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Introduction

General context

The new generation of airplanes and space shuttles need to fly further and further
away. Thus, the problem of fuel capacity has come to the attention of the scientific
world. In accordance, the tanks used to stock the fuel need to be enlarged. The
drawback is that larger quantities of fuel imply that a potentially larger quantity of
liquid can be subject to movements if necessary preventive measures are not taken.
Therefore, the question of controlling the liquid behavior has arisen and NASA started
from the early ’60s to concentrate on this issue. The first complete study was done
by Abramson [2|, based on many other studies dealing with this issue as [22], [34],
[92] just to cite few of many.

The core problem with large quantities of liquid in large tanks is that, a phe-
nomenon of sloshing occurs at low frequency. As the sloshing frequencies get lower,
an interference with the control frequencies generated by pilots may occur. This may
lead to a continuous excitation of the liquid which, in return, will affect the vehicle
stability. Besides, this can even lead to the non-controllability and destruction of the
vehicle [48]. Even if such extreme cases are not willing to occur, the liquid strange
behavior can still pose serious problems [46]. As an example, [3] and [129] give a
lists of airplanes that were confronted to this issue during the testing phase: Douglas
A4D, Lockhead P-80, Boeing KC-135, Cessna T-37, North American YF-100. More-
over, liquid unpredictable movement also affected the NEAR spacecraft which had
to interrupt his insertion burn due to large fuel reactions. Even though the fuel was
finally controlled, the mission was still delayed for almost a year [138].

In order to minimize the sloshing, various methods can be used. Firstly, the
containers with liquid can be divided, using baffles, in several smaller containers so
that the eigenfrequencies of the sloshing modes are increased [124], [130]. Secondly,
since the location of the containers also affects the damping of the structure [20],

better positioning can be found. Thirdly, the use of light elements to partially cover
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2 Introduction

the liquid free surface can also increase the natural sloshing frequencies |20]. Fourthly,
a control system can also be carefully chosen so that sloshing modes are attenuated

or at least not excited too much. We will concentrate our work on this last method.

In order to control the sloshing, one needs to compute for each mode the natural
frequency, the mode shape and then the total forces and moment that it generates.
Exact solutions though, are possible only for very few special cases, such as vertical
cylindrical tank or a rectangular tank [67]. Furthermore, in the case when the exact
solutions exist, the coupling between these solutions and the equations of fluid motion
is too computationally demanding even with super computers [48]. Based on these
remarks, some approximations of the liquid sloshing have to be found. As presented
in [18], a good approximation is obtained by considering each sloshing mode as a
system with a single degree of freedom and representing it either as a mass-pendulum
system or a spring-mass system. Even though both methods are equivalent 67|, the
mass-pendulum system is usually preferred due to some small advantages (his natural
frequency varies with the changes in axial acceleration as the sloshing frequency does
[48]). Finally, the oscillating fluid can be represented as a simple mechanical system,
in which the location and the magnitude of the model variables are determined to

give the same forces and moments as the liquid does.

Another characteristic of airplanes and space shuttles of the future is the increase
of their size. As they become larger, in order to reduce the overall weight, the wings
and tail definitely need to be lighter, thus more flexible. See [13] for the Airbus A-380
case or [137| for the NASA Active Aeroelastic Wing (AAW) concept. The study of
flexible structures has captured the attention of researchers for many years and is
well covered in the literature. As an example, one can check the works of [30] or [56]

where the theory is presented and experimental results are given.

It is well known that, especially in the case of large airplanes, a great part of
the fuel is concentrated in the wings. Thus, for some airplanes, the quantity of fuel
carried in the wing tanks becomes a large percentage of the total wing mass [92].

Thus, the wing will be considerably influenced by the liquid movements.

On the other hand, due to their characteristics, smart materials have been used
for many years now, especially in the field of civil engineering, for measuring and
attenuating the deformations of structures [29]. Therefore, the question of how it
can be useful to use them for controlling the flexible devices arose. Since the first

results were promising, nowadays, the piezoelectric patches are very much used to
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suppress the vibration of structures [11|, [23], [45], [65], [66], [144]. However, up to
our knowledge, only few works have addressed the coupling between liquid sloshing
and flexible structure |79, [132]. Moreover, even fewer consider this coupling in the
case of airplanes |108], [109].

The device we are working on follows these lines, the purpose being to control,
using piezoelectric patches, a flexible plate connected to a tank filled with liquid.
Furthermore, this device was constructed to have, in low frequency domain, the same

behavior as a real plane wing [110].

Thesis outline

The manuscript is constructed as follows.

The first chapter gives a detailed presentation of the experimental device we want
to model and control: a rectangular plate clamped at one of its ends, connected to a
cylindrical tank at its other end. After a geometric characterization of the structure,
the acquisition system is detailed and analyzed. The final part of the chapter con-
centrates on the presentation of actuator and sensor patches. Since they are made
from piezoelectric materials, a brief description of the piezoelectric phenomenon is
first given. Then, some details are given on the optimal placement of these patches.
Finally, the actuator speed and his influence on the total dynamic of the system is

analyzed.

Chapter 2 gathers the steps of the mathematical modeling of the device and de-
tails the computation of the structure model. Even though numerical methods are the
most employed for the model computation of complex structures like ours, we choose
to work with an analytical procedure. It will lead to a more tedious modeling phase,
but, taking into account many mechanical considerations will show its interest during
the controller computation phase. The main idea we follow for the computation of
the model is first to get two separate partial differential equation (PDE) models, one
for the plate and one for the tank with liquid, and second to put them together by
studying the mutual influence. Thus, the model is first written using PDEs and then
is approximated using the Ritz method for the plate and using mechanical analogue
systems for the sloshing. Finally, the finite dimensional system is written under the

shape of a state-space representation.



4 Introduction

In Chapter 3 the theoretical bases of the Chapter 4 are set. Since the controllers
we compute are based on the finite dimensional model, the issue of choosing the suit-
able amount of modes for the model approximation needs to be tackled. A method
based on the energetic contribution of each structure mode solves this issue. Then,
the theory to compute a pole placement controller coupled with a full state observer
is briefly reminded. Finally, the frame of robust H., control is briefly presented and
more attention is given to the particularities of the method implementation in the

case of infinite dimension systems.

The core problem of controlling the experimental device is treated in Chapter 4.
After testing the influence of actuator dynamics, the issue of choosing the right
amount of modes for the model approximation is considered. Based on technical
considerations of airplanes and on the energetic contribution of each mode, a choice
of the number of modes to be considered is made. Numerical simulations and experi-
mental tests are conducted afterward. First, a pole placement controller is computed
and tested. Second, a H,, controller, robust to external perturbations, is computed.
Using the HIFOO package, reduced order controllers can also be found. Moreover,
the simultaneous control problem with reduced order controllers is also considered.

Simulations and tests are shown and analyzed.

The manuscript ends with a last chapter dealing with the conclusions of this work

and with perspectives for further research.

Each chapter (except for the last chapter which presents the general conclusions
of the manuscript) ends with a short conclusion dealing with the contribution of the

chapter and its connection with the forthcoming one.



Chapter 1
Experimental device presentation

This chapter is devoted to the description of the experimental device we are working
on. It is located at I'Institut Supérieur de I’Aéronautique et de ’Espace - Ecole
Nationale Supérieure d’Ingénieurs de Constructions Aéronautiques (ISAE - ENSICA)
in Toulouse, France. The device is pictured in Figure 1.1 and it has been constructed
to have the same behavior, in low frequencies, as a real plane wing with fuel (see [110]

or [114]).

Figure 1.1: Experimental device ISAE-ENSICA



6 Chapter 1 — Experimental device presentation —
1.1 Characteristics of the experimental device

The experimental device is composed of an aluminum plate and a plexiglas tip-tank
filled with liquid. The plate is rectangular, clamped at one side and free on the other
three sides. At the free end of the plate, opposite to the clamped end, is connected the
cylindrical tank, as it can be seen on Figures 1.2 and 1.3. The tank is in a horizontal

position and it can be filled with water or ice up to an arbitrary level.

Figure 1.2: Experimental device, detailed presentation of main components

Figure 1.3: Deformation of the rectangular plate (1% mode)

The length of the plate is along the horizontal axis and its width is along the
vertical one (see Figure 1.3). At the clamped end, there are two actuators glued

on one side and two sensors on the opposite side. The plate is constructed from
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aluminium and has the characteristics depicted in Table 1.1 below. A view of the

plate without the cylindrical tank can be seen in Figure 1.4.

Plate length L 1.36 m
Plate width 1 0.16 m
Plate thickness h 0.005 m
Plate density p | 2970 kg m~3
Plate Young modulus | Y 75 GPa
Plate Poisson coefficient | v 0.33

Table 1.1: Plate characteristics

Figure 1.4: Rectangular plate without cylindrical tank

The tank is centered at 1.28 m from the plate clamped side and is symmetrically
spread along the horizontal axis. Due to the configuration of the whole system, the
tank undergoes a longitudinal movement when the plate has a flexion movement and
a pitch movement if the plate has a torsion movement.

The geometrical characteristics of the horizontal cylindrical tank are given in
Table 1.2. It can be removed or filled with ice or water. If the tank is filled with ice,
it can be easily modeled by a steady mass [123| equal to the empty tank mass plus
the mass of the ice.

The ratio between the liquid height and the total height of the tank gives the
tank fill level, which is a good indicator of the tank behavior. When the tank fill
level is close to 0 or close to 1 (the tank is almost empty or almost full), there is no

sloshing behavior, and the modeling process is similar to the case of frozen water.
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Tank exterior diameter 0.11 m

Tank interior diameter 0.105 m
Tank length 0.5 m
Tank density 1180 kg m~3

Tank Young modulus 4.5 GPa

Table 1.2: Characteristics of the cylindrical tank

The interesting cases are when the tank fill level is between these values. In this
case a sloshing phenomenon occurs, which is characterized by a periodic motion of
the liquid free surface. This motion creates periodic forces and moments of force. It
is in this situation that this work is placed, therefore, we will further consider only
the cases for which the sloshing motion occurs. A more complete description of this
phenomenon will be given later in Section 2.3.1 of Chapter 2.

The movement of the plate is generated by some piezoelectric actuators while in-
formation about plate deformation are gathered using piezoelectric sensors. Moreover,
the actuators can be used as a control input or as a perturbation input. More details
about the actuators/sensors geometry and behavior are given below in Section 1.3.

Let us first describe the data acquisition chain.

1.2 Data acquisition chain

ffffffffffffffffffffffffffffffffffffffffffffffffffff

FEquipped Structure

Piezoelectric Plate Piezoelectric
Actuator + Sensor
Tank
High Voltage DSpace Card Charge
Amplifier + ~——  Amplifier
Computer

Figure 1.5: Equipped experimental setup

In order to record the information transmitted to the actuators and given by the sen-
sors, some acquisition chain is used. A schematic representation of the experimental

device with the acquisition system is depicted in Figure 1.5. In the following lines we
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present the different components of the chain that make possible the implementation
of numerical controllers. They are listed below starting from the signal delivered by
the sensor until the voltage delivered to the actuator.

The data delivered by the piezoelectric sensor is first collected by a charge amplifier
before being delivered to the DSpace(©) card. The charge amplifiers, one for each
sensor, are of type 2635 and are made by Briiel & Kjaer [33|. Their picture along
with the connections to the experimental device are presented in Figure 1.6. The
principle of the charge amplifier is to set, using an operational amplifier, a null voltage
between the sensor electrodes so that the eventual parasite capacitance vanishes. In
this way, all the charges on the sensor electrodes are send towards a capacitance
where a voltage, corresponding to the charge difference, is measured. For further

details about the electric scheme of the device one can read reference [81].

Figure 1.6: Detail view of charge amplifier

The signal delivered by the charge amplifier is sent to a computer using a DSpace
card. Using the same card, the signal delivered by the computer is send to the high
voltage amplifier. The control laws are implemented on the computer and executed
in real time with a selected sampling time of 0.004s.

In order to manipulate the different signals, delivered to the actuators and received

from the sensors, the software xPC Target from Matlab(©) is implemented on the
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computer. It allows the real time execution of a Simulink model on the computer via

an optimized real-time kernel.

The xPC Target creates a real-time testing environment for Simulink models by
connecting a host computer, a target computer and the experimental device under
test. Visual details of the acquisition chain are presented in Figure 1.7 where the
master (computer on the left side) and slave (computer on the right side) computers,
along with the DSpace(©) card can be seen. The master computer, on which are
running xPC Target, Simulink and an C-compiler, is connected to the slave computer
via a single TCP/IP communications link. The slave computer is connected to the
experimental setup. Based on the Simulink model, a code is generated by Real-
Time Workshop and downloaded to the target computer via the communications
link. During the acquisition process, the results are stored on the slave computer and

then can be uploaded to the master using Matlab(c) and xPC Target software.

Figure 1.7: Detail view of acquisition system and xPC Target

Finally, the voltage delivered to the plate, by the DSpace(©) card, is amplified by
a high voltage amplifier. It has an amplifying gain of 13 and can deliver a maximum
voltage of +£100V. In order to be functional, it has to be powered at +15V and
+100V. One voltage amplifier connected to a source delivering 15V can be seen in
Figure 1.8. Although the device is home-made at ISAE-ENSICA, his characteristics
are those of model PB58 from APEX Microtechnology Corporation [10].
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Figure 1.8: Detail view of high voltage amplifier

1.3 Actuators and sensors

As presented earlier, there are two actuators and two sensors which are glued on the
plate towards the clamped side (see Figure 1.9 for the actuators and Figure 1.10 for
the sensors). The actuators are glued on one side of the plate while the sensors are
glued on the other side, thus there are two pairs of collocated actuators and sensors.
Since they are all made from piezoelectric materials some detailed information is given
in this section concerning their behavior.

The piezoelectric ceramics belong to the larger group of ferroelectric materials,
that is to say, materials which are spontaneously polarized (without an electric field
being applied).

The piezoelectric actuators are made from PZT (Lead zirconate titanate), model
PIC 151. The material model used (PIC 151 is considered a "soft" PZT) it is the
standard material used for actuators. In order to create a moment, both actuators
lengthen when a voltage is applied to their electrodes. The two sensors (made from
PVDF - Polyvinylidene fluoride, a relatively new class of piezoelectric materials used
as sensor devices) are located on the opposite side of the plate with respect to the
actuators. They deliver a voltage proportional to their deformation. The character-
istics of the collocated sensors and actuators are given in Table 1.3. Both actuators

and sensors are commercialized by PI Ceramic, the piezo ceramic division of Physik
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Figure 1.9: Actuators connected to the plate

Figure 1.10: Sensors connected to the plate



1.3 — Actuators and sensors — 13

Instrumente (PI) company [1].

Actuator length/width/thickness 0.14/0.075/5¢™* m
Sensor length /width/thickness 0.015/0.025/5¢~* m
Actuator/Sensor density 7800 kg m—3
Actuator/Sensor Young modulus 67 GPa
Actuator piezoelectric coefficient (dz;) | —210e 2 m V!
Sensor piezoelectric coefficient (es;) —9.6 C (m)~
Actuator/Sensor Poisson coefficient 0.3

Table 1.3: Characteristics of the piezoelectric patches

The piezoelectric materials are generally used to attenuate the vibrations and
measure the deformation of structures (see [23|, [29], [53] among other references for
some examples). In the case of flexible structures, many studies also investigate the
use of piezoelectric patches to effectively suppress the vibrations (see for instance
[11], [45], [66], [140], [144]). Indeed, piezoelectric patches offer a fast response and
have a large bandwidth, they are light and low cost, and have good sensing and
actuating capabilities. Moreover, they are self-sensing actuators, thus they can be
simultaneously used as actuators and sensors. However, only a few results are already
available in the literature for fluid-structure systems (see [108] or [109]) for the same
structure as ours. For other structures, one can check reference |79] which gives a
recent theoretical result and [132] which validates the active control method by means
of experimental results.

Despite these advantages, some precautions need to be taken. First of all, the
voltage limitations of the materials should be considered. In order to avoid the depo-
larization of the material, the voltage applied in the opposite direction of the material
polarization needs to be carefully controlled (maximum allowance for PZT material is
around 50()me_1). Second, care should also be taken when the material is exposed
to very high temperatures. The limit temperature for a piezoelectric material is de-
fined as the Curie temperature and, again in the case of a PZT material, is around 250
degrees Celsius (exceeding this limit the material is not being ferroelectric anymore
thus loosing all piezoelectric properties). In our case though these considerations are
respected since the ambient temperature around the experimental setup does not ex-
ceed 30 degrees Celsius, while the voltage delivered to the piezoelectric actuators is
first limited by the voltage amplifier (see Section 1.2).

The structures that integrate piezoelectric actuators and sensors on a flexible
system are often known as active structures or smart structures, while the control on

these structures is known as active control (in contrast to the passive control where
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additional materials are glued to increase the structural damping of the structure
and reduce the vibrations [71], [136]). The control is active due to the fact that
the equipped device is self-sensing and self-compensating, due to the piezoelectric

patches.

1.3.1 Presentation of the piezoelectric phenomenon

Both actuators and sensors use the piezoelectric effect. Let us shortly describe it.

The existence of the effect was discovered in the 1880 by the Curie brothers on
quartz crystals. When a stress is applied, these crystals have the property to de-
velop a proportional electric moment. Our purpose here is not to give a complete
characterization of the phenomenon but just some details that will help the reader
to better understand the behavior of the actuators/sensors. The modeling will be
given in Section 2.2.3.2 of Chapter 2. For a detailed description of the piezoelectric
phenomenon [100], among others, gives a complete characterization.

The piezoelectric effect is twofold: the direct piezoelectric effect (also known in
the literature as the generator effect) presented above and the converse piezoelectric
effect. The latter is defined as the shape change of a piezoelectric crystal when an
electric field is applied. Moreover, it can be seen as a thermodynamic consequence of
the direct effect.

As it can be seen from the above statements, piezoelectric materials experience
both electric and mechanical phenomena. Therefore, the complete piezoelectric equa-

tion is defined as a combination between:

e a mechanical phenomenon, described, for an elastic material experiencing only
small perturbations, by the tensor expression of the classical Hook law con-
necting the strain € to the stress ¢ by the means of the compliance tensor s
[100]:

€ = so; (1.1)

e an electric phenomenon, described by the electric behavior of the material con-
necting the electric displacement D to the electric field intensity E and the
electric permittivity x [100]:

D = KE. (1.2)
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Moreover, in the case of the polarization of a crystal produced by an electric field,
(a piezoelectric crystal for instance), the last equation describing the electric behavior

becomes:

where P is the polarization charge per unit area taken perpendicular to the direction

1is the vacuum

of polarization (or short polarization) and ry = 8.854 x 107"*Fm™~
permittivity .

At the same time, each type of piezoelectric effect (direct or converse) is described
by his own specific relations.

e On the one hand, the direct piezoelectric effect is described by a relation linking

up the polarization charge P of the stress o applied to the crystal sides:
P=do (1.4)

where d is a constant value called piezoelectric modulus [100, Chapter 7];

e On the other hand, the converse piezoelectric effect is described also by a relation
between the strain €, responsible for the change of shape of the material, and the
intensity of the electric field £ [100, Chapter 7|:

e=dE (1.5)

where the coefficient d is the same as in (1.4).
By combining the relations (1.1) and (1.3) with (1.4) and (1.5) we obtain the

complete piezoelectric equations |75, Chapter 13]:

€=s0+dE, (1.6)
D =do + koF.

These equations will be later used in Sections 2.2.3.2 and 2.2.3.3 of Chapter 2 to

compute the analytical model of actuators and sensors.

1.3.2 Optimal placement of actuators and sensors

The optimal placement of actuators and sensors is a key problem in the control of
flexible structures. Due to the nature of flexible structures, spatially distributed

systems, the actuators and sensors can be placed in many locations. Therefore,
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the study of the optimal placement is natural when some performance criteria need
to be obtained. There are many references which suggest different methods for a
better positioning of the actuators as [44], [52], [63], [66] or [86] by analyzing the
controllability and observability matrices for a fixed amount of vibration modes or as
[8] by studying the energy space of the structure. Even the thickness of the actuator
can be calculated in order to have optimum values for the bending moment of the
actuator. For this last issue one can check the work of [81] where the author computes
the suitable thickness of a piezoelectric patch in order to have maximum values of the
bending moment for a specific plate structure.

In the experimental device of this thesis, the position of actuators and sensors
was already fixed and could not be changed. Thus, we do not consider the optimal
position problem. We give nevertheless, in the following lines, some details about this

interesting issue. In the literature, two main types of approaches can be found:

e The closed-loop approach type consists first at choosing the control law to imple-
ment on the structure and then to determine, for this specific law, the optimal
placement of actuators and sensors. In this case, the location of actuators and
sensors is treated as some extra design parameters in the control law compu-
tation. For more details one can read reference [141|. The greatest advantage
of this method is the optimization for a specific control law but the greatest
drawback of the method is also the fact that the position of sensor/actuator

patches depends on this control law;

e The open-loop approach type consists in treating this problem independently
from the controlled design problem. This case has the main advantage that
several control laws can be tested for the same actuator/sensor positioning. For
more details one can consider [61], [66], [69], [81], [95] or [96] among many

others. In the following lines, we give some details concerning this method.

There are several open-loop approaches in the literature concerning the optimal
placement of actuators and sensors. For example one can check [95] where the ideas of
controllability and observability of actuators/sensors are employed. Another approach
can be read in [66], where the actuators/sensors are collocated and placed at the
location where the highest position sensitivity of each mode is experienced.

We will now explain briefly the method detailed in |95] since it is very easy to
implement.

This method is based on the notions of controllability for actuator placement and

of observability for sensor placement. These notions, although they are well known,
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will also be briefly detailed, for the general case of a linear system, in Section 3.2
of Chapter 3. This approach seems natural if we think that, usually, actuators need
to be placed where they have the highest authority to control the system while the
sensors should be placed where they have the highest strength to observe the system.

The method is computed separately for the piezoelectric actuators and sensors.

On the one hand, for the actuators, a difference is made between the modal con-
trollability and the spatial controllability. The modal controllability measures the
controller authority over each mode of the flexible structure while the spatial control-
lability measures the actuator authority only over the preselected modes (usually the
first vibration modes since the low frequency modes tend to contribute more than the
high frequency modes to the structure vibrations). This difference is natural since we
want the actuator to have a high authority over the selected modes but, at the same
time, to have a low authority over the non selected ones. This is especially true in
order to prevent the spillover effect (excitation of high frequency modes). Therefore,
in the case of the actuators, the optimization problem proposed by [95] is to maxi-
mize the spatial controllability measure while keeping some actuator control over all

modes, thus keeping some level of modal controllability.

On the other hand, for the sensors, the optimization problem in finding their lo-
cation is formulated in a similar way in reference [95] by differentiating the modal
observability (observability of the sensor over all the modes) from the spatial ob-
servability (observability of the sensor over some selected modes). Finally the opti-
mization problem is formulated in order to maximize the spatial observability while

maintaining a minimum level of modal observability.

After finding the optimal position of actuator location and of sensor location
separately, the inherent question is wether or not this method can be implemented
for the position computation of both piezoelectric actuators and sensors. It is proven
in [95] that it is easier to find the optimal placement of a collocated actuator/sensor
pair by studying only the controllability or the observability and not both (which can

be time consuming).

For our experimental setup, as said earlier, the position of the actuators and sen-
sors was fixed in advance. Thus, we did not study the problem of optimal placement

and use the device as it is.
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1.3.3 Dynamic of piezoelectric patches

Another thing that should be considered is the inherent dynamics of actuators and
sensors. This is an important issue during the modeling of the piezoelectric patches

since their dynamics may modify the total dynamic of the modeled system.

As detailed earlier in Section 1.2, some high voltage amplifiers are used before the
piezoelectric actuators for the control of the flexible structure. A first order dynamical

model of this type of actuator, similar to the one in [131], is computed below:
T4+ v = ku (1.7)

where u is the input voltage and v is the output delivered voltage. Moreover, the
constants have the values 7 = 4.85¢"s and k = 1, determined from the technical
specifications in order to fix the cut-off frequency of the model at the same level as
the amplifier bandwidth. Based on these issues, the minimal period of the output

voltage delivered by the amplifier is 3.25¢5s.

At the same time, we need to compute the maximal response speed for the piezo-
electric actuator. We remark that, if the speed of the actuator is larger than the speed
of the voltage amplifier, then we do not need to take into consideration the actuator
dynamics. In this case, the speed of the piezoelectric actuator response saturates

after the voltage amplifier does.

According to the technical specifications from PI Ceramic catalog [1|, the PZT
reaches his nominal displacement in 1/3 of its resonant period, provided that the
necessary current is delivered. Besides this, the resonant period is defined as Ty = N%,
where L is the length of the piezoelectric actuator and /N; is the frequency constant
for the transverse oscillation of a slim rod polarized in the longitudinal direction. In
our case, the length in taken from Table 1.3 while the frequency constant for the
PIC 151 material is N; = 1500. Therefore, the resonant period of the piezoelectric

actuator is 3.11e °s.

As it can be seen, the maximal speed for the actuator is larger than the maximal
speed for the voltage amplifier. Thus, for a given excitation, the actuator response
time is much smaller than the one of the voltage amplifier. Therefore, his dynamic

can be neglected since is not interfering in the response time of the total structure.

Tests regarding this issue are done in Section 4.1 of Chapter 4.
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1.4 Conclusion of the chapter

In this chapter we gave a general presentation of the experimental device we are
working on. The acquisition chain that will help us implement the controller for
vibration attenuation is also shown. Moreover, the characteristics of the plate/tank
system along with those of the piezoelectric actuators and sensors are presented.

These characteristics will allow us to compute the analytical model of the device in

Chapter 2.






Chapter 2

Mathematical modeling of the system

2.1 Introduction

In this chapter we detail the different steps to build the mathematical model of the
fluid /structure system depicted earlier. We can find in the literature two different

approaches concerning the modeling of such devices:

e A numerical approach based on finite element method (FEM). The method
approximates the distributed parameter system with an unlimited number of
degrees of freedom and modes by a finite dimensional discrete system. To
do this, the whole structure body is divided in several subdivisions or finite
elements. Finally, the finite element description of the structure is a sum of
beam and lumped mass elements. Further on, the mass and stiffness matrices
are found from the expression of the kinetic and potential energies for the system
with finite degrees of freedom. As a result the finite element method provides
a quite good approximation for the frequencies and mode shapes. For further
details about the description of the method one can check for example [83]
or [147]. The cases where FEM is employed during the modeling phase are
numerous, as an example one can check [86], [133] for a flexible plate system or

[108], [109] for a fluid plate system, among many others;

e An analytical approach which allows to find an analytical solution, of infinite
dimension, for the electromechanical infinite dimension problem. For this case
also, the references in the literature are numerous. Among many others, for a

flexible structure system we can cite [63], [81], [107].

Usually in the literature, for " simpler " academical structures like beams or even

plates with a geometry not very complicate, the preferred approach is the analytical

21
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one which allows the computation of a simple model. While thinking of more complex
structures, like the one in our case, the approach mostly employed in the literature is
using the numerical modeling based on FEM method. Even though this method offers
the possibility to model items with a complicated shape, their structure geometry can
not change in time. To the best of our knowledge, only structures that are in a solid
form (oil pipelines, plates, beams, rings of different shapes and sizes, full tanks) can be
modeled, but we can not model the liquid sloshing. Nevertheless, recent advances (~
year 2006-2007) in the ANSYS(© software (finite element method simulator software),
show that a recent toolbox on computational fluid dynamics called FLUENT() might
be able to solve this type of issue.

