(GAN )ji] = 0.

Now, let 1 ≤ k, p ≤ N and consider the sum
∑

i,j U
∗
ikUpjZji. We obtain from

the previous equation

σ2E[G̃pktr(G)] + δpk − zE(G̃pk) + γkE[G̃pk] = 0. (6.10)

Hence, using Lemma 6.8.2 in the Appendix stating that

|E[G̃pktr(G)]− E[G̃pk]E[tr(G)]| = O(
1
N2

),
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we �nally get the following estimation

E(G̃pk) =
δpk

(z − σ2gN (z)− γk)
+O(

1
N2

), (6.11)

where we use that | 1
z−σ2gN (z)−γi | ≤ |=z|

−1, and then

gN (z) =
1
N

N∑
k=1

E[G̃kk] =
1
N

N∑
i=1

1
z − σ2gN (z)− γk

+O(
1
N2

)

=
∫

R

1
z − σ2gN (z)− x

dµAN (x) +O(
1
N2

)

= GµAN (z − σ2gN (z)) +O(
1
N2

).

In the Gaussian case, we have thus proved:

Proposition 6.2.3. For z ∈ C+, gN (z) satis�es:

gN (z) = GµAN (z − σ2gN (z)) +
P (|=z|−1)

N2
. (6.12)

b) Non-Gaussian case: In this case, the integration by parts formula
gives the following generalization of (6.11):

Lemma 6.2.4.

E(G̃pk) =
δpk

(z − σ2gN (z)− γk)
+

κ4

2N2

E[Ã(p, k)]
(z − σ2gN (z)− γk)

+O(
1
N2

), (6.13)

where

Ã(p, k) =
∑
i,j

U∗ikUpj

{∑
l

GjlG
3
il +

∑
l

GjiGilGliGll (6.14)

+
∑
l

GjlGiiGliGll +
∑
l

GjiGiiG
2
ll

}

and 1
N2 Ã(p, k) ≤ C |=z|

−4

N .

Proof Lemma 6.2.4 readily follows from (6.72), Lemma 6.8.2 and (6.71)
established in the Appendix. �

Thus,

gN (z) =
1
N

N∑
k=1

E[G̃kk] =
1
N

N∑
k=1

1
z − σ2gN (z)− γk

+
κ4

2N3

N∑
k=1

E[Ã(k, k)]
z − σ2gN (z)− γk

+O(
1
N2

).
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Let us show that the �rst three terms in 1
N

∑
k E[Ã(k, k)]/(z−σ2gN (z)−γk)

coming from the decomposition (6.14) are bounded and thus give a O( 1
N2 )

contribution in gN (z). We denote by GD the diagonal matrix with k-th
diagonal entry equal to 1

z−σ2gN (z)−γk
.∣∣∣∣∣∣

∑
i,j,k

U∗ikUkj
1

z − σ2gN (z)− γk
E[
∑
l

GjlG
3
il]

∣∣∣∣∣∣ =

∣∣∣∣∣∣E[
∑
i,l

(U∗GDUG)ilG3
il]

∣∣∣∣∣∣
≤ |=z|−2E[

∑
i,l

|G3
il|]

≤ |=z|−5N,

using Lemma 6.0.4. The second term is of the same kind. For the third
term, we obtain

|
∑
i

(U∗GDUG2G(d))iiGii| ≤ |=z|−5N

where G(d) is the diagonal matrix with l-th diagonal entry equal to Gll.
It follows that

gN (z) = GµAN (z − σ2gN (z)) +
1
N
L̂N (z) +O(

1
N2

),

where

L̂N (z) =
κ4

2N2

∑
i,j,k,l

U∗ikUkj
1

z − σ2gN (z)− γk
E[GjiGiiG2

ll]. (6.15)

It is easy to see that L̂N (z) is bounded by C|=z|−5.

Proposition 6.2.5. L̂N de�ned by (6.15) can be written as

L̂N (z) = LN (z) +O(
1
N

), where LN (z) =

κ4

2N2

∑
i,l

[(GAN (z−σ2gN (z)))2]ii[GAN (z−σ2gN (z))]ii([GAN (z−σ2gN (z))]ll)2.

(6.16)

Proof of Proposition 6.2.5:

Step 1: We �rst show that for 1 ≤ a, b ≤ N ,

E[Gab] = [GAN (z − σ2gN (z))]ab +O(
1
N

). (6.17)

From Lemma 6.2.4, for any 1 ≤ p, k ≤ N ,

E[G̃pk] =
δpk

(z − σ2gN (z)− γk)
+

κ4

2N2

E[Ã(p, k)]
(z − σ2gN (z)− γk)

+O(
1
N2

).
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Let 1 ≤ a, b ≤ N ,

E[Gab] =
∑
p,k

U∗apE[G̃pk]Ukb

=
∑
k

U∗ak
1

(z − σ2gN (z)− γk)
Ukb

+
κ4

2N2

∑
p,k

U∗ap
E[Ã(p, k)]

(z − σ2gN (z)− γk)
Ukb

+ O(
1
N

),

since
∑

p,k |U∗apUkb| ≤ N . The �rst term in the right-hand side of the above

equation is equal to [GAN (z−σ2gN (z))]ab. It remains to show that the term
involving E[Ã(p, k)] is of order 1

N . Let us consider the �worst term" in the

decomposition (6.14) of Ã(p, k), namely the last one.

1
2N2

∑
p,k,i,j,l

U∗ap
1

(z − σ2gN (z)− γk)
UkbU

∗
ikUpjE[GjiGiiG2

ll]

=
1

2N2
E[
∑
k,i,l

1
(z − σ2gN (z)− γk)

UkbU
∗
ikGaiGiiG

2
ll]

=
1

2N2
E[
∑
i,l

(U∗GDU)ibGaiGiiG2
ll]

=
1

2N2
E[
∑
l

(GG(d)U∗GDU)abG2
ll] ≤

1
2N
|=z|−5.

Step 2: L̂N de�ned by (6.15) can be written as

κ4

2N2

∑
i,l

E[(U∗GDUG)iiGiiG2
ll].

First notice the following bound (see Appendix)

E[(U∗GDUG)iiGiiG2
ll]− E[(U∗GDUG)ii]E[Gii]E[Gll]2 = O(

1
N

). (6.18)

Thus,

L̂N (z) =
κ4

2N2

∑
i,l

E[(U∗GDUG)ii]E[Gii]E[Gll]2 +O(
1
N

).

Now, note that E[(U∗GDUG)ii] = E[(U∗GDG̃U)ii] and, according to Lemma
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6.2.4,

E[(U∗GDG̃U)ii] =
∑
p,k

(U∗GD)ipE[G̃pk]Uki

= (U∗G2
DU)ii +

κ4

2N2

∑
p,k

(U∗GD)ipE[Ã(p, k)](GDU)ki

+
∑
p,k

(U∗GD)ipOpk(
1
N2

)Uki.

Thus
κ4

2N2

∑
i,l E[(U∗GDUG)ii]E[Gii]E[Gll]2

=
κ4

2N2

∑
i,l

[(GAN (z − σ2gN (z)))2]iiE[Gii]E[Gll]2 (6.19)

+
κ2

4

4N4

∑
i,l,p,k

(U∗GD)ipE[Ã(p, k)](GDU)kiE[Gii]E[Gll]2 (6.20)

+
1
N2

∑
i,l,p,k

(U∗GD)ipOpk(
1
N2

)UkiE[Gii]E[Gll]2. (6.21)

The last term (6.21) can be rewritten as

1
N2

∑
l,p,k

(UE[G(d)]U∗GD)kpOpk(
1
N2

)E[Gll]2,

so that one can easily see that it is a O( 1
N ).

The second term (6.20) can be rewritten as
κ2

4
4N4

∑
t,l,s E[Gll]2

×
{

[U∗GDUE[G(d)]U∗GDUG]ts[G3
ts +GttGstGss]

+[U∗GDUE[G(d)]U∗GDUG]tt[GtsGstGss +GttG
2
ss]
}
,

which is obviously a O( 1
N ).

Hence, Proposition 6.2.5 follows by rewriting the �rst term (6.19) using
(6.17). �

From the above computations, we can state the following :

Proposition 6.2.6. For z ∈ C+, gN (z) satis�es:

gN (z) = GµAN (z − σ2gN (z)) +
1
N
LN (z) +

P (|=z|−1)
N2

(6.22)

where LN (z) is given by (6.16).
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6.3 Estimation of gN − g̃N
Proposition 6.3.1. For z ∈ C+,

gN (z)− g̃N (z) +
ẼN (z)
N

= O(
1
N2

), (6.23)

where ẼN (z) is given by

ẼN (z) = {σ2g̃′N (z)− 1}L̃N (z) (6.24)

with L̃N (z) =
κ4

2N2

∑
i,l

[(GAN (z−σ2g̃N (z)))2]ii[GAN (z−σ2g̃N (z))]ii([GAN (z−σ2g̃N (z))]ll)2.

(6.25)

Proof of proposition 6.3.1: First, we are going to prove that for z ∈ C+,

gN (z)− g̃N (z) +
EN (z)
N

= O(
1
N2

), (6.26)

where EN (z) is given by

EN (z) = {σ2g̃′N (z)− 1}LN (z). (6.27)

For a �xed z ∈ C+, one may write the subordination equation (6.3) :

g̃N (z) = GµAN (Fσ,µAN (z)) = GµAN (z − σ2g̃N (z)),

and the approximative matricial subordination equation (6.22) :

gN (z) = GµAN (z − σ2gN (z)) +
1
N
LN (z) +

P (|=z|−1)
N2

.

The main idea is to simplify the di�erence gN (z) − g̃N (z) by introducing a
complex number z′ likely to satisfy

Fσ,µAN (z′) = z − σ2gN (z). (6.28)

We know by Proposition 6.1.1 that Fσ,µAN is a homeomorphism from C+

to Ωσ,µAN
whose inverse Hσ,µAN

has an analytic continuation to the whole

upper half-plane C+. Since z − σ2gN (z) ∈ C+, z′ ∈ C is well-de�ned by the
formula :

z′ := Hσ,µAN
(z − σ2gN (z)).

One has

z′ − z = −σ2(gN (z)−GµAN (z − σ2gN (z)))

= −σ2LN (z)
N

+O(
1
N2

)

= O(
1
N

)
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There exists thus a polynomial P with nonnegative coe�cients such that

|z′ − z| ≤ P (|=z|−1)
N

.

On the one hand, if
P (|=z|−1)

N
≥ |=z|

2
,

or equivalently

1 ≤ 2|=z|−1P (|=z|−1)
N

, (6.29)

it is enough to prove that

gN (z)− g̃N (z) +
EN (z)
N

= O(1). (6.30)

Indeed, if we assume that (6.29) and (6.30) hold, then there exists a polyno-
mial Q with nonnegative coe�cients such that

|gN (z)− g̃N (z) +
EN (z)
N
| ≤ Q(|=z|−1)

≤ Q(|=z|−1)
2|=z|−1P (|=z|−1)

N

≤ Q(|=z|−1)(
2|=z|−1P (|=z|−1)

N
)2.

Hence,

gN (z)− g̃N (z) +
EN (z)
N

= O(
1
N2

).

To prove (6.30), one can notice that both gN (z) and g̃N (z) are bounded by
1
|=z| , and that

|EN (z)| ≤
{

σ2

|=z|2
+ 1
}
|LN (z)|,

where LN (z) = O(1).
On the other hand, if

P (|=z|−1)
N

≤ |=z|
2
,

one has :

|=z′ −=z| ≤ |z′ − z| ≤ |=z|
2

which implies =z′ ≥ =z2 and therefore z′ ∈ C+. As a consequence of Propo-
sition 6.1.2, z − σ2gN (z) ∈ Ωσ,µAN

and (6.28) is satis�ed. Thus,

|gN (z)− g̃N (z′)− LN (z)
N
| ≤ P (|=z|−1)

N2
,
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or, in other words,

gN (z)− g̃N (z′)− LN (z)
N

= O(
1
N2

). (6.31)

On the other hand,

g̃N (z′)− g̃N (z) = (z − z′)
∫

R

d(µσ � µAN )(x)
(z′ − x)(z − x)

= (z − z′)
∫

R

d(µσ � µAN )(x)
(z − x)2

+(z − z′)2

∫
R

d(µσ � µAN )(x)
(z′ − x)(z − x)2

.

Taking into account the estimation of z′ − z above, one has :

(z − z′)
∫

R

d(µσ � µAN )(x)
(z − x)2

= −σ2g̃′N (z)
LN (z)
N

+O(
1
N2

)

and

(z − z′)2

∫
R

d(µσ � µAN )(x)
(z′ − x)(z − x)2

= O(
1
N2

).

Hence

g̃N (z′)− g̃N (z) + σ2g̃′N (z)
LN (z)
N

= O(
1
N2

). (6.32)

(6.26) follows from (6.31) and (6.32) since

|gN (z)− g̃N (z) +
EN (z)
N
| ≤ |gN (z)− g̃N (z′)− LN (z)

N |

+|g̃N (z′)− g̃N (z) + σ2g̃′N (z)LN (z)
N |.

Now, since EN (z) = O(1), we can deduce from (6.26) that gN (z)− g̃N (z) =
O( 1

N ) and then that EN (z)− ẼN (z) = O( 1
N ). (6.23) readily follows. �

Remark 6.3.2. By combining the estimation proved above for the di�erence
between gN and the Stieltjes transform of µσ � µAN with some classical
arguments developed in [PL03], one can recover the almost sure convergence
of the spectral distribution of MN to the free convolution µσ � ν.

6.4 Inclusion of the spectrum in a neighborhood of
supp(µσ � µAN )

The purpose of this section is to prove the following Theorem 6.4.1.

Theorem 6.4.1. ∀ε > 0,

P( For all large N ,Spect(MN ) ⊂ {x, dist(x, supp(µσ � µAN )) ≤ ε}) = 1.
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The proof still uses the ideas of [HT05] and [Sch05] but, since µσ � µAN de-
pends on N , we need here to apply the inverse Stieltjes tranform to functions
depending on N . Therefore we give the details of the proof to convince the
reader that the approach still holds.

Lemma 6.4.2. For any �xed large N , ẼN de�ned in Proposition 6.3.1 is
the Stieltjes transform of a compactly supported distribution ΛN on R whose
support is included in the support of µσ � µAN .

The proof relies on the following characterization already used in [Sch05].

Theorem 6.4.3. [Til53]

• Let Λ be a distribution on R with compact support. De�ne the Stieltjes
transform of Λ, l : C \ R→ C by

l(z) = Λ
(

1
z − x

)
.

Then l is analytic on C \ R and has an analytic continuation to C \
supp(Λ). Moreover

(c1) l(z)→ 0 as |z| → ∞,
(c2) there exists a constant C > 0, an integer n ∈ N and a compact

set K ⊂ R containing supp(Λ), such that for any z ∈ C \ R,

|l(z)| ≤ C max{dist(z,K)−n, 1},

(c3) for any φ ∈ C∞(R,R) with compact support

Λ(φ) = − 1
π

lim
y→0+

=
∫

R
φ(x)l(x+ iy)dx.

• Conversely, if K is a compact subset of R and if l : C \K → C is an
analytic function satisfying (c1) and (c2) above, then l is the Stieltjes
transform of a compactly supported distribution Λ on R. Moreover,
supp(Λ) is exactly the set of singular points of l in K.

