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i
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Summary

Survival data arise from disciplines such as medicine, criminology, finance and engineering
amongst others. In many circumstances the event of interest can be classified in several
causes of death or failure and in some others the event can only be observed for a pro-
portion of “susceptibles”. Data for these two cases are known as competing risks and
long-term survivors, respectively. Issues relevant to the analysis of these two types of
data include basic properties such as the parameters estimation, existence, consistency
and asymptotic normality of the estimators, and their efficiency when they follow a semi-
parametric structure. The present thesis investigates these properties in well established
semiparametric formulations for the analysis of both competing risks and long-term sur-
vivors. It presents an overview of mathematical tools that allow for the study of these basic
properties and describes how the modern theory of empirical processes and the theory of
semiparametric efficiency facilitate relevant proofs. Also, consistent variance estimate for
both the parametric and semiparametric components for the two models are presented.

The findings of this research provide the theoretical basis for obtaining inferences with
large samples, the calculation of confidence bands and hypothesis testing. The methods
are illustrated with data bases generated through simulations.

Keywords. Competing risks, empirical process, long-term survivors, mixture model,
proportional hazard model, transformation model.
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Résumé

L’analyse statistique de durées de vie censurées intervient dans de nombreuses disciplines,
comme la médecine, la fiabilité, la criminologie, la finance, l’ingénierie. Chacun de ces
domaines fournit des exemples de situations où: i) l’évènement observé est dû à une cause
parmi plusieurs causes en compétition, ii) l’évènement ne peut être observé que pour une
fraction, inconnue de l’analyste, de sujets “susceptibles”. On parle respectivement de
durées de vie en présence de risques concurrents, et de durées de vie en présence d’une
fraction immune. Les problèmes posés pour l’analyse statistique de modèles de durées
en présence de ces deux types de données incluent la construction d’estimateurs, l’étude
de leurs propriétés asymptotiques (consistance, normalité asymptotique, efficacité, esti-
mation de la variance asymptotique), et leur implémentation. Dans ce travail, nous nous
intéressons à ce type de problèmes pour deux modèles de régression semi-paramétriques de
durées de vie. Nous considérons successivement un modèle de mélange semi-paramétrique
basé sur le modèle à risques proportionnels de Cox, puis le modèle de régression semi-
paramétrique de transformation linéaire pour l’étude de durées de vie en présence d’une
fraction immune. Nous construisons des estimateurs et établissons leurs propriétés asymp-
totiques, en utilisant des outils issus de la théorie des processus empiriques. Des études
de simulation sont également menées.

Mots clés. Durées censurées, fraction immune, modèle de mélange, modèle à risques pro-
portionnels, modèle de transformation linéaire, processus empiriques, propriétés asympto-
tiques, risques concurrents.
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6.1 The cure models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Transformation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 The semiparametric transformation model . . . . . . . . . . . . . . 84

6.3 Notation and model assumptions . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Asymptotic normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7.1 Score and Information . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7.2 Asymptotic normality result . . . . . . . . . . . . . . . . . . . . . . 104

6.8 Variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



xii CONTENTS

7 Conclusions 111

Conclusions en Français 113
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Introduction

Survival analysis is a branch of statistics which deals with a set of techniques and proce-
dures to analyse data where the interest is to analyze the time between an initial event and
a final event. These procedures represent nowadays a fundamental part in clinical trials,
epidemiological studies, economics, actuarial science and engineering and many other dis-
ciplines. The main features of survival data are that the underlying distribution tends to
have a long tail, there is a significant number of censored observations, which occur when
survival times are the not exactly known and the data corresponds to the point where the
experimental unit was seen for the last time alive.

The main interest in survival analysis is to estimate the survival function, which is
the probability of experiencing an event after a certain period. Actually, there is well-
established theory to estimate the survival function in the nonparametric, semiparametric
and fully parametric form. In particular, the semiparametric Cox model represents a
flexible way to model the survival function in the presence of explanatory variables as its
proportional hazards structure allows to ignore the functional form of the baseline survival
function and therefore it is possible to perform inferences about the parameters that are
associated with the explanatory variables; in this case a modified likelihood function is
used, which has very similar qualities to a completely specified likelihood function.

In the context of survival data, we can have that the occurrence of the event can be
classified into different causes and further, such occurrence is caused by only one cause in
particular. This type of data are known as competing risks. One of the main objectives
of the study of these data is to model and estimate the cumulative incidence function of
a specific cause type, which is the probability of occurrence of the event for some cause
within a certain period, in the presence of explanatory variables. One way to deal with
estimation is to regard individuals who do not experience the event of interest as censored.
However, a patient experiencing a competing risk event is censored in informative form
that is, he can not be excluded the study and, therefore, the methods used to analyze a
single event are not helpful. In this case, the cumulative incidence function for an event of
interest should be calculated taking into account the presence of other competing causes.
There are several models for analyzing competing risks. Amongst them, the formulation
proposed by Larson and Dinse (1985) stands out for its identifiability and easy interpreta-
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tion. This model specifies the cumulative incidence functions in terms of probabilities of
conditional survival of cause-specific and the probabilities that the event eventually occurs
from a cause. Larson and Dinse proposed a fully parametric structure where the condi-
tional survival functions have the form of the parametric Cox proportional-hazards whose
baseline hazard function is piece-wise exponential and the probability of cause-specific fol-
low a multinomial model. Recently, Ng and McLachlan (2003) and Escarela and Bowater
(2008) have proposed a semiparametric extension of the formulation presented by Larson
and Dinse in such a way that the conditional baseline survival functions are expressed
through the semiparametric Cox proportional hazards model. Thus the resulting model
provides a flexible and parsimonious way to study competing risks. These studies focus on
the computational aspects of the estimation in the semiparametric mixture model but they
have failed to analyse the large-sample properties of the estimators proposed by them.

It is common to find competing risks data where a risk is not observable and corres-
ponds to a subgroup immune to the event of interest. For this type of data the graph of
the empirical survival function shows a plateau, suggesting the existence of a proportion
of individuals who will never experience the event of interest. An example of this type of
data is when in clinical studies, a proportion of individuals respond favorably to treatment
and subsequently appear to be free of any signs or symptoms of the disease and may be
considered cured, while the remaining patients eventually experience relapse. Berkson
and Gage (1952) used a mixture exponential distributions and a constant cure fraction
to fit survival data from studies of breast cancer and stomach cancer. Kuk and Chen
(1992) considered estimation of regression parameters using marginal likelihood method
and proposed the so-called proportional hazards cure model in which the proportional
hazards regression models (Cox, 1972) is specified in the survival times of susceptible sub-
jects while the logistic regression models is utilized in the cure fraction. Peng and Dear
(2000) and Sy and Taylor (2000) have proposed a nonparametric mixture model in which
the assumption of proportional hazards is used for modeling covariate effects in times of
failure from individuals who are not cured and propose an estimation method based on
the EM algorithm. Recently, a generalization of these models has been proposed by Lu
and Ying (2004), which employs transformation models to specify the time of failure of
susceptible individuals and a logistic model to model the curable fraction.

The purpose of this thesis is to study the asymptotic properties of two classes of semi-
parametric regression models in survival analysis: a semiparametric mixture model for
competing risks and the semiparametric transformation cure model. The first class co-
rresponds to the formulation proposed by Escarela and Bowater (2008) whose formulation
specifies separately the probability of eventually experience a type of failure and the con-
ditional risk for each type of failure. The second model is a generalization the model pro-
posed by Lu and Ying (2004) which has the flexibility to include effects of time-dependent
covariates and combines a logistic regression for the probability of eventual occurrence
with the class of transformation models for the times of occurrence. This generalization
extends several cure models established in the literature such as the proportional hazards



model (Farewell, 1982; Kuk and Chen, 1992, Sy and Taylor, 2000, Peng and Dear, 2000)
and the odd-proportional model (Lu and Ying, 2004).

The present work studies the asymptotic properties of nonparametric maximum like-
lihood estimators of the two classes of models on display. The method of nonparametric
maximum likelihood estimation (NPML) is reviewed and it is shown that the formulation
of this models lends itself to the use of tools from the modern theory of empirical processes
to proof the asymptotic properties of the resulting estimators.

The two classes of models described above have infinite-dimensional parameters, which
raises theoretical challenges for statistical analysis. In this thesis, the techniques devel-
oped by Murphy (1994.1995) and Parner (1998) for frailty models are extended and applied
using the modern theory of empirical processes established by Van der Vaart and Well-
ner (1996), which makes it covenient to study the existence, consistency and normality
asymptotic of the resulting estimates from both classes; moreover, it is shown that the
maximum likelihood estimators for the regression parameters are semiparametric efficient
(Bickel et al., 1993). Finally, we consistent variance estimators are proposed for both the
finite and infinite dimensional parameters in these models.

The thesis is split into two parts. The first part comprises four chapters and gives
a brief introduction to topics that will be useful for development of the work. Chapter
1 summarises basic definitions of survival analysis, some important survival parametric
functions and the notation of right censoring. Also, both the parametric inference in
presence of censoring data and the Cox model are reviewed. Chapter 2 describes definitions
and properties essentials of counting processes and martingales. Chapter 3 outlines general
semiparametric inference techniques, emphasizing the semiparametric efficiency. Chapter
4 is focused to explaining the theory of empirical processes which is a fundamental part in
the study of asymptotic properties of the estimates from each kind of model studied here.
The second part consists of two chapters in which the two classes of models described
above are analysed. In Chapter 5 the semiparametric mixture model for competing risks
proposed by Escarela and Bowater (2008) is reviewed including regularity conditions and
the approach of maximum likelihood. The empirical process theory is applied to show
consistency and asymptotic normality of the estimated maximum likelihood parameters.
Consistent variance estimator are finally obtained. Finally, two simulated data sets are
used to compare the fit of the semiparametric mixture model for competing risks with that
of a parametric model. In Chapter 6 we discuss the semiparametric cure model constructed
with transformation models. We give a brief introduction to cure models and linear
transformation models. A specification of the cure model using transformation models,
which allows for the inclusion of time-dependent variables, is given. It is then shown
the existence, consistency, normality asymptotic and efficiency of maximum likelihood
estimators nonparametric. Finally, a consistent estimator of the variance for the regression
parameter and for the infinite-dimensional parameter is presented.
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Chapter 7 presents conclusions and perspectives derived from the study of both classes
of semiparametric models.



Introduction

L’analyse des durées de vie est un domaine de la statistique qui comprend un ensemble de
techniques et de procédures pour analyser des données où la variable réponse est le temps
écoulé entre un évènement initial et un évènement final. Ces techniques sont fondamentales
pour l’analyse statistique des essais cliniques, des études épidémiologiques, et dans de
nombreuses autres disciplines, comme l’économie, la science actuarielle, l’ingénierie. Une
caractéristique fondamentale des durées de vie est la présence de censure, qui en complique
l’analyse statistique.

Un objectif du statisticien confronté à des durées de vie consiste à estimer le modèle
sous-jacent à ces données (en estimant, par exemple, une fonction de survie, une fonction
de risque instantané ou cumulé, ou un paramètre de régression). Il existe des outils bien
établis pour estimer de telles quantités, que ce soit dans un cadre paramétrique, semi-
paramétrique, ou non-paramétrique. En particulier, le modèle semi-paramétrique de Cox
représente un moyen flexible pour modéliser la fonction de survie en présence de variables
explicatives. Des modèles plus généraux, tels que le modèle de transformation linéaire,
suscitent actuellement un fort intérêt.

En analyse statistique des durées de vie, nous disposons parfois, en plus d’une durée
observée, de la cause de l’évènement associé. Ces données interviennent en particulier
dans un contexte de risques concurrents. L’un des objectifs principaux de l’étude de
telles données, est de modéliser et estimer la fonction d’incidence cumulée d’une cause
d’évènement spécifique. Il existe de nombreux modèles pour analyser des risques con-
currents. Parmi ceux-ci, le modèle proposé et implémenté par Larson et Dinse (1985)
se distingue par l’interprétation aisée des résultats qu’il produit. Ce modèle spécifie les
fonctions d’incidence cumulée en terme des probabilités conditionnelles de survie sachant
la cause spécifique d’évènement, et des probabilités de chaque cause spécifique. Lar-
son et Dinse (1985) proposent un modèle complètement paramétrique, où les fonctions
de survie sont spécifiées par des modèles à risques proportionnels de Cox dont la fonc-
tion de risque de base est constante par morceaux, et la loi des causes spécifiques est
multinomiale. Récemment, Ng et McLachlan (2003) et Escarela et Bowater (2008) ont
proposé une formulation semi-paramétrique du modèle de Larson et Dinse (1985), où les
fonctions de survie conditionnelles aux régresseurs sont exprimées au travers du modèle
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semi-paramétrique de Cox. Le modèle qui en résulte fournit une formulation flexible et
parcimonieuse pour étudier des risques concurrents. Ces auteurs ont porté leur attention
sur les aspects algorithmiques de l’estimation de ce nouveau modèle, en ignorant l’étude
des propriétés asymptotiques des estimateurs proposés.

Il est également fréquent de rencontrer des données de survie où l’évènement n’est pas
observable pour un groupe de sujets préservé du risque de survenue de cet évènement. Un
exemple de ce type de données intervient dans les essais cliniques, quand une proportion
d’individus qui a répondu favorablement à un traitement cesse d’être à risque pour la mal-
adie considérée. De nombreux modèles ont été proposés pour étudier des durées de vie en
présence d’une fraction immune. Récemment, une généralisation de ces modèles a été pro-
posée par Lu et Ying (2004): elle combine un modèle de régression semi-paramétrique de
transformation linéaire pour le risque de survenue de l’évènement et un modèle logistique
pour la fraction immune.

L’objectif de cette thèse est d’établir rigoureusement les propriétés asymptotiques
d’estimateurs du maximum de vraisemblance, pour deux modèles de régression semi-
paramétriques de durées: un modèle de mélange semi-paramétrique pour risques concu-
rrents et un modèle de régression semi-paramétrique de transformation linéaire pour durées
de vie avec une fraction immune. Le premier modèle correspond à la spécification pro-
posée par Escarela et Bowater (2008). L’étude du deuxième modèle a pour but présenter
une généralisation du modèle proposé par Lu et Ying (2004). Cette généralisation com-
prend comme cas particuliers quelques modèles de durée de vie avec fraction immune
présents dans la littérature (Farewell, 1982; Kuk et Chen, 1992; Sy et Taylor, 2000; Peng
et Dear, 2000). Spécifiquement, ce travail étudie les proprités asymptotiques d’estimateurs
dits du maximum de vraisemblance non-paramétrique pour les deux modèles mentionnés
précédemment. Dans la suite de ce travail, nous présentons ces modèles, la méthode
d’estimation proposée, et établissons les propriétés asymptotiques des estimateurs cons-
truits, à l’aide d’outils de la théorie des processus empiriques.

Les deux modèles auxquels nous nous intéressons sont des modèles semi-paramétriques
(dans lesquels interviennent des paramètres fonctionnels). Dans ce travail, nous utilisons
et enrichissons les techniques développées par Murphy (1994,1995) et Parner (1998) pour
les modèles de fragilité. Nous étudions l’existence des estimateurs proposés, et à l’aide
d’outils de la théorie des processus empiriques, nous établissons leur existence, consis-
tance, normalité asymptotique, efficacité semi-paramétrique. Nous considérons également
le problème de l’estimation de la variance asymptotique des estimateurs proposés.

Cette thèse est organisée en deux parties. La première partie comprend quatre chapitres
et elle est dédiée à donner une brève introduction des thèmes qui seront utiles durant le
déroulement du travail. Dans le Chapitre 1, nous rappelons les définitions des outils
de modélisation utilisés en analyse statistique des durées de vie, et la notion de cen-
sure. Puis nous présentons le modèle de Cox et nous rappelons les principaux résultats



sur l’estimation de ses paramètres. Des processus de comptage et outils de martingales
fournissent le guide pour étudier les propriétés asymptotiques des estimateurs pour les
modèles non-paramétriques et semi-paramétriques. Les définitions et notions utiles sont
rappelées dans le Chapitre 2. Le Chapitre 3 donne une description des idées principales et
techniques de l’inférence semi-paramétrique en insistant sur l’efficacité semi-paramétrique.
Finalement, le Chapitre 4 décrit les outils de processus empiriques qui sont importants
pour étudier les propriétés asymptotiques.

La deuxième partie de la thèse comprend deux chapitres dans lesquels les deux modèles
mentionnés précédemment sont étudiés. Dans le Chapitre 5, nous étudions le modèle
semi-paramétrique pour risques concurrents proposé par Escarela et Bowater (2008). Des
conditions de régularité et l’approche du maximum de vraisemblance et l’algorithme EM
du modèle sont présentés. La théorie de processus empiriques est utilisée pour démontrer
la consistance et la normalité asymptotique des estimateurs du maximum vraisemblance.
Nous étudions le problème de l’estimation de la variance asymptotique des estimateurs,
ainsi que l’efficacité semi-paramétrique. Enfin, nous montrons deux simulations afin de
comparer le modèle de mélange semi-paramétrique pour risques concurrents par rapport
à un modèle paramétrique.

Dans le Chapitre 6, nous étudions la classe générale des modèles de transformation
semi-paramétriques avec une fraction immune. Nous présentons le cadre des modèles
avec une fraction immune, puis une brève introduction aux modèles de transformation est
présentée. Ensuite, nous développons un modèle de transformation semi-paramétrique
linéaire avec covariables dépendant du temps et une fraction immune, nous donnons
quelques notations et hypothèses du modèle qui sont utilisées dans les sections suivantes.
Nous démontrons les propriétés d’identifiabilité du modèle, d’existence, consistance, nor-
malité asymptotique et efficacité des estimateurs du maximum de vraisemblance non-
parametriques. Finalement, nous présentons des estimateurs convergents de la variance
asymptotique pour les paramètre euclidiens et infini - dimensionnel. Finalement, nous
donnons quelques conclusions et projetons quelques travaux futurs.





List of symbols

Here are some general notation which will be used throughout the thesis:

• All the random variables are defined on a probability space (Ω,A,P).

• R denotes the real numbers.

• Rk denotes the k-dimensional Euclidean space.

• | · | denotes the Euclidean norm on Rp.

• a ∧ b is the minimum between a and b.

• a ∨ b is the maximum between a and b.

• Let C a set,

– l∞(C) denotes the set of all uniformly bounded real functions on C.

– V B(C) denotes the space of the functions on C in R, which are bounded and
the bounded variation.

– If f is a bounded function on C in R, ‖f‖∞ = supt∈C |f(t)| denotes the supre-
mum norm of f .

• Let A a matrix of dimension n× p,

– A′ denotes the transpose of A.

– If n = p and A is invertible, A−1 denotes the inverse of A.

• If a is a vector of dimension p, a⊗0 = 1, a⊗1 = a y a⊗2 = aa′.

• a.s. denote the almost sure convergence.

• d→ denote the convergence in distribution.

• op(1) stochastic order symbols.
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• caglad function is a function that is everywhere right-continuous and has left limits
everywhere.



Part I

Preliminaries
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Chapter 1

Survival Analysis

Survival analysis is the phrase use to describe the analysis of data in the form of times
from a well-defined time origin until the occurrence of some particular event or end
point. The responses consist of long time or life cycles of a phenomenon, such as time of
recurrence, the duration of the effectiveness of an intervention, a specific learning time,
etc. Thus, the survival is a measure of time to respond, failure, death, relapse or develop
a particular disease or event. In medical research, the time origin will often correspond
to the recruitment of an individual into an experimental study, such as a clinical trial
to compare two or more treatments. This in turn may coincide with the diagnostic of a
particular condition, the commencement of a treatment regimen, or the occurrence of some
adverse event. If the end point is the death of a patient, the resulting data are literally
survival times. However, data of a similar form can be obtained when the end-point
is not fatal, such as the relief of pain, or the recurrence of symptoms or from example
in behavioral studies in agricultural science, one often observes the time from when a
domestic animal has received some stimulus until it responds with a given type action.
The methodology can also applied to data from other application areas, such as the time
taken by an individual to complete a task in a psychological experiment, the storage times
of seeds held in a seed bank, or the lifetimes or industrial or electronic components.

Two features that present survival data are that generally not symmetrically dis-
tributed. Typically, a histogram constructed from the survival times of a group of similar
individuals will tend to be positively skewed, that is, the histogram will have a longer
tail to the right of the interval that contains the largest number of observations. As a
consequence, it will be not reasonable to assume that data of this type have a normal
distribution. This difficulty could be resolved by first transforming the data give a more
symmetric distribution, for example by taking logarithms. However, a more satisfactory
approach is to adopt an alternative distributional model for the original data. Also, the
survival times are frequently censored. There are several categories of censorship, such

13
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as, right censoring (which is when the observation ceases before the event is observed),
left censoring (which is when the observation does not begin until after the event has oc-
curred)and interval censoring(it means to know that survival has only been true sometime
within an interval of time known). In this thesis focuses on right censoring.

The intention of this chapter is to give a brief introduction to survival analysis. In the
section 1, we give the main definitions in the survival analysis. The section 2 presents the
most common types of censoring found in survival analysis and explains how to build the
likelihood function when there are censored observations. Finally, the section 3 presents
the Cox proportional hazards model.

1.1 Survival function and hazard function

In summarizing survival data, the are two functions of central interest, namely the survival
function and the hazard function. These functions are defined in this section. The actual
survival time of an individual, t, can be regarded as the value of a continuous variable
distribution, and T is called the random variable associated with the survival time. Ho-
wever, the variable T can be a positive discrete random variable and hence the following
definitions and properties can be adjusted to the discrete case.

Now suppose that the random variable T has a probability distribution with underla-
ying probability density function f(t). The distribution function of T is then given by

FT (t) = P{T ≤ t} =

∫ t

0

f(u)du,

and represents the probability that the survival time is less or equal than some value t.

The survival function, ST (t), is defined to be the probability that the survival time is
greater than to t, and so

ST (t) = P{T > t} = 1− F (t).

The survival function can therefore be used to represent the probability that an individual
survives from the time origin to some beyond t. (The survival function is a monotone,
nonincreasing function of time).

The hazard function is defined as

λT (t) = lim
∆t→0

[
P{t ≤ T < t+∆t|T ≥ t}

∆t

]
,

which may be interpreted as the instantaneous failure rate among those at risk. The
function λT (t) is also referred to as the hazard rate, the instantaneous death rate, the force
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of mortality or the ( force of risk). From equation above, λT (t)∆t is the approximate
probability that an individual dies in the interval (t, t + ∆t), conditional on that person
having survived to time t.

From the definition of the hazard function, we can obtained some useful relationships
between the survival and hazard functions,

• λT (t) =
f(t)
S(t)

,

• λT (t) = − d
dt
{log S(t)}.

From the above expressions, the survival function can be written in terms of hazard
function as follows

ST (t) = exp{−ΛT (t)},

where,

ΛT (t) =

∫ t

0

λT (u)du,

is called the integrated or cumulative hazard or cumulative risk function. This function
has an interpretation all its own: it measures the total amount of risk that has been
accumulated up to time t.

The function λT (t) is a force of mortality if and only if it satisfies the following pro-
perties:

1. λT (x) ≥ 0, for all x.

2.
∫∞

0
λT (x)dx = ∞.

Remark: Given one of the five functions (ST (t), λT (t), ΛT (t), FT (t) and fT (t)) that
describe the probability distribution of failure times, the other four are completely deter-
mined.Now, the above definitions are illustrated with two parametric models of survival
analysis.

1. The Exponential model. Suppose that the survival times of n individuals, t1, ..., tn,
are assumed to have an exponential distribution with mean 1/γ, then this model has
survival, density, hazard and cumulative hazard function of the form,

ST (t) = exp{−γt}, fT = γ exp{−γt}, λT (t) = γ, ΛT (t) = γt,
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where γ > 0 is a parameter. The exponential family has constant hazard function
and the associated lack of memory property

P{T > a+ t|T > a} = P{T > t} for all a > 0 and t > 0.

The exponential model is widely used in the domain of reliability, in the context
industrial. This model is studied in this context by Meeker and Escobar (1998) and
Voivnov and Nikulin (1993). Historically, this model was one of the first models in
survival analysis (see Johonson et al. (1994), Klein and Moeschberger (1997) and
Lawless (1982).

2. The Weibull model. Suppose that T has a distribution Weibull with scale pa-
rameter γ and shape parameter α, i.e. T ∼ WEI(1/γ, α). The density function is
expressed by

fT (t) = αγαtα−1 exp{−(γt)α}, α, γ > 0,

and the hazard and survival function have the form,

λT (t) = αγ(γt)α−1

ST (t) = exp{−(γt)α}.
The two parameters allow the Weibull density to take a variety of shapes, and the
hazard function is either monotone increasing, decreasing or constant according to
wheter α > 1, α < 1, or α = 1. The case α = 1 gives the exponential distribution.

This model is used in the domain of reliability and survival analysis in medicine,
application for this model may be found in Johonson et al. (1994).

Other parametric models of survival can be found in the literature such as, the extreme
value model, the Gompertz-Makeham model, lognormal model, the model of exponentially
pieces, among others (see Cox and Oakes, 1984, Klein and Moeschberger, 1997; Johonson
et al., 1994; Lawless , 1982, Meeker and Escobar, 1998 and Voivnov and Nikulin, 1993).

1.2 Censoring

1.2.1 Mechanisms with censoring

Survival analysis has particular problems, because the observations are censored lifetimes
most of the time. The most common types of censoring found in survival analysis are (see
Cox and Oakes, 1984):
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1. Type I censoring. The event of interest is observed if it occurs before a predeter-
mined fixed time instant C. In this case, C is a constant (censorship) prefixed by
the investigator for all sample units.

2. Type II censoring. In this type of censoring, the study continues until the failure
of the first k individuals, where k is some predetermined integer (k < n).

3. Random censorinThe total period of observation is fixed, but subjects enter the
study at diferent time points. Some individuals fail, some individual lost-to-follow-
up, some individual still alive at the end of the study.

A patient who entered a study time at time t0 dies at time t0+t. However, t is unknown,
either because the individual is still alive or because the individual has been lost follow-up.
If the individual was last known to be alive at time t0+C, the time C is called a censored
survival time. This censoring occurs after individual has been entered ino a study, that is,
to the right of the least known survival time, and is therefore known as right censoring.
The right-censored survival time is then less than the actual, but unknown, survival time.

Other types of censoring can be found in more detail in Bagdonavic̆ius and Nikulin
(chapter 8), Hubeer, et al. (chapter 3) and Lawless (chapter 1).

Remark. An important assumption that will made in the analysis of censored survival
data is that the actual survival time of an individual, t, is independent of any mechanism
that causes that individual’s survival time to be censored at time C, where C < t.

1.2.2 Fitting a parametric model with right-censored data

In this section, we present the maximum likelihood method for survival analysis model
with right censoring. For more details on this topic are available Bagdonavic̆ius and
Nikulin (chapter 4), Kalbfleisch and Prentice (chapter 3), Lawless (chapters 3-6), Meeker
and Escobar (chapters 7, 8, 11), among others.

Let fT (t; θ), FT (t; θ), ST (t; θ) and λT (t; θ), the density function, the distribution func-
tion, the survival function and the hazard function respectively, induced by the measure
Pθ.

Suppose that the data are regarded as n pairs of observation, where the pair for the
i-th individual is (ti, δi), i = 1, ..., n, where ti = Ti ∧ Ci, Ci is the variable that represents
the time of censorship and δi = 1{Ti≤Ci}. One observation whit death at t contribute a
term of the form f(t), to the overall likelihood. If a survival time is censored at time C
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(in this case, T > C), then the observation contribute a term the form P(T > C) = S(C).
The total likelihood function is therefore

Ln(θ) =
n∏

i=1

{fT (ti; θ)}δi{ST (ti; θ)}1−δi .

Estimates of the unknown parameters in this likelihood function are then found by
maximizing the logarithm of the likelihood function. An alternative expression for the
likelihood function can be obtained by writing the expression above in the form

n∏

i=1

{
fT (ti; θ)

ST (ti; θ)

}δi
ST (ti; θ),

so that,
n∏

i=1

{λT (ti)}δiST (ti; θ).

