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Introdution
General ontextThe new generation of airplanes and spae shuttles need to �y further and furtheraway. Thus, the problem of fuel apaity has ome to the attention of the sienti�world. In aordane, the tanks used to stok the fuel need to be enlarged. Thedrawbak is that larger quantities of fuel imply that a potentially larger quantity ofliquid an be subjet to movements if neessary preventive measures are not taken.Therefore, the question of ontrolling the liquid behavior has arisen and NASA startedfrom the early '60s to onentrate on this issue. The �rst omplete study was doneby Abramson [2℄, based on many other studies dealing with this issue as [22℄, [34℄,[92℄ just to ite few of many.The ore problem with large quantities of liquid in large tanks is that, a phe-nomenon of sloshing ours at low frequeny. As the sloshing frequenies get lower,an interferene with the ontrol frequenies generated by pilots may our. This maylead to a ontinuous exitation of the liquid whih, in return, will a�et the vehilestability. Besides, this an even lead to the non-ontrollability and destrution of thevehile [48℄. Even if suh extreme ases are not willing to our, the liquid strangebehavior an still pose serious problems [46℄. As an example, [3℄ and [129℄ give alists of airplanes that were onfronted to this issue during the testing phase: DouglasA4D, Lokhead P-80, Boeing KC-135, Cessna T-37, North Amerian YF-100. More-over, liquid unpreditable movement also a�eted the NEAR spaeraft whih hadto interrupt his insertion burn due to large fuel reations. Even though the fuel was�nally ontrolled, the mission was still delayed for almost a year [138℄.In order to minimize the sloshing, various methods an be used. Firstly, theontainers with liquid an be divided, using ba�es, in several smaller ontainers sothat the eigenfrequenies of the sloshing modes are inreased [124℄, [130℄. Seondly,sine the loation of the ontainers also a�ets the damping of the struture [20℄,better positioning an be found. Thirdly, the use of light elements to partially over1



2 Introdutionthe liquid free surfae an also inrease the natural sloshing frequenies [20℄. Fourthly,a ontrol system an also be arefully hosen so that sloshing modes are attenuatedor at least not exited too muh. We will onentrate our work on this last method.In order to ontrol the sloshing, one needs to ompute for eah mode the naturalfrequeny, the mode shape and then the total fores and moment that it generates.Exat solutions though, are possible only for very few speial ases, suh as vertialylindrial tank or a retangular tank [67℄. Furthermore, in the ase when the exatsolutions exist, the oupling between these solutions and the equations of �uid motionis too omputationally demanding even with super omputers [48℄. Based on theseremarks, some approximations of the liquid sloshing have to be found. As presentedin [18℄, a good approximation is obtained by onsidering eah sloshing mode as asystem with a single degree of freedom and representing it either as a mass-pendulumsystem or a spring-mass system. Even though both methods are equivalent [67℄, themass-pendulum system is usually preferred due to some small advantages (his naturalfrequeny varies with the hanges in axial aeleration as the sloshing frequeny does[48℄). Finally, the osillating �uid an be represented as a simple mehanial system,in whih the loation and the magnitude of the model variables are determined togive the same fores and moments as the liquid does.Another harateristi of airplanes and spae shuttles of the future is the inreaseof their size. As they beome larger, in order to redue the overall weight, the wingsand tail de�nitely need to be lighter, thus more �exible. See [13℄ for the Airbus A-380ase or [137℄ for the NASA Ative Aeroelasti Wing (AAW) onept. The study of�exible strutures has aptured the attention of researhers for many years and iswell overed in the literature. As an example, one an hek the works of [30℄ or [56℄where the theory is presented and experimental results are given.It is well known that, espeially in the ase of large airplanes, a great part ofthe fuel is onentrated in the wings. Thus, for some airplanes, the quantity of fuelarried in the wing tanks beomes a large perentage of the total wing mass [92℄.Thus, the wing will be onsiderably in�uened by the liquid movements.On the other hand, due to their harateristis, smart materials have been usedfor many years now, espeially in the �eld of ivil engineering, for measuring andattenuating the deformations of strutures [29℄. Therefore, the question of how itan be useful to use them for ontrolling the �exible devies arose. Sine the �rstresults were promising, nowadays, the piezoeletri pathes are very muh used to



Introdution 3suppress the vibration of strutures [11℄, [23℄, [45℄, [65℄, [66℄, [144℄. However, up toour knowledge, only few works have addressed the oupling between liquid sloshingand �exible struture [79℄, [132℄. Moreover, even fewer onsider this oupling in thease of airplanes [108℄, [109℄.The devie we are working on follows these lines, the purpose being to ontrol,using piezoeletri pathes, a �exible plate onneted to a tank �lled with liquid.Furthermore, this devie was onstruted to have, in low frequeny domain, the samebehavior as a real plane wing [110℄.Thesis outlineThe manusript is onstruted as follows.The �rst hapter gives a detailed presentation of the experimental devie we wantto model and ontrol: a retangular plate lamped at one of its ends, onneted to aylindrial tank at its other end. After a geometri haraterization of the struture,the aquisition system is detailed and analyzed. The �nal part of the hapter on-entrates on the presentation of atuator and sensor pathes. Sine they are madefrom piezoeletri materials, a brief desription of the piezoeletri phenomenon is�rst given. Then, some details are given on the optimal plaement of these pathes.Finally, the atuator speed and his in�uene on the total dynami of the system isanalyzed.Chapter 2 gathers the steps of the mathematial modeling of the devie and de-tails the omputation of the struture model. Even though numerial methods are themost employed for the model omputation of omplex strutures like ours, we hooseto work with an analytial proedure. It will lead to a more tedious modeling phase,but, taking into aount many mehanial onsiderations will show its interest duringthe ontroller omputation phase. The main idea we follow for the omputation ofthe model is �rst to get two separate partial di�erential equation (PDE) models, onefor the plate and one for the tank with liquid, and seond to put them together bystudying the mutual in�uene. Thus, the model is �rst written using PDEs and thenis approximated using the Ritz method for the plate and using mehanial analoguesystems for the sloshing. Finally, the �nite dimensional system is written under theshape of a state-spae representation.



4 IntrodutionIn Chapter 3 the theoretial bases of the Chapter 4 are set. Sine the ontrollerswe ompute are based on the �nite dimensional model, the issue of hoosing the suit-able amount of modes for the model approximation needs to be takled. A methodbased on the energeti ontribution of eah struture mode solves this issue. Then,the theory to ompute a pole plaement ontroller oupled with a full state observeris brie�y reminded. Finally, the frame of robust H∞ ontrol is brie�y presented andmore attention is given to the partiularities of the method implementation in thease of in�nite dimension systems.The ore problem of ontrolling the experimental devie is treated in Chapter 4.After testing the in�uene of atuator dynamis, the issue of hoosing the rightamount of modes for the model approximation is onsidered. Based on tehnialonsiderations of airplanes and on the energeti ontribution of eah mode, a hoieof the number of modes to be onsidered is made. Numerial simulations and experi-mental tests are onduted afterward. First, a pole plaement ontroller is omputedand tested. Seond, a H∞ ontroller, robust to external perturbations, is omputed.Using the HIFOO pakage, redued order ontrollers an also be found. Moreover,the simultaneous ontrol problem with redued order ontrollers is also onsidered.Simulations and tests are shown and analyzed.The manusript ends with a last hapter dealing with the onlusions of this workand with perspetives for further researh.Eah hapter (exept for the last hapter whih presents the general onlusionsof the manusript) ends with a short onlusion dealing with the ontribution of thehapter and its onnetion with the forthoming one.



Chapter 1Experimental devie presentationThis hapter is devoted to the desription of the experimental devie we are workingon. It is loated at I'Institut Supérieur de l'Aéronautique et de l'Espae - ÉoleNationale Supérieure d'Ingénieurs de Construtions Aéronautiques (ISAE - ENSICA)in Toulouse, Frane. The devie is pitured in Figure 1.1 and it has been onstrutedto have the same behavior, in low frequenies, as a real plane wing with fuel (see [110℄or [114℄).

Figure 1.1: Experimental devie ISAE-ENSICA5



6 Chapter 1 � Experimental devie presentation �1.1 Charateristis of the experimental devieThe experimental devie is omposed of an aluminum plate and a plexiglas tip-tank�lled with liquid. The plate is retangular, lamped at one side and free on the otherthree sides. At the free end of the plate, opposite to the lamped end, is onneted theylindrial tank, as it an be seen on Figures 1.2 and 1.3. The tank is in a horizontalposition and it an be �lled with water or ie up to an arbitrary level.