We use here the notations and results of Section 6.1. If u ∈ R is not in the
support of µσ�µAN , according to (6.4), u−σ2g̃N (u) = Fσ,µAN (u) belongs to
R\Uσ,µAN and then cannot belong to Spect(AN ) since Spect(AN ) ⊂ Uσ,µAN .
Hence the singular points of ẼN are included in the support of µσ � µAN .
Now, we are going to show that for any �xed large N , ẼN satis�es (c1) and
(c2) of Theorem 6.4.3. Let C > 0 be such that, for all large N , supp(µσ �
µAN ) ⊂ [−C;C] and supp(µAN ) ⊂ [−C;C].

Let α > C + σ. For any z ∈ C such that |z| > α,

|σ2g̃N (z)| ≤ σ2

|z| − C
≤ σ2

α− C
<

(α− C)2

α− C
= α− C
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and
|z − σ2g̃N (z)| ≥

∣∣∣|z| − |σ2g̃N (z)|
∣∣∣ > |z| − (α− C) > C.

Thus we get that for any z ∈ C such that |z| > α,

‖GAN (z − σ2g̃N (z))‖ ≤ 1
|z − σ2g̃N (z)| − C

<
1

|z| − (α− C)− C

<
1

|z| − α
.

We get readily that, for |z| > α,

|ẼN (z)| ≤ κ4

2
1

(|z| − α)5

(
σ2

(|z| − C)2
+ 1
)
.

Then, it is clear than |ẼN (z)| → 0 when |z| → +∞ and (c1) is satis�ed.
Now we are going to prove (c2) using the approach of [Sch05](Lemma 5.5).
Denote by EN the convex envelope of the support of µσ � µAN and de�ne

KN := {x ∈ R; dist(x, EN ) ≤ 1}

and
DN = {z ∈ C; 0 < dist(z,KN ) ≤ 1} .

• Let z ∈ DN∩(C\R) with <(z) ∈ KN . We have dist(z,KN ) = |=z| ≤ 1.
We have

|ẼN (z)| ≤ κ4

2

(
σ2 1
|=z|2

+ 1
)

1
|=z|5

.

Noticing that 1 ≤ 1
|=z|2 , we easily deduce that there exists some con-

stant C0 such that for any z ∈ DN ∩ C \ R with <(z) ∈ KN ,

|ẼN (z)| ≤ C0|=z|−7

≤ C0dist(z,KN )−7

≤ C0 max(dist(z,KN )−7; 1).

• Let z ∈ DN ∩(C\R) with <(z) /∈ KN . Then dist(z, supp(µσ�µAN )) ≥
1. Since ẼN is bounded on compact subsets of C \ supp(µσ � µAN ),
we easily deduce that there exists some constant C1(N) such that for
any z ∈ DN with <(z) /∈ KN ,

|ẼN (z)| ≤ C1(N) ≤ C1(N) max(dist(z,KN )−7; 1).

• Since |ẼN (z)| → 0 when |z| → +∞, ẼN is bounded on C \DN . Thus,
there exists some constant C2(N) such that for any z ∈ C \DN ,

|ẼN (z)| ≤ C2(N) = C2(N) max(dist(z,KN )−7; 1).
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Hence (c2) is satis�ed with C(N) = max(C0, C1(N), C2(N)) and n = 7 and
Lemma 6.4.2 follows from Theorem 6.4.3. �

Proof of Theorem 6.4.1: Using the inverse Stieltjes tranform, we get
respectively that, for any ϕN in C∞(R,R) with compact support,

E[tr(ϕN (MN ))]−
∫

R
ϕNd(µσ � µAN )− ΛN (ϕN )

N

=
1
π

lim
y→0+

=
∫

R
ϕN (x)rN (x+ iy)dx,

where rN (z) = g̃N (z)− gN (z) + 1
N ẼN (z) satis�es, according to Proposition

6.3.1, for any z ∈ C \ R,

|rN (z)| ≤ 1
N2

P (|=z|−1)

for some integer k. We refer the reader to the Appendix of [CDM07] where
it is proved using the ideas of [HT05] that

lim sup
y→0+

|
∫

R
ϕN (x)h(x+ iy)dx|

≤
∫

R

∫ +∞

0
|(1 +D)k+1ϕN (x)|(|x|+

√
2t+K)αQ(t) exp(−t)dtdx,

when h is an analytic function on C \ R which satis�es

|h(z)| ≤ (|z|+K)αP (|=z|−1).

Hence, if there exists K > 0 such that, for all large N , the support of ϕN
is included in [−K,K] and supN supx∈[−K,K] |DpϕN (x)| = Cp < ∞ for any

p ≤ k + 1, dealing with h(z) = N2rN (z), we deduce that for all large N ,

lim sup
y→0+

|
∫

R
ϕN (x)rN (x+ iy)dx| ≤ C

N2

and then

E[tr(ϕN (MN ))]−
∫

R
ϕNd(µσ � µAN )− ΛN (ϕN )

N
= O(

1
N2

). (6.33)

Let ρ ≥ 0 be in C∞(R,R) such that its support is included in {|x| ≤ 1} and∫
ρ(x)dx = 1. Let 0 < ε < 1. De�ne

ρ ε
2
(x) =

2
ε
ρ(

2x
ε

),

KN (ε) = {x,dist(x, supp(µσ � µAN )) ≤ ε}
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and

fN (ε)(x) =
∫

R
1IKN (ε)(y)ρ ε

2
(x− y)dy.

the function fN (ε) is in C∞(R,R), fN (ε) ≡ 1 on KN ( ε2); its support is
included in KN (2ε). Since there exists K such that, for all large N , the
support of µσ � µAN is included in [−K;K], for all large N the support of
fN (ε) is included in [−K − 2;K + 2] and for any p > 0,

sup
x∈[−K−2;K+2]

|DpfN (ε)(x)| ≤ sup
x∈[−K−2;K+2]

∫ K+1

−K−1
|Dpρ ε

2
(x− y)|dy ≤ Cp(ε).

Thus, according to (6.33),

E[tr(fN (ε)(MN ))]−
∫

R
fN (ε)d(µσ � µAN )− ΛN (fN (ε))

N
= Oε(

1
N2

) (6.34)

and

E[tr((f ′N (ε))2(MN ))]−
∫

R
(f ′N (ε))2d(µσ � µAN )−

ΛN ((f ′N (ε))2)
N

= Oε(
1
N2

).

(6.35)
Moreover, following the proof of Lemma 5.6 in [Sch05], one can show that
ΛN (1) = 0. Then, the function ψN (ε) ≡ 1− fN (ε) also satis�es

E[tr(ψN (ε)(MN ))]−
∫

R
ψN (ε)d(µσ�µAN )− ΛN (ψN (ε))

N
= Oε(

1
N2

). (6.36)

Moreover, since ψ′N (ε) = −f ′N (ε), it comes readily from (6.35) that

E[tr((ψ′N (ε))2(MN ))]−
∫

R
(ψ′N (ε))2d(µσ�µAN )−

ΛN ((ψ′N (ε))2)
N

= Oε(
1
N2

).

Now, since ψN (ε) ≡ 0 on the support of µσ � µAN , we deduce that

E[tr(ψN (ε)(MN ))] = Oε(
1
N2

) (6.37)

and

E[tr((ψ′N (ε))2(MN ))] = Oε(
1
N2

). (6.38)

By Lemma 6.8.1 (sticking to the proof of Proposition 4.7 in [HT05]), we have

V[tr(ψN (ε)(MN ))] ≤ Cε
N2

E
[
tr{(ψ′N (ε)(MN ))2}

]
.

Hence, using (6.38), one can deduce that

V[tr(ψN (ε)(MN ))] = Oε(
1
N4

) (6.39)
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Set
ZN,ε := tr(ψN (ε)(MN ))

and
ΩN,ε = {ZN,ε > N−

4
3 }

From (6.37) and (6.39), we deduce that

E{|ZN,ε|2} = Oε(
1
N4

).

Hence

P (ΩN,ε) ≤ N
8
3 E{|ZN,ε|2} = Oε(

1

N
4
3

).

By Borel-Cantelli lemma, we deduce that, almost surely for all large N ,
ZN,ε ≤ N−

4
3 . Since ZN,ε ≥ 1IR\KN (2ε), it follows that, almost surely for all

large N , the number of eigenvalues of MN which are in R \KN (2ε) is lower
than N−

1
3 and thus obviously has to be equal to zero. The proof of Theorem

6.4.1 is complete.�

6.5 Study of µσ � µAN

The aim of this section is to show the following inclusion of the support of
µσ � µAN (see Theorem 6.5.1 below). To this aim, we will use the notations
and results of Section 6.1. We de�ne

Θ = {θj , 1 ≤ j ≤ J} and Θσ,ν = Θ ∩ (R \ Uσ,ν). (6.40)

Furthermore, for all θj ∈ Θσ,ν , we set

ρθj := Hσ,ν(θj) = θj + σ2Gν(θj) (6.41)

which is outside the support of µσ � ν according to (6.4), and we de�ne

Kσ,ν(θ1, . . . , θJ) := supp(µσ � ν)
⋃{

ρθj , θj ∈ Θσ,ν

}
. (6.42)

Theorem 6.5.1. For any ε > 0,

supp(µσ � µAN ) ⊂ Kσ,ν(θ1, . . . , θJ) + (−ε, ε),

when N is large enough.

Let us decompose µAN as

µAN = µ̂β,N + µ̂Θ,N ,

where µ̂β,N =
1
N

N−r∑
j=1

δβj(N) and µ̂Θ,N =
1
N

J∑
j=1

kjδθj .

In the following, we will denote by D(x, δ) the open disk centered on x and
with radius δ. We begin with a trivial technical lemma we will need in the
following.
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Lemma 6.5.2. Let K be a compact set included in R\ supp(ν). Then G′µ̂β,N
(which is well de�ned on K for large N) converges to G′ν uniformly on K.

Proof of Lemma 6.5.2: We �rst prove that for all u ∈ K,

−G′µ̂β,N (u) =
1
N

N−r∑
j=1

1
(u− βj)2

→
N→+∞

∫
dν(x)

(u− x)2
= −G′ν(u). (6.43)

Let ε > 0 be such that dist(K, supp(ν)) ≥ ε. For all u ∈ K, let hu be
a bounded continuous function de�ned on R which coincides with fu(x) =
1/(u−x)2 on supp(ν)+[− ε

2 ,
ε
2 ]. As max1≤j≤N−r dist(βj(N), supp(ν)) tends

to zero as N → ∞, one can �nd N0 such that, for all N ≥ N0, βj(N) ∈
supp(ν) + [− ε

2 ,
ε
2 ] for all 1 ≤ j ≤ N − r. Since the sequence of measures

µ̂β,N weakly converges to ν, (6.43) follows, observing that −G′µ̂β,N (u) =∫
hu(x) dµ̂β,N (x) and −G′ν(u) =

∫
hu(x)dν(x).

The uniform convergence follows from Montel's theorem, since G′µ̂β,N and G′ν
are analytic on D = {z ∈ C,dist(z, supp(ν)) > ε

2} and uniformly bounded
on D by 4

ε2
for N ≥ N0. �

We are now in position to give the proof of Theorem 6.5.1. We recall that,
from (6.4),

R \ supp(µσ � µAN ) = Hσ,µAN
(R \ Uσ,µAN ). (6.44)

In the proofs, we will write for simplicity UN , HN and FN instead of Uσ,µAN ,
Hσ,µAN

and Fσ,µAN respectively.
The main step of the proof consists in observing the following inclusion of
the open set Uσ,µAN .

Lemma 6.5.3. For any ε′ > 0,

Uσ,µAN ⊂ {u, dist(u, Uσ,ν) < ε′} ∪ {u, dist(u,Θσ,ν) < ε′}, (6.45)

for all large N (since the compact sets Uσ,ν and Θσ,ν are disjoint, the previous
union is disjoint once ε′ is small enough).

Proof of Lemma 6.5.3: De�ne

Fε′ = {u, dist(u, Uσ,ν) ≥ ε′} ∩ {u, dist(u,Θσ,ν) ≥ ε′}.

We shall show that for all large N , Fε′ ⊂ R \ UN .
Since max1≤j≤N−r dist(βj(N), supp(ν)) →

N→∞
0, there exists N0 such that

for all N ≥ N0, the βj(N)'s are in supp(ν) + (−ε′, ε′). Since supp(ν) ⊂ Uσ,ν ,
it is clear that for all N ≥ N0, Fε′ is included in R \ SpectAN . Moreover,
one can readily observe that if u satis�es

dist(u, supp(ν) + (−ε′, ε′)) ≥ σ
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and
dist(u,Θ) ≥ σ

then, for all N ≥ N0, −G′µAN (u) ≤ 1
σ2 . This implies that, for all N ≥ N0,

the open set UN is included in the compact set

F ′ε′ = {u, dist(u, supp(ν) + (−ε′, ε′)) ≤ σ} ∪ {u, dist(u,Θ) ≤ σ}.

Hence, it is su�cient to show that for N large enough, the compact set
Kε′ := Fε′ ∩ F ′ε′ is contained in R \ UN .
As ν is compactly supported, the function u 7→ −G′ν(u) =

∫
R dν(x)/(u−x)2

is continuous on R \ supp(ν). Hence it reaches its bounds on the compact
set Kε′ (which is obviously included in R \ Uσ,ν) so that there exists α > 0
such that −G′ν(u) ≤ 1

σ2 − 2α for any u in Kε′ .
According to Lemma 6.5.2, there exists N0 such that for all N ≥ N0 and for
all u in Kε′ ,

|G′µ̂β,N (u)−G′ν(u)| ≤ 3α
4
. (6.46)

At last, one can notice that N0 may be chosen large enough so that

∀N ≥ N0, −G′µ̂Θ,N
(u) =

1
N

J∑
j=1

kj
(u− θj)2

≤ α

4
. (6.47)

This is just because for all u ∈ Fε′ , one has that: −G′µ̂Θ,N
(u) ≤ r

Nε′2 which

converges uniformly on K′ε′ to 0 as N goes to in�nity.
Combining all the preceding gives that, on Kε′ , the function −G′µAN is

bounded from above by 1
σ2−α. This implies that Kε′ is included in R\Uσ,µAN

which is what we wanted to show. �

Now we shall establish the following inclusion.

Lemma 6.5.4. For all ε > 0, for all ε′ > 0 small enough,

R \ (Kσ(θ1, . . . , θJ) + [−ε, ε]) ⊂ HN

(
{u, dist(u,Θσ,ν ∪ Uσ,ν) > ε′}

)
,(6.48)

when N is large enough.

Combined with Lemma 6.5.3, this result leads to Theorem 6.5.1.