This version of the likelihood function is particularly useful when the probability den-
sity function has a complicated form, as it often does.

1.3 The Cox proportional hazards model

Not only in modeling the relationship between survival rate and time is important, but
also its possible relationship with different explanatory variables for each individual. A
convenient way to do this is to express the force of mortality as a function of time and
explanatory variables. The fundamental idea is the same as in any regression model.

The best-known model for including explanatory variables is the proportional hazards
model of Cox (1972). In this model, the hazard function depending on a vector of ex-
planatory variables x with unknown coefficients β is factored as

λ(t; β,x) = ψ(β,x)λ0(t),

where λ0(t) is the baseline hazard corresponding to ψ(·) = 1. The nice thing about this
model is that λ0(t), the baseline hazard, is given no particular parametrization and, in
fact, can be left unestimated.

In this specification the effect of explanatory variables is to multiply the hazard λ0 by
a factor ψ which does not depend on duration t. A specification of ψ in general use is

ψ(β,x) = exp(β′x),
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This specification is convenient because nonnegative of ψ does not impose restrictions on
β and estimation and inference are straightforward. As well see, estimation of β in this
model does not require specification of the baseline hazard λ0.

With the specification of proportional risks, we have

log
λ(t; β,x

λ0(t)
= β′x

i.e., the model defines the logarithm of relative risk as a linear function of covariates.
Therefore, unlike the relative risk of risk itself, does not depend on time or, put another
way, is constant over time (hence the name proportional hazard model).

Using proportional hazards model the survival function is given by:

S(t;x) = exp{−Λ0(t) exp(β
′x)}

where Λ0(t) =
∫ t
0
λ0(u)du is the integrated baseline hazard.

1.3.1 Fitting the proportional hazards model

Fitting the Cox proportional hazards model to an observed set of survival data entails
estimating the unknown coefficients vector of the explanatory variable,x, in the linear
component of the model, β. The baseline hazard function, λ0(t), may also need to be esti-
mated. In turns out that these two components of the model can be estimated separately.
The β vector is estimated first and these estimates are then used to construct an estimate
of the baseline hazard function.

The estimation process for this model, Cox (1972) introduced the partial likelihood
method to estimate β, which is based on the product of the likelihoods of all the changes.

Suppose that data are available for n individuals, among whom there are r distinct
death times and n− r right-censored survival times. We will for the moment assume that
only one individual dies at each death time, so that there are no ties in the data. The r
ordered death times will be denoted by t(1) < t(2)... < t(r), so that t(j) is the j-th ordered
death time. The set of individuals who are at risk at time t(j) will be denoted by R(t(j)),
so that R(t(j)) is the group of individuals who are alive and uncensored at a time just
prior to t(j). The quantity R(t(j)) s called risk set.

Cox(1972) showed that the relevant likelihood function for the proportional hazards
model is given bye

L(β) =
r∏

j=1

exp(β′xj)∑
l∈R(tj)

exp(β′xl)
,
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in which xj is the vector of covariates for the individual who dies at the j-th ordered death
time, t(j). The summation in the denominator of this likelihood function is the sum of the
values of exp(β′x) over all individuals who are at risk time t(j). Note that the product is
taken over the individuals for whom death times have been recorded. Individuals for whom
the survival time are censored dot not contribute to the numerator of the log-likelihood
function, but they do enter into summation over the risk sets at death times that occur
before a censored time. Moreover, the likelihood function depends only on the ranking
of the death times, since this determines the risk set at each death time. Consequently,
inference about the effect of explanatory variables on the hazard function depend only on
the rank order of the survival times.

Remark. Andersen and Gill (1982) showed that Cox’s partial likelihood can be treated
as an ordinary likelihood or as likelihood function concentrated with respect to the baseline
survival distribution. The efficacy loss from using partial rather than full likelihood was
studied by Efron (1977). He found that estimates derived using the partial likelihood
approach are typically both consistent and efficient.



Chapter 2

Probabilistic theory

2.1 Preliminaries

Event time data, where one is interested in the time to a specific event occurs, are conve-
niently studied by the use of certain stochastic process. The data itself may be described
as a counting process, which is simply a random function of time t, N(t). It is zero at time
zero and constant over time except that it jumps at each point in time where an event
occurs, the jumps being of size 1.

Counting process and martingale methods provide direct ways of studying the large
sample properties of estimators for rather general nonparametric and semiparametric mo-
dels.

Before given the definitions and properties of counting process and martingales, we
need to introduce some concept from general stochastic process theory.

Behind all theory to be developed is a probability space (Ω,F ,P), where F is a σ-field
and P is probability measure defined on F .

Definition 2.1.1 A stochastic process is a family of random variables indexed by time
{X(t) : t ∈ Γ) indexed by a set Γ, all defined on the same probability space (Ω,F ,P).

The mapping t → X(t, ω), for ω ∈ Ω is called a simple path or trajectory of X. The
stochastic process X induce a family of increasing sub-σ-fields by

FX
t = σ{X(s) : 0 ≤ s ≤ t}

21
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called the internal history of X.

Definition 2.1.2 A history or filtration (Ft; t ≥ 0) is a family of sub-σ-fields such that,
for all s ≤ t,Fs ⊂ Ft which means A ∈ Fs implies A ∈ Ft.

Sometimes filtrations are combined and for two filtrations (F1
t ) and (F2

t ), so F1
t ∨ F2

t

denote the smallest filtration that contains both F1
t and F2

t .

Definition 2.1.3 A stochastic process X is adapted to a filtration (Ft) if, for every t ≥ 0.
X(t) is Ft-measurable, and in this case FX

t ⊂ Ft.

A nonnegative random variable T is called a stopping time with respect to (Ft) if
(T ≤ t) ∈ Ft for all t ≥ 0. For a stochastic process X and a stopping time T , the stopped
process XT is defined by X(t) = X(t ∧ T ).

2.2 Martingales

Martingales play an important role in the statistical applications.

Definition 2.2.1 A martingale with respect to a filtration (Ft) is a right-continuous
stochastic process M with left-hand limits that, in addition to some technical conditions,

• M is adapted to Ft

• E|M(t)| <∞ for all t

• possesses the key martingale property

E(M(t)|Fs) =M(s) for all s ≤ t, (2.1)

thus starting that the mean of M(t) given information up to time s is M(s).

The equation (2.1) is equivalent to

E(dM(t)|Ft−) = 0 for all t ≥ 0. (2.2)
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where Ft− is the smallest σ-algebra containing all Fs, s < t and dM(t) =M((t+ dt)−)−
M(t−). A martingale thus has zero-mean increments given the past, and without condi-
tioning. The second condition of the definition above is referred to as M being integrable.

If M satisfies
E(M(t)|Fs) ≥M(s) for all s ≤ t,

instead of 2.1, then M is a submartingale. The similar form if M satisfies

E(M(t)|Fs) ≤M(s) for all s ≤ t,

then M is a supermartingale.

A martingale is called square integrable if suptE(M(t)2) <∞. A local martingale M
is a process such that there exist a localizing sequence of stopping times (Tn) such that for
each n, MTn is a martingale. If, in addition MTn is a square integrable martingale, then
M is said to be a local square integrable martingale.

To be able to formulate the Doob-Meyer decomposition we need to introduce the
notation of a predictable process.

Definition 2.2.2 A process X is predictable if and only if X(T ) is FT -measurable for all
stopping times T .

Let X be a cadlag adapted process. Then A is said to be the compensator of X if A
is a predictable, cadlag and finite variation process such that X − A is a local zero-mean
martingale. If a compensator exists, it is unique.

2.3 Counting process

An alternative approach to developing inference procedures for censored data is by using
counting process methodology. This approach was first developed by Aalen (1975) who
combined elements of stochastic integration, continuous time martingale theory and count-
ing process theory into a methodology which quite easily allows for development of infe-
rence techniques for survival quantities based on censored data. For more rigorous survey
of this area see Andersen et al. (1993) and Fleming and Harrington (1991).

Definition 2.3.1 A counting process {N(t)} is stochastic process that is adapted to a
filtration (Ft), cadlag, with N(0) = 0 and N(t) < ∞ a.s. and whose paths are piecewise
constant with jumps of size 1.
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Given a right-censored sample, the process, Ni(t) = I{Ti ≤ t, δi = 1}, which are zero
until individual i dies and then jumps with jumps of size 1, are counting process. The
processes N(t) =

∑n
i=1Ni(t) =

∑
ti≤t

δi is also a counting process. This process simply
counts the number of deaths in the sample at or prior to time t. The counting process
gives us information about when events occur.

In the case of right-censored data, the filtration at time t, (Ft), consists of knowledge
of the pairs (Ti, δi) provided Ti ≤ t and the knowledge that Ti > t for those individuals
still under study at time t. We shall denote the filtration at an instant just prior to time
t by (Ft−). The filtration {Ft, t ≥ 0} for a given problem depends on the observer of the
counting process.

For right-censored data, if death times Ti and censoring times Ci are independent,
then, the change of an event at time t, given the history just prior to t, is given by

P[t ≤ Ti ≤ t+ dt, δi = 1|Ft−] (2.3)

=

{
P[t ≤ Ti ≤ t+ dt, Ci > t+ dti|Ti ≥ t, Ci ≥ t] = λ(t)dt si Ti ≥ t

0 si Ti < t

For a given counting process, we define dN(t) to be the change in the process N(t)
over a short time interval [t, t+ dt). dN(t) is one if a death occurred at t or 0, otherwise.
If we define the process Y (t) as the number of individuals with a study time Ti ≥ t, then

E(dN(t)|Ft−) = Y (t)λ(t)dt.

The process h(t) = Y (t)λ(t) is called the intensity process of the counting process.
h(t) is itself a stochastic process that depends on the information contained in the history
process, Ft through Y (t). The stochastic process Y (t) is the process which provides us
with the number of individuals at risk at a given time.

For the absolute continuous case, we define the process

H(t) =

∫ t

0

h(s)ds,

this process, called the cumulative intensity process, has the property that

E(N(t)|Ft−) = E(H(t)|Ft−) = H(t).

The last equality follows because, once we know the history just prior to t, the value of
Y (t) is fixed and, hence, H(t) is nonrandom.

Now, we present the Doob-Meyer decomposition theorem. This theorem states that
for any right-coninuous nonnegative submartingale N there is a unique increasing-right
continuous predictable process H such that H(0) = 0 and M +H(t) is a martingale.
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Theorem 2.3.1 (Doob-Meyer Decomposition.) (Fleming and Harrington, 1991 p.
37). Let N be a right-continuous nonnegative submartingale with respect to a stochastic
basis (Ω,F , {F : t ≥ 0},P). Then there exists a right-continuous martingale M and an
increasing right-continuous predictable process H such that E(H(t)) <∞ and

N(t) =M(t) +H(t) a.s.

for any t ≥ 0. If H(0) = 0 a.s., and if N = M ′ +H ′ is another such decomposition with
H ′(0) = 0, then for any t ≥ 0,

P{M ′(t) 6=M(t)} = 0 = P{H ′(t) 6= H(t)}.

If in addition N is bounded, then M is uniformly integrable and H is integrable.





Chapter 3

Semiparametric models

In this chapter we present an overview of the main ideas and techniques for the semipara-
metric models emphasizing aspects of the asymptotic efficiency. For more details of the
theory presented in this chapter the reader can see the works of Bickel et. al. (1993), van
der Vaart (1998) and Tsiatis (2006).

A semiparametric model P = {Pθ} is a statistical model which has euclidean parame-
ters and one or more infinite-dimensional parameters (for example, a real-valued function).
Such models can be parametrized as θ = (η,Λ(·)) → Pη,Λ(·), where η corresponds to the
euclidean parameter and Λ(·) runs through an infinite-dimensional set and is considered
a nuisance parameter. We denote by θ̂n the estimator of θ.

For example, we can considerer the Cox proportional hazard model. This model spec-
ifies the following distribution function for T (the failure time) as

F (t) = 1− exp

(
−
∫ t

0

λ0(u)e
β′xdu

)
,

where x is the q-dimensional covariate vector. In this case, θ = (β, λ0(u)). Note that β the
unknown q-dimensional parameter vector of interest, and λ0(u) is a unknown non-negative
function, which is an infinite-dimensional parameter.

Note that the estimation under the semiparametric model P is more difficult than the
estimation under any parametric submodel. Then, we considerer the estimation under the
parametric submodels. We say that P0 is a parametric submodel of the semiparametric
model P if it satisfies the following conditions:

• P0 ⊂ P .

27
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• The parametric submodel P0 contains the true value.

For every parametric submodel we can calculate the Fisher information for estimating
θ. It follows that the information for θ̂n is not larger than the infimum of the information
over all parametric submodels, and thus θ̂n is semiparametric efficient.

Usually in the semiparametric models is sufficient to consider one-dimensional para-
metric submodels of the form {Pη+ta,Λt

} which are differentiable in quadratic mean. Then,
we can obtained that

∂

∂t
Pη+ta,Λt

∣∣∣∣
t=0

= a′Sη,Λ + SΛ

where Sη,Λ is the score function for η and SΛ is the score function for Λ and is considered
as the tangent Ṗ set for Λ.

Let
∏

η,Λ the orthogonal projection onto Ṗ in L2. Then the efficient score function for
η is

S̃η,Λ = Sη,Λ −
∏

η,Λ

Sη,Λ

and its covariance matrix is defined by

Ĩη,Λ = Pη,ΛS̃η,ΛS̃
′
η,Λ.

We denoted by ψη,Λ = Ĩ−1
η,ΛS̃η,Λ efficient function. Then for a random sample X1, ..., Xn

i.i.d. from a distribution that is known to belong to a set P . We say that an estimator is
asymptotically efficient for η if η̂n satisfies

√
n(η̂n − η) =

√
nPnψη,Λ + oP (1)

=
1√
n

n∑

i=1

ψη,Λ(Xi) + oP (1). (3.1)



Chapter 4

Empirical process

In this chapter, we briefly introduce some basic results from the theory of empirical pro-
cesses. These research techniques are useful for studying large sample properties of sta-
tistical estimates from models as well as for developing new and improved approaches to
statistical inference. Most of the topics covered in this chapter will be developed more
fully in later sections of the dissertation. For more details about the theory, see Huber
and Lecoutre (1989), van der Vaart (1998) and van der Vaart and Wellner (1996).

4.1 Introduction to empirical process

An empirical process is a stochastic process based on a random sample X1, . . . Xn of
independent draws from a probability measure P on arbitrary probability space (Ω,A,P).

Definition 4.1.1 For each ω ∈ Ω and each integer n ≥ 1, the empirical measure Pn is
defined as

Pn =
1

n

n∑

i=1

δXi(ω),

where δx is the Dirac measure at point x, that is

δx(A) =

{
1 if x ∈ A
0 if x /∈ A

,

for any measurable set A.

29
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Let Pn(A) the empirical measure on a borel set A. The empirical measure of a sample
of random elements X1, ..., Xn in a measurable space (Ω,A) is the discrete measure given
by

Pn(A) =
1

n

n∑

i=1

δXi
(A) =

card{Xi ∈ A : i = 1, . . . , n}
n

.

We write Fn as the distribution function (random) defined by

Fn(x) = Fn(x)(ω) = Pn(]−∞, x])(ω),

for all x ∈ R and ω ∈ Ω. Note that

Fn(x) =
1

n

n∑

i=1

1{Xi ≤ x}, x ∈ R.

The function Fn is called the empirical distribution function and the corresponding em-
pirical process is

√
n(Fn−F ). The empirical distribution function is the natural estimator

for the underlying F if this is completely unknown.

For each x ∈ R , it follows from the Law of Large Numbers that

Fn(x)
a.s.→ F (x).

Moreover, the Central Limit Theorem guarantees that

√
n(Fn(x)− F (x))

d→ N (0, F (x)(1− F (x))) .

Two of the basic results concerning to terms Fn and
√
n(Fn(x)−F (x)) are the Glivenko-

Cantelli theorem and the Donsker theorem. The first theorem extends the Law of Large
Numbers and it gives uniform convergence.

Theorem 4.1.1 (Glivenko-Cantelli) Let X1, X2, ... be i.i.d. real-valued random vari-
ables defined on a probability space (Ω,A,P), with distribution function F . Then

‖Fn − F‖∞ = sup
x∈R

|Fn(x)− F (x)| a.s.→ 0.

The Donsker’s theorem give the converge in distribution of the empirical process√
n(Fn − F ) to a Gaussian process.
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Theorem 4.1.2 (Donsker) Let X1, X2, ... be i.i.d. real-valued random variables defined
on a probability space (Ω,A,P), with distribution function F . Then, the sequence of em-
pirical process

√
n(Fn−F ) converges in distribution on the space D[−∞,∞] of the cadlag

functions (continuous on the right, limit on the left) to a Gaussian process GF with mean
zero and covariance given by,

F (s ∧ t)− F (s)F (t).

The process GF is known as F -Brownian bridge. There are the generalizations of
Theorems 4.1.1 and 4.1.2 for a set of measurable functions, which allow to obtain the
Glivenko-Cantelli class and the Donsker class of functions. Both classes intervene in the
study of processes indexed by a set of functions. We present notations of these classes
that will be useful in the following chapters (see van der Vaart and Wellner, 1996).

Let X1, . . . , Xn be a random sample from a probability distribution P on a mesurable
space (χ, ε). For a real-valued measurable function defined on (χ, ε), we write

Pnf =
1

n

n∑

i=1

f(Xi).

Then {Pn(f) : f ∈ F} is the emprical measure indexed by F , while {Gn(f) : f ∈ F} is
the empirical process indexed by F , where

Gnf =
√
n(Pn − P )f =

√
n

(
1

n

n∑

i=1

f(Xi)− Pf

)
.

If f ∈ L1(P ), so Pf =
∫
fdP <∞, then it follows from the Law of Large Numbers that

Pn(f)
a.s.→ P (f). (4.1)

Suppose that F is a collection of real-valued functions f : χ → R. If the convergence
in the equation (4.1) holds uniformly over f ∈ F ,

‖Pnf − Pf‖F = sup
f∈F

|Pnf − Pf | a.s.→ 0,

then we call F a Glivenko-Cantelli class.

If f ∈ L2(P ), so Pf
2 =

∫
f 2dP <∞, then

√
n(Pn − P )(f)

d→ N
(
0, P (f − Pf)2)

)
, (4.2)
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by the Central Limit Theorem. Suppose that F is a collection of real-valued functions
f : χ→ R. If the convergence in the equation (4.2) holds uniformly over f ∈ F , then

√
n(Pn − P )(f) ⇒ G(f) in ℓ∞(F)

where G is a mean-zero Brownian bridge process with covariance function

cov(G(f), G(g)) = Pfg − PfPg.

Then,we say that F is a Donsker class. Here

ℓ∞(F) =

{
x : F → R|‖x‖F = sup

f∈F
|x(f)| <∞

}
.

4.2 Examples of Donsker classes

There are a number of methods which can be used to determine a Donsker class, van der
Vaart (1998) and van der Vaart and Wellner (1996) give the following examples:

Example 1. If F is equal to the collection of all indicator functions of the form
ft = 1{(−∞, t]} with t ∈ R. Then F is a Donsker class (see example 19.6 in van der
Vaart, 1998).

Example 2. The set of uniformly bounded functions and uniformly bounded variation
is Donsker (see example 19.11 in van der Vaart, 1998).

Example 3. The class of functions whose derivatives up to order k exist and are
uniformly bounded by contants Mk is Donsker (see example 19.9 in van der Vaart, 1998).

However, we can build Donsker classes from well-known Donsker classes. For example,

Example 4. If F is a Donsker classe and supf∈F |Pf | < ∞ and φ : R → R is a
lipschitz function then the class of all functions of the form φ(f) is a Donsker class, if f
ranges over Donsker class F with integrable envelope functions (see example 2.10.6 in van
der Vaart and Wellner, 1996).

Example 5. If F and G are Donsker classes and supF∪G|Pf | < ∞, the following are
also Donsker: the pairwise infima F ∧ G, the pairwise suprema F ∨ G, and pairwise sums
F + G (see example 2.10.7 in van der Vaart and Wellner, 1996).

Example 6. If F and G are uniformly bounded Donsker classes, then {fg : f ∈ F , g ∈
G} is a Donsker class (see example 19.20 in van der Vaart, 1998).
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Example 7. If F is Donsker with supf∈F |Pf | < ∞ and f is uniformly bounded
away from zero for every f ∈ F , then 1/F = {1/f : f ∈ F} is Donsker (see example
2.10.9 in van der Vaart and Wellner, 1996 ).

Example 8. If Z is a caglad process on [0, t], t ∈ R which is uniformly bounded in
variation, then Z(·) is Donsker (see Lemma 2 in Parner, 1998).

Example 9. If F is Donsker, then it is also Glivenko-Cantelli.
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Chapter 5

Semiparametric Mixture Model for
Competing Risks

Introduction

The modeling and fit of competing risks data is one of the most prominent areas of
research in survival analysis from disciplines such as epidemiology, finance, criminology
and engineering. For a discussion of several inference problems in competing risks see, for
example, Holt (1978), Whitmore (1986), Spivey and Gross (1991), Gaynor et al. (1993),
Klein and Moeschberger (1997) and Klein and Bajorunaite (2004) and the references
therein. In the competing risks setting, the inference centres on analyzing durations of
time of certain events, beginning with a well established origin in time and ending with
the occurrence of the event which is classified in several cases. For example, when a
company hires life insurance for their employees, the amount of the compensation varies
according to the cause of death; generally a death related to the working conditions tends
to be larger than that from another type; so it is important to estimate the probabilities
associated with each cause in the presence of auxiliary variables, such as age and gender,
to allow for the calculation of the appropriate premium. In many practical situations the
data are contain concomitant information which is thought it influences the occurrence of
the events.

There are different reasons for competing risks data not to be studied using standard
statistical methods, mainly because the occurrence of a cause does not allow to observe the
occurrence of another and, as for an other survival data, it is common to find that for some
experimental units in the sample the failure times are not observed at the end of follow-
up. Several regression models for analysis competing risks have been proposed (among
them are: Holt JD, 1978; Prentice RL et al., 1978; Spivey LB et al., 1991; Gaynor et al.,

37
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1993 and Fine, 1999); however, these formulations can be criticized for its assumptions
unjustified and complicated interpretation.

A problem with the modeling of competing risks is that there is not always a cause-
specific hazard function that in an unique way identifyes the joint survival function. To
solve this problem of identifiability (see Tsiatis, 1975), several models assume that events
are mutually independent; however, this assumption can be questionable. Carrière (1995)
proposed to use a copula function to model the joint survival function which allows a
structure of dependency between the risks and therefore the competing risks model is
identifiable. A problem to this formulation given by Carrière is that there are few multi-
variate copulas, which restricts the model to two risks, moreover, there is no methodology
to determine what copula and what marginal are appropriate to fit the data.

There are two extensions of Cox’s proportional hazards model for analysing cause-
specific survival data that have been generally regarded as being particularly important.
The first, described by Kalbfleisch and Prentice (1980), consists of fitting the standard pro-
portional hazards model separately for each type of failure in turn, treating other failure
types as censored data. Since this method does not include all types of failures simultane-
ously in the inference process, the interpretation of parameters estimates is complicated.
Furthermore, the model implies an infinite-dimensional specification for the cause-specific
hazard functions. Therefore, if for instance, interest lies in estimating the cause-specific
survival probabilities, the resulting estimated hazards will generally have very wide confi-
dence bands (see for example Cheng et al., 1998).

An alternative approach was presented by Larson and Dinse (1985). Their model in-
corporates the different failure types by splitting the population into groups of individuals
who eventually fail from each cause with probabilities being attributed to the membership
of each group. In addition, they advocate that the effects of covariates on each group are
investigate through a parametric proportional hazards regression. Although complex, the
use of this mixture model can be considered as being an attractive statistical approach
as it is a model that is fully specified and easy to interpret. Larson and Dinse (1985) de-
veloped a maximum likelihood estimation procedure for their model, and Choi and Zhou
(2002) and Maller and Zhou (2002) investigated large-sample properties of the resulting
estimators, which include existence, consistency, and asymptotic normality.

An attempt to generalize Larson and Dinse’s model to a semiparametric context was
carried out by Kuk (1992). He proposed a mixture model analogous to the standard
Cox proportional hazards model where the baseline hazard functions are eliminated as
nuisance parameters. The inferences depend on a Monte Carlo approximation of the
likelihood function involved, which has a number of drawbacks since it is computationally
expensive to carry this out and the corresponding standard errors are sensitive to the
sampling plan used. Other semiparametric generalizations of Larson and Dinse’s model
have recently been proposed and investigated. For example, Ng vesand McLachlan (2003)
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and Escarela and Bowater (2008) present a class of model specifications that includes
Kuk’s mixture model. They consider a semiparametric mixture model with covariates,
where the conditional marginals of each cause have a multinomial logistic form and the
conditional distribution of the time given the covariates and the failure cause is specified
through a proportional hazards model (Cox, 1972). Ng and McLachlan (2003) and Escarela
and Bowater (2008) propose and implement EM-type algorithms in this class of models.
Naskar et al. (2005) consider a similar model in the case of clustered failure time data,
and develop a Monte Carlo EM algorithm.

The aforementioned papers focus on the computational aspects of the estimation in
semiparametric mixture models for competing risks data. To the best of our knowledge,
only a few papers have contributed to the large-sample properties of the estimators in
these contributions models. Dupuy and Escarela (2007) outline a consistency proof for
the maximum likelihood-based estimators proposed by Escarela and Bowater (2008). Lu
and Peng (2008) construct martingale-based estimating equations for the parameters of
a semiparametric version of Larson and Dinse’s model, and establish the consistency and
asymptotic normality of the resulting estimators.

In this chapter, we focus on the properties of the maximum likelihood-based estimators
in the semiparametric generalization of Larson and Dinse’s model developed by Escarela
and Bowater (2008). Specifically, we provide a rigorous large-sample treatment of the
resulting estimators. By following the approach and techniques developed by Murphy
(1994, 1995) and Parner (1998) for the frailty model (and thereafter extended to various
other settings by Fang et al. (2005), Dupuy et al. (2006), Kosorok and Song (2007),
Lu (2008), among others), we prove the consistency and asymptotic normality of the
estimators in Escarela and Bowater (2008). We also show that the proposed estimator for
the regression parameter of interest, which is the regression parameter in the conditional
distribution of the failure time given the failure cause and covariates, is semiparametric
efficient. Consistent variance estimators are also obtained.
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Introduction

La modélisation de durées de vie dans un contexte de risques concurrents intervient dans de
nombreuses disciplines: épidémiologie, fiabilité, finance, criminologie,. . . (voir par exemple,
Holt (1978), Whitmore (1986), Spivey et Gross (1991), Gaynor et al. (1993), Klein et
Moeschberger (1997) et Klein et Bajorunaite (2004)).

Le problème consiste à analyser un échantillon de durées (jusqu’au décès, par exemple),
lorsque le décès peut être dû à plusieurs causes mutuellement exclusives. Par exemple,
considérons une entreprise qui passe un contrat d’assurance-vie pour ses employés. Les
montants des indemnisations vont varier suivant la cause de la mort du travailleur. Une
mort relative aux conditions de travail tendra à engendrer un coût plus important. Il
est donc important d’estimer les probabilités associées à chacune des causes de décès, y
compris en présence de variables auxiliaires importantes, comme l’âge et le sexe.

Il existe différentes raisons par lesquelles les données de risques concurrents ne peuvent
pas être étudiées par les méthodes statistiques standards. Une raison est que la survenue
d’une cause ne permet pas d’observer la survenue des autres. De plus, il est fréquent
que la durée d’intérêt soit censurée. Dans ce cas, la cause de l’évènement à venir sera
inconnue. Plusieurs modèles de régression pour l’analyse de risques concurrents ont été
proposés (entre ceux-ci se trouvent les formulations faites par Holt,1978; Prentice et al.,
1978; Spivey et al., 1991; Gaynor et al., 1993; Carrire, 1995 et Fine, 1999). Toutefois,
ces formulations peuvent être critiquées, à cause de leurs hypothèses contraignantes et de
l’interprétation compliquée de leurs résultats.