Figure 1.2: Experimental devie, detailed presentation of main omponentsPSfrag replaements
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w(y, z, t)Figure 1.3: Deformation of the retangular plate (1st mode)The length of the plate is along the horizontal axis and its width is along thevertial one (see Figure 1.3). At the lamped end, there are two atuators gluedon one side and two sensors on the opposite side. The plate is onstruted from



1.1 � Charateristis of the experimental devie � 7aluminium and has the harateristis depited in Table 1.1 below. A view of theplate without the ylindrial tank an be seen in Figure 1.4.Plate length L 1.36 mPlate width l 0.16 mPlate thikness h 0.005 mPlate density ρ 2970 kg m−3Plate Young modulus Y 75 GPaPlate Poisson oe�ient ν 0.33Table 1.1: Plate harateristis

Figure 1.4: Retangular plate without ylindrial tankThe tank is entered at 1.28m from the plate lamped side and is symmetriallyspread along the horizontal axis. Due to the on�guration of the whole system, thetank undergoes a longitudinal movement when the plate has a �exion movement anda pith movement if the plate has a torsion movement.The geometrial harateristis of the horizontal ylindrial tank are given inTable 1.2. It an be removed or �lled with ie or water. If the tank is �lled with ie,it an be easily modeled by a steady mass [123℄ equal to the empty tank mass plusthe mass of the ie.The ratio between the liquid height and the total height of the tank gives thetank �ll level, whih is a good indiator of the tank behavior. When the tank �lllevel is lose to 0 or lose to 1 (the tank is almost empty or almost full), there is nosloshing behavior, and the modeling proess is similar to the ase of frozen water.



8 Chapter 1 � Experimental devie presentation �Tank exterior diameter 0.11 mTank interior diameter 0.105 mTank length 0.5 mTank density 1180 kg m−3Tank Young modulus 4.5 GPaTable 1.2: Charateristis of the ylindrial tankThe interesting ases are when the tank �ll level is between these values. In thisase a sloshing phenomenon ours, whih is haraterized by a periodi motion ofthe liquid free surfae. This motion reates periodi fores and moments of fore. Itis in this situation that this work is plaed, therefore, we will further onsider onlythe ases for whih the sloshing motion ours. A more omplete desription of thisphenomenon will be given later in Setion 2.3.1 of Chapter 2.The movement of the plate is generated by some piezoeletri atuators while in-formation about plate deformation are gathered using piezoeletri sensors. Moreover,the atuators an be used as a ontrol input or as a perturbation input. More detailsabout the atuators/sensors geometry and behavior are given below in Setion 1.3.Let us �rst desribe the data aquisition hain.1.2 Data aquisition hain
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Figure 1.5: Equipped experimental setupIn order to reord the information transmitted to the atuators and given by the sen-sors, some aquisition hain is used. A shemati representation of the experimentaldevie with the aquisition system is depited in Figure 1.5. In the following lines we



1.2 � Data aquisition hain � 9present the di�erent omponents of the hain that make possible the implementationof numerial ontrollers. They are listed below starting from the signal delivered bythe sensor until the voltage delivered to the atuator.The data delivered by the piezoeletri sensor is �rst olleted by a harge ampli�erbefore being delivered to the DSpae © ard. The harge ampli�ers, one for eahsensor, are of type 2635 and are made by Brüel & Kjaer [33℄. Their piture alongwith the onnetions to the experimental devie are presented in Figure 1.6. Thepriniple of the harge ampli�er is to set, using an operational ampli�er, a null voltagebetween the sensor eletrodes so that the eventual parasite apaitane vanishes. Inthis way, all the harges on the sensor eletrodes are send towards a apaitanewhere a voltage, orresponding to the harge di�erene, is measured. For furtherdetails about the eletri sheme of the devie one an read referene [81℄.

Figure 1.6: Detail view of harge ampli�erThe signal delivered by the harge ampli�er is sent to a omputer using a DSpaeard. Using the same ard, the signal delivered by the omputer is send to the highvoltage ampli�er. The ontrol laws are implemented on the omputer and exeutedin real time with a seleted sampling time of 0.004s.In order to manipulate the di�erent signals, delivered to the atuators and reeivedfrom the sensors, the software xPC Target from Matlab © is implemented on the



10 Chapter 1 � Experimental devie presentation �omputer. It allows the real time exeution of a Simulink model on the omputer viaan optimized real-time kernel.The xPC Target reates a real-time testing environment for Simulink models byonneting a host omputer, a target omputer and the experimental devie undertest. Visual details of the aquisition hain are presented in Figure 1.7 where themaster (omputer on the left side) and slave (omputer on the right side) omputers,along with the DSpae © ard an be seen. The master omputer, on whih arerunning xPC Target, Simulink and an C-ompiler, is onneted to the slave omputervia a single TCP/IP ommuniations link. The slave omputer is onneted to theexperimental setup. Based on the Simulink model, a ode is generated by Real-Time Workshop and downloaded to the target omputer via the ommuniationslink. During the aquisition proess, the results are stored on the slave omputer andthen an be uploaded to the master using Matlab © and xPC Target software.

Figure 1.7: Detail view of aquisition system and xPC TargetFinally, the voltage delivered to the plate, by the DSpae © ard, is ampli�ed bya high voltage ampli�er. It has an amplifying gain of 13 and an deliver a maximumvoltage of ±100V. In order to be funtional, it has to be powered at ±15V and
±100V. One voltage ampli�er onneted to a soure delivering ±15V an be seen inFigure 1.8. Although the devie is home-made at ISAE-ENSICA, his harateristisare those of model PB58 from APEX Mirotehnology Corporation [10℄.



1.3 � Atuators and sensors � 11

Figure 1.8: Detail view of high voltage ampli�er1.3 Atuators and sensorsAs presented earlier, there are two atuators and two sensors whih are glued on theplate towards the lamped side (see Figure 1.9 for the atuators and Figure 1.10 forthe sensors). The atuators are glued on one side of the plate while the sensors areglued on the other side, thus there are two pairs of olloated atuators and sensors.Sine they are all made from piezoeletri materials some detailed information is givenin this setion onerning their behavior.The piezoeletri eramis belong to the larger group of ferroeletri materials,that is to say, materials whih are spontaneously polarized (without an eletri �eldbeing applied).The piezoeletri atuators are made from PZT (Lead zironate titanate), modelPIC 151. The material model used (PIC 151 is onsidered a "soft" PZT) it is thestandard material used for atuators. In order to reate a moment, both atuatorslengthen when a voltage is applied to their eletrodes. The two sensors (made fromPVDF - Polyvinylidene �uoride, a relatively new lass of piezoeletri materials usedas sensor devies) are loated on the opposite side of the plate with respet to theatuators. They deliver a voltage proportional to their deformation. The harater-istis of the olloated sensors and atuators are given in Table 1.3. Both atuatorsand sensors are ommerialized by PI Cerami, the piezo erami division of Physik



12 Chapter 1 � Experimental devie presentation �

Figure 1.9: Atuators onneted to the plate

Figure 1.10: Sensors onneted to the plate



1.3 � Atuators and sensors � 13Instrumente (PI) ompany [1℄.Atuator length/width/thikness 0.14/0.075/5e−4 mSensor length/width/thikness 0.015/0.025/5e−4 mAtuator/Sensor density 7800 kg m−3Atuator/Sensor Young modulus 67 GPaAtuator piezoeletri oe�ient (d31) −210e−12 m V−1Sensor piezoeletri oe�ient (e31) −9.6 C (m)−2Atuator/Sensor Poisson oe�ient 0.3Table 1.3: Charateristis of the piezoeletri pathesThe piezoeletri materials are generally used to attenuate the vibrations andmeasure the deformation of strutures (see [23℄, [29℄, [53℄ among other referenes forsome examples). In the ase of �exible strutures, many studies also investigate theuse of piezoeletri pathes to e�etively suppress the vibrations (see for instane[11℄, [45℄, [66℄, [140℄, [144℄). Indeed, piezoeletri pathes o�er a fast response andhave a large bandwidth, they are light and low ost, and have good sensing andatuating apabilities. Moreover, they are self-sensing atuators, thus they an besimultaneously used as atuators and sensors. However, only a few results are alreadyavailable in the literature for �uid-struture systems (see [108℄ or [109℄) for the samestruture as ours. For other strutures, one an hek referene [79℄ whih gives areent theoretial result and [132℄ whih validates the ative ontrol method by meansof experimental results.Despite these advantages, some preautions need to be taken. First of all, thevoltage limitations of the materials should be onsidered. In order to avoid the depo-larization of the material, the voltage applied in the opposite diretion of the materialpolarization needs to be arefully ontrolled (maximum allowane for PZT material isaround 500Vmm−1). Seond, are should also be taken when the material is exposedto very high temperatures. The limit temperature for a piezoeletri material is de-�ned as the Curie temperature and, again in the ase of a PZT material, is around 250degrees Celsius (exeeding this limit the material is not being ferroeletri anymorethus loosing all piezoeletri properties). In our ase though these onsiderations arerespeted sine the ambient temperature around the experimental setup does not ex-eed 30 degrees Celsius, while the voltage delivered to the piezoeletri atuators is�rst limited by the voltage ampli�er (see Setion 1.2).The strutures that integrate piezoeletri atuators and sensors on a �exiblesystem are often known as ative strutures or smart strutures, while the ontrol onthese strutures is known as ative ontrol (in ontrast to the passive ontrol where