Proof of Lemma 6.5.4: According to (6.4), (6.6) and Remark 6.1.6, we
have that

R \ supp(µσ � ν) =

]
−∞, Hσ,ν(sm)

[ ⋃ ( 2⋃
l=m

]
Hσ,ν(tl), Hσ,ν(sl−1)

[) ⋃]
Hσ,ν(t1),+∞

[
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i.e.

supp(µσ � ν) =
1⋃

l=m

[
Hσ,ν(sl), Hσ,ν(tl)

]
. (6.49)

Note that there exists some �nite integer q such that, for ε small enough,
R \ (Kσ(θ1, . . . , θJ) + [−ε, ε]) is the following disjoint union of intervals

]−∞, h0[
⋃

i=1,...,q

]ki, hi[∪]kq+1,+∞[,

where hi = Hσ,ν(spi) − ε and ki+1 = Hσ,ν(tpi) + ε for some pi or hi =
Hσ,ν(θji)− ε and ki+1 = Hσ,ν(θji) + ε for some θji in Θσ,ν .
For such an ε > 0, since Hσ,ν coincides on R\Uσ,ν with the homeomorphism
Ψσ,ν de�ned in Theorem 6.1.3, we can deduce in particular that Hσ,ν is right-
continuous (resp. left-continuous) at each tl (resp. sl) for 1 ≤ l ≤ m, and
Hσ,ν is continuous at each θi in Θσ,ν . Thus, there exists ε′ > 0 such that:
for all 1 ≤ l ≤ m,

Hσ,ν(sl − ε′) ≥ Hσ,ν(sl)−
ε

2
and Hσ,ν(tl + ε′) ≤ Hσ,ν(tl) +

ε

2
(6.50)

and for all θj in Θσ,ν ,

Hσ,ν(θj − ε′) ≥ Hσ,ν(θj)−
ε

2
and Hσ,ν(θj + ε′) ≤ Hσ,ν(θj) +

ε

2
. (6.51)

Now HN being increasing on R \ UN , for N large enough, the image by HN

of
{u, d(u,Θσ,ν) > ε′} ∩ {u, d(u, Uσ,ν) > ε′} ⊆ R \ UN

is the following disjoint union of intervals

]−∞, h0(N)[
⋃

i=1,...,q

]ki(N), hi(N)[∪]kq+1(N),+∞[,

where hi(N) = HN (spi−ε′) and ki+1(N) = HN (tpi+ε
′) or hi(N) = HN (θji−

ε′) and ki+1(N) = HN (θji + ε′).
One can see that it only remains to state that for all large N : ∀1 ≤ l ≤ m,

HN (sl − ε′) ≥ Hσ,ν(sl)− ε and HN (tl + ε′) ≤ Hσ,ν(tl) + ε. (6.52)

HN (θi − ε′) ≥ Hσ,ν(θi)− ε and HN (θi + ε′) ≤ Hσ,ν(θi) + ε. (6.53)

Moreover, as µAN weakly converges to ν, it is not hard to see that for all
1 ≤ l ≤ m, and all θi in Θσ,ν , HN (sl − ε′), HN (tl + ε′), HN (θi − ε′) and
HN (θi + ε′) converge as N →∞ to Hσ,ν(sl − ε′), Hσ,ν(tl + ε′), Hσ,ν(θi − ε′)
and Hσ,ν(θi + ε′) respectively. So, there exists N0 such that for all N ≥ N0:
HN (sl − ε′) ≥ Hσ,ν(sl − ε′) − ε

2 and HN (tl + ε′) ≤ Hσ,ν(tl + ε′) + ε
2 as well

as HN (θi − ε′) ≥ Hσ,ν(θi − ε′)− ε
2 and HN (θi + ε′) ≤ Hσ,ν(θi + ε′) + ε

2 . We
can then deduce (6.52) and (6.53) from (6.50) and (6.51). �
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6.6 Exact separation of eigenvalues

Before stating the fundamental exact separation phenomenon between the
spectrum ofMN and the spectrum of AN , we need a preliminary lemma (see
Lemma 6.6.3 below).
From Section 6.1, we readily deduce the following

Proposition 6.6.1.

R \Kσ,ν(θ1, . . . , θJ) = {x ∈ R, Fσ,ν(x) ∈ R \
{
Uσ,ν ∪Θ

}
}

and Fσ,ν is a homeomorphism from R \Kσ,ν(θ1, . . . , θJ) onto R \
{
Uσ,ν ∪Θ

}
with inverse Hσ,ν .

Remark 6.6.2. : For all σ̂ < σ, R \ Uσ,ν ⊂ R \ Uσ̂,ν so that it makes sense
to consider the following composition of homeomorphism

Hσ̂,ν ◦ Fσ,ν : R \Kσ,ν(θ1, . . . , θJ)→ R \Kσ̂,ν(θ1, . . . , θJ),

which is increasing on each connected component of R \Kσ,ν(θ1, . . . , θJ).

Lemma 6.6.3. Let [a, b] be a compact set contained in R \Kσ,ν(θ1, . . . , θJ).
Then,

(i) For all large N , [Fσ,ν(a), Fσ,ν(b)] ⊂ R \ Spect(AN ).

(ii) For all 0 < σ̂ < σ, the interval [Hσ̂,ν(Fσ,ν(a)), Hσ̂,ν(Fσ,ν(b))] is con-
tained in R\Kσ̂,ν(θ1, . . . , θJ) and Hσ̂,ν(Fσ,ν(b))−Hσ̂,ν(Fσ,ν(a)) ≥ b−a.

Proof of Lemma 6.6.3: For simplicity, we de�ne Kε
σ,J = Kσ(θ1, . . . , θJ) +

[−ε, ε]. As [a, b] is a compact set, there exist ε > 0 and α > 0 such that

[a− α, b+ α] ⊂ R \Kε
σ,J and dist([a− α, b+ α];Kε

σ,J) ≥ α.

As before, we let µ̃N = µσ � µAN . According to Theorem 6.5.1, there exists
some N0 such that for all N ≥ N0, supp(µ̃N ) is contained in Kε

σ,J . Thus,
using (6.4) and since FN is continuous strictly increasing on [a − α, b + α],
we have

∀N ≥ N0, [FN (a− α), FN (b+ α)] ⊂ R \ UN ⊂ R \ Spect(AN ). (6.54)

As Fσ,ν is strictly increasing on the compact set [a−α, b+α] (supp(µσ � ν) ⊂
Kε
σ,J), one can consider δ > 0 such that

Fσ,ν(a− α) ≤ Fσ,ν(a)− δ and Fσ,ν(b+ α) ≥ Fσ,ν(b) + δ. (6.55)

Now, the weak convergence of the probability measures µ̃N to µσ�ν will lead
to the result, recalling from the de�nition of the subordination functions that
for all x ∈ [a−α, b+α]: Fσ,ν(x) = x−σ2Gµσ�ν(x) and FN (x) = x−σ2Gµ̃N (x)
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(at least for all N ≥ N0). Indeed, observing that for any x in [a−α, b+α], the
map h : t 7→ 1

x−t is bounded onKε
σ,J , one readily gets the simple convergence

of Gµ̃N to Gµσ�ν as well as the one of the corresponding subordination
functions, by considering a bounded continuous function which coincides
with h on Kε

σ,J . We then deduce that there exists N ′0 ≥ N0 such that, for
all N ≥ N ′0,

FN (a− α) ≤ Fσ,ν(a− α) + δ and FN (b+ α) ≥ Fσ,ν(b+ α)− δ. (6.56)

Combining (6.54), (6.55) and (6.56) proves that the inclusion of point (i)
holds true for all N ≥ N ′0.

The �rst part of (ii) is obvious from Remark 6.6.2. The second part
mainly follows from the fact that Fσ,ν is strictly increasing on R\supp(µσ�ν).
More precisely, if we set a′ = Hσ̂,ν(Fσ,ν(a)) and b′ = Hσ̂,ν(Fσ,ν(b)), then

b′ − a′ = Fσ,ν(b)− Fσ,ν(a) + σ̂2
(
Gν(Fσ,ν(b))−Gν(Fσ,ν(a))

)
≥ Fσ,ν(b)− Fσ,ν(a) + σ2

(
Gν(Fσ,ν(b))−Gν(Fσ,ν(a))

)
≥ Hσ,ν(Fσ,ν(b))−Hσ,ν(Fσ,ν(a)) = b− a

since Fσ,ν(a) < Fσ,ν(b) and then Gν(Fσ,ν(b))−Gν(Fσ,ν(a)) < 0. �

The exact separation result involving the subordination function related
to the free convolution of µσ and ν can now be stated. Let [a, b] be a compact
interval contained in R\Kσ(θ1, . . . , θJ). By Theorems 6.4.1 and 6.5.1, almost
surely for all large N , [a, b] is outside the spectrum of MN . Moreover, from
Lemma 6.6.3 (i), it corresponds an interval I = [a′, b′] outside the spectrum
of AN for all large N i.e., with the convention that λ0(MN ) = λ0(AN ) = +∞
and λN+1(MN ) = λN+1(AN ) = −∞, there is iN ∈ {0, . . . , N} such that

λiN+1(AN ) < Fσ,ν(a) := a′ and λiN (AN ) > Fσ,ν(b) := b′. (6.57)

The numbers a and a′ (resp. b and b′) are linked as follows:

a = ρa′ := Hσ,ν(a′) = a′ + σ2Gν(a′),

b = ρb′ := Hσ,ν(b′) = b′ + σ2Gν(b′).

We claim that [a, b] splits the spectrum of MN exactly as I splits the spec-
trum of AN . In other words,

Theorem 6.6.4. With iN satisfying (6.57), one has

P[λiN+1(MN ) < a and λiN (MN ) > b, for all large N ] = 1. (6.58)

The proof closely follows the proof of Theorem 4.5 in [CDMF09] by in-
troducing in a �t way the subordination functions or their inverses. For



6.6 Exact separation of eigenvalues 163

the reader's convenience, we rewrite the whole proof. The key idea is to

introduce a continuum of matrices M
(k)
N interpolating from MN to AN :

M
(k)
N :=

σk
σ

WN√
N

+AN ,

where

σ2
k = σ2(

1
1 + kCa,b

),

and Ca,b being a positive constant which has to be chosen small enough to

ensure that the matrices M
(k)
N and M

(k+1)
N are close enough to each other.

More precisely, Ca,b is chosen such that

max
(
σ2Ca,b|Gµσ�ν(a)|;σ2Ca,b|Gµσ�ν(b)|; 3σCa,b

)
<
b− a

4
. (6.59)

In particular, σ0 = σ and σk → 0 when k goes to in�nity.
We �rst prove that the intervals [Hσk,ν(Fσ,ν(a)), Hσk,ν(Fσ,ν(b))] split respec-
tively the spectrum of M

(k)
N in exactly the same way. Moreover, we also

prove that for k large enough, the interval [Hσk,ν(Fσ,ν(a)), Hσk,ν(Fσ,ν(b))]
splits the spectrum of M

(k)
N as [Fσ,ν(a), Fσ,ν(b)] splits the spectrum of AN ,

this means roughly that we extend the �rst statement to k = ∞ and the
result follows.

As in [CDMF09], this proof is inspired by the work [BS99] and mainly
relies on results on eigenvalues of the rescaled Wigner matrix XN combined
with the following classical result (due to Weyl).

Lemma 6.6.5. (cf. Theorem 4.3.7 of [HJ90]) Let B and C be two N × N
Hermitian matrices. For any pair of integers j, k such that 1 ≤ j, k ≤ N and
j + k ≤ N + 1, we have

λj+k−1(B + C) ≤ λj(B) + λk(C).

For any pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≥ N + 1, we
have

λj(B) + λk(C) ≤ λj+k−N (B + C).

Proof of Theorem 6.6.4: Given k ≥ 0, de�ne

ak = Hσk(Fσ,ν(a)) and bk = Hσk(Fσ,ν(b)).

Remark 6.6.6. Note that in [CDMF09] where ν = δ0, we considered ak =
zσk(gσ(a)) where gσ denoted the Stieltjes transform of µσ and zσk the inverse
of gσk . Actually, when ν = δ0, then Hσk,ν(z) = z + σ2

k/z = zσk(1/z) and
Fσ,ν = 1/gσ so that zσk(gσ) = Hσk,ν(Fσ,ν). This very interpretation of the
composition zσk ◦ gσ in terms of subordination function allows us to extend
the result of exact separation to non-�nite rank perturbations.
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The last point of (ii) in Lemma 6.6.3 yields bk − ak ≥ b− a. Moreover

ak+1 − ak = (σ2
k+1 − σ2

k)Gµσ�ν(a)

= −Ca,b
σ2

(1 + kCa,b)(1 + (k + 1)Ca,b)
Gµσ�ν(a),

so that |ak+1−ak| ≤ σ2Ca,b|Gµσ�ν(a)|. One gets similarly that |bk+1− bk| ≤
σ2Ca,b|Gµσ�ν(b)|. Hence, we deduce from (6.59) that

|ak+1 − ak| <
b− a

4
and |bk+1 − bk| <

b− a
4

. (6.60)

Now, we shall show by induction on k that, with probability 1, for large
N , the M

(k)
N have respectively the same amount of eigenvalues to the left

sides of the interval [ak, bk]. For all k ≥ 0, set

Ek = {no eigenvalues of M
(k)
N in [ak, bk], for all large N}.

By Lemma 6.6.3 (ii) and Theorems 6.4.1 and 6.5.1, we know that P(Ek) = 1
for all k. In particular, one has for all ω ∈ E0 and for all large N ,

∃jN (ω) ∈ {0, . . . , N} such that λjN (ω)+1(MN ) < a and λjN (ω)(MN ) > b.
(6.61)

Extending the random variable jN , by setting for instance jN := −1 on the
complementary of E0, we want to show that for all k,

P[λjN+1(M (k)
N ) < ak and λjN (M (k)

N ) > bk, for all large N ] = 1. (6.62)

We proceed by induction. By (6.61), this is true for k = 0. Now, let us
assume that (6.62) holds true. Since

M
(k+1)
N = M

(k)
N + (

1√
1 + (k + 1)Ca,b

− 1√
1 + kCa,b

)XN ,

we can deduce from Lemma 6.6.5 that

λjN+1(M (k+1)
N ) ≤ λjN+1(M (k)

N ) + (−λN (XN ))Ca,b.

Since, for N large enough, 0 < −λN (XN ) ≤ 3σ almost surely, it follows
using (6.59) that

λjN+1(M (k+1)
N ) < ak +

b− a
4

:= âk a.s..

Similarly, one can show that

λjN (M (k+1)
N ) > bk −

b− a
4

:= b̂k a.s..
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Inequalities (6.60) ensure that

[âk, b̂k] ⊂ [ak+1, bk+1].

As P(Ek+1) = 1, we deduce that, with probability 1,

λjN+1(M (k+1)
N ) < ak+1 and λjN (M (k+1)

N ) > bk+1, for all large N.

This completes the proof by induction of (6.62).
Now, we are going to show that there exists K large enough so that, for

all k ≥ K, there is exact separation of the eigenvalues of the matrices AN
and M

(k)
N i.e.

P
[
λiN+1(M (k)

N ) < ak and λiN (M (k)
N ) > bk, for all large N

]
= 1. (6.63)

There exists α > 0 such that [a − α; b + α] ⊂ R \ Kσ,ν(θ1, . . . , θJ). Thus
according to Lemma 6.6.3 (i) for all large N ,

[Fσ,ν(a− α);Fσ,ν(b+ α)] ⊂ R \ Spect(AN ).

Now, there exists ε′ > 0 such that Fσ,ν(a−α) < Fσ,ν(a)−ε′ and Fσ,ν(b+α) >
Fσ,ν(b) + ε′. It follows that, for all large N ,

λiN+1(AN ) < Fσ,ν(a)− ε′ and λiN (AN ) > Fσ,ν(b) + ε′. (6.64)

Using Lemma 6.6.5, (6.64) and the fact that, almost surely, for all large N ,

0 < max(−λN (XN ), λ1(XN )) < 3σ,

we get the following inequalities.
If iN < N , for all large N ,

λiN+1(M (k)
N ) ≤ λiN+1(AN ) +

σk
σ
λ1(XN )

< Fσ,ν(a)− ε′ + σk
σ
λ1(XN )

= ak − σ2
kGµσ�ν(a) +

σk
σ
λ1(XN )− ε′

< ak − σ2
kGµσ�ν(a) + 3σk − ε′.