Dans la littérature récente, plusieurs extensions du modèle de Cox aux risques concu-
rrents ont été proposées. La proposition faite par Kalbfleish et Prentice (1973) consiste à
adopter le modèle à risques proportionnels pour chaque type de risque, où le traitement
des autres types de risques est pris comme censuré. Puisque cette méthode n’inclut pas
tous les risques simultanément dans le processus d’inférence, le modèle peut avoir de très
amples bandes de confiance pour les probabilités de survie de cause spécifique (voir par
exemple Fine,1999).

Un point de vue alternatif a été présenté par Larson et Dinse (1985). Cette for-
mulation repose sur un modèle multinomial généralisé pour les probabilités de la cause
d’évènement, et le modèle de régression exponentiel par morceaux pour les fonctions con-
ditionnelles de survie de chaque cause. Deux inconvénients de ce modèle sont que: lorsqu’il
est paramétrique, il est peu flexible, et choisir des formes paramétriques incorrectes pour
les fonctions conditionnelles de survie implique d’obtenir des inférences erronées. Lar-
son et Dinse (1985) ont développé la méthode du maximum de vraisemblance pour leur
modèle de mélange paramétrique. Choi et Zhou (2002) et Maller et Zhou (2002) ont étudié
théoriquement les propriétés asymptotiques de ces estimateurs.
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Une généralisation semi-paramétrique du modèle de Larson et Dinse (1985) a été pro-
posée par Kuk (1992), dont le modèle consiste à spécifier les fonctions conditionnelles
de survie par le modèle semi-paramétrique de Cox. Récemment, d’autres généralisations
semi-paramétriques du modèle de Larson et Dinse (1985) ont été proposées. Par exemple,
Ng et McLachlan (2003) et Escarela et Bowater (2008) présentent une classe de modèle
qui inclut le modèle de Kuk. Ils considèrent un modèle de mélange semi-paramétrique
avec covariables, où la distribution conditionnelle de la cause d’évènement a une forme
logistique, et la distribution conditionnelle du temps de décès sachant les covariables et la
cause de décès est spécifiée par un modèle de risques proportionnels (Cox, 1972). Naskar
et al.. (2005) considèrent un modèle similaire dans le cas où les individus de l’échantillon
se répartissent en clusters, et développent un algorithme Monte-Carlo EM.

Les articles mentionnés ci-dessus se concentrent seulement sur les aspects algorith-
miques de l’estimation du modèle de mélange semi-paramétrique pour la modélisation de
risques concurrents. Seulement quelques articles ont contribué aux propriétés asympto-
tiques des estimateurs proposés dans ces contributions. Dupuy et Escarela (2007) décrivent
une preuve de la consistance pour les estimateurs du maximum de vraisemblance proposés
par Escarela et Bowater (2008). Lu et Peng (2008) construisent des équations d’estimation
en utilisant des martingales, et établissent la consistance et la normalité asymptotique de
leur estimateurs.

Dans ce chapitre, nous nous concentrerons sur les propriétés asymptotiques des esti-
mateurs du maximum de vraisemblance de la généralisation semi-paramétrique du modèle
de Larson et Dinse (1985) développée par Escarela et Bowater (2008). Spécifiquement,
nous fournissons un traitement rigoureux des propriétés asymptotiques des estimateurs
résultants. Nous utiliserons et adapterons les techniques développées par Murphy (1994,
1995) et Parner (1998) pour le modèle de fragilité. Nous démontrons l’existence, la consis-
tance, la normalité asymptotique des estimateurs proposés par Escarela et Bowater (2008).
Nous montrons aussi que l’estimateur proposé pour le paramètre de régression d’intérêt
est efficace au sens semi-paramétrique. Finalement un estimateur consistant de la variance
asymptotique des estimateurs proposés est obtenu.
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5.1 Theoretical framework of competing risks model

Consider the following theoretical framework to develop an appropriate methodology to
analyze competing risks (see Eldant-Johnson and Johnson, 1980):

• Each death is due to a single cause.

• Each individual in a given population is liable to die from any of the causes operating
in this population.

Consider a population in which there are J causes of death. In view of the first as-
sumption, that each death is due to a single cause, we cannot observe (T1, ..., TJ) jointly.
Instead, we observed time at death T = min(T1, ..., TJ). Let T1, . . . TJ denote the hypo-
thetical (potential) times due to die and define their joint survival distribution function

S(t1, ..., tJ) = P{T1 > t1, ..., TJ > tj}.

We assume that S(t1, ..., tJ) is absolutely continuous. The force of mortality of cause-
specific mortality is expressed as follows,

λ∗j(t) = lim
∆t→0

P {t < Tj < t+∆t|Tj ≥ t}
∆t

,

and is interpreted as the instantaneous probability of occurrence of an event of type j in
the time t given that the individual has survived all causes. In terms of S(t1, ..., tJ), λj(t),
is expressed as:

λ∗j(t) = − ∂ log S(t1, ..., tJ)

∂tj

∣∣∣∣
ti=t

.

The overall survival function is

ST (t) = P{T > t} = P
(
∩Jj=1{Tj > t}

)
= S(t, ..., t). (5.1)

Define the random variable H that identifies the cause of failure as

H =
J∑

i=1

jI(T = TJ).

If we observe the pair of values (T,H), then the time at death and the cause of death are
identified.

The conditional probability of death from cause j in an interval (t, t+∆t), given alive
at age t, and in the presence of all other causes acting simultaneously in a population, is
approximately, λ∗j(t)dt. The unconditional probability of death from cause j in (t, t+∆t)
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is then ST (t)λ
∗
j(t)dt. Hence, the crude (in the presence of all causes) probability of time

at death for cause j is

F ∗
j (t) = P{T ≤ t,H = j} =

∫ t

0

λ∗j(u)ST (u)du,

for j = 1, . . . J . Let pj the expect proportion of deaths from cause j. We have

pj = P{M = j} =

∫ ∞

0

λ∗j(u)ST (u)du = Fj(∞),

with p1 + ...+ pJ = 1.

5.2 The mixture model framework

In this seection, we describe the data and the semiparametric mixture regression model
derived from Larson and Dinse (1985) proposed by Escarela and Bowater (2009). First, we
consider that all the random variables are defined on a probability space (Ω, C,P). Let T 0

be a random failure time of interest. As is custom in survival analysis, we suppose that T 0

may be right-censored by a positive random variable C (in the example of prostate cancer
data, some individuals were lost to follow up during the course of the study, and were
considered as right-censored). Let Z and X be respectively p- and q-vectors of covariates
(Z and X may share some common components). Let H be the failure cause variable and
J = {1, . . . , J} be the set of possible values of H. For j ∈ J , we define the indicator
variable Γj = 1{H = j}. In a competing risks setting, both the failure cause H and the
indicator Γj are observed only if the survival time is uncensored.

The mixture model approach proposed by Larson and Dinse (1985) assume that the
cause of death of an individual is chosen at the outset by a stochastic mechanism from
the J possible causes. Let

pj = P{H = j}
be the probability of ever failing from cause j. They assume that the survival time is
a realisation of T , therefore the model is based on the conditional survival distribution
functions, defined as

Sj(t) = P{T > t|H = j}, j ∈ J
where Sj(t) is a proper survival distribution in the sense that Sj(0) = 1 and Sj(∞) = 0.
It follows that the cause-specific failure probabilities also known as cumulative incidence
function can be calculated by Fj(t) = pj[1 − Sj(t)]. Thus, the overall survival function,

which is defined by ST (t) = P{
⋂J
j=1(Tj > t)}, can be expressed as

ST (t) = P{T > t} =
J∑

j=1

pjSj(t).
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In order to allow for the effect of covariates on the conditional survival function Sj(t) or
in other words their effect on the hazard component of the mixture model, it is convenient
to make use of the Cox proportional hazards model. More specifically, it is convenient to
assume that this hazard component is characterized by the following function:

Sj(t;Z) = exp
{
−Λj0(t)e

β′

jZ

}
, j ∈ J ,

where Λj0(t) =
∫ t
0
λj0(u)du is the integrated baseline hazard function for the failure j, Z is

a p-vector of covariates, which does not contain the intercept, and βj denotes the p-vector
of parameters for failure j. In terms of the hazard function, the assumption of there being
proportional hazards implies that

λj(t;Z) = lim
h↓0

1

h
P(t < T 0 ≤ t+ h|T 0 > t,H = j,Z)

= λj0(t) exp(β
′
jZ), j = 1, ..., J. (5.2)

In similar way, the effects of covariates on the probabilities of eventual cause-specific death
can be modeled using a generalized logistic model (Cox and Snell, 1989, pp. 155-157), so
that the probability model has the following form:

pj = P(H = j|X) =
exp(γ′jX)

∑J
k=1 exp(γ

′
kX)

, j ∈ J (5.3)

where X is a q-vector of covariates, which includes the intercept, and γj (j ∈ J ) is the
corresponding q-dimensional vector of parameters for failure j. For identifiability purposes
γJ is set equal to 0.

The statistical problem is that of estimating the parameters βj, γj, and the cumulative
baseline hazard functions Λj =

∫
λj from the incomplete data vectors Oi, i = 1, . . . , n. In

practice, the coefficients βj (j ∈ J ) are often the parameters of interest in the mixture
model (5.2)-(5.3).

The semiparametric mixture model for competing risks has been employed by various
authors. For example, Kuk (1992) analysed a heart transplant dataset (using a simplified
version of model (5.2)-(5.3), where X = Z), while Ng and McLachlan, 2003 and Escarela
and Bowater, 2008 fitted the present model to a prostate cancer dataset.

Although Larson and Dinse’s original parametric model accounts for the same set of
covariates in both the conditional hazard functions and the multinomial logistic regression
model, Escarela and Bowater’s semiparametric specification allows for different sets of
covariates in each component, in order that the conditional hazard and multinomial models
can each be considered in some sense as being parsimonious. Indeed, the authors found
that, while the two factors they considered in the analysis of the prostate cancer data
have significant effects in the generalized logistic model, neither of them seemed to be
significant in the conditional hazards.
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Note that the model (5.2)-(5.3) is related to semiparametric mixture models for sur-
vival data with cure fraction (see, among others, Kuk and Chen, 1992; Taylor, 1995; Sy
and Taylor, 2000; Peng, 2003; who investigated the computational issues raised by the
estimation in this class of models. See also Fang et al., 2005 and Lu, 2008; who studied
the large-sample properties of maximum likelihood estimators in the proportional hazards
cure model).

5.3 Notation and model assumptions

In this section, we state some notations and model assumptions that will be used through-
out the chapter. Some notations will be useful in the present study. Suppose that there
is a random sample of size n. This will induce an index i (i = 1, . . . , n) on all the random
variables defined above. The data consist of n independent vectors (Ti,∆i,Zi,Xi,∆iHi)
(i = 1, . . . , n), where Ti = min{T 0

i ,min(Ci, τ)}, ∆i = 1{T 0
i ≤ min(Ci, τ)}, and τ < ∞

is a fixed constant denoting the end of the study. In this work, we will use O and Oi

to abbreviate the observed data vector (T,∆,Z,X,∆H) and its n independent replicates
(Ti,∆i,Zi,Xi,∆iHi).

We shall note G = (γ′1 . . . γ
′
J−1)

′, pj,X
G

= P(H = j|X), and pj,X
G,i = P(H = j|Xi). If

t ∈ [0, τ ], we denote by N(t) = 1{T ≤ t}∆ and Y (t) = 1{T ≥ t} the failure counting and
at risk processes respectively. For j ∈ J , define the counting process N j(t) = 1{T ≤ t}∆j,
where ∆j = ∆Γj. Note that N j(t) is equal to 1 if the failure arises form the j-th cause
before time t. Corresponding quantities for the i-th subject will be denoted by Ni, N

j
i ,

and ∆j
i .

To establish our results, we need the following regularity assumptions:

(C1) Conditionally on Z, H, and X, the censoring time C is independent of the failure
time T 0. Conditionally on Z and X, C is independent of H.

(C2) There exists a positive constant c0 such that P(C ≥ τ |Z,X) > c0 almost surely.

(C3) The hazard function of C given Z and X, λC(s|Z,X), is uniformly bounded almost
surely.

(C4) Let B = (β′
1 . . . β

′
J)

′ ∈ RpJ ≡ RP and G = (γ′1 . . . γ
′
J−1)

′ ∈ Rq(J−1) ≡ RQ. The true
values B0 of B and G0 of G lie in the interior of known compact sets B ⊂ RP and
G ⊂ RQ respectively.

(C5) For every j ∈ J , the true conditional cumulative baseline hazard Λj,0 is a strictly
increasing function in [0, τ ], with Λj,0(0) = 0 and Λj,0(τ) < ∞. Λj,0 is continuously
differentiable in [0, τ ], with λj,0(t) = dΛj,0(t)/dt.
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(C6) The covariate vectors Z and X are bounded that is, ‖X‖ < c1 and ‖Z‖ < c1 for
some constant 0 < c1 <∞ (where ‖·‖ denotes the Euclidean norm). The covariance
matrices of Z and X are positive definite. Let

c2 = min
βj ,j∈J ,‖Z‖<c1

exp(β′
jZ) c3 = max

βj ,j∈J ,‖Z‖<c1
exp(β′

jZ).

Let L be the set of all functions verifying the conditions in C5, θ denote the parameter
(B,G,Λj; j ∈ J ), θ0 = (B0,G0,Λj,0; j ∈ J ), and Θ = B ×G ×L⊗J denote the parameter
space. Under the true value θ0, the expectation of random variables will be noted by Pθ0 .

(C7) There is a positive constant c4 such that for every j ∈ J , Pθ0 [Y (τ)Γj] > c4.

(C8) There exists a positive constant c5 such that for every j ∈ J , Pθ0 [∆
j|T,Z,X] > c5.

(C9) The distribution of the failure cause H conditionally on X and Z does not involve
the components of Z that are not in X. The distributions of C, Z, and X do not
depend on θ.

Remark. Condition C1 ensures that no information about θ is lost by removing
terms adhering to censoring from the likelihood. Condition C2 ensures that the follow-up
is sufficiently long for identifying the cumulative baseline hazard functions Λj,0 on the
interval [0, τ ]. Conditions C3-C8 are used for the identifiability of θ0 and the asymptotics
of the proposed estimators. Condition C7 ensures that the follow-up is sufficiently long
(for every failure cause) so that we can estimate the Λj,0 on the entire interval [0, τ ].
Condition C8 ensures that for each failure cause, failures can happen and their cause be
observed at any time and for any value of the covariates. Condition C9 ensures that no
information about θ is lost by removing terms adhering to the marginal distributions of Z
and X from the likelihood.

5.4 Nonparametric maximum likelihood estimation

In this paper, we assume that there are no tied failure times (this assumption is made for
ease of presentation, but our results can be easily adapted to accomodate ties). Under
models (5.2) and (5.3), and conditions C1-C9, the likelihood function for the parameter
θ from the observations Oi (i = 1, . . . , n) is proportional to

n∏

i=1




∏

j∈J

[
λj(Ti)e

β′

jZi exp
(
−eβ′

jZiΛj(Ti)
)
pj,X
G,i

]∆j
i

[∑

j∈J

exp
(
−eβ′

jZiΛj(Ti)
)
pj,X
G,i

]1−∆i



 .(5.4)
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It would seem natural to calculate the maximum likelihood estimator (MLE) of θ0 by
maximizing the foregoing likelihood. However, the maximum of this function is infinity
when the functions Λj (j ∈ J ) range within the class L of absolutely continuous cumulative
baseline hazards. To see this, we may choose functions Λj (j ∈ J ) with fixed values at
the failure times Ti, and let dΛj,0(Ti)/dTi = λj(Ti) go to infinity for some Ti with ∆j

i = 1.

To solve this problem, we restrict the functions Λj (j ∈ J ) to be right-continuous, and
we allow each Λj to have jumps at the failure times Ti. Then, letting Λj{t} denote the
jump size of Λj at t, we maximize the function Ln(B,G,Λj; j ∈ J ) =

n∏

i=1




∏

j∈J

[
Λj{Ti}eβ

′

jZi exp
(
−eβ′

jZiΛj(Ti)
)
pj,X
G,i

]∆j
i

[∑

j∈J

exp
(
−eβ′

jZiΛj(Ti)
)
pj,X
G,i

]1−∆i





over the space Θn =

{(B,G,Λj) : B ∈ B,G ∈ G,Λj is an increasing right-continuous function on [0, τ ], j ∈ J } .

If they exist, the resulting estimators will be referred to as nonparametric MLEs (NPM-

LEs), and will be noted by θ̂n = (B̂n, Ĝn, Λ̂j,n; j ∈ J ), where

B̂n = (β̂′
1,n . . . β̂

′
J,n)

′ and Ĝn = (γ̂′1,n . . . γ̂
′
J−1,n)

′.

In our setting, existence of the NPMLEs is ensured by the following result:

Proposition 5.4.1 Under conditions C1-C9, the maximizer θ̂n of Ln over Θn exists and
is achieved.

Proof: We first identify the form of a possible maximizer Λ̂j,n of Ln in the space Θn.

Let j ∈ J . Define Sjn = {i ∈ {1, . . . , n}|∆j
i = 1} as the set of sample individuals

who are observed to fail from the j-th cause. For every j ∈ J and any function Λj
in Θn, we can construct an increasing step function Λ∗

j with jumps only at the failure
times in {Ti, i ∈ Sjn}, and satisfying Λ∗

j(Ti) = Λj(Ti). Clearly, at each of these failure
times, Λ∗

j{Ti} ≥ Λj{Ti} which implies that Ln(B,G,Λj; j ∈ J ) ≤ Ln(B,G,Λ
∗
j ; j ∈ J ).

Therefore, the maximizer Λ̂j,n (if it exists) must be a step function with positive jumps at
the failure times Ti such that ∆j

i = 1. This restricts the maximization problem of Ln to
the following subspace of Θn:

{(
B,G,Λj{tjk}

)
: B ∈ B,G ∈ G,Λj{tjk} ∈ [0,∞), k = 1, . . . , |Sjn|, j ∈ J

}
, (5.5)

where for every j ∈ J , |Sjn| denotes the cardinality of Sjn and tj1 < . . . < tj
|Sj

n|
are

the ordered failure times in the set {Ti, i ∈ Sjn}. That is, we maximize the function
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Ln(B,G, (Λj{tjk})j,k) =

n∏

i=1




∏

j∈J


Λj{Ti}eβ

′

jZi exp


−eβ′

jZi

|Sj
n|∑

k=1

Λj{tjk}1{t
j
k ≤ Ti}


 pj,X

G,i




∆j
i

×


∑

j∈J

exp


−eβ′

jZi

|Sj
n|∑

k=1

Λj{tjk}1{t
j
k ≤ Ti}


 pj,X

G,i




1−∆i





(5.6)

with respect to the βj, γj, and Λj{tjk}. We now show that such a maximizer exists.

Assume first that Λj{tjk} ≤ L < ∞ for every k = 1, . . . , |Sjn| and j ∈ J . Ln is
a continuous function of the βj, γj, and Λj{tjk} on the compact set B × G × [0, L]sn ,
where sn =

∑
j∈J |Sjn|. Therefore Ln achieves its maximum on this set. To show that a

maximum exists on the set B × G × [0,∞)sn , we show that there exists a finite L such
that for all (BL,GL, (ΛLj {tjk})j,k) ∈ (B × G × [0,∞)sn)\(B × G × [0, L]sn), there exists a

(B,G, (Λj{tjk})j,k) ∈ B × G × [0, L]sn which has a larger value of Ln. Consider a proof
by contradiction. That is, suppose there does not exist such a L. Then for all L < ∞,
there exists a (BL,GL, (ΛLj {tjk})j,k) ∈ (B × G × [0,∞)sn)\(B × G × [0, L]sn) such that for

all (B,G, (Λj{tjk})j,k) ∈ B×G × [0, L]sn , Ln(B,G, (Λj{tjk})j,k) ≤ Ln(B
L,GL, (ΛLj {tjk})j,k).

But we show that Ln(B
L,GL, (ΛLj {tjk})j,k) can be made arbitrarily small by increasing L,

which is a contradiction. To see this, note that (5.6) is bounded from above by

Jn−sn
n∏

i=1

∏

j∈J

{Λj{Ti}c3}∆
j
i exp


−c2∆j

i

|Sj
n|∑

k=1

Λj{tjk}1{t
j
k ≤ Ti}


 .

If (BL,GL, (ΛLj {tjk})j,k) ∈ (B × G × [0,∞)sn)\(B × G × [0, L]sn), then there exists at least

one j ∈ J and one l ∈ {1, . . . , |Sjn|} such that ΛLj {tjl } > L. Let i∗ be the index of the

individual such ∆j
i∗ = 1 and Ti∗ = tjl . Then

{
ΛLj {Ti∗}c3

}∆j

i∗ exp


−c2∆j

i∗

|Sj
n|∑

k=1

ΛLj {tjk}1{t
j
k ≤ Ti∗}




tends to 0 as L tends to +∞. Therefore, the upper bound of Ln(B
L,GL, (ΛLj {tjk})j,k) can

be made as close to 0 as desired by increasing L, which yields a contradiction. Therefore,
for any fixed n, the maximum of Ln is obtained in the set B×G× [0, L]sn , for some L <∞,

and on this set, the maximizer θ̂n is achieved.

�
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For every n, the problem of maximizing Ln over (5.5) reduces to a finite dimensional
one, since the total number sn of jumps of the Ni (i = 1, . . . , n) is less than or equal to n.

The expectation-maximization (EM) algorithm (Dempster et al., 1977) can be used to
calculate the NPMLEs. Escarela and Bowater (2008) explain and implement to detail the
EM algorithm. We briefly explain now,

For j ∈ J , let gj(O; θ) denote the conditional expectation of Γj given O and the
parameter value θ. Then gj(O; θ) has the form

gj(O; θ) = ∆j + (1−∆)wj(O; θ),

where

wj(O; θ) =
exp

(
−Λj(T )e

β′

jZ + γ′jX
)

∑
k∈J exp

(
−Λk(T )eβ

′

k
Z + γ′kX

) .

In the M-step of the EM-algorithm, we solve the complete-data score equation con-
ditional on the observed data. In particular, a useful integral equation for Λ̂j,n can be
obtained (see Lemma 5.4.1).

Let Pn denote the empirical probability measure. Then the following holds:

Lemma 5.4.1 The NPMLE θ̂n satisfies the following equation for every j ∈ J :

Λ̂j,n(t) =

∫ t

0

1

Hj
n(s; θ̂n)

dGj
n(s), (5.7)

where Hj
n(s; θ) = Pn[h

j(s,O; θ)], hj(s,O; θ) = Y (s)eβ
′

jZgj(O; θ), and Gj
n(s) = PnN

j(s).

Proof: This result is obtained by following these steps:

1. Taking the derivative with respect to the jump sizes Λj{tjk}, of the conditional expec-
tation of the complete-data log-likelihood given the observed data and the NPMLE,
which is given by

lθ̂n(θ) =
n∑

i=1

∑

j∈J



∆j

i

|Sj
n|∑

k=1

1{Ti = tjk} log Λj{t
j
k}+∆j

iβ
′
jZi

−gj(Oi; θ̂n)e
β′

jZi

|Sj
n|∑

k=1

Λj{tjk}1{t
j
k ≤ Ti}+ gj(Oi; θ̂n) log p

j,X
G,i



 ,
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2. Setting (∂lθ̂n(θ)/∂Λj{t
j
k})|θ=θ̂n = 0 and solving for Λj{tjk}.

3. Summing over {k ∈ {1, . . . , |Sjn|} : tjk ≤ t}.

�

5.5 Identifiability of the semiparametric mixture model

for compering risk.

In this section we study the identifiability property for the semiparametric mixture model
for competing risks studied in the previous sections. First, we present the definition of
identifiability and of the Kullback-Leibler information. After, we show that the model
(5.2)-(5.3) is identifiable.

5.5.1 Definition of identifiability and of the Kullback-Leibler in-
formation

Let P = {Pφ : φ ∈ Φ} be a statistical model where the parameter φ can be finite- or
infinite-dimensional.

Definition 5.5.1 A model P = {Pφ : φ ∈ Φ} is identifiable if the parameterization Pφ is
one-to-one.

If the family of probabilities P can be defined in terms of the family of densities F , i.e
P = {Pφ = (f(y;φ).µ) : f ∈ F} for a measure µ, then the above identifiability condition
is expressed as follows:

∀φ1, φ2 ∈ Φ, f(y;φ1) = f(y;φ2) ⇒ φ1 = φ2. (5.8)

Definition 5.5.2 Consider two distributions Pφ1 = f(y, φ1).µ and Pφ2 = f(y, φ2).µ. The
Kullback-Leibler information of Pφ2 on Pφ1 is expressed as

K(Pφ1 , Pφ2) =

∫

Y

ln
f(y;φ2)

f(y;φ1)
f(y;φ2)µ(dy)
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The Kullback-Leibler information is not a classical distance because the conditions of
symmetry and the triangle inequality is not satisfied. However, this measure translates as
the approximation of the probabilities. In Konishi and Kitagawa (2008) and Kullback and
Leibler (1951) we can find the following properties of the Kullback-Leibler information,

Proposition 5.5.1 Let two probabilities Pφ1 and Pφ2. The Kullback-Leibler information
has the following properties:

1. It is always non-negative: K(Pφ1 , Pφ2) ≥ 0.

2. K(Pφ1 , Pφ2) = 0 ⇔ Pφ1 = Pφ2.

Proposition 5.5.2 The parameter φ is identifiable if and only if:

∀φ1, φ2 ∈ Φ, K(Pφ1 , Pφ2) = 0 ⇒ φ1 = φ2.

5.5.2 Identifiability for the semiparametric mixture model for
competig risks

In this part, we consider the identifiability of the parameter θ = (B,G,Λj; j ∈ J ). The
result is obtained following the definitions of the Kullback-Leibler information and the
identifiability definition.

Proposition 5.5.3 The model is identifiable that is, if θ = (B,G,Λj; j ∈ J ) and θ∗ =
(B∗,G∗,Λ∗

j ; j ∈ J ) are two elements of Θ, such that L(θ0) = L(θ∗) implies θ0 = θ∗.

Proof: Let be θ = (B,G,Λj; j ∈ J ) and θ∗ = (B∗,G∗,Λ∗
j ; j ∈ J ) two elements of Θ.

If L(θ) = L(θ∗) by condition (C8) there are a l ∈ J such that ∆l = 1, y ∈ [0, τ ], ‖z‖ ≤ c1
and ‖x‖ ≤ c1, therefore,

λl(y)e
β′

l
z exp

(
eβ

′

l
zΛl(y)

)
pl,x
G

= λ∗l (y)e
β∗

′

l
z exp

(
eβ

∗
′

l
zΛ∗

l (y)
)
pl,x
G∗ ,

which can be rewritten as,

pl,x
G

∂ exp
(
eβ

′

l
zΛl(s)

)

∂s
= pl,z

G∗

∂ exp
(
eβ

∗
′

l
zΛ∗

l (s)
)

∂s
.
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Let t ∈ [0, τ ], integrating both sides of the equation above 0 to t we obtained

pl,x
G

exp
(
eβ

′

l
zΛl(t))

)
= pl,x

G∗ exp
(
eβ

∗
′

l
zΛ∗

l (t)
)

equivalently,

exp
(
eβ

′

l
zΛl(t))

)

exp
(
eβ

∗
′

l
zΛ∗

l (t)
) =

pl,x
G∗

pl,x
G

. (5.9)

Note that the right-hand side of the equation (5.9) is independent of t, then

exp
(
eβ

′

l
zΛl(t))

)

exp
(
eβ

∗
′

l
zΛ∗

l (t)
) =

pl,x
G∗

pl,x
G

= κ1, (5.10)

where κ1 is a positive constant. In particular, taking x = 0 implies that
pl,x
G∗

pl,x
G

= 1, i.e.,

κ1 = 1. From this result and the equation (5.10) we obtained

exp
(
eβ

′

l
zΛl(t)

)

exp
(
eβ

∗
′

l
zΛ∗

l (t)
) = 1,

applying the logarithm and rearranging terms, the above equation reduces to

eβ
′

l
z

eβ
∗
′

l
z
=

Λ∗
l (t)

Λl(t)
.