14 Chapter 1 � Experimental devie presentation �additional materials are glued to inrease the strutural damping of the strutureand redue the vibrations [71℄, [136℄). The ontrol is ative due to the fat thatthe equipped devie is self-sensing and self-ompensating, due to the piezoeletripathes.1.3.1 Presentation of the piezoeletri phenomenonBoth atuators and sensors use the piezoeletri e�et. Let us shortly desribe it.The existene of the e�et was disovered in the 1880 by the Curie brothers onquartz rystals. When a stress is applied, these rystals have the property to de-velop a proportional eletri moment. Our purpose here is not to give a ompleteharaterization of the phenomenon but just some details that will help the readerto better understand the behavior of the atuators/sensors. The modeling will begiven in Setion 2.2.3.2 of Chapter 2. For a detailed desription of the piezoeletriphenomenon [100℄, among others, gives a omplete haraterization.The piezoeletri e�et is twofold: the diret piezoeletri e�et (also known inthe literature as the generator e�et) presented above and the onverse piezoeletrie�et. The latter is de�ned as the shape hange of a piezoeletri rystal when aneletri �eld is applied. Moreover, it an be seen as a thermodynami onsequene ofthe diret e�et.As it an be seen from the above statements, piezoeletri materials experieneboth eletri and mehanial phenomena. Therefore, the omplete piezoeletri equa-tion is de�ned as a ombination between:
• a mehanial phenomenon, desribed, for an elasti material experiening onlysmall perturbations, by the tensor expression of the lassial Hook law on-neting the strain ǫ to the stress σ by the means of the ompliane tensor s[100℄:

ǫ = sσ; (1.1)
• an eletri phenomenon, desribed by the eletri behavior of the material on-neting the eletri displaement D to the eletri �eld intensity E and theeletri permittivity κ [100℄:

D = κE. (1.2)



1.3 � Atuators and sensors � 15Moreover, in the ase of the polarization of a rystal produed by an eletri �eld,(a piezoeletri rystal for instane), the last equation desribing the eletri behaviorbeomes:
D = κ0E + P (1.3)where P is the polarization harge per unit area taken perpendiular to the diretionof polarization (or short polarization) and κ0 = 8.854 × 10−12Fm−1 is the vauumpermittivity .At the same time, eah type of piezoeletri e�et (diret or onverse) is desribedby his own spei� relations.

• On the one hand, the diret piezoeletri e�et is desribed by a relation linkingup the polarization harge P of the stress σ applied to the rystal sides:
P = dσ (1.4)where d is a onstant value alled piezoeletri modulus [100, Chapter 7℄;

• On the other hand, the onverse piezoeletri e�et is desribed also by a relationbetween the strain ǫ, responsible for the hange of shape of the material, and theintensity of the eletri �eld E [100, Chapter 7℄:
ǫ = dE (1.5)where the oe�ient d is the same as in (1.4).By ombining the relations (1.1) and (1.3) with (1.4) and (1.5) we obtain theomplete piezoeletri equations [75, Chapter 13℄:

ǫ = sσ + dE, (1.6)
D = dσ + κ0E.These equations will be later used in Setions 2.2.3.2 and 2.2.3.3 of Chapter 2 toompute the analytial model of atuators and sensors.1.3.2 Optimal plaement of atuators and sensorsThe optimal plaement of atuators and sensors is a key problem in the ontrol of�exible strutures. Due to the nature of �exible strutures, spatially distributedsystems, the atuators and sensors an be plaed in many loations. Therefore,



16 Chapter 1 � Experimental devie presentation �the study of the optimal plaement is natural when some performane riteria needto be obtained. There are many referenes whih suggest di�erent methods for abetter positioning of the atuators as [44℄, [52℄, [63℄, [66℄ or [86℄ by analyzing theontrollability and observability matries for a �xed amount of vibration modes or as[8℄ by studying the energy spae of the struture. Even the thikness of the atuatoran be alulated in order to have optimum values for the bending moment of theatuator. For this last issue one an hek the work of [81℄ where the author omputesthe suitable thikness of a piezoeletri path in order to have maximum values of thebending moment for a spei� plate struture.In the experimental devie of this thesis, the position of atuators and sensorswas already �xed and ould not be hanged. Thus, we do not onsider the optimalposition problem. We give nevertheless, in the following lines, some details about thisinteresting issue. In the literature, two main types of approahes an be found:
• The losed-loop approah type onsists �rst at hoosing the ontrol law to imple-ment on the struture and then to determine, for this spei� law, the optimalplaement of atuators and sensors. In this ase, the loation of atuators andsensors is treated as some extra design parameters in the ontrol law ompu-tation. For more details one an read referene [141℄. The greatest advantageof this method is the optimization for a spei� ontrol law but the greatestdrawbak of the method is also the fat that the position of sensor/atuatorpathes depends on this ontrol law;
• The open-loop approah type onsists in treating this problem independentlyfrom the ontrolled design problem. This ase has the main advantage thatseveral ontrol laws an be tested for the same atuator/sensor positioning. Formore details one an onsider [61℄, [66℄, [69℄, [81℄, [95℄ or [96℄ among manyothers. In the following lines, we give some details onerning this method.There are several open-loop approahes in the literature onerning the optimalplaement of atuators and sensors. For example one an hek [95℄ where the ideas ofontrollability and observability of atuators/sensors are employed. Another approahan be read in [66℄, where the atuators/sensors are olloated and plaed at theloation where the highest position sensitivity of eah mode is experiened.We will now explain brie�y the method detailed in [95℄ sine it is very easy toimplement.This method is based on the notions of ontrollability for atuator plaement andof observability for sensor plaement. These notions, although they are well known,



1.3 � Atuators and sensors � 17will also be brie�y detailed, for the general ase of a linear system, in Setion 3.2of Chapter 3. This approah seems natural if we think that, usually, atuators needto be plaed where they have the highest authority to ontrol the system while thesensors should be plaed where they have the highest strength to observe the system.The method is omputed separately for the piezoeletri atuators and sensors.On the one hand, for the atuators, a di�erene is made between the modal on-trollability and the spatial ontrollability. The modal ontrollability measures theontroller authority over eah mode of the �exible struture while the spatial ontrol-lability measures the atuator authority only over the preseleted modes (usually the�rst vibration modes sine the low frequeny modes tend to ontribute more than thehigh frequeny modes to the struture vibrations). This di�erene is natural sine wewant the atuator to have a high authority over the seleted modes but, at the sametime, to have a low authority over the non seleted ones. This is espeially true inorder to prevent the spillover e�et (exitation of high frequeny modes). Therefore,in the ase of the atuators, the optimization problem proposed by [95℄ is to maxi-mize the spatial ontrollability measure while keeping some atuator ontrol over allmodes, thus keeping some level of modal ontrollability.On the other hand, for the sensors, the optimization problem in �nding their lo-ation is formulated in a similar way in referene [95℄ by di�erentiating the modalobservability (observability of the sensor over all the modes) from the spatial ob-servability (observability of the sensor over some seleted modes). Finally the opti-mization problem is formulated in order to maximize the spatial observability whilemaintaining a minimum level of modal observability.After �nding the optimal position of atuator loation and of sensor loationseparately, the inherent question is wether or not this method an be implementedfor the position omputation of both piezoeletri atuators and sensors. It is provenin [95℄ that it is easier to �nd the optimal plaement of a olloated atuator/sensorpair by studying only the ontrollability or the observability and not both (whih anbe time onsuming).For our experimental setup, as said earlier, the position of the atuators and sen-sors was �xed in advane. Thus, we did not study the problem of optimal plaementand use the devie as it is.