If iN > 0, for all large N ,

λiN (M (k)
N ) ≥ λiN (AN ) +

σk
σ
λN (XN )

> Fσ,ν(b) + ε′ +
σk
σ
λN (XN )

= bk − σ2
kGµσ�ν(b) +

σk
σ
λN (XN ) + ε′

> bk − σ2
kGµσ�ν(b)− 3σk + ε′.
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As σk → 0 when k → +∞, there is K large enough such that for all k ≥ K,

max(| − σ2
kGµσ�ν(a) + 3σk|, | − σ2

kGµσ�ν(b)− 3σk|) < ε′

and then, almost surely, for all N large enough

λiN+1(M (k)
N ) < ak if iN < N, (6.65)

and λiN (M (k)
N ) > bk if iN > 0. (6.66)

Since λN+1(M (k)
N ) = −λ0(M (k)

N ) = −∞, (6.65) (resp. (6.66)) is obviously
satis�ed if iN = N (resp. iN = 0). Thus, we have established that for any
iN ∈ {0, . . . , N} satisfying (6.57), (6.63) holds for all k ≥ K when K is large
enough. Comparing this with (6.62), we deduce that jN = iN almot surely
and

P
[
λiN+1(MN ) < a and λiN (MN ) > b, for all large N

]
= 1.

This ends the proof of Theorem 6.6.4. �

We readily deduce the following

Corollary 6.6.7. Let ε > 0. Let us �x u in Θσ,ν ∪ {tl, l = 1, . . . ,m} (resp.
in Θσ,ν ∪ {sl, l = 1, . . . ,m}). Let us choose δ > 0 small enough so that for
large N , [u + δ;u + 2δ] (resp. [u − 2δ;u − δ]) is included in (R \ Uσ,ν) ∩
(R \ Spect(AN )) and for any 0 ≤ δ′ ≤ 2δ, Hσ,ν(u+ δ′)−Hσ,ν(u) < ε (resp.
Hσ,ν(u)−Hσ,ν(u− δ′) < ε). Let iN = iN (u) be such that

λiN+1(AN ) < u+ δ and λiN (AN ) > u+ 2δ

(resp. λiN+1(AN ) < u− 2δ and λiN (AN ) > u− δ). Then

P
[
λiN+1(MN ) < Hσ,ν(u)+ε and λiN (MN ) > Hσ,ν(u), for all large N

]
= 1.

(resp. P
[
λiN+1(MN ) < Hσ,ν(u) and λiN (MN ) > Hσ,ν(u)−ε for large N

]
=

1.)

6.7 Convergence of eigenvalues

In the non-spiked case Θ = ∅ i.e. r = 0, the results of Theorems 6.5.1 and
6.4.1 read as: ∀ε > 0,

P[Spect(MN ) ⊂ supp(µσ � ν) + (−ε, ε), for all N large] = 1. (6.67)

This readily leads to the following asymptotic result for the extremal eigen-
values.
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Proposition 6.7.1. Assume that the deformed model MN is without spike
i.e. r = 0. Let k ≥ 0 be a �xed integer.
The largest (resp. smallest) eigenvalues λ1+k(MN ) (resp. λN−k(MN )) con-
verge almost surely to the right (resp. left) endpoint of the support of µσ�ν.

Proof of Proposition 6.7.1: We here only focus on the convergence of
the �rst largest eigenvalues since the other case is similar. Recalling that
supp(µσ � ν) = ∪1

l=m[Hσ,ν(sl), Hσ,ν(tl)], from (6.67), one has that, for all
ε > 0,

P[lim sup
N

λ1(MN ) ≤ Hσ,ν(t1) + ε] = 1.

But as Hσ,ν(t1) is a boundary point of supp(µσ � ν), the number of eigen-
values of MN falling into [Hσ,ν(t1) − ε,Hσ,ν(t1) + ε] tends almost surely to
in�nity as N →∞. Thus, almost surely,

lim inf
N

λ1+k(MN ) ≥ Hσ,ν(t1)− ε.

The result then follows by letting ε→ 0. �

In the spiked case where r ≥ 1 (Θ 6= ∅), the spectral measure µMN
still

converges almost surely to µσ � ν. We shall study the impact of the spiked
eigenvalues θi's on the local behavior of some eigenvalues of MN .
In particular, we shall prove that once the largest spike θ1 is su�ciently big,
the largest eigenvalue of MN jumps almost surely above the right endpoint
Hσ,ν(t1). Once m ≥ 2, that is when supp(µσ�ν) has at least two connected
components, we prove that there may also exist some jumps into the gap(s)
of this support. This phenomenon holds for any θj ∈ Θσ,ν .
For θj 6∈ Θσ,ν , that is if θj ∈ Uσ,ν , two situations may occur. To explain this,
let us consider the connected component [slj , tlj ] of Uσ,ν which contains θj . If
supp(ν)∩ [θj , tlj ] = ∅ (resp. supp(ν)∩ [slj , θj ] = ∅) then the kj corresponding
eigenvalues of MN converge almost surely to the corresponding boundary
point Hσ,ν(tlj ) (resp. Hσ,ν(slj )) of the support of µσ�ν. Otherwise, namely
when θj is between two connected components of supp(ν) included in [slj , tlj ],
the convergence occurs towards a point inside the (interior) of supp(µσ� ν).
Here is the precise formulation of our result. This is the additive analogue of
the main result of [BY08a] on the almost sure convergence of the eigenvalues
generated by the spikes in a generalized spiked population model.

Theorem 6.7.2. For each spiked eigenvalue θj, we denote the descending
ranks of θj among the eigenvalues of AN by nj−1 + 1, . . . , nj−1 + kj.

1) If θj ∈ R \ Uσ,ν (i.e. ∈ Θσ,ν), the kj eigenvalues (λnj−1+i(MN ), 1 ≤
i ≤ kj) converge almost surely outside the support of µσ � ν towards
ρθj = Hσ,ν(θj).
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2) If θj ∈ Uσ,ν then we let [slj , tlj ] (with 1 ≤ lj ≤ m) be the connected

component of Uσ,ν which contains θj.

a) If θj is on the right (resp. on the left) of any connected component
of supp(ν) which is included in [slj , tlj ] then the kj eigenvalues
(λnj−1+i(MN ), 1 ≤ i ≤ kj) converge almost surely to Hσ,ν(tlj )
(resp. Hσ,ν(slj )) which is a boundary point of the support of µσ�
ν.

b) If θj is between two connected components of supp(ν) which are
included in [slj , tlj ] then the kj eigenvalues (λnj−1+i(MN ), 1 ≤
i ≤ kj) converge almost surely to the αj-th quantile of µσ � ν
(that is to qαj de�ned by αj = (µσ � ν)(]−∞, qαj ])) where αj is
such that αj = 1− limN

nj−1

N = ν(]−∞, θj ]).

Proof of Theorem 6.7.2: 1) Choosing u = θj in Corollary 6.6.7 gives, for
any ε > 0,

ρθj − ε ≤ λnj−1+kj (MN ) ≤ · · · ≤ λnj−1+1(MN ) ≤ ρθj + ε, for large N(6.68)

holds almost surely. Hence

∀1 ≤ i ≤ kj , λnj−1+i(MN ) a.s.−→ ρθj .

2) a) We only focus on the case where θj is on the right of any connected com-
ponent of supp(ν) which is included in [slj , tlj ] since the other case may be
considered with similar arguments. Let us consider the set {θj0 > . . . > θjp}
of all the θi's being in [slj , tlj ] and on the right of any connected component
of supp(ν) which is included in [slj , tlj ]. Note that we have for all large N ,
for any 0 ≤ h ≤ p,

njh−1 + kjh = njh

and θj0 is the largest eigenvalue of AN which is lower than tlj . Let ε > 0.
Applying Corollary 6.6.7 with u = tlj , we get that, almost surely,

λnj0−1+1(MN ) < Hσ,ν(tlj ) + ε and λnj0−1(MN ) > Hσ,ν(tlj ) for all large N .

Now, almost surely, the number of eigenvalues of MN being in the interval
]Hσ,ν(tlj )−ε,Hσ,ν(tlj )] should tend to in�nity when N goes to in�nity. Since
almost surely for all large N , λnj0−1(MN ) > Hσ,ν(tlj ) and λnj0−1+1(MN ) <
Hσ,ν(tlj ) + ε, we should have

Hσ,ν(tlj )− ε ≤ λnjp−1+kjp
(MN ) ≤ . . . ≤ λnj0−1+1(MN ) < Hσ,ν(tlj ) + ε.

Hence, we deduce that: ∀0 ≤ l ≤ p and ∀1 ≤ i ≤ kjp , λnjp−1+i(MN ) a.s.−→
Hσ,ν(tlj ). The result then follows since j ∈ {j0, . . . , jp}.
b) Let αj = 1 − limN

nj−1

N = ν(] − ∞, θj ]). Denote by Q (resp. QN ) the
distribution function of µσ � ν (resp. of the spectral measure of MN ). Since
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µσ� ν is absolutely continuous, Q is continuous on R and strictly increasing
on each interval [Ψσ,ν(sl),Ψσ,ν(tl)], 1 ≤ l ≤ m.
From Proposition 6.1.9 and the hypothesis made on θj , one has that αj ∈
]Q(Ψσ,ν(slj )), Q(Ψσ,ν(tlj ))[ and there exists a unique qj ∈]Ψσ,ν(slj ),Ψσ,ν(tlj )[
such that Q(qj) = αj . Moreover, Q is strictly increasing in a neighborhood
of qi.
Let ε > 0. From the almost sure convergence of µMN

to µσ � ν, we deduce

QN (qj + ε) →
N→∞

Q(qj + ε) > αj , a.s..

From the de�nition of αj , it follows that for large N , N,N − 1, . . . , nj−1 +
kj , . . . , nj−1 + 1 belong to the set {k, λk(Mn) ≤ qj + ε} and thus,

lim sup
N→∞

λnj−1+1(MN ) ≤ qj + ε.

In the same way, since QN (qj − ε) →
N→∞

Q(qj − ε) < αj ,

lim inf
N→∞

λnj−1+kj (MN ) ≥ qj − ε.

Thus, the kj eigenvalues (λnj−1+i(MN ), 1 ≤ i ≤ kj) converge almost surely
to qj . �

6.8 Appendix

We present in this appendix the di�erent estimates on the variance used
throughout the paper. They rely on the Poincaré hypothesis on the distri-
bution µ of the entries of the Wigner matrixWN . We assume that µ satis�es
a Poincaré inequality, that is there exists a positive constant C such that for
any C∞ function f : R→ C such that f and f ′ are in L2(µ),

V(f) ≤ C
∫
|f ′|2dµ,

with V(f) = E(|f − E(f)|2).
We refer the reader to [BG99] for a characterization of such measures on R.
This inequality translates in the matricial case as follows:
For any matrix M , de�ne ||M ||2 = (Tr(M∗M))

1
2 the Hilbert-Schmidt norm.

Let Ψ : (MN (C)sa) → RN2
(resp. Ψ : (MN (R)s) → RN(N+1)/2) be the

canonical isomorphism which maps a Hermitian (resp. symmetric) matrix
M to the real parts and the imaginary parts of its entries (resp. to the
entries) Mij , i ≤ j.

Lemma 6.8.1. Let MN be the complex (resp. real) Wigner Deformed ma-
trix introduced at the beginning of the chapter. For any C∞ function f :
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RN2
(resp. RN(N+1)/2)→ C such that f and its gradient ∇(f) are both poly-

nomially bounded,

V[f ◦Ψ(MN )] ≤ C

N
E{‖∇ [f ◦Ψ(MN )] ‖22}. (6.69)

From this Lemma and the properties of the resolvent G (see Lemma
6.0.4), we obtain:

• V((GN (z))ij) ≤ C
NP (|=z|−1)

• V((GN (z))2
ii) ≤ C

NP (|=z|−1)

• Let H be a deterministic Hermitian matrix with norm ‖H‖, then,

V((HGN (z))ii) ≤
C

N
‖H‖2P (|=z|−1)

• V(tr(GN (z))) ≤ C
N2P (|=z|−1)

where P is a polynomial. It follows that:

E[(U∗GDUG)iiGiiG2
ll] = E[(U∗GDUG)ii]E[Gii]E[Gll]2 +

1
N
P (|=z|−1),

proving (6.18).
We now prove

Lemma 6.8.2. Let z ∈ C \ R. Then,

|E[G̃pktr(G)]− E[G̃pk]E[tr(G)]| ≤ P (|=z|−1)
N2

.

Proof: The cumulant expansion gives

zE(Gji) = σ2E(tr(G)Gji) + δij + E[(GAN )ji] +
κ4

2N2
E[T (i, j)] +Oji(

1
N2

),

where

T (i, j) =
1
3

{
1√
2

∑
l<i

(
G

(3)
jl .(eli, eli, eli) +

√
−1G(3)

jl .(fli, fli, fli)
)

+
1√
2

∑
l>i

(
G

(3)
jl .(eil, eil, eil)−

√
−1G(3)

jl .(fil, fil, fil)
)

+G(3)
jl .(Eii, Eii, Eii)

}
.

Straightforward computations give that

T (i, j) =
∑

lGjlG
3
li +

∑
lGjiGilGliGll

+
∑

lGjlGiiGliGll +
∑

lGjiGiiG
2
ll − 2G3

iiGji.
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We now compute the sum
∑
U∗ikUpj . . . to obtain:

(z − γk)E[G̃pk] = σ2E[tr(G)G̃pk] + δpk + κ4
2N2 E[Ã(p, k)]

− κ4
N2

∑
i,j U

∗
ikUpjE[G3

iiGji] +
∑

i,j U
∗
ikUpjOji(

1
N2 ),(6.70)

where

Ã(p, k) =
∑
i,j

U∗ikUpjA(i, j)

and

A(i, j) =
∑

lGjlG
3
li +

∑
lGjiGilGliGll

+
∑

lGjlGiiGliGll +
∑

lGjiGiiG
2
ll.

Since κ4
N2

∑
i,j U

∗
ikUpjG

3
iiGji = κ4

N2 (UG(G(d))3U∗)pk, this term is obviously a

O( 1
N2 ).

Let us verify the following bound for Ã:

| 1
N2

Ã(p, k)| ≤ C |=z|
−4

N
. (6.71)

Such a bound for the �rst term in the decomposition of A can be readily
deduced from (6.1). We write the computation for the fourth term in the
decomposition of A, the other two terms are similar:

1
N2

∑
i,j,l

U∗ikUpjGjiGiiG
2
ll

=
1
N2

∑
l

(UGG(d)U∗)pkG2
ll = O(

1
N

).

We prove now that the last term in (6.70) is of order O( 1
N2 ). This term is a

linear combination of terms of the form:

κ6

N3

∑
i,j,l

U∗ikUpjE[G(5)
jl .(v1, . . . , v5)],

where vu = Emn with (m,n) = (i, l) or (m,n) = (l, i). The �fth derivative is
a product of six G. If there are G2

il or GilGli in the product, we can conclude
thanks to Lemma 6.0.4. The only term without any Gil is

GjiGllGiiGllGiiGll

which gives the contribution

1
N3

∑
l

(UG(G(d))2U∗)pkG3
ll = O(

1
N2

).
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The term with one Gil (or Gli) will also give a contribution in 1
N2 . Hence

(z − γk)E[G̃pk] = σ2E[tr(G)G̃pk] + δpk +
κ4

2N2
E[Ã(p, k)] +O(

1
N2

). (6.72)

We now apply (6.8) (or its extension (6.9)) to Φ(XN ) = GjlGqq and H = Eil

and take the sum in l. We obtain

zE(GjiGqq) = σ2E(tr(G)GjiGqq) + σ2

N E[Gqi(G2)jq] + E[Gqqδij ]
+E[(GAN )jiGqq] + κ4

2N2 E[T (i, j)Gqq]
+ κ4

2N2 E[B(i, j, q)] +Oj,i( 1
N2 ),

where B(i, j, q) stands for all the terms coming from the third derivative of

the product (GjlGqq) except GqqG
(3)
jl . Now, we consider

1
N

∑
q of the above

equalities to obtain:

zE(Gjitr(G)) = σ2E(tr(G)2Gji) + σ2

N2 E[(G3)ji] + E[tr(G)δij ]
+E[(GAN )jitr(G)] + κ4

2N2 E[T (i, j)tr(G)]
+ κ4

2N2
1
N

∑
q E[B(i, j, q)] +Oj,i( 1

N2 ).