Note that the left-hand side of the equation does not depend on t, then

eβ
′

l
z

eβ
∗
′

l
z
=

Λ∗
l (t)

Λl(t)
= κ2 (5.11)

with κ2 is a positive constant. Taking z = 0, then κ2 = 1 and therefore

eβ
′

l
z

eβ
∗
′

l
z
= 1,

which is equivalent to (βl − β∗
l )

′z = 0 by (C6) it follows that βl − β∗
l = 0. On the other

hand, as κ2 = 1, by equation (5.11) Λl(t) = Λ∗
l (t). Finally γ = γ∗, this result is shown

in Theorem 1 Bettina Grun and Friedrich Leisch in Identifiability of Finite Mixtures of
Multinomial Logit Models with Varying and Fixed Effects we do not present the proof of
this fact in this thesis because the show is long, but the reader can find all the details in
this reference.

Therefore, θ = θ∗, which completes the proof.

�
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5.6 Consistency

The purpose of this section is to prove the following result.

Theorem 5.6.1 Under conditions C1-C9, ‖B̂n −B0‖, ‖Ĝn −G0‖, and

sup
t∈[0,τ ]

|Λ̂j,n(t)− Λj,0(t)|,

for every j ∈ J , converge to 0 almost surely as n tends to infinity.

The consistency proof is based on techniques developed by Murphy (1994) for the
frailty model (see also Chang et al. (2005), Kosorok and Song (2007), and Lu (2008) for
recent use of these techniques in various other models for right-censored survival data),
but the technical details are quite different. Two lemmas are needed before presenting the
proof.

Lemma 5.6.1 For every j ∈ J , lim supn Λ̂j,n(τ) <∞ almost surely.

Proof: Let j ∈ J and s ∈ [0, τ). By assumption C6,

Hj
n(s; θ̂n) = Pn[Y (s)eβ̂

′

j,nZgj(O; θ̂n)] ≥ c2Pn[Y (s)∆j],

thus it follows from the law of large numbers that Hj
n(s; θ̂n) ≥ c2Pθ0 [Y (s)∆j]+o(1) almost

surely. Under the assumptions stated in Section 5.3, Pθ0 [Y (s)∆j] is bounded away from

0. Thus, for every s ∈ [0, τ), Hj
n(s; θ̂n) is bounded away from 0 almost surely as n tends

to infinity. Moreover, it is easily shown that the jump size of Λ̂j,n at τ is bounded by 1/c2.
Therefore,

0 ≤ Λ̂j,n(τ) ≤ O(1)PnN
j(τ−) +

1

c2

almost surely as n tends to infinity, which concludes the proof.

�

Lemma 5.6.2 For every j ∈ J and t ∈ [0, τ ], define

Λ̃j,n(t) =

∫ t

0

1

Hj
n(s; θ0)

dGj
n(s).

Then supt∈[0,τ ] |Λ̃j,n(t)− Λj,0(t)| converges to 0 almost surely as n tends to infinity.
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Proof: We first show that the class of functions {hj(s,O; θ) : s ∈ [0, τ ], θ ∈ Θ} is
Donsker. Recall that Θ = B × G × L⊗J . In the course of this proof, it will be useful to
denote by Bj and Gj the parameter space for βj and γj respectively. Consider the class

F =



w

j(O; θ) =
exp

(
−Λj(T )e

β′

jZ + γ′jX
)

∑
k∈J exp

(
−Λk(T )eβ

′

k
Z + γ′kX

) : θ ∈ Θ



 . (5.12)

Boundedness of Z and X and by example 2 from section 4.2 imply that the classes {β′
jZ :

βj ∈ Bj} and {γ′jX : γj ∈ Gj} are Donsker. Differentiability of eβ
′

jZ in Z and boundedness

of the derivative imply that {eβ′

jZ : βj ∈ Bj} are Donsker(see example 3 from section
4.2). Moreover, the class of functions mapping T in Λj(T ) indexed by Λj ∈ L is also
Donsker (see example 8 from section 4.2). It follows from example 5 from section 4.2
that the class of functions −Λj(T )e

β′

jZ + γ′jX with θ varying over Θ is Donsker, for every
j ∈ J . Then, by example 4 in section 4.2, we conclude that both the numerator and
denominator from (5.12) with θ varying over Θ are Donsker classes. Since the denominator
is bounded away from 0 imply that F is Donsker (see example 6 and 7 from section 4.2).
By example 6 from section 4.2, ∆j+(1−∆)wj(O; θ) is Donsker as θ ranges over Θ. Finally,
{Y (s) : s ∈ [0, τ ]} is Donsker thus, by multiplying Donsker classes, we can conclude that
the class {hj(s,O; θ) : s ∈ [0, τ ], θ ∈ Θ} is Donsker.

Similar arguments yield that {∆j1{T ≤ t}/Pθ0 [hj(s,O; θ0)] |s=T : t ∈ [0, τ ]} is also a
Donsker class. Next, for every j ∈ J and t ∈ [0, τ ], define

Λj(t; θ0) =

∫ t

0

1

Pθ0 [h
j(s,O; θ0)]

Pθ0dN
j(s)

. Then

sup
t∈[0,τ ]

∣∣∣Λ̃j,n(t)− Λj(t; θ0)
∣∣∣

= sup
t∈[0,τ ]

∣∣∣∣∣
1

n

n∑

i=1

∆j
i1{Ti ≤ t}
Hj
n(Ti; θ0)

− Pθ0

[
∆j1{T ≤ t}

Pθ0 [h
j(s,O; θ0)] |s=T

]∣∣∣∣∣

≤ sup
t∈[0,τ ]

∣∣∣∣∣∣
1

n

n∑

i=1

∆j
i1{Ti ≤ t}

{
1

Hj
n(s; θ0)

− 1

Pθ0 [h
j(s,O; θ0)]

}

|s=Ti

∣∣∣∣∣∣

+ sup
t∈[0,τ ]

∣∣∣∣(Pn − Pθ0)

[
∆j1{T ≤ t}

Pθ0 [h
j(s,O; θ0)] |s=T

]∣∣∣∣

≤ sup
s∈[0,τ ]

∣∣∣∣
1

Hj
n(s; θ0)

− 1

Pθ0 [h
j(s,O; θ0)]

∣∣∣∣

+ sup
t∈[0,τ ]

∣∣∣∣(Pn − Pθ0)

[
∆j1{T ≤ t}

Pθ0 [h
j(s,O; θ0)] |s=T

]∣∣∣∣ . (5.13)
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From the result above, {hj(s,O; θ0) : s ∈ [0, τ ]} is a Donsker and therefore a Glivenko-
Cantelli class of functions, and thus sups∈[0,τ ] |Hj

n(s; θ0)− Pθ0 [h
j(s,O; θ0)]| converges to

0 almost surely. Moreover, for every s ∈ [0, τ ], Pθ0 [h
j(s,O; θ0)] ≥ c2Pθ0 [Y (s)Γj] (by

C6) and thus by assumption C7, Pθ0 [h
j(s,O; θ0)] > 0 on [0, τ ]. Therefore, the first term

on the right hand side of (5.13) converges to 0 almost surely. The second term on the
right hand side of (5.13) converges almost surely to 0 by the Glivenko-Cantelli property

of {∆j1{T ≤ t}/Pθ0 [hj(s,O; θ0)] |s=T : t ∈ [0, τ ]}. Therefore, we conclude that Λ̃j,n
converges uniformly to Λj(·; θ0), almost surely. It is easy to verify that Λj(·; θ0) is equal
to Λj,0, which concludes the proof.

�

Proof of Theorem 5.6.1: The proof consists of two steps:

(i) To show that every subsequence of n contains a further subsequence where the

NPMLE θ̂n converges.

(ii) To show that the set of limits of all convergent subsequences of θ̂n reduces to {θ0}.

Proof of(i). From the compactness of B × G, every subsequence of (B̂n, Ĝn) has a further

subsequence, say (B̂φ(n), Ĝφ(n)), which converges to some (B∗,G∗) in B × G. Let j ∈ J .

By Lemma 5.6.1 and Helly’s theorem, we can find with probability 1 a subsequence Λ̂j,ϕ(n)
of Λ̂j,φ(n) and a nondecreasing right-continuous function Λ∗

j such that Λ̂j,ϕ(n)(t) → Λ∗
j(t) for

all t ∈ [0, τ ] where Λ∗
j is continuous; Λ̂j,ϕ(n) is said to converge weakly to Λ∗

j . By extracting
successive sub-subsequences, we can find a further subsequence ξ(n) of ϕ(n) in such a way
that this weak convergence holds along ξ(n) for every j ∈ J . We now show that Λ∗

j , for
j ∈ J , is continuous on [0, τ ]. Note first that

Λ̂j,ξ(n)(t) =

∫ t

0

Pξ(n)[h
j(s,O; θ0)]

Pξ(n)[hj(s,O; θ̂ξ(n))]
dΛ̃j,ξ(n)(s), (5.14)

where Λ̃j,n is defined in Lemma 5.6.2. It follows from the Glivenko-Cantelli property of
{hj(s,O; θ) : s ∈ [0, τ ], θ ∈ Θ} that (see the proof of Lemma 5.6.2)

sup
s∈[0,τ ]

∣∣Pξ(n)[hj(s,O; θ0)]− Pθ0 [h
j(s,O; θ0)]

∣∣ −→ 0 a.s.,

sup
s∈[0,τ ]

∣∣∣Pξ(n)[hj(s,O; θ̂ξ(n))]− Pθ0 [h
j(s,O; θ̂ξ(n))]

∣∣∣ −→ 0 a.s.. (5.15)

Additionally, by using the bounded convergence theorem and the facts that (B̂ξ(n), Ĝξ(n))

converges to (B∗,G∗) and Λ̂j,ξ(n) converges weakly to Λ∗
j , we obtain that Pθ0 [h

j(s,O; θ̂ξ(n))]
converges to Pθ0 [h

j(s,O; θ∗)] for every s ∈ [0, τ ], where θ∗ = (B∗,G∗,Λ∗
j ; j ∈ J ). More-

over, under assumption C3, we can show that the derivative of Pθ0 [h
j(s,O; θ̂ξ(n))] with
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respect to s is uniformly bounded; hence the sequence of functions Pθ0 [h
j(·,O; θ̂ξ(n))] is

equicontinuous. By the Arzela-Ascoli theorem, there exists a subsequence of ξ(n), say

ψ(n), such that Pθ0 [h
j(·,O; θ̂n)] converges uniformly to Pθ0 [h

j(·,O; θ∗)] in [0, τ ] along this
subsequence; we can assume that this subsequence is the same for all j ∈ J , by the same
argument of extraction of subsequences as above. Using the latter result, equation (5.15),
and the triangle inequality, we obtain that

dΛ̂j,ψ(n)(t)

dΛ̃j,ψ(n)(t)
=

Pψ(n)[h
j(t,O; θ0)]

Pψ(n)[hj(t,O; θ̂ψ(n))]
−→ Pθ0 [h

j(t,O; θ0)]

Pθ0 [h
j(t,O; θ∗)]

uniformly in t ∈ [0, τ ]. By taking the limits on both sides of Λ̂j,ψ(n)(t) in (5.14), we obtain
that

Λ∗
j(t) =

∫ t

0

Pθ0 [h
j(s,O; θ0)]

Pθ0 [h
j(s,O; θ∗)]

dΛj,0(s).

We conclude that Λ∗
j is absolutely continuous with respect to Λj,0, so that Λ∗

j(t) is diffe-
rentiable with respect to t, and therefore continuous. A second conclusion, arising from
Dini’s theorem, is that Λ̂j,ψ(n) converges uniformly to Λ∗

j with probability 1. In addition,

dΛ̂j,ψ(n)(t)/dΛ̃j,ψ(n)(t) converges to dΛ
∗
j(t)/dΛj,0(t) := λ∗j(t)/λj,0(t) uniformly in t.

To summarize: for any given subsequence of n, we have found a further subsequence
ψ(n) and an element (B∗,G∗,Λ∗

j ; j ∈ J ) such that ‖B̂ψ(n) − B∗‖, ‖Ĝψ(n) − G∗‖, and
supt∈[0,τ ] |Λ̂j,ψ(n)(t)− Λ∗

j(t)|, for every j ∈ J , converge to 0 almost surely.

Proof of (ii). Consider the difference

0 ≤ 1

ψ(n)
logLψ(n)(B̂ψ(n), Ĝψ(n), Λ̂j,ψ(n); j ∈ J )− 1

ψ(n)
logLψ(n)(B0,G0, Λ̃j,ψ(n); j ∈ J ).

By letting n tend to infinity, we obtain that

0 ≤ Pθ0



∑

j∈J

log




λ∗j(T ) exp
(
β∗′

j Z− eβ
∗
′

j ZΛ∗
j(T )

)
pj,X
G∗

λj,0(T ) exp
(
β′
j,0Z− eβ

′

j,0ZΛj,0(T )
)
pj,X
G0




∆j

+ (1−∆) log



∑

j∈J exp
(
−eβ∗

′

j ZΛ∗
j(T )

)
pj,X
G∗

∑
j∈J exp

(
−eβ′

j,0ZΛj,0(T )
)
pj,X
G0




 .

Since the right side of this inequality is the negative Kullback-Leibler information, then,

Pθ0

[
logL(θ

∗)
L(θ0)

]
= 0 and therefore, it follows from the proposition 5.5.3 that θ∗ = θ0.

Combining the results from steps (i) and (ii), we conclude that the original sequences

‖B̂n − B0‖, ‖Ĝn − G0‖, and, for every j ∈ J , supt∈[0,τ ] |Λ̂j,n(t) − Λj,0(t)| converge to 0
almost surely as n tends to infinity.
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�

5.7 Asymptotic normality

5.7.1 Score and information

Once the consistency has been proved, we can establish the asymptotic distribution of the
NPMLEs in Escarela and Bowater (2008). To derive the asymptotic normality, we adapt
the function analytic approach developed by Murphy (1995) for the frailty model; see also
Fang et al. (2005), Kosorok and Song (2007), and Lu (2008), who recently adapted this
approach to various other semiparametric regression models for survival data.

To calculate the score equations, we work with one-dimensional submodels θ̂n,ǫ passing

through the estimator θ̂n, and we differentiate with respect to ǫ. Specifically, consider the
submodel

ǫ 7−→ θ̂n,ǫ =

(
B̂n + ǫhB, Ĝn + ǫhG,

∫ ·

0

(
1 + ǫhΛj

(s)
)
dΛ̂j,n(s); j ∈ J

)
,

where hB = (h′β1 . . . h
′
βJ
)′, hG = (h′γ1 . . . h

′
γJ−1

)′, hβj is a p-dimensional vector (j ∈ J ), hγj
is a q-dimensional vector (j = 1, . . . , J − 1), and hΛj

is a non-negative function on [0, τ ]
(j ∈ J ). Let h denote the collected (hB,hG, hΛj

; j ∈ J ).

To obtain the score equations, we differentiate lθ̂n(θ̂n,ǫ) with respect to ǫ and we evaluate

at ǫ = 0. θ̂n maximizes lθ̂n(θ) and therefore satisfies

∂lθ̂n(θ̂n,ǫ)

∂ǫ

∣∣∣∣∣
ǫ=0

= 0 (5.16)

for every h. Define
ΨB(θ) = (Ψβ1(θ)

′ . . .ΨβJ (θ)
′)′

and
ΨG(θ) = (Ψγ1(θ)

′ . . .ΨγJ−1
(θ)′)′,

where, for every j ∈ J ,

Ψβj(θ) = ∆jZ− gj(O, θ)Zeβ
′

jZΛj(T ),

and for every j = 1, . . . , J − 1,

Ψγj(θ) = X
(
gj(O, θ)− pj,X

G

)
.
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For every j ∈ J , define also

ΨΛj
(θ)(hΛj

) = ∆jhΛj
(T )− gj(O, θ)eβ

′

jZ

∫ T

0

hΛj
(s) dΛj(s).

Then, after some simple algebra, the score equation (5.16) can be re-expressed as Ψn(θ̂n)(h) =

0, where Ψn(θ̂n)(h) has the form

Ψn(θ̂n)(h) = Pn

[
h′
B
ΨB(θ̂n) + h′

G
ΨG(θ̂n) +

∑

j∈J

ΨΛj
(θ̂n)(hΛj

)

]
. (5.17)

We take the space of elements h to be

H =
{
h = (hB,hG, hΛj

; j ∈ J ) : hB ∈ RP , ‖hB‖ <∞;hG ∈ RQ, ‖hG‖ <∞;

hΛj
: [0, τ ] → R, ‖hΛj

‖v <∞, j ∈ J
}
,

where ‖hΛj
‖v denotes the total variation of hΛj

on [0, τ ]. Furthermore, we take the func-
tions hΛj

to be continuous from the right at 0. In addition, we define

θ(h) = h′
B
B+ h′

G
G+

∑

j∈J

∫ τ

0

hΛj
(s) dΛj(s),

where h ∈ H. From this, we can re-consider the parameter θ as a linear functional on
H, and the parameter space Θ as a subset of l∞(H), which is the space of all bounded
real-valued functions on H whose representation is here given with the uniform norm.
Moreover, the score operator Ψn appears to be a random map from Θ to the space l∞(H).

Remark. Note that appropriate choices for h allow to extract all components of the
original parameter θ; in the present study, we shall denote by 0r (r ≥ 2) the r-dimensional
column vector having all its components equal to 0.

For example, let hG = 0Q, hΛj
(·) = 0 for every j ∈ J , and let hB = (h′β1 . . . h

′
βJ
)′ be

such that hβj = 0p for every j ∈ J except for some j = l, with hβl being the p-dimensional
vector with a one at the i-th location and zeros elsewhere. This yields the i-th component
of βl.

As another example, let hB = 0P , hG = 0Q, hΛj
(·) = 0 for every j ∈ J except

hΛl
(·) = 1{· ≤ t}, for some t ∈ (0, τ). In this case, θ(h) reduces to Λl(t).
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We now define an “information” operator σ = (σB, σG, σΛj
; j ∈ J ) : H → H by

σB(h) = Pθ0

[
2ΨB(θ0)

∑

j∈J

∆jhΛj
(T )

]
+ Pθ0

[
ΨB(θ0)

⊗2
]
hB

+Pθ0 [ΨB(θ0)ΨG(θ0)
′]hG

σG(h) = Pθ0

[
2ΨG(θ0)

∑

j∈J

∆jhΛj
(T )

]
+ Pθ0

[
ΨG(θ0)

⊗2
]
hG

+Pθ0 [ΨG(θ0)ΨB(θ0)
′]hB

σΛj
(h)(s) = hΛj

(s)Pθ0
[
W j(s,O, θ0)

]

−Pθ0
[
2∆jhΛj

(T )W j(s,O, θ0)−
{
W j(s,O, θ0)

}2 ∫ T

0

hΛj
(u) dΛj,0(u)

]

+Pθ0

[
2W j(s,O, θ0)

∑

k>j

{
W k(s,O, θ0)

∫ T

0

hΛk
(u) dΛk,0(u)

−W k(s,O, θ0)

∫ s

0

hΛk
(u) dΛk,0(u)−∆khΛk

(T )

}]

−h′
B
Pθ0

[
2ΨB(θ0)g

j(O; θ0)e
β′

j,0ZY (s)
]

−h′
G
Pθ0

[
2ΨG(θ0)g

j(O; θ0)e
β′

j,0ZY (s)
]
,

where W j(s,O, θ0) = Y (s)eβ
′

j,0Zgj(O, θ0), j ∈ J , s ∈ [0, τ ].

Remark. Some of the terms in σ may be simplified by using the properties of the condi-
tional expectation. For example, Pθ0 [W

j(s,O, θ0)] in σΛj
(h) simplifies to Pθ0 [Y (s)eβ

′

j,0ZΓj].
However, for variance estimation purposes, we will construct later an empirical version of
σ by replacing θ0 and Pθ0 by θ̂n and Pn respectively in σB, σG, and σΛj

. Therefore,

it is irrelevant to simplify, for instance, Pθ0 [W
j(s,O, θ0)] to Pθ0 [Y (s)eβ

′

j,0ZΓj], since, for
i = 1, . . . , n, some Γji are missing and, thus, the empirical version of Pθ0 [Y (s)eβ

′

j,0ZΓj]
cannot be calculated.

The following lemmas state some useful properties of the score and information oper-
ators.

Lemma 5.7.1 Let h ∈ H. Then Pθ0 [Ψ1(θ0)(h)] = 0, and by setting σB, σG, and σΛj

(j ∈ J ) as above,

Pθ0
[
Ψ1(θ0)(h)

2
]
= h′

B
σB(h) + h′

G
σG(h) +

∑

j∈J

∫ τ

0

σΛj
(h)(s)hΛj

(s) dΛj,0(s).
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Proof: Let j ∈ J . Then

Pθ0
[
Ψβj(θ0)

]
= Pθ0

[
∆jZ− gj(O, θ0)Ze

β′

j,0ZΛj,0(T )
]

= Pθ0

[
∆jZ− ΓjZeβ

′

j,0ZΛj,0(T )
]

= Pθ0
[
ZΓjM(τ)

]
,

where the second line comes from the properties of the conditional expectation, and
M(t) = N(t) −

∑
l∈J

∫ t
0
Γleβ

′

l,0ZY (s) dΛl,0(s) is the counting process martingale with
respect to the filtration σ{N(s), 1{T ≤ s,∆ = 0},Z,X, H : 0 ≤ s ≤ t}. Z and Γj

are bounded and measurable with respect to the filtration making M a martingale, im-
plying that Pθ0 [ZΓ

jM(τ)] = 0. Similar arguments imply that Pθ0
[
Ψγj(θ0)

]
= 0 and

Pθ0
[
ΨΛj

(θ0)(hΛj
)
]
= 0 for every j. This concludes the first part of the proof. To prove

the second result, we develop Ψ1(θ0)(h)
2, we obtain

Ψ1(θ0)(h)
2 =

[
h′
B
ΨB(θ0) + h′

G
ΨG(θ0) +

∑

j∈J

ΨΛj
(θ0)(hΛj

)

]2

= h′
B
Ψ2

B
(θ0)hB + h′

G
Ψ2

G
(θ0)hG +

(∑

j∈J

ΨΛj
(θ0)(hΛj

)

)2

(5.18)

+h′
B
ΨB(θ0)ΨG(θ0)

′hG + h′
G
ΨG(θ0)ΨB(θ0)

′hB

+2h′
B
ΨB(θ0)

∑

j∈J

ΨΛj
(θ0)(hΛj

) + 2h′
G
ΨG(θ0)

∑

j∈J

ΨΛj
(θ0)(hΛj

)

= h′
B
Ψ2

B
(θ0)hB + h′

G
Ψ2

G
(θ0)hG +

(∑

j∈J

ΨΛj
(θ0)(hΛj

)

)2

(5.19)

+h′
B
ΨB(θ0)ΨG(θ0)

′hG + h′
G
ΨG(θ0)ΨB(θ0)

′hB

+2h′
B
ΨB(θ0)

∑

j∈J

[
∆jhΛj

(T )− gj(O, θ)eβ
′

jZ

∫ T

0

hΛj
(s) dΛj(s)

]

+2h′
G
ΨG(θ0)

∑

j∈J

[
∆jhΛj

(T )− gj(O, θ)eβ
′

jZ

∫ T

0

hΛj
(s) dΛj(s)

]

Note that the term

(∑

j∈J

ΨΛj
(θ0)(hΛj

)

)2

=

(∑

j∈J

∆jhΛj
(T )− gj(O, θ)eβ

′

jZ

∫ T

0

hΛj
(s) dΛj(s)

)2



5.7. ASYMPTOTIC NORMALITY 61

=
∑

j∈J

(
(
∆jhΛj

(T )
)2

+

(
gj(O, θ)eβ

′

jZ

∫ T

0

hΛj
(s) dΛj(s)

)2

−2∆jhΛj
(T )gj(O, θ)eβ

′

jZ

∫ T

0

hΛj
(s) dΛj(s)

+Pθ0

[
2W j(s,O, θ0)

∑

k>j

{
W k(s,O, θ0)

∫ T

0

hΛk
(u) dΛk,0(u)

−W k(s,O, θ0)

∫ s

0

hΛk
(u) dΛk,0(u)−∆khΛk

(T )

}])
(5.20)

In the other hand, as Pθ0
[
ΨΛj

(θ0)(hΛj
)
]
= 0, that is

Pθ0
[
∆jhΛj

(T )
]
= Pθ0

[
gj(O, θ)eβ

′

jZ

∫ T

0

hΛj
(s) dΛj(s)

]

for all h ∈ H. In paricular, taking h2 the equality above is satisfied, i.e.

Pθ0

[
∆jh2Λj

(T )
]
= Pθ0

[
gj(O, θ)eβ

′

jZ

∫ T

0

h2Λj
(s) dΛj(s)

]
(5.21)

Finally, substituting the results (5.20) and (5.21) in (5.18) and taking the expectation
of the resulting expression, we can get the result.

�

Lemma 5.7.2 The operator σ is one-to-one.

Proof: Assume σ(h) = 0. By Lemma 5.7.1, Pθ0 [Ψ1(θ0)(h)
2] = 0, and therefore Ψ1(θ0)(h) =

0 almost surely.

Let j ∈ J . By assumption C8, for almost every t ∈ [0, τ ], ‖z‖ < c1, and ‖x‖ < c1,
there exists a non-negligible subset of Ω (say Ω′) such that T (ω) = t, Z(ω) = z, X(ω) = x,
∆(ω) = 1, and H(ω) = j, when ω ∈ Ω′. If the equality Ψ1(θ0)(h) = 0 holds almost surely,
then in particular, it holds for some ω ∈ Ω′. For such a ω, Ψ1(θ0)(h) = 0 reduces to

hΛj
(t) + h′βjz+ h′γjx−

J−1∑

l=1

h′γlxp
l,x
G0

− eβ
′

j,0z

[∫ t

0

hΛj
(s) dΛj,0(s) + h′βjzΛj,0(t)

]
= 0,(5.22)

with the convention hγJ = 0. By choosing t arbitrarily close to 0, (5.22) reduces to

hΛj
(0) + h′βjz+ h′γjx−

J−1∑

l=1

h′γlxp
l,x
G0

= 0, (5.23)
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since hΛj
and Λj,0 are continuous from the right at 0 and Λj,0(0) = 0 (by C5). Taking

the difference (5.22)-(5.23) yields the following equation for almost all t ∈ [0, τ ], ‖z‖ < c1,
and ‖x‖ < c1:

hΛj
(t)− hΛj

(0)− eβ
′

j,0z

[∫ t

0

hΛj
(s) dΛj,0(s) + h′βjzΛj,0(t)

]
= 0 (5.24)

Let t > 0. Then Λj,0(t) > 0 (by C5) and equation (5.24) can be rewritten as

hΛj
(t)− hΛj

(0)

Λj,0(t)
= eβ

′

j,0z
[
rj(t) + h′βjz

]
, (5.25)

where rj(t) =
∫ t
0
hΛj

(s) dΛj,0(s)/Λj,0(t).

Consider first the case where βj,0 = 0. Since the left-hand side of (5.25) does not
depend on z, hβj must equal 0. Next, consider the case where βj,0 6= 0. Let t1, t2 > 0.

Then eβ
′

j,0z[rj(t1) − rj(t2)] should not depend on z. By assumption C6, the covariance
matrix of Z is positive definite, hence we can find two distinct values z1 and z2 of Z such
that

eβ
′

j,0z1 [rj(t1)− rj(t2)] = eβ
′

j,0z2 [rj(t1)− rj(t2)] .

This implies that rj(t1) = rj(t2), from which we deduce that hΛj
(t) has to be constant

(say, equal to c6) for almost every t ∈ (0, τ ]. From (5.25), we then deduce that hΛj
(0) = c6,

which further implies that hβj = 0, c6 = 0, and thus hΛj
(t) = 0 for almost every t ∈ [0, τ ].