In our case though, this method is difficult to use. Using finite element method,
the liquid, can only be modeled as a "frozen liquid" which acts as a steady mass
with no sloshing phenomenon. Moreover, in our case, the sloshing behavior is of
great importance since it significantly changes the system dynamics especially in low
frequencies. For a study that considers the coupling between a flexible structure and
a fluid one can check [98] or again [25]. In the latter, the effect of the fluid is taken
into account in the FEM modeling phase by means of an added mass formulation
detailed in 97].

For another example one can check the work [114] for the same structure as ours.
In this work the author uses the FEM to compute the numerical model of the structure
without liquid (therefore without any sloshing behavior). Even though the experi-
ences in [114| are done for three cases: empty tank, full tank and half full tank, the
controllers are computed by always considering the tank to be empty.

Therefore, we choose to go on with the analytical approach even though we think
that it leads to a more complex modeling phase.

In this chapter we are going to detail the different steps that will lead us to a
complete model of the disposal. Since the plate and the tank can be viewed as two
separate entities coupled together, the main idea we have in mind is to compute two
separate models and then to unite them. Therefore, we will first compute one model
for the plate and another model for the tank with liquid. Finally, in order to have the
complete structure model we study the interactions between the two models, that is
to say the way the behavior of one model affects the behavior of the other.

More precisely we will first write a model for the flexible plate and another for the
cylindrical tank with liquid using partial differential equations. The coupling between
the two infinite dimensional models is obtained by studying the influence of the plate

movement on liquid sloshing and vice-versa. We then make an approximation of the
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infinite dimensional model by taking into account only a finite number of modes for
the plate and liquid. Based on this, the coupling of the two finite dimensional models

is also expressed in finite dimension.

2.2 Plate model

In this section we detail the construction of the model for the rectangular plate with
piezoelectric actuators and sensors. The partial derivative equation (PDE) plate
model is well known in the literature. For a more detailed presentation one can see
for example [30] or [56].

We start from the beam equation (which is a 1-dimensional plate), for the sake
of simplicity during the modeling phase. We then study the plate and compute an
infinite dimensional model using partial derivative equations (we will see in the next
sections that the plate model is constructed on the basis of the beam model). The
objective is to give a classical state-space approximation (finite dimension) using the
Ritz method to approximate the PDE model. We will get:

{Xp(t) = AX,(t) + Bpu(t) (2.1)

y(t) = GX(1)

where X, is the state-space vector of the plate and A,, B,, C, are respectively the
dynamic, control and output matrices. u(t) will be the control (input) variable (the
voltage applied to the piezoelectric actuator) and y(t) the output variable (the voltage

delivered by the piezoelectric sensor).

2.2.1 Beam model

The beam represents the transposition of a plate in a 1-dimensional space. Since we
are dealing with a beam, which is described by only one dimension as it can be seen
in Figure 2.1, we deduce that only the flexion movement is possible.

The beam PDE modeling is well known in the literature, one can check for example
[30] where models for different types of beams are presented.

We consider an homogeneous beam, clamped at one end and free at the other,
of constant section, which has the length L and the mass m. By definition, the
dimensions of the beam cross section are much smaller (in theory are null dimensions)
than the length of the beam.

The coordinate system Oxyz is selected so that the axes Ox, Oy correspond to
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beam
o} /S )
wly.
“y

Figure 2.1: Beam with a flexion movement

the main inertia axes. We start the study of transverse beam vibrations supposing
that the beam has only flexing movements.

We make the classical cinematic hypotheses as in |56]:
e the beam is uniform and composed of a homogeneous, isotropic elastic material;

e the beam is reduced to its neutral fiber, which by definition will be the part of
the beam that does not feel any constraint, thus the axis where the elements

are neither lengthened or shortened;

e Bernoulli hypothesis: plane sections remain plane, thus only deformations nor-
mal to the undeformed beam axis are considered. This is equivalent to the fact

that shear deformations are neglected;

e the beam deformation is only along the z axis. This deformation w is therefore
written as a function of the coordinate y defined along the beam length and of
time ¢:

w = w(y,t);

e the hypothesis of geometrical linearity is verified. This is equivalent to the fact
that the deformations have a infinitely small amplitude. The normal longitudi-

nal strain tensor ¢, is therefore a linear function of displacement and rotation:

Under these hypotheses and assuming that a flexion moment m, is acting on the
beam, the calculus of potential and kinetic energies lead to the following movement

equation by applying the Hamilton principle. Thus, we get the following PDE:
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Pw  YIw
>+t ——=7=0 (2.2)
ot? my Oyt

where m; = 7 is the linear density of the beam, I the area moment of inertia (second

moment of inertia) of the beam cross section about the beam neutral axis and Y the
Young modulus of the beam material. Moreover, for a beam of rectangular section of
1h3

height h and width [, we write the area inertial momentum as (see [30]) I = 55 and

the linear density as m; = plh = pS, where p is the density of the beam material.

Concerning the initial conditions, they are defined as:

w(y,0) = wo(y) and g—j@,m — wn(y) (2.3)

where wy and w; stand for the initial deformation and velocity respectively.

Clamped-free beam
As one can read in reference |30, Chapter 8|, the boundary conditions of the beam
are written for the clamped side by constraining the transverse deformation and his

derivative to be null:

ow
0,t) = —(0,) =0 2.4
w(0.1) = 50,1 (24)
and for the free side by constraining that the bending moment and Kelvin-Kirchoff
edge reaction (which depends on the transverse shearing force and the derivative of
the bending moment) are also equal to zero:
0w Pw

(Lt = G5l =0, (2.5)

Of course, other boundary conditions are possible (see [30, Chapter 8|) and some

of them will be used latter in this work (for the "free-free" beam for instance).

First, the beam vibration response is obtained by solving the homogeneous equa-
tion (2.2) with the initial conditions (2.3) and the boundary conditions (2.4) and
(2.5). In our case, homogeneous beam with constant section, it is possible to find an

analytical approximate solution for w under the shape of a series [36], [113] using the
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variable separation method or Fourier decomposition method |30, Chapter §|:

w(y,t) = Z Yi(y)ai(t). (2.6)

To ensure the convergence of the series, we choose the functions {Y;}; as a set
forming a Hilbert orthogonal basis (L?) of the eigenfunctions of the space differential
operator 88—; = A2, The existence of this basis is due to the fact that A? is a compact
and symmetric operator [32|. Therefore, the functions {Y;}; have to be a solution of

the eigenvalues problem:

d'Y;(y)

—— = AYi(y), L 2.
i ), y € [0,T] 27)
dY;
O U]
d*Y; d’Y;
I) — L) =
G = GEwm=0

which has an infinity of solutions ()\;,Y;) detailed below.

Since {Y;}; is an orthogonal basis, one can use the scalar product to compute the

beam displacement w:

wly.t) = 3 < wl ), Yil) > Yily) = > a(¥i)

where < Y;, Yy >= 0;, the Kronecker delta symbol, equal to 1 when ¢« = k and 0

otherwise.

Combining the previous equation with (2.2), we can rewrite the homogeneous

equation as:
&Y pS oy
E 4% 5 T o7
dy* Y1 — dt?

Y; =0.

i=1

Using (2.7) we get:

o0

pS ..
E ( AY. 22 6v) =0
(QZ)\Z i+ Y[qz z) 0

i=1

The scalar product with Yy, for k£ € N* gives:

- S
> (qm <Y, Y > +%q'i <Y, Y >) =0
i=1
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and using the orthogonality of the hilbertian basis, we get:

pS ..
iNi + =G = 0.
q +qu

Therefore, the cinematic parameters ¢; verify the differential equations, for i € N*:

YN
1i(t) + ——=—aqi(t) = 0, 2.
Gi(t) 5 ¢i(t) =0 (2.8)
qz(o) =< wo(y)a}/l >L27
Gi(0) =< wi(y),Yi > .

and the modal displacements Y; verify the differential equations (2.7).

Therefore, the solutions of the ordinary differential equation (2.8) are given by:
qi(t) = E; cosw;t + F;sinw;t

where

(2.9)

and FE;, F; are computed from the boundary conditions.
We then find the modal displacements Y; by solving the differential equation (2.7).

From (2.9), we infer that there are only two possible cases for \; for the "clamped-
free" beam: A\; = 0 and A\; > 0. The third case \; < 0 is not valid, since it will imply
that, as the other plate coefficients are positive, there are vibration modes with a

complex natural angular frequency.

Let us first consider the simpler case when \; = 0. From (2.7) we have

d*y;
dy?

(y) =0

which has a possible solution of the following shape: Y;(y) = A;y® + By + Cyy + D;.
Solving this equation using the boundary conditions we find the coefficients A; =
B; = C; = D; =0, thus Y;(y) = 0. This solution is again not valid since, as detailed
earlier, the Y;(y) are forming an orthogonal basis thus they can’t be equal to zero.
Let us now consider the case A; > 0. Again we need to solve (2.7) with the
boundary conditions. There are several approaches in the literature for writing the

solutions of this equation. For example one can check |[81] where the author writes the



28 Chapter 2 — Mathematical modeling of the system —

total expression of the modal displacement as a sum of sine, cosine, hyperbolic sine
and hyperbolic cosine functions, each function multiplied by an unknown constant
which needs to be determined.

Another more elegant and faster approach is the one proposed by [56]. We write

the solution of the equation as:

Yi(y) = Aisi(Suy) + Bici (Suy) + Cisa(iy) + Dica(Siy) (2.10)
where
NV _PS e
() =X\ = VI (wi) (2.11)

was used to simplify the writing. The functions sy, ¢1, s9, co are independent and

defined as:
= sin(Q;y) + sinh(Qy),

Qiy)

Quy) = cos(y) + cosh(Qy),
Q) = —sin(Qyy) + sinh(Qy),
c2(y) = — cos(y) + cosh(Q;y).

As usual, the constants from the displacement equation (2.10) are found by writing
the boundary conditions of the beam. As it can be seen, the functions: s, ¢, s and
co can be easily obtained one from another by a simple derivative operation. Thus,
the boundary conditions, that use the derivative of the coordinate up to the third
order, are very easy to express. After checking the boundary conditions we notice that
we have only four equations but five unknown elements: A;, B;, C;,D; and \; = €);.

A fifth equation is therefore found by imposing a normalization equation, which

involves the length L of the beam and the modal deformation, for all : € N*:

1

7| v =1 (212)

We solve (2.7) imposing the shape (2.10) of the solution, with the normalization

condition (2.12). We obtain the following solutions for our "clamped-free" beam:
Yi(y) = cos(uy) — cosh(Qiy) + ¢ (sinh(Qyy) — sin(Qiy)) (2.13)

where ¢/ is defined by:

; cos(§L) 4 cosh(€2;L)
A sin(€2; L) + sinh(2;L) (2.14)
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and where the frequency variable €, is the i** positive solution of the implicit equation:
1+ cos(§2;L) cosh(§%;L) = 0. (2.15)

In order to obtain the angular frequency w; of the beam modes we first solve the
equation (2.15) using a graphical method (a simple plot is drawn and the solutions

are checked) and second we used the value of ; in (2.11) to compute it.

Free-free beam

Let us now consider a "free-free" beam of length [ along the 2z axis. The methodology
in finding the modal displacements and frequencies is the same. The only changes
are of course the boundary conditions (2.4) and (2.5), which now become (see |30,
Chapter 8|):

0w Pw
2 (0.)=55(0.t) =0, (2.16)
0w Pw

ﬁ(“) = ﬁ(lvt) =0.

We consider that the hypothesis given in the case of the "clamped-free" beam are
respected. Therefore, we can write the displacement w of the beam using again the

separation of variable method |30, Chapter §|:

o0

wgﬁzijaw%@. (2.17)

Following the same approach as earlier, we express the deformation of the "free-

free" beam as a solution of the following equations:

4

7

ddﬁdz&auxzemu (2.18)
022 Pz,
72 0= 70 =0

AN

022 ()= 023 (0) =0.

Different solutions are found based on the values of A;. Since for the "free-free"
beam, the natural frequency of the modes is again given by (2.9) we infer that, the
solution with A\; < 0 is physically impossible. Therefore, A\; > 0.

Let us fist solve the equation for the case when \; > 0. In this case we use the
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same approach as earlier, and solve the general equation of the beam (2.18), imposing

the shape
ZJ(Z) = Ajsl(sz) + BjCl(FjZ) + CjSQ(FjZ) + DjCQ(FjZ)

of the solution, using the normalization condition:

and the boundary conditions. This allows us to find the expression of modal displace-

ments:
Z;(z) = cos(I'jz) 4+ cosh(I';z) — ¢;(sinh(I';2) + sin(I';2)) (2.20)
where gjl- is defined by:

;  —cos(I';l) + cosh(I';l)

L= 2.21
%~ sin(T,1) + sinh(L,1) (2.21)

and the frequencies are computed from:
1 —cos(I';l) cosh(I';1) = 0 (2.22)

where the angular frequency 7; of the 7™ mode of the "free-free" beam is such that:

(I)' = ;—i(%‘)z =\ (2.23)

Let us now consider the case when A; = 0, therefore I'; = 0. In this case we
obtain the so-called rigid modes. They are characterized by the fact that the "free-
free" beam can vibrate (with a frequency equal to zero) without bending itself, like
a rigid body.

In this case we have

d*Z;
A (2) =0

which has a possible solution Z;(z) = A;z* + B;2? + Cjz + D;. Using the boundary
conditions we obtain Z;(z) = C;z + D; which still has variables to be found.

We think that, a priori, for this type of beam the rigid modes can represent a
solution. Therefore, we first impose that the deformation at both ends of the beam are

identical: Z;(0) = Z;(l). Using the normalization condition (2.19), the corresponding
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beam deformation for this translation rigid mode is:
Zi(z) =1, Vz € [0,1]. (2.24)

On the other hand, we impose that the deformation at both beam ends are identical
but in opposite directions: Z;(0) = —Z;(l) (rotation of the beam). In this case
the mode is called rotation rigid mode and is characterized by a deformation (after

normalization):

Z;(z) = —\/EG — %), vz € [0,1]. (2.25)

Until here we voluntarily forgot the inherent structural damping and we consid-
ered only the case of conservative structures. The presence of a damping in a beam
equation makes it more difficult to solve since the damping creates a system in which
the modes are not decoupled anymore (see [40]).

Nevertheless, when computing the exact value of the frequencies and mode shapes
for a real structure it is compulsory to take the damping into consideration. One
solution to this problem is given by the Basile hypothesis: even with a damping
coefficient, the movement equations can remain decoupled if the structural damping
15 sufficiently small and the modes frequencies of the structure are spaced enough.
This hypothesis allows us to describe the entire structure, a beam in our case, by a
complete set of equations with no coupling, each equation describing the behavior of
a single mode (see [86]).

In the case of the "clamped-free" beam for example, this is written as (see |56,
Chapter 3|):

Gi + 2Ciwig; + wiq; = 0 (2.26)

where i € N* stands for the mode number and (; being the damping of the i*" mode
of the "clamped-free" beam. In the case of the "free-free" beam the expression is
identical with respect to the mode frequency and damping.

Until here, we computed the PDE model of two beams: a "clamped-free" beam
which is along the y-axis and a "free-free" beam which is along the z-axis. As it will

be seen in the next section, the beam PDE model and deformations are needed for
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computing the rectangular plate model.

2.2.2 Plate infinite dimensional model

In this part we are going to build the model of the rectangular plate with piezoelectric

actuators and sensors glued on each side. The plate is clamped at one end and free
at the three others. It has a length L, a width [ and a thickness h.

z

Figure 2.2: Plate bending along z axis

We consider that the plate movement is only along the z-axis (see Figure 2.2)

and, as for the beam, we suppose that the following kinematic hypothesis (see 30| or
[81]) are verified:

the material of the plate is considered homogeneous, elastic and isotropic;
the plate has a constant height;
the plate is considered very thin;

the plate sections, which in steady motion are perpendicular to the neutral fiber
of the plate, remain perpendicular to the neutral fiber also during movement
(this means that the rotary inertia and shear movement along the = axis are
considered zero; furthermore, we define the neutral fiber as the imaginary line

that stays undeformed during movement);

we consider only small deformations of the plate.

Further on, we compute the expression of the potential and kinetic energies in

order to find the mass and stiffness matrices. A more detailed expression of these

matrices is given in [56]. Using this expressions we can infer the partial derivative

equation of the plate:

O*w ow 9

2 2
Pm,  0°m,

0y? + 072

(2.27)
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where mg is the mass per unit plate area, ¥ and v are the Young modulus and
respectively the Poisson coefficient of the plate material. The area moment of inertia
of the plate about the neutral fiber is I, = ﬁiﬂ): similar in expression with the one
of the beam (see (2.2) and the details therein). In (2.27) w = w(y, z,t) stands for
the displacement (deformation) of the plate along the = axis thus, it depends only on
the coordinates y and z and on the time ¢. The operator quantifying the damping

is denoted ((w) and his expression will be detailed latter. Furthermore, A is the

2
Laplace operator, A? being equal to (;—;2 + 5?—;) .

On the right hand side of the equation, m, and m, are the external moments
along the y and z-axis. The moment along each axis is delivered to the plate by the
actuators (see |47| or |42]) and, as it will be demonstrated latter in this work (see
2.4), by the sloshing modes of the liquid in the tank. Even though, for the time being,
we study the plate alone (without the tank filled with liquid), it is easy to see from

the moment expression the influence of the tank on the plate.

Equation (2.27) is to be solved using the appropriate boundary conditions and
initial conditions. More precisely the boundary conditions are given for the three free
sides by:

Pw  BPw  Pw  Pw

o 0 o 0z =0, ¥ly.2) € {L} < [0,1]
0°w o°w 0w 9w
o 07 ap o= % Y2 €0.1) <01}

and for the clamped side:

ow  Ow
w = W 0, VY(y, 2) € {0} x [0,1]. (2.28)

The initial conditions are:

w(y, z,0) = wo(y, 2), Y(y,2) € [0, L] x [0,]
ow

E(y,z,O) =ws(y, 2), Y(y,z) €[0,L] x [0,] (2.29)

where wy and w; stand for the initial deformation and velocity respectively.
The first step in finding the expression for plate deformation, of w(y, z,t), is to
consider the plate equation (2.27) in the absence of the exterior forces and damping:

0*w

2, —
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o )}lamped side ";L

Figure 2.3: The plate and the two beams selected for the choice of the Ritz functions

We use the same approach as in the case of the beam. Therefore the deformation is

written in a orthogonal Hilbertian basis using Ritz method:

w(y727t> = an(y7Z>Qk(t) (231)

We can find many Ritz functions that can approximate the plate deformation.
An intuitive idea is to use a group of functions with a particular shape, resembling
as much as possible to the plate. As in [81], we chose two orthogonal beams, their
boundary conditions given by the plate boundary conditions. As we have a "clamped-
free-free-free" plate, we thus choose a "clamped-free" beam and a "free-free" beam
to approximate the deformations. Due to this choice for beam geometry, the Ritz
functions 7y, are defined as a product of modal deformations of the two considered

beams (see Figure 2.3).

ey, 2) = Y, (y) Zj,(2) (2.32)

where Y;, (y) and Z, (z) are the beam modal deformations along the y and z axis
respectively. Moreover, each k£ mode of the plate variable corresponds to a pair

denoted (ig, Jx)-

Until here we computed the infinite dimensional model of the plate (see equation
(2.27)) using partial derivative equations. Let us now make a finite approximation of

the model under the shape of a state-space representation.
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2.2.3 Plate finite dimensional approximation

In this section we detail the steps to make the finite dimensional approximation of

equation (2.27) (thus implicitly, of equation (2.31) previously written).

It is known (see [63|) that the first modes contain the main part of the energy
of the deformation of the flexible structure. It is therefore important to study the
behavior of the system specially in low frequencies. Moreover, due to the limited
bandwidth of actuators and sensors (their response time is limited thus they cannot
respond to very high frequencies), the high frequency modes can not be controlled [15].
Furthermore, using the energy approach presented in Section 3.1 of Chapter 3 and
tested in Section 4.2 of Chapter 4, it is possible to check that the first modes contain
almost all the energy of the structure. Due to this last issue we think of truncating
our model based on the energetic contribution of each mode, thus considering only a

finite number of modes.

Using modal analysis techniques we aim at extracting from equation (2.27) a
state-space dynamical model, of finite dimension, which will sufficiently represent the

dynamical behavior of the structure especially in low frequencies.

Ritz method is widely spread in analytical modeling of rectangular plates. One
can check [28], [73]| or [80] among many other references. When choosing the Ritz
functions, some conditions must be fulfilled. As it is detailed in [56] and in [142],
one important condition that must be satisfied is the kinematic boundary condition.
In the case of a "clamped-free-free-free" plate as here, this condition states that the

transverse deformation and its first derivative must be zero at the clamped side.

As an example, we give in Table 2.1 the construction of the first Ritz functions,
based on the first modal displacement of the "clamped-free" beam and on the first

modal displacements of the "free-free" beam.
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Ritz functions k| i | g
mr,y) =Yi(y)Zi(z) | 1| 1] 1
(v, y) =Ya(y)Zi(z) | 2] 2| 1
n3(w,y) =Ys(y)Zi(z) |3 3| 1
na(w,y) =Yi(y)Za(z) | 4| 1] 2
ns(w,y) =Ya(y)Zi(z) |5 4| 1
n6(w,y) = Ya(y)Za(z) | 6| 2| 2
ni(w,y) =Ys(y)Zi(z) | 75| 1
ns(w,y) = Ys(y)Za(z) | 8] 3 | 2
no(w,y) = Ys(y)Z1(2) | 9] 6| 1

Table 2.1: Plate Ritz functions (Z; means the mode is a flexion mode while Z5 means

is a torsion mode)
Moreover, because of the number of Ritz functions we select to use (let us denote
it N), the plate deformation w from (2.31) now becomes

N

w(y, z,t) =Y mk(y, 2)ax(t) = n(y, )" - q(t) (2.33)
k=1

where the Ritz functions can be stacked in a vector denoted

77T = (nl(yvz>7"’7nk(yvz>7"’7nN(yvz)) (234)

and the general coordinates in another vector denoted:

" = (q(t), . qu(t), ..., qn(1)). (2.35)

As stated earlier, in order to ease our work in the control problem, we aim at
computing a state-space approximation of the plate model described by (2.27). We
therefore detail the computation of each matrix of the state-space representation and

at the end this representation will be shown in a compact manner.

2.2.3.1 Computation of the dynamic plate matrix A,

We used two beams to approximate the deformation of the plate. The exact val-
ues of their natural frequency along with their mode shape will be detailed later in
Section 4.3.1.1 of Chapter 4, Figures 4.5 to 4.9 and Table 4.3.
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There are two different approaches in the literature for the computation of the

modal frequencies of the plate:

e A numerical calculus. The approach is detailed in [30] for a plate with different
boundary conditions. Based on the boundary conditions, several parameters
are computed and finally, the value of the frequency is approximated. Even
though the calculus is tedious, the final approximation is quite similar to the

analytical result;

e An analytical calculus. This is the approach we use to compute the frequency,
first of all because the precision of the method but also for the simplicity of the

calculus. Another motivation is that we want to build a fully analytic model.

Using the analytical method, the frequency of the k'™ mode is written as |30]:

Jr

2 2 3 %
2 Y, ﬁk< Yh ) (2.36)

" 2rl\ my  27Ll \12mu(1 — 12)

where v is the Poisson coefficient and Y the Young modulus of the plate material.
The thickness of the plate is denoted A, the mass per unit plate area is m, and 1, is a
dimensionless coefficient. The coefficient ¥J;, is called the natural frequency parameter
and is a function of the Poisson coefficient. It also depends on the mode, on the

. o, . . L‘
applied boundary conditions and on the plate ratio 7:

Uy = Ux(boundary conditions, %, v).

Concerning the inherent damping of each mode, we use the approach detailed in
[87]. In the case of a beam equation, the damping is usually taken constant in time and
space and identical for all the modes. In the case of plates, even though many authors
consider it as a constant term in time and space and identical for all modes (see for
example |73|, [81] or [133] among many others), we notice during measurements that
for our structure it is different for each vibration mode and is even changing with the
input voltage delivered to the actuators. This implies that, for example, the damping

of each mode changes when two different voltages are applied to the actuators.
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amplitude

3dB attenuation

w frequency

Figure 2.4: Quality factor )

In order to quantify the damping associated to a mode we use the quality factor Qy
(also known as the @ factor). It is used to characterize the bandwidth of an oscillator
relative to its center frequency as it is shown in Figure 2.4. It is a dimensionless
parameter that compares the frequency at which a system oscillates to the rate at
which it dissipates its energy. The quality factor ), can be measured starting from
the width of the resonance [127]:

_ Je

Qk—Afk

(2.37)
where fj is the resonant frequency in Hertz[Hz] of the k'™ mode and the bandwidth
A fr. is the width of the range of frequencies for which the energy is at least equal to
% ~ (.7 of its peak value. This is equivalent to 3dB of attenuation.

To experimentally measure the quality factor we use a signal generator and an

oscilloscope. Form (2.37) we can define it using the angular frequencies wy = 27 f; in
2,

Wk Wk

Qr = (2.38)

Aw_sqp Wk2 — WE1

Let us now detail the procedure of calculus of (; from the quality factor Q).

As stated earlier in the case of the two beams, we can write an equation for
each mode using the dynamical model (2.26). In the case of the plate we make the
same analogy as for the beam. Using the Basile hypothesis presented earlier and the

cinematic parameters g for each mode k of the plate (see (2.35)), we can write a set
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of N decoupled equations, one equation modeling each mode:
Gr + 2Cpwiqr + w;qu =0, ke [0, N] (239)

where (;, is the damping of the k*" mode and wj, the angular resonant frequency in

=2),

The same set of decoupled N equations can be regrouped using the mechanical

equation of the plate in the absence of exterior influence [56, Chapter 3.1|:
MG+ Dyg+ Kqg=0 (2.40)

where M is the mass matrix and K the stiffness matrix. The vector ¢ gathers the
coordinates of all modes (see equation (2.35)). We suppose that the energy dissipation
of the structure takes the shape of a viscous damping contained in the diagonal matrix
D;.

In our case, since the modes are perfectly decoupled, the mass M is an identity

matrix of appropriate dimensions and the stiffness matrix is a diagonal matrix
K = d’éa'g(wl27 e awk2a e awN2)-
Therefore, for the k™ mode, the viscous damping becomes:

D,, = R (2.41)
Qr

where Dj, is the k' diagonal term of the D, matrix.

The analogy between (2.39) and (2.40), allows to find the damping ( of each

mode:

1

Ck:TQk

(2.42)

Practically, @ is measured for each mode using (2.38). We find the resonant
frequency of the mode and we measure the amplitude of the vibrations with an oscil-
loscope. We divide this value by v/2 (which is equivalent with placing ourselves on
the bandwidth of —3dB) and we search on each side of the resonant frequency the
two frequencies which have this amplitude of vibration. This procedure is depicted in
Figure 2.4. As it can be easily noticed, the quality factor will depend not only on the

considered mode, by means of its resonant frequency, but also on the input voltage
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used to measure the frequencies. The calculus of the damping factor of each plate
mode will be given in Section 4.3.2 of Chapter 4.

When choosing the state-space vector, we have a variety of choices for the state-
space variables. The most common choice is X, = (q’l g1 - Qn qN>. Instead
of choosing this, we will use the state-space vector proposed in [61| and used also in
[81]:

Xp:<(jl wiqr ... gn WNQN)- (2.43)

It allows us to have only elements of comparable amplitude in the dynamic matrix.
This will imply a better conditioning for the dynamic matrix and thus for the whole
system.