We now compute the sum
∑
U∗ikUpj . . . and obtain

(z − γk)E(G̃pktr(G)) = σ2E(tr(G)2G̃pk) + σ2

N2 E[(UG3U∗)pk]

+E[tr(G)δpk] + κ4
2N2 E[Ã(p, k)tr(G)]

+ κ4
2N2

1
N

∑
q E[B̃(p, k, q)] +O( 1

N2 ),

where
B̃(p, k, q) =

∑
U∗ikUpjB(i, j, q)

and we notice that the terms κ4
2N2

∑
U∗ikUpjE[(T (i, j) − A(i, j))tr(G)] and∑

U∗ikUpjOj,i(
1
N2 ) remain a O( 1

N2 ) by the same arguments used to handle
the analogue terms in (6.70).
Now, consider the di�erence between the above equation and gN (z)×(6.70):

(z − γk)E[(G̃pk(tr(G)− E[tr(G)])] =

σ2

N2
E[(UG3U∗)pk] + σ2E[tr(G)(tr(G)− E[tr(G)])G̃pk]

+
κ4

2N2
E[Ã(p, k)(tr(G)− E[tr(G)])]

+
κ4

2N2

1
N

∑
q

E[B̃(p, k, q)] +O(
1
N2

)

and
(z − γk − σ2gN (z))E[G̃pk(tr(G)− E[tr(G)])] =



6.8 Appendix 173

σ2E[(tr(G)− E[tr(G)])2G̃pk] +
σ2

N2
E[(UG3U∗)pk]

+
κ4

2N2
E[Ã(p, k)(tr(G)− E[tr(G)])]

+
κ4

2N2

1
N

∑
q

E[B̃(p, k, q)] +O(
1
N2

).

We now prove that the right-hand side of the above equation is of order 1
N2 .

This is obvious for the second and �rst term (since V(tr(GN (z))) = O( 1
N2 )).

Now, we have seen that

1
N2

Ã(p, k) ≤ C|=z|−4

N
.

By Cauchy-Schwarz inequality,

1
N2

E[Ã(p, k)(tr(G)− E[tr(G)])] = O(
1
N2

).

It remains to study the last term

1
N3

∑
q

E[B̃(p, k, q)] =
1
N3

∑
i,j,q

U∗ikUpjE[B(i, j, q)].

This term contains derivatives of Gqq of order a with a strictly positive (a =
1, 2, 3) applied to a 3-tuple (v1, v2, v3) where vu = Eil or Eli (with a product
of the derivative of order 3−a of Gjl). Thus, the index q appears in B̃(p, k, q)
under the form of a product GqmGnq with m,n ∈ {i, l}. Thus, the sum in
q will give G2

nm. Moreover, the term in j in the derivative appears as Gjm
with m ∈ {i, l} and we can do the sum in j to obtain (UG)pm. Thus,

1
N3

∑
q B̃(p, k, q) can be written as 1

N3

∑
i,l of terms of the form

U∗ik(G
2)i1j1(UG)pj2Gi3j3Gi4j4 ,

where ir, jr ∈ {i, l} and j2 = l for a = 3 (no derivative in Gjl), j4 = l for
a < 3. As in the previous computations, either the product G2

il (or GilGli)
appears and we can apply Lemma 6.0.4 (the others terms are bounded).
In the other cases, we can always perform one sum in i (or l) and obtain

1
N3

∑
l( or i) of bounded terms. Let us just give an example of terms which

can be obtained (for a = 1):

U∗ik(G
2)li(UG)plGiiGll.

Then,

1
N3

∑
i,l

U∗ik(G
2)li(UG)plGiiGll =

1
N3

∑
i

U∗ik(UGG
(d)G2)piGii.

Therefore, 1
N3

∑
q E[B̃(p, k, q)] is of order 1

N2 . This proves Lemma 6.8.2 since

| 1
z−γk−σ2gN (z)

| ≤ |=z|−1. �
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Chapter 7

Largest eigenvalues of

deformations of Wishart

matrices

This chapter is a joint work in progress with M. Capitaine.

We consider the following model :

MN (p(N)) =
1
N
XN +AN

• XN is a white complex Wishart matrix of size N with p(N) degrees of
freedom.

• limN→+∞
p(N)
N = α > 0.

• AN is a deterministic diagonal Hermitian matrix. To simplify, we de-

note its eigenvalues γ
(N)
i by γi. We assume that the spectral measure

of AN de�ned by µAN := 1
N

∑N
i=1 δγi converges to some probability

measure ν with compact support and supN supi=1,...N |γ
(N)
i | ≤ M for

some constant M . We assume that AN has a number J of �xed eigen-
values θ1 > . . . > θJ which are independent of N , each θj having a
�xed multiplicity kj ,

∑
j kj = r and AN has N − r eigenvalues βi(N)

such that
N−r
max
i=1

dist(βi(N), suppν) −→
N→+∞

0

when N goes to in�nity.

Throughout this chapter, we will use the following notations:

- GN denotes the resolvent of MN (p(N))

175
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- gN the mean of the Stieltjes transform of the spectral measure of
MN (p(N)), that is

gN (z) = E(trGN (z)), z ∈ C \ R.

- πγ,σ denotes the Marchenko-Pastur distribution of parameters (γ, σ)
de�ned by (1.3).

- g̃N denotes the Stieltjes transform of the probability measure π p(N)
N

,1
�

µAN .

- When we state that some quantity ∆N (z), z ∈ C \ R, is O( 1
Np ), this

means precisely that:

|∆N (z)| ≤ (|z|+K)a
P (|=z|−1)

Np

for some K ≥ 0, a > 0 and some polynomial P with nonnegative
coe�cients.

- For any set S in R, we denote the set {x ∈ R, dist(x, S) ≤ ε} (resp.
{x ∈ R, dist(x, S) < ε}) by S + [−ε,+ε] (resp. S + (−ε,+ε)).

7.1 Basic tools

We recall some useful properties of the resolvent (see [KKP96], [CDM07]).

Lemma 7.1.1. For a N × N Hermitian or symmetric matrix M , for any
z ∈ C \ Spect(M), we denote by G(z) := (zIN −M)−1 the resolvent of M .
Let z ∈ C \ R,

(i) ‖G(z)‖ ≤ |=z|−1 where ‖.‖ denotes the operator norm.

(ii) |G(z)ij | ≤ |=z|−1 for all i, j = 1, . . . N .

(iii) For p ≥ 2,
1
N

N∑
i,j=1

|G(z)ij |p ≤ (|=z|−1)p. (7.1)

(iv) The derivative with respect to M of the resolvent G(z) satis�es:

G′M (z).B = G(z)BG(z) for any matrix B.

(v) Let z ∈ C such that |z| > ‖M‖; we have

‖G(z)‖ ≤ 1
|z| − ‖M‖

.
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7.2 Subordination

The subordination phenomenon for the free additive convolution of proba-
bility measures may be precised when one of the measures is freely in�nitely
divisible. Indeed, under this additional assumption, the subordination map
is one-to-one :

Theorem 7.2.1. [Bia97a] Let µ and ν be two probability measures on R, µ
being freely in�nitely divisible, the subordination map of µ � ν with respect
to ν is

ων,µ(z) = z −Rµ(Gµ�ν(z)), ∀z ∈ C+,

and is a conformal bijection from C+ onto a simply connected domain Ων,µ ⊆
C+.

Moreover, the inverse map of ων,µ is the restriction to Ων,µ of the analytic
map Hν,µ : C+ −→ C de�ned by :

∀z ∈ C+, Hν,µ(z) := z +Rµ(Gν(z)).

Since =Hν,µ(z) ≤ =z for z ∈ C+ and
Hν,µ(iy)

iy −→
y→+∞

1, it is proved in [BB05]

that
Ων,µ = H−1

ν,µ(C+).

The paper [BB05] also provides the study of the behavior of the subordina-
tion map on the boundary of the upper half-plane :

Theorem 7.2.2. [BB05] Let µ and ν be two probability measures on R,
µ being freely in�nitely divisible, the subordination map ων,µ of µ � ν with
respect to ν has a continuous extension to R which yields a bijection from
C+ ∪ R onto Ων,µ ⊆ C+ ∪ R. Moreover,

• A point z ∈ C+ belongs to ∂Ων,µ if and only if Hν,µ(z) ∈ R.

• A point x ∈ R belongs to ∂Ων,µ if and only if the limit

Hν,µ(x) := lim
y↓0

Hν,µ(x+ iy)

exists in R and

H ′ν,µ(x) := lim
y↓0

Hν,µ(x+ iy)−Hν,µ(x)
iy

∈ [0; 1[.

When applied to the free additive convolution of the Marchenko-Pastur
distribution πγ,1 with the probability measure τ , the subordination map of
πγ,1 � τ with respect to τ writes :

ωτ,γ(z) = z − γ

1−Gπγ,1�τ (z)
.



178 Chapter 7 : Largest eigenvalues of deformations of Wishart matrices

Hence, we get the following subordination equation :

∀z ∈ C+, Gπγ,1�τ (z) = Gτ

(
z − γ

1−Gπγ,1�τ (z)

)
. (7.2)

In particular,

∀z ∈ C+, g̃N (z) = GµAN

(
z − p(N)

N

1
1− g̃N (z)

)
. (7.3)

Moreover, we will denote by Ωτ,γ the range of ωτ,γ and by

Hτ,γ(z) := z +
γ

1−Gτ (z)

the inverse of ωτ,γ .

7.3 Approximate subordination equation for gN

We look for an approximate equation for gN (z) of the form (7.3). We shall
rely on the following integration by parts formula established in [Kon09].

Theorem 7.3.1. Let B be a p×N complex Gaussian random matrix

B = (bij)i=1...p,j=1...N

with independent entries of variance 1, that is such that the real random vari-
ables <(bij),=(bij), 1 ≤ i ≤ p, 1 ≤ j ≤ N form a family of 2pN independent
N (0, 1

2) random variables.
Assume that Φ := Φ(B∗B) = (Φi,j)i,j=1,...,N is a N × N complex ran-
dom matrix such that each Φij is a di�erentiable function of B through
XN = B∗B and satis�es the following conditions for i1, i2, i3, i4 = 1, . . . , N ,
j1, j2 = 1, . . . , p :

E
{
|b2j1i1Φi2i3 |

}
<∞,

E
{
|bj1i1

∂Φi2i3

∂bj2i4
|
}
<∞.

Then,

E [Tr(XNΦ)] = pE [TrΦ] + E
[
Tr(BT∇BΦT )

]
, (7.4)

where

∇B =
(

∂

∂bij

)
=
(

1
2

∂

∂(<bij)
−
√
−1
2

∂

∂(=bij)

)
i=1,...,p,j=1,...,N

.
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To simplify the notations here, we will denote by G (instead of GN ) the
resolvent of MN (p(N)):

G(z) := (zIN −MN (p(N)))−1

= (zIN −XN −AN )−1

= (zIN −
1
N
B∗B −AN )−1.

Denote by eij (resp. Eij) the p×N matrix (resp. N ×N matrix) such that
(eij)lq (resp. (Eij)lq)= δilδjq. Note that

∂Gql
∂bik

=
1

2N

{
G

(
B∗

∂B

∂(<bik)
+

∂B∗

∂(<bik)
B

)
G

}
ql

−
√
−1

2N

{
G

(
B∗

∂B

∂(=bik)
+

∂B∗

∂(=bik)
B

)
G

}
ql

=
1

2N
{G (B∗eik + e∗ikB)G}ql

−
√
−1

2N
{
G
(
B∗
√
−1eik −

√
−1e∗ikB

)
G
}
ql

=
1
N
{GB∗eikG}ql .

Hence applying Theorem 7.3.1 with Φ = GEkk one can readily get the fol-
lowing formula

E((XNG)kk) = E(Gkktr(GXN )) +
p(N)
N

E(Gkk). (7.5)

Now since G satis�es XNG = −I −ANG+ zG, we deduce from (7.5) that

E(Gkk)
{
p(N)
N
− z + γk + E(tr(GXN ))

}
= −1−∆k, (7.6)

where
∆k = E [tr(GXN )(Gkk − E(Gkk))] .

Now, taking the sum in k in (7.5) we get

E(tr(GXN )trG)− E(tr(GXN )) +
p(N)
N

gN (z) = 0. (7.7)

Since, according to Lemma 7.8.4,

E(tr(GXN )trG) = E(tr(GXN ))gN (z) +O(
1
N2

),

it follows from (7.7) that

E(tr(GXN ))(1− gN (z)) =
p(N)
N

gN (z) +O(
1
N2

)
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and then, using Lemma 7.8.3, that

E(tr(GXN )) =
p(N)
N

gN (z)
1− gN (z)

+O(
1
N2

). (7.8)

Plugging (7.8) into (7.6), we get

E(Gkk)
{
p(N)
N
− z + γk +

p(N)
N

gN (z)
1− gN (z)

}
= (−1−∆k) +O(

1
N2

) (7.9)

and then

E(Gkk)
{
z − γk −

p(N)
N

1
1− gN (z)

}
= (1 + ∆k) +O(

1
N2

).

Now, for any z ∈ C+, = 1
1−gN (z) < 0 so that

=
{
z − γk −

p(N)
N

1
1− gN (z)

}
> =z > 0.

Hence

E(Gkk) = (1 + ∆k)
1

z − γk − p(N)
N

1
1−gN (z)

+O(
1
N2

).

Summing on k and dividing by N , we deduce that

gN (z) = GµAN

(
z − p(N)

N

1
1− gN (z)

)
+ ΓN +O(

1
N2

),

where

ΓN =
1
N

N∑
k=1

∆k

z − γk − p(N)
N

1
1−gN (z)

.

Lemma 7.3.2.

ΓN = O(
1
N2

).

Proof of Lemma 7.3.2 Applying Theorem 7.3.1 with Φ = GGkk we readily
get the following formula

E (tr(XNG)Gkk) = E (tr(XNG)tr(G)Gkk)

+
p(N)
N

E (tr(G)Gkk)

+
1
N2

E
(
(GXNG

2)kk
)
. (7.10)



7.3 Approximate subordination equation for gN 181

Now (7.10) - E(Gkk)× (7.7) gives

E (tr(XNG) (Gkk − E(Gkk))) = E (tr(XNG)tr(G) (Gkk − E(Gkk)))

+
p(N)
N

E (tr(G) (Gkk − E(Gkk)))

+
1
N2

E
(
(GXNG

2)kk
)
.

Thus,
E (tr(XNG) (Gkk − E(Gkk))) =

E (tr(XNG) (tr(G)− E(tr(G))) (Gkk − E(Gkk)))

+
p(N)
N

E ((tr(G)− E(tr(G))) (Gkk − E(Gkk)))

+gN (z)E (tr(XNG) (Gkk − E(Gkk)))

+
1
N2

E
(
(GXNG

2)kk
)

and
(1− gN (z))E [tr(XNG) (Gkk − E(Gkk))] =

E [(tr(XNG)− E(tr(XNG))) (tr(G)− E(tr(G))) (Gkk − E(Gkk))]

p(N)
N

E [(tr(G)− E(tr(G))) (Gkk − E(Gkk))]

E[tr(XNG)]E ([(tr(G)− E(tr(G))) (Gkk − E(Gkk))]

1
N2

E
[
(GXNG

2)kk
)
].