This, together with (5.23) implies that hγj = 0 for every j = 1, . . . , J − 1.

By letting j range over J , we conclude that hB = 0, hG = 0, and that for every j ∈ J ,
hΛj

(t) = 0 for almost every t ∈ [0, τ ].

Putting this in σΛj
(h)(s) = 0, we obtain that hΛj

(s)Pθ0 [W
j(s,O, θ0)] = 0 for every

s ∈ [0, τ ] and j ∈ J . By assumptions C2, C5, and C6, Pθ0 [W
j(·,O, θ0)] is uniformly

bounded away from 0 on [0, τ ]. Therefore, hΛj
is identically equal to 0 on [0, τ ], for every

j ∈ J . We conclude that σ is one-to-one.

�

Lemma 5.7.3 The operator σ is continuously invertible.

Proof: Since H is a Banach space, to prove that σ is continuously invertible, it is
sufficient to prove that σ is one-to-one and that it can be written as the sum A+ (σ−A)
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of a bounded linear operator A with bounded inverse and a compact operator σ − A
(Lemma 25.93 of van der Vaart, 1998).

σ is one-to-one by Lemma 5.7.2. Next, define the linear operator A : H → H by A(h) =
(hB,hG, hΛj

(·)Pθ0 [W j(·,O, θ0)] ; j ∈ J ). A is bounded (by C4 and C6). In addition, for
every j ∈ J , Pθ0 [W

j(·,O, θ0)] is uniformly bounded away from 0 on [0, τ ] (by C2, C5, C6).

ThusA is invertible with bounded inverseA−1(h) = (hB,hG, hΛj
(·)Pθ0 [W j(·,O, θ0)]−1

; j ∈
J ).

The operator σ−A is compact, by using the same techniques as in Lu (2008) we can get
the result. Because a bounded linear operator with finite dimensional range is compact,
we only need show that the operator KΛj

: V B(0, τ) → V B(0, τ), with j ∈ J given by

KΛj
(hΛj

)(s) = hΛj
(s)Pθ0

[
W j(s,O, θ0)

]

−Pθ0
[
2∆jhΛj

(T )W j(s,O, θ0)−
{
W j(s,O, θ0)

}2 ∫ T

0

hΛj
(u) dΛj,0(u)

]

+Pθ0

[
2W j(s,O, θ0)

∑

k>j

{
W k(s,O, θ0)

∫ T

0

hΛk
(u) dΛk,0(u)

−W k(s,O, θ0)

∫ s

0

hΛk
(u) dΛk,0(u)−∆khΛk

(T )

}]

is compact.

Thus given a sequence of function hΛj ,n with ‖hΛj ,n‖v ≤ 1, we must show that there
exits a subsequence and an element g ∈ V B(0, τ) such that ‖KΛj

hΛj ,η(n) − g‖v → 0.

Now, note that KΛj
is a linear operator then, ‖KΛj

hΛj
‖v ≤ M7

∫
|hΛj

(u)|dΛj0(u) for
every hΛj

and a fixed constantM7. Hence it suffices to show that there exits a subsequence
hΛj ,η(n) of hΛj ,n that converges. Since hΛj

is of bounded variation, we can write hΛj ,n as

the difference of bounded increasing function h
(1)
Λj ,n

and h
(2)
Λj ,n

. From Helly’s theorem, there

exists a subsequence h
(1)
Λj ,η(n)

of h
(1)
Λj ,n

which converges pointwise to some h
(1)∗
Λj

. There also

exists a subsequence h
(2)
Λj ,η(n)

of h
(2)
Λj ,n

which converges pointwise to some h
(2)∗
Λj

. Then hΛj ,n

converge to the difference of the limits by the dominated convergence theorem. It follows
that σ − A is a compact operator.

�

In the present study, we shall denote the inverse of σ by σ̃ = (σ̃B, σ̃G, σ̃Λj
; j ∈ J ) :

H → H.
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5.7.2 Asymptotic normality of the NPMLEs

We need some further notations to establish asymptotic normality. Let {e1, . . . , eP} be the
canonical basis of RP , where em is the P -dimensional column vector with a 1 in the m-th
position and zeros elsewhere, for every m = 1, . . . , P . We denote by (u, 0Q, 0; j ∈ J ) the
collected vector h such that hB = u, hG = 0Q, and hΛj

is identically equal to 0 for every
j ∈ J . Define the linear operator ̟ : RP → RP by u 7→ ̟(u) = σ̃B((u, 0Q, 0; j ∈ J )).
Here, ̟ is a version of σ̃B restricted to be a function of its first argument only, with the
other arguments set equal to 0. Also, define the (P × P ) matrix Σ by

Σ = (̟(e1) . . . ̟(eP )) .

Then the following holds:

Theorem 5.7.1 Under conditions C1-C9,
√
n(B̂n − B0) converges in distribution to a

P -variate normal distribution with mean zero and efficient variance Σ.

Proof of Theorem 5.7.1: Our proof follows the ideas based around the proof of
Theorem 3 of Fang et al. (2005), but the technical details are substantially different. As

Ψ2
1(θ0)

√
n(θ̂n − θ) =

√
n (Ψn(θ0)−Ψ(θ0)) (g) + op(1). (5.26)

By lemma 5.7.1

Ψ2
1(θ0)(h)

√
n(θ̂n − θ) =

√
n(B̂n −B0)

′σB(g) +
√
n(Ĝn −G0)

′σG(g)

+
∑

j∈J

∫ τ

0

σΛj
(g)(s)hΛj

(s)
√
n d(Λ̂n − Λj,0)(s). (5.27)

Combining equations (5.26) and (5.27) and the fact that σ is continuously invertible,then
we can write g = σ̃(h), we get that

√
n

(
h′
B

(
B̂n −B0

)
+ h′

G

(
Ĝn −G0

)
+
∑

j∈J

∫ τ

0

hΛj
(s) d

(
Λ̂j,n − Λj,0

)
(s)

)
=

√
n (Ψn(θ0)(σ̃(h))− Pθ0 [Ψ1(θ0)(σ̃(h))]) + op(1).

Let hG = 0Q and hΛj
be identically equal to 0 for every j ∈ J . The above equation

reduces to
√
nh′

B

(
B̂n −B0

)
=

√
n
(
Ψn(θ0)(σ̃(h̆))− Pθ0

[
Ψ1(θ0)(σ̃(h̆))

])
+ op(1), (5.28)

where h̆ = (hB, 0Q, 0; j ∈ J ). By the central limit theorem and Lemma 5.7.1,
√
nh′

B
(B̂n−

B0) converges in distribution to a normal law with mean zero and variance Pθ0 [Ψ1(θ0)(σ̃(h̆))
2],
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for every hB ∈ RP . Now, noting that h̆ = σ(σ̃(h̆)) = (σB(σ̃(h̆)), σG(σ̃(h̆)), σΛj
(σ̃(h̆)); j ∈

J ), it follows by Lemma 5.7.1 that

Pθ0

[
Ψ1(θ0)(σ̃(h̆))

2
]
= h′

B
σ̃B(h̆) = h′

B
̟(hB),

and thus Pθ0 [Ψ1(θ0)(σ̃(h̆))
2] = h′

B
ΣhB. Thus, by the Cramer-Wold device (van der Vaart,

1998),
√
n(B̂n − B0) converges in distribution to a normal distribution with mean zero

and variance-covariance matrix Σ.

Next, let h̆ be equal to h̆m = (em, 0Q, 0; j ∈ J ) in (5.28), for each m = 1, . . . , P in
turn. This yields the following system of P equations:

√
n
(
B̂n −B0

)
=

1√
n

n∑

i=1

l (Oi; θ0) + op(1),

where

l (O; θ0) = ΣΨB(θ0) + Σ∗ΨG(θ0) +
∑

j∈J

ΨΛj
(θ0) (Σ

∗∗) ,

Σ∗ =




σ̃G(h̆1)
′

...

σ̃G(h̆P )
′


 , Σ∗∗ =




σ̃Λj
(h̆1)
...

σ̃Λj
(h̆P )


 ,

and ΨΛj
(θ0) is applied componentwise to Σ∗∗. Thus, B̂n is an asymptotically linear esti-

mator of B0, and its influence function belongs to the tangent space spanned by the score
functions. It follows that B̂n is semiparametrically efficient (Tsiatis, 2006).

�

Remark. In a competing risks analysis, the regression parameter B is usually the
parameter of interest. We can however also state an asymptotic normality result for the
NPMLEs of G and the Λj. Let ς : RQ → RQ be defined by ς(u) = σ̃G((0P , u, 0; j ∈ J )),
let {f1, . . . , fQ} be the canonical basis of RQ , and let Υ = (ς(f1) . . . ς(fQ)) be the (Q×Q)
matrix of ς with respect to this basis. Also, let hj,t be the collected vector (hB,hG, hΛj

; j ∈
J ) such that hB = 0P , hG = 0Q, hΛj

(·) = 1{· ≤ t} for some t ∈ (0, τ) and j ∈ J , and hΛl

is identically equal to 0 for every l ∈ J , l 6= j.

Theorem 5.7.2 Under conditions C1-C9,
√
n(Ĝn − G0) converges in distribution to

a Q-variate normal distribution with mean zero and variance matrix Υ. Moreover, for
every t ∈ (0, τ) and j ∈ J ,

√
n(Λ̂j,n(t) − Λj,0(t)) converges in distribution to a normal

distribution with mean zero and variance σ2
j,t =

∫ t
0
σ̃Λj

(hj,t)(s) dΛj,0(s).
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Proof of Theorem 5.7.2: This result can be proved in a similar fashion to the proof
of Theorem 5.7.1.

�

5.8 Variance estimation

We now turn to the issue of estimating the asymptotic variance of B̂n. Since estimation
of the asymptotic variance of Λ̂j,n(t) is useful to obtain confidence intervals for survival

probabilities, we also provide estimators for the asymptotic variances of the Λ̂j,n(t) (an

estimator for the asymptotic variance of Ĝn is also obtained). We need some further
notations. Define the (P ×P ), (P ×Q), (Q×P ), and (Q×Q) matrices AB

n , A
G

n , B
B

n , and
BG

n by

AB

n = Pn

[
ΨB(θ̂n)

⊗2
]
,

BG

n = Pn

[
ΨG(θ̂n)

⊗2
]
,

AG

n = Pn

[
ΨB(θ̂n)ΨG(θ̂n)

′
]
=
(
BB

n

)′
.

Define the (P × sn) partitioned matrix

AΛ
n = (AΛ1

n . . .AΛJ
n ),

where for every j ∈ J , A
Λj
n is the (P × |Sjn|) matrix whose P -dimensional l-th column

(l = 1, . . . , |Sjn|) is given by

2

n
ΨB,(j,l)(θ̂n),

where ΨB,(j,l)(θ̂n) denotes the value of ΨB(θ̂n), calculated for the subject i such that ∆i = 1

and Ti = tjl , for j ∈ J and l = 1, . . . , |Sjn|. Similarly, define the (Q×sn) partitioned matrix

BΛ
n = (BΛ1

n . . .BΛJ
n ),

where for every j ∈ J , B
Λj
n is the (Q × |Sjn|) matrix whose l-th column (l = 1, . . . , |Sjn|)

is given by (2/n)ΨG,(j,l)(θ̂n), with ΨG,(j,l)(θ̂n) defined similarly as ΨB,(j,l)(θ̂n). Define the
(sn × P ) and (sn ×Q) partitioned matrices

CB

n =




CB

n,1
...

CB

n,J


 and CG

n =




CG

n,1
...

CG

n,J


 ,
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where for every j ∈ J , CB

n,j is a (|Sjn| × P ) matrix with P -dimensional l-th raw (l =
1, . . . , |Sjn|) given by

−Pn

[
2ΨB(θ̂n)

′gj(O; θ̂n)e
β̂′

j,nZY (tjl )
]
,

and CG

n,j is a (|Sjn| ×Q) matrix with Q-dimensional l-th raw given by

−Pn

[
2ΨG(θ̂n)

′gj(O; θ̂n)e
β̂′

j,nZY (tjl )
]
.

Next, let CΛ
n be a (sn × sn) partitioned matrix with (j, k)-th element (j ∈ J , k ∈ J ) the

(|Sjn| × |Skn|) sub-matrix C
Λk

n,j defined as follows by its (l,m)-th element:

C
Λk

n,j(l,m) = 1{j = k}
{
1{l = m}Pn

[
W k(tkm,O, θ̂n)

]
− 2

n
W k(tkl ,O(k,m), θ̂n)

+Pn

[{
W k(tkl ,O, θ̂n)

}2

∆̂Λk,n(t
k
m)1{tkm ≤ T}

]}

+1{j < k}
{
Pn

[
2W j(tjl ,O, θ̂n)W

k(tjl ,O, θ̂n)∆̂Λk,n(t
k
m)
{
1{tkm ≤ T}

−1{tkm ≤ tjl }
}]

− 2

n
W j(tjl ,O(k,m), θ̂n)

}

for l = 1, . . . , |Sjn|, and m = 1, . . . , |Skn|. In the formula for C
Λk

n,j(l,m), ∆̂Λk,n(t) denotes

the jump size of Λ̂k,n at time t; that is, ∆̂Λk,n(t) = Λ̂k,n(t) − Λ̂k,n(t−). Moreover, O(k,m)

denotes the value of O for the subject i such that ∆i = 1 and Ti = tkm.

Define the partitioned matrix

Dn =




AB

n AG

n AΛ
n

BB

n BG

n BΛ
n

CB

n CG

n CΛ
n




and the matrices

Σn =
{
AB

n − AG

n (B
G

n )
−1BB

n − (AΛ
n − AG

n (B
G

n )
−1BΛ

n)

×(CΛ
n − CG

n (B
G

n )
−1BΛ

n)
−1(CB

n − CG

n (B
G

n )
−1BB

n )
}−1

,

Υn =
{
BG

n − BB

n (A
B

n )
−1AG

n − (BΛ
n − BB

n (A
B

n )
−1AΛ

n)

×(CΛ
n − CB

n (A
B

n )
−1AΛ

n)
−1(CG

n − CB

n (A
B

n )
−1AG

n )
}−1

,

Ξn =
{
CΛ
n − CB

n (A
B

n )
−1AΛ

n − (CG

n − CB

n (A
B

n )
−1AG

n )

×(BG

n − BB

n (A
B

n )
−1AG

n )
−1(BΛ

n − BB

n (A
B

n )
−1AΛ

n)
}−1

.

Also, for any t ∈ (0, τ) and j ∈ J , define the sn-dimensional vectors

Φj,t,n =
(
0′
ljn

∆̂Λj,n(t
j
1)1{tj1 ≤ t} . . . ∆̂Λj,n(t

j

|Sj
n|
)1{tj

|Sj
n|
≤ t} 0′

ujn

)′
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and

Uj,t,n =
(
0′
ljn

1{tj1 ≤ t} . . . 1{tj
|Sj

n|
≤ t} 0′

ujn

)′
,

where ljn =
∑j−1

k=1 |Skn| and ujn =
∑J

k=j+1 |Skn|, with l1n = uJn = 0. Then the following holds:

Theorem 5.8.1 Under conditions C1-C9, the variance estimators Σn, Υn, and σ
2
j,t,n =

Φ′
j,t,nΞnUj,t,n converge in probability to Σ, Υ, and σ2

j,t (t ∈ (0, τ), j ∈ J ) respectively.

Proof of Theorem 5.8.1: The proof of relies on arguments that are now somewhat
classical (see for example Parner (1998), Dupuy and Mesbah (2004), Fang et al. (2005)).

First, we estimate σ by an empirical version σn = (σB,n, σG,n, σΛj ,n; j ∈ J ) obtained

by replacing θ0 and Pθ0 by θ̂n and Pn respectively in σB, σG, and σΛj
. Following the same

arguments of Lemma 5.6.2, the functions σB,n, σG,n, σΛj ,n with j ∈ J are the Donsker
class, then ‖σn(h)− σ(h)‖H → 0. Since σn is invertible with continuous inverse, then we
can express h = σ̃n(g). Then

‖σ̃n(g)− σ̃(g)‖H = ‖σ̃(σ(h))− σ̃n(σn(h))‖H
≤ sup

h∈H

‖σ̃(h)‖H
‖h‖H

‖σ(h)− σn(h)‖H.

As ‖σn(h)− σ(h)‖H → 0, then σ̃n = (σ̃B,n, σ̃G,n, σ̃Λj ,n; j ∈ J ) converge to σ̃(h) in proba-
bility (see Dupuy y Mesbah, 2004).

For every hB, the asymptotic variance of
√
nh′

B
(B̂n −B0) is h

′
B
̟(hB), which is con-

sistently estimated by h′
B
σ̃B,n(h̆), where h̆ = (hB, 0Q, 0; j ∈ J ). Let

h̆n = (h̆B,n, h̆G,n, h̆Λj ,n; j ∈ J ) = σ̃n(h̆)

. Then σn(h̆n) = h̆, which we can write as




σB,n(h̆n) = hB

σG,n(h̆n) = 0Q
σΛ1,n(h̆n)(s) = 0, s ∈ [0, τ ]
...

σΛJ ,n(h̆n)(s) = 0, s ∈ [0, τ ].

In particular, let s = tj1, . . . , t
j

|Sj
n|

for every j ∈ J , in the above system. This yields a

system of (P +Q+ sn) equations, which we can write in the following matrix form:

Dn




h̆B,n

h̆G,n

h̆Λ,n


 =




hB

0Q
0sn


 (5.29)
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where h̆Λ,n = (h̆Λ1,n(t
1
1) . . . h̆Λ1,n(t

1
|S1

n|
) . . . h̆ΛJ ,n(t

J
1 ) . . . h̆ΛJ ,n(t

J
|SJ

n |
))′. Some algebra on (6.32)

shows that h̆B,n = ΣnhB, with Σn as given above and therefore, h′
B
ΣnhB is a consistent

estimator of the asymptotic variance of
√
nh′

B
(B̂n−B0) for every hB. It follows that Σn is

a consistent estimator of Σ. The consistency of Υn proceeds similarly, it is thus omitted.

Let t ∈ (0, τ) and j ∈ J . It follows from the dominated convergence theorem and

the consistency of σ̃n that σ2
j,t,n =

∫ t
0
σ̃Λj ,n(hj,t)(s) dΛ̂j,n(s) converges in probability to σ2

j,t;
here, hj,t is as given in Remark 4. Similarly as above, let hn = (hB,n,hG,n, hΛj ,n; j ∈ J ) =
σ̃n(hj,t). Then σn(hn) = hj,t, which we can write as





σB,n(hn) = 0P
σG,n(hn) = 0Q
σΛj ,n(hn)(s) = 1{s ≤ t}, s ∈ [0, τ ]
σΛl,n(hn)(s) = 0, l ∈ J , l 6= j, s ∈ [0, τ ].

(5.30)

In particular, letting s = tj1, . . . , t
j

|Sj
n|
for every j ∈ J in (6.33) yields the system

Dn




hB,n

hG,n

hΛ,n


 =




0P
0Q
Uj,t,n




where hΛ,n = (hΛ1,n(t
1
1) . . . hΛ1,n(t

1
|S1

n|
) . . . hΛJ ,n(t

J
1 ) . . . hΛJ ,n(t

J
|SJ

n |
))′ and Uj,t,n is as defined

above. Similar algebra as above shows that hΛ,n = ΞnUj,t,n. Now, simple calculations
show that

σ2
j,t,n =

∫ t

0

σ̃Λj ,n(hj,t)(s) dΛ̂j,n(s)

=

|Sj
n|∑

l=1

σ̃Λj ,n(hj,t)(t
j
l )∆̂Λj,n(t

j
l )1{t

j
l ≤ t}

= Φ′
j,t,nhΛ,n

and therefore, Φ′
j,t,nΞnUj,t,n is a consistent estimator for σ2

j,t.

�

5.9 Simulation experiments

Simulation studies present an important statistical tool to investigate the performance,
properties and adequacy of statistical models in pre-specified situations. This section
shows the performance of semiparametric mixture model for competing risk which has
been put forward in the previous sections.
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Two simulation studies were performed,, in the first study we considered a sample size
n = 30, while for the second study, the sample size was n = 200. In both simulations,
we considered two distinct causes of failure (J=2) and a covariate Z which was generated
independently from the N(0, 1) distribution. The proportional hazards mixture model
expressed by the equations (5.2) and (5.3) was employed to fit data using two specifications.
The first one uses the conditional survival distribution Sj(t) which follows the product
limit estimator described in Escarela and Bowater (2008). They specifies the conditional
survival distribution for the j-th risk as

Sj(t) =
∏

m:tj,(m)≤t

αj,m j ∈ J , m = 1, ..., kj,

where the α’s are non-negative parameters. By setting αj0 = 1 and setting

αjm =
Sj(tj,(m+1))

Sj(tj,(m))

the specification for the form of the PLE to be used is completed. Therefore, the estimated
conditional baseline hazard function becomes

Ŝj(t) = exp



−

∑

m:tj,(m)<t

djm∑
m∈Rjm

gjm(θ) exp(βjZm)



 ,

where, for failure type j, let tj,(1) < ... < tj,(kj) denote the distinct uncensored failure
times, Rjl denote the set of subjects known to be at risk just prior to tj,(l) and djlis the
tied uncensored failures from cause j at time tj,(l). The second method uses the exponential
model where the conditional survival distribution is specified by λj(t) = exp{κj}, where
−∞ < κj <∞, j = 1, 2.

The survival times in each study were obtained through the inverse transformation
method, two cases were considered. First, we simulate survival times taken from exponen-
tial distributions for the two causes. We assume that both component hazard functions
have the exponential distribution:

λj(t|Z) = hj exp(β
′
jZ) j = 1, 2.

Given that an entity belongs to the first component, a sample survival time due to
cause 1 was generated according to λ1(t|Z) using the method proposed by Bender et al.
(2005), where

T = − − log(U)

h1 exp(β′
1Z)

,

U is a variable following a uniform distribution on the interval from 0 to 1. Similarly, for
an entity belonging to the second component, a sample survival time due to cause 2 was
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generating according to λ2(t|Z) and using the transform method, the survial time is

T = − − log(U)

h2 exp(β′
2Z)

,

where U is a variable following a uniform distribution on the interval from 0 to 1. The
true values considered to generate survival times for this study were

(h1, β1, h2, β2) = (0.5,−0.5, 1.0,−1.0).

For the second simulation study we assume both the component hazard functionf follow
the weibull distributions, i.e.

λi(t|Z) = hi exp(β
′
iZ)νit

νi−1 j = 1, 2,

where ν > 0 and the corresponding survival time is (see Bender et al. 2005)

T =

(
− − log(U)

hi exp(β′
iZ)

)1/νi

j = 1, 2,

where U is a variable following a uniform distribution on the interval from 0 to 1. In this
case, the true parameter values that we considered

(h1, β1, ν1, h2, β2, ν2) = (0.5,−0.5, 0.5, 1.0,−1.0, 1.5).

Note that, with these parameter values, the first hazard function corresponds to a decrea-
sing function, whereas the second hazard function corresponds to an increasing function.

In both simulation studies, the parameter vector in the logistic model given by the
equation (5.3) was X = (1,Z) and the true parameter values were γ = (−1.0, 0.5). Also,
for each entry the censoring time was generated from a uniform distribution U(d1, d2)
where d1 and d2 are some constants. If the j-th failure time were greater than the j-
th censoring time, it was taken to be censored at this censoring time. In this study,
we considered three different set of values for d1 and d2 so that the comparison under
different levels of censoring could be investigated. For each simulation set, we generate 100
independent sample and and fitted the simulated data using the product limit estimator
and the exponential model.

In the Tables 5.1 and 5.2 we present the average of estimates of coefficients and their
standard errors from two methods (product limit estimator and the exponential model)
when the sample size is n = 30. The Table ?? shows the results obtained when the
survival times follow the exponential model. Note that when the censoring level is low,
the estimates of the model semiparametric and the parametric are good and note that
if the censoring level increases in this case, 23.3 % and 39.8 % both models have poor
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estimators. The Table ?? shows the results obtained when the survival times follow the
weibull model. For this case, the estimates for both models and for different levels of
censorship were wrong. In the case of the semiparametric approach where the censoring
level is high it was impossible to obtain the estimates, the program was left running for
several hours (over 8) without any response, the problem is that few data with many
censored observations and perhaps the data disribucin also causes more problems.

In the Tables 5.3 and 5.4 we present the average of estimates of coefficients and their
standard errors from two methods (product limit estimator and the exponential model)
when the sample size is n = 200. The Table 5.3 shows the results obtained when the sur-
vival times follow the exponential model, it can be seen that the proposed semiparametric
method and parametric approach are comparable to each other for mildly and moderately
censored samples. For heavily censored samples, the parametric approach provides better
estimates of the coefficients in comparison to the semiparametric approach. In the other
hand, the Table 5.4 shows the results obtained when the survival times follow the weibull
model. From this table, it can be seen that the proposed semiparametric approach pro-
vides consistently better estimates of the coefficients respect to the exponential model.
As mentioned above, this study takes the distribution of survival times different from an
exponential distribution.

In conclusion, with the results of the simulations we can say that when the sample size
is 200 the semiparametric approach discussed in this chapter is is theoretically satisfactory
but is also computationally intensive. The restricting factor in the use in the EM algorithm
is a relatively slow rate of convergence.
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Chapter 6

The semiparametric transformation
cure models

Introduction

Cure data arise from clinical follow-up studies in which there exists a proportion of subjects
in the population who would never experience the event of interest. These subjects are
usually referred to as cured, while the remaining subjects who are susceptible to the event
are referred to as uncured.

For instance, in some clinical studies, a substantial proportion of patients who respond
favorably to treatment subsequently appear to be free of any signs or symptoms of the
disease and may be considered cured, while the remaining patients may eventually relapse.
Long-term censored survival usually appear in data. Farewell (1986) and Taylor (1995)
provided some typical examples in cancer and radiation research. The goals of such studies
include estimation of the cure rate, defined as the proportion of cured subjects in the
population, and the failure time distribution of the uncured individuals, adjusting for
effects of possible covariates. Applications of cure models can be found in many disciplines,
including biomedical sciences, economics, sociology and engineering sciences. Maller and
Zhou (1996) provide a list of such applications.

A variety of parametric mixture models have been considered in the literature for
survival data with potentially cured patients. A parametric mixture model typically uses
a logistic model for the cure rate and a particular parametric distribution is assumed
as the failure time distribution of the uncured subjects. The density function f(t) and
survival function S(t) for the uncured subjects are derived from this distribution, which
may also depend on one or more parameters. Berkson and Gage (1952) used a mixture
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exponential distributions and a constant cure fraction to fit survival data from studies of
breast cancer and stomach cancer. Farewell (1982, 1986) proposed a Weibull regression
for survival and logistic regression for the cure fraction. More discussions of parametric
mixture models can be found in Boag (1949), Jones et al. (1981), Pack and Morgan (1990),
Cantor and Shuster (1992), Maller and Zhou (1992), Sposto et al. (1992), Lo et al. (1993)
and Ghitany et al. (1994). More general distributions, such as the extended generalized
gamma and the generalized F have been proposed (see Yamaguchi, 1992 and Peng et al.,
1998). Parametric methods are parsimonious and easy to interpret. However, they can be
sensitive to model misspecification. Furthemore, there is often little physical evidence in
a clinical study to suggest and justify a specific parametric model.

The semiparametric logistic mixture model provides a more flexible alternative to para-
metric methods. Previous work for the semiparametric logistic hazard mixture model has
focused on developing point estimation procedures. Kuk and Chen (1992) considered
estimation of regression parameters using marginal likelihood method and proposed the
so-called proportional hazards cure model in which the proportional hazards regression
models (Cox, 1972) is specified in the survival times of susceptible subjects while the lo-
gistic regression models is utilized in the cure fraction. However, results from their method
depend on a Monte Carlo approximation of the likelihood function involved, which is in-
convenient for routine use.