Having the state-space vector from (2.43), we compute the frequencies of each
mode using (2.36) and the damping using (2.42). Then the computation of the dy-
namic matrix A, of the plate is straightforward using the formulation (2.39) and gives

the following proposition:

Proposition 2.2.1. The dynamic matriz of the plate is:

A, 0 0
0 A, -~ 0
A, = P2 (2.44)
0 0 Apy

where for each k from 1 to N the block matrices of the diagonal are equal to:

_ngwk —Wg
Apk = < )
Wi 0

2.2.3.2 Computation of the plate input matrix B,

The plate deflection is modified by the moment of force delivered by the expanding
piezoelectric actuator. As presented in Section 1.3 of Chapter 1, when a voltage is
applied to the faces of the piezoelectric material, the latter is changing his dimensions,
thus creating a momentum which is bending the plate. This voltage applied to one
of the two piezoelectric patches used as actuators is the control input of our plate.
Therefore, for the calculus of the control matrix B, of the plate, we have to take into
account the behavior of the actuator.

Let us now consider the case of the plate without external influence. We suppose
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that the only way the plate can be moved from the equilibrium position is by applying
a sinusoidal voltage to the actuators which will deliver a proportional momentum that
bends the plate. Furthermore, we consider that the presence of the actuator is not
significantly changing the plate mass or plate stiffness, thus is not changing the shape
nor the frequency of the modes computed in Section 2.2.3.1, [47].

The piezoelectric actuator model is well known in the literature. As an example
one can check the work of [47], [94] or even [81] for the model computation. In the
last two cases, in order to maintain the symmetry of the structure and to increase the
effect of the patches, two actuators are used. One is glued at the top of the structure
and the other at the bottom. They are then activated by applying an identical voltage
of opposite sign.

We are aware that the actuator position is very important for the success of the
active control. In our case though, the problem is different. As it was detailed in
Section 1.3.2 of Chapter 1, due to the system configuration, we can not change the
thickness of the actuators nor their position on the plate. Moreover, in our case the
control actuator is glued only on one side of the plate and not on both sides as in the
references [47], [81].

Furthermore, we propose below an analytical model of the actuators.

Piezoelectric actuators can be used in different configurations depending on what
the user wants to do. These different modes are a function of the direction of the
electric field (the polarization) and the direction of the material deformation. This
coupling gives three main types of behavior for the patches, denoted as modes: lon-
gitudinal mode (denoted mode 33), transverse mode (denoted mode 31) and shear
stress mode (denoted mode 51). The first two modes are interdependent due to the
relation between their corresponding piezoelectric coefficients d3; and dsz [102].

Let us consider a piezoelectric actuator used in "mode 31", initially suffering no
external constraint. The considered mode "31" implies that for a polarization along
the z axis, equal stains are induced in both y and z-axis.

Based on the physical behavior of the actuator we can also assume the following

hypothesis:

e the patch deformation is identical in the directions y and z due to the equality of
strains in these directions. From the patch anisotropy (actuator used in "mode

31") we also infer that the deformation along the z-axis is zero;

e the actuator patch undergoes no torsion effect. Actually we suppose that even

if the plate has a torsion movement, the piezoelectric patch does not sense it;
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e the deformations are linear along the structure thickness.

Proposition 2.2.2. The shape of the control matriz B, is the following:
By = (by,,0,...,0,,,0, ..., by, 0)F (2.45)

where the components by, are given by
Za2

by = Fo(Y] (ya2) — Vi (1)) / 7,,(2)dz

Zal

2 () — 2 ) [ Vil (2.46)

Yal

and (Ya1, Za1), (Ya2, 2a2) are the coordinates of the actuator opposite corners position

and K, 1s a constant depending on the plate and piezoelectric patch characteristics.

Proof:

Under the hypothesis detailed before the proposition, the piezoelectric equations
for the plate and piezoelectric patches are written using the strain vector (for more
details see [100])

6:<€11 €22 €33 \/5623 \/5613 \/§€1z>7

and the stress vector

U:<011 O22 033 \/5023 \/5013 \/§Ulz>-

Due to the transverse mode of utilization of the piezoelectric actuator, the strain and
stress vectors are reduced to three components which correspond to the two axes of

the induced stress [47]. Therefore, the tensoral Hook law (1.1) can be written:

011 = 12,2 (€11 + ven)
099 — %(622 -+ V€11) (247)

012 = 2(1—3;,)(612)
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for the plate and identically

Tpun = 1}—/55 (€11 + vpean — dzi (1 + up)X—;)

Y
Op1a = %TILP)(EH)

for the piezoelectric patch. Furthermore, for the actuator h, is the thickness, v, the
Poisson coefficient and Y, the Young modulus. As it can be seen, the last term that
appears in the expression of the strain components o,,,, 0,,, is an expression of the
magnitude of the induced strains. It is expressed as a function of the piezoelectric
constant ds;, actuator thickness h, and the voltage applied to the patch V.

Based on the earlier hypothesis, some simplifications are possible. Since the patch
has no torsion effect, we get €;o = 0 which implies o5 = 0.

Due to the linearity of the deformations in the structure we have €17 = €95. More-
over, the deformation elements €;; and ey are expressed using their value on the

connecting common points on their surface (denoted with the subscript 7):

_ =z
€11 = 35, €11,
_ =z
€29 — —h—5n 622i (249)
€12 = 0.

Here 6, is the distance of the plate inferior side to the neutral fiber of the structure
(plate + piezoelectric patch) as shown in the Figure 2.5.

In the case of the symmetric structures, the values of §,, becomes equal to the
half thickness of the plate. In our case though, since the structure is asymmetrical
(piezoelectric actuator patch only on one side of the plate) we have to compute the
new position of the neutral plane. Using the method detailed in |74] we computed

the distance of the neutral plane to the inferior side of the plate:

s PY HIRY, 4 2hh,Y 250
" 2(hY + h,Y)) '
: neutral fiber
I X
z v AT V4
% rrrrrr e b
L

Figure 2.5: Neutral fiber of the rectangular plate
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The position of the neutral plane is of great importance since it is used for the
equality of moments coming from the plate and the piezoelectric patch. Since we
neglected the torsion effect, we can write for the two axes y and z the plane equilibrium

condition using the moment expression:

h—6n h—6n+hyp
/ o11ydy + / o11pydy =0 (2.51)
b h—6n,
h—6n, h—6n+hyp
/ O992dz + / O9op2dz =0 (2.52)
_67L h_én

Using in (2.51) and (2.52) the values from (2.47) and (2.48) combined with (2.49)

and the distance from (2.50), we find the unknown variables €1, and e,

BUh=3n+1p)? —(h—54)?) dsy
. . 2(1—vp) hp
L= 2% = T 5P —(<0n)® | (h—buthp)’—(h—3,)°)B
3(h—5n)( 1-v + 1—vp )

v, (2.53)

where (3 = %

Once the interface stress of the plate is found, the resulting plate momentum
can be found by integrating the actuator stress. After the integration on the plate

thickness the moment is written as:

h=bn Ve (h—6,)° — (=6,)°
@ _ a_ _ i n Y= KV, 2.54
me =m /_6n o112dz P 300 =0,) b (2.54)

where:

B(h=bntrhp)?—(h=60)*)((h=6n)* = (=00)*)
K — 6(1—vp)(1—v) Yd31 (2 55)
SO e o P N (e e i (O S IR '

1—v 1—vp

Since the momentum is applied only under the actuator, we use the Heaviside step
(or unit step function) H to impose this (as in [62]). Therefore, using the coordinates

of the actuator opposite corners (y,1, 2q1) and (Ya2, 2a2), We can write m, and m,:

= m? = KyVa[H(y — yar) — By — gao)|[H(z — 2) — H(z — 20)] (256
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where the Heaviside step is defined as:

Oifr>0
H(r) = ’ 2.57
(r) {1if7’<0. ( )

In order to finally obtain the input matrix B,, we compute the total bending

momentum I' generated by the piezoelectric patch along both axes y and z:

(1

s w(y, 2, t)dydz (2.58)

where w(y, z,t) is the deformation of the plate.

Recalling that w(y, 2, t) ZY% qr(t) and that the momentum along
both axes is given by (2.56), we obtaln from the earlier equation the components b,
of the input matrix B,,. O
2.2.3.3 Computation of the plate output matrix C,

In order to compute the output matrix C, we study the behavior of the piezoelectric
patch used as sensor. As detailed earlier in Section 1.2 of Chapter 1, the sensor is
connected to a charge amplifier which imposes a null electric field between the sensor
electrodes. In this way all the charges are sent to a capacity denoted C, where we

can just measure the voltage in order to have the total amount of charges.

Proposition 2.2.3. The output matriz C, has the shape:
Cp=1(0,¢p5..,0,¢p,, -, 0, ) (2.59)

where each component c,, 1s given by

Kc , , Zc2
Cp, = wkCa(Yik(ch) _Yik(ycl)) /ch ij(z)dz
K , , Ye2
b ) - Z () [ Vil (2.60)

Yel

and (Ye1, ze1) and (Ye2, 2e2) denote the coordinates of the sensor opposite corners, K, is
a coefficient depending on the plate and sensor characteristics while wy, s the angular

frequency of the k™ mode.
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Proof:

Due to the electric properties of the piezoelectric material (the presence of an
electric polarization due to a mechanical strain) the electric polarization is equivalent

to a surface charge distribution o, defined using the polarization vector P (see |100]):
op =Pn
where 7 is the unitary vector, normal to the surface of the piezoelectric sensor.

Moreover, due to the piezoelectric behavior, the electric displacement D can be
related to the intensity of the electric field £ created by the polarization. This relation
is described by equation (1.3) recalled here below:

D = kol + P.

For our case, the intensity of the electric field is zero because of the charge amplifier.

Therefore, using the last equation, the surface charge distribution is:
o,=P7n=Dmn.

Integrating o, on a closed surface denoted S of normal 7’ we get the total charge Q,

appearing on the sides of the material (see [106]):

sz—//sapdS:—//SDﬁdS

If we neglect, as in the case of the actuator, the torsion effect on the sensor, the

electrical displacement becomes:
D = e31(€11 + €22),

where the fact that the PZT material of the sensor is transverse isotropic and the
influence of the charge amplifier (E = 0) were used. Moreover, under the same
hypothesis as for the piezoelectric actuator, we approximate the deformation of the
sensor patch by the deformation in the middle of the patch since the deformation is

linear along the sensor thickness:

h Pw  *w
D = —e3; ((h - (5n) + Ep) <a—y2 + w) (2.61)
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where w(y, z,t) is the plate displacement and e3; is a piezoelectric coefficient of the
sensor. Using the classic equations of a piezoelectric material written for one dimen-
sional patch [27], the connection between the piezoelectric coefficients ez and ds; is
proven in [26]. Since the sensor is on only one side of the plate, 4, is the distance
computed from (2.50).

In this case, we also have the electric displacement different from zero only under
the sensor and thus we use again the Heaviside step H from (2.57) to represent his
action on the plate [62].

Using the last equation (2.61) we can write the expression of the total charge @,

Ye2  [fZc2 8211) 8211}

where:

h
KC = €31 ((h, - 5n) + 7}3) .
From (2.62), we can compute the total voltage in the output of the charge ampli-
fier. This gives the terms of the output matrix C), divided by a coefficient.
Kc , , Zc2 , , Ye2
G=x ((Yik(ya) =Y (¥a)) / Zj,(2)dz + (Z}, (2e2) = Z, (21)) / Y <y>dy)
a Zcl Yel
Moreover, due to the choice of the state-space vector (2.43) the components of the
output matrix C, are the one previously computed, divided by the angular frequency

_ 1
of each mode, ¢,, = w—k‘fk. O

Conclusion: We computed a finite dimensional approximation of the PDE plate
model by considering only the first N modes of the plate. The dynamic matrix A,
is computed by considering two orthogonal beams. After analyzing the behavior of
the piezoelectric actuators and sensors the input matrix B, and output matrix C, are

also computed. Finally a state-space representation of the system is realized:

(2.63)
Y CpXp

{Xp — A,X,+ Byu

where the state-space vector is computed from (2.43), the dynamic matrix from
Proposition 2.2.1, the control matrix from Proposition 2.2.2 and finally the output

matrix from Proposition 2.2.3.
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2.3 Tank model

In this section we present the different steps to compute the model of the tank filled
with liquid.

As the tank is partially filled with liquid, any disturbance of the container will
cause a motion of the liquid free surface. This phenomenon of the liquid is called
sloshing. Depending on the container shape, different types of motions can be ob-

served.

2.3.1 Sloshing of liquids - state of the art

Liquid sloshing in moving or stationary containers has been studied for many years
due to their applicability especially in the aerospace and aeronautic domains. These
studies lead to the complex work of Abramson [2] finalized in the early 1960s. Later,
these kinds of results were also published in [48| along with some improvements.
Many other works can be found in the literature about the liquid sloshing, [34], [67],
[92], [97] can be cited among many others.

In the aeronautic and space flight domain, the increase in size of the tank di-
ameters decreases the sloshing frequencies of the propellants and thus affects the
vehicles stability. Thus, the eigen (natural) frequencies of the tank liquid shift to-
wards zero, thus coming closer to the control frequencies. This leads to a continuous
excitation of the liquid which will influence the overall stability. One can read for
instance [138] where the authors present how fuel unpredictable reactions, prevented
the NEAR-Shoemaker (Near Earth Asteroid Rendezvous) spacecraft from orbiting
the Eros asteroid, delaying the space mission for almost a year. Other examples can
be found in [129], concerning the uncontrollable fuel oscillations during flight test-
ing of several planes: Douglas A4D, Lockhead P-80, Boeing KC-135, Cessna T-37 or
again the strange fuel shift during takeoff that lead to static pitch instability of North
American YF-100 plane.

In order to reduce the influence of the sloshing, there are several solutions. The
first, immediate, solution will be to reduce the quantity of liquid in tanks by dividing
them in several smaller tanks using walls of different shapes. The second solution

is to simply introduce baffles into the liquid to disturb the flow and to create larger
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damping which will control the wave magnitude. The third solution is, of course,
to choose a suitable control algorithm which will be able to diminish the forces and
momenta exerted by the sloshing. We are going to consider further in this work this
last solution.

To solve the sloshing problem we need to compute the natural frequency for each
sloshing mode along with the mode shape and then the total forces and momenta
generated by the sloshing. Moreover, it is easy to show that the natural frequency
of each wave depends on the tank shape and on the acceleration (which is either the
total acceleration of the system if the tank containing the liquid is in movement, or
the gravity alone if the tank is in steady motion) [48]. The knowledge of fluid density
and of tank fullness, which will determine these frequencies, is therefore essential in
the design process of liquid tanks and in implementing active control [92].

For each mode, though, the calculus of the natural frequencies, mode shape, total
forces and momenta is very difficult, exact solutions being possible only for very few
special cases such as vertical cylindrical or rectangular tank [67].

Moreover, as the natural frequencies are depending upon the tank shape, analyt-
ical expressions of frequency exist for different tank geometries [19], [22], [48], [49],
[67], [90], [124], [130]. The general equations of motion for a fluid in closed containers
can be simplified by making the following hypothesis which allow the use of classical

potential flow theory:
e the container is rigid and impermeable;

e the fluid has no viscosity, is inviscid, incompressible and frictionless. This as-
sumption of frictionless liquid is justified since the damping due to friction at

the tank walls is of very small magnitude [18];

e the wave motion is linear in the sense that the wave amplitude is linearly pro-
portional to the imposed tank amplitude. The nonlinear case is not treated
here but the reader can check 48] or [54] for nonlinear corrections to the linear

theory;
e the wave speed and motion are of small amplitude;

In the case of rectangular and upright vertical cylindrical tanks, the sloshing
problem can be solved using the variable separation method which gives a set of
decoupled equations, one for each sloshing mode. In the case of tanks with different

geometry, the analytical solutions, if they exist, are very difficult to implement due
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to their complexity. In this case the most used approach is the one of numerical

approximations.

I

Figure 2.6: Cylindrical tank connected to the plate

In our case, the cylindrical tank is horizontal, has a length L, diameter 2R and is

filled with liquid up to a level denoted h,. In Figure 2.6 it can be seen how the tank

is connected to the rectangular plate.

The solution of the sloshing problem depends on the type of movement the tank

undergoes. We can cite several types of tank movements:

e horizontal motion parallel to either x or y axis due to a force or a momentum

along the x or y axis respectively. In this case the solution of the sloshing can be
found if we impose for each axis of motion, the equivalence between the velocity
of the liquid perpendicular to the plane of the wall and the velocity of the tank

wall itself;

pitching motion along y or even along x axis. In this case also the sloshing prob-
lem can be solved imposing that for any point on the tank wall the displacement

is proportional to the distance from that point to the pitch axis.

rolling motion about z axis. In the case of an axisymmetrical tank without
internal walls, the rolling motion will cause liquid motion only in a very thin
layer near the tank walls and only if the liquid is viscous. Furthermore, this
liquid motion, will create, if any, only waves of small amplitude [48]. Under the
general assumption of a liquid without viscosity though, no liquid sloshing will

be experienced for this type of tank motion, [48].
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L longitudinal

2R

transverse

Figure 2.7: Horizontal cylindrical tank

Related to this types of movements (and also since the liquid is considered with
no viscosity), the tank connected to the plate can sense only two types of wave
movements: a pitch movement along the cylinder y-axis or a longitudinal movement
along the longitudinal axis (z-axis) as it can be seen from Figure 2.6 or 2.7.

Usually, the first mode (the one corresponding to the lowest sloshing frequency)
is along the longest axis of the cylinder [48]. Thus, the first sloshing mode will be
longitudinal if L > 2R (as it is our case here, see Table 1.2) or transverse if L < 2R.
In the case where the liquid depth A is very small, a notable exception occurs: the
first mode is always a transverse one even though L > 2R.

Horizontal cylinders partially filled with liquid, as we consider here in this work,
are very difficult to analyze in order to determine the natural frequencies and mode
shapes. This comes from the fact that the tank walls are not straight and parallel to
the axis of symmetry [67], thus the sloshing can’t be computed using the separation
of variable method.

Based on the two types of movements the tank undergoes, two types of sloshing
modes are experienced: a longitudinal sloshing mode along the tank length and a

transverse sloshing mode along the tank diameter. Both types are detailed below.

Transverse sloshing modes
Many of the work done in the study of the horizontal cylindrical tanks is for the
case of transverse sloshing modes. These modes are along the smaller axis of the

tank, their motion being perpendicular to the cylinder generators. To the best of our
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knowledge, the work [78] is the first one that, using an energy approach, determined
the natural frequency of the first transverse mode but only for a half full horizontal
cylinder, while the reference [34] it is the first who proved that the application of the
calculus of variations (the energy minimization technique) coupled with successive
changes in system coordinates (conformal mapping), allows to obtain some limited
results for the general case when the tank filling level can vary. Based on this theory,
|48] gives a graphic representation of the natural frequency of the transverse modes.
Figure 2.8 presents the dependence of the experimental natural frequencies of the
first 3 transverse sloshing modes on the filling level g—;% of the tank. As it can be seen
the values are increasing when the filling level tends to 1 (tank completely full). It is
also easy to notice that, especially for the 2" and 3"¢ modes, the natural frequency

is varying a lot comparing to the tank filling.

Figure 2.8: Natural angular frequency w, of the first transverse sloshing modes (ex-
tracted from [48])

Another method in finding the natural frequencies of the horizontal cylindrical
tank is given by [90] which uses bipolar coordinates instead of the conformal mapping.
Using these frequencies [6] and [7] among others, proposed approximate models in
order to estimate mode shapes for partially filled tanks.

A detailed analysis in the case of symmetric and anti-symmetric modes, along
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with details about analytically computing the natural frequencies can be found in
[67].

Longitudinal sloshing modes

Longitudinal sloshing modes have been much less studied. Most of the known solu-
tions for these modes are in general numerical solutions. As stated in [48] there are
no strong analytical results for this type of fluid motion in the case of arbitrary liquid
depths, the only results are curves faired through experimental data. In Figure 2.9
the natural frequency of the first three longitudinal sloshing mode is depicted. As it
can be seen, for this type of sloshing, the frequency is not changing much compared
to the tank filling level 25.

Figure 2.9: Natural angular frequency w, of the first longitudinal sloshing modes
(extracted from [48])

One notable exception is the case when the tank is half full. In this case there
are some analytical results given by [70] and [91] regarding modes shape, forces and

momenta generated by the liquid sloshing.
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After analyzing the behavior of the experimental device, we notice that both types
of tank movements produce only longitudinal sloshing waves. Therefore, from now

on we analyze only this type of sloshing modes.

2.3.2 Tank approximation

As we detailed earlier, for longitudinal sloshing modes in a horizontal cylindrical
tank there are no analytical results for the natural frequencies and for the forces and
moments. This is why we decide, in this work, to make a geometrical approximation
of the tank. In general, we state that the new tank can have any shape as long as it
can be well described in the Cartesian (x,y, z) coordinate system. In our situation,
we therefore approximate the horizontal cylindrical tank by a rectangular horizontal
tank. The idea of making a tank approximation is not new, one can also check for
example the work |70].

To compute the dimensions of the virtual rectangular tank we propose three dif-
ferent computation methods. The choice of one or another method will be done com-
paring the computed natural frequencies to the experimental ones on one side (the
precision of the method) and the computation complexity plus the time employed in

implementing the method on the other side.

First method

Figure 2.10: Implementing the first method (only one rectangular tank is shown)
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The first method we proposed consists in cutting along the longitudinal axis the
cylindrical tank in a large (infinite in theory) number of small rectangular tanks.
The length of the rectangular tanks is equal to the length of the cylindrical one. As
the number of rectangular tanks is large, we can say that they approximate well the
curvature of the cylinder and thus the whole cylindrical tank (see Figure 2.10 where
one rectangular tank is shown). At the first iteration the filling level in each tank
is considered the same as in the case of the cylindrical tank. Further on, for each
rectangular tank we compute the natural frequencies depending on the filling level.
Based on this frequency, at the second and further iterations, we then change the
filling level of each small tank. The core idea is to choose for each tank, a "virtual"
filling level so that each tank has a natural sloshing frequency as close as possible
to the predicted (from [48]) sloshing frequency. This is done for each sloshing mode
from Figure 2.9.

As we expect, (proof in Section 4.3.1.2), this method allows us to obtain natural
frequencies very close to the natural frequencies measured on the experimental setup.
Nevertheless, the implementation of this method is very tedious because it consists of
computing, for each sloshing mode and for each considered small rectangular tank, a
new filling level and then the exerted force/moment.

After some repeated experiments we even observed that, if the tank fill level é‘—j%
ranges between 0.65 and 0.9 the sloshing natural frequencies given by the method are
even closer to the predicted sloshing frequency. This comes though with an increase

in difficulty during the implementation phase.

Second method

Another idea consists in choosing the length of the rectangular tank equal to the length

of the cylinder and the width of the rectangular tank equal to the tank diameter. The

height of the new tank is selected so that the same volume is kept in both tanks.
This method, which is easier to implement than the former method, does not find

sloshing natural frequencies close to the ones from [48|. This last issue will be proved

later in this work Section 4.3.1.2.

Third method

The last method is very close to the second one but gives natural frequencies that
are closer to the experimental ones. As it will be proven later (see Section 4.3.1.2),
the frequencies of the rectangular equivalent tank computed using this method are

up to only 5% different than the ones from [48]. Since the method remains easy to



56 Chapter 2 — Mathematical modeling of the system —

Figure 2.11: Equivalent tanks

implement but also gives good frequency values we decide from now on to use it in

the construction of the rectangular tank.

This method keeps the length b and the width a of the rectangular tank equal to
the length of the cylinder L and the width [ of the free surface at rest. The difference
of the second method comes from the fact that in this case, the liquid height is chosen
so that the volume of liquid in both tanks is the same. Before actually implementing
it, we can easily notice that, as for the second method presented here, the parameters
of the equivalent tank will need to be recalculated each time the value of the liquid

in the tank changes.

Knowing the filling level of the tank e = ?L—}f, where R and hg are the radius and
the height of the liquid in the cylinder respectively, we can easily compute the width

of the liquid free surface since:
R
ly = 5\/ — (2e — 1)2.

From Figure 2.11 we can write the total volume of the horizontal cylinder V.,
based on the diameter and on the angle 6 describing the width of the free surface:
R2
Vey = 7(9 —sin())L

where 6 = 2 arccos(1 — 2e).

Making the analogy between the volume previously computed and the volume of
the new rectangular tank which can be easily written as a multiplication of all the

tank dimensions (b x a x h), we compute the height of the liquid & in the rectangular
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tank by:

b= R(0 — sin(0)) (2.64)

V1—(2e—1)2

All the parameters of the rectangular equivalent tank are now computed. As

stated earlier, even though the results given by the first proposed method are more
precise (see Table 4.7 from Chapter 4), this last method is preferred due mainly to

the simplicity in the implementing phase.

In this paragraph an approximation of the cylindrical tank was conducted. Each of
the three method presented will be tested on the experimental setup in Section 4.3.1.2

of Chapter 4 and the theoretical conclusions given here will be checked.

2.3.3 Tank infinite dimensional model
2.3.3.1 General equations

From now on we consider a rigid rectangular container, of length b and width a,
partially filled with an incompressible and inviscid liquid to the height A, as shown
in Figure 2.12. Thus, the earlier hypothesis given in the introduction of Section 2.3.1
are fulfilled. We finally consider that the dimensions of the container are such that
the surface tension is neglected.

As seen from Figure 2.6, the tank is not free but connected to the plate. There-
fore, we cannot study the tank alone but in relation with the plate. Since the plate
has mostly flexion movements (the torsion movements of the plate are of very small
amplitude comparing to the flexion ones, see Section 4.2), we infer that the tank
movement is mostly along the generator axis, which corresponds to the x - axis in
the coordinate system. Therefore, most of the container moves are horizontal in the
x direction. Moreover, based on the plate movement, the tank oscillation has a small
constant acceleration Cj.

The fact that the liquid is irrotational allow us to express the fluid velocity as
a gradient of a velocity potential function ¢. Therefore, the liquid speed in all the
directions can be written as (see [93, Chapter 2.70|):

vtV = (5050 57)

%7 8_y7 @ (2.65)

The introduction of the velocity potential ¢ = ¢(x,y, z,t) has the main advan-
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z

free surface

Figure 2.12: Coordinate system for a partially filled rectangular container under
external acceleration

tage that all the velocities, forces, moment of forces generated by the liquid sloshing
can now be expressed with only one function (which of course will depend on the

coordinates z,y, z and on time t).

Since the fluid is incompressible, the equation of continuity (the velocity distribu-
tion), that is to say the basic differential equation that the velocity vector must satisfy,

is obtained by differentiating with respect to the spatial coordinates, [48, Chapter 1]:

ov, oV, oV.
+ 2L+

ot oyt =0 (2.66)

Furthermore, the Euler equation of motion |78, art. 20|, also known as the unsteady
form of Bernoulli equation, written for a tank filled with liquid undergoing a longitu-
dinal movement along the x - axis admits the following representation:

dg 1 p

(V2 VELVE 42 —h)—Cox =0 2.67
for x € (0,b), y € (0,a), z € (0,h) and ¢ > 0. In these last equations p = p(z,y, z, )
and p stand for the pressure and the density of the liquid while the term Cj stands

for the external acceleration.

Using equation (2.66) coupled with equation (2.65), the velocity potential function
is a solution of the Laplace equation, which does not explicitly contain the time:
0? 0? 0?

0 Do P _

5t T gy T g = Dewsd =0 W(w,,2) € (0,) x (0,0) X (0,1), ¥t > 0. (268)

with appropriate boundary conditions.