Now using Lemma 7.1.1 (ii) and then Cauchy Schwarz inequality and Lemma
7.8.4 one can easily see that

E [(tr(XNG)− E(tr(XNG))) (tr(G)− E(tr(G))) (Gkk − E(Gkk))] =

O(
1
N2

).

Moreover, using (7.8) and Lemma 7.1.1, one can see that

E[tr(XNG)]E [(tr(G)− E(tr(G))) (Gkk − E(Gkk))]

=
p(N)
N

1
1− gN (z)

E [(tr(G)− E(tr(G))) (Gkk − E(Gkk))] +O(
1
N2

).

Finally, using Lemma 7.1.1,

1
N2

E
[
(GXG2)kk

)
] ≤ 1

N2

1
|=z|3

E [λ1(MN ))]

≤ 1
N2

1
|=z|3

{E [λ1(XN ))] + ‖AN‖}
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According to Lemma 7.8.1, E[λ1(XN )] is bounded independently ofN . ‖AN‖
is also obviously bounded independently of N according to the assumptions
on AN . Thus

1
N2

E
[
(GXNG

2)kk
)
] = O(

1
N2

).

It follows that

∆k =
p(N)
N

1
(1− gN (z))2

E [(tr(G)− E(tr(G))) (Gkk − E(Gkk))] +O(
1
N2

).

(7.11)
Let us set DN = diag(d1, . . . , dN ), where dk = 1

z−γk− p(N)
N

1
1−gN (z)

.

We can deduce from (7.11) that ΓN is equal to

p(N)
N(1− gN (z))2

E [(tr(G)− E(tr(G))) (tr(DNG)− E(tr(DNG)))]

+O(
1
N2

).

It follows that ΓN = O( 1
N2 ) using Lemma 7.8.4 and Lemma 7.8.3. �

Thus, we can deduce the following

Proposition 7.3.3. For z ∈ C+, gN (z) satis�es:

gN (z) = GµAN

(
z − p(N)

N

1
1− gN (z)

)
+O(

1
N2

). (7.12)

7.4 Estimation of gN − g̃N
Proposition 7.4.1. ∀z ∈ C+,

gN (z)− g̃N (z) = O(
1
N2

). (7.13)

Proof of proposition 7.4.1: For a �xed z ∈ C+, one may write the
subordination equation (7.3) :

g̃N (z) = GµAN

(
z − p(N)

N

1
1− g̃N (z)

)
,

and the approximative matricial subordination equation (7.12) :

gN (z) = GµAN

(
z − p(N)

N

1
1− gN (z)

)
+O(

1
N2

).

The main idea is to simplify the di�erence gN (z) − g̃N (z) by introducing a
complex number z′ likely to satisfy

ω
µAN ,

p(N)
N

(z′) = z′ − p(N)
N

1
1− g̃N (z′)

= z − p(N)
N

1
1− gN (z)

. (7.14)
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We know by Theorem 7.2.1 that ω
µAN ,

p(N)
N

is a homeomorphism from C+

onto Ω
µAN ,

p(N)
N

whose inverse H
µAN ,

p(N)
N

has an analytic continuation to the

whole upper half-plane C+.
Since z − p(N)

N
1

1−gN (z) ∈ C+, z′ ∈ C is well-de�ned by the formula :

z′ := H
µAN ,

p(N)
N

(z − p(N)
N

1
1− gN (z)

).

One has

z′ − z =
p(N)
N

1

1−GµAN (z − p(N)
N

1
1−gN (z))

− p(N)
N

1
1− gN (z)

= −p(N)
N

gN (z)−GµAN
(
z − p(N)

N
1

1−gN (z)

)
(1−GµAN (z − p(N)

N
1

1−gN (z)))(1− gN (z))

By (7.12), Lemma 7.8.2 and Lemma 7.8.3, there exists a polynomial P with
non negative coe�cients such that

|z′ − z| ≤ (|z|+K1)a1
P (|=z|−1)

N2
.

On the one hand, if

|z′ − z| ≥ |=z|
2
,

one obtains :

1 ≤ 2|=z|−1(|z|+K1)a1P (|=z|−1)
N2

. (7.15)

It is then enough to prove that

gN (z)− g̃N (z) = O(1). (7.16)

Indeed, if we assume that (7.15) and (7.16) hold, then there exists a polyno-
mial Q with non negative coe�cients such that

|gN (z)− g̃N (z)| ≤ (|z|+K2)a2(|z|+K)aQ(|=z|−1)

≤ (|z|+K2)a2Q(|=z|−1)
2|=z|−1(|z|+K1)a1P (|=z|−1)

N2

Hence,

gN (z)− g̃N (z) = O(
1
N2

).

To prove (7.16), one may claim that both gN (z) and g̃N (z) are bounded by
1
|=z| .
On the other hand, if

|z′ − z| ≤ |=z|
2
,
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one has :

|=z′ −=z| ≤ |z′ − z| ≤ |=z|
2

which implies =z′ ≥ =z2 and therefore z′ ∈ C+. We have proved that

z − p(N)
N

1
1− gN (z)

∈ H−1

µAN ,
p(N)
N

(C+) = Ω
µAN ,

p(N)
N

and therefore (7.14) is satis�ed. Thus,

gN (z)− g̃N (z′) = O(
1
N2

). (7.17)

On the other hand,

g̃N (z′)− g̃N (z) = (z − z′)
∫

R

d(π p(N)
N

,1
� µAN )(x)

(z′ − x)(z − x)
(7.18)

Taking into account the estimation of z′ − z above, one has :

(z − z′)
∫

R

d(π p(N)
N

,1
� µAN )(x)

(z′ − x)(z − x)
= O(

1
N2

).

Hence

g̃N (z′)− g̃N (z) = O(
1
N2

). (7.19)

Conclusion follows from (7.17) and (7.19) since

|gN (z)− g̃N (z)| ≤ |gN (z)− g̃N (z′)|+ |g̃N (z′)− g̃N (z)|. � (7.20)

7.5 Study of πp(N)
N ,1 � µAN

In the notations of Section 7.2, we de�ne

Fτ,γ := R \ (R ∩ ∂Ωτ,γ) ∪ {x ∈ R|τ({x}) > γ}.

Remark 7.5.1. The set Fτ,γ is clearly closed. Actually, it is a compact
subset of R because it is included in {x ∈ R|dist(x, supp(τ)) ≤ √γ + 2}.
Indeed, consider x ∈ R such that dist(x, supp(τ)) >

√
γ + 2.

Then, Gτ is analytic at x 6∈ supp(τ) and Gτ (x) ∈ [−1
2 ; 1

2 ] since

dist(x, supp(τ)) > 2.

It follows that Hτ,γ is analytic and real-valued at x. In particular, the limits

lim
y↓0

Hτ,γ(x+ iy) = Hτ,γ(x),
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lim
y↓0

Hτ,γ(x+ iy)−Hτ,γ(x)
iy

= H ′τ,γ(x)

exist respectively in R and C. Moreover,

H ′τ,γ(x) = 1 +
γG′τ (x)

(1−Gτ (x))2
∈ R.

Since dist(x, supp(τ)) >
√
γ + 1, we have

− 1
(
√
γ + 1)2

≤ G′τ (x) < 0

and

0 <
1

(1−Gτ (x))2
≤ 1

(1− 1√
γ+1)2

,

which implies H ′τ,γ(x) ∈ [0; 1[ and shows that x ∈ R ∩ ∂Ωτ,γ .

We will need the following

Lemma 7.5.2.

supp(τ) ⊆ Fτ,γ .

Proof of Lemma 7.5.2: We show successively that supp(τ sc), supp(τac)
and {atoms of τ} are included in Fτ,γ , where τ

sc (respectively τac) denotes
the singular continuous (resp. absolutely continuous) part of τ .
Assume that τ sc(R \ Fτ,γ) > 0, it means that there is an uncountable set of
x ∈ R\Fτ,γ satisfying τ({x}) = 0 and limy→0+ |Gτ (x+ iy)| = +∞. For such
x,

Hτ,γ(x) = x

and

lim
y→0+

|Hτ,γ(x+ iy)−Hτ,γ(x)
iy

| = +∞,

which is in contradiction with the assumption that x ∈ R \ Fτ,γ .
Then, we show that there exists a real Borel set O such that R\O is negligible
and τac satis�es :

∀x ∈ O ∩ (R \ Fτ,γ),
dτac

dx
(x) = 0.

De�ne

O1 := {x ∈ R | Gτ has a �nite nontangential limit at x},

O2 := {x ∈ R | lim
y→0+

=Gτ (x+ iy) = −πdτ
ac

dx
(x)}

and
O = O1 ∩O2,
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whose complementary is indeed negligible.
Take x ∈ O ∩ (R \ Fτ,γ). Then

lim
y→0+

Hτ,γ(x+ iy) ∈ R \ {x},

and consequently limy→0+ =Gτ (x+ iy) = 0.
Let x be an atom of τ such that τ({x}) < γ. Then

Hτ,γ(x+ iy) −→
y→0+

x,

and
Hτ,γ(x+ iy)− x

iy
−→
y→0+

1− γ

τ({x})
< 0.

This implies that x 6∈ R ∩ ∂Ωτ,γ . In particular, x ∈ Fτ,γ .
So far, we have proved that

supp(τ̃) ⊆ Fτ,γ ,

where τ̃ = τ −
∑

x∈R;τ({x})=γ γδx. Let x 6∈ supp(τ̃) satisfying τ({x}) = γ,

one can �nd a sequence (xn)n∈N ∈ (R \ supp(τ))N such that xn −→
n→+∞

x.

Since Gτ (xn) ∈ R and |Gτ (xn)| −→
n→+∞

+∞, for n su�ciently large, we have

Hτ,γ(xn) ∈ R. More precisely, we have

Gτ (xn) =
γ

xn − x
+Gτ−γδx(x) + (xn − x)G′τ−γδx(x) + o(xn − x)

and

G′τ (xn) = − γ

(xn − x)2
+G′τ−γδx(x) + o(1).

This implies that

(1−Gτ (xn))2 + γG′τ (xn) = 2γ
Gτ−γδx(x)− 1

xn − x

+(1−Gτ−γδx(x))2 + 3γG′τ−γδx(x) + o(1).

If Gτ−γδx(x) − 1 > 0 (resp. < 0), we choose (xn)n∈N ∈ (R \ supp(τ))N so
that xn −→

n→+∞
x− (resp. x+) and

H ′τ,γ(xn) ∼
2γGτ−γδx (x)−1

xn−x
γ2

(xn−x)2

∼
2(Gτ−γδx(x)− 1)

γ
(xn − x).
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If Gτ−γδx(x)− 1 = 0,

H ′τ,γ(xn) ∼
3γG′τ−γδx(x)

γ2

(xn−x)2

∼
3G′τ−γδx(x)

γ
(xn − x)2.

In each case, for n su�ciently large, xn ∈ R \ R ∩ ∂Ωτ,γ , and �nally x ∈
R \ R ∩ ∂Ωτ,γ ⊆ Fτ,γ , which concludes the proof. �

Proposition 7.5.3. Hτ,γ is an increasing C1-di�eomorphism from R \ Fτ,γ
onto R \ supp(πγ,1 � τ).

Proof of Proposition 7.5.3: Since πγ,1 is freely in�nitely divisible, by
Theorem 7.2.2, Hτ,γ is well de�ned and real-valued on R \Fτ,γ ⊆ R∩ ∂Ωτ,γ .
Notice also that 1 − Gτ does not vanish on R \ Fτ,γ , otherwise Hτ,γ would
explode.
Since R\Fτ,γ ⊆ R\supp(τ), 1−Gτ is continuously di�erentiable on R\Fτ,γ ,
and so is Hτ,γ . Moreover,

∀x ∈ R \ Fτ,γ , H ′τ,γ(x) = 1− γ

(1−Gτ (x))2

∫
R

dτ(t)
(x− t)2

≥ 0.

Take x, y ∈ R \ Fτ,γ , and assume x < y. Then

Hτ,γ(y)−Hτ,γ(x)
y − x

= 1− γ

(1−Gτ (x))(1−Gτ (y))

∫
R

dτ(t)
(x− t)(y − t)

.

Apply Cauchy-Schwarz inequality to get

| γ

(1−Gτ (x))(1−Gτ (y))

∫
R

dτ(t)
(x− t)(y − t)

|≤

( γ

(1−Gτ (x))2

∫
R

dτ(t)
(x− t)2

) 1
2
( γ

(1−Gτ (y))2

∫
R

dτ(t)
(y − t)2

) 1
2
,

and obtain that Hτ,γ is increasing on R \ Fτ,γ .
For x ∈ R \ Fτ,γ ⊆ R∩ ∂Ωτ,γ , x+ iy ∈ Ωτ,γ for any y > 0. This implies that

∀y > 0, ωτ,γ(Hτ,γ(x+ iy)) = x+ iy.

Let y tend to 0+ in the expression above, and get, by continuity of ωτ,γ ,

ωτ,γ(Hτ,γ(x)) = x.

This has for consequence that Hτ,γ is a bijection from R \ Fτ,γ onto its
image Hτ,γ(R \ Fτ,γ), whose inverse is precisely the restriction of ωτ,γ to
Hτ,γ(R \ Fτ,γ). We have to prove that

Hτ,γ(R \ Fτ,γ) = R \ supp(πγ,1 � τ).
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We �rst show the inclusion

R \ supp(πγ,1 � τ) ⊆ Hτ,γ(R \ Fτ,γ).

We know that ωτ,γ is a homeomorphism from R\supp(πγ,1�τ) onto its image,
which is an open subset of R ∩ ∂Ωτ,γ . In particular, ωτ,γ is continuous from

R \ supp(πγ,1 � τ) into R \ R \ (R ∩ ∂Ωτ,γ).
The atoms x of τ satisfying τ({x}) > γ, because they are atoms of πγ,1 � τ
satisfying ωτ,γ(x) = x, are not in ωτ,γ(R \ supp(πγ,1 � τ), due to univalence
of ωτ,γ on C+ ∪ R. This has for consequence that ωτ,γ is continuous from
R \ supp(πγ,1 � τ) into R \ Fτ,γ .
Since in addition Hτ,γ is continuous on R \ Fτ,γ , we have, for any x ∈ R \
supp(πγ,1 � τ),

x = lim
y→0+

x+ iy = lim
y→0+

Hτ,γ(ωτ,γ(x+ iy)) = Hτ,γ(ωτ,γ(x)) ∈ Hτ,γ(R \ Fτ,γ).

To prove the other inclusion

Hτ,γ(R \ Fτ,γ) ⊆ R \ supp(πγ,1 � τ),

we recall that it is proved in [Bel08] that the singular part of πγ,1 � τ is
purely atomic and has support equal to {x ∈ R|τ({x}) > γ}. It is therefore
su�cient to show the existence of a real Borel set O such that R \ O is
negligible and

∀x ∈ O ∩Hτ,γ(R \ Fτ,γ),
d(πγ,1 � τ)ac

dx
(x) = 0.

Consider

O := {x ∈ R | lim
y→0+

=Gπγ,1�τ (x+ iy) = −πd(πγ,1 � τ)ac

dx
(x)},

whose complementary is indeed negligible.
For x ∈ R \ Fτ,γ such that Hτ,γ(x) ∈ O, and for y > 0, we de�ne

z := ωτ,γ(Hτ,γ(x) + iy) ∈ Ωτ,γ

Then

Gπγ,1�τ (Hτ,γ(x) + iy) = Gπγ,1�τ (Hτ,γ(z)) = Gτ (z).