Taylor (1995) employed the Kaplan-Meier survivor estimator to estimate the failure
time distribution of uncured patients and the EM algorithm to estimate the coefficients of
the logistic model, but this model does not allow for covariates in the failure time distribu-
tion of uncured patients. Peng and Dear (2000) and Sy and Taylor (2000) studied a general
nonparametric mixture model where the proportional hazards assumption is employed in
modeling the effect of covariate on the failure time of patients who are not cured. The
EM algorithm, the marginal likelihood approach, and multiple imputations are employed
to estimate parameters of interest in the model. Their models extend models and im-
prove estimation methods proposed by other researchers. They extend Cox’s proportional
hazard regression model by allowing a proportion of event-free patients and investigating
covariate effects on that proportion. Also, they establish the theoretical properties of the
resulting estimators for the proportional hazards cure model.

Fang et al. (2005) consider the inference in a semiparametric logistic/proportional
hazard mixture model. They establish existence, consistency and asymptotic normality
results for semiparametric maximum likelihood estimator. They also derived consistent
variance estimate for both parametric and no parametric components. Lu (2008) proposed
nonparametric likelihood approach to estimate the cumulative hazard and the regression
parameters and obtained asymptotic properties of resulting estimators.

Recently Lu and Ying (2004) proposed an estimating equations approach for the semi-
parametric transformation cure models, where the class of linear transformation models
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are used for the failure time of susceptibles and the logistic regression is used for the cure
fraction. Their approach was motivated by the work of Chen et al.(2002) and used the
martingale integral representation to construct unbiased estimating equations. The large
sample properties of the resulting estimators were also studied. However, the proposed
algorithm for solving the equations may not converge and the resulting estimators for the
regression parameters are not efficient, even when the model specified is the proportional
hazards cure model, i.e. the error term of the linear transformation models follows the
extreme value distribution. Semiparametric transformation models have been studied in
other complex data, such as clustered failure data (see Zeng et al., 2008), recurrent events
(see Zeng and Lin, 2007) and change-point situations (Kosorok and Song, 2007).

The main purpose of this chapter is to generalize the Lu and Ying’s model. We propose
a general class of semiparametric transformation (see Clayton and Cuzick, 1985; Cuzick,
1988; Bickel et al. 1993; Cheng et al., 1995) for the analysis of survival data with long-term
survivors. The proposed model has the flexibility to include time-dependent explanatory
variables. It combines a logistic regression for the probability of event occurrence with the
class of transformation models for the time of occurrence. Included as special cases are
the proportional hazards cure model (Farewell 1982; Kuk and Chen, 1992; Sy and Taylor,
2000; Peng and Dear, 2000) and the proportional odds cure model. We establish the
asymptotic properties of resulting estimators using thel modern empirical process theory
and show that the estimators for the regression parameters are semiparametric efficient.
We also derived consistence variance estimators for both the parametric and nonparametric
component.
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Introduction en Français

Les modèles de survie avec fraction immune permettent l’étude de données où il existe
une partie d’individus de l’échantillon qui n’expérimenteront jamais l’évènement d’intérêt.
Nous dirons que ces individus sont guéris (ou immunes), tandis que les autres sont suscep-
tibles de connâıtre l’évènement. Par exemple, dans un essai clinique, une proportion de
patients peut répondre favorablement au traitement. Par la suite ces patients ne présentent
aucun signe ou symptôme de la maladie, et peuvent être considérés comme guéris, tandis
que les patients restants peuvent retomber malades tôt ou tard. Mais pour un individu
donné, tant qu’il n’est pas retombé malade, nous ne savons s’il est guéri ou non.

Farewell (1986) et Taylor (1995) fournissent quelques exemples typiques de recherche
dans le cancer et les radiations. Les objectifs de telles études incluent l’estimation du taux
de guérison, de la distribution du temps de décès des individus susceptibles, en ajustant
des effets de covariables. Ce type de problème intervient dans de nombreux domaines:
sciences biomédicales, économie, sociologie, sciences de l’ingénierie. Maller et Zhou (1996)
fournissent une liste de telles applications.

Une grande variété de modèles paramétriques ont été considérés dans la littérature
pour des données de survie avec fraction immune. De tels modèles paramétriques sont
décrits par Berkson et Gage (1952), Boag (1949), Jones et al. (1981), Pack et Mor-
gan (1990), Cantor et Shuster (1992), Maller et Zhou (1992), Sposto et al. (1992),
Lo et al. (1993) et Ghitany et al. (1994). Les méthodes paramétriques sont parci-
monieuses et faciles d’interpréter. Cependant, elles peuvent être sensibles aux erreurs
de spécification du modèle. De plus, il n’existe souvent dans les données que trop peu
d’évidence pour suggérer et justifier un modèle paramétrique. Les modèles de mélanges
semi-paramétriques fournissent donc une alternative flexible aux méthodes paramétriques.
Kuk et Chen (1992), Taylor (1995), Peng et Dear (2000), Sy et Taylor (2000) ont proposé
un modèle semi-paramétrique de durées de vie avec fraction immune, où la distribution
du temps d’évènement pour un sujet non guéri est donnée par le modèle de Cox (1972).
Ces auteurs ont essentiellement considéré les aspects algorithmiques de l’estimation dans
ce type de modèles. Du point de vue théorique cette fois, Fang et al. (2005) et Lu (2008)
ont considéré l’inférence semi-paramétrique dans un modèle de mélange basé sur la loi lo-
gistique et le modèle à risques proportionnels pour les sujets non guéris. Récemment, Lu
et Ying (2004) ont proposé des équations d’estimation pour un modèle semi-paramétrique
de durées de vie avec fraction immune, lorsque la durée d’évènement est modélisée par un
modèle de régression semi-paramétrique de transformation linéaire. Des outils de martin-
gale sont utilisés pour établir les propriétés des estimateurs obtenus. Mais ces estimateurs
ne sont pas efficaces.

Le propos principal de ce chapitre est de généraliser le modèle proposé par Lu et Ying
(2004) pour l’analyse des données de survie avec fraction immune. Une formulation très
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générale du modèle de transformation linéaire est adoptée pour la loi de la durée de vie chez
les sujets susceptibles (nous adoptons la formulation proposée dans d’autres contextes par
Zeng et Lin (2008, modèle de transformation avec données en clusters), Zeng et Lin (2007,
modèle de transformation avec évènements récurrents), Kosorok et Song (2007, modèle de
transformation avec rupture)). Ce modèle permet de prendre en compte des covariables
dépendant du temps. Il combine une régression logistique pour la probabilité de décè
avec la classe de modèles de transformation pour le temps de décè. Il inclut comme cas
particuliers les modèles à risques proportionnels avec une fraction immune (Farewell 1982;
Kuk and Chen, 1992; Sy and Taylor, 2000; Pe! ng and Dear, 2000) et à odds proportionnels
(Bennet, 1983; Murphy et al. 1997; Zeng et al. 2005 et Martinussen et Scheike 2006).
Nous construisons des estimateurs, et établissons leurs propriétés asymptotiques.
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6.1 The cure models

In this paper, we consider a semiparametric logistic mixture model, which assumes that the
underlying population is a mixture of susceptible and nonsusceptible subjects. Here, we
study right-censored survival data with potentially cured patients. All susceptible subjects
would eventually experience the event if there were no censoring, while the nonsusceptible
ones are immune from the event. Under mixture modeling approach, a decomposition of
the event time is given by

T = ηT ∗ + (1− η)∞
where T ∗ <∞ denotes the failure time of a susceptible subject and η indicates, by the value
1 or 0, whether the sampled subject is susceptible or not. Thus, one can model separately
the survival distribution for susceptible individuals and the fraction of susceptible ones.

A model for survival data with cured subjects is specified by the following two compo-
nents:

λ(t|Z) = lim
dt→0

P(t ≤ T ∗ < t+ dt|T ∗ ≥ t,Z)

dt
(6.1)

π(γ′X) = P(η = 1|X, γ) = exp(γ′X)

1 + exp(γ′X)
(6.2)

where the first term denotes the hazard function for a susceptible subject and the second
term is the cure rate which follows a logistic model. Z and X are vectors of covariates
in Rq and Rp respectively (Z might depend on time). Z and X may share some common
time-independent components and X includes 1 so that γ contains the intercept term.
The survival function of T is expressed as,

ST (t|X,Z) = P(T > t|X,Z)
= P(T > t, η = 1|X,Z) + P(T > t, η = 0|X,Z)
= P(T > t|η = 1,X,Z)P(η = 1|X) + P(T > t|η = 0,X,Z)P(η = 0|X)

= P(T ∗ > t|Z)π(γ′X) + P(η = 0|X)

= π(γ′X)ST ∗(t|Z) + 1− π(γ′X),

where ST ∗(t|Z) is the survival function of the failure time distribution of uncured patients.
The density function

fT (t|X,Z) =
d

dt
{FT (t|X,Z)}

=
d

dt
{1− ST (t|X,Z)}

=
d

dt
{1− π(γ′X)ST ∗(t|Z)− 1 + π(γ′X)}

= −π(γ′X)
d

dt
ST ∗(t|Z)

= π(γ′X)fT ∗(t|Z),
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where fT ∗(t|Z) is the density function of the failure time distribution of uncured patients.

The density and survival functions of cured patients are set equal to zero and one
respectively, for every finite value of t, because cured patients will never experience, for
example, a relapse or death due to the disease. Therefore, their failure times can be
conveniently defined as infinite.

Suppose that T may be right-censored by a positive random variable C. Let τ de-
note the total follow-up of the study. Define Y = min (T,min(τ, C)) and ∆ = 1{T ≤
min(τ, C)}, where 1{·} denotes the indicator function. Furthermore, we assume that the
censoring time C is independent of T and η conditional on Z and X. The data consist of n
independent vectors (Yi,∆i,Zi, Xi) (i, . . . , n). Based on these data, the usual statistical
problem consists in estimating the failure time distribution specified by model (6.1).

Assuming that the marginal distributions of the covariates Z and X do not depend on
the parameters of the failure time and cure rate distributions, the likelihood function for
the mixture cure model, from n iid replicates (Yi,∆i,Zi, Xi), i, . . . , n, is given by

n∏

i=1

{fT (Yi|Xi,Zi)}∆i {ST (Yi|Xi,Zi)}(1−∆i)

=
n∏

i=1

{π(γ′Xi)fT ∗(Yi|Zi)}∆i {1− π(γ′Xi) + π(γ′Xi)ST ∗(Yi|Xi,Zi)}(1−∆i) .

The construction of this likelihood under cure model was also derived, for example, by
Fang et al. (2005) and Lu (2008).

6.2 Transformation models

Transformation models provide a wide class of models for the analysis of censored failure
time data. This class includes the proportional hazards model and the proportional odds
model as particular cases, as well as many other useful alternatives (see Martinussen and
Scheike, 2006). In the past few years, a considerable effort has been made to extend
the scope of the transformation model to complex data, such as clustered failure data
(see Zeng and Lin, 2008), recurrent events (see Zeng and Lin, 2007) and change-point
situations (Kosorok and Song, 2007). Other authors who have studied the transformation
models are: Cheng et al. (1995), Bagdonavic̆ius and Nikulin (1999), Bagdonavic̆ius and
Nikulin (2002), Chen et al., (2002) and Slud and Vonta (2004).
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6.2.1 The semiparametric transformation model

Let T ∗ be some random failure time and Z be a q-dimensional vector of covariates assumed,
first, to be time-independent. The class of linear transformation models relates T ∗ to Z
via the following equation:

h(T ∗) = −β′Z+ ε, (6.3)

where h is an unknown strictly increasing transformation function, β = (β1, . . . , βq)
′ is

a q-dimensional regression parameter of interest and ε is a random error variable with
known distribution function Fε (ε is assumed independent of Z).

It is convenient to reparametrize the model (6.3) as

Λ(T ∗) = e−β
′Zeε,

where Λ(u) = exp(h(u)) is a strictly increasing positive unknown function such that
Λ(0) = 0 and limu→∞ Λ(u) = ∞.

Let FT ∗|Z be the distribution function of T ∗ given Z. Then

FT ∗|Z(t) = P(T ∗ ≤ t|Z)
= P(Λ(T ∗) ≤ Λ(t)|Z)
= P(e−β

′Zeε ≤ Λ(t)|Z)
= P(eε ≤ Λ(t)eβ

′Z|Z)
= Feε(Λ(t)e

β′Z)

where Feε denotes the conditional distribution function of eε. Then, the hazard function
for T ∗ given Z is given by

λT ∗|Z(t|Z) =
dFT ∗|Z(t)/dt

1− FT ∗|Z(t)
=
dFeε(Λ(t)e

β′Z)/dt

1− Feε(Λ(t)eβ
′Z)

=
feε(Λ(t)e

β′Z)λ(t)eβ
′Z

1− Feε(Λ(t)eβ
′Z)

,

where λ(·) is the derivative of Λ(·) and feε denotes the density function of eε. Letting λeε
be the hazard function of exp(ε), we obtain:

λT ∗|Z(t|Z) = λeε(e
β′ZΛ(t))eβ

′Zλ(t). (6.4)

From (6.4) we deduce the following well-known examples of transformation models:

Example 1. Let ε have the extreme value distribution, that is, Fε(u) = 1− exp(−eu).
Then exp(ε) is distributed as a standard exponential random variable and thus λeε(u) = 1,
for every u ≥ 0. It follows that

λT ∗|Z(t|Z) = eβ
′Zλ(t),
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and (6.4) reduces to the hazard function of a Cox proportional hazards model with baseline
hazard rate λ(·) and cumulative baseline hazard function Λ(·).

Example 2. Let ε have the standard logistic distribution that is Fε(u) = exp(u)/(1+
exp(u)). Then λeε(u) = (1 + u)−1 and (6.4) reduces to

λT ∗|Z(t|Z) =
λ(t)

Λ(t) + e−β′Z
.

The conditional survival function of T ∗ given Z can be expressed as

ST ∗|Z(t) =
e−β

′Z

Λ(t) + e−β′Z

or equivalently as
logit(1− ST ∗|Z(t)) = β′Z+ h(t),

which is known as the proportional odds model. Several other examples can be found in
Kosorok and Song (2007) and Ma and Kosorok (2005).

Some further generalizations of the transformation model are as follows. Let write Fε
as

Fε(u) = 1−G(eu),

where G is a known decreasing function such that G(0) = 1 and G(∞) = 0. Then,

P(T ∗ > t|Z) = P(h(T ∗) > h(t)|Z) = P(−β′Z+ ε > h(t)|Z)
= P(ε > h(t) + β′Z|Z) = 1− Fε(h(t) + β′Z)

= G
(
eh(t)eβ

′Z

)
= G

(
eβ

′ZΛ(t)
)

= G

(∫ t

0

eβ
′ZdΛ(s)

)
.

This equation can be further extended to accommodate time-dependent covariates in
the transformation model. Letting Z̃(t) = {Z(s) : 0 ≤ s ≤ t} be the history of Z(·) in
the time interval [0, t], several authors consider the transformation model defined by the
following conditional survival function

P(T ∗ > t|Z̃(t)) = G

(∫ t

0

eβ
′Z(s)dΛ(s)

)
.

or equivalently, by the following conditional cumulative hazard function Λ(t|Z̃(t))

Λ(t|Z̃(t)) = − logG

(∫ t

0

eβ
′Z(s)dΛ(s)

)
≡ H

(∫ t

0

eβ
′Z(s)dΛ(s)

)
. (6.5)
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Note that H is a known increasing function with H(0) = 0 and H(∞) = ∞. In
particular, this formulation is adopted by: Kosorok and Song (2007) who study a linear
transformation model applied to right-censored survival data with a change point in the
regression coefficient based on a covariate threshold; Zeng and Lin (2007) who study the
transformation model with random effects for recurrent events; Zeng et al. (2008) who
study the linear transformation model with random effects for clustered failure times.

Remark. Specifying the function H while leaving the function Λ unspecified in (6.5)
is equivalent to specifying the distribution of ε while leaving the function h unspecified in
(6.3).

6.3 Notation and model assumptions

We consider a semiparametric linear transformation model with time-dependent covariates
and cured fraction, which is specified by the equation (6.2) for the cured fraction and by
the class of linear transformation model (6.5) for the failure time of susceptible subjects.

We first state some notations and model assumptions that will be used throughout the
chapter. All the random variables are defined on a probability space (Ω, C,P).

We assume that the vector of covariates Z is time-dependent. Let Z̃(t) = {Z(s) :
0 ≤ s ≤ t}. With the notations given previously, the data consist of n independent
and identically distributed copies Oi = (Yi,∆i, Z̃i(Yi),Xi), i = 1, . . . , n. Denote by θ =
(β, γ,Λ) the vector of parameters in the model (6.2) - (6.5) and by θ0 = (β0, γ0,Λ0) the
true value of the parameter.

To establish our results, we need the following regularity assumptions:

(C1) The true values β0 and γ0 lie in the interior of known compact sets B ⊂ Rq and
G ⊂ Rp respectively.

(C2) The covariate vector X is bounded (that is, ‖X‖ is bounded by a finite constant,
where ‖·‖ denotes the Euclidean norm), with positive definite covariance matrix. Z(·)
is a càglàd process with uniformly bounded variation on [0, τ ]. In the sequel, we shall
use the following notations: M1 = maxt∈[0,τ ],β∈B e

β′Z(t) andM2 = mint∈[0,τ ],β∈B e
β′Z(t).

(C3) Λ(·) is a strictly increasing positive function on [0, τ ]. Λ(·) is continuously differen-
tiable.

(C4) H(·) is thrice continuously differentiable on [0,∞), with H(1)(u) > 0 and

sup
u≥0

{|H(k)(u)|} <∞
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k = 1, 2, 3, where H(k)(·) denotes the k-th derivative of H(·).

(C5) Let Ψ : [0,∞) → [0, 1] be the function defined by Ψ(u) = 1− exp{−H(u)}. There
exists a constant ρ0 > 0 such that

lim sup
x→∞

(1 + x)ρ0(1−Ψ(x)) <∞, lim sup
x→∞

(1 + x)1+ρ0(Ψ(1)(x)) <∞

Under the true value θ0, the expectation of random variables will noted by Pθ0 .

(C6) With probability 1, there exists a positive and finite constant M3 such that

Pθ0 [∆|Y,X, Z̃(Y )] > M3,

t ∈ [0, τ ].

(C7) The following identifiability condition holds for every t ∈ [0, τ ]: if there exists a
vector µ ∈ Rq and a deterministic function α0(t) such that α0(t) + µ′Z(t) = 0 with
probability 1, then µ = 0 and α0(t) = 0.

Under model (6.2) - (6.5) and conditions C1-C7, the likelihood function for the parameter
θ from the observations Oi (i, . . . , n) is proportional to

Ln(θ) =
n∏

i=1

{
π(γ′Xi)e

β′Zi(Yi)λ(Yi)H
(1)

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

)

× exp

{
−H

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

)}}∆i

×
{
1− π(γ′Xi) + π(γ′Xi) exp

{
−H

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

)}}(1−∆i)

(6.6)

where for any function f(·), f (1)(·) denotes the derivative of f(·), and λ(·) denotes the
derivative of Λ(·).

6.4 Identifiability

In this part, we consider the identifiability of the parameters.

Proposition 6.4.1 The model is identifiable that is, L1(θ) = L1(θ
∗) a.s. implies θ = θ∗.
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Proof: Assume that L1(θ) = L1(θ
∗) a.s. By C6, there exists a ω ∈ Ω outside the

negligible set where L1(θ) might differ from L1(θ
∗), such that ∆(ω) = 1. In this case, with

probability one,
{
π(γ′x)eβ

′z(y)λ(y)Ψ(1)

(∫ y

0

eβ
′z(s)dΛ(s)

)}

=

{
π(γ∗

′

x)eβ
∗
′

z(y)λ∗(y)Ψ(1)

(∫ y

0

eβ
∗
′

z(s)dΛ∗(s)

)}
.

This equation can also be expressed as:

π(γ′x)
∂Ψ
(∫ y

0
eβ

′z(s)dΛ(s)
)

∂y
= π(γ∗

′

x)
∂Ψ
(∫ y

0
eβ

∗
′

z(s)dΛ∗(s)
)

∂y
.

Let t ∈ [0, τ ]. Integrating both sides of this equality from 0 to t yields

π(γ′x)Ψ

(∫ t

0

eβ
′z(s)dΛ(s)

)
= π(γ∗

′

x)Ψ

(∫ t

0

eβ
∗
′

z(s)dΛ∗(s)

)
,

and consequently,

Ψ
(∫ t

0
eβ

′z(s)dΛ(s)
)

Ψ
(∫ t

0
eβ∗

′
z(s)dΛ∗(s)

) =
π(γ∗

′

x)

π(γ′x)
.

Note that the right-hand side of this latter equality is independent of t then,

Ψ
(∫ t

0
eβ

′z(s)dΛ(s)
)

Ψ
(∫ t

0
eβ∗

′
z(s)dΛ∗(s)

) =
π(γ∗

′

x)

π(γ′x)
= κ,

where κ is some positive constant. We need to show that if π(γ∗
′

x)
π(γ′x)

= κ for all x, then

γ∗ = γ. Indeed, if we take x = 0, then κ = π(0)
π(0)

, therefore κ = 1.

Now, we need to show that if π(γ∗
′

x)
π(γ′x)

= 1 for all x, then γ∗ = γ. Indeed, π(γ∗
′

x)
π(γ′x)

= 1
implies that

π(γ∗
′

x) = π(γ
′

x). (6.7)

By the definition of π(·), the equation (6.7) can be expressed as

P(η = 1|x, γ∗) = P(η = 1|x, γ),

or equivalently as,
1− P(η = 0|x, γ∗) = 1− P(η = 0|x, γ),

that is,
1

1 + eγ∗
′
x
=

1

1 + eγ
′
x
.
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By C2, it follows that γ = γ∗.

As κ = 1 then,

Ψ
(∫ t

0
eβ

′z(s)dΛ(s)
)

Ψ
(∫ t

0
eβ∗

′
z(s)dΛ∗(s)

) = 1,

for all t ∈ [0, τ ]. Thus,

Ψ

(∫ t

0

eβ
′z(s)dΛ(s)

)
= Ψ

(∫ t

0

eβ
∗
′

z(s)dΛ∗(s)

)
.

By definition of Ψ(·),

1− exp

{
−H

(∫ t

0

eβ
′z(s)dΛ(s)

)}
= 1− exp

{
−H

(∫ t

0

eβ
∗
′

z(s)dΛ∗(s)

)}
,

and thus,

H

(∫ t

0

eβ
′z(s)dΛ(s)

)
= H

(∫ t

0

eβ
∗
′

z(s)dΛ∗(s)

)
.

Therefore, by C4 ∫ t

0

eβ
′z(s)dΛ(s) =

∫ t

0

eβ
∗
′

z(s)dΛ∗(s).

Taking the Radon-Nikodym derivative of both sides with respect to Λ∗ and taking loga-
rithms, we obtain

β′z(t) + log(λ(t)) = β∗′z(t) + log(λ∗(t)),

and finally,

(β − β∗)′z(t) + log

(
λ(t)

λ∗(t)

)
= 0.

By condition C7, it follows that β = β∗ and λ(t) = λ∗(t). Therefore the model is
identifiable.

�

We now turn to estimation in model (6.2) - (6.5).

6.5 Maximum likelihood estimation

It would seem natural to calculate the maximum likelihood estimator (MLE) of θ0 by
maximizing the likelihood (6.6). However, the maximum of this function is infinity when
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the function Λ(·) ranges over the class of absolutely continuous functions. In Zeng et
al. (2008), the authors propose to use the NPML estimation approach, which consists
in replacing the original maximization space by an increasing sequence of approximating
spaces obtained by letting an estimator of the absolutely continuous Λ(·) be an increasing
step function on [0, τ ] with jumps at the observed failure times si. We assume that the
data sample contains k (k ≤ n) distinct uncensored failure times, which we denote and
order as s1 < . . . < sk. Then, letting Λ{t} denote the jump size at t of an increasing step
function Λ(·), we maximize the function Ln(β, γ,Λ) =

n∏

i=1

{
π(γ′Xi)e

β′Zi(Yi)Λ{Yi}H(1)

(
k∑

j=1

eβ
′Zi(sj)Λ{sj}1{sj ≤ Yi}

)

× exp

{
−H

(
k∑

j=1

eβ
′Zi(sj)Λ{sj}1{sj ≤ Yi}

)}}∆i

×
{
1− π(γ′Xi) + π(γ′Xi) exp

{
−H

(
k∑

j=1

eβ
′Zi(sj)Λ{sj}1{sj ≤ Yi}

)}}(1−∆i)

(6.8)

over the space

Θn = {(β, γ,Λ) : β ∈ B, γ ∈ G,Λ{sj} ∈ [0,∞), j = 1, . . . , k} .

For any fixed n, we then define the maximum likelihood estimator (MLE) θ̂n of θ0 as
the value (if it exists) that maximizes Ln over Θn (the maximum likelihood estimator
obtained by this procedure is sometimes referred to as a nonparametric MLE (NPMLE)
and we shall use this terminology in the sequel).

Proposition 6.5.1 The maximum likelihood estimator θ̂n = (β̂n, γ̂n, Λ̂n(·)) exists and is
achieved.

Proof: The proof proceeds by contradiction, and follows an approach which was used,
for example, by Fang et al. (2005) and Hernández Quintero et al. (2009), in various other
contexts.

It suffices to show that the function Λ has finite jumps. Assume first that Λ{sj} ≤
U < ∞ for every j = 1, . . . , k. The function Ln is a continuous function of the β, γ, and
Λ{sj} on the compact set B×G× [0, U ]k. Therefore Ln achieves its maximum on this set.

To show that a maximum exists on the set B×G× [0,∞)k, we show that there exists a
finite U such that for all (βU , γU ,ΛU{sj}; j = 1, . . . , k) ∈ (B×G×[0,∞)k)\(B×G×[0, U ]k),
there exists a (β, γ,Λ{sj}; j = 1, . . . , k) ∈ B × G × [0, U ]k which has a larger value of Ln.
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Consider a proof by contradiction. That is, suppose there does not exist such a U .
Then for all U <∞, there exists a (βU , γU ,ΛU{sj}; j = 1, . . . , k) ∈ (B×G× [0,∞)k)\(B×
G×[0, U ]k) such that for all (β, γ,Λ{sj}; j = 1, . . . , k) ∈ B×G×[0, U ]k, Ln(β, γ,Λ{sj}; j =
1, . . . , k) ≤ Ln(β

U , γU ,ΛU{sj}; j = 1, . . . , k).

But we show that Ln(β
U , γU ,ΛU{sj}; j = 1, . . . , k) can be made arbitrarily small by

increasing U , which is a contradiction. To see this, note that (6.8) is bounded from above
by

n∏

i=1

{
M1Λ{Yi}H(1)

(
k∑

j=1

eβ
′Zi(sj)Λ{sj}1{sj ≤ Yi}

)

× exp

{
−H

(
k∑

j=1

M2Λ{sj}1{sj ≤ Yi}
)}}∆i

If (βU , γU ,ΛU{sj}; j = 1, . . . , k) ∈ (B×G× [0,∞)k)\(B×G× [0, U ]k), there exists at least
one l ∈ {1, . . . , k} such that ΛU{sl} > U . There also exists one i∗ ∈ {1, . . . , n} such that
∆i∗ = 1 and Yi∗ = sl. For this individual,

ΛU{Yi∗}H(1)

(
k∑

j=1

eβ
′Zi(sj)ΛU{sj}1{sj ≤ Yi∗}

)

× exp

{
−H

(
k∑

j=1

M2Λ
U{sj}1{sj ≤ Yi∗}

)}

tends to 0 as U (and therefore ΛU{Yi∗}) tends to +∞, by C5. Thus the upper bound
of Ln(β

U , γU ,ΛU{sj}; j = 1, . . . , k) can be made as close to 0 as desired by increasing
U , which yields a contradiction. It follows that for any fixed n, the maximum of Ln is
obtained in the set B × G × [0, U ]k, for some U <∞, and on this set, the maximizer θ̂n is
achieved.