18 Chapter 1 � Experimental devie presentation �1.3.3 Dynami of piezoeletri pathesAnother thing that should be onsidered is the inherent dynamis of atuators andsensors. This is an important issue during the modeling of the piezoeletri pathessine their dynamis may modify the total dynami of the modeled system.As detailed earlier in Setion 1.2, some high voltage ampli�ers are used before thepiezoeletri atuators for the ontrol of the �exible struture. A �rst order dynamialmodel of this type of atuator, similar to the one in [131℄, is omputed below:
τ v̇ + v = ku (1.7)where u is the input voltage and v is the output delivered voltage. Moreover, theonstants have the values τ = 4.85e−7s and k = 1, determined from the tehnialspei�ations in order to �x the ut-o� frequeny of the model at the same level asthe ampli�er bandwidth. Based on these issues, the minimal period of the outputvoltage delivered by the ampli�er is 3.25e−5s.At the same time, we need to ompute the maximal response speed for the piezo-eletri atuator. We remark that, if the speed of the atuator is larger than the speedof the voltage ampli�er, then we do not need to take into onsideration the atuatordynamis. In this ase, the speed of the piezoeletri atuator response saturatesafter the voltage ampli�er does.Aording to the tehnial spei�ations from PI Cerami atalog [1℄, the PZTreahes his nominal displaement in 1/3 of its resonant period, provided that theneessary urrent is delivered. Besides this, the resonant period is de�ned as T0 = L

N1
,where L is the length of the piezoeletri atuator and N1 is the frequeny onstantfor the transverse osillation of a slim rod polarized in the longitudinal diretion. Inour ase, the length in taken from Table 1.3 while the frequeny onstant for thePIC 151 material is N1 = 1500. Therefore, the resonant period of the piezoeletriatuator is 3.11e−5s.As it an be seen, the maximal speed for the atuator is larger than the maximalspeed for the voltage ampli�er. Thus, for a given exitation, the atuator responsetime is muh smaller than the one of the voltage ampli�er. Therefore, his dynamian be negleted sine is not interfering in the response time of the total struture.Tests regarding this issue are done in Setion 4.1 of Chapter 4.



1.4 � Conlusion of the hapter � 191.4 Conlusion of the hapterIn this hapter we gave a general presentation of the experimental devie we areworking on. The aquisition hain that will help us implement the ontroller forvibration attenuation is also shown. Moreover, the harateristis of the plate/tanksystem along with those of the piezoeletri atuators and sensors are presented.These harateristis will allow us to ompute the analytial model of the devie inChapter 2.





Chapter 2Mathematial modeling of the system
2.1 IntrodutionIn this hapter we detail the di�erent steps to build the mathematial model of the�uid/struture system depited earlier. We an �nd in the literature two di�erentapproahes onerning the modeling of suh devies:

• A numerial approah based on �nite element method (FEM). The methodapproximates the distributed parameter system with an unlimited number ofdegrees of freedom and modes by a �nite dimensional disrete system. Todo this, the whole struture body is divided in several subdivisions or �niteelements. Finally, the �nite element desription of the struture is a sum ofbeam and lumped mass elements. Further on, the mass and sti�ness matriesare found from the expression of the kineti and potential energies for the systemwith �nite degrees of freedom. As a result the �nite element method providesa quite good approximation for the frequenies and mode shapes. For furtherdetails about the desription of the method one an hek for example [83℄or [147℄. The ases where FEM is employed during the modeling phase arenumerous, as an example one an hek [86℄, [133℄ for a �exible plate system or[108℄, [109℄ for a �uid plate system, among many others;
• An analytial approah whih allows to �nd an analytial solution, of in�nitedimension, for the eletromehanial in�nite dimension problem. For this asealso, the referenes in the literature are numerous. Among many others, for a�exible struture system we an ite [63℄, [81℄, [107℄.Usually in the literature, for " simpler " aademial strutures like beams or evenplates with a geometry not very ompliate, the preferred approah is the analytial21



22 Chapter 2 � Mathematial modeling of the system �one whih allows the omputation of a simple model. While thinking of more omplexstrutures, like the one in our ase, the approah mostly employed in the literature isusing the numerial modeling based on FEM method. Even though this method o�ersthe possibility to model items with a ompliated shape, their struture geometry annot hange in time. To the best of our knowledge, only strutures that are in a solidform (oil pipelines, plates, beams, rings of di�erent shapes and sizes, full tanks) an bemodeled, but we an not model the liquid sloshing. Nevertheless, reent advanes (∼year 2006-2007) in the ANSYS © software (�nite element method simulator software),show that a reent toolbox on omputational �uid dynamis alled FLUENT © mightbe able to solve this type of issue.In our ase though, this method is di�ult to use. Using �nite element method,the liquid, an only be modeled as a "frozen liquid" whih ats as a steady masswith no sloshing phenomenon. Moreover, in our ase, the sloshing behavior is ofgreat importane sine it signi�antly hanges the system dynamis espeially in lowfrequenies. For a study that onsiders the oupling between a �exible struture anda �uid one an hek [98℄ or again [25℄. In the latter, the e�et of the �uid is takeninto aount in the FEM modeling phase by means of an added mass formulationdetailed in [97℄.For another example one an hek the work [114℄ for the same struture as ours.In this work the author uses the FEM to ompute the numerial model of the struturewithout liquid (therefore without any sloshing behavior). Even though the experi-enes in [114℄ are done for three ases: empty tank, full tank and half full tank, theontrollers are omputed by always onsidering the tank to be empty.Therefore, we hoose to go on with the analytial approah even though we thinkthat it leads to a more omplex modeling phase.In this hapter we are going to detail the di�erent steps that will lead us to aomplete model of the disposal. Sine the plate and the tank an be viewed as twoseparate entities oupled together, the main idea we have in mind is to ompute twoseparate models and then to unite them. Therefore, we will �rst ompute one modelfor the plate and another model for the tank with liquid. Finally, in order to have theomplete struture model we study the interations between the two models, that isto say the way the behavior of one model a�ets the behavior of the other.More preisely we will �rst write a model for the �exible plate and another for theylindrial tank with liquid using partial di�erential equations. The oupling betweenthe two in�nite dimensional models is obtained by studying the in�uene of the platemovement on liquid sloshing and vie-versa. We then make an approximation of the



2.2 � Plate model � 23in�nite dimensional model by taking into aount only a �nite number of modes forthe plate and liquid. Based on this, the oupling of the two �nite dimensional modelsis also expressed in �nite dimension.2.2 Plate modelIn this setion we detail the onstrution of the model for the retangular plate withpiezoeletri atuators and sensors. The partial derivative equation (PDE) platemodel is well known in the literature. For a more detailed presentation one an seefor example [30℄ or [56℄.We start from the beam equation (whih is a 1-dimensional plate), for the sakeof simpliity during the modeling phase. We then study the plate and ompute anin�nite dimensional model using partial derivative equations (we will see in the nextsetions that the plate model is onstruted on the basis of the beam model). Theobjetive is to give a lassial state-spae approximation (�nite dimension) using theRitz method to approximate the PDE model. We will get:
{

Ẋp(t) = ApXp(t) + Bpu(t)

y(t) = CpXp(t)
(2.1)where Xp is the state-spae vetor of the plate and Ap, Bp, Cp are respetively thedynami, ontrol and output matries. u(t) will be the ontrol (input) variable (thevoltage applied to the piezoeletri atuator) and y(t) the output variable (the voltagedelivered by the piezoeletri sensor).2.2.1 Beam modelThe beam represents the transposition of a plate in a 1-dimensional spae. Sine weare dealing with a beam, whih is desribed by only one dimension as it an be seenin Figure 2.1, we dedue that only the �exion movement is possible.The beam PDE modeling is well known in the literature, one an hek for example[30℄ where models for di�erent types of beams are presented.We onsider an homogeneous beam, lamped at one end and free at the other,of onstant setion, whih has the length L and the mass m. By de�nition, thedimensions of the beam ross setion are muh smaller (in theory are null dimensions)than the length of the beam.The oordinate system Oxyz is seleted so that the axes Ox, Oy orrespond to
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Figure 2.1: Beam with a �exion movementthe main inertia axes. We start the study of transverse beam vibrations supposingthat the beam has only �exing movements.We make the lassial inemati hypotheses as in [56℄:

• the beam is uniform and omposed of a homogeneous, isotropi elasti material;
• the beam is redued to its neutral �ber, whih by de�nition will be the part ofthe beam that does not feel any onstraint, thus the axis where the elementsare neither lengthened or shortened;
• Bernoulli hypothesis: plane setions remain plane, thus only deformations nor-mal to the undeformed beam axis are onsidered. This is equivalent to the fatthat shear deformations are negleted;
• the beam deformation is only along the x axis. This deformation w is thereforewritten as a funtion of the oordinate y de�ned along the beam length and oftime t:

w = w(y, t);

• the hypothesis of geometrial linearity is veri�ed. This is equivalent to the fatthat the deformations have a in�nitely small amplitude. The normal longitudi-nal strain tensor ǫy is therefore a linear funtion of displaement and rotation:
ǫy = −x∂

2w

∂y2
.Under these hypotheses and assuming that a �exion moment my is ating on thebeam, the alulus of potential and kineti energies lead to the following movementequation by applying the Hamilton priniple. Thus, we get the following PDE:
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∂2w

∂t2
+
Y I

ml

∂4w

∂y4
= 0 (2.2)where ml = m

L
is the linear density of the beam, I the area moment of inertia (seondmoment of inertia) of the beam ross setion about the beam neutral axis and Y theYoung modulus of the beam material. Moreover, for a beam of retangular setion ofheight h and width l, we write the area inertial momentum as (see [30℄) I = lh3

12
andthe linear density as ml = ρlh = ρS, where ρ is the density of the beam material.Conerning the initial onditions, they are de�ned as:

w(y, 0) = w0(y) and ∂w

∂y
(y, 0) = w1(y) (2.3)where w0 and w1 stand for the initial deformation and veloity respetively.