When y tends to 0+, z goes to ωτ,γ(Hτ,γ(x)) = x. We know that Gτ is
continuous and real-valued at x ∈ R \Fτ,γ ⊆ R \ supp(τ). We may therefore
conclude that limy→0+ =Gπγ,1�τ (Hτ,γ(x) + iy) = 0 and we are done. �

We also de�ne

Θ = {θi, 1 ≤ i ≤ J} and Θν,πα,1 = Θ ∩ (R \ Fν,α). (7.21)
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Furthermore for all θi ∈ Θν,πα,1 , we let

ρ
(α)
θi

= Hν,α(θi) = θi +
α

1−Gν(θi)
(7.22)

which is outside the support of πα,1 � ν according to Proposition 7.5.3 and
we let

Kν,α(θ1, . . . , θJ) := supp(πα,1 � ν)
⋃{

ρ
(α)
θi
, θi ∈ Θν,πα,1

}
. (7.23)

Theorem 7.5.4. For any ε > 0,

supp(π p(N)
N

,1
� µAN ) ⊂ Kν,α(θ1, . . . , θJ) + (−ε, ε),

when N is large enough.

Proof of Theorem 7.5.4: For a �xed ε > 0, we rather prove the existence
of a N0 ∈ N such that, for N ≥ N0, we have :

R \ (Kν,α(θ1, . . . , θJ) + (−ε, ε)) ⊆ R \ supp(π p(N)
N

,1
� µAN ).

We break the argument in two lemmas.

Lemma 7.5.5. ∀η > 0,∃N1 ∈ N,∀N ≥ N1,

{u ∈ R | dist(u, Fν,α ∪Θν,πα,1) > η} ⊆ R \ F
µAN ,

p(N)
N

.

Proof of Lemma 7.5.5 : Fix η > 0, and choose N ′1 ∈ N such that :

∀N ≥ N ′1, max
1≤i≤N−r

dist(βi(N), supp(ν)) <
η

2
.

This implies that, for N ≥ N ′1,

{u ∈ R | dist(u, Fν,α ∪Θν,πα,1) > η} ⊆ R \ supp(µAN )

⊆ R \ {x ∈ R|µAN ({x}) > p(N)
N
}.

It remains to prove that, for N su�ciently large,

{u ∈ R | dist(u, Fν,α ∪Θν,πα,1) > η} ⊆ ∂Ω
µAN ,

p(N)
N

,

or, in other words, that there exists N1 ≥ N ′1 such that for all N ≥ N1, and
each u ∈ R satisfying dist(u, Fν,α ∪Θν,πα,1) > η}, the limit

H
µAN ,

p(N)
N

(u) := lim
v↓0

H
µAN ,

p(N)
N

(u+ iv)
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exists in R and

H ′
µAN ,

p(N)
N

(u) := lim
v↓0

H
µAN ,

p(N)
N

(u+ iv)−H
µAN ,

p(N)
N

(u)

iv
∈ [0; 1[.

When N ≥ N ′1,

{u ∈ R | dist(u, Fν,α ∪Θν,πα,1) > η} ⊆ R \ supp(µAN ),

hence GµAN takes real values on {u ∈ R | dist(u, Fν,α ∪ Θν,πα,1) > η}. To
conclude that H

µAN ,
p(N)
N

(u) ∈ R, it remains to prove that, for N su�ciently

large, GµAN stays away from 1 on this set. We know that |1−Gν | is contin-
uous positive on R \ Fν,α, so in particular on the compact set

K :=
{
u ∈ R | dist(u, Fν,α ∪Θν,πα,1) ≥ η,

dist(u, (supp(ν) ∪Θ) + (−η
2 ; η2 )) ≤ 2

}
.

Denote then by m the positive quantity m := infK |1 − Gν | > 0. Then, by
uniform convergence of (GµAN )N≥N ′1 toward Gν on K,

∃N ′′1 ≥ N ′1,∀N ≥ N ′′1 , ∀u ∈ K, |1−GµAN (u)| ≥ 1
2
m.

If u ∈ {u ∈ R | dist(u, Fν,α∪Θν,πα,1) > η}\K, we notice that |1−GµAN (u)| ≥
1
2 . This concludes the �rst part of the proof.
On R \ Fν,α, we know that H ′ν,πα,1 is nonnegative ; it is actually positive,
since, by taking the derivative (possible by Proposition 7.5.3) in the relation

∀x ∈ R \ Fν,α, ων,α(Hν,α(x)) = x,

one gets
∀x ∈ R \ Fν,α, H ′ν,α(x)ω′ν,α(Hν,α(x)) = 1

which shows that H ′ν,α cannot vanish on R \ Fν,α. By uniform convergence
of (H ′

µAN ,
p(N)
N

)N≥N ′1 toward H ′ν,α on the compact set K ′ consisting of the

numbers u ∈ R satisfying

dist(u, Fν,α ∪Θν,πα,1) ≥ η

and

dist(u, (supp(ν) ∪Θ) + (−η
2

;
η

2
)) ≤

√
sup
N∈N

p(N)
N

+ 1,

we get :

∃N1 ≥ N ′′1 ,∀N ≥ N1, ∀u ∈ K ′, H ′
µAN ,

p(N)
N

(u) ∈ [0; 1[.

Notice that, if u ∈ {u ∈ R | dist(u, Fν,α ∪ Θν,πα,1) > η} \ K ′, one has
H ′
µAN ,

p(N)
N

(u) ∈ [0; 1[. �
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Lemma 7.5.6. ∃η > 0,∃N2 ∈ N,∀N ≥ N2,

R \ (Kν,α(θ1, . . . , θJ) + (−ε, ε)) ⊆

H
µAN ,

p(N)
N

({u ∈ R | dist(u, Fν,α ∪Θν,πα,1) > η}).

Proof of Lemma 7.5.6 : We write the compact set Fν,α as the union of
its connected components :

Fν,α = ∪
1≤l≤L

[sl; tl].

Using Proposition 6.4, we obtain that the set R \ supp(πα,1 � ν) is equal to

]−∞;Hν,α(s−1 )[∪ ∪
1≤l≤L−1

]Hν,α(t+l );Hν,α(s−l+1)[∪]Hν,α(t+L ); +∞[.

Then the set
R \ (Kν,α(θ1, . . . , θJ) + (−ε, ε))

is of the form

]−∞;h1[∪ ∪
1≤m≤L̃−1

]km;hm+1[∪]kL̃; +∞[,

where either
(hm, km) = (Hν,α(s−lm)− ε,Hν,α(t+lm) + ε),

or
(hm, km) = (Hν,α(θim)− ε,Hν,α(θim) + ε).

By continuity (or de�nition of left/right limit) of Hν,α, there exists an η > 0
such that, for each 1 ≤ m ≤ L̃,

Hν,α(slm − η) ≥ Hν,α(s−lm)− ε

2
,

Hν,α(tlm + η) ≤ Hν,α(t+lm) +
ε

2
,

Hν,α(θim − η) ≥ Hν,α(θim)− ε

2
,

Hν,α(θim + η) ≤ Hν,α(θim) +
ε

2
.

Finally, there exists an N2 ∈ N such that, for all N ≥ N2,

H
µAN ,

p(N)
N

(slm − η) ≥ Hν,α(slm − η)− ε

2
,

H
µAN ,

p(N)
N

(tlm + η) ≤ Hν,α(tlm + η) +
ε

2
,

H
µAN ,

p(N)
N

(θim − η) ≥ Hν,α(θim − η)− ε

2
,
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H
µAN ,

p(N)
N

(θim + η) ≤ Hν,α(θim + η) +
ε

2
.

We have thus proved, for N ≥ N2, the required inclusion. �
End of proof of Theorem 7.5.4: Let ε > 0 be �xed, and let η > 0, N2 ∈ N
be given by Lemma 7.5.6. Apply then Lemma 7.5.5 to this η and let N1 ∈ N
be given by this lemma. Since, by Proposition 7.5.3,

H
µAN ,

p(N)
N

(R \ F
µAN ,

p(N)
N

) = R \ supp(π p(N)
N

,1
� µAN ),

the conclusion of Theorem 7.5.4 holds for N0 = max(N1, N2). �

7.6 Inclusion of the spectrum in an neighborhood
of Kν,α

We are now in position to prove the following theorem :

Theorem 7.6.1. ∀ε > 0,

P(For large N,Spect(MN (p(N))) ⊂ {x, dist(x,Kν,α(θ1, . . . , θJ)) ≤ ε}) = 1.

Proof of Theorem 7.6.1 The proof still uses the ideas of [HT05]. Using the
inverse Stieltjes tranform, we get respectively that, for any ϕ in C∞(R,R)
with compact support,

E[tr(ϕ(MN (p(N))))]−
∫

R
ϕ(x)d(µAN � π p

N
,1)(x) =

− 1
π

lim
y→0+

=
∫

R
ϕ(x)rN (x+ iy)dx,

where rN = g̃N − gN satis�es, according to Proposition 7.4.1, for any z ∈
C \ R,

|rN (z)| ≤ 1
N2

(|z|+K)αP (|=(z)−1|),

for some nonnegative numbers α and K and some polynomial P . We refer
the reader to the Appendix of [CDM07] where it is proved using the ideas of
[HT05] that

lim sup
y→0+

|
∫

R
ϕ(x)h(x+ iy)dx| ≤ C < +∞

when h is an analytic function on C \ R which satis�es

|h(z)| ≤ (|z|+K)αPk(|=(z)−1|).

Hence, dealing with h(z) = N2rN (z), we deduce that for all large N ,

lim sup
y→0+

|
∫

R
ϕ(x)rN (x+ iy)dx| ≤ C

N2
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and then

E[tr(ϕ(MN (p(N))))]−
∫
ϕ(x)d(π p(N)

N
,1
� µAN )(x) = O(

1
N2

). (7.24)

The function ρ de�ned by

ρ(x) = exp{ 1
x2 − 1

} if |x| < 1

= 0 if |x| ≥ 1;

is in C∞(R,R), its support is included in {|x| ≤ 1} and
∫

R ρ(x)dx = 1.
Let 0 < ε < 1 be such that 4ε is strictly smaller than the minimal distance
between two connected components of Kν,α(θ1, . . . , θJ). De�ne

ρ ε
2
(x) =

2
ε
ρ(

2x
ε

),

K(ε) = {x, dist(x,Kν,α(θ1, . . . , θJ)) ≤ ε}

and

f(ε)(x) =
∫

1IK(ε)(y)ρ ε
2
(x− y)dy.

The function f(ε) is in C∞(R,R), f(ε) ≡ 1 on K( ε2); its support is included
in the compact set K(2ε). Thus, according to (7.24),

E[tr(f(ε)(MN (p(N))))]−
∫

R
f(ε)(x)d(π p(N)

N
,1
�µAN )(x) = Oε(

1
N2

). (7.25)

Then, the function ψ(ε) ≡ 1− f(ε) also satis�es

E[tr(ψ(ε)(MN (p(N))))]−
∫

R
ψ(ε)(x)d(π p(N)

N
,1
�µAN )(x) = Oε(

1
N2

). (7.26)

Now, since according to Theorem 7.5.4, for all large N , the support of
π p(N)

N
,1
� µAN is included in K( ε2) and ψ(ε) ≡ 0 on K( ε2), we deduce that

E[tr(ψ(ε)(MN (p(N))))] = Oε(
1
N2

). (7.27)

Using Gaussian Poincaré inequality (7.42) and Lemma 4.6 in [HT05], we
have

V[tr(ψ(ε)(MN (p(N))))] ≤

C

N2
E

 sup
V ∈Mp×N (C)
TrV V ∗ = 1

|tr{ψ′(ε)(MN (p(N)))(B∗V + V ∗B)}|2

 ≤
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2C
N2

E
[
λ1(

BB∗

N
)tr
(
ψ
′
(ε)2(MN (p))

)]
,

the last inequality coming from the following inequalities

|tr{ψ′(ε)(MN (p(N)))(B∗V )}| ≤

[
tr
(
ψ
′
(ε)2(MN (p(N)))

)] 1
2 [tr{(B∗V V ∗B)]

1
2 ≤

[
tr
(
ψ
′
(ε)2(MN (p(N)))

)] 1
2 ‖BB

∗

N
‖

1
2 [Tr{(V V ∗)]

1
2 ≤

[
tr
(
ψ
′
(ε)2(MN (p(N)))

)] 1
2

[
λ1(

BB∗

N
)
] 1

2

.

Now, by Hölder inequality,

V[tr(ψ(ε)(MN (p(N))))] ≤

2C
N2

E
[
λ1(

BB∗

N
)3

] 1
3

E
[(

tr{ψ′(ε)2(MN (p(N)))}
) 3

2

] 2
3

≤

2C
N2

E
[
λ1(

BB∗

N
)3

] 1
3

E
[
tr{|ψ′(ε)|3(MN (p(N)))}

] 2
3
.

Since when ψ
′
(ε) vanishes then ψ(k+1)(ε) vanishes too for any k ≥ 0, |ψ′(ε)|

is still a C∞ function with compact support such that ψ
′
(ε) ≡ 0 on the

support of µAN � π p(N)
N

,1
. Hence, we deduce from (7.24) that

E
[
tr{|ψ′(ε)|3(MN (p(N)))}

]
= Oε(

1
N2

).

Since moreover, according to Lemma 7.8.1, E
[
λ1(BB

∗

N )3
]
is bounded inde-

pendently of N , we can deduce that

V[tr(ψ(ε)(MN (p(N))))] = Oε(
1

N
10
3

). (7.28)

Now, set

ZN,ε := tr(ψ(ε)(MN (p(N))))

and

ΩN,ε = {ZN,ε > N−13/12}.

From (7.27) and (7.28), we deduce that

E{|ZN,ε|2} = Oε(
1

N10/3
).
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Hence

P(ΩN,ε) ≤ N
26
12 E{|ZN,ε|2} = Oε(

1

N
14
12

).

By Borel-Cantelli lemma, we deduce that almost surely for all large N ,
ZN,ε ≤ N−13/12. Since ZN,ε ≥ 1IR\K(2ε), it follows that almost surely for
all large N , the number of eigenvalues of MN (p(N)) which are in R \K(2ε)
is lower than N−1/12 and thus obviously has to be equal to zero. The proof
of Theorem 7.6.1 is complete. �

7.7 Convergence of the largest eigenvalues

Remark 7.7.1. Let α and α̂ be such that α̂ < α. Let z be in C+.

= (Hν,α̂(z)−Hν,α(z)) =
α̂− α

|1−Gν(z)|2
=Gν(z) > 0.

Hence, if Hν,α(z) belongs to C+, so does Hν,α̂(z) and therefore Ων,α ⊂ Ων,α̂.
Thus R \ Fν,α ⊂ R \ Fν,α̂ so that it makes sense to consider the following
composition of homeomorphisms :

Hν,α̂ ◦ ων,α̂ : R \Kν,α(θ1, . . . , θJ)→ Hν,α̂(R \ (Fν,α ∪Θ))

which is increasing on each connected component of R\Kν,α(θ1, . . . , θJ) and
with values in R \Kν,α(θ1, . . . , θJ).

Lemma 7.7.2. Let [a, b] be a compact set contained in R \Kν,α(θ1, . . . , θJ).
Then,

(i) For all large N , [ων,α(a), ων,α(b)] ⊂ R \ Spect(AN ).