�

Let Pn denote the empirical distribution of the data, and recall that Pθ0 denotes the
expectation with respect to the true underlying distribution.

Lemma 6.5.1 The NPMLE θ̂n satisfies the following equation, for every t ∈ [0, τ ]

Λ̂n(t) =

∫ t

0

dGn(u)

Wn(u; θ̂n)
(6.9)

where (1/Wn)(u; θ̂n) and Gn(u) are non-decreasing functions in u, defined by

Wn(u; θ) = Pn[w(u,O; θ)] and Gn(u) = Pn [∆1{Y ≤ u}]
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respectively, where w(u,O; θ) = eβ
′Z(u)1{u ≤ Y }φ (O; θ) and

φ (O; θ) =
(1−∆)π(γ′X)Ψ(1)

(∫ Y
0
eβ

′Z(u)dΛ(u)
)

1− π(γ′X) + π(γ′X)
(
1−Ψ

(∫ Y
0
eβ′Z(u)dΛ(u)

))

−
∆Ψ(2)

(∫ Y
0
eβ

′Z(u)dΛ(u)
)

Ψ(1)
(∫ Y

0
eβ′Z(u)dΛ(u)

) . (6.10)

Proof: The proof consists of two steps:

1. Taking the derivative, with respect to the jump sizes Λ{sj} (j = 1, . . . , k), of the
log-likelihood (log of equation (6.8))

ln(θ) =
n∑

i=1

∆i ln π(γ
′Xi) + ∆iβ

′Zi(Yi) + ∆i

k∑

j=1

1{Yi = sj} ln(Λ{sj})

+∆i ln

(
Ψ(1)

(
k∑

j=1

eβ
′Zi(sj)Λ{sj}1{sj ≤ Yi}

))

+(1−∆i) ln

(
1− π(γ′Xi) + π(γ′Xi)

(
1−Ψ

(
k∑

j=1

eβ
′Zi(sj)Λ{sj}1{sj ≤ Yi}

)))
.

2. Setting (∂ln(θ)/∂Λ{sj})|θ=θ̂n = 0 and solving for Λ{sj}.

Solving these two steps, the result is obtained, which concludes the proof.

�

6.6 Consistency

Since we are interested in almost sure (a.s.) consistency, we work with fixed realizations
of the data which are assumed to lie in a set of probability one. Let ‖ · ‖∞ denote the
supremum norm on [0, τ ], and recall that ‖ · ‖ denotes the Euclidean norm.

Theorem 6.6.1 Under conditions C1-C7, the NPMLE is consistent that is,

sup
t∈[0,τ ]

|Λ̂n(t)− Λ0(t)|, ‖γ̂n − γ̂0‖ and ‖β̂n − β̂0‖

converge to 0 almost surely as n tends to ∞.
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The consistency proof follows the lines of Murphy’s proof of a.s. consistency in the
frailty model (1994) (see also Zeng and Lin (2007) and Zeng et al. (2008), who use similar
techniques in transformation models with recurrent events and clustered failure times
respectively). However, the technical details are different. Three technical lemmas are
needed before presenting the proof.

The following lemma is satisfied, under conditions C4 and C5.

Lemma 6.6.1 The following inequality holds with probability 1:

{
π(γ′Xi)e

β′Zi(Yi)Ψ(1)

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

)}∆i

×
{
1− π(γ′Xi) + π(γ′Xi)

(
1−Ψ

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

))}(1−∆i)

≤M4 (1 + Λ(Yi))
−(1+ρ0)∆i +M5 (1 + Λ(Yi))

−(ρ0+∆i) , (6.11)

where M4 and M5 are positive constants independent of β, γ and Λ.

Proof. By condition C5, there exists a constant ρ0 > 0 such that,

lim sup
x→∞

(1 + x)ρ0(1−Ψ(x)) <∞ and lim sup
x→∞

(1 + x)1+ρ0(Ψ(1)(x)) <∞.

By the second inequality, there exists a constant m0 <∞ such that

π(γ′Xi)Ψ
(1)

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

)
≤ m0

(
1 +

∫ Yi

0

eβ
′Zi(s)dΛ(s)

)−(1+ρ0)

.

Hence,

{
π(γ′Xi)Ψ

(1)

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

)}∆i

≤ m∆i

0

(
1 +

∫ Yi

0

eβ
′Zi(s)dΛ(s)

)−(1+ρ0)∆i

(6.12)

By the first inequality of condition C5, there exists a constant m1 <∞ such that

1− π(γ′Xi) + π(γ′Xi)
(
1−Ψ

(∫ Yi
0
eβ

′Zi(s)dΛ(s)
))

≤ 1 +
(
1−Ψ

(∫ Yi
0
eβ

′Zi(s)dΛ(s)
))

≤ 1 +m1

(
1 +

∫ Yi
0
eβ

′Zi(s)dΛ(s)
)−ρ0

,
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and therefore

{
1− π(γ′Xi) + π(γ′Xi)

(
1−Ψ

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

))}(1−∆i)

≤
{
1 +m1

(
1 +

∫ Yi

0

eβ
′Zi(s)dΛ(s)

)−ρ0
}(1−∆i)

≤ 1 +m1

(
1 +

∫ Yi

0

eβ
′Zi(s)dΛ(s)

)−ρ0(1−∆i)

. (6.13)

Now, let m2 = min{M2, 1}, where M2 was defined in C2. Then,

1 +

∫ Yi

0

eβ
′Zi(s)dΛ(s) ≥ 1 +M2Λ(Yi) ≥ m2 (1 + Λ(Yi)) . (6.14)

From the inequalities (6.12), (6.13), (6.14) and by (C2), we obtain

{
π(γ′Xi)e

β′Zi(Yi)Ψ(1)

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

)}∆i

×
{
1− π(γ′Xi) + π(γ′Xi)

(
1−Ψ

(∫ Yi

0

eβ
′Zi(s)dΛ(s)

))}(1−∆i)

≤M∆i

1 m∆i

0 [m2 (1 + Λ(Yi))]
−(1+ρ0)∆i

[
1 +m1 (m2 (1 + Λ(Yi)))

−ρ0(1−∆i)
]

=M4 (1 + Λ(Yi))
−(1+ρ0)∆i +M5 (1 + Λ(Yi))

−(ρ0+∆i)

where M4 = M∆i

1 m∆i

0 m
−(1+ρ0)∆i

2 and M5 = M∆i

1 m∆i

0 m
−(ρ0+∆i)
2 m1. This concludes the

proof.

�

Lemma 6.6.2 lim supn Λ̂n(τ) <∞ almost surely.

Proof: The key arguments for this proof are based on Murphy (1994), Zeng and Lin
(2007) and Zeng et al. (2008). Consider the step function Λ̃n(·) defined as:

Λ̃n(t) =

∫ t

0

dGn(u)

Wn(u; θ0)
.
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Note that Λ̃n(t) relates to Gn in a similar manner as Λ̂n(t), but with Wn evaluated at θ0.
Let θ̃n = (β0, γ0, Λ̃n). The proof proceeds by contradiction. Clearly, 0 ≤ n−1[lnLn(θ̂n) −
lnLn(θ̃n)]. The right-hand side in this inequality can be bounded from above by Lemma
6.6.1, leading to

0 ≤M6 +
1
n

∑n
i=1

{
∆i ln(Λ̂n{Yi})

−(1 + ρ0)∆i ln
(
1 + Λ̂n(Yi)

)
− (ρ0 +∆i) ln

(
1 + Λ̂n(Yi)

)}

− 1
n

∑n
i=1

{
∆i ln(Λ̃n{Yi}) + ∆i ln

(
Ψ(1)

(∑k
j=1 e

β′

0Zi(sj)Λ̃n{sj}1{sj ≤ Yi}
))

+(1−∆i) ln (1− π(γ′0Xi)

+π(γ′0Xi)
(
1−Ψ

(∑k
j=1 e

β′

0Zi(sj)Λ̃n{sj}1{sj ≤ Yi}
)))}

,

where M6 is some positive constant. From the construction of Λ̃n(t), it follows that

0 ≤ M6 +
1

n

n∑

i=1

{
∆i ln(Λ̂n{Yi})− (2∆i + ρ0 + ρ0∆i) ln

(
1 + Λ̂n(Yi)

)}

≤ M6 +
1

n

n∑

i=1

{
∆i ln(1 + Λ̂n(Yi))− (2∆i + ρ0 + ρ0∆i)1{Yi = τ} ln

(
1 + Λ̂n(Yi)

)

−(2∆i + ρ0 + ρ0∆i)1{Yi < τ} ln
(
1 + Λ̂n(Yi)

)}
. (6.15)

Now, mimicking the arguments in Murphy (1994), we show that the right-hand side of
(6.15) is eventually negative if Λ̂n(τ) diverges. Consider a partition τ = s0 > . . . > sN = 0
of [0, τ ]. Then the right-hand side of (6.15) can be bounded from above by

M6 − 1

2n

n∑

i=1

(2∆i + ρ0 + ρ0∆i)1{Yi = τ} ln
(
1 + Λ̂n(τ)

)

−
{

1

2n

n∑

i=1

(2∆i + ρ0 + ρ0∆i)1{Yi = τ} ln
(
1 + Λ̂n(τ)

)

− 1

n

n∑

i=1

∆i1{Yi ∈ [s1, s0)} ln
(
1 + Λ̂n(τ)

)}

−
{

N∑

q=1

{
1

n

n∑

i=1

(2∆i + ρ0 + ρ0∆i)1{Yi ∈ [sq, sq−1)} ln
(
1 + Λ̂n(sq)

)

− 1

n

n∑

i=1

∆i1{Yi ∈ [sq+1, sq)} ln
(
1 + Λ̂n(sq)

)}}
. (6.16)

Using Murphy’s idea (1994) for constructing the partition, the sequence s0 > s1 > . . . > sN
can be chosen in such way that the first term in (6.16) diverges to −∞ as Λ̂n(τ) → ∞ and
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the second and third terms are negative for large n. This contradicts the fact that (6.16)
should be non-negative. Thus, we have shown that lim sup Λ̂n(τ) <∞.

�

Lemma 6.6.3 Λ̃n(t) converges uniformly to Λ0(t) almost surely.

Proof. We first show that the class of functions

{w(u,O; θ); u ∈ [0, τ ], θ ∈ Θ}

is a Donsker class. Using the Lemma 2 in Parner (1998), states that if Z is a caglad
process on [0, τ ] which is uniformly bounded in variation then, Z(·) is Donsker, so by
multiplying two Donsker classes we get that {β′Z(u) : u ∈ [0, τ ], β ∈ B} is Donsker. The
exponential function is Lipschitz on compact sets of the real line. (This follows from a
first-order Taylor expansion). Since Z(·) is uniformly bounded, we get from van der Vaart
and Wellner (1996), Theorem 2.10.6, that the class {eβ′Z(u) : u ∈ [0, τ ], β ∈ B} is Donsker.

Boundedness of X and the Theorem 2.7.1 of van der Vaart and Wellner (1996) imply
that the class {gγ(X) = γ′X : γ ∈ G} is Donsker. Differentiability of eγ

′X in X and the
boundedness of the derivative imply that {eγ′X : γ ∈ G} is Donsker. By the example 2.10.9
from van der Vaart and Wellner (1996) and the fact that 1+eγ

′X > 0, then {eγ′X/(1+eγ′X)}
is Donsker. By the condition C4, the function Ψ(·) is Donsker (its derivative is bounded,
then the function is Lipschitz), therefore 1 − Ψ(·) is Donsker. By the example 2.10.7
and 2.10.8 of van der Vaart and Wellner (1996) (multiplying and adding classes uniformly
bounded Donsker, preserves Donsker property) then the classes, {1−π(γ′X)+π(γ′X)Ψ(·)}
and {(1−∆i)π(γ

′X)Ψ(1)(·)} are Donsker.

As 1 − π(γ′X) + π(γ′X)Ψ(·) > 0 and by the examples 2.10.8 and 2.10.9 de van der
Vaart and Wellner, the class

{
(1−∆)π(γ′X)Ψ(1)(·)

1− π(γ′X) + π(γ′X)Ψ(·)

}
,

is Donsker. By C4 the functions Ψ(1)(·) and Ψ(2)(·) are Lipschitz with Ψ(1)(·) > 0, then,
{
∆iΨ

(2)(·)
Ψ(1)(·)

}

is Donsker. From this analysis, we obtain that φ (Y,O; θ) is a Donsker classe. Finally, the
indicator function is Donsker.

Therefore, we can conclude that the class

{w(u,O; θ); u ∈ [0, τ ], θ ∈ Θ}
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is Donsker. Similar arguments yield that {∆1{u ≤ t}/Pθ0 [w(u,O; θ0)]} is also Donsker
class.

Then,

sup
t∈[0,τ ]

∣∣∣Λ̃n(t)− Λ0(t)
∣∣∣ = sup

t∈[0,τ ]

∣∣∣∣∣
1

n

n∑

i=1

∆i1{Yi ≤ t}
Wn(Yi; θ0)

− Pθ0

[
∆1{Y ≤ t}

Pθ0 [w(u,O; θ0)]|s=Y

]∣∣∣∣∣

≤ sup
s∈[0,τ ]

∣∣∣∣
1

Wn(s; θ0)
− 1

Pθ0 [w(s,O; θ0)]

∣∣∣∣

+ sup
t∈[0,τ ]

∣∣∣∣(Pn − Pθ0)

[
∆1{Y ≤ t}

Pθ0 [w(u,O; θ0)]|s=Y

]∣∣∣∣ (6.17)

From the result above, {w(u,O; θ0); u ∈ [0, τ ], θ ∈ Θ} is a Donsker class and therefore
a Glivenko Cantelli class of functions, and thus supu∈[0,τ ] |Wn(u; θ0) − Pθ0 [w(u,O; θ0))]|
converges to 0 almost surely. Moreover, for u ∈ [0, τ ], Pθ0 [w(u,O; θ0)] > 0 on [0, τ ].
Therefore, the first term on the right hand side of (6.17) converges to 0 almost surely and
the second term converges almost surely to 0 by the Glivenko-Cantelli property of

{∆1{u ≤ t}/Pθ0 [w(u,O; θ0)]|u=Y }.

Therefore, we conclude that Λ̃n converges uniformly to Λ0, which concludes the proof.

�

Proof of Theorem 6.6.1. The proof consists of two steps:

1. We show that every subsequence of n contains a further subsequence where the
NPMLE θ̂n converges,

2. We show that the set of limits of all convergent subsequences of θ̂n reduces to {θ0}.

Proof of 1. From the compactness of B ×G and Bolzanno-Weiersrass’s theorem, every
subsequence (β̂φ(n), γ̂φ(n))of (β̂n, γ̂n) has a further subsequence (β̂ϕ(φ(n)), γ̂ϕ(φ(n))), which
converges to some (β∗, γ∗) in B × G. By Lemma 6.6.2 and Helly’s theorem, we can find

with probability 1 a subsequence Λ̂η(ϕ(φ(n))) of Λ̂ϕ(φ(n)) and a nondecreasing right-continuous

function Λ∗ such that Λ̂η(ϕ(φ(n)))(t) → Λ∗(t) for all t ∈ [0, τ ] where Λ∗ is continuous;

Λ̂η(ϕ(φ(n))) is said to converge weakly to Λ∗. In the following, we shall use the following
notation for the sake of clarity of formulas ξ(n) = η(ϕ(φ(n))). We now show that Λ∗ is
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continuous on [0, τ ]. Note first that

Λ̂ξ(n)(t) =

∫ t

0

dGξ(n)(u)

Pξ(n)[w(u,O; θ̂ξ(n))]

=

∫ t

0

Pξ(n)[w(u,O; θ0)]

Pξ(n)[w(u,O; θ̂ξ(n))]

dGξ(n)

Pξ(n)[w(u,O; θ0)]

=

∫ t

0

Pξ(n)[w(u,O; θ0)]

Pξ(n)[w(u,O; θξ(n))]
dΛ̃ξ(n)(u), (6.18)

where Λ̃n is defined in Lemma 6.6.2.

It follows from the Glivenko-Cantelli property of {w(u,O; θ)} that

sup
u∈[0,τ ]

∣∣Pξ(n)[w(u,O; θ0)]− Pθ0 [w(s,O; θ0)]
∣∣ −→ 0 a.s.,

sup
u∈[0,τ ]

∣∣∣Pξ(n)[w(s,O; θ̂ξ(n))]− Pθ0 [w(s,O; θ̂ξ(n))]
∣∣∣ −→ 0 a.s.. (6.19)

Then, P0[w(u,O; θ̂ξ(n))] converge uniformly to P0[w(u,O; θ∗)]. Using this result, the
equation 6.19 and the triangle inequality, we obtained that,

dΛ̂ξ(n)(t)

dΛ̃ξ(n)(t)
→ Pθ0 [w(s,0; θ0)]

Pθ0 [w(s,0; θ
∗)]

uniformly in t ∈ [0, τ ]. By taking the limits on both side in (6.18), we obtain

Λ∗(t) =

∫ t

0

P0 [w(u,O; θ0)]

P0 [w(u,O; θ∗)]
dΛ0(u).

Thus Λ∗(t) is absolutely continuous with respect to Λ0(t), so that Λ∗(t) is differentiable
with respect to t.

Proof of 2. Finally, we can show that β∗ = β0, γ
∗ = γ0, and Λ∗ = Λ0. Consider the

difference

0 ≤ 1

ξ(n)
lξ(n)

(
γ̂ξ(n), β̂ξ(n), Λ̂ξ(n)

)
− 1

ξ(n)
lξ(n)

(
γ0, β0, Λ̃ξ(n)

)
.

By letting n go to infinity, we obtain that Pθ0 [l (γ
∗, β∗,Λ∗)− l (γ0, β0,Λ0)] ≥ 0. The

left-hand side of this inequality is the negative Kullback-Leibler information between the
density indexed by θ∗ and the true density which implies that θ∗ = θ0. Thus it has been
proven that β̂n, γ̂n and Λ̂(t) (t ∈ [0, τ ]) converge almost surely to almost surely β0, γ0 and
Λ0(t).

�
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6.7 Asymptotic normality

6.7.1 Score and Information

To obtain the asymptotic normality, we adapt the function analytic approach developed
by Murphy (1995) for the frailty model; see also Fang et al. (2005), Kosorok and Song
(2007), Lu (2008), and Hernández Quintero et al. (2009), who recently adapted this
approach to various other semiparametric regression models for survival data. To derive
the asymptotic distribution of the estimators, we must verify that an analog of the infor-
mation matrix (now an operator) is continuously invertible and that the score equations
are asymptotically normal. In the latter verification we use results from empirical process
theory.

Consider the submodel

ǫ→ θ̂n,ǫ =

(
β̂n + ǫhβ, γ̂n + ǫhγ,

∫ ·

0

(1 + ǫhΛ(s)) dΛ̂n(s)

)

where hΛ is a non-negative function on [0, τ ], hβ and hγ are vectors in Rq and Rp respec-
tively. Let h = (hβ,hγ, hΛ).

Because the maximum likelihood estimator θ̂n = (β̂n, γ̂n, Λ̂n) for the full model also
maximizes the likelihood under any parametric submodel that passes through θ̂n, it must
satisfy the score function which is obtained by differentiating ln(θ̂n,ǫ) with respect to ǫ,
and evaluating at ǫ = 0. That is,

Sn(θ̂n)(h) =
∂ln(θ̂n,ǫ)

∂ǫ

∣∣∣∣∣
ǫ=0

= 0 (6.20)

for every h. Define

Sγ(θ) = ∆X (1− π(γ′X))

−
(1−∆)Xπ(γ′X)(1− π(γ′X))Ψ

(∫ Y
0
eβ

′Z(s)dΛ(s)
)

1− π(γ′X) + π(γ′X)
(
1−Ψ

(∫ Y
0
eβ′Z(s)dΛ(s)

)) ,

Sβ(θ) = ∆Z(Y )− φ(O; θ)

∫ Y

0

eβ
′Z(u)Z(u)dΛ(u),

SΛ(θ)(hΛ) = ∆hΛ(Y )− φ(O; θ)

∫ Y

0

eβ
′Z(u)hΛ(u)dΛ(u).

Then, the score operator Sn(θ̂n)(h) has the form

Sn(θ̂n)(h) = Pn

[
h′
βSβ(θ̂n) + h′

γSγ(θ̂n) + SΛ(θ̂n)(hΛ)
]
. (6.21)
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We take the space of elements h to be

H =
{
h = (hβ,hγ, hΛ) : hβ ∈ Rq;hγ ∈ Rp;hΛj

∈ V B([0, τ ])
}
,

where V B denotes the bounded variation on [0, τ ]. Furthermore, we take the functions hΛ
to be continuous from the right at 0. We define the following norm on H: if h ∈ H, let

‖h‖H = ‖hβ‖+ ‖hγ‖+ ‖hΛ‖v,

where ‖ · ‖ is the Euclidean norm and ‖hΛ‖v denotes the total variation of hΛ on [0, τ ].
We further define Hr = {h ∈ H, ‖h‖H ≤ r} and H∞ = {h ∈ H, ‖h‖H <∞}.

Define

θ(h) = h′
ββ + h′

γγ +

∫ τ

0

hΛ(s)dΛ(s),

where h ∈ H. From this, we can re-consider the parameter θ as a linear functional on Hr,
and the parameter space Θ as a subset of l∞(Hr) which is the space of bounded real-valued
functions on Hr. Moreover, the score operator Sn appears to be a random map from Θ to
the space l∞(Hr).

Remark. Note that appropriate choices for h allow to extract all components of the
original parameter θ; in the present study, we shall denote by 0r (r ≥ 2) the r-dimensional
column vector having all its components equal to 0.

For example, let hγ = 0p, hΛ(·) = 0, and hβ be the q-dimensional vector with a one at
the i-th location and zeros elsewhere. This yields the i-th component of β.

As an another example, let hβ = 0q, hγ = 0p and hΛ(·) = 1{· ≤ t}, for some t ∈ (0, τ).
In this case, θ(h) reduces to Λ(t).

Similar to parametric model, we define the Fisher information operator by

I(θ0)(h) = Pθ0 [S1(θ0)(h)
2]

where S1 is the score operator (6.21) based on a single observation. An explicit expression
of I(θ0)(h) is given in the lemma below.

Lemma 6.7.1 Let h ∈ Hr. Then Pθ0 [S1(θ0)(h)] = 0 and the Fisher information operator
is given by

I(θ0)(h) = h′
βσβ(h) + h′

γσγ(h) +

∫ τ

0

σΛ(h)(s)hΛ(s)dΛ0(s), (6.22)
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where

σβ(h) = Pθ0 [2Sβ(θ0)∆hΛ(Y )] + Pθ0
[
Sβ(θ0)

⊗2
]
hβ + Pθ0 [Sβ(θ0)Sγ(θ0)

′]hγ

σγ(h) = Pθ0 [2Sγ(θ0)∆hΛ(Y )] + Pθ0
[
Sγ(θ0)

⊗2
]
hγ + Pθ0 [Sγ(θ0)Sβ(θ0)

′]hβ

σΛ(h)(s) = −Pθ0
[
∆hΛ(Y )1{s ≤ Y }φ(O; θ0)e

β′

0Z(s)
]

+Pθ0

[
{φ(O; θ0)}2

{∫ Y

0

eβ
′

0Z(u)hΛ(u)dΛ0(u)

}
1{s ≤ Y }eβ′

0Z(s)

]

−h′
βPθ0

[
2Sβ(θ0)1{s ≤ Y }φ(O; θ0)e

β′

0Z(s)
]

−h′
γPθ0

[
2Sγ(θ0)1{s ≤ Y }φ(O; θ0)e

β′

0Z(s)
]
,

where for any r-dimensional vector u, u⊗2 = u′u.

Proof: We first prove that Pθ0 [S1(θ0)(h)] = 0. Note that

Pθ0 [Sβ(θ0)] = Pθ0

[
∆Z(Y )− φ(O; θ)

∫ Y

0

eβ
′Z(u)Z(u)dΛ(u)

]

= Pθ0

[∫ τ

0

Z(u)dN(u)− φ(O; θ)

∫ Y

0

eβ
′Z(u)Z(u)dΛ(u)

]

= Pθ0

[∫ τ

0

Z(u)dM(u)

]

where,

M(t) = N(t)−
∫ t

0

1{Y ≥ u}φ(O; θ)eβ
′Z(u)dΛ(u)

is a counting process martingale with respect to the filtration σ{N(s), 1{Y ≤ s,∆ =
1},X,Z(s) : 0 ≤ s ≤ t}. Note that, we have obtained a process in Y , which is a
martingale stochastic integral, provided the time-dependent covariate, which is predictable
(to verify this is enough to see that is bounded, and this is obtained by C2). Therefore
Pθ0 [Sβ(θ0)] = 0.

Similar arguments imply that Pθ0 [SΛ(θ0)] = 0 and Pθ0 [Sγ(θ0)] = 0. This conclude the
firs part of the proof.

To prove the second result, we develop

S1(θ0)(h)
2 =

[
h′
βSβ(θ0) + h′

γSγ(θ0) + SΛ(θ0)(hΛ)
]2
,

and we take the expectation of the resulting expression. By the first part, we have that
Pθ0 [SΛ(θ0)(hΛ)] = 0 for any bounded function hΛ, which implies that

Pθ0 [∆hΛ(Y )] = Pθ0

[
φ(O; θ)

∫ Y

0

eβ
′

0Z(u)hΛ(u)dΛ0(u)

]
.
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Some lengthy algebraic manipulations and re-arrangement of terms yield the result.

�

Lemma 6.7.2 The operator σ = (σβ, σγ, σΛ) : Hr → Hr is one-to-one.

Proof: Assume σ(h) = 0. By Lemma 6.7.1, Pθ0 [S1(θ0)(h)
2] = 0. It follows that

S1(θ0)(h) = 0 almost surely.

We successively take ∆ = 1 and ∆ = 0. We obtain 2 equations. Then, we take the
difference between them and some algebraic manipulation and re-arrangement of terms
yield the following equation:

h′
γ


X (1− π(γ′0X)) +

Xπ(γ′0X)(1− π(γ′0X))Ψ
(∫ Y

0
eβ

′

0Z(s)dΛ0(s)
)

1− π(γ′0X) + π(γ′0X)
(
1−Ψ

(∫ Y
0
eβ

′

0Z(s)dΛ0(s)
))




+h′
βZ(Y ) + hΛ(Y ) + Γ(θ0)

∫ Y

0

eβ
′

0Z(s)
{
h′
βZ(s) + hΛ(s)

}
dΛ0(s) = 0, (6.23)

where Γ(θ0) =

(
π(γ′0X)Ψ(1)

(∫ Y

0 eβ
′

0Z(s)dΛ0(s)
)

1−π(γ′0X)+π(γ′0X)
(
1−Ψ

(∫ Y

0 eβ
′

0Z(s)dΛ0(s)
)) +

Ψ(2)
(∫ Y

0 eβ
′

0Z(s)dΛ0(s)
)

Ψ(1)
(∫ Y

0 eβ
′

0Z(s)dΛ0(s)
)

)
.

By choosing Y arbitrarily close to 0, (6.23) reduces to

h′
γX (1− π(γ′0X)) + h′

βZ(0) + hΛ(0) = 0,

since hΛ and Λ0 are continuous from the right at 0 and Λ0(0) = 0, this expression is
equivalent,

h′
γX (1− π(γ′0X)) = −h′

βZ(0)− hΛ(0),

note that the right-hand side of the previous equation not depend on X then hγ must
equal 0. So the expression reduces (6.23) to

h′
βZ(Y ) + hΛ(Y ) + Γ(θ0)

∫ Y

0

eβ
′

0Z(s)
{
h′
βZ(s) + hΛ(s)

}
dΛ0(s) = 0. (6.24)

Note that we have obtained a homogeneous equation for h′
βZ(t) + hΛ(t) (i.e., there is

no isolated constant term in the equation) which has only the trivial solution (see Zeng
and Lin, 2007 and technical report of Zeng and Lin, 2006 ). Therefore, h′

βZ(t)+hΛ(t) = 0
for all t ∈ [0, τ ]. By condition C7, it follows that hβ = 0 and hΛ = 0. This concludes the
proof.