Given the equation of the free surface like z = h+£(x, y, t), the equation of motion
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from (2.67) becomes, for all x € (0,b), y € (0,a),t > 0:

9 .

81& (V2 + V2 + V2) + gé(x,y,t) — Coz =0 (2.69)

and the kinematic free surface condition according to |78, art. 9| is for all x € (0,b),
€(0,a),t>0

d 8{ 8¢ 05 0P 0 0o
0 _y, 0506, Oy 00 0
where the equivalences g V, = 5t Dy Vy = 5 and — e =V, = T have been

used.

Further progress in finding the expression of ¢ can be made if (2.69) is linearized
(by omitting squares and products of z,y,z and &). This is a justified approximation if
the deflection (the degree to which a structure element is displaced under a load) and
slope (gradient) of the free surface are everywhere small 1. In this case, the simplified

equation becomes:

99

875+g£ Cox =0, Yz € (0,b),y € (0,a),t >0 (2.71)

for the dynamic free surface condition.

Moreover, if equation (2.67) is linearized and written for the steady state (a¢> =0),
also considering that the pressure p on the free surface equals 0, we get another
expression for the free surface equation: z = h + %ZB. Using this last equation, the

kinematic free surface condition (2.70) can be simplified in:

o6 09 |Co
ot 0z g

99

_ > )
5 "L €(0,0),t=0 (2.72)

If we assume |0

to be of small quantity (we think that, at least in laboratory
conditions, the external acceleration is much smaller than the gravity), from (2.72)
we obtain Vz € (0,b),y € (0,a),t >0

o¢ 09

% = 9, (2.73)

on the free surface (z = h)

When considering the other boundary conditions, we need to set that the relative

't is interesting to notice that for a real liquid this is not true near the walls [24].
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velocity normal to the wall is equal to zero. Hence

V.= a—¢ 0Oat z=0,aq;
Vy = g—¢—0aty:0,b;
V.=2=0atz=0.

which, written in a more compact form, becomes:

99

5, =1 Vo=0 (2.74)

where 7 is the unitary outward vector and:

(06 9o 9\T
W—(%a—y&)

T
The vector 7 takes on the different walls the well known shapes: n, = <:t1 0 0)
(on the two walls perpendicular to the z-axis), n (0 +1 0) (on the two walls

perpendicular to the y-axis) and n, = (0 0 — 1) (on the wall at the bottom of
the tank).

Proposition 2.3.1. The solutions ¢ and & of the unsteady Bernoulli equation (2.67)
and of the Laplace equation (2.68), under the boundary conditions (2.73) and (2.74)

are:
= cosh(Y;z) T
E —_— — 2.
4z, 2,1) rilt T51nh(Th)CS<a) (2.75)
and

E(z,y,t) Z 7;(t) cos <7r;x) (2.76)

1=1,3,5,

where the r;(t) are given by (denoting = =T;):

7i(t) + g X, tanh(Y;h)r;, = 400 gT tanh(T;h) fori=2p+1,peN
=0 fort=2p,peN

(2.77)

Proof:
In order to find the expressions of £ and ¢, and to prepare the field for finite
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dimensional approximation, we write them in the Hilbert basis L*([0, a] x [0, b]) com-
posed of the eigenfunctions of A, with Neumann homogeneous boundary conditions.

Therefore we obtain for the two functions the general shape:

Sy, 2,t) = D> gi(t) f15(2)Sis(,)

zO]O

g(Ivyat) - ZZTU zg ZE' y

=0 j=0

Since the tank is rectangular, we can apply the separation of variable method

along the x and y coordinates, to the S;; function |67]. Thus, it can be written as:
Sij(x,y) = cos (Y;x) cos (Yjy), Vo € (0,b),y € (0,a) (2.78)
where
L
Y,=nm(-+2 2.79
j=n(L+7) 279

Therefore, applying the boundary condition on the free surface (2.73) to the ex-
pressions of ¢ and £ from (2.78) we find the dependency between the two functions

depending on time ¢, Vo € (0,b) and Vy € (0, a):
a t T y, Zzgw zy(x Z/) a = erzy(t>519(xvy>
=0 7=0 =0 j=0

which yields to:

Using the boundary conditions (2.74), we have

%antz:O,V:BG (0,0),y € (0,a),t >0

and thus we get f/.(0) =0Vi,j € N.
Moreover, after introducing the expression of ¢ into the Laplace equation (2.68),

and taking into account (2.80), we obtain:

Z Zréj(t) (=07, fij(2)Sij (, 9) + f15(2)Sij(x, ) =0
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Vt > 0 and (7,9, 2) in the liquid domain. It is easy to notice that the term f;(z)
comes from the last term in the Laplace equation % and —Tfj comes after using the
expression (2.78) on the first two terms of the same Laplace equation: % + %‘f.

This last equation gives, for all z € (0,h) and Vi, j € N:
S TL() + () = 0

which is to be solved using the boundary conditions on z previously deduced fj;(h) = 1
and f;;(0) = 0. This gives:

cosh(Y;;2)

ij\Z) = o ,h),Vi,j €N 2.81
Fo(2) = i Ve € 0L,V & (281)
Using the expressions (2.80) and (2.81) we write the expressions of ¢ and £ to-

gether, V(x,y, z) € (0,0) x (0,a) x (0,h),t > 0:

O 200) = 3 D i) B 0)

where the values of S;; and Y;; are the same one from (2.78) and (2.79).
Now, the r;; function are calculated by replacing ¢ and ¢ into (2.71), recalled here
below:
9¢

E—f‘gf—CoJ?:O.

The calculation is very tedious. Omne simplifying solution comes from the type of
movement that the tank undergoes. As presented earlier in the beginning of this
section, the rectangular tank is moving along the z-axis. This constraint, which at
the beginning seems to complicate the problem, will now give us some clues about
solving the equation.

Taking into account this constraint, the former expressions of ¢ and & can be
simplified as follows. For the free surface, equation (2.71) recalled above, which

represents the equation of motion, can now be written using (2.80) and (2.81):

oo o0

cosh(Y;;2)

lmj(t)m&j(% y) + grij(t)Si;(x,y)| = Cox (2.82)

i=0 j=0
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where () is the external acceleration along the z-axis.

Since the right-hand side of the equation depends only on the coordinate x, the
equality can be satisfied if and only if the left hand side also depends only on .
Therefore we can write S;;(z,y) = S;(x) which from (2.78) implies that S;; depends
only on x. This is verified if and only if j = 0.

With this last simplification, the whilom equations for ¢ and £ become:

E(z,y t) =&z, t) = Y ri(t)Si() (2.83)

1=0

B R . cosh(Tiz)
QS('T? Y, =, t) - ¢($, 2 t) - ; TZ(T’) Tz s1nh(T,h) Sl(x> (284)
where (see (2.79))
T
Ty="T;= — (2.85)
Equation (2.82) can be written as:
= 7. cosh(Y;z2) B

1=0

and r; can be found using the approach of [72|, which consists of multiplying both
sides by cos (%
tank [0, a]. With (2.78) this leads to (2.77) by observing (as in |[72]) that the integral

of the right-hand side is different from 0 for the odd values of ¢ and equal to 0 for the

) for a given ip € N and integrating over the whole length of the

even indexes. This concludes the proof of Proposition 2.3.1.

From this last equation we observe that, having the r;, we can compute the velocity
potential ¢ from (2.75) and ¢ from (2.76). For a detailed expression of the velocity
potential, in the case when the fluid behavior is treated as a two or three-dimensional
flow, one can check |67, Chapter 1]. O

The computation of the natural frequency of the modes is also quite easy. We start
by computing the time derivative for the simplified version of the unsteady Bernoulli

equation (2.71) without external acceleration, combined with the simplified kinematic
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free surface condition (2.73). Therefore, we obtain:

2
Po 0o _

5z 95, =0 (2.87)

As it can be seen, the equation depends only on the the velocity potential, which

characterizes the liquid movement and which is already known.

Further on, since the liquid in the tank is continuously moving back and forth
with a certain frequency, we can write the velocity potential previously computed
(implicitly all the functions depending on time ¢ that are in the expression of ¢), as
a harmonic periodic function exp(iw;t). Here, the variable w; stands for the natural

frequency of the i*" mode.

After replacing the two times derivative in (2.87) by the equivalent term —w? exp(iw;t)
and canceling out the term exp(iw;t) which multiplies both sides, we find the expres-

sion of the natural frequency for the rectangular tank (where (2.77) was used):
w? = gY;tanh(Y;h) (2.88)

where ¢ € N* is the index of the sloshing wave.

In theory we have two types of longitudinal sloshing modes: symmetric modes
and antisymmetric modes. The difference comes from the value of i (odd or even)

that comes in the expression of S; and corresponds to the natural frequency (2.88).

Symmetric sloshing modes
The symmetric sloshing modes are found for the even values of i, starting with ¢ = 2,
in (2.88). The shape of the first three sloshing modes is depicted in Figure 2.13.
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Figure 2.13: The mode shape of the first three symmetric waves (from left to right)

One tool we can use to quantify the sloshing motion is the study of the center
of mass. It represents the mean location of all the liquid mass and his position is

depicted in our figures by a blue circle in the interior of the tanks.

As it can be seen, the symmetric sloshing modes do not shift the position of the
center of mass. Moreover, since the center of mass does not oscillate, there will be no
forces or moment of force generated by the liquid sloshing and thus no movement at
all of the tank.

Antisymmetric sloshing modes
The antisymmetric modes are found for the odd values of 7, starting from ¢ = 1. The
natural frequency of the antisymmetric modes is again computed from (2.88) (for the

odd values of 7).

Since the first mode is antisymmetric (¢ = 1), all the frequencies of the symmetrical
modes are higher than those of the antisymmetric modes. The shape of the first three
modes is depicted in Figure 2.14. The first mode computed for ¢+ = 1, which is the
first on the left, is called the fundamental antisymmetric mode and has the lowest

frequency.
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Figure 2.14: The mode shape of the first three antisymmetric waves (from left to
right)

As it can be seen from Figure 2.14, during wave movement, a visible shifting in
the position of the center of mass can be noticed. Moreover, the oscillation of this
position signifies that a large amount of liquid moves from one side to the other side
of the tank, thus creating a liquid sloshing which at his turn will create forces and
torques. The fundamental mode makes the largest displacement of the center of mass
from his equilibrium position. This will create the most powerful sloshing wave, which

will induce the greater force and moment on the tank.

Therefore, as a conclusion, for our disposal, the important modes are only the
antisymmetric ones since, only they create the sloshing motion. From now on, we

concentrate our attention only on this types of sloshing modes.

Until here, after a tank approximation, we computed the infinite dimensional
model of the tank with liquid. After analyzing the types of sloshing waves in the
tank, our purpose is now to compute all the forces and moments generated by the
sloshing. Their value will allow us to describe the tank behavior and its influence on

the rectangular plate that is connected on.
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2.3.3.2 Determination of forces and moments

Proposition 2.3.2. The total force generated by the sloshing is F' = (F,, F,, F})

where:

— 7i(t)
Fy = pabhCo = 2pb. > o (2.89)
1=1,3,5,... 4
F,=0, (2.90)
a2
F, = pabgh + prb?. (2.91)

Proof:
The total pressure acting at any point of the liquid is competed from (2.67). After

neglecting the second order terms one can write

0

p=p {__gb —g(z—h)+ Cyx (2.92)
ot

The resultant force in the x,y,2-direction is F' = (F, F},, F},) (see [48]). Each compo-

nent of the force is therefore found by integration of the liquid pressure [122]:

h b
Fx = / / (p|x:a - p|:c=0) dydza (293)
0 0

h  ra
F, = / / (ply=p — Ply=0) dzdz, (2.94)
o Jo

a b a b
F. = / / (plazh — Plomo) dady = —/ / plamodady. (2.95)
0 0 0 0

The minus sign between the two pressures, while computing the total force from
the previous three equations, is not due to the sign of the pressure, which is a scalar
quantity, but due to the direction of the 7" vector (which is the vector normal to the
considered surface). Since the tank length is along the positive sense of the z-axis (see
Figure 2.12), the 7' vector calculated for 2 = a is "positive" and the one calculated

for x = 0 is "negative". The same explanations are valid for the other axis.
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In the case of the force along the z-axis, the pressure on the free surface is consid-

ered equal to zero and thus the first term of (2.95) computed for z = h is canceled.

Since the movement of the container is only in the z-direction (having only lon-
gitudinal sloshing waves) we can simplify the equations (2.93), (2.94) and (2.95).
Indeed, because of these considerations the force along the y-axis is equal to zero.

Since there are no transverse sloshing waves we have: p|,—, = p|,—¢ and thus F, = 0.

Moreover, using (2.92) in (2.93) we get:

h 8¢ h 8¢
Fx = patho — pb/(; Eb:adz + pb/o Elw:()dz.

As stated at the end of the previous section, the sloshing motion of the liquid (the
one responsible for creating forces and moments of forces) is generated only by the
antisymmetric sloshing modes. Therefore, only odd values of i are considered in the
infinite sum. In this case we have cos(T;a) = —cos(T;0) (where T; = (Z)) and we
deduce that %h:a = —%hzo. Thus:

h
0
F, = pabhCy — 2pb/ —¢|x:0dz.
o Ot
Replacing ¢ by (2.75), giving

(%

cosh(Y;z)
e (x,z,t) Z 7i(t —cos(Tix),

i T; sinh(Y;h)

we obtain:

1 h
F patho + 2pb Z m / Tz COSh(TiZ)dZ,
z 0

i=1,3

and integrating along the height of the liquid we get the final expression of the x-

coordinate of the force from (2.89).

Concerning the coordinate of the force along the z-axis, we use the same method-
ology. The difference between the two situations comes from the fact that for the
z-axis force, since the tank movement is along x-axis, the term Cyz from (2.92) has
to be taken into account when computing the integrals. Using the pressure described
by (2.92) in equation (2.95) we obtain:

F. = pabgh + pr’o/ xdr — pb/ ?L:Odzv.
0 e
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The last term of the equation is integrated separately and we get:

“0¢ - T “ T B
. Eh;gd[lf = i:g:s m/{) COS(T)CZ[E = 0.

Therefore, the total force along the z-axis is then written as (2.91). O

Proposition 2.3.3. The total moment of force generated by the sloshing is M =
(M, My, M), where:

M, = M, =0,
M, = PO o i () [h_ ! + ° (2.96)
D P T2 |2 Titanh(T;h) | Yesimh(Th) |

Proof:

In a general manner the moment is written [58|: M = distance A force, where A

represents the cross product (or vector product). We are going to study the moment
generated by the liquid sloshing along the three axis. The moment along the z-axis
is caused by the pressure acting on the y walls and at the bottom of the tank (the
pressure acting on the top of the tank is null). The moment along the y-axis and is
caused by the pressure acting on the x walls and again at the bottom of the tank
(z = 0), while the moment along the z-axis is caused by the pressure acting on the
x and y walls. This can be written in a more compact form using the differential

element of moment, computed in the center of gravity of the liquid:

h b h b

dM, = (z — §)dFy +(y — §)sz = (2 — §)pdAy +(y — §)pdAz, (2.97)
h a h a

dM, = (z — §)dFm + (z — §)dFZ =(z— §)pdAx + (z — i)pdAz, (2.98)
b a b a

dM, = (y — §)dFm + (z — §>dFy =(y— §)pdAx + (z — §)pdAy. (2.99)

One important issue in dealing with the moment of force is its direction since it is
a vector. Therefore we consider 7, § and ¢ the unity vectors in the positive direction
of the z, y and z-axis. Taking into consideration that #* A —t = —(—s) and { A7 = 3,
we can compute the direction of the total moment along a specific axis.

As presented before, the force I, along the y-axis is equal to zero. Moreover, since
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there are no lateral sloshing waves, the center of gravity along the y-axis is exactly
in the middle of the tank. With (2.97) and (2.99), we get:

dM, = dM, = 0.

Replacing the forces by their expressions computed in (2.89) and (2.91), we finally

get from (2.98):
/ / p|:c a dydz _/ / Z— = p|x 0 d’de (2100)

+/ /(:L’— §)p|zzo dzdy.
o Jo

On one hand, replacing the pressure (2.92) in (2.100), we have:

/ / p‘x =a dydz _/ / Z— = p‘x =0 dde (2101)

where the part depending on () is equal to zero. Of course, we used the relation

between the time derivatives of the velocity potential, computed for x = 0 and z = a:

00, 0
ot'=0 T gl

On the other hand, using again (2.92), we have:

"9
[ [ vttty =g (0 - [y an e [ ar)

Summing up these last two equations we find the expression of the moment along

y-axis depending only on time derivatives of the velocity potential:

My = pb(/ at|gcod ; |x0d2—/ 8tz()dl' (2102)

After computing the time derivatives and integrating, we obtain the expression (2.96)
of the moment, where the r; are computed from (2.77). O

In this paragraph we computed the totality of forces and moments of forces gen-
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erated by the liquid sloshing. This is done for the theoretical case when an infinite

amount of sloshing modes is considered.

2.3.4 Tank finite dimensional model
2.3.4.1 General presentation of the equivalent mechanical model

The objective of this section is to construct an approximate model of the liquid
sloshing in the tank. As stated in Section 2.3.3.1 the dynamical effect of the sloshing
is a horizontal oscillation of the liquid center of mass relative to the tank. From
the works [48], [22], [124], [130] this effect can be well represented by an equivalent
linear mechanical model: a mass pendulum system or an equivalent spring mass
system. Both mechanical models are presented in Figure 2.15. In the first model,
the oscillation of the center of mass, generated by liquid sloshing, is represented by
a vertical pendulum with a mass, while in the second model, the same oscillation
is represented by a horizontal spring with a mass. A complete overview of the two

mechanical models can be found in [67].

liquid free surface

T e T~
7 26 12K
wol - AN NBAAN—
I I
o e

Figure 2.15: Mass pendulum and mass spring mechanical models

In our case there are many reasons why we need to compute the finite dimen-
sional model of the tank with liquid using an equivalent mechanical model. The first
reason is because the use of the potential of velocity equation (2.75) is quite difficult
to numerically manipulate due to its complexity. For example, as mentioned in [48,
Chapter 3|, in the case of a space vehicle, coupling of the equations of motion of
the vehicle to the equation of motion of a continuous liquid is too computationally
demanding even with super computers. Thus, it is convenient to replace the liquid
sloshing by a simple linear mechanical system. Besides, as explained in [18], the
mechanical model is a good and easy tool for the introduction of linear damping, es-

pecially when the magnitude of the damping needs to be determined by experiments.
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Finally, another reason is that with a mechanical model, the shape of the model will

not depend on the tank geometry or fill level.

An alternative idea in order to compute the state-space representation of the tank
with liquid would be to do some model identification. This approach though, which
is not based on a PDE model, is difficult to implement due to the structure of the
experimental setup. As we can see from Figure 2.6 we cannot decouple the tank from
the plate, thus the identification of the tank model will be done through the plate.

In this case the eventual errors from the plate model will propagate to the tank model.

One can find two equivalent mechanical models for sloshing behavior in the litera-
ture. The natural frequencies of both mechanical systems are easy to compute. In the

case of the mass pendulum system, the natural frequency is %\/?; while in case of

the spring mass system, the natural frequency is %\/g, where [ and g are the length
of the pendulum and the gravitational acceleration, while K and m are the spring
constant and the mass of the spring system as depicted in Figure 2.15. Moreover, the
transformation between the models is straightforward if we consider the spring mass
located at the same height as the pendulum mass (not at the connection point of the
pendulum hinge) and that the spring mass is attached to the walls through a spring
with a constant of K = \/@.

The question that rises now is which of the two models is better to use since
they are similar, thus exerting the same forces and moment on the tank. Generally,
the mass pendulum system is considered more adequate (see [3|, [70] or [123] among
others) because of his natural frequency i\/? which varies with the changes in axial
(or gravitational) acceleration g as the sloshing frequency of the liquid does. In
the case of the spring mass system, we will need to change the spring constant K
every time the value of g will change (in spite of this issue this approximation is also
used by [18]|). Even though, for the moment we do not plan to use a time changing
gravitational acceleration (although when considering a flying airplane g changes with
the altitude), we still prefer this formulation since we consider it more general.

Remark: Before starting the model computation, one can notice that the mechan-
ical model is compatible with our early conclusion, that a longitudinal tank motion
will create sloshing while a vertical oscillation will not.

The main criterion when computing the equivalent model of the liquid oscillation

in the container are the following [67]:

e The equivalent system must produce the same force and moment, under some
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external excitation, as the actual system;

e The center of gravity G must remain the same for small oscillations;

e The equivalent system must preserve the equivalent masses and moments of

inertia;

e The equivalent system must have the same modes of oscillations and produce

the same damping force.

Therefore, corresponding to each sloshing mode we will choose an oscillating mass.
Since the contribution to the resultant force and moment comes through the odd
sloshing modes (see (2.89), (2.91), (2.96)), the mechanical model would incorporate

oscillating masses corresponding to odd sloshing modes only.

Figure 2.16 shows a mass-pendulum model representing the liquid motion under
horizontal acceleration Cjy acting upon the center of gravity of the tank and liquid.
The oscillating masses, m,,, are attached through a pendulum rod of length /,,, and
the pivot of the pendulum is placed at a distance L,,, from the liquid center of gravity.
A fixed mass my is placed at a distance Lg also from the liquid center of gravity. The
introduction of the fixed mass is compulsory since not all the liquid in the tank is free

to move but only a small amount of liquid on the free surface.

Figure 2.16: Mechanical model with one fixed mass and 3 sloshing masses, represent-
ing fuel sloshing under longitudinal excitation
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2.3.4.2 Determination of parameters for the mass-pendulum model

Proposition 2.3.4. The equivalent mass-pendulum model is composed of M equa-

tions:

. ) 1
0; + 2»59\/%91- + %92- =—7Co, i=1-M (2.103)

where 0; is the angle of the i'" pendulum compared to its equilibrium position, & =
0.001 s the damping of the pendulum and l; the length of the pendulum computed

from

I = = (2.104)

where §; is the angular frequency of the corresponding liquid sloshing mode.
Each mass-pendulum system is characterized by his mass m;

m; = P (2.105)

T

and his position to the gravity center of the liquid in steady motion L;

h 1 2
Li=—-— = — — 2.106
2 Ztanh(Z'h) T sinh(7T°h) ( )
Moreover, the mass-pendulum model contains a fixed mass my
M
my = pabh — Z m; (2.107)

1=1

situated at a distance Ly from G
1 [pha® &
Lo= — [& - ZmiLi] . (2.108)

Proof:

Step 1: [;
The length of the pendulum, /,,, is determined so that the angular natural frequency

(which is equal to 27 times the natural frequency) of the pendulum is the same as
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the corresponding liquid mode (£2;). Hence,

0= ] L (2.109)

L,

where n; € N* is the pendulum number 2. Therefore, from this last equation we
compute the pendulum length (2.104). Note that a perfect approximation of the

system is attained when choosing an infinite number of mass pendulum systems.

Step 2: m; and my
The equation of motion of a pendulum under a horizontal acceleration Cy [112], under
the assumption of small oscillating angles for which sin(6,,,) = 6,, and cos(6,,) =1,

is:
L0, + g6, = —Cl (2.110)

where 0, is the oscillating angle taken from the equilibrium position.

Using this equation, we compute the total horizontal force generated by the me-
chanical model. The expression of the force is found using Newton’s second law of
mechanics ™" = ma, where the m is the total mass of the system composed by
the pendulum masses and by the fixed mass and the a is the total acceleration of the

system.

The acceleration the system undergoes is a sum of two components, one component
is generated by the pendulum free movement and the other component is the tank
external acceleration Cy. The first component of the two accelerations, is found
by writing the force equilibrium on the pendulum mass, when the connection point
of the pendulum hinge is in steady motion (null external acceleration). Thus the
horizontal acceleration is given only by the horizontal component of the force of

gravity: my,,gsin(f,,(t)). The force equilibrium then gives:

My, gsin(Oy, (1)) = mmlmem (t).

Therefore, the total acceleration is a = I,,,6,, (t) + Cy and one can write the total

2Here we use the subscript n; to differentiate the mechanical system from the corresponding
sloshing mode. Once this relation is set, we will use for sake of simplicity, ¢ instead of n;
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force F*" generated by the mass pendulums movement:

F;neCh = mOCO + Z mmCO + Z mmlmem (t) (2'111)

nizl nizl

Imposing that the force generated by the mass pendulums is identical to the one
generated by the liquid sloshing, (F, = F™" from (2.89) and (2.111)), we compute
the value of the fixed mass mgy from (2.107), where the m,, are the masses of the
pendulums and the product pabh is the total mass of the liquid. Moreover, again

from F, = F™" we can also write:

7i(t)
T

f: mnzln19n1 (t) =2p

ni=1 i=1,35,...

(2.112)

From this last equation, since each sloshing mode is independent of the others, one
can write for each odd mode:
Mo, Y7 F5(t)

o =70 (2.113)

which gives the dependency between the sloshing mode and the corresponding mass

pendulum system.

The relation between n; and i is that every liquid mode i € {1,3,5,...} (as it can
be seen from equation (2.77) the modes of liquid sloshing are only odd modes) is cor-
responding to a pendulum denoted n; € {1,2,3,...}. Even if a perfect approximation
comes only with n; — oo in real situations it is possible to truncate n; at a certain

natural number M.

As an example for M = 3 we can see that to the first sloshing mode ¢ = 1 is cor-
responding a first pendulum (n; = 1), to the third liquid mode i = 3 is corresponding
a second pendulum (n; = 2) and to the fifth liquid mode ¢ = 5 is corresponding a
third pendulum (n; = 3).

Remark: Since the relation between the sloshing modes and the mass pendulum
systems is well established, from now on, we will denote the mass pendulum systems

by the subscript ¢ instead of n; in order to simplify the writing.

As mentioned before, we further make the assumption of small displacements of

the pendulum above the equilibrium position (tanh(Y;h) ~ T;h) and deduce from
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(2.77):

4Gk
a

Fi(t) = — gT7hr(1). (2.114)

Using (2.114) and (2.110), the ratio between #;(¢) and ;() becomes:

T2ar;
i) _an (S4B (2.115)
L = = :
0i(t) a = +0:(t)
which with (2.113) gives:
Co Y2ar;(t)
miTia _ gc+ 4 (2.116)
8ph =+ 0:(t)

Analyzing the structure of both sides of equation (2.116), note that, for a given
pendulum system, the left-hand side is constant number. Thus, the right-hand side
must be a constant too (independent of r;(t), 0;(¢) for all £ > 0 ). Since at the initial
state the liquid is supposed at rest (1;(0) = 0) and the pendulums in their vertical
position (6;(0) = 0), we conclude that the right side of the equation can be only equal

to 1:
m;T?a
8obh

Lo
= é =1.

g

Since the right-hand side of the equation is unitary, we obtain the following relation
between free surface displacement and pendulum rotation:

T?a
0s(t) = 1 ri(t),

and finally we can compute the value of pendulum mass m;:

_ 8pbh

where a simple replacement of Y'; by his expression from (2.85) gives the value of each
pendulum mass from (2.105).

M L; and Ly
The distance between the center of gravity of the liquid in steady motion and the
connection point of the pendulum hinge is denoted L; (measured positive above the

center of gravity). It will be computed using the equivalence of moments.
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In the case of the mass pendulum system, the moment is computed, as in the case

of the liquid sloshing, by multiplying the distance and the force M = distance force.