(ii) For all 0 < α̂ < α, the interval [Hν,α̂(ων,α(a)), Hν,α̂(ων,α(b))] is con-
tained in R \Kν,α̂(θ1, . . . , θJ) and

Hν,α̂(ων,α(b))−Hν,α̂(ων,α(a)) ≥ b− a.

Proof of Lemma 7.7.2: For simplicity, we de�neKε
α,J = Kν,α(θ1, . . . , θJ)+

[−ε, ε], ωN = ω
µAN ,

p(N)
N

, FN = F
µAN ,

p(N)
N

and µ̃N = π p(N)
N

,1
� µAN . As [a, b]

is a compact set, there exist ε > 0 and δ > 0 such that

[a− δ, b+ δ] ⊂ R \Kε
α,J and d([a− δ, b+ δ];Kε

α,J) ≥ δ.

According to Theorem 7.5.4, there exists some N0 ∈ N such that for all
N ≥ N0, supp(µ̃N ) is contained in Kε

α,J . Thus, using (6.4) and since ωN is
strictly increasing on [a− δ, b+ δ] , we have

∀N ≥ N0, [ωN (a− δ), ωN (b+ δ)] ⊂ R \ FN ⊂ R \ Spect(AN ). (7.29)
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As ων,α is strictly increasing on the compact set [a−δ, b+δ] (since supp(πα,1�
ν) ⊂ Kε

σ,J), one can consider η > 0 such that

ων,α(a− δ) ≤ ων,α(a)− η and ων,α(b+ δ) ≥ ων,α(b) + η. (7.30)

Now, one can readily notice that the probability measures µ̃N weakly con-
verge to πα,1 � ν. This will lead to the result recalling from the de�nition
of the subordination functions that for all x ∈ [a − δ, b + δ], ων,α(x) =
x− α

1−Gπα,1�ν(x) and ωN (x) = x− p(N)
N

1
1−Gµ̃N (x) (at least for all N ≥ N0).

Indeed, observing that for any x in [a− δ, b+ δ], the map h : t 7→ 1/(x− t) is
bounded on Kε

σ,J one readily get the simple convergence of Gµ̃N to Gπα,1�ν

as well as the one of the corresponding subordination functions, by consider-
ing a bounded continuous function which coincide with h on Kε

σ,J . We then
deduce that there exists N ′0 ≥ N0 such that, for N ≥ N ′0,

ωN (a− δ) ≤ ων,α(a− δ) + η and (7.31)

ωN (b+ δ) ≥ ων,α(b+ δ)− η. (7.32)

Combining (7.29), (7.30) and (7.31) prove that the inclusion of point (i)
holds true for all N ≥ N ′0.

The �rst part of (ii) is obvious from Remark 7.7.1. Now set a′ =
Hν,α̂(ων,α(a)) and b′ = Hν,α̂(ων,α(b)) then

b′ − a′ = ων,α(b)− ων,α(a) + α̂
Gπα,1�ν(b)−Gπα,1�ν(a)

(1−Gπα,1�ν(a))(1−Gπα,1�ν(b))
≥ Hν,α(ων,α(b))−Hν,α(ων,α(a)) = b− a,

since Gπα,1�ν(b)−Gπα,1�ν(a) < 0 and (1−Gπα,1�ν(a))(1−Gπα,1�ν(b)) > 0.
�
Let [a, b] be in R\Kν,α(θ1, . . . , θJ). From Lemma 7.7.2 (i), it corresponds an
interval I = [a′, b′] outside the spectrum of AN i.e. there is iN ∈ {0, . . . , N}
such that

λiN+1(AN ) < ων,α(a) := a′ and λiN (AN ) > ων,α(b) := b′. (7.33)

Theorem 7.7.3. With iN satisfying (7.33), one has

P[λiN (MN ) > b, for all large N ] = 1. (7.34)

The proof closely follows the proof of Theorem 4.5 in [CDFF10] by in-
troducing a continuum of matrices interpolating from MN to AN . Let δ be
such that

0 < δ ≤ b− a
4α
|1−Gπα,1�ν(b)|. (7.35)

Set for any k ≥ 0,

αk =
(

1− 1
1 + δk

)
α
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and

pk = [αkN ].

Let us introduce the following matrices

M
(0)
N = AN ,

∀k ≥ 1, M (pk)
N :=

1
N

pk∑
i=1

YiY
∗
i +AN .

For all k ≥ 0, de�ne

ak = Hν,αk(ων,α(a)) and bk = Hν,αk(ων,α(b))

and set

Ek = {no eigenvalues of M
(pk)
N in [ak, bk], for all large N}.

By Lemma 7.7.2 (ii) and Theorem 7.6.1, we know that for all k

P(Ek) = 1. (7.36)

Now, we shall show by induction on k that with iN satisfying (7.33), one has

P[λiN (M (pk)
N ) > bk, for all large N ] = 1. (7.37)

The proof mainly relies on the following classical result (due to Weyl).

Lemma 7.7.4. (cf. Theorem 4.3.7 of [HJ90]) Let B and C be two N × N
Hermitian matrices. For any pair of integers j, k such that 1 ≤ j, k ≤ N and
j + k ≤ N + 1, we have

λj+k−1(B + C) ≤ λj(B) + λk(C).

For any pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≥ N + 1, we
have

λj(B) + λk(C) ≤ λj+k−N (B + C).

(7.37) is obviously true for k = 0 since M
(p0)
N = M

(0)
N = AN and b0 =

Fν,α. Now, let us assume that (7.37) holds true for k. Since

M
(pk+1)
N = M

(pk)
N +M

(pk+1−pk)
N ,

we can deduce from Lemma 7.7.4 that,

λiN (M (pk+1)
N ) ≥ λiN (M (pk)

N ) + λN (M (pk+1−pk)
N )

> bk
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since λN (M (pk+1−pk)
N ) ≥ 0.

If bk ≥ bk+1, we are done.
Now, if bk < bk+1, we have ak+1 ≤ bk since using (7.35), we have |bk−bk+1| ≤
b−a

4 and according to Lemma (7.7.2)(ii) we have bk+1 − ak+1 ≥ b− a. Thus
λiN (M (pk+1)

N ) > ak+1. Since according to (7.36), there is no eigenvalues of

M
(pk+1)
N in [ak+1, bk+1] for N large, we can deduce that λiN (M (pk+1)

N ) > bk+1.
This complete the proof of (7.37) by induction.

Now, let us complete the proof of Theorem 7.7.3. Since

M
(p(N))
N = M

(pk)
N +M

(p(N)−pk)
N ,

we can deduce from Lemma 7.7.4 and (7.37) that,

λiN (M (p(N))
N ) ≥ λiN (M (pk)

N ) + λN (M (p−pk)
N )

> bk

since λN (M (p(N)−pk)
N ) ≥ 0.

If bk ≥ b, we are done.
We have

|bk − b| ≤
α− αk

|1−Gπα,1�ν(b)|

=
α

(1 + δk)|1−Gπα,1�ν(b)|

≤ b− a
4

for k ≥ k0. Thus, if bk < b, we have a ≤ bk. Thus λiN (M (p(N))
N ) > a. Since

according to Theorem 7.6.1, there is no eigenvalues of M
(pk+1)
N in [a, b] for N

large, we can deduce that λiN (M (p(N))
N ) > b.�

We readily deduce the following

Corollary 7.7.5. Let ε > 0. Let us �x u in {Θσ,ν}. Let us choose δ > 0
small enough such that for large N , [u− 2δ;u− δ] is included in R \ Fν,α ∩
R \ Spect(AN ) and |Hν,α(u − 2δ) − Hν,α(u)| < ε. Let iN = iN (u) be such
that

λiN (AN ) > u− δ and λiN+1(AN ) < u− 2δ.

Then

P
[
λiN (MN ) > Hν,α(u)− ε for all large N

]
= 1.

Theorem 7.7.6. 1) If θ1 > tL, the k1 eigenvalues (λj(MN ), 1 ≤ j ≤ k1)
converge almost surely outside the support of πα,1 � ν towards ρθ1 =
Hν,α(θ1).



7.8 Appendix 199

2) Else, the largest eigenvalues (λj(MN ), 1 ≤ j ≤ k) converge almost
surely to Hν,α(tL) which is the right endpoint of the support of πα,1�ν.

Proof of Theorem 7.7.6: 1) Corollary 7.7.5 (choosing u = θ1) and Theo-
rem 7.6.1 readily give for any ε > 0

P[ρθ1 − ε ≤ λk1(MN ) ≤ · · · ≤ λ1(MN ) ≤ ρθ1 + ε, for N large] = 1. (7.38)

Hence
∀1 ≤ j ≤ k1, λj(MN ) a.s.−→

N→+∞
ρθ1 .

2) Let ε > 0. According to Theorem 7.6.1,

P
[
λ1(MN ) < Hν,α(tL) + ε for all large N

]
= 1.

Now, almost surely, the number of eigenvalues of MN being in ]Hν,α(tL) −
ε,Hν,α(tL)] should tend to in�nity when N goes to in�nity. Hence we should
have

Hν,α(tL)− ε ≤ λk1(MN ).

Hence, we deduce that for all 1 ≤ j ≤ k1, λj(MN ) a.s.−→
N→+∞

Hν,α(tL). �.

7.8 Appendix

Lemma 7.8.1. ∃K > 0, ∀N , E
([
λ1(B

∗B
N )

]3)
< K.

Proof It can be proved as in Lemma 5.1 of [HT05], using previous results
in [HT03].

Lemma 7.8.2. ∀z ∈ C+,

1
1−µAN (z − p

N
1

1−gN (z))
= O(1). (7.39)

1
1− g̃N (z)

= O(1). (7.40)

Proof of Lemma 7.8.2: We will only give the proof of (7.39). The proof
of (7.40) is similar.
Let z ∈ C+.
By assumption,

∪
N∈N∗

sp(AN) ⊆ [−M; M].

If dist(z − p
N

1
1−gN (z) , [−M ;M ]) > 2, then

|GµAN (z − p

N

1
1− gN (z)

)| ≤ 1
2
.
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It follows that

| 1
1−GµAN (z − p

N
1

1−gN (z))
| ≤ 2.

Otherwise, if dist(z − p
N

1
1−gN (z) , [−M ;M ]) ≤ 2,

−=GµAN (z − p

N

1
1− gN (z)

) =
1
N

N∑
i=1

=(z − p
N

1
1−gN (z))

|z − p
N

1
1−gN (z) − γi|2

≥ =z
(2M + 2)2

.

Since

| 1
1−GµAN (z − p

N
1

1−gN (z))
| ≤ 1
|=GµAN (z − p

N
1

1−gN (z))|
,

we are done. �

Lemma 7.8.3. ∀z ∈ C+,

1
1− gN (z)

= O(1). (7.41)

Proof of Lemma 7.8.3: Let z ∈ C+, and notice that

|1− gN (z)| ≥ |=(gN (z))| = |=z|E
[∫

R

dµMN
(x)

|z − x|2

]
.

Observe that, for any x ∈ Spect(MN ), one has

|z − x| ≤ |z|+ ||MN || ≤ |z|+ ||
SN
N
||+ ||AN ||.

It follows

|z − x|2 ≤ 3(|z|2 + ||SN
N
||2 + ||AN ||2)

and then

E
[∫

R

dµMN
(x)

|z − x|2

]
≥ E

[
1

3(|z|2 + ||SNN ||2 + ||AN ||2)

]
≥ 1

3(|z|2 + E
[
||SNN ||2

]
+ ||AN ||2)

.

We know that the sequences E
[
||SNN ||

2
]
and ||AN ||2 are bounded. There

exists thus a positive constant K such that

E
[∫

R

dµMN
(x)

|z − x|2

]
≥ 1

3(|z|+K)2
.
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Finally,
1

|1− gN (z)|
≤ (|z|+K)2 3

|=z|
,

which concludes the proof. �
We present now the di�erent estimates on the variance used throughout

the paper. They rely on the Gaussian Poincaré inequality. Let Z1, . . . , Zq
be q independent centered Gaussian variables with variance σ2. For any C1

function f : Rq → C such that f and gradf are in L2(N (0, σ2Iq)), we have

V {f(Z1, . . . , Zq)} ≤ σ2E‖(gradf)(Z1, . . . , Zq)‖2, (7.42)

denoting for any random variable a by V(a) its variance E(|a− E(a)|2).

Lemma 7.8.4.

E
(
|trG− E(trG)|2

)
= O(

1
N2

).

E
(
|tr(XNG)− E(tr(XNG))|2

)
= O(

1
N2

).

Let DN = diag(d1, . . . , dN ) where dk = 1

z−γk− p(N)
N

1
1−gN (z)

.

E
(
|tr(DNG)− E(tr(DNG))|2

)
= O(

1
N2

).

Proof Let us de�ne Ψ : R2(p×N) →Mp×N (C) by

Ψ : {xij , yij , i = 1, . . . , p, j = 1, . . . , N} →
∑

i=1,...,p

∑
j=1,...,N

(
xij +

√
−1yij

)
eij .

Let F be a smooth complex function onMp×N (C) and de�ne the complex
function f on R2(p×N) by setting f = F ◦Ψ. Then,

‖gradf(u)‖ = sup
V ∈Mp×N (C),T rV V ∗=1

| d
dt
F (Ψ(u) + tV )|t=0|.

Now, B = Ψ(<(bij),=(bij), 1 ≤ i ≤ p, 1 ≤ j ≤ N) where the distribution of
{<(bij),=(bij), 1 ≤ i ≤ p, 1 ≤ j ≤ N} is N (0, I2pN ).
Hence consider F : H → tr(zIN − H∗H

N −AN )−1.
Let V ∈Mp×N (C) such that TrV V ∗ = 1.

d

dt
F (B + tV )|t=0 =

1
N
{tr(GV ∗BG) + tr(GB∗V G)}

Moreover

|tr(GV ∗BG)| ≤ 1

N
1
2

(TrV V ∗)
1
2
[
tr(B∗BG2(G∗)2)

] 1
2

≤ 1
|=z|2

[
λ1(

1
N
B∗B)

] 1
2

.
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We get obviously the same bound for |tr(GB∗V G)|. Thus,

E
(
‖gradf‖2

)
≤ 4
N2

E
[
λ1(

1
N
B∗B)

]
.

Since, according to Lemma 7.8.1, E
[
λ1( 1

NB
∗B)

]
is bounded independently

of N , we can conclude by (7.42) that

V(trG) = O(1/N2).

Since DN is deterministic and its norm is obviously bounded by 1
|=z| it is

clear that one can get in the same way

V(tr(DNG)) = O(1/N2).

Now, consider F : H → tr
[
H∗H
N (zIN − H∗H

N −AN )−1
]
.

Let V ∈Mp×N (C) be such that TrV V ∗ = 1.

d

dt
F (B + tV )|t=0 =

1
N

tr(V ∗BG) +
1
N

tr(B∗V G)

+
1
N

tr [B∗BG(V ∗B +B∗V )G]

As in the previous analysis |tr(V ∗BG)| and |tr(B∗V G)| are bounded by
1
|=z|

[
λ1( 1

NB
∗B)

] 1
2 . Moreover,

| 1
N

trB∗BGV ∗BG| ≤ 1
N

1√
N

[trBGB∗BGG∗B∗BG∗B∗]
1
2

≤ 1
|=z|2

[
λ1(

1
N
B∗B)

] 3
2

and the same bound obviously holds for | 1
N trB∗BGB∗V G|.

According to Lemma 7.8.1, E[
{
λ1( 1

NB
∗B)

}3] is bounded, independently of
N . Hence the previous analysis allows to conclude that

V(tr(XNG)) = O(1/N2). �
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