Clamped-free beamAs one an read in referene [30, Chapter 8℄, the boundary onditions of the beamare written for the lamped side by onstraining the transverse deformation and hisderivative to be null:
w(0, t) =

∂w

∂y
(0, t) = 0 (2.4)and for the free side by onstraining that the bending moment and Kelvin-Kirho�edge reation (whih depends on the transverse shearing fore and the derivative ofthe bending moment) are also equal to zero:

∂2w

∂y2
(L, t) =

∂3w

∂y3
(L, t) = 0. (2.5)Of ourse, other boundary onditions are possible (see [30, Chapter 8℄) and someof them will be used latter in this work (for the "free-free" beam for instane).First, the beam vibration response is obtained by solving the homogeneous equa-tion (2.2) with the initial onditions (2.3) and the boundary onditions (2.4) and(2.5). In our ase, homogeneous beam with onstant setion, it is possible to �nd ananalytial approximate solution for w under the shape of a series [36℄, [113℄ using the



26 Chapter 2 � Mathematial modeling of the system �variable separation method or Fourier deomposition method [30, Chapter 8℄:
w(y, t) =

∞
∑

i=1

Yi(y)qi(t). (2.6)To ensure the onvergene of the series, we hoose the funtions {Yi}i as a setforming a Hilbert orthogonal basis (L2) of the eigenfuntions of the spae di�erentialoperator ∂4

∂y4 = ∆2. The existene of this basis is due to the fat that ∆2 is a ompatand symmetri operator [32℄. Therefore, the funtions {Yi}i have to be a solution ofthe eigenvalues problem:
d4Yi(y)

dy4
= λiYi(y), y ∈ [0, L] (2.7)

Yi(0) =
dYi

dy
(0) = 0,

d2Yi

dy2
(L) =

d3Yi

dy3
(L) = 0.whih has an in�nity of solutions (λi, Yi) detailed below.Sine {Yi}i is an orthogonal basis, one an use the salar produt to ompute thebeam displaement w:

w(y, t) =

∞
∑

i=1

< w(y, t), Yi(y) > Yi(y) =

∞
∑

i=1

qi(t)Yi(y)where < Yi, Yk >= δik, the Kroneker delta symbol, equal to 1 when i = k and 0otherwise.Combining the previous equation with (2.2), we an rewrite the homogeneousequation as:
∞
∑

i=1

qi
d4Yi

dy4
+
ρS

Y I

∞
∑

i=1

d2qi
dt2

Yi = 0.Using (2.7) we get:
∞
∑

i=1

(

qiλiYi +
ρS

Y I
q̈iYi

)

= 0.The salar produt with Yk, for k ∈ N
∗ gives:

∞
∑

i=1

(

qiλi < Yi, Yk > +
ρS

Y I
q̈i < Yi, Yk >

)

= 0



2.2 � Plate model � 27and using the orthogonality of the hilbertian basis, we get:
qiλi +

ρS

Y I
q̈i = 0.Therefore, the inemati parameters qi verify the di�erential equations, for i ∈ N

∗:
q̈i(t) +

Y Iλi

ρS
qi(t) = 0, (2.8)

qi(0) =< w0(y), Yi >L2 ,

q̇i(0) =< w1(y), Yi >L2 .and the modal displaements Yi verify the di�erential equations (2.7).Therefore, the solutions of the ordinary di�erential equation (2.8) are given by:
qi(t) = Ei cosωit+ Fi sinωitwhere

ωi =

√

λi

Y I

ρS
(2.9)and Ei, Fi are omputed from the boundary onditions.We then �nd the modal displaements Yi by solving the di�erential equation (2.7).From (2.9), we infer that there are only two possible ases for λi for the "lamped-free" beam: λi = 0 and λi > 0. The third ase λi < 0 is not valid, sine it will implythat, as the other plate oe�ients are positive, there are vibration modes with aomplex natural angular frequeny.Let us �rst onsider the simpler ase when λi = 0. From (2.7) we have

d4Yi

dy4
(y) = 0whih has a possible solution of the following shape: Yi(y) = Aiy

3 +Biy
2 +Ciy+Di.Solving this equation using the boundary onditions we �nd the oe�ients Ai =

Bi = Ci = Di = 0, thus Yi(y) = 0. This solution is again not valid sine, as detailedearlier, the Yi(y) are forming an orthogonal basis thus they an't be equal to zero.Let us now onsider the ase λi > 0. Again we need to solve (2.7) with theboundary onditions. There are several approahes in the literature for writing thesolutions of this equation. For example one an hek [81℄ where the author writes the



28 Chapter 2 � Mathematial modeling of the system �total expression of the modal displaement as a sum of sine, osine, hyperboli sineand hyperboli osine funtions, eah funtion multiplied by an unknown onstantwhih needs to be determined.Another more elegant and faster approah is the one proposed by [56℄. We writethe solution of the equation as:
Yi(y) = Ais1(Ωiy) +Bic1(Ωiy) + Cis2(Ωiy) +Dic2(Ωiy) (2.10)where

(Ωi)
4 = λi =

ρS

Y I
(ωi)

2 (2.11)was used to simplify the writing. The funtions s1, c1, s2, c2 are independent andde�ned as:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s1(Ωiy) = sin(Ωiy) + sinh(Ωiy),

c1(Ωiy) = cos(Ωiy) + cosh(Ωiy),

s2(Ωiy) = − sin(Ωiy) + sinh(Ωiy),

c2(Ωiy) = − cos(Ωiy) + cosh(Ωiy).As usual, the onstants from the displaement equation (2.10) are found by writingthe boundary onditions of the beam. As it an be seen, the funtions: s1, c1, s2 and
c2 an be easily obtained one from another by a simple derivative operation. Thus,the boundary onditions, that use the derivative of the oordinate up to the thirdorder, are very easy to express. After heking the boundary onditions we notie thatwe have only four equations but �ve unknown elements: Ai, Bi, Ci,Di and λi = Ωi.A �fth equation is therefore found by imposing a normalization equation, whihinvolves the length L of the beam and the modal deformation, for all i ∈ N

∗:
1

L

∫ L

0

Yi(y)
2dy = 1. (2.12)We solve (2.7) imposing the shape (2.10) of the solution, with the normalizationondition (2.12). We obtain the following solutions for our "lamped-free" beam:

Yi(y) = cos(Ωiy) − cosh(Ωiy) + ςLi (sinh(Ωiy) − sin(Ωiy)) (2.13)where ςLi is de�ned by:
ςLi =

cos(ΩiL) + cosh(ΩiL)

sin(ΩiL) + sinh(ΩiL)
(2.14)



2.2 � Plate model � 29and where the frequeny variableΩi is the ith positive solution of the impliit equation:
1 + cos(ΩiL) cosh(ΩiL) = 0. (2.15)In order to obtain the angular frequeny ωi of the beam modes we �rst solve theequation (2.15) using a graphial method (a simple plot is drawn and the solutionsare heked) and seond we used the value of Ωi in (2.11) to ompute it.Free-free beamLet us now onsider a "free-free" beam of length l along the z axis. The methodologyin �nding the modal displaements and frequenies is the same. The only hangesare of ourse the boundary onditions (2.4) and (2.5), whih now beome (see [30,Chapter 8℄):
∂2w

∂z2
(0, t) =

∂3w

∂z3
(0, t) = 0, (2.16)

∂2w

∂z2
(l, t) =

∂3w

∂z3
(l, t) = 0.We onsider that the hypothesis given in the ase of the "lamped-free" beam arerespeted. Therefore, we an write the displaement w of the beam using again theseparation of variable method [30, Chapter 8℄:

w(z, t) =

∞
∑

j=1

Zj(z)qj(t). (2.17)Following the same approah as earlier, we express the deformation of the "free-free" beam as a solution of the following equations:
d4Zj(z)

dz4
= λjZj(z), z ∈ [0, l] (2.18)

∂2Zj

∂z2
(0) =

∂3Zj

∂z3
(0) = 0,

∂2Zj

∂z2
(l) =

∂3Zj

∂z3
(l) = 0.Di�erent solutions are found based on the values of λj. Sine for the "free-free"beam, the natural frequeny of the modes is again given by (2.9) we infer that, thesolution with λj < 0 is physially impossible. Therefore, λj ≥ 0.Let us �st solve the equation for the ase when λj > 0. In this ase we use the



30 Chapter 2 � Mathematial modeling of the system �same approah as earlier, and solve the general equation of the beam (2.18), imposingthe shape
Zj(z) = Ajs1(Γjz) +Bjc1(Γjz) + Cjs2(Γjz) +Djc2(Γjz)of the solution, using the normalization ondition:

1

l

∫ l

0

Zj(z)
2dz = 1 (2.19)and the boundary onditions. This allows us to �nd the expression of modal displae-ments:

Zj(z) = cos(Γjz) + cosh(Γjz) − ςj(sinh(Γjz) + sin(Γjz)) (2.20)where ς lj is de�ned by:
ς lj =

− cos(Γjl) + cosh(Γjl)

sin(Γjl) + sinh(Γjl)
(2.21)and the frequenies are omputed from:

1 − cos(Γjl) cosh(Γjl) = 0 (2.22)where the angular frequeny γj of the jth mode of the "free-free" beam is suh that:
(Γj)

4 =
ρS

Y I
(γj)

2 = λj. (2.23)Let us now onsider the ase when λj = 0, therefore Γj = 0. In this ase weobtain the so-alled rigid modes. They are haraterized by the fat that the "free-free" beam an vibrate (with a frequeny equal to zero) without bending itself, likea rigid body.In this ase we have
d4Zj

dz4
(z) = 0whih has a possible solution Zj(z) = Ajz
3 +Bjz

2 + Cjz +Dj . Using the boundaryonditions we obtain Zj(z) = Cjz +Dj whih still has variables to be found.We think that, a priori, for this type of beam the rigid modes an represent asolution. Therefore, we �rst impose that the deformation at both ends of the beam areidential: Zj(0) = Zj(l). Using the normalization ondition (2.19), the orresponding



2.2 � Plate model � 31beam deformation for this translation rigid mode is:
Zj(z) = 1, ∀z ∈ [0, l]. (2.24)On the other hand, we impose that the deformation at both beam ends are identialbut in opposite diretions: Zj(0) = −Zj(l) (rotation of the beam). In this asethe mode is alled rotation rigid mode and is haraterized by a deformation (afternormalization):

Zj(z) = −
√

12(
z

l
− 1

2
), ∀z ∈ [0, l]. (2.25)

Until here we voluntarily forgot the inherent strutural damping and we onsid-ered only the ase of onservative strutures. The presene of a damping in a beamequation makes it more di�ult to solve sine the damping reates a system in whihthe modes are not deoupled anymore (see [40℄).Nevertheless, when omputing the exat value of the frequenies and mode shapesfor a real struture it is ompulsory to take the damping into onsideration. Onesolution to this problem is given by the Basile hypothesis: even with a dampingoe�ient, the movement equations an remain deoupled if the strutural dampingis su�iently small and the modes frequenies of the struture are spaed enough.This hypothesis allows us to desribe the entire struture, a beam in our ase, by aomplete set of equations with no oupling, eah equation desribing the behavior ofa single mode (see [86℄).In the ase of the "lamped-free" beam for example, this is written as (see [56,Chapter 3℄):
q̈i + 2ζiωiq̇i + ωi

2qi = 0 (2.26)where i ∈ N
∗ stands for the mode number and ζi being the damping of the ith modeof the "lamped-free" beam. In the ase of the "free-free" beam the expression isidential with respet to the mode frequeny and damping.Until here, we omputed the PDE model of two beams: a "lamped-free" beamwhih is along the y-axis and a "free-free" beam whih is along the z-axis. As it willbe seen in the next setion, the beam PDE model and deformations are needed for



32 Chapter 2 � Mathematial modeling of the system �omputing the retangular plate model.2.2.2 Plate in�nite dimensional modelIn this part we are going to build the model of the retangular plate with piezoeletriatuators and sensors glued on eah side. The plate is lamped at one end and freeat the three others. It has a length L, a width l and a thikness h.
O
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Figure 2.2: Plate bending along x axisWe onsider that the plate movement is only along the x-axis (see Figure 2.2)and, as for the beam, we suppose that the following kinemati hypothesis (see [30℄ or[81℄) are veri�ed:
• the material of the plate is onsidered homogeneous, elasti and isotropi;
• the plate has a onstant height;
• the plate is onsidered very thin;
• the plate setions, whih in steady motion are perpendiular to the neutral �berof the plate, remain perpendiular to the neutral �ber also during movement(this means that the rotary inertia and shear movement along the x axis areonsidered zero; furthermore, we de�ne the neutral �ber as the imaginary linethat stays undeformed during movement);
• we onsider only small deformations of the plate.Further on, we ompute the expression of the potential and kineti energies inorder to �nd the mass and sti�ness matries. A more detailed expression of thesematries is given in [56℄. Using this expressions we an infer the partial derivativeequation of the plate:

ms

∂2w

∂t2
+ ζ(w)

∂w

∂t
+ Y Is∆

2w =
∂2my

∂y2
+
∂2mz

∂z2
(2.27)



2.2 � Plate model � 33where ms is the mass per unit plate area, Y and ν are the Young modulus andrespetively the Poisson oe�ient of the plate material. The area moment of inertiaof the plate about the neutral �ber is Is = h3

12(1−ν2)
, similar in expression with the oneof the beam (see (2.2) and the details therein). In (2.27) w = w(y, z, t) stands forthe displaement (deformation) of the plate along the x axis thus, it depends only onthe oordinates y and z and on the time t. The operator quantifying the dampingis denoted ζ(w) and his expression will be detailed latter. Furthermore, ∆ is theLaplae operator, ∆2 being equal to ( ∂2

∂y2 + ∂2

∂z2

)2.On the right hand side of the equation, my and mz are the external momentsalong the y and z-axis. The moment along eah axis is delivered to the plate by theatuators (see [47℄ or [42℄) and, as it will be demonstrated latter in this work (see2.4), by the sloshing modes of the liquid in the tank. Even though, for the time being,we study the plate alone (without the tank �lled with liquid), it is easy to see fromthe moment expression the in�uene of the tank on the plate.Equation (2.27) is to be solved using the appropriate boundary onditions andinitial onditions. More preisely the boundary onditions are given for the three freesides by:
∂3w

∂y3
=
∂3w

∂z3
=
∂2w

∂y2
=
∂2w

∂z2
= 0, ∀(y, z) ∈ {L} × [0, l],

∂3w

∂y3
=
∂3w

∂z3
=
∂2w

∂y2
=
∂2w

∂z2
= 0, ∀(y, z) ∈ (0, L) × {0, l}.and for the lamped side:

w =
∂w

∂y
=
∂w

∂z
= 0, ∀(y, z) ∈ {0} × [0, l]. (2.28)The initial onditions are:

w(y, z, 0) = w0(y, z), ∀(y, z) ∈ [0, L] × [0, l]

∂w

∂t
(y, z, 0) = w1(y, z), ∀(y, z) ∈ [0, L] × [0, l] (2.29)where w0 and w1 stand for the initial deformation and veloity respetively.The �rst step in �nding the expression for plate deformation, of w(y, z, t), is toonsider the plate equation (2.27) in the absene of the exterior fores and damping:

ms

∂2w

∂t2
+ Y Is∆

2w = 0 (2.30)
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clamped sideFigure 2.3: The plate and the two beams seleted for the hoie of the Ritz funtions
We use the same approah as in the ase of the beam. Therefore the deformation iswritten in a orthogonal Hilbertian basis using Ritz method:

w(y, z, t) =

∞
∑

k=1

ηk(y, z)qk(t) (2.31)We an �nd many Ritz funtions that an approximate the plate deformation.An intuitive idea is to use a group of funtions with a partiular shape, resemblingas muh as possible to the plate. As in [81℄, we hose two orthogonal beams, theirboundary onditions given by the plate boundary onditions. As we have a "lamped-free-free-free" plate, we thus hoose a "lamped-free" beam and a "free-free" beamto approximate the deformations. Due to this hoie for beam geometry, the Ritzfuntions ηk, are de�ned as a produt of modal deformations of the two onsideredbeams (see Figure 2.3).
ηk(y, z) = Yik(y)Zjk

(z) (2.32)where Yik(y) and Zjk
(z) are the beam modal deformations along the y and z axisrespetively. Moreover, eah k mode of the plate variable orresponds to a pairdenoted (ik, jk).Until here we omputed the in�nite dimensional model of the plate (see equation(2.27)) using partial derivative equations. Let us now make a �nite approximation ofthe model under the shape of a state-spae representation.



2.2 � Plate model � 352.2.3 Plate �nite dimensional approximation
In this setion we detail the steps to make the �nite dimensional approximation ofequation (2.27) (thus impliitly, of equation (2.31) previously written).It is known (see [63℄) that the �rst modes ontain the main part of the energyof the deformation of the �exible struture. It is therefore important to study thebehavior of the system speially in low frequenies. Moreover, due to the limitedbandwidth of atuators and sensors (their response time is limited thus they annotrespond to very high frequenies), the high frequeny modes an not be ontrolled [15℄.Furthermore, using the energy approah presented in Setion 3.1 of Chapter 3 andtested in Setion 4.2 of Chapter 4, it is possible to hek that the �rst modes ontainalmost all the energy of the struture. Due to this last issue we think of trunatingour model based on the energeti ontribution of eah mode, thus onsidering only a�nite number of modes.Using modal analysis tehniques we aim at extrating from equation (2.27) astate-spae dynamial model, of �nite dimension, whih will su�iently represent thedynamial behavior of the struture espeially in low frequenies.Ritz method is widely spread in analytial modeling of retangular plates. Onean hek [28℄, [73℄ or [80℄ among many other referenes. When hoosing the Ritzfuntions, some onditions must be ful�lled. As it is detailed in [56℄ and in [142℄,one important ondition that must be satis�ed is the kinemati boundary ondition.In the ase of a "lamped-free-free-free" plate as here, this ondition states that thetransverse deformation and its �rst derivative must be zero at the lamped side.As an example, we give in Table 2.1 the onstrution of the �rst Ritz funtions,based on the �rst modal displaement of the "lamped-free" beam and on the �rstmodal displaements of the "free-free" beam.
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η1(x, y) = Y1(y)Z1(z) 1 1 1
η2(x, y) = Y2(y)Z1(z) 2 2 1
η3(x, y) = Y3(y)Z1(z) 3 3 1
η4(x, y) = Y1(y)Z2(z) 4 1 2
η5(x, y) = Y4(y)Z1(z) 5 4 1
η6(x, y) = Y2(y)Z2(z) 6 2 2
η7(x, y) = Y5(y)Z1(z) 7 5 1
η8(x, y) = Y3(y)Z2(z) 8 3 2
η9(x, y) = Y6(y)Z1(z) 9 6 1Table 2.1: Plate Ritz funtions (Z1 means the mode is a �exion mode while Z2 meansis a torsion mode)Moreover, beause of the number of Ritz funtions we selet to use (let us denoteit N), the plate deformation w from (2.31) now beomes

w(y, z, t) =

N
∑

k=1

ηk(y, z)qk(t) = η(y, z)T · q(t) (2.33)where the Ritz funtions an be staked in a vetor denoted
ηT = (η1(y, z), ..., ηk(y, z), ..., ηN(y, z)) (2.34)and the general oordinates in another vetor denoted:

qT = (q1(t), ..., qk(t), ..., qN (t)). (2.35)As stated earlier, in order to ease our work in the ontrol problem, we aim atomputing a state-spae approximation of the plate model desribed by (2.27). Wetherefore detail the omputation of eah matrix of the state-spae representation andat the end this representation will be shown in a ompat manner.2.2.3.1 Computation of the dynami plate matrix ApWe used two beams to approximate the deformation of the plate. The exat val-ues of their natural frequeny along with their mode shape will be detailed later inSetion 4.3.1.1 of Chapter 4, Figures 4.5 to 4.9 and Table 4.3.



2.2 � Plate model � 37There are two di�erent approahes in the literature for the omputation of themodal frequenies of the plate:
• A numerial alulus. The approah is detailed in [30℄ for a plate with di�erentboundary onditions. Based on the boundary onditions, several parametersare omputed and �nally, the value of the frequeny is approximated. Eventhough the alulus is tedious, the �nal approximation is quite similar to theanalytial result;
• An analytial alulus. This is the approah we use to ompute the frequeny,�rst of all beause the preision of the method but also for the simpliity of thealulus. Another motivation is that we want to build a fully analyti model.Using the analytial method, the frequeny of the kth mode is written as [30℄:

fk =
ϑ2

k

2πLl

√

Y Is
ms

=
ϑ2

k

2πLl

(

Y h3

12ms(1 − ν2)

)
1

2 (2.36)where ν is the Poisson oe�ient and Y the Young modulus of the plate material.The thikness of the plate is denoted h, the mass per unit plate area is ms and ϑk is adimensionless oe�ient. The oe�ient ϑk is alled the natural frequeny parameterand is a funtion of the Poisson oe�ient. It also depends on the mode, on theapplied boundary onditions and on the plate ratio L
l
:

ϑk = ϑk(boundary onditions, L
l
, ν).Conerning the inherent damping of eah mode, we use the approah detailed in[87℄. In the ase of a beam equation, the damping is usually taken onstant in time andspae and idential for all the modes. In the ase of plates, even though many authorsonsider it as a onstant term in time and spae and idential for all modes (see forexample [73℄, [81℄ or [133℄ among many others), we notie during measurements thatfor our struture it is di�erent for eah vibration mode and is even hanging with theinput voltage delivered to the atuators. This implies that, for example, the dampingof eah mode hanges when two di�erent voltages are applied to the atuators.
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Figure 2.4: Quality fator Q
In order to quantify the damping assoiated to a mode we use the quality fatorQk(also known as the Q fator). It is used to haraterize the bandwidth of an osillatorrelative to its enter frequeny as it is shown in Figure 2.4. It is a dimensionlessparameter that ompares the frequeny at whih a system osillates to the rate atwhih it dissipates its energy. The quality fator Qk an be measured starting fromthe width of the resonane [127℄:

Qk =
fk

∆fk

(2.37)where fk is the resonant frequeny in Hertz[Hz] of the kth mode and the bandwidth
∆fk is the width of the range of frequenies for whih the energy is at least equal to
1√
2
≃ 0.7 of its peak value. This is equivalent to 3dB of attenuation.To experimentally measure the quality fator we use a signal generator and anosillosope. Form (2.37) we an de�ne it using the angular frequenies ωk = 2πfk in

[ rads ]:
Qk =

ωk

∆ω−3dB

=
ωk

ωk2 − ωk1
. (2.38)Let us now detail the proedure of alulus of ζk from the quality fator Qk.As stated earlier in the ase of the two beams, we an write an equation foreah mode using the dynamial model (2.26). In the ase of the plate we make thesame analogy as for the beam. Using the Basile hypothesis presented earlier and theinemati parameters qk for eah mode k of the plate (see (2.35)), we an write a set



2.2 � Plate model � 39of N deoupled equations, one equation modeling eah mode:
q̈k + 2ζkωkq̇k + ωk

2qk = 0, k ∈ [0, N ] (2.39)where ζk is the damping of the kth mode and ωk the angular resonant frequeny in
[ rads ].The same set of deoupled N equations an be regrouped using the mehanialequation of the plate in the absene of exterior in�uene [56, Chapter 3.1℄:

Mq̈ +Dsq̇ +Kq = 0 (2.40)where M is the mass matrix and K the sti�ness matrix. The vetor q gathers theoordinates of all modes (see equation (2.35)). We suppose that the energy dissipationof the struture takes the shape of a visous damping ontained in the diagonal matrix
Ds.In our ase, sine the modes are perfetly deoupled, the mass M is an identitymatrix of appropriate dimensions and the sti�ness matrix is a diagonal matrix

K = diag(ω1
2, · · · , ωk

2, · · · , ωN
2).Therefore, for the kth mode, the visous damping beomes:

Dsk
=

1

Qk

√

ωk
2 (2.41)where Dsk

is the kth diagonal term of the Ds matrix.The analogy between (2.39) and (2.40), allows to �nd the damping ζk of eahmode:
ζk =

1

2Qk

(2.42)Pratially, Qk is measured for eah mode using (2.38). We �nd the resonantfrequeny of the mode and we measure the amplitude of the vibrations with an osil-losope. We divide this value by √
2 (whih is equivalent with plaing ourselves onthe bandwidth of −3dB) and we searh on eah side of the resonant frequeny thetwo frequenies whih have this amplitude of vibration. This proedure is depited inFigure 2.4. As it an be easily notied, the quality fator will depend not only on theonsidered mode, by means of its resonant frequeny, but also on the input voltage



40 Chapter 2 � Mathematial modeling of the system �used to measure the frequenies. The alulus of the damping fator of eah platemode will be given in Setion 4.3.2 of Chapter 4.When hoosing the state-spae vetor, we have a variety of hoies for the state-spae variables. The most ommon hoie is Xp =
(

q̇1 q1 · · · ˙qN qN

). Insteadof hoosing this, we will use the state-spae vetor proposed in [61℄ and used also in[81℄:
Xp =

(

q̇1 ω1q1 ... ˙qN ωNqN

)

. (2.43)It allows us to have only elements of omparable amplitude in the dynami matrix.This will imply a better onditioning for the dynami matrix and thus for the wholesystem.Having the state-spae vetor from (2.43), we ompute the frequenies of eahmode using (2.36) and the damping using (2.42). Then the omputation of the dy-nami matrix Ap of the plate is straightforward using the formulation (2.39) and givesthe following proposition:Proposition 2.2.1. The dynami matrix of the plate is:
Ap =













Ap1
0 · · · 0

0 Ap2
· · · 0

· · ·
0 0 · · · ApN













(2.44)where for eah k from 1 to N the blok matries of the diagonal are equal to:
Apk

=

(

−2ζkωk −ωk

ωk 0

)

.2.2.3.2 Computation of the plate input matrix BpThe plate de�etion is modi�ed by the moment of fore delivered by the expandingpiezoeletri atuator. As presented in Setion 1.3 of Chapter 1, when a voltage isapplied to the faes of the piezoeletri material, the latter is hanging his dimensions,thus reating a momentum whih is bending the plate. This voltage applied to oneof the two piezoeletri pathes used as atuators is the ontrol input of our plate.Therefore, for the alulus of the ontrol matrix Bp of the plate, we have to take intoaount the behavior of the atuator.Let us now onsider the ase of the plate without external in�uene. We suppose



2.2 � Plate model � 41that the only way the plate an be moved from the equilibrium position is by applyinga sinusoidal voltage to the atuators whih will deliver a proportional momentum thatbends the plate. Furthermore, we onsider that the presene of the atuator is notsigni�antly hanging the plate mass or plate sti�ness, thus is not hanging the shapenor the frequeny of the modes omputed in Setion 2.2.3.1, [47℄.The piezoeletri atuator model is well known in the literature. As an exampleone an hek the work of [47℄, [94℄ or even [81℄ for the model omputation. In thelast two ases, in order to maintain the symmetry of the struture and to inrease thee�et of the pathes, two atuators are used. One is glued at the top of the strutureand the other at the bottom. They are then ativated by applying an idential voltageof opposite sign.We are aware that the atuator position is very important for the suess of theative ontrol. In our ase though, the problem is di�erent. As it was detailed inSetion 1.3.2 of Chapter 1, due to the system on�guration, we an not hange thethikness of the atuators nor their position on the plate. Moreover, in our ase theontrol atuator is glued only on one side of the plate and not on both sides as in thereferenes [47℄, [81℄.Furthermore, we propose below an analytial model of the atuators.Piezoeletri atuators an be used in di�erent on�gurations depending on whatthe user wants to do. These di�erent modes are a funtion of the diretion of theeletri �eld (the polarization) and the diretion of the material deformation. Thisoupling gives three main types of behavior for the pathes, denoted as modes: lon-gitudinal mode (denoted mode 33), transverse mode (denoted mode 31) and shearstress mode (denoted mode 51). The �rst two modes are interdependent due to therelation between their orresponding piezoeletri oe�ients d31 and d33 [102℄.Let us onsider a piezoeletri atuator used in "mode 31", initially su�ering noexternal onstraint. The onsidered mode "31" implies that for a polarization alongthe x axis, equal stains are indued in both y and z-axis.Based on the physial behavior of the atuator we an also assume the followinghypothesis:
• the path deformation is idential in the diretions y and z due to the equality ofstrains in these diretions. From the path anisotropy (atuator used in "mode31") we also infer that the deformation along the x-axis is zero;
• the atuator path undergoes no torsion e�et. Atually we suppose that evenif the plate has a torsion movement, the piezoeletri path does not sense it;
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• the deformations are linear along the struture thikness.

Proposition 2.2.2. The shape of the ontrol matrix Bp is the following:
Bp = (bp1

, 0, ..., bpk
, 0, ..., bpN

, 0)T (2.45)where the omponents bpk
are given by

bpk
= Kb(Y

′
ik

(ya2) − Y ′
ik

(ya1))

∫ za2

za1

Zjk
(z)dz

+Kb(Z
′
jk

(za2) − Z ′
jk

(za1))

∫ ya2

ya1

Yik(y)dy (2.46)and (ya1, za1), (ya2, za2) are the oordinates of the atuator opposite orners positionand Kb is a onstant depending on the plate and piezoeletri path harateristis.
Proof:Under the hypothesis detailed before the proposition, the piezoeletri equationsfor the plate and piezoeletri pathes are written using the strain vetor (for moredetails see [100℄)

ǫ =
(

ǫ11 ǫ22 ǫ33
√

2ǫ23
√

2ǫ13
√

2ǫ12

)

,and the stress vetor
σ =

(

σ11 σ22 σ33

√
2σ23

√
2σ13

√
2σ12

)

.Due to the transverse mode of utilization of the piezoeletri atuator, the strain andstress vetors are redued to three omponents whih orrespond to the two axes ofthe indued stress [47℄. Therefore, the tensoral Hook law (1.1) an be written:
∣

∣

∣

∣

∣

∣

∣

σ11 = Y
1−ν2 (ǫ11 + νǫ22)

σ22 = Y
1−ν2 (ǫ22 + νǫ11)

σ12 = Y
2(1+ν)

(ǫ12)

(2.47)



2.2 � Plate model � 43for the plate and identially
∣

∣

∣

∣

∣

∣

∣

∣

σp11
= Y p

1−ν2
p
(ǫ11 + νpǫ22 − d31(1 + νp)

Va

hp
)

σp22
= Y p

1−ν2
p
(ǫ22 + νpǫ11 − d31(1 + νp)

Va

hp
)

σp12
= Y p

2(1+νp)
(ǫ12)

(2.48)for the piezoeletri path. Furthermore, for the atuator hp is the thikness, νp thePoisson oe�ient and Yp the Young modulus. As it an be seen, the last term thatappears in the expression of the strain omponents σp11
, σp22

is an expression of themagnitude of the indued strains. It is expressed as a funtion of the piezoeletrionstant d31, atuator thikness hp and the voltage applied to the path Va.Based on the earlier hypothesis, some simpli�ations are possible. Sine the pathhas no torsion e�et, we get ǫ12 = 0 whih implies σ12 = 0.Due to the linearity of the deformations in the struture we have ǫ11 = ǫ22. More-over, the deformation elements ǫ11 and ǫ22 are expressed using their value on theonneting ommon points on their surfae (denoted with the subsript i):
∣

∣

∣

∣

∣

∣

∣

ǫ11 = z
h−δn

ǫ11i

ǫ22 = z
h−δn

ǫ22i

ǫ12 = 0.

(2.49)Here δn is the distane of the plate inferior side to the neutral �ber of the struture(plate + piezoeletri path) as shown in the Figure 2.5.In the ase of the symmetri strutures, the values of δn beomes equal to thehalf thikness of the plate. In our ase though, sine the struture is asymmetrial(piezoeletri atuator path only on one side of the plate) we have to ompute thenew position of the neutral plane. Using the method detailed in [74℄ we omputedthe distane of the neutral plane to the inferior side of the plate:
δn =

h2Y + h2
pYp + 2hhpY

2(hY + hpYp)
. (2.50)
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Figure 2.5: Neutral �ber of the retangular plate



44 Chapter 2 � Mathematial modeling of the system �The position of the neutral plane is of great importane sine it is used for theequality of moments oming from the plate and the piezoeletri path. Sine wenegleted the torsion e�et, we an write for the two axes y and z the plane equilibriumondition using the moment expression:
∫ h−δn

−δn

σ11ydy +

∫ h−δn+hp

h−δn

σ11pydy = 0 (2.51)
∫ h−δn

−δn

σ22zdz +

∫ h−δn+hp

h−δn

σ22pzdz = 0 (2.52)Using in (2.51) and (2.52) the values from (2.47) and (2.48) ombined with (2.49)and the distane from (2.50), we �nd the unknown variables ǫ11i
and ǫ22i