Thus, the moment computed at the center of gravity is:

M;”@Ch = moLyCy + Z m; L;Co + Z miliLié-i (2.118)

i=1 i=1
where the force created by the mass pendulum system (2.111) is multiplied by the
distance corresponding to each pendulum system.

The two systems generate the same resultant moment. Thus, imposing that M, =
M;ee", one can write from (2.96) and (2.118):

p h 1 2

Lw) |2 - :
12" |5~ T tanh (k) T T, smb(ToA)

Using the relation between 7 and 6; from (2.113), we get, Vi € N*

h 1 2

L =2 _
P T X tanh(Tih) | s sinh(T5h)

(2.119)

which is exactly the expression from (2.106), with T; from (2.85).
Concerning the distance Ly of the fixed mass, it is found comparing the terms
depending on the exterior acceleration Cj from the equations (2.96) and (2.118):
pCoab

mOL()CO + Z mZLZC’O = 10
i=1

After eliminating the external acceleration we get equation (2.108).

Step 4: Mass-pendulum equation
The state-space representation of the tank with liquid is straightforward from equation
(2.110). Moreover, as stated earlier, one of the advantages of the use of mechanical
models is the easiness in considering the inherent damping. The damping & can be
easily introduced in the pendulum representation (2.110) to obtain equation (2.103).
We did not find a methodology to measure the damping, so we fixed it at 0.001 for
all the M modes, which represents the viscous coefficient of the water at normal
temperature of around 20°C.

This last issue concludes the proof of Proposition 2.3.4. U

The choice of the state-space vector for the liquid sloshing, as in the case of the
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plate, is subject to several solutions. Finally, we choose the state-space vector as

X9:<91 \/%91 e 6 \/%ei Oy /O )T (2.120)

. . ) T
instead of < 0, 6 - 6; 0; -+ Oy Oy ) . This choice is done in order to
obtain a better conditioning of the system.

Using the state-space vector (2.120), the dynamic equation, for the general case

of an input g, is given by the following proposition:
Proposition 2.3.5. The dynamic equation for the mass-pendulum system is
Xg = AQXQ + Bguacc (2121)

where the matriz Ag computed from (2.103) for each i satisfies

Ay, 0 - 0
A= | O Ae O (2.122)
0 0 - A,
| 26, [t —\[E -
with Ag, = \/lg 0 and the control matrix By 1s given by:
By = (by,,0, ..., b,,0, ..., bg,,, 0)" (2.123)

|—=

0

o~

where by, = ( ¢ ) and Uq.. = Cy as the control variable.

With this last proposition the equivalent mechanical model is set. Based on the
method of calculus, the equivalent force and moment generated by the equivalent
model is identical to the one generated by the sloshing of liquid. Besides, as one can
observe from Proposition 2.3.4, all the parameters of the mass pendulum systems:
length, mass, position comparing to the center of gravity are independent from the

excitation parameters (time, frequency, amplitude).
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Conclusion: In this section we computed the model of the tank and liquid slosh-
ing. In order to easily manipulate the infinite dimensional model of the liquid we
made an analogy with a mechanical mass pendulum system. Finally, a state-space

representation of the sloshing behavior is computed.

2.4 Complete model representation

2.4.1 Infinite dimensional coupling

As presented earlier in the introduction, the idea in computing the complete model
of the entire structure is first to build one model for the plate and one for the tank
with liquid and second to combine them by studying the mutual interactions between
the two separate models. Therefore, as shown, in Section 2.2.2 we computed the
infinite dimensional model of the rectangular plate, given by the equation (2.27) and
in Section 2.3.3 we computed the infinite dimensional model of the tank with liquid,
given by the equation (2.67) and (2.68) for the liquid movement. The coupling is the
most difficult and a key point in our work.

For further details concerning the coupling between a sloshing liquid and a flexible
structure one can check [123] or [103]. Thus, to the best of our knowledge there are
no other works that will detail the coupling between a flexible plate and a tank with
sloshing liquid, in both infinite and in finite dimension.

In order to complete the model we first analyze the influence of the liquid sloshing
on the plate movement and second we analyze the influence of the plate bending on

the sloshing of liquid.

2.4.1.1 Influence of the liquid sloshing on the plate movement

The liquid sloshing is sensed by the plate as an external moment which, along with
the piezoelectric actuators, will contribute to the plate bending. As it can be seen
from the partial derivative equation of the plate (2.27), on the right-hand side of the
equation, we have m, and m, which are the external moments along the y and z-axis:

We recall this equation here:
0w ow

2 2
- YA = Pm,  0°m,

N 22 92

where w is the plate displacement from its equilibrium position. The other variables
were detailed before in (2.27).



2.4 — Complete model representation — 81

These moments are generated by the piezoelectric actuators glued to the plate
and by the sloshing of the liquid:

f
y

my = my +m, , m, =m? +m!

where my and m? are the moments delivered by the actuators and mg and m/ are
delivered by liquid sloshing along the y and z axis. Furthermore, the moments gen-
erated by liquid sloshing were computed in Proposition 2.3.3 for the moments along

the y-axis and z-axis.

2.4.1.2 Influence of plate deformation on the liquid sloshing

The plate deformation is sensed by the liquid sloshing as an external acceleration
that disturbs the liquid. The study of the liquid subject to an external acceleration
is given by the linear equation of motion of the liquid (2.67):

dp p

—+=+g(z—h)—-Cox=0

or P q( ) 0
where (Y is the external acceleration.

In our case, this acceleration is generated by the plate bending. Therefore, it can

be expressed as a two time derivative of the plate deformation w(y, z,t) computed in

the gravity center of the tank in steady motion G = (yg, z¢):

Co = W(ya, 2o, t) = > me(yar 2¢)di(t) (2.124)
k=1

Based on the issues detailed earlier in this chapter, we can write the complete PDE
model of the system. This model though, is not implementable on the experimental
device. Therefore, in the next section, we express the coupling in finite dimension

and we explicitly compute all the new matrices entering the model formulation.

2.4.2 Finite dimensional coupling

In this section we will write the finite dimensional approximation of the complete
system. As detailed earlier, we first computed PDE models for the plate and for the
sloshing liquid in the tank and second we made finite dimensional approximations
of two different kinds (modal for the plate and mechanical for the sloshing) to con-

struct state-space models. Now, we also need to study the influence of each model
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approximation onto the other.

Therefore, we consider again the two separate cases: the influence of the liquid
sloshing on the deformation of the plate and the influence of the plate deformation

on the tank filled with liquid up to an arbitrary level.

Before detailing these issues let us remind that in Section 2.2.3 we computed
the state-space approximation of the rectangular plate undergoing deformation (by
considering only the first N deformation modes) while in Section 2.3.4.2 we computed
the state-space approximation of the tank with liquid (by making an analogy with M

mass pendulum system corresponding to the first 2M — 1 odd sloshing modes).

Let us now detail the coupling issue.

2.4.2.1 Liquid sloshing influence on the rectangular plate

The liquid sloshing is sensed by the rectangular plate as an external perturbation
which comes by the mean of an external moment. Moreover, we suppose that the
total moment generated by the liquid sloshing is concentrated in a small square area
around the gravity center G (measured in steady motion) of the tank with liquid. This
area can be geometrically described by the position of the opposite corners (y1a, 21¢)
and (yoq, 226)-

If we denote My, the moment generated by the M considered mass-pendulums
system, his expression can be written from (2.118) by canceling the external acceler-

ation of the tank:
M .
Mgp = ZmszlﬂZ
i=1

where the fixed mass denoted m( was not taken into account since is not creating any

sloshing.

Further on, we can notice that the variable 6; can be expressed using the state-
space vector of the pendulum approximation given by (2.120). Thus, the previous
expression of the moment can be equivalently written:

M 9
Mgy = ( m;Lil; 0 ) \/Eg. . (2.125)
1,

i=1

This equation can also be further simplified if we notice that the column vector is
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the time derivative of the state-space vector Xy of the liquid:

%, = \/‘);9

The last expression (2.125) becomes, developing the sum:
Mg, = ( miLidy O oo myLili O - myLaly 0 )Xg
or again
Mg, = ( miLily O -« mLil; 0 -+ myLyly O )A(;Xg, (2.126)

the dynamic matrix Ay being computed from (2.122).

We make the same analogy as in the case of the moment generated by the piezo-
electric actuators (see Section 2.2.3.2). We consider that the moment generated by

liquid sloshing is being sensed by the plate as an external perturbation.

Since the moment is concentrated around the gravity center, we use again the

Heaviside step H from (2.57) to compute it.

As we did for the case of control actuator in Section 2.2.3.2, we integrate on the
surface where the moment is different than zero and we get the 2N components ag,,

of the perturbation matrix denoted Ag,:

222G
ame = Kop(V.(120) = Y. (110)) / Z,,(2)dz (2.127)

21G

Ya2G
Ko7 (226) — 7, (216)) / Y,y (y)dy

viGg

where ag,, € R™2?M and the matrix
KGp = ( mlllLl 0 --- mzlzLZ 0o --- liMLM 0 )AG

is computed from (2.126). Asin (2.46), i, jr express the deformations of the two con-

sidered beams of the plate deformation (see Section 2.2.3 and more precisely equation
(2.32)).
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The total perturbation matrix is finally written:

Qgp,

0

Agp=| % | e R2V2M (2.128)

Agpn

where the lines ag,, are computed from (2.127).

The state-space representation of the plate (2.63) can finally be rewritten taking

into account also the influence of the liquid sloshing and becomes:

{ X, = A, X, + Byu+ AgpXy (2129)

Yy = Cpo

2.4.2.2 Plate deformation influence on tank liquid sloshing

The tank senses the plate movement as an external horizontal acceleration, super-
posed on the tank own acceleration created by liquid movement without external

influence.

The mass pendulum systems were already analyzed under an external acceleration
Coy (see (2.110) or Figure 2.16). Now, we express this acceleration as a two times
derivative of the plate deformation w(y, z,t) at the tank gravity center (since the
external acceleration acting on the mechanical systems is located there). Therefore

we get:

=

Co = W (ya, 2, t) = > me(yar 20)di(t)
K1

where yg, 2z are the coordinates of the gravity center G along the y and z-axis.

Furthermore, for sake of simplicity, the terms not depending on the plate kinematic

parameters are introduced in a vector denoted K. Finally we get:

Co=FKa( @(t) wns® - @lt) @i - dv(®) wyan(t) ) (2130)
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where
Ko=(Yawa)Zi(za) 0~ Yilya)Zi(2a) 0 Yiy(yo)Ziy(za) 0 )

and the column vector is exactly the derivative of the state-space vector of the plate

X, as it can be seen from (2.43).

Thus, the latter equation can be written in a more compact form:
Co = Ko X, (2.131)
or again using (2.63),

CO == K(;Apo + Kngu. (2132)

Using the equation (2.132) into the state-space representation of the mass pen-
dulum systems (2.121) we get the complete state-space representation of the mass

pendulum systems connected to the plate:
Xy = ApXy + By(KgA, X, + KgByu) (2.133)

where all the matrices are detailed in Section 2.2.3 and in Section 2.3.4.2.

2.4.2.3 Compact writing of complete model
The state-space representation of the complete model can be written in a compact

form by using equations (2.129) and (2.133). By taking the state-space vector of the

complete system as a combination of the plate state-space vector and liquid state-

()

the complete model written for N modes of the plate and M # N mass pendulum

X = Ay Aoy X + By U
App  Ag By (2.134)

y=(¢c 0)x

space vector

systems is:
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where A,y = ByKgA,, Byy = ByKsDB, and 0 denotes null matrix because the output
variable is the piezoelectric sensor which is not influenced in any way by the liquid

sloshing.

In this section we first expressed the coupling between the PDE plate model and
the PDE liquid model. This is done by studying the influence of the plate bending on
the liquid sloshing and wvice-versa. Based on this, an approximation of the coupling

was then conducted.

2.5 Conclusion of the chapter

In this chapter, the complete model of the experimental device was computed. It

was first wrote in infinite dimension and then approximated under the shape of a

state-space representation. The final expression of the model is given by (2.134).
This model will be used in Chapter 4 in order to compute different types of

controllers that will be used to attenuate the vibrations of the structure.



Chapter 3

Controller synthesis - Theoretical

approach

The model of the structure was previously computed in Chapter 2 and is written as

the system of equations (2.134).

In this chapter we detail some preliminary techniques in order to effectively com-
pute the model, along with some details for the application of different control meth-
ods. We propose two types of control starting from the state-space representation:
first, a classical pole placement control coupled with a Luenberger observer and sec-
ond, a frequency domain H., control, designed with meeting frequency-domain per-

formance criteria.

In this chapter we also detail some of the theoretical considerations regarding
the problem of active control of vibrations for our experimental setup imitating a
plane wing (see [4] for more details about airplane characteristics and control). The
experimental plant is a flexible structure thus our control problem can be considered
as a part of the complex class of active control problems of flexible structures. One
can read [82| for different control strategies that can be applied on flexible systems,
[131] for a controller that takes into account the nonlinear behavior of these systems,
[17] for a feedback controller or again 14|, [12|, [126], |15], [88] where the robust
H_, control of flexible systems is detailed. In our case, the objective is to attenuate
the vibrations of the structure while maintaining some predetermined performances.
More precisely, the issue is to attenuate the mode vibration while the structure (thus

the dynamic) is affected by perturbations.

87
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3.1 Energy computation

Before starting the control procedure, an important step is to chose the number N of
plate modes and the number M of mass pendulum systems we will use for computing
the analytical model. As it will be proven latter in this paragraph, the influence of
the sloshing modes on the total plant dynamics is much smaller than the influence
of the plate’s bending modes. We will indeed see latter that the magnitude of the
sloshing modes is very small comparing to the one of the plate modes. Therefore,
the most important choice is the one of the appropriate number of plate modes.
Nevertheless, the method will be detailed for the whole coupled system, rectangular

plate and cylindrical tank together.

Several factors must be taken into consideration. First of all, we should insure
that the number of modes we select give a close representation of the experimental
setup. Since the experiment corresponds theoretically to an infinite number of modes,
the truncation we perform should gather the largest number of modes. But this is
not relevant in practice since in this case the control cannot be computed due to the

very large dimension of the system.

Considering the plate, since we want to control flexion and torsion movements, it
is natural to consider both flexion and torsion modes in our truncated model. Even
in this case, we need to find how many torsion and flexion modes have to be taken
into consideration in order to have a good approximation. For example one can check
the work [114] where, on the same experimental setup as ours, the author chooses
only one flexion mode and only one torsion mode of the plate with no sloshing mode.
Another example can be found in the works [81] and [133] where the authors choose

a priori the number of considered modes.

In our case, even though the a priori choice is still possible, we propose also an-
other method based on the energetic contribution of each mode of the model. The

basis for the energy calculation used in this approach can be read in [146, Chapter 4.6].

The first point is to consider that the system is in his diagonal representation.
Even though the plate modes and the liquid sloshing modes are decoupled (because
their dynamic matrices are in a diagonal representation due to the decoupled modes
hypothesis), the coupled dynamic matrix is not diagonal due to the coupling between
the plate and the tank, as detailed in Section 2.4. This last issue can be easily noticed
by considering only the final equation of the complete system (2.134). If the system

is diagonal, the controllability and observability Gramians have a special shape which



3.1 — Energy computation — 89

will make possible the energy computation (see equation (3.3) below).
Consider the total output energy er of our system denoted X(s) of dimension
REMF2N)x(2M+2N) yepresented by equation (2.134). When the system is excited by a

Dirac unit impulse on his input, the energy can be written as:

er = |ly(®)I5 = lIZ(s)I]3. (3.1)

Moreover, using the observability Gramian W, and the controllability Gramian

W.., this expression can be rewritten as in [146, Chapter 4.6]:
er = Trace{ BW,B"} = Trace{CW.C"} (3.2)

where the B and C' are the control and output matrix of the system written in the
diagonal state-space representation.

We suppose that the controllability Gramian has the following shape:

Wi e Wi e Wierrsan
W, — (3.3)
Wi e Wi; e Wien yan)
Wenany -+ Wenteny - Wentenemien)

where W;; = VVZ:]F since the dynamic matrix is diagonal.
Since the system is written in a diagonal basis, and the dynamic matrix has only
complex conjugate pairs of eigenvalues, each element of the controllability Gramian

verifies an autonomous Lyapunov equation:
AW + WZ-]-AJT + BZ-B;‘-F =0 (3.4)

where A; € R?*? and A; € R**? are the dynamic matrices corresponding to the *"
and j™ modes.

The output contribution of each mode, can be computed by substact from the total
energy er the energy that the system would have had if this mode was uncontrollable.
Therefore, the methodology we are using is simple: we consider that for a specific
mode of index k, the corresponding control matrix By (see (3.4)) is equal to zero. In
this case we notice that, the newly computed Gramian matrix, denoted W, in order
to emphasize the uncontrolled mode k, has the elements containing the k"™ mode,
equal to zero.

If we denote the output energetic contribution of the £ mode by E, , its value

%)
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can be written:
E,, = er — Trace{CW, C"} (3.5)

For us, it is more convenient to compute the modal energetic contribution instead
[134]. This is easily done by replacing the output matrix C' in equation (3.5) by
the identity matrix I of dimension (2M + 2N) x (2M + 2N). Therefore the modal

energetic contribution of the £ mode is:
By = er — Trace{IW,, 1"} (3.6)

Finally, using a simple percentage operation f—;lOO we can compute the energy con-
tribution of the k"™ mode comparing to the total amount of energy of the plant.

In our case, we compute analytically the state-space model of the plate using a
large number of modes (14 modes for the structure). We then use this methodology
and equation (3.6) to compute the energy contribution of each mode. Finally, we sum
the energy of all the modes until more than 90% of the total plate energy is reached.
Thus, the considered modes describe well the plate behavior in terms of energy. The
correct amount of modes is set. See below in Section 4.2 of Chapter 4 for the results

of this algorithm on the experimental device.

3.2 Pole placement and full state observer

Using the state-space representation (2.134), we now aim at computing a controller
using the pole placement method. As seen from Figure 1.1, there are two piezoelectric
actuators in the system input and two piezoelectric sensors in the system output.
Actually, they are not both used as inputs and outputs of the system. One actuator
is used for system input and one sensor for system output. The other actuator glued
on the plate is used, as it will be shown latter in Section 3.3 below, as a possible
input for applying perturbations to the system. The other sensor is used only for
further complementary measurements, when needed. Thus, the system we consider

is a single input single output system (SISO).

Pole placement control
The pole placement method is well known in control system theory. Our purpose
here is not to offer a detailed presentation of the method but just to give a few

details concerning the implementation of the method in our case. For further details
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Figure 3.1: State feedback control

about state-feedback and pole placement coupled with observer construction one can
check for example the references [9], [57], [77], [143] among others. For a feedback
control implementation on a flexible structure, one can see [89] for example. The
pole placement method gives the user the possibility to choose himself the location
of the closed-loop system poles, therefore allowing the possibility of placing them
at some predetermined locations. Although this method has some drawbacks when
considering very complex systems, it is quite good for our case and may be seen as

an introduction to the control of more complex systems.

Usually, the state-space design control methods, such as the pole placement in our
case, are more easily performed using a full or partial state feedback. In the case of the
state feedback, the control action is achieved by feeding back a linear combination of
the system’s states through a matrix (or gain depending on the feedback type) usually
denoted K. The diagram of the state feedback control is depicted in Figure 3.1, where

the different blocks are exactly the ones from the state-space representation (2.134).

Let us consider a state-space representation of a 2M + 2N dimension linear time

invariant (LTI) system, written in the compact standard form:

(3.7)

{z@ = Az(t) + Bu(t)
y(t) = Ca(t),

where the first equation describes the dynamic of the system and the second equation

the measured output. The values M and N stand respectively for the number of
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plate modes and mass pendulum systems. The physical meaning and the dimensions
of y and u are presented in Section 2.4.2.3 of Chapter 2. Furthermore, we assume the

system is causal, and therefore the usual feed-forward matrix is zero.

Using the feedback law, the control signal can be written
u(t) = —Kux(t) + r(t)

where x(t) is the state-space vector of the system and r(t) is a reference signal. Two
different cases can be found for the reference signal. It can be different from 0 and
variable in an unstructured manner. In this case we need the system output to track
rapidly, for a specific class of systems, this reference signal. The other possibility is
when the reference vanishes (r(t) = 0). In this case, the controller generates a certain
command to the plant based on the error between the system reference r and the
system measured output y. The goal in this case is to generate a control that first
will rapidly and smoothly take the values of the system output to the value of the
reference (or set point) and second will maintain the reached value in the presence of
some external disturbances. In this case the control system problem is a regulation
problem and the controller is called a regulator. Afterward, we place ourselves in
this type of control problem. Taking this last issue into account, the earlier equation

becomes:
u(t) = —Kux(t). (3.8)

Replacing this last equation into the dynamic representation (3.7), we obtain the

closed-loop representation of the system with feedback:
i(t) = (A — BK) x(t). (3.9)

In this case, all the closed-loop poles of the system can be placed by selecting the
value of the K matrix such that the eigenvalues of (A — BK) are at the desired pole
values. This can be done only if the open-loop system is fully controllable, that is to
say the rank of the controllability matrix is the same as the dimension 2M + 2N of

the dynamic matrix A.

The controllability of a system is a key concept in the computation of system
control laws since it tells if the implementation of classical control laws will be of
some result or not. A system is said to be controllable if any initial state x, at any

initial time ¢, can be moved to any other desired state xy = z(t;) in a finite time
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interval t; — ¢y > 0 and by applying an admissible control function. The direct result
of this formulation is the definition of the controllable system using the controllability
matrix (). defined as in [139] by:

Q= (B AB ... ACMENIR). (3.10)

As a conclusion, the controllability of the system is assured, meaning that the
matrix pair (A, B) is controllable, if rank(Q.) = 2M + 2N.

Finally, if the system is fully controllable, we choose the value of the closed-loop
poles, which are the eigenvalues of (A — BK), and then we compute the matrix K.
There are different methods for computing this matrix and for further details one can
check reference [101]. For example, the direct substitution method combined with the
computation of the coefficients of like powers can be used, or again the Ackermann’s
formula (see [99]). Another elegant way is to write the system in the controllable
canonical form, using an adequate transformation matrix, and then simply compute

each element of the K matrix by simple subtraction operations.

Observer design
The first assumption when designing a state feedback control is that all the system
states gathered in the state-space vector z(t) are known, and thus they can be used
for the feedback law. In practice thus, this is only sometimes, but mostly never,
true. There are many reasons. One first reason may be simply from the impossibility
to measure some of the system states, either because of their very large quantity or
because of the great cost that will be needed for specialized sensors. Another reason
may be just simply the impossibility to measure some system states since they have no
physical meaning or because the noise in the measurements is too large and therefore
it gives a faulty measurement.

A straightforward class of solutions are the observers (or estimators). They were

first introduced by Luenberger [84] and are defined as a system which (see |139]):

e is intended to approximate the state vector x of another system by means of a

vector T;
e has at its inputs the inputs and available outputs of the latter system.

The observer can be either a Luenberger observer (see [84]), if the signal-to-noise

ratios are sufficiently high (thus the system can be treated as deterministic) or a
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Kalman filter (see [68|) if the signal-to-noise ratios are not very high. In our case
though, we consider the system deterministic. Therefore we will further use Luen-

berger observers.

Moreover, since we do not have information about any of the parameters of the
state-space vector, we need to reconstruct all the state-space vector x of the system. In
this case the state-space vector of the observer becomes identical to the approximated
state-space vector of the plant z. This observer is called full state Luenberger observer

and some steps regarding his construction are detailed in the following lines.

Before starting the controller computation, we suppose that there is no additive
noise in the state equation or in the measurements and controls. Using this assump-
tion, we think of estimating the entire state-space vector of the LTI system using
only the output and control measurements. The error between the estimated state
2 and the true state should become minimal. There are several ways of defining the
minimal error [99], either as the minimum square error, minimum absolute error, etc.,

but in our case the estimation error is defined as:
e(t) = z(t) — z(t). (3.11)

Therefore, as stated earlier, the constructed observer should satisfy e(t) P 0.
——+o00

The main idea in the observer construction is to choose a predetermined shape

for the observer:
z(t) = Fi& + Gy(t) + Hu(t) (3.12)

where y(t) and u(t) are the measurement output and the control input of the real
plant (3.7). The vector  has the same dimension as the state-space vector z since

the observer is a full state observer. Furthermore, the matrix F'is a square matrix of
dimension (2M + 2N) x (2M + 2N) while G and H are in RZM+2M*1 gince 4 and u

are scalar measures.

Putting the dynamic equations (3.7) and (3.12) in the error equation (3.11) we

obtain
e(t) = i(t) — 2(t) = Ax(t) + Bu(t) — (Fi 4+ Gy(t) + Hu(t))
or again using the measured output equation from (3.7)

&(t) = Fe(t) + (A — GO — F)a(t) + (B — H) u(t). (3.13)
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Furthermore, we want this error to be independent both of the control law we
are considering and of the state-space vector we want to reconstruct. Therefore, we
need it to tend asymptotically to zero regardless these issues. This means that it is
compulsory to have H = Band F = A — GC.

Moreover, the G matrix is computed using the pole placement method detailed in
the previous part. From the control theory we know that we can find the G matrix,
that will arbitrarily place the poles of A — GC' at the desired locations, but only if
the system is observable.

The observability of a specific state or of the whole system is a key concept in
the computation of observers. In this case the output has all the components of the
state, therefore, it is possible to estimate all the system’s states using only the input
and output of the system. Moreover, the concept of observability is mathematically
dual with the concept of controllability presented earlier.

A system is said to be observable if any initial state z(to) can be determined after
a finite time interval t — ¢y from the measurement history Y (t) = {y(7),to < 7 < t}.
Thus, the whole vector x can be computed given the uniqueness of the initial state
(see [139)]).

Using the observability test matrix Q,:

C
CA
Q. = | , (3.14)

CA(2M+2N)—1

the observability of the system can be written: the system (3.7) is fully observable
(or the matrix pair (A;C) is said to be observable), if the observability matrix has
full rank: rank(Q,) = 2M + 2N.

Separation principle

Until now we treated separately the two issues, observer design and state feedback
control design, without taking into consideration the influence of one to the other.
Actually, we considered them to be completely separate and we did not check if
there is, or not, a reciprocal influence of their dynamics. But, as it can also be seen
from Figure 3.2, they can not be treated separately since the feedback law uses the

estimated system state since the real state vector is completely unknown.

It can be easily proven that, in our case, when the reference signal is equal to zero,
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v = Az + Bu Y
y=Cx
Observer
T
u=—Kz2

Figure 3.2: Feedback control law and observer

using (3.9) and (3.13) we can write V¢ > 0:

<:'c(t)> _ <A—BK BK )(m(t))
é(t) 0 (t/)l—GC e(t) (5.15)
vty = (c o) (e(t))

Computing the characteristic equation of the system (3.15), we obtain:

sl — (A - BK) _BK
0 sl — (A —-GCO)

(s) = det [

and since the system is block triangular, the characteristic equation becomes
¥(s) =det[s] — (A — BK)]det[s] — (A — GC)] = 0.

This last equation indicates clearly all the poles of the closed-loop system with the
observer. They are only the poles of the plant that result from the computation of the
feedback gain K and the desired observer poles, chosen when computing the matrix
G. This is called the principle of separation of estimation and control (or shortly
separation principle or deterministic separation principle [15], [104]). Therefore, the

optimal feedback controller can be solved by separately design an optimal observer,
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for the state-space system, which will feed the optimal deterministic controller.

Some practical precautions have to be taken while choosing the poles. First of
all, we would like the estimator error to vanish as quickly as possible so that the
feedback law becomes in reality v« = —Kx and not u = —Kz. In order to do this,
the observer poles will be chosen so that they are faster than those of the system we
are estimating. Hence the observer will be delivering a faster response. This means
that the smallest chosen pole (in absolute value) of the observer will need to have
its magnitude considerably larger than the value of the smallest system pole. At the
same time, we need to be careful since very large observer poles will imply a very
fast response from the observer. This suggest that it will not follow only the system
but also the noise of the ignored measurements. The same rule applies also in the
case of the feedback control. Here, the observer poles must be chosen faster that the
closed-loop system poles. There are different methods in the literature concerning
how fast the observer poles have to be in comparison to the feedback poles (see [9]
or [128|), but the criteria used are only empirical. In spite of this, we state that we
can not a prior: impose a certain amount since this basically depends on the system
under consideration.

It is well know that only the real part of the complex eigenvalues influences the
response time [9]. In our case we observe that choosing all the feedback poles with
their real part larger than the real part of the open-loop poles is a complicated issue.
This is due to the voltage delivered by the feedback controller which is exceeding the
actuator amplitude limitations.

Further details about the implementation of the state feedback law, along with

tests on the experimental device are given later in Section 4.4 of Chapter 4.

3.3 H,, controller

When considering the problem of active control of flexible structures, the most em-
ployed approach is the one using H,, theory. This is mainly due to the fact that,
in the control problem, many issues usually need to be taken into account. Let us
detail these issues for our case. First, since the modes we consider are the most ener-
getic ones (see Section 4.2), the controller has to attenuate especially the vibrations
of these ones. Second, the controller needs to attenuate vibrations in spite of model
mismatching or uncertain description of some physical phenomena. Third, the dy-

namic of high frequencies, which has been neglected in the model computation, needs
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also to be taken into account. Finally, our purpose is to see how the system reacts
to exterior perturbations, thus the controller must be robust enough in order to take
this specification into account. Based on these issues, the H., approach seems to be

the most natural one.

The work in the field of robust H,, control is very dense. The purpose of this
paragraph is not to give a fully detailed presentation of the theory but just to give
some pointy details and to focus on the actual implementation of the control to our
setup. For a complete overview of the method, one can check the first works |51] or
[145]. For a more practical approach, one can read references [12], [59] or [85] where
implementation methods are carried out. The specific case of H,, control on flexible
structures can be checked in |5], [37], [69], [88], [135] among others.

When computing the model of a flexible structure coupled with a liquid flow,
numerous sources of errors may exist. For instance, we can cite the damping of the
liquid sloshing which in our case is chosen constant for all modes and which in reality
is not. Another example we can mention concerns the clamped side of the plate which
we considered to be perfectly fixed. In reality this is not always true, and each small
movement of the clamped side can change the value of the frequency and the modes
shape. Finally, and probably the most important source of errors to our knowledge, is
the contact between the tank and the rectangular plate or the perfect centering of the
tank to the plate. The contact is assumed to be perfectly rigid during the modeling
phase but in reality, we can observe that it is not. Furthermore, experiences on the
experimental device show that the system behavior is different based on the tank
being perfectly centered or not (decreases in the amplitude of the first flexion mode
of the plate are visible if the tank is not perfectly centered, especially when a large

amount of liquid is considered).

This gap between the dynamic model and the actual experimental setup, leads us
to choose a type of control that can be robust to all these issues. At the same time,
one should be aware of the inherent trade-off that exists between the robustness of
the control law and the performance objectives [14]. Finally, one should also keep
in mind, that, in the case of airplanes and space vehicles the natural frequencies of
the controls generated by the pilot and the natural frequencies of the first sloshing
modes of the fuel are very close [21]. This implies that great care should be taken

when eliminating the unwanted sloshing modes.

The robust method we employ here is based on the ||- ||, norm which indicates the
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maximum gain value of the frequency response of an arbitrary transfer function F:
[1Flloo = sup7(F(jw)) (3.16)
we

where o denotes the maximum singular value. For a SISO system, this equation states
that ||F||s represents, on the Nyquist plot of F'(p), the distance from the origin to
the farthest point on the plot. On the Bode plot, ||F'||w is the highest point on the
magnitude frequency response.

As stated in Section 3.1 the first modes are the most important in terms of defor-
mation energy of the structure (therefore having large amplitudes on the Bode plot -
see the experimental Bode plot from Figure 4.2 in Section 4.2 of Chapter 4). We want
to attenuate these resonant peaks of the transfer function between the perturbation

and the controlled output.

_wo ] -z

Figure 3.3: Standard H, problem

Before starting the computations, we first write our problem in the standard form
of the robust control, depicted in Figure 3.3. In this figure, w is the vector gathering
all the perturbation signals, u is the control signal generated by the robust controller,
y the output signal of the plant (the voltage delivered by the piezoelectric sensor) and
z is a vector that contains all the to-be-controlled outputs. The choice of the variables
contained by the z vector is very difficult. In our case, we propose a first choice for the
to-be-controlled outputs by considering: the output signal of the plant y and the signal
u generated by the H,, controller. The experimental state-space representation of the
experimental setup (2.134) is denoted by P(s), and the computed robust controller
by K(s).
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If we take into account the four input and output signals: w, u, y and z, the plant

P can be written by decomposition in four distinct matrices:

=P P
[o=we o

y = Poyw + Pyu

or in a compact form

Pll(S) Plg(S)

P(S) - P21(8) PQQ(S)

Taking into account the feedback law u = Ky, equation (3.17) gives:
z = (Pu + Png(]I — P22)_1P21)w,

where (Py1+ P K(I— Pyy) 1Py ) = Fy(P, K) is the lower linear fractional transforma-
tion (LFT). In addition we can also write the upper linear fractional transformation

F,(P, K) which express the transfer between the control and the output of the plant:
Using the LEF'T, the H., control problem now becomes:

Finding the system K (s) that will satisfy the optimization problem:

i Fi(P, K)||so- 1
stabirlrzl'zli%gK” l( ’ )||oo (3 8)
This optimization problem is further solved either using DGKF method and Ri-
catti equations (see [51]) or linear matrix inequalities (LMI) method and semi-definite
programming (SDP) (see [31], [55]).
The state-space representation of the complete model, in the H,, framework (see

Figure 3.3) can be summed up by:

#(t) = Ax(t) + Biw(t) + Bau(t)
Z(t) = CllL'(t) + Dlgu(t)

where matrices Dy, Do; and Day (see the H,, framework of [145, Chapter 14|) are

equal to zero. The control variable wu(t) is the voltage applied to one of the piezo-
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electric actuator patch, the perturbation variable w(t) is a perturbation applied to

the other piezoelectric actuator, the output variable y(t) is the voltage delivered by
u(t

one of the piezoelectric sensors and z(t) = ( Eg) is the to-be-controlled output.
)

Furthermore, the variable u(t) is selected as a controlled variable since we need to
keep the voltage delivered by the controller in the limits imposed by the actuator

saturation.

To take into consideration the value of the perturbation, we need to express it in
a mathematical way so that it can be introduced in the robust controller synthesis.
In our case, it is a random perturbation characterized by his frequency spectrum.
Since the modes we consider are only of low frequency, it is natural to consider a
perturbation whose frequency spectrum is also in low frequency. Furthermore, as it
will be proved later in Section 4.2 of Chapter 4, we want to control all the system’s
modes until almost 30Hz. Therefore, we chose the low frequency spectrum [0 . ..50]Hz

for the perturbation, which is large enough in order to influence all the modes.

One can imagine many ways of modeling a frequency spectrum using filters. First,
the order of the filter has to be selected. Second, depending on the frequency band
we want to cover, we can choose different types of filters (low pass, high pass, band
pass). In our case, since we want to cover the low frequencies band, the spectrum
is modeled by a first order low pass filter. Indeed, since the perturbation has not a
very complicated shape, we consider that a first order is sufficient to make a good
approximation. Moreover, the cut off frequency of the filter is 50Hz. Under these

considerations, the transfer function of the filter at the input of the perturbations, is:

1007

(s) = —"
1) = " Hoon

(3.19)

We also have to take into account the uncertainties related to the neglected modes.
As stated earlier in the model presentation (see Section 2.2.3 for the plate and Sec-
tion 2.3.4.1 for the tank with liquid, in Chapter 2), we neglected the higher order
modes, thus the influence of their dynamic on the total dynamic of the system. The
problem that may appear is an inherent and very important one in the control of
infinite dimension systems: the spillover (the controller influence on the neglected
high frequency modes). This issue is well analyzed in [15] or [16]. Moreover, it was
proven that spillover is function of the actuator - sensor location and their effect on
the neglected modes. The idea behind this is to see if the controller computed for

some modes, does not destabilize the neglected ones. It is also well known that the
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most likely mode to be destabilized is the first neglected mode [64].

Solutions to overcome the spillover are numerous. Let us mention a few of them:
prefiltering the system output (prefiltering the piezoelectric sensor for us) [15], re-
design of the structure and/or the controller [16] or placing the piezoelectric actu-
ators and sensors where the spillover effect of the uncontrolled modes is small [66]
(although this will diminish considerably the controllability and the observability of
the system [15]).

The core idea of our reasoning, is to choose a low pass filter [125], which will
introduce a roll-off specification in the controller synthesis, with a cut-off frequency
fairly lower than the natural frequency of the first neglected mode [69]. This, on the
other hand, will unavoidably worsen the control of the last considered mode [69]. As
an example, one can check the work [88| concerning the implementation of the low
pass roll-off filter on a flexible rectangular clamped-free-free-free paddle, similar to
our plate.

Moreover, due to the closeness of the natural frequencies, the low pass filter has to
have a sharp cut between the frequency of the last mode under consideration and the
first neglected one. Thus, we choose more than 60dB/dec attenuation for the filter.
There are different shapes of filters with different behavior in the low pass frequencies

domain (see [133]). In our case we choose the roll-off filter with the transfer function:

Hy(s) = (1 i 7) (3.20)

where w; is the angular frequency of the cut-off while wy is the angular frequency

from which the high frequency attenuation gain is constant. Moreover, n is the order
of the filter, that gives also the attenuation slope desired. Since we want at least
60dB/dec attenuation, the order is n > 3.

In order to use this filter in the robust analysis, we add it on the control signal u
as it can be noticed on Figure 3.4. The H; filter modeling the perturbation is also
added in the input of the system on the perturbation channel.

When considering the "to-be-controlled" output 2z, a more careful analysis needs
to be carried out. First of all, as said earlier, we must monitor the amplitude of
the control u since we do not want to reach the saturation levels of the piezoelectric
actuators. Therefore, one component of the z vector will be necessarily the control
u. Since we also want to attenuate the structure vibrations, we also need a variable
that can quantify this.

In order to quantify the structure’s vibrations we have two types of measures at
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our disposal: the measures given by the piezoelectric sensors and the measures given
by some mobile accelerometers. Both have the advantage of having a wide and regular
band pass. The second measure is easier to use in the control problem since after
two successive integrations we can find directly the position of the structure. This
comes with a great drawback which is the noise level. Even though both measures
are related to a charge amplifier (see Section 1.1 of Chapter 1), which is intended to
reduce the noise level in the measurements, we notice that the measure given by the
accelerometers is more noisy since they are more sensitive to the electric environmental
field. This sensitivity coupled with the two integrations leads to very noisy measures
at the end. This last issue lead us to use the data given by the piezoelectric sensors.

The whole robust synthesis, put under the shape of a standard H,, problem, is
depicted in Figure 3.4.

21

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.4: Standard H, problem

3.4 Conclusion of the chapter

This chapter details the theory behind the tests of the next chapter. First, a the-
oretical basis for analyzing the experimental setup in terms of energy was given in
the beginning of this chapter. Then, some theoretical details concerning the pole
placement control and the robust H,, control are also presented.

Details about the computation of the most energetic modes of the system will

be given in Section 4.2 while the controllers will be implemented and tested in Sec-
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tions 4.4 and 4.5 of Chapter 4.



Chapter 4
Experimental results

In this final chapter the theory depicted earlier is implemented on the experimental
device described in Chapter 1. This chapter will be constructed as follows: we first
choose a suitable amount of modes for the finite dimensional approximation and sec-
ond, for each mode, we make a very precise determination of its natural frequency
and of the value of its damping. Using the theory described in Section 3.2 of Chap-
ter 3, we propose a pole placement controller that will attenuate the plate vibrations.
Then, using the framework of Section 3.3, we compute an H., robust controller that,
besides attenuating the plate vibrations, makes the system robust to some external

perturbations. We will compare the results of both methods in Section 4.6 below.

4.1 Influence of the actuator dynamics

First of all we think that it is of great importance to test, wether or not the dynamics
of the actuators has an influence on the dynamics of the model. As presented in
Section 1.3.3 of Chapter 1, the response time of the piezoelectric patch is greater than
the one of the voltage amplifier. Moreover, the speed limit of the voltage amplifier is
greater than the normal frequency at which the system works (which is, as it will be
proven later in Section 4.2, of a few Hertz). Based on these issues we infer that the
actuator dynamics will not influence at all the dynamics of the system since it has a
much larger bandwidth than the frequencies we consider.

Before proceeding to further tests, this issue is verified for numerical simulations.
Therefore, we compute our model for a great amount of modes and for a fixed tank
filling level of 0.9. We use 13 modes in this case, the first 3 for the liquid sloshing
and the first 10 for the plate bending. These modes cover a natural frequency range

between 0 Hz and 200 Hz and their amplitude and natural frequency are identical to

105
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Bode Diagram
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Figure 4.1: Bode plot of the system with and without considering the actuator dy-
namics, tank fill level of 0.9

the ones retrieved experimentally (see Figure 4.2 for an experimental Bode plot).

The Bode plots are given in Figure 4.1, for the case when the actuator dynamic is
considered or not. As it can be seen, the two Bode plots are exactly the same which
prove, as we expected, that the dynamic of the actuator does not influence the overall

dynamic of the system for this frequency range.

Therefore, in the final system’s model, the dynamic of the actuator will be modeled

only by a unitary gain.

Remark: As it was proven in Section 2.2.3.1 of Chapter 2, the damping of the
plate is computed from the quality factor @; using equation (2.42). Since the quality
factor depends on the voltage applied to the structure, the damping of each mode
will also depend on the voltage. Therefore, from now on, all the experimental tests

are done using the same voltage of 2.5V amplitude at the input of the structure.
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4.2 Choice of the suitable amount of modes

Before computing different controllers for our system and calculating the state-space
representation of the experimental set-up (see Section 2.2.3 where the procedure is
detailed), we need to determine the number of plate and sloshing modes we are going
to consider for this finite dimensional approximation. The computed controller will
then be simulated on a larger model. This is done in particular in order to test the

existence or not of the spillover effect.
Several issues need to be kept in mind before fixing the number of modes.

One first issue concerns the frequency of the control signals generated by the pilot
of the airplane. These commands are at low frequency (see [111], [129]), independently
on the flight control of the airplane being fly-by-wire (the electronic control signals
are transmitted by the pilot through wires to computers which determine how to
move each actuator in order to have the desired response |4]) or fly-by-cable (the
pilot himself has a physical connection to the flight control actuators which give the
desired response to the airplane). Therefore, we should be aware of considering,
in the model state-space approximation, especially low frequency modes since only
these mode will interact with the control frequencies of the signals generated by the
pilot (see [120] for an overview about the airplane modeling and flight requirements).
The high frequency plate and sloshing modes, that are not in the range of control
frequencies, can be easily dealt with (even removed) using a low-pass filter. Since
they are not excited by the control frequencies, they are also prevented for getting to

resomnarce.

Moreover, we would like to consider besides the inherent flexion modes, at least
the first torsion mode of the plate, in order to see how the controller reacts to both

types of plate movements.

In addition to all this, the main issue is that we must control the most energetic
modes of the system. Using the energy approach detailed in Section 3.1 of Chapter 3,
we compute the energetic contribution ratio of each mode to the total energy of
the system. The choice of the modes will then be done by studying their energetic

contribution.
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Figure 4.2: Experimental Bode plot for a tank fill level of 0.9 in the frequency range
[0,200]Hz. #1 is the first flexion mode of the plate, #2 is the first sloshing mode of
the liquid, #3 and #4 are the second and third sloshing mode of the liquid (they are
almost invisible due to their very small amplitude), #5 is the first torsion mode of
the plate, #6 is the second flexion mode of the plate, #7 is the third flexion mode of
the plate, #8 is the forth flexion mode of the plate, #9 is the fifth flexion mode of
the plate, #10 is the sixth flexion mode of the plate, #11 is the second torsion mode
of the plate, #12 is the seventh flexion mode of the plate, #13 is the eight flexion
mode of the plate

We first start with a Bode plot of the experimental set-up in the case where the
tank fill level is 3_}82 = 0.9 (see Section 2.3.2). The plot is depicted in Figure 4.2 for
frequencies ranging from 0Hz to 200 Hz. Based on this Bode plot we are able to
compute the mode energy. The plot is obtained using a spectrum analyzer. Giving
the input voltage and the range of frequencies, the spectrum analyzer generates a
chirp signal, records the output of the device and generates the Bode plot. The
advantage of employing the spectrum analyzer is the speed and simplicity of the

method while the drawback is the finite number of points that the spectrum analyzer
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can record. Therefore, a large frequency range implies a large distance between the
recorded points. To overcome this issue, the Bode plot from Figure 4.2 was done as
a superposition of several Bode plots. Using this approach, as the frequency range
decreases and the maximum number of recorded points is constant, the distance
between two consecutive recorded points decreases. Another advantage is that, since
we have a small frequency range, each mode (especially the low frequency ones) passes

the settling state and is thus recorded in the steady state.

Remark: Although we are aware that the experimental Bode plot may be used to
find directly the state-space representation of the system, this is not our purpose here.
If this would have been the case, we could have modeled the experimental device from
the beginning using the finite element method. As explained in the introduction of
Chapter 2, during the modeling phase we want to stay as close as possible to the
physical meaning of the device and we do not want to see the plate and the cylinder
just as a system with no physical interpretation. Using the system identification, or
finite element method, we would obtain a system in which we can not differentiate the
plate parameters from the liquid parameters. In this case it would be impossible, for
example, to control only one parameter of the plate (like for example the first flexion

mode) or only one parameter of the liquid (the first sloshing mode for example).

Mode Characteristic | Natural freq. | Energetic contribution rate % | Total %
1%t mode flexion 0.6238Hz 62.9542 62.9542
274 mode sloshing 1.1556Hz 7.3177x1077 ~62.9542
37 mode sloshing 2.1454Hz 0.0010 62.9552
4" mode sloshing 2.7929Hz 3.7632x107* 62.9556
5" mode torsion 5.9977Hz 0.0220 62.9776
6" mode flexion 8.2508Hz 9.1247 72.1023
7" mode flexion 14.2495Hz 10.0202 82.1225
8" mode flexion 21.0321Hz 13.5014 95.6239
974 mode flexion 46.2245H7 1.6166
10" mode flexion 58.0139Hz 2.3702
117 mode torsion 86.7584Hz 0.3873
12" mode flexion 132.6601Hz 0.0012
1374 mode flexion 199.9073Hz 0.0752

Table 4.1: Modal energetic contribution rate of each mode



110 Chapter 4 — Experimental results —

As seen in Section 2.3.2, in order to apply the energy approach method, it is
compulsory for the structure model to be in the diagonal form. Since initially the
model is not diagonal due to tank/plate couplings, we use a system transformation
which will put the model into a diagonal form. The natural frequency of the modes
along with the results of the method are given in Table 4.1.

As it can be seen from Table 4.1, the first 8 modes of the system, with frequencies
up to 21 Hz, contain 95% of the total energy of the system. One should notice that
in this case all the constraints detailed earlier are respected: the considered modes
are the most energetic ones, at least one torsion mode of the plate is present and the
mode frequency is low enough so that it can interfere with the natural frequency of
the airplane controls.

Therefore, from now on, for all the controller computations, we consider M = 3
modes for the liquid sloshing and N = 5 modes for the plate bending. The modal
energetic contribution is computed for a fixed tank fill level. Concerning other tank
fill levels, the energetic contribution of the modes is similar, the only difference being
that, as the fill level decreases, the influence of the first flexion mode of the plate
decreases. In spite of this issue, we consider that the first 8 modes still represent the

main part of the energy of the total plate.

4.3 Model adjustments

Before performing the tests on the experimental set-up, some model computations
need to be made. As presented, in Section 2.4 of Chapter 2, we write the complete
model of the system: the rectangular plate coupled with the tank filled with liquid
up to an arbitrary depth. This model, which is computed in the infinite dimension,

is approximated by the state-space representation (2.134). We are recalling here this

xo A Aw X+ Bl
App Ag By (4.1)

yz(C’p 0>X,

representation:

where the state-space vector X = Xp is a combination of the state-space vector
0

of the plate X, and of the tank with liquid X,.
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In order to have an accurate model of the device, some analytical calculus corre-
lated with measurements on the experimental setup need to be done. This takes three
steps: the first two steps can be seen as a preparation in order to implement the set
of equations (4.1), while the third one consists of a matching between the analytical

model and the experimental set-up. They are detailed below:

e Step 1: As it can be seen from equation (2.134), the normal frequencies of the
plate and of the liquid sloshing have to be calculated. First they are computed
analytically, using equation (2.36) for the plate and using the experimental
curves depicted in Figure 2.9 for the liquid sloshing, and then are compared
with the values measured on the device. The method is detailed below in
Section 4.3.1;

e Step 2: After the frequency computation, the inherent damping corresponding
of each mode also needs to be found. This is done by direct measures on the

device. More details are given below in Section 4.3.2;

e Step 3: Once the model is computed, we make a comparison for different fill-
ing levels between the analytical model and the experimental setup. Since we
notice a discrepancy between the analytical model and the data collected by
experiments, a trial and error method is employed in order to diminish this
discrepancy. The method is implemented and the results are shown in Sec-
tion 4.3.3.

4.3.1 Computation of the natural frequency

It is important to establish the natural frequencies of each mode with great accuracy

in order to have a model as close as possible to the experimental device.

4.3.1.1 Computation of plate natural frequencies

As detailed in Section 2.2.1 of Chapter 2, the plate model is based on the model of two
orthogonal beams (see equation (2.32) for the approximation of plate deformation).
The modal deformations of the beam give the modal deformation of each mode of the

plate by a simple multiplication operation.

Beam natural frequency computation
We first compute the natural frequencies of the two beams since they are needed in

order to compute the modal displacements. They cannot be measured experimentally,
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thus they are only analytically computed for the case of a clamped-free beam and of a
free-free beam. In the case of the clamped-free beam, the natural frequency of the 5
mode w! (in Hz) is computed by replacing equation (2.11) into (2.15). For the free-
free beam, the natural frequency of the j* mode, denoted respectively w;-, is again
found by solving equation (2.22) coupled with (2.23). The value of the frequencies
for both beams is detailed below:

Clamped-free beam
Mode 1 Mode 2 Mode 3 Mode4
2.3244Hz | 14.5679Hz | 40.7920Hz | 79.8557Hz
Free-free beam
Mode 1 Mode 2 Mode 3 Mode 4
OHz OHz 1.0687kHz | 2.9461kHz

Table 4.2:

For each beam,

Natural frequencies of the beams associated to the plate

the first modal displacements (mode shapes) are drawn below in

Figures 4.3 and 4.4. The lengths of the beam are taken from Table 1.1, Chapter 1,

and represent the 1

15-
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ength L = 1.36m and the width [ = 0.16m of the plate.
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Figure 4.3: First three modal displacements of the free-free beam
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Figure 4.4: First five modal displacements of the clamped-free beam

In the case of the free-free beam we can notice (see Figure 4.3) the presence of
the two rigid modes with natural frequency of 0 Hz, as predicted in Section 2.2.1 of
Chapter 2. The deformation of the first two modes implies that we can move the
position of the beam without deforming the beam at all. We remind to the reader
that the calculus of all the modal displacements was detailed in Section 2.2.1 and
is given for the clamped-free beam by equation (2.13) and for the free-free beam by
equation (2.20), coupled with (2.24) and (2.25) for the two rigid modes.

We now compute the natural frequency and mode shape for each mode of the
plate based on the beam theory. We detail below several methods that we used
to determine each frequency. These methods rely either on calculus (analytical or

numerical) or on experimental measurements.

Plate natural frequencies calculation - analytical method

The analytical calculus of the plate natural frequencies is done using the methodology
presented in Section 2.2.3.1 of Chapter 2. Therefore, the plate frequencies are directly
found by implementing the equation (2.36). Using the characteristics of the plate
depicted in Chapter 1 (which are presented in Table 1.1), the natural frequencies
can be computed. After the calculus, the frequency of the modes and their modal

characteristics (type of mode) are given in Table 4.3.
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Mode Natural frequency Type
15" mode 2.301Hz 15¢ flexion
274 mode 14.413Hz 27 flexion
3" mode 40.3583Hz 3™ flexion
4" mode 49.2027Hz 15¢ torsion

Table 4.3: Natural frequencies of plate modes - analytical calculus

Here below, the modal displacements of the plate, are presented for the case when a
flexion movement and a torsion movement are observed. The order in which the modes
appear is according to the plate natural frequency computed earlier and detailed in
Table 4.3. We recall that the modal displacements of the plate are obtained just by
multiplying the modal displacements of the perpendicular beams, as demonstrated in
Section 2.2.3 and given by (2.32).
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Figure 4.5: Plate first flexion mode at 2.301 Hz, n;(y, 2) = Y1(y) Z1(2)
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Plate mode
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Figure 4.6: Plate second flexion mode at 14.413 Hz, n2(y, 2) = Ya(y) Z1(2)
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Figure 4.7: Plate third flexion mode at 40.3583 Hz, n3(y, 2) = Y3(y) Z1(2)

Plate mode

2
R 1]
2

T
Qi
7 //////////// 0.2
A

7
i
@)
)

0.
8 1 12 440

Figure 4.8: Plate first torsion mode at 49.2027 Hz, n4(y, 2) = Y1(y) Z2(2)
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Plate mode
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Figure 4.9: Plate second torsion mode, 1s(y, z) = Y3(y) Z2(z) (not taken into account
during the modeling phase)

Since there is an infinity of modal displacements of the beam, we suggest a nu-
merical method in order to check if the ones we choose for expressing the modal
displacements of the plate are correct or not. Since, as we stated in Section 2.2.3 of
Chapter 2, the Ritz basis of the plate is orthogonal, we suggest to effectively check
this orthogonality between the modal displacements of the two beams. Therefore, for
each plate mode, we compute the scalar product of the corresponding beam defor-
mation [42]. In our case, the scalar product is not exactly 0 but ranges from 10~ to
1077 depending on the modes. Based on these results, we conclude that the modal
displacements of the two beams are well chosen and thus the modal displacements of

the plate are well constructed.

One important thing to notice is that all the computations done in the analytical
case impose the plate to be homogeneous. Thus, we cannot take into consideration
some structure discrepancies like the hole in the plate created for the tank attachment

or the mass non homogeneity caused by the presence of actuators and sensors.

Plate natural frequency calculation - numerical method

In order to verify the analytical calculus of the plate natural frequencies (Table 4.3),
we propose a check-up method using the numerical finite elements analysis and
ANSYS(@© program. After starting the numerical routine, one can see a close approx-
imation between the natural frequencies found by the analytical calculus in Table 4.3
and those found by the numerical calculus in Table 4.4, especially for the flexion

modes.
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Mode With piezo. actuators | Without piezo. actuators Type
15 mode 2.3992 Hz 2.4983 Hz 15t flexion
274 mode 14.678 Hz 15.104 Hz 274 flexion
3" mode 37.326 Hz 38.073 Hz 1°% torsion
4™ mode 40.242 Hz 41.056 Hz 3" flexion

Table 4.4: Natural frequency of plate modes when the tank hole is taken into account

- numerical calculus

Moreover, this numerical method allows us to consider issues that were neglected
earlier and that make the plate non homogeneous: the piezoelectric actuator patches
or the circular cavity where the cylindrical tank is attached.

Afterward, we plan to conduct some numerical simulations in order to measure
the influence of the neglected phenomena (actuators and tank presence) on the plate
natural frequencies. The results clearly demonstrate the prediction on the plate natu-
ral frequencies: the simple introduction of the piezoelectric actuators (translated into
a small change of plate mass and a change in plate mass center) shifts the natural
frequencies and changes the damping of the plate. This difference can not be proved
on the experimental device, since the actuators and sensors are glued on the plate,
neither can be taken into account by the analytic calculus. In reverse, it can be
studied using the numeric method of calculus.

The mode shapes of the first four modes, computed using ANSYS(©), are depicted
in Figure 4.10.

Moreover, we proved in [115] that the presence of the empty cylindrical tank
diminishes even more the natural frequencies of the modes and increases the action

of the torsion modes.

Plate natural frequency - experimental measurements

Finally, after the computation of the natural frequencies using the analytical method
and after shortly comparing with the results from the numerical method, we measure
the values directly on the experimental setup. As explained in Chapter 1, we can
measure the natural frequencies of the plate only in the case when the piezoelectric
actuators/sensors and the hole for the cylinder attachment are present (see Figure 1.9
and Figure 1.10 for an actuator/sensor view and Figure 1.4 for a plate view without
the cylindrical tank). Consequently, the measured frequencies will be closer to the

ones from Table 4.4, for the case when the actuators are considered, than to the
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Figure 4.10: First 4 modal displacements of the plate

ones from Table 4.3, computed with the analytical method (since, in the analytical
method, the plate is considered homogeneous).

Let us describe the procedure we followed to make the experimental measurements.
We first restrict ourselves on the frequency band of [0, 50]Hz since it is the range where
the first modes are concentrated. Then, using a spectrum analyzer, we identify the
natural frequencies of the modes. We first obtain a rough Bode plot with an estimation
of the natural frequencies and then, based on this, we search in the neighborhood of
the estimated frequencies to obtain the real natural frequency of each mode. Since
finding the natural frequency of a mode is equivalent with finding the frequency
for which the mode is at resonance, we check on an oscilloscope the amplitude of
the output signal and when this amplitude is maximum then the exact value of the
natural frequency is reached.

In order to know the natural frequencies of the plate, we use a Bode plot of the
system given by a spectrum analyzer device. It generates an input signal using the
specifications we impose: a sinusoidal chirp signal of constant amplitude of 51 and
with a frequency varying between 0 Hz and 50 Hz. Concerning the output signal,
we have two types of sensors that can give us some information about the plate

deformation: piezoelectric sensors and accelerometers. We know that in theory, the
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‘ Mode ‘ Natural freq. 1 actuator | Natural freq. 2 actuators

15" mode 2.37Hz 2.375Hz
2" mode 14.41Hz 14.438Hz
3 mode 39.18Hz 39.25Hz
4™ mode 43.40Hz 43.875Hz

Table 4.5: Comparison between the natural frequencies in the case where one or two
actuators are used

measures given by the piezoelectric sensors are more accurate than the ones given by
the accelerometers which are more influenced by the environmental inherent noise.

This last issue is well presented in [115], thus, it will not be detailed here. We
only repeat the conclusion: the frequencies given by the piezoelectric sensor are closer
to the real natural frequencies and the Bode plot. Moreover the Bode plot obtained
with accelerometer sensors, is more noisy. Therefore, from now on we consider for
our measurements only the piezoelectric sensors, the accelerometers being only used
for deciding about the mode type (flexion or torsion) as detailed in [115] or below.

We remind that our purpose is to attenuate the system vibrations but also to make
the system robust to external perturbations. One way for applying perturbations is
to send a voltage to one of the piezoelectric actuators. Since applying the same
voltage to both actuators does not seem to change the frequency of the modes nor
to accentuate their influence (see Table 4.5 for a comparison of the frequencies and
[115] for more details regarding this issue), we intend to use one of the actuators as
an external exterior perturbations entry to the system.

Consequently, from now on, we consider the plate natural frequencies from Ta-

ble 4.5, for the case where only one actuator is used.

Experimental determination of mode type
The natural frequency of the first modes can be measured or computed using the
theory described above. Besides this, the determination of the mode type is of great
importance in order to be sure that at least one torsion mode of the plate is considered.
This issue was also well detailed in our previous work [115|, thus, only brief results
are presented below.

The mode characteristic can be found using an easy method based on two ac-
celerometer sensors. The two accelerometers are placed on the free end of the plate
on vertical extremities. The analog signal delivered by the sensors is viewed on an os-

cilloscope when the plate vibrates. If the two signals are on phase then the vibration
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has a flexion movement. At In the same time, if the two signals have a phase differ-

ence of 7 (phase opposition) then we have a torsion movement of the plate. Using

this intuitive method we are able to determine the characteristic of each mode.

After analyzing the accelerometer signals, the results are briefly presented here.

One can found more details in [115].

e The 1°* mode with a frequency around 2.37 Hz is a flexion mode. The shape of

the mode is the same as in Figure 4.5;

The 2" mode with a frequency around 14.4 Hz is also a flexion mode and his

shape is the one from Figure 4.6;

The 3" mode has a predicted numerical frequency around 37 — 38 Hz (see Ta-
ble 4.4) or around 49 Hz (see Table 4.3). Moreover, the mode shape is the one
from Figure 4.8. We say on purpose, a "predicted" natural frequency since it
is invisible on the experimental set-up. A possible explanation of this might
be the closeness between his natural frequency and the natural frequency of
the flexion mode right next to him. Another reason might also be the plate
configuration which makes difficult the excitation of the torsion movement by

just one piezoelectric actuator;

The 4" mode with a natural frequency around 43.4 Hz is also a flexion mode

and his shape is the one from Figure 4.7.

As a conclusion, we can summarize in the following Table 4.6 the results concerning

the natural frequencies of the plate:

Mode Measured freq. | Analytical freq. | ANSYS freq. Mode type
1%¢ mode 2.37THz 2.301Hz 2.399Hz flexion
2" mode 14.41Hz 14.413Hz 14.678Hz flexion
3" mode 39.18Hz 49.202Hz 37.326Hz | torsion/invisible
4" mode 43.40Hz 40.358Hz 40.242Hz flexion

Table 4.6: Natural frequency and the mode description for the first 4 plate modes

4.3.1.2 Computation of the natural frequencies of sloshing modes

Concerning the natural frequencies of the sloshing waves, they are computed using

the methodology detailed in Section 2.3.1 of Chapter 2 and given by Figure 2.9.
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Since, as explained in Section 2.3.2, there are no theoretical results for the longitu-
dinal liquid sloshing of the cylindrical horizontal tank, we made a tank approximation
by keeping unchanged the natural frequencies of the sloshing modes. After the "vir-
tual" rectangular tank is calculated, the natural sloshing frequencies can easily be
computed using equation (2.88) from Section 2.3.3.

In order to approximate the cylindrical tank we proposed three different methods,
each method being well detailed before in Section 2.3.2. In Table 4.7, we give the
comparison between the sloshing frequencies delivered by each approximation method
and the natural sloshing frequencies computed from the experimental curves (see
Figure 2.9).

Mode | 1°® method | 2"¢ method | 3" method | Empirical curves [48|
15 mode | 0.7848 Hz | 3.6175 Hz | 0.7891 Hz 0.7869 Hz
2"d mode | 2.0304 Hz | 12.7347 Hz | 1.9982 Hz 2.1177 Hz
3" mode | 2.7647 Hz | 24.1601 Hz | 2.7521 Hz 2.7907 Hz

Table 4.7: Comparison of the sloshing frequencies obtained from the experimental
curves and with different approximation methods. Tank fill level 5‘—;‘% = 0.7. For other

tank fill levels, the results respect the same pattern.

The method we suggest for tank approximation is the third method tested above
since it gives sloshing frequencies close to the experimental ones. Moreover, even
though the sloshing frequencies obtained using the first method are closer to the
experimental ones, the implementation of this method is very tedious as explained in
Section 2.3.2.

The exact measurement of the sloshing frequencies on the experimental set-up
was not done since we did not find a suitable device to do this. This is due to the
impossibility of studying the sloshing of the liquid in the tank alone, without any
connection to the plate. Even though this measurement was done in the literature,
(see [105] where sensors were constructed for this specific issue or [50, Chapter 42]
where the laser Doppler anemometry method is described for measuring fluid param-
eters), our purpose here was not to measure explicitly these values but to control the
motion of the plate and the sloshing. Moreover, we will consider that the controller
we compute will be robust enough to take this issue into account.

Despite the impossibility to exactly measure the value of the frequency, using a

recording video camera, we still managed to see the shape of the liquid sloshing. We
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observed that for the first three antisymmetric modes, the mode shape is exactly as

the one from Figure 2.14.

4.3.1.3 Natural frequencies of the complete system: plate and tank

Until here we computed the plate natural frequencies and the liquid natural sloshing
frequencies separately. The liquid sloshing frequencies were computed in order to
validate the geometric approximation approach we are using, thus the validity of the
considered rectangular tank. Concerning the plate natural frequencies, they were
first computed in order to demonstrate their variation when the plate configuration
changes and second in order to have a rough approximation of their values. The next
logical step now is the study of the natural frequencies when the plate and the tank
with liquid are coupled. The last issue is of critical importance if we want a model
close to the reality depicted in Figure 4.2.

Our purpose in this study is to control the system vibrations for different tank
filling levels. Therefore, we consider two different tank filling levels: in the first case,

2h

equal to 0.9, (see Section 2.3.2 for further details). Moreover, as from [114], for this

the tank filling is equal to 0.7, that is to say 55 = 0.7 and in the second case it is

experimental device, the cases for which the tank fill level tends to 1 are the most
difficult to control.

Using a spectrum analyzer we first obtain a Bode plot for each level. The two
plots are depicted in Figure 4.11 and in Figure 4.12 (Figure 4.12 being the same as
Figure 4.2 for the [0---50]Hz band).

Fill level 0.7

=12+ : : -
_14 -
_16 -

_18 -

-28kL f ; R N U DU NN ; ; peepeipepogly ; i
1
10

Figure 4.11: Experimental Bode plot for the plate and a tank fill level of 0.7
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Figure 4.12: Experimental Bode plot the plate and a tank fill level of 0.9

Then, using a frequency generator, we search around each peak value of the Bode
plot in order to find the exact natural frequencies of each mode. The calculus is very
tedious since we want to find the most precise values. The results are given below in
Table 4.8 for the plate and liquid sloshing:

Mode Description | Tank fill level of 0.7 | Tank fill level of 0.9 | Plate alone
1% mode | 1% flexion 0.6249Hz 0.6237Hz 2.37THz
274 mode | 2" flexion 8.8777THz 8.2509Hz 14.41Hz
3" mode | 1% torsion 6.3753Hz 5.9979Hz 39.18Hz
4" mode | 3" flexion 15.3755Hz 14.2498Hz 43.40Hz
5" mode | 4% flexion 21.4996Hz 21.0321Hz 55Hz
6" mode | 1% sloshing 1.2655Hz 1.4149Hz -

7" mode | 2"¢ sloshing 1.9977Hz 2.1480Hz -
8" mode | 3" sloshing 2.7510Hz 2.7940Hz -

Table 4.8: The measured natural frequencies for the complete system (plate and

liquid) when the tank is filled up to some arbitrary depths

When comparing Table 4.8 for a tank fill of 0.7, with the previous Table 4.7,
where the sloshing frequencies are computed for the free tank without any external
interaction, one can notice a slight shift of the frequencies. This is not because of

some errors in the computation process. On the contrary, this proves, as we expected,
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that the sloshing frequencies of the liquid also change when the coupling between the
tank and the plate is considered.

Moreover, since we are doing a mass-pendulum approximation, we also need to
determine, for the coupled system, the parameters of the mass-pendulum systems as
detailed in Section 2.3.4.2. These parameters are presented here for the two different

tank filling levels:

Pendulum . .
Length Mass Hinge location | Measured freq.
Mode
1% sloshing 0.1550m | 2.4780kg 0.3659m 1.2655Hz
274 gloshing 0.0622m | 0.1961kg 0.0363m 1.9977Hz
37 sloshing 0.0328m | 0.0482kg 0.0165m 2.7510Hz

Table 4.9: Characteristics of the mass-pendulum systems for tank fill level 0.7

Pendulum Length Mass Hinge location | Measured freq.
Mode
1% sloshing 0.1240m | 2.7404kg 0.1777Tm 1.4149Hz
274 gloshing 0.0538m | 0.1483kg 0.0296m 2.1480Hz
37 sloshing 0.0318m | 0.0325kg 0.0354m 2.7940Hz

Table 4.10: Characteristics of the mass-pendulum systems for tank fill level 0.9

Two important things need to be noticed from Table 4.8. The first one is that,
now, the torsion mode is visible on the experimental set-up, that is to say we found
a configuration that will finally excite the torsion mode. Moreover, comparing the
frequency values of the modes, the position of the torsion mode has changed. It is
now right after the first flexion mode of the plate, that is to say the third peak of
Figures 4.11 and 4.12. The second thing is that, due to the addition of liquid in the
tank (the weight difference between the two tank fillings is 0.8671kg), the total mass
of the plate increases and the natural frequency of each plate mode shift a lot towards
zero. This shift is more prominent when more liquid is added in the tank, that is to

say for a fill level of 0.9. !

!The mass of the plate alone, without the tank, is 3.2313kg while the mass of the liquid, alone,
when the tank fill level is 0.7 equals 3.2371kg and the mass of the liquid when the tank fill level is
0.9 equals 4.1042kg.
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4.3.2 Computation of modal damping

The modal damping is, along with the natural frequency, another important param-
eter that need to be well calculated. Concerning the computing of the plate modal
damping, we used the approach detailed in Section 2.2.3.1 of Chapter 2.
As explained there, the damping of each mode @)y is expressed using equation
(2.38) detailed here:
Qp=—"t
Wg2 — Wkl
where wy, is the natural angular frequency of the mode. The angular frequencies wy
and wyo are computed in order to have the amplitude of the mode attenuated by 3dB.
The plate natural frequencies are the ones from Table 4.8. After checking on an
oscilloscope the amplitude of the resonance signal, we divide this amplitude by /2
(equal to 3dB attenuation) in order to find the two frequencies wy; and wys. Using
the above equation we obtain the damping for the first five modes of the plate. The

results are given in Table 4.11.

Mode Natural freq. 0.7 | Damping 0.7 Natural freq. 0.9 | Damping 0.9
1%t mode 0.6249Hz 0.0019 0.6237Hz 0.0020
274 mode 6.3753Hz 0.0015 5.9979Hz 0.0015
374 mode 8.8777THz 0.0083 8.2509Hz 0.0083
4™ mode 15.3755Hz 0.0039 14.2498Hz 0.0039
5" mode 21.4996Hz 0.0030 20.4675Hz 0.0030

Table 4.11: Measurement of the damping of each vibration mode

The measure of the liquid damping is difficult since it has to be done by the bias
of the plate. The measuring procedure is, in theory, the same as in the case of the
plate. Since, at resonance, the amplitude of the sloshing is very difficult to analyze
on the oscilloscope, we choose the damping of the sloshing modes to be constant,
equal to 0.001 which is the viscous coefficient of the water at normal temperature of
~ 20°C [76].

4.3.3 Model matching problem

The complete system model, described by the equation set (2.134), was first vali-
dated in [116] by a comparison of a time-response for a given initial deformation

of the plate. However, in order to obtain a model which provides a good match of
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the measured frequency response, some adjustments are required by considering the
Bode plots. These adjustments are done following a trial-and-error method (first the
frequencies are matched and then is the damping). Other methods are possible for
flexible structures (see for example [119] and references therein).

This model matching is necessary since some mechanical elements are not well
known and have not been taken into account in the analytical modeling of the struc-
ture. These elements include the circular ring used to attach the tank on the plate
(see Figure 1.1), the non-homogeneity of the plate and the weight of the tank.

As a first step of the model matching, the frequencies of the plate are adjusted.
A second step of the model matching is the adding of a static gain that corresponds
to the high frequency modes neglected during the model reduction static correction
[121]. This allows to get a more realistic model at low frequencies. The comparison
of the Bode plots for e = 0.7 and e = 0.9 on Figures 4.13 and 4.14 shows that the
model, for e = 0.7 is quite accurate with respect to the real data while there is some

discrepancy in the amplitude of the first sloshing mode for e = 0.9.
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Figure 4.13: Frequency matching for the tank filling level e = 0.7 (numerical model -

plain line and experimental set-up - dotted line)

In the two figures, the first peak corresponds to the first flexion mode of the plate
(0.625 Hz) and the second peak to the first sloshing mode (1.2655 Hz for e = 0.7 and
1.4149 Hz for e = 0.9) in the tank. The next four peaks are respectively representing:
the first torsional mode (the third peak) (6.38 Hz) and the second (8.75Hz), third
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(14.45Hz) and forth (21.50Hz) flexion modes of the plate. The second and third
modes of the liquid sloshing cannot be identified on the Bode plots due to their very

small amplitude.
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Figure 4.14: Frequency matching for the tank filling level e = 0.9 (numerical model -

plain line and experimental set-up -dotted line)

Conclusion: In this section, we established an initial model of the structure based
on computation and measurements of all natural frequencies and damping. Then we
did a model matching in order to tackle the mismatch due to some neglected physical
phenomena. In the following, we are considering the controller synthesis on these new

matched models.

4.4 Pole placement controller

This section aims at computing a controller attenuating the plate vibrations. We are
using here a state feedback strategy coupled with a Luenberger full state observer,
since all the state-space vector of the system is unknown. Furthermore, based on the
theory detailed in Section 3.2 of Chapter 3, we use a pole placement method in order
to specify the closed-loop poles and the observer poles. Furthermore, the control
scheme we are following is the one depicted in Figure 4.15, where the matrices to be
determined are K and G.
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Figure 4.15: Feedback control law and observer

First, we compute the observability and controllability test matrices in order to
be sure that all the system states are controllable and observable. Once this is set, we
impose the dynamic of the state feedback law and of the observer. The poles which
will specify the dynamic of the closed-loop system are chosen by selecting the poles of
A — BK while the ones for the observer dynamics are given by the poles of A — GC.

When choosing the poles one has to be very careful. In general the observer poles
need to be faster than the closed-loop poles, since we want that the use of the ob-
server does not decrease too much the performance with respect to the state feedback
controller. We observed in practice that the fact of imposing very rapid poles for
the observer leads to a noise amplification, thus a possible excitation of the high fre-
quency system modes. This fact is presented in [41]. Consequently this will create a
spillover effect (see Section 3.3), since the measurement noise is amplified. The same
considerations are done for the closed-loop poles. Very fast closed-loop poles imply
that: first, the voltage delivered by the controller might exceed the actuator limits
of £100V, thus possibly destabilizing the closed-loop system; second, the generated
voltage might oscillate too fast in order to control the system. Thus, if the oscillating
frequency is very high, the noise will be amplified, making the measurement impos-
sible. One solution to this last issue is to select slower closed-loop poles but this will
unavoidably lead to slower closed-loop response. We see therefore that a middle path
needs to be found between the response time and the noise amplification.

By checking the open-loop system poles we find 8 complex conjugate poles (3 for
the liquid sloshing and 5 for the plate), all of them having their real part negative.
Thus the open-loop system is stable. The position of the open-loop poles can be seen

in Figure 4.16, while their value is presented in Table 4.12 below.
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Figure 4.16: Pole/zero map of the open-loop system (x for the poles, o for the zeros)

Since the procedure for the controller synthesis is identical for all the tank filling
levels, details are given here only for the case when the tank fill level is 0.9. Let us

first consider the choice of the pole placement controller K from Figure 4.15.

Open-loop poles | Closed-loop poles
-0.5093 + 132.14i | -0.5093 + 132.14i
-0.3447 4+ 89.53i | -0.3447 + 89.53i
-0.0803 £ 51.84i | -0.0803 + 51.84i
-0.3146 + 37.68i | -0.3146 + 37.68i
-0.0175 4+ 17.551 | -0.0325 + 17.55i
-0.0135 £ 13.481 | -0.0384 + 13.48i
-0.0059 + 7.261 -0.0333 £ 7.26i
-0.0074 4+ 3.92i -0.0324 4 3.92i

Table 4.12: Closed-loop poles with the pole placement controller, tank fill level 0.9

The choice of the closed-loop poles is very difficult. The best solution is to change

only the real part of the dominant poles. In this case, the best closed-loop poles are
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given in Table 4.12. Concerning all the observer poles, their real part is three times

bigger than the real part of the closed-loop poles.

The pole placement controller is tested on the experimental set-up for a plate
displacement of 10cm at the free end. The controller response in attenuating the
vibrations is presented in Figure 4.17, while the voltage delivered by the controller to

make this attenuation is depicted in Figure 4.18.

Pole placement controller
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25F

Figure 4.17: Experimental output of the of open-loop (dotted line) and closed-loop

(plain line) systems using a pole placement controller with a tank fill level of 0.9

It is important to notice that since the voltage delivered by the controller exceeds
the maximum value of the voltage amplifier £100V, the real voltage delivered to the
plate in the interval 0...30 seconds is actually between —100V and +100V.
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Figure 4.18: Voltage delivered by the pole placement controller during experiments,
tank fill level of 0.9
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Figure 4.19: Frequency response of the pole placement controller, tank fill level of 0.9
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The frequency response of the system in closed-loop with the feedback controller
previously computed is presented in Figure 4.19. We can notice that the first mode is
well attenuated and also the second mode (the 1% sloshing mode). We expected this
to happen since the dominant poles, corresponding to the first mode of the plate and
the first sloshing mode, are the ones that were mostly diminished. The other poles
that were changed are corresponding to the other sloshing modes but their effect is not
visible on the Bode plot. This might be due to their very small energetic contribution
(see Table 4.1 in Section 4.2).

It is also interesting to notice that the 2"¢ flexion mode also experiences a small
attenuation, even though the corresponding poles have not been changed. This might
be an influence of the other poles that have been shifted.

At the same time, we notice that the peaks corresponding to the torsion mode
and to the other flexion modes have a larger amplitude. This means that testing
the controller for a high frequency input would not give the best results since the

controller is not computed to attenuate the large frequency values.

Conclusion: In this section a pole placement controller coupled with a full-state
observer have been constructed. The choice of the closed-loop poles is very tricky.
After changing only the dominant poles, the computed controller can be tested on
the experimental set-up. Temporal and frequency tests show that the controller is
effective especially in attenuating the first flexion mode of the plate. In the next
section we will compute a H, controller. Finally, in Section 4.6 both controllers will

be compared.
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4.5 H., robust controller

In this section a robust controller is computed and some experiments are performed.
The controller is calculated using the theory detailed in Section 3.3 of Chapter 3.
In order to solve the robust control problem we write our system in the standard

form given by Figure 4.20 where the following notation is used:
e u - system input (the voltage delivered by the H,, controller);

e y - measured system output (voltage delivered by the piezoelectric sensor);

w - the perturbation of the system,;

z - the controlled outputs of the system.

Figure 4.20: Standard H., problem

We want to minimize the influence of the perturbation, stacked in the vector w,
on the controlled outputs, gathered in the vector z.

During our tests we observed that care should be taken when choosing the outputs
to be controlled. In our case, the controlled outputs stacked in the z vector are the
position of the plate given by the piezoelectric sensor and the control generated by
the robust controller K. The amplitude of the control is limited since the piezoelec-
tric actuators have a 100V limitation in amplitude (their frequency limitation is

not taken into account since they respond much faster than the system does). The
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perturbation w will be a sinusoidal voltage sent to the second piezoelectric actuator
patch glued on the plate.

We compute the H,, controller, with M = 3 modes of liquid sloshing and N =5
plate’s modes (see Section 4.2). The system is tested on the experimental set-up
described in Chapter 1. The ability of the controller, under external perturbations,
to suppress the system vibrations but also to eliminate the spillover effect when it
appears, will demonstrate the validity of the controller.

Therefore, we followed two approaches in order to solve the robust control problem.

These approaches lead to two types of models:

e model without filters. In this case, using a gain, we balance the control output

delivered by the controller in order to have a maximum voltage of 100V

e model with filters (in particular to suppress the spillover effect).

4.5.1 Synthesis of a H.,, controller without filters

Here, the H,, standard problem is applied to our problem. The complete state-space

representation of the system and controller, is given by the equation set:

(t) = Axz(t) + Buw(t) + DBou(t)
t) +  Diau(t) (4.2)
t) + Dggu(t)

where A € R16%16 B, € R, € R0 and Dy, € R™*! (the feedforward matrix
is different from zero due to the model matching of Section 4.3.3). The system is
perturbed by the mean of the matrix B; € R!*! gsimilar in construction as the
control matrix of the plate (see Proposition 2.2.2) except for the position of patch
corners.

The to-be-controlled output z is composed of the plate position and the voltage
delivered by the H., controller. In order to assure that this voltage remains in the

amplitude limits 100V, we use a weighting under the shape of the matrix Dy €
R17x1.

D12 =
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Moreover, the matrix C; € R'7*!6 has the shape:

¢ - (00) _

Other choices for the to-be-controlled output are of course still possible. Besides
the plate position and the voltage delivered by the controller, we also made tests
with the position of the first pendulum-mass system in the to-be-controlled output.
This was done in order to better control the sloshing modes but, since the results
are not satisfactory they are not recalled here. Preliminary tests are in progress
by considering, in the to-be-controlled output, the state-space vector of the model
instead of y, see |43].

Furthermore, for computation we use the Matlab© Robust Control Toolbox,
and the controller we obtain is first tested in numerical simulation and then on the

experimental setup.

Robust controller without filters — temporal response
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Figure 4.21: Temporal response for robust controllers using Robust Control Toolbox,
without filters; simulations on a system with the same amount of modes; tank fill
level equal 0.9. Thin line is obtained with d5 = 0.1, plain line with dy, = 0.25 and
bold line with di5 =1

First the value of di5 is equal to 1, in which case the controller needs to minimize

u as much as possible. The controller is computed and is numerically simulated on a
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system of the same dimension. The results are shown in Figure 4.21 and correspond to
an initial condition of the system when the liquid is motionless and the plate free end
undergoes a 10cm displacement from the equilibrium position. The voltage delivered
by the controller is depicted in Figure 4.22. As it can be noticed the maximum
voltage delivered is £12.75V which is far away from the actuator saturation level
of £100V. Therefore, we decrease the value of the dy5 coefficient. In this case, the
voltage delivered by the controller will increase but in the same time the response time
of the closed-loop system will decrease. This yields: dyo = 0.25 and dy = 0.1. The
results of the response time, in open-loop and in closed-loop, are given in Figure 4.21

while the voltage delivered by the respective controllers are given in Figure 4.22.

Robust controller without filters - voltage delivered by the controller
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Figure 4.22: Voltage delivered by the robust controllers; tank fill level equal 0.9 with
diz = 0.1 (thin line), d12 = 0.25 (plain line) and dys = 1 (bold line)

The next step is to numerically simulate these controllers on an augmented system.
The main reason is to verify the presence or not of a spillover effect. We therefore
consider an augmented system, where one plate mode has been added to the previous
system. The frequency responses are shown in Figure 4.23 for all the previously
considered controllers. We notice that all the controllers previously computed act
strangely on the augmented system. Even though the high frequency modes are
attenuated, the magnitude of the first modes (especially the magnitude of the first
sloshing mode) is increased. Moreover, to visualize the spillover effect, the temporal

response for the case when d5 = 0.1 is shown in Figure 4.24. The initial condition of
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the plant is again equivalent to a free end’s plate deformation of 10cm. The spillover

existence can be easily noticed due to the signal divergence.
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Figure 4.23: Bode plot of the robust controllers simulated on an augmented system;
tank fill level equal 0.9. The thin line is for dio = 0.1, plain line for d» = 0.25 and

bold line for di; =1
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Figure 4.24: Temporal response for robust controllers using Robust Control Toolbox,

without filters and with di2 = 0.1; tests on an augmented system; tank fill level 0.9
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Pole-Zero Map
300

200

100} ®

Imaginary Axis
o
)

-100

-200

~300 ! ! ! ! ! !
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
Real Axis

Figure 4.25: Pole/ zero map for the open-loop system augmented with one mode;
tank fill level equal 0.9

The position of the poles and zeros, for the closed-loop system, can be seen in
Figure 4.26. Some fast poles can be observed, much larger than the open-loop ones
(see Figure 4.25) and also larger than the ones we experience earlier for the pole

placement problem (see Table 4.12).
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Figure 4.26: Pole/ zero map for the closed-loop system augmented with one mode

and with the controller computed with d;» = 0.1; tank fill level equal 0.9
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Figure 4.27: Pole/zero map of the previously computed controller, djs = 0.1; tank fill
level equal 0.9

In spite of all these problems, we tested all the previously computed controllers
on the experimental setup. During all the tests we notice a sudden stop in the
acquisition process just after the controller introduction. After analyzing the H.
controller poles from Figure 4.27, we notice the poles with large real part. We think
that these poles are the cause for which the experimental tests are not working.
Different manipulations are tried to overcome this issue.

A first idea is to eliminate the fast poles supposing a priori that they will not
influence the system behavior in the steady state. Therefore, we eliminated the
fast poles and we considered only their static gain. Recalculating the controller and
testing it in simulation, we obtain a closed-loop settling time identical to the open-
loop settling time. From this we draw the conclusion that the new controller is not
working and the fast pole have a great influence on the controller behavior.

A second solution that comes to our mind is to select ourselves, in some way, the
poles of the computed H,, controller. This is done by setting some allowance zones
for the controller poles. We can therefore describe these zones using linear matrix
inequalities (LMI) (see [39] or [38]). Our purpose is to compute this region so that
the closed-loop poles are on the left-hand side of the complex plane and have their
real part (in modulus) as big as possible. At the same time, we do not want to keep
very fast poles since they might not be implemented on the experimental setup. The
region needs to be found by making a compromise between these constraints.

Unfortunately, we did not find the suitable region. We found either regions where

the poles are still very fast, thus unimplementable, or regions where the poles are
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slow and the closed-loop settling time is identical to the open-loop one.
We thus finally deduce that this method is not implementable on the real system.
One can think of a further study consisting in using an acquisition set-up that can

handle a bigger sampling frequency. In this way, a clarification may be obtained.

4.5.2 Synthesis of a H.,, controller with filters

The robust control of a system with filters gave us the best results on the experimental
device and will be detailed below. These tests were already briefly presented in [117]
and [118] and more details are given in this section.

The choice of the filters is a difficult problem and will have an impact on the
controller behavior. Later on, we propose a choice of the filters and then we compute
the controller using these filters.

In order to take the disturbances into account, the low-pass filter H(s) is included
in the design scheme. As explained in Section 3.3, it models the range of frequencies
where all the modes of the finite dimensional system are considered (between 0Hz
and 21Hz, see Section 4.2). This perturbation, induced by a frequency generator
device, is applied to the piezoelectric actuator that is not used in the control law.
The perturbation will be a source of vibrations of the fluid-structure system and
is modeled by a low-pass filter of order 1 with a bandwidth of 50 Hz. The filter,
placed before the piezoelectric actuator used as a disturbance actuator has therefore

a transfer function given by
1007

M) = 00w
The residual modes divergence describing the spillover phenomenon is a common
problem when working with a truncation of an infinite-dimensional model (see Sec-
tion 3.3). In order to avoid this undesirable effect, a high-pass filter Hy(s) of transfer

function:

1+ 55)°
(1 + 27ri60)3
is added on the controlled output. This allows to get a 60 dB attenuation above the

Hy(s) =

cut-off frequency of 27 Hz where the cut-off frequency is slightly greater than the
frequency of the last considered mode in the controller synthesis. The H, controller
is designed and is first tested through simulations and on the experimental set-up
afterwards for the two different levels of tank filling (denoted 0.7 and 0.9). The
model used for simulations is again a system of larger dimension, in order to test the

existence of the spillover effect.
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A controller is calculated using the following standard H,, problem given in Fig-
ure 4.28:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.28: Standard H., problem with filters

4.5.2.1 Matlab© Robust Control Toolbox controller

The first attempt to solve this problem is by using the Matlab©) Robust Control
Toolbox which allows the computation of only full order controllers. Tries are made
and due to memory overflow, full order controllers cannot be computed for the system
with X, € R and X, € R® and both filters. This would lead to a full order controller
of dimension 20.

One solution to solve this problem would be to reduce the number of modes in
the model. After successive tries, we can find a configuration for which a controller
can be computed but it contains only the first plate mode and the first liquid mode
and no spillover filter. Instead of the filter, a gain is used in order to keep the control
voltage in the desired limits. Therefore, in this section only, we consider one mode of
the plate and one mode of the liquid: X, € R? and X, € R2.

The results of the controller implementation are tested for only one tank fill level
of 0.7. The results are given in Figure 4.29.

We can see that even though the controller attenuates well the first mode, we
can not use this technique since it does not allow us to consider a greater number of

modes or the roll-off filter in order to prevent spillover. For this simulation only, the
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Figure 4.29: Experimental Bode plot of the open-loop system (plain line) and of the
closed-loop system (bold line) computed with the Robust controller from Matlab for
2 modes and a fixed tank filling of 0.7

Simulink schema in Figure 4.28 used for the calculus of the controller has the Hs(s)
filter replaced by a gain suitably tuned. The roll-off filter is necessary to suppress
the spillover phenomenon, thus maintaining the overall stability of the system. When
performing numerical simulations, we experienced problems due to the non-desirable
spillover (see Figure 4.24). We conclude that we cannot eliminate the roll-off filter

from our controller synthesis.

Moreover, when using the Robust Control Toolbox, we select ourselves a suitable
weighting function on the controlled output w so that the voltage delivered by the
controller stays in the range +100V, in this way the actuators do not saturate and
the system stability is preserved. On the other hand, the Robust Control Toolbox
cannot directly tackle the problem of simultaneous control for different filling levels

in the tip-tank.

For all these reasons we decided to consider synthesis algorithms of reduced-order

controllers and tackling also the simultaneous H., control problem.
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4.5.2.2 HIFOO controller

We will use here the HIFOO package for the controller computation. The algorithm
is based on non-smooth optimization issued from |60| and [35] and it computes full
order controllers but also reduced order controllers that are less demanding in terms

of memory.

Before considering all the plate and liquid sloshing modes, we experiment the
HIFOO controller on the previous system in order to compare it with the full order
(second order in this case) Matlab© Robust Control Toolbox. Therefore, for this
simulation only, the HIFOO controller is computed for a system with only one mode
of the plate and one mode of the liquid: X, € R? and Xy € R? Since HIFOO allows
us to specify the order of the controller, in this case the resultant controller will be a
first order. The comparison is given in Figure 4.30. We notice that, both controllers
attenuate the first flexion mode with around 4dB (~ 7dB for HIFOO) but not the
first sloshing mode, which they actually amplify. Moreover, the HIFOO controller
amplifies also the torsion mode and the frequency mode at 50Hz, modes that have

not been considered in the controller synthesis.

One very important thing to notice is that, while increasing the number of consid-
ered modes, HIFOO always finds a suitable controller, in the presence of both filters
from Figure 4.28 and by keeping the voltage delivered by the controller in the allowed

range.

Some experiments are also performed for a tank fill level of 0.9 in the same con-
figuration (1 mode for the plate and 1 for liquid sloshing). The results are given in
Figure 4.31. Since the controller was built with only the first two modes, we notice
that only these modes are attenuated, the first mode attenuation being of almost
13dB. A slight attenuation is also noticed for the second and third flexion modes
(2.3dB and 1dB respectively) even though those modes were not taken into account
for the controller design. We also notice an amplification of the torsion mode (0.5 dB)
and of the forth and fifth flexion mode (1dB and 1.7 dB respectively) comparing to

the open-loop case.
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Figure 4.30: Experimental Bode plot of the open-loop system (thin line) and of the
closed-loop system using a HIFOO controller and a Robust controller computed with
Matlab (2 modes and a fixed tank filling of 0.7)
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Figure 4.31: Experimental Bode plots of the open-loop system (thin line) and the
closed-loop system (bold line) with a HIFOO controller computed for 2 modes and a
fixed tank filling of 0.9

Analyzing the figures presented earlier, two conclusions can be drawn. The first
is that HIFOO algorithm needs to be chosen instead of the usual Robust Toolbox
from Matlab due to the reasons detailed before. Second, a larger number of modes
definitely needs to be considered during the controller computation even in the case

when HIFOO is used, in order to avoid mode amplification.

From this section on, controllers are computed using the suitable amount of modes
needed for the system (N =5, M = 3), in agreement with the theory in Section 3.1
of Chapter 3 and implemented in Table 4.1.

We considered one specific controller for each tank filling level. In order to choose
the suitable order of these HIFOO controllers, H,, controllers of different orders for a
fixed tank filling of 0.7 are computed using the standard H ., problem from Figure 4.28.
The analytic computations show that controllers of order 1 and 4, have almost the

same H,, norm ~: v = 4.24 for a 1°! order and v = 4.28 for a 4" order.

Consequently, a 4" order controller and a 1% order controller for the same tank
filling e = 0.7 are tested on the plant. The idea is to see if greater order controllers

are really more efficient than a very simple first-order controller.
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HIFOO comparison
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Figure 4.32: Comparison between a 1 and a 4*" order HIFOO controller; experimen-
tal results for a fixed tank filling e = 0.7 and comparison to the open-loop system
(thin line)

The experimental results are plotted in Figure 4.32. The Bode plots show the
closed-loop attenuation in the case of a 1°¢ order and 4" order controller computed
using HIFOO. One can notice a slightly better attenuation for the first sloshing mode
in case of the 4" order controller and a better attenuation (almost 4 dB) for the first

flexion mode in the case of the 1% order controller.

Consequently, we infer that the complexity of a 4" order controller is not justified.

Therefore, from now on, only first-order controllers will be computed with HIFOO.

4.5.2.3 First order HIFOO controller

We compute a first order HIFOO controller for each tank fill level: e = 0.7 and

e = 0.9. Experimental results are given in Figures 4.33 and 4.34 for each case.
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Figure 4.34: Experimental Bode plots for the open-loop system (plain line) and of
the closed-loop system (bold line) using HIFOO controller - e = 0.7
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Figure 4.33: Experimental Bode plots for the open-loop system (plain line) and of
the closed-loop system (bold line) using HIFOO controller - e = 0.9

It may be observed that the first peak is well attenuated for the different considered
tank fillings. An attenuation of 14 dB is measured when e = 0.9 and of 11.7 dB
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when e = 0.7. Concerning the first torsion mode (3" peak on the Bode plots) the
attenuation is very small for e = 0.7 and quite good for e = 0.9 (1.5 dB). For higher

order modes, one can see that the controller for e = 0.9 is also quite efficient.

Moreover, the HIFOO controller computed earlier, is tested on the experimental
setup in the case of a plate displacement of 10cm on the free end. The temporal
response of the controller is given in Figure 4.35 and the voltage delivered in Fig-

ure 4.36. As it can be seen, the voltage delivered is much lower than the actuator

limits.

Figure 4.35: Experimental output of the closed-loop controller using HIFOO con-
troller (bold line) and of the open-loop (dotted line); plate deformation of 10cm,

e=0.9
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Voltage felivered by the 1st order HIFOO controller
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Figure 4.36: Voltage delivered by the HIFOO controller; plate deformation of 10cm,
e=10.9
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Figure 4.37: Experimental Bode plot, comparison between the open-loop (plain line)
and the closed-loop system with HIFOO computed considering 2 or 8 modes of the

system; fixed tank filling of 0.9

It is also very interesting to compare this HIFOO controller with the one com-
puted when only 1 plate mode and 1 sloshing mode are considered. This is done
in Figure 4.37 for the case of 0.9 tank fill level. As one can see, the results of the
controllers are similar on the first two modes, as we expected. On the contrary, for
all the other modes, we notice a better attenuation for the HIFOO controller com-

puted with the 8 modes. Moreover, in this case, the torsion and last flexion modes,
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which were amplified by the HIFOO controller computed with only 2 modes, are now
slightly attenuated.

A conclusion of this part is that the first flexion mode, which is the most important
in terms of plate displacement from its equilibrium position as well as in terms of
modal energetic contribution (see Table 4.1), is well attenuated for all the cases (2
and 8 modes considered for the controller computation). Moreover, considering a
larger amount of modes in the controller synthesis is not only done to match some
theoretical criteria (energetic contribution of modes, presence of a torsion mode) but

actually shows better results in the implementation on the experimental set-up.

4.5.2.4 Simultaneous reduced-order HIFOO controller

In practice the liquid in the plane tanks is varying during flight. Therefore, one
controller must be valid for different fillings.

As a first step we test the 1% order controller previously calculated for the tank
90% filled on a tank 70% filled. The idea behind this is to see if the controller is
robust enough concerning such a model change. One can notice from Figure 4.38
that the controller increases the amplitude of the first vibration mode of the plate

and does not attenuate the other modes.

e=0.7

S = = = open loop e=0.7
HIFOO 0.9

Magnitude (dB)

a5k : S L i
10" 10°

Frequency (rad/sec)

Figure 4.38: HIFOO controller calculated for the tank fill level 0.9 and tested on the
tank fill 0.7

Consequently it is normal to consider a simultaneous 1*¢ order robust controller
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computed for different levels. This simultaneous analysis is possible using the HIFOO
package under Matlab(©).

In this case, we also consider also another filling level of the tank: tank half full
for which e = 0.5. Therefore, the simultaneous controller is computed for three fill
levels (e = 0.5, e = 0.7 and e = 0.9). The results are given in Figures 4.39, 4.40
and 4.41. Each figure shows the experimental Bode plot of the open-loop device and
the experimental Bode plot of the closed-loop using the same simultaneous HIFOO

controller.
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Figure 4.39: Experimental Bode plot of the open-loop system (dotted line) and of the

closed-loop system (bold line) using simultaneous HIFOO controller - e = 0.9
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Figure 4.40: Experimental Bode plot of the open-loop system (dotted line) and of the

closed-loop system (bold line) using simultaneous HIFOO controller - e = 0.7
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Figure 4.41: Experimental Bode plot of the open-loop system (dotted line) and of the

closed-loop system (bold line) using simultaneous HIFOO controller - e = 0.5
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One can observe that the first mode is very well attenuated for e = 0.9 (10dB)
and e = 0.7 (5.7dB) and only a few for e = 0.5 (1.5dB). Regarding the torsion
mode and higher order modes, they are also well attenuated especially for e = 0.9.
Unfortunately, they are not at all attenuated for e = 0.5. This issue is normal since the
simultaneous controller will create a mean level of attenuation for all the considered

cases.

4.6 Comparison of the control methods

This section aims at comparing the two control methods: pole placement feedback
controller and H,, controller. Two configurations are analyzed: a response to an

initial plate deformation and the Bode frequency response.

Figure 4.42: Temporal evolution of the experimental output for the closed-loop sys-
tems with pole placement controller (plain line) and HIFOO controller (bold line);

plate free end deformation of 10cm, e = 0.9

First of all, let us consider the case of the plate free end deformation of 10cm. In
this case the Figures 4.17 and 4.35 are compared in Figure 4.42. As it can clearly be
seen, the pole placement controller attenuates the plate oscillations much better than
the HIFOO controller does. This is normal, since the test configuration advantages
the pole placement controller. For this controller, the dominant poles, which are
corresponding to the first vibration and sloshing modes, were the one mostly changed
(see Table 4.12). Also, the robust controller is set to minimize the influence of the
perturbations on the voltage generated by the controller. Thus, the voltage generated

to control the plate movements, is minimized for the HIFOO case while for the pole
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placement case is left free. This is clearly seen when comparing the voltage delivered
by both controllers: ~ 500V (see Figure 4.18) for the pole placement controller and
only ~ 15V (see Figure 4.36) for the HIFOO controller.

Now, let us consider the Bode plots of the closed-loop systems. In this case,
Figures 4.19 and 4.33 are compared on Figure 4.43. It can be easily seen that even
though the pole placement controller attenuates more the first flexion mode, as we
expected, the HIFOO controller attenuates more the other high frequency modes and

even attenuates the modes that were amplified by the former controller.

T
open loop

—— H|FOO 0.9

s p0le placement controller

Magnitude (dB)

-35& L L
10" 10°
Frequency (rad/sec)

Figure 4.43: Experimental Bode plots for the closed-loop system with pole placement
controller (plain line) and HIFOO controller (bold line); frequency response, e = 0.9

Until now we can not give a decisive response about the best controller. This
depends on the type of problem to be solved. If one knows that the structure will
vibrate most of the time along the first flexion mode, then the pole placement con-
troller is the best choice. On the other hand, if we consider that the frequency range
in which the plate vibrates is large, we will prefer the HIFOO controller.

However, probably the most important issue also needs to be kept in mind. This
is the size of the controller. Actually, until now we compared a full order controller
of order 20 with a single order controller of order 1. When the computation time and
power are limited this issue is crucial and can be decisive in considering the HIFOO

controller.

Conclusion: In this section a controller robust to external perturbations has been
computed and tested on the experimental set-up. We employed the Matlabc) Ro-
bust Control Toolbox and the HIFOO library. Due to memory overflow, the full order
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controllers computed using Robust Control Toolbox can not be implemented. There-
fore, a first order order controller using HIFOO library is computed and implemented.
Finally, again using HIFOO, a unique first order controller that can take into account
different fill levels of the tank is computed and tested for different fill levels e = 0.5,
e = 0.7 and e = 0.9. Experiments show a good attenuation especially of the most

energetic mode of the structure.

4.7 Conclusion of the chapter

In this chapter, tests on the experimental device are conducted. After proving that
the influence of actuator dynamics on the system behavior is null for the frequency
band we consider, the number of modes for the state-space approximation have been
determined. In this case we used the method of modal energetic contribution from
Chapter 3 along with some technical aeronautical aspects. Then, we computed the
natural frequencies of the plate and the sloshing frequencies of the liquid. For this
we first used the analytic method, which was verified by a numerical method, and
then we directly measured the frequencies. The damping is then measured and the
complete model is determined.

Afterward, we proceeded to the control of the structure. We first realized a pole
placement control, that proves to be very effective for the case when the plate is
deformed along the first flexion mode. Moreover, since the frequency response of the
pole placement is not suitable for high frequencies, we computed a robust controller.
Since the Matlab©) Robust Control Toolbox fails to do this, the HIFOO algorithm
is employed. Using HIFOO, we computed first order controllers that showed their
effectiveness during experiments. Moreover, using HIFOO we were also able to make
simultaneous control for three different tank fill levels, an impossible thing to do with
the Robust Control Toolbox from Matlab(©) .
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Contribution of the manuscript

The device we are working on was described in Chapter 1 and pictured in Figure 1.1.
It is composed of a rectangular plate connected to a cylindrical tank filled with liquid
up to an arbitrary level. Moreover, as it was already said, it was built to have, in low
frequency domain, the same behavior as a real plane wing with liquid.

Therefore, we started the manuscript by presenting this experimental device along
with the acquisition chain that connects it to the computer, the purpose of this work
being to control the plate vibrations when they occur. Moreover, since the control of
the device is done through piezoelectric actuators and sensors, the first chapter ends

with a short presentation of the piezoelectric phenomenon.

We computed in Chapter 2 an analytical model of the device. The chapter is
divided in three distinctive parts: the first part contains the model of the rectangular
plate and the second details the model of the tank with liquid. In order to complete
the model of the device, the third part studies the mutual interaction between the
vibrations of the plate and the sloshing of the liquid in the tank.

On the one hand, we considered the plate model in Section 2.2. For sake of
simplicity, we started from the PDE model of a beam, which represents the plate
transposition in a 1-dimensional space. Using the Ritz method, we determined, for
each mode of the beam, the expression of its natural frequency and associate defor-
mation. We then considered the PDE model of a rectangular "clamped-free-free-free"
plate (2.27). We computed the deformation of the plate based on the deformations
of two theoretical perpendicular beams. Since, as it was proved later in Section 4.2
of Chapter 4, the first modes of the plate are the most energetic ones, we made an
approximation of the PDE plate model by considering only the first modes. Based
on this, we constructed the dynamic matrix, considering that all the vibration modes

are decoupled even in the presence of damping. Then, studying the behavior of the
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piezoelectric actuator, we computed the control matrix. We finally obtain the output

matrix from the behavior of the piezoelectric sensor.

On the other hand, we studied the modeling of the sloshing of the liquid in the
tank. Since there are no analytical results for horizontal cylindrical tank, we made
a geometric approximation in Section 2.3. Therefore, we constructed a "virtual"
rectangular tank for which the sloshing frequencies of the liquid are exactly the same
as the one of the cylindrical tank. Then, we computed the PDE model of the liquid
in the rectangular tank (see equations (2.67) and (2.68)). In order to develop a finite
dimensional approximation, we made an analogy with a mass-pendulum mechanical
system. Therefore, considering one mass-pendulum system for each liquid mode, the
parameters of the mechanical systems were computed to develop the same force and
moment of force as the liquid does. Once the parameters of the mass-pendulum
systems were set, the computation of the corresponding dynamic, control and output

matrices was straightforward from the pendulum equation.

We finally studied in Section 2.4 the influence of the plate vibration on the liquid
sloshing and vice-versa. The plate senses the liquid sloshing as an external moment
that bends the plate along with the piezoelectric actuators. At the same time, the
liquid senses the plate influence as an external acceleration that amplifies the sloshing
effect. Therefore, we first coupled both PDE models and second we detailed the finite
dimensional approximation coupling. The complete model of the experimental device,

under the shape of a state-space representation, was finally given by equation (2.134).

Chapter 3 has mainly a theoretical interest. We proposed first in Section 3.1 a
method that allows to compute the finite dimensional approximation by studying
the energetic contribution of each mode of the structure. Then, we detailed in Sec-
tion 3.2 the theory of pole placement controller coupled with a full state observer.
Since we were planning to implement controllers robust to external perturbations, we

also briefly presented the robust H., framework in Section 3.3.

Tests on the experimental device are illustrated and analyzed in Chapter 4. After
checking the influence of the actuator dynamic on the plate vibrations in Section 4.1,
we applied the energetic method detailed in the previous chapter to determine in Sec-
tion 4.2 the number of modes for the finite dimensional approximation of the PDE
model. Then, an analytic calculus, coupled with some numerical verifications and
experimental measurements, is done in order to compute the natural frequencies and

damping of each system mode. Moreover, we also proved by experimental measure-
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ments that the presence of the extra weight of the tank filled with liquid decreases
the plate natural vibration frequencies while the plate presence decreases the sloshing
frequencies when connected. Since we observed minor differences between the fre-
quency response of the computed model and the experimental set-up, we performed

a model matching in order to diminish these mismatches.

In Section 4.4, we computed and tested the pole placement controller. Tests on the
experimental device show a good attenuation of the plate vibrations when the plate
is initially deformed along the first vibration mode. This can be easily explained,
since the closed-loop poles corresponding to the first vibration modes are the ones
that changed their position. However, on the Bode plot, we notice an amplification
of some high frequency modes, a sign that the controller response in high frequencies

will not be as good as in low frequencies.

Furthermore, in Section 4.5, we computed a controller robust to external pertur-
bations and which attenuates a higher range of frequencies. Two distinct cases were
considered. First, no filters were used to simulate the perturbations or to counter the
spill-over effect that may occur. The controller was computed using the Matlab©) Ro-
bust Control Toolbox. Simulations on a system with the same amount of modes
showed a good attenuation of the plate vibrations while tests on an augmented sys-
tem showed that the system diverges. This is due to the spill-over effect and thus the
presence of the filter on the system input u is necessary. Moreover, tests on the ex-
perimental device could not be performed, probably due to the controller poles which
were too fast. Therefore, in the second set of tests, filters were used. The first surprise
was to notice that Matlab(©) Robust Control Toolbox fails to compute a controller
when the filters plus a large amount of system modes are considered. An alternative
had to be found and the HIFOO algorithm was considered. In contrast with Robust
Control Toolbox which computes only full order controllers, HIFOO computes also
reduced order ones. Using HIFOO, we computed 1°° order controllers for two differ-
ent tank fill levels: 0.9 and 0.7. Experimental Bode plots showed a good attenuation
especially for the first vibration modes. Tests for a plate deformation along the first
vibration mode showed also good results. Finally, using again HIFOO, we tackled
the problem of simultaneous control of the system for different filling levels. We com-
puted a 1°* order controller that simultaneously attenuates the vibrations for three
tank fill levels: 0.9, 0.7 and 0.5. Here also, attenuation is obtained, especially for the

first vibration mode.

Finally, Section 4.6 contains the comparison of the different control methods we

employed. As expected, pole placement controller showed a better result when the
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plate is deformed along the first vibration mode while HIFOO controller showed bet-
ter results when a large frequency spectrum is considered. Finally, based on the
controller size (full order pole placement controller versus the 1% order HIFOO con-
troller) the HIFOO controller was considered the most suitable.

Perspectives and Open questions

There are still many points that may be considered. Some of them concern the model
construction while others concern the vibration control or the perturbation design.

Let us detail some of them here below.

As stated in the introduction of Chapter 2, there are two different approaches
for the computation of the model: analytical (the approach we followed in this
manuscript) and numerical. One of the main reasons for which we choose the an-
alytical approach was the possibility to model the sloshing of the liquid. However, we
found that some recent toolboxes from a FEM software can also solve this. Therefore,
this issue could also be exploited in order to compare a numerical model using this
approach with the analytical one obtained here. Concerning the analytical model,
some model improvements could be worked on if we consider the nonlinear dynamics
of the actuators and sensors. In particular, it is well known that piezoelectric actua-

tors and sensors have a limited deformation [94] or [131].

Concerning the control of vibrations, there are issues that require further atten-
tion. For example the choice of weighting functions for the robust H,, control. We
know, from the literature [145, Chapter 6.3], that the choice of the weighting functions
is extremely important for the results we obtain. The choice of the to-be-controlled
outputs could also be addressed differently. Tests are in progress using the system
state X in the controlled outputs [43| instead of the measured output y as we did.
Preliminary results show a better attenuation (than the one we experienced with HI-
FOO) when a large spectral frequency is considered but a smaller attenuation, for
the first mode, than the one we observed with the pole placement controller. An-
other interesting issue should be to study the interest of a mixed synthesis Hy/H .
Moreover, methods that better control the liquid sloshing or the twisting modes of

the plate could also be of great interest.
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Concerning the perturbations, until now we used a random chirp of constant
amplitude. A more sophisticated perturbation, that uses a vibrating device connected
to the clamped side of the plate, could be considered. Besides, a more sophisticated
device that excites more the torsion of the plate or the sloshing modes may be used.
In any case, paths for further research on this device are numerous, some of them

(probably the most interesting ones!) are still to be discovered ...
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