�
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Lemma 6.7.3 The operator σ is continuously invertible with an inverse σ−1 denoted as
σ−1 = (σ−1

β , σ−1
γ , σ−1

Λ ).

Proof: Since Hr is a Banach space, to prove that σ is continuously invertible, it is
sufficient to prove that σ is one-to-one and that it can be written as the sum A+(σ−A) of
a bounded linear operator A with bounded inverse and a compact operator σ−A (Lemma
25.93 of van der Vaart, 1998).

σ is one-to-one by Lemma 6.7.2. Next, define the linear operator A : Hr → Hr by
A(h) = (hβ,hγ, hΛ(·)Pθ0 [W (·,O; θ0)]). A is bounded (by C1 and C2). In addition,
Pθ0 [W (·,O, θ0)] is uniformly bounded away from 0 on [0, τ ]. Thus A is invertible with
bounded inverse A−1(h) = (hβ,hγ, hΛ(·)Pθ0 [W (·,O, θ0)]−1).

The operator σ−A is compact, by using the same techniques as in Lu (2008) we can get
the result. Because a bounded linear operator with finite dimensional range is compact,
we only need show that the operator KΛ : V B(0, τ) → V B(0, τ), given by

KΛ(hΛ)(s) = −Pθ0
[
∆hΛ(Y )1{s ≤ Y }φ(O; θ0)e

β′

0Z(s)
]

+Pθ0

[
{φ(O; θ0)}2

{∫ Y

0

eβ
′

0Z(u)hΛ(u)dΛ0(u)

}
1{s ≤ Y }eβ′

0Z(s)

]

is compact.

Thus given a sequence of function hΛ,n with ‖hΛ,n‖v ≤ 1, we must show that there
exits a subsequence and an element g ∈ V B(0, τ) such that ‖KΛhΛ,η(n) − g‖v → 0.

Now, note that KΛ is a linear operator then, ‖KΛhΛ‖v ≤M7

∫
|hΛ(u)|dΛ0(u) for every

hΛ and a fixed constant M7. Hence it suffices to show that there exits a subsequence
hΛ,η(n) of hΛ,n that converges. Since hΛ is of bounded variation, we can write hΛ,n as

the difference of bounded increasing function h
(1)
Λ,n and h

(2)
Λ,n. From Helly’s theorem, there

exists a subsequence h
(1)
Λ,η(n) of h

(1)
Λ,n which converges pointwise to some h

(1)∗
Λ . There also

exists a subsequence h
(2)
Λ,η(n) of h

(2)
Λ,n which converges pointwise to some h

(2)∗
Λ . Then hΛ,n

converge to the difference of the limits by the dominated convergence theorem. It follows
that σ − A is a compact operator.

�
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6.7.2 Asymptotic normality result

Theorem 6.7.1 Under conditions C1-C7,

√
n(β̂n − β0)

d→ N(0,Σβ) and
√
n(γ̂n − γ0)

d→ N(0,Σγ)

where
Σβ =

(
σ−1
β (e1,0p, 0), . . . , σ

−1
β (eq,0p, 0)

)

and
Σγ =

(
σ−1
γ (0q,d1, 0), . . . , σ

−1
γ (0q,dp, 0)

)

are the efficient variances for estimating β0 and γ0, and ei is the q-dimensional vector
with the i-th component 1 and elsewhere 0, and di the p-dimensional vector with the i-th
component 1 and elsewhere 0. Furthermore, for any t ∈ [0, τ ],

√
n
(
Λ̂n(t)− Λ0(t)

)
d→ N(0, υ2(t)),

where υ2(t) =
∫ t
0
σ−1
Λ (0q,0p, 1{u ≤ t}) dΛ0(u).

The following lemma is needed to prove Theorem 6.7.1.

Lemma 6.7.4 The efficient score functions for estimating β0 and γ0 are

lβ = Sβ(θ0)− SΛ(θ0)(g
∗
β)− Σ23Sγ(θ0) (6.25)

and
lγ = Sγ(θ0)− SΛ(θ0)(g

∗
γ)− Σ32Sβ(θ0), (6.26)

respectively, where

Σ23 = −Σ−1
β




σ−1
γ (e1,0p, 0)

′

...
σ−1
γ (eq,0p, 0)

′


 and Σ32 = −Σ−1

γ




σ−1
β (0q,d1, 0)

′

...
σ−1
β (0q,dp, 0)

′


 ,

and SΛ is applied componentwise to the vectors

g∗β = −Σ−1
β




σ−1
Λ (e1,0p, 0)

′

...
σ−1
Λ (eq,0p, 0)

′


 and g∗γ = −Σ−1

γ




σ−1
Λ (0q,d1, 0)

′

...
σ−1
Λ (0q,dp, 0)

′


 .
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Moreover, the efficient asymptotic variance matrices of β̂n and γ̂n are

(Pθ0 [lβlβ])
−1 = Σβ and (Pθ0 [lγlγ])

−1 = Σγ,

respectively.

Proof: We must show that lβ is orthogonal to the score SΛ(θ0)(g) for any bounded
function g. Consider e′iΣβPθ0 [lβSΛ(θ0)(g)], wich is equal to

Pθ0
[(
e′iΣβSβ(θ0)− SΛ(θ0)(e

′
iΣβg

∗
β)− e′iΣβΣ23Sγ(θ0)

)
SΛ(θ0)(g)

]
(6.27)

Now e′iΣβ = σ−1
β (ei,0p, 0)

′, then the equation (6.27) is equivalently to

Pθ0
([
σ−1
β (ei,0p, 0)

′S1β(θ0) + SΛ(θ0)(σ
−1
Λ (ei,0p, 0)) + σ−1

γ (ei,0p, 0)
′Sγ(θ0)

)
SΛ(θ0)(g)

]
.

(6.28)
As

Pθ0 [∆hΛ(Y )] = Pθ0

[
φ(O; θ)

∫ Y

0

eβ
′Z(u)hΛ(u)dΛ(u)

]
. (6.29)

Developing the terms in equation (6.28), we obtained Sβ(θ0)SΛ(θ0)(g) is equivalently to

∆Z(Y )∆gΛ(Y )−∆Z(Y )φ(O; θ)

∫ Y

0

eβ
′Z(u)gΛ(u)dΛ(u)

−∆gΛ(Y )φ(O; θ)

∫ Y

0

eβ
′Z(u)Z(u)dΛ(u)

+φ2(O; θ)

∫ Y

0

eβ
′Z(u)Z(u)dΛ(u)

∫ Y

0

eβ
′Z(u)gΛ(u)dΛ(u).

Using the equation (6.29) above is equivalent to

∆Z(Y )φ(O; θ)

∫ Y

0

eβ
′Z(u)gΛ(u)dΛ(u)−∆Z(Y )φ(O; θ)

∫ Y

0

eβ
′Z(u)gΛ(u)dΛ(u)

−∆gΛ(Y )φ(O; θ)

∫ Y

0

eβ
′Z(u)Z(u)dΛ(u)

+φ2(O; θ)

∫ Y

0

eβ
′Z(u)Z(u)dΛ(u)

∫ Y

0

eβ
′Z(u)gΛ(u)dΛ(u)

reducing terms this equals to
∫
gσΛ(ei,0p, 0). Similarly, the term

SΛ(θ0)(σ
−1
Λ (ei,0p, 0))SΛ(θ0)(g)

is equivalently to

∆σ−1
Λ (ei,0p, 0)∆g(Y )−∆σ−1

Λ (ei,0p, 0)φ(O; θ)

∫ Y

0

eβ
′Z(u)g(u)dΛ(u)

−∆g(Y )φ(O; θ)

∫ Y

0

eβ
′Z(u)σ−1

Λ (ei,0p, 0)dΛ(u) + φ2(O; θ)

∫ Y

0

eβ
′Z(u)σ−1

Λ (ei,0p, 0)dΛ(u).
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Using the equation (6.29) above is equivalent to

∆σ−1
Λ (ei,0p, 0)φ(O; θ)

∫ Y

0

eβ
′Z(u)g(u)dΛ(u)−∆σ−1

Λ (ei,0p, 0)φ(O; θ)

∫ Y

0

eβ
′Z(u)g(u)dΛ(u)

−∆g(Y )φ(O; θ)

∫ Y

0

eβ
′Z(u)σ−1

Λ (ei,0p, 0)dΛ(u) + φ2(O; θ)

∫ Y

0

eβ
′Z(u)σ−1

Λ (ei,0p, 0)dΛ(u)

reducing terms this equals to
∫
gσΛ(σ

−1(0q, ei, 0)). Finally, the term

Sγ(θ0)SΛ(θ0)(g)

is equal to

∆X (1− π(γ′X))∆g(Y )−∆X (1− π(γ′X))φ(O; θ)

∫ Y

0

eβ
′Z(u)gdΛ(u)

−
∆g(Y )(1−∆)Xπ(γ′X)(1− π(γ′X))Ψ

(∫ Y
0
eβ

′Z(s)dΛ(s)
)

1− π(γ′X) + π(γ′X)
(
1−Ψ

(∫ Y
0
eβ′Z(s)dΛ(s)

))

+φ(O; θ)

∫ Y

0

eβ
′Z(u)g(u)dΛ(u)

∆g(Y )(1−∆)Xπ(γ′X)(1− π(γ′X))Ψ
(∫ Y

0
eβ

′Z(s)dΛ(s)
)

1− π(γ′X) + π(γ′X)
(
1−Ψ

(∫ Y
0
eβ′Z(s)dΛ(s)

)) .

Using the equation (6.29) and reducing the above terms is equivalent to
∫
gσΛ(0q, ei, 0).

From the results obtained is reduced to e′iΣβPθ0 [lβSΛ(θ0)(g)] =
∫
gσΛ(σ

−1(ei,0p, 0))dΛ0 =
0. It follows from Theorem 3.4.1 of Bickel et al. (1993) that lβ is the efficient score function
for estimating β.

That lγ is the efficient score function for estimating γ can be proved along similar lines.

Because

eiPθ0 [Σβlβl
′
βΣβ]ej = Pθ0 [σ

−1
β (ej,0p, 0)

′Sβ(θ0)S
′
β(θ0)σ

−1
β (ei,0p, 0)

′] = e′iΣβej

for all i, j = 1, . . . , q, the second equality is obtained from the Lemma 6.7.1. Then, we have
Pθ0 [Σβlβl

′
βΣβ] = Σβ wich implies that (Pθ0 [lβl

′
β])

−1 = Σβ. Similarly (Pθ0 [lγl
′
γ])

−1 = Σγ.

�

Proof of Theorem 6.7.1: The proof follows the ideas developed in Theorem 5.7.1.
Similarly we can show that

√
n

(
h′
β

(
β̂n − β0

)
+ h′

γ (γ̂n − γ0) +

∫ τ

0

hΛ(s)d
(
Λ̂n − Λ0

)
(s)

)
=

√
n
(
Sn(θ0)(σ

−1(h))− Pθ0
[
S1(θ0)(σ

−1(h))
])

+ op(1) (6.30)
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uniformly in h as n→ ∞.

Setting hγ = 0p and hΛ be identically equal to 0. The equation (6.30) reduces to

√
nh′

β

(
β̂n − β0

)
=

√
n
(
Sn(θ0)(σ

−1(hβ,0p, 0))− Pθ0
[
S1(θ0)(σ

−1(hβ,0p, 0))
])

+ op(1),

By the central limit theorem,
√
nh′

β(β̂n − β0) is asymptotically normal with mean 0 and
variance

Pθ0 [S(σ
−1(hβ,0p, 0))]

2 = [(σ−1
β (hβ,0p, 0))]

′hβ = h′
βΣβhβ, (6.31)

for any hβ where the first equality follows from 6.22. Therefore, by Cramer-Wold device

(van der Vaart, 1998),
√
n(β̂n − β0) is asymptotically normal with variance Σβ. Further-

more, by Lemma 6.7.4, Σβ is efficient variance.

That
√
n(γ̂n − γ0) is asymptotically normal with mean 0 and variance Σγ is proved

similarly by letting hΛ = 0 and hβ = 0q in 6.30.

Finally, plugging h = (0q,0p, 1{u ≤ t}) we have

√
n(Λ̂n(t)− Λ0(t)) =

√
n
(
Sn(θ0)(σ

−1(0q,0p, 1{u ≤ t}))

− Pθ0
[
S1(θ0)(σ

−1(0q,0p, 1{u ≤ t}))
])

+ op(1).

Which has an asymptotic normal distribution with mean 0 and variance

υ2(t) = Pθ0 [S1(σ
−1(0q,0p, 1{u ≤ t}))]2

= I(θ0)(σ
−1(0q,0p, 1{u ≤ t}))

=
∫ t
0
σ−1
Λ (0q,0p, 1{u ≤ t}) dΛ0(u).

This completes the proof.

�

6.8 Variance estimation

The asymptotic variances of β̂n, γ̂n and Λ̂n involve inverting a linear operator σ in a func-
tional space. Because the inverse σ−1 has no closed form, estimation of the asymptotic
variances is not straightforward. One possible method for estimating the asymptotic va-
riances of the Euclidian regression parameter estimates β̂n and Λ̂n is to invert an observed
discrete information matrix, which suggested by Sy and Taylor (2000). Another possible
approach is to derive a variation of profile likelihood methods Nielsen et al. (1992) and
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Murphy et al. (1997), which would required numerical differentiation of a profile likelihood.
However, it is not clear how this methods can be used to given a consistent estimates for
the asymptotic variances. Below we give consistent estimates of the asymptotic variances
for both the Euclidian parameter estimates β̂n, γ̂n and the infinite-dimensional parameter
estimate Λ̂n. We follow the approach developed by Fang et al. (2005).

Define the (q × q), (q × p), (p× q) and (q × q) matrices Aβ
n, A

γ
n, B

β
n, and Bγn by

Aβ
n = Pn

[
Sβ(θ̂n)

⊗2
]
,

Bγn = Pn

[
Sγ(θ̂n)

⊗2
]
,

Aγ
n = Pn

[
Sβ(θ̂n)Sγ(θ̂n)

′
]
=
(
Bβn
)′
.

Define the (q × k) matrix

AΛ
n =

2

n
Sβ(θ̂n).

Similarly, define the (Q× sn) partitioned matrix

BΛ
n =

2

n
Sγ(θ̂n).

Let (k × q) and (k × p) matrices

Cβ
n = −Pn

[
2Sβ(θ̂n)

′φ(Y,O; θ̂n)e
β̂′

nZ(s)1{s ≤ Y }
]
,

Cγ
n = −Pn

[
2Sγ(θ̂n)

′φ(Y,O; θ̂n)e
β̂′

nZ(s)1{s ≤ Y }
]
,

Next, let the (k × k) matrix CΛ
n defined as follows by its (l,m)-th element:

CΛ
n(l,m) = Pn

[{
φ(Y,O; θ̂n)

}2

∆̂Λ(Ym)e
β̂′

nZ(Ym)1{Ym ≤ Y }
]

−1{l = m}Pn
[
φ(Y,O; θ̂n)e

β̂′

nZ(s)1{Ym ≤ Y }
]

where, ∆̂Λ(t) denotes the jump size of Λ̂ at time t; that is, ∆̂Λ(t) = Λ̂(t)− Λ̂(t−).

Define the partitioned matrix

Dn =




Aβ
n Aγ

n AΛ
n

Bβn Bγn BΛ
n

Cβ
n Cγ

n CΛ
n



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and the matrices

Σβ,n =
{
Aβ
n − Aγ

n(B
γ
n)

−1Bβn − (AΛ
n − Aγ

n(B
γ
n)

−1BΛ
n)

×(CΛ
n − Cγ

n(B
γ
n)

−1BΛ
n)

−1(Cβ
n − Cγ

n(B
γ
n)

−1Bβn)
}−1

,

Σγ,n =
{
Bγn − Bβn(A

β
n)

−1Aγ
n − (BΛ

n − Bβn(A
β
n)

−1AΛ
n)

×(CΛ
n − Cβ

n(A
β
n)

−1AΛ
n)

−1(Cγ
n − Cβ

n(A
β
n)

−1Aγ
n)
}−1

,

Ξn =
{
CΛ
n − Cβ

n(A
β
n)

−1AΛ
n − (Cγ

n − Cβ
n(A

β
n)

−1Aγ
n)

×(Bγn − Bβn(A
β
n)

−1Aγ
n)

−1(BΛ
n − Bβn(A

β
n)

−1AΛ
n)
}−1

.

Also, for any t ∈ (0, τ) define the k-dimensional vectors

Φt,n =
(
∆̂Λn(t1)1{t1 ≤ t} . . . ∆̂Λn(tk)1{tk ≤ t}

)′

and

Uj,t,n = (1{t1 ≤ t} . . . 1{tk ≤ t})′ ,

Then the following holds:

Theorem 6.8.1 Under conditions C1-C7, the variance estimators Σβ,n, Σγ,n, and υ
2
n(t) =

Φ′
t,nΞnUt,n converge in probability to Σβ, Σγ, and υ

2(t) (t ∈ (0, τ)) respectively as n→ ∞.

Proof of Theorem 6.8.1: The proof of Theorem 6.8.1 is based on the arguments
given in Parner (1998) and Fang et al. (2005).

First, we estimate σ by an empirical version σn = (σβ,n, σγ,n, σΛn
) obtained by replacing

θ0 and Pθ0 by θ̂n and Pn respectively in σβ, σγ, and σΛj
. Similar to the proof of Theorem

(5.8.1), we can show that σn converges in probability to σ uniformly over H, and that its
inverse σ−1

n = (σ−1
β,n, σ

−1
γ,n, σ

−1
Λn
) is such that σ−1

n (h) converges to σ−1(h) in probability.

Recall from 6.31 that, for any hβ ∈ Rq, the asymptotic variance of
√
nh′

β(β̂n − β0)

is [σ−1
β (hβ,0p, 0)]

′hβ. By the consistency of θ̂n, the dominated convergence theorem and
theorem 2.10.6 of van der Vaart and Wellner (1996), it can be shown that σ̂n(hβ,0p, 0) is
a consisent estimate of σ(hβ,0p, 0). Hence [σ̂−1

β,n(hβ,0p, 0)]
′hβ gives a consistent estimate

of the asymptotic variance of
√
nh′

β(β̂n − β0).

Denote by ĥn = (ĥβ,n, ĥγ,n, ĥΛ,n) = σ−1
n (hβ,0p, 0). Then σn(ĥn) = (hβ,0p, 0), which

we can write as




σβ,n(ĥn) = hβ
σγ,n(ĥn) = 0p
σΛn

(ĥn)(u) = 0, for all u ∈ [0, τ ].
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In particular, let s = t1, . . . , tk, in the above system. This yields a system of (q+p+k)
equations:

Dn




ĥβ,n
ĥγ,n
h̆Λ,n


 =




hβ
0p
0sn


 (6.32)

where h̆Λ,n = (ĥΛn
(t1) . . . ĥΛn

(tk))
′. It then follows from directly calculations that ĥβ,n =

Σnhβ, with Σn as given above and therefore, h′
βΣnhβ is a consistent estimator of the

asymptotic variance of
√
nh′

β(β̂n − β0) for every hβ. It follows that Σn is a consistent
estimator of Σ.

The consistency of Υn is proved along the sames lines.

Let t ∈ (0, τ). It follows from the dominated convergence theorem and the consistency

of σ−1
n that υ2n(t) =

∫ t
0
σ−1
Λ,n(0q,0p, 1{s ≤ t}) dΛ̂n(s) converges in probability to υ2(t). Let

hn = (hβ,n,hγ,n, hΛn
) = σ−1

n (0q,0p, 1{s ≤ t}). Then σn(hn) = (0q,0p, 1{s ≤ t}), which we
can write as





σβ,n(hn) = 0q
σγ,n(hn) = 0p
σΛn

(hn)(u) = 1{s ≤ t}, for all u ∈ [0, τ ]
(6.33)

In particular, letting s = t1, . . . , tk in (6.33) yields the system

Dn




hβ,n
hγ,n
hΛ,n


 =




0q
0p
Ut,n




where hΛ,n = (hΛ,n(t1) . . . hΛ,n(tk))
′ and Ut,n is as defined above. Solving the above system

of equation directly yields hΛ,n = ΞnUt,n. Therefore

υ2n(t) =

∫ t

0

σ−1
Λ,n(0q,0p, 1{s ≤ t}) dΛ̂n(s)

=
k∑

l=1

σ−1
Λ,n(0q,0p, 1{tl ≤ t})∆̂Λn(tl)1{tl ≤ t}

= Φ′
t,nhΛ,n

and therefore, Φ′
t,nΞnUt,n is a consistent estimator for υ2(t).

�



Chapter 7

Conclusions

Semiparametric regression models with applications to right censored survival data have
gained popularity and an abundant literature has been developed for this class of models.
These formulations present theoretical challenges for the presence of infinite dimensional
parameters. In this work we have studied two semiparametric models for the survival
analysis: a semiparametric mixture model for competing risks and a semiparametric cure
model based on transformation models. For the first model, we have adopted the structure
proposed by Escarela and Bowater (2008), while for the second model we have taken a
specification that generalizes the models established, this specification uses the transfor-
mation models and helped to show that the estimators are semiparametric efficient.

The main contribution of this work was to develop a general theory for the NPMLEs
in the two models. This theory can easily be used to derive asymptotic results for other
semiparametric models in survival analysis. For the two classes of models discussed in
this thesis we have identified a set of regularity conditions under which the estimators
are consistent, asymptotically normal and efficient. For each model we have presented a
representation of the estimator NPML of the cumulative hazard (equations 5.7 and 6.9,
respectively) which facilitated and simplified the mathematical derivations of the results
presented later. We have extended the techniques developed by Murphy (1994) along
the use of the Donsker classes and Glivenko-Cantellil property to demonstrate the consis-
tency of the NPMLEs (Theorem 5.6.1 and Theorem 6.6.1, respectively). The asymptotic
normality was demonstrated applying the methodology developed by Murphy (1995) for
frailty models, which recommended adopting an analytic function that allows to work with
one-dimensional models that pass through the estimator of the model, allowing to see to
the space of parameters as a space of functions; this new analytic function allows for an
easy way to define operator model information.

From these results it was possible to obtain asymptotic normality for each semipara-
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metric model (Theorem 5.7.1, Theorem 5.7.2 and Theorem 6.7.1) and applying the theory
established in Bickel et al. (1993) and Tsiatis (2006) we have proved that the efficiency
function belongs to the tangent space generated by the score function which shows that
the regression parameter estimates are efficient. Finally, the variances were obtained by
inverting a linear operator on a space function. The consistent variances for finite and in-
finite dimensional parameters for each model were obtained following the ideas developed
by Parner (1998), Dupuy and Mesbah (2004) and Fang et al. (2005) (Theorem 5.8.1 and
Theorem 6.8.1). As the inferences presented in this work have desirable characteristics,
which are equivalent to the original Cox model, biostatisticians and statisticians will find
in these formulations a convenient, concise and precise form to obtain inferences in models
for competing risks and cure models.

The analysis of survival continues presenting gaps. Some issues related to the semi-
parametric mixture model for competing risks and to semiparametric transformation cure
model remain open. Some of these issues can be addressed as follows:

• In the case of the semiparametric mixture model for competing risks, note that the
covariate Z in model 5.3 was assumed to be time independent, as it was in Ng and
McLachlan (2003) and Escarela and Bowater (2008). This assumption can be re-
laxed to accommodate time varying covariates, provided that appropriate regularity
conditions are established.

• It would be desirable to extend the conditional failure time model 5.3 to a more
flexible class of models, such as the linear transformation models (see Slud and
Vonta 2004, for example).

• In the case of the semiparametric transformation cure model is important to develop
an estimation process using the EM algorithm for calculate NPMLEs. This result can
be achieved using the ideas developed by Peng and Dear (2000) and Sy and Taylor
(2000) for the case of the semiparametric proportional hazards cure model. This
will allow simulation studies to demonstrate the efficiency of the model in practical
situations.

• It may also be interesting to accommodate more complex study designs in the sta-
tistical inference for semiparametric mixture models in competing risks data and the
semiparametric transformation cure mode; such designs include interval censoring
and clustered failure time data.

• The goodness-of-fit tests in these two classes of models should constitute an impor-
tant direction for future work.



Conclusions en Français

Les modèles de régression semi-paramétriques de durées de vie sont très populaires et une
littérature abondante s’est récemment développée pour en étendre le champ d’application.
Ces nouvelles formulations présentent des défis théoriques par la présence de paramètres
infini-dimensionnels. Dans ce travail nous avons étudié deux modèles semi-paramétriques
de l’analyse de survie: un modèle de mélange semi-paramétrique pour les risques con-
currents et un modèle semi-paramétrique avec fraction inmune basé sur les modèles de
transformation. Pour le premier modèle nous avons adopté la formulation proposée par
Escarela et Bowater (2008) et pour le deuxième modèle une formulation très générale a
été adoptée.

La principale contribution de ce travail est de développer une théorie générale pour les
estimateurs dits du maximum de vraisemblance non-paramétrique (ou NPMLE) dans ces
deux modèles. La théorie présentée peut être facilement utilisée pour obtenir des résultats
asymptotiques pour d’autres modèles semi-paramétriques de l’analyse de survie. Pour
les deux classes de modèles discutées dans ce travail, nous avons identifié un ensemble de
conditions de régularité sous lesquelles les estimateurs sont consistants, asymptotiquement
gaussiens et efficaces. Pour chaque modèle, une représentation intégrale de l’estimateur
NPML du paramètre fonctionnel a été obtenue. Cette représentation facilite et simpli-
fie les calculs mathématiques des résultats postérieurs. Nous avons utilisé et adapté les
techniques développées par Murphy (1994, 1995) pour le modèle de fragilité. Nous nous
sommes appuyés sur des outils de la théorie des processus empiriques pour obtenir nos
résultats. En particulier, nous avons montré, outre l’existence des estimateurs NPML, leur
consistance, leur normalité asymptotique, et leur efficacité au sens semi-paramétrique. Ces
derniers résultats font appel à la théorie de l’efficacité dans les modèles semi-paramétriques
(voir Bickel et al. (1993) et Tsiatis (2006)). Enfin, nous avons proposé des estimateurs
convergents pour les variances asymptotiques de nos estimateurs. L’inférence peut ensuite
déboucher sur des outils appliqués (tests d’hypothèses, calculs d’intervalles de confiance
par exemple), d’intérêt pour les biostatisticiens par exemple.

De nombreuses questions relatives à la modélisation semi-paramétrique des durées de
vie avec risques concurrents et fraction immune restent ouvertes. Nous en énumérons
quelques unes:
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• Dans le cas du modèle de mélange semi-paramétrique pour des risques concurrents,
notons que la covariable Z dans le modèle (5.4) a été considérée comme une variable
indépendante du temps, comme il a été fait par Ng et McLachlan (2003) et Escarela
et Bowater (2008). Toutefois, cette supposition peut être assouplie, c’est à dire nous
pouvons permettre que le modèle (5.4) inclue des variables dépendant du temps, ce
qui peut se faire au prix d’hypothèses de régularité supplémentaires.

Ce même modèle pourrait être étendu au cas où la distribution des temps d’évènements
est donnée par un modèle de transformation linéaire, incluant le modèle de Cox
adopté dans ce travail.

• Il serait aussi intéressant d’incorporer dans nos analyses des situations de censure
plus complexes: censures par intervalle par exemple, ou des design plus compliqués:
présence de clusters familiaux par exemple.

• Dans le cas du modèle semi-paramétrique de transformation avec fraction immune,
une piste importante de travail futur est fournie par l’étude des aspects algorith-
miques de l’estimation: mise en oeuvre d’un algorithme d’estimation, étude, par
simulation, des propriétés des estimateurs proposés pour des tailles d’échantillons
finies. Il serait souhaitable faire une extension du modèle qui permet incorporer
censures par intervalle.

• Il serait également intéressant de considérer les problèmes d’ajustement pour ces
modèles de plus en plus complexes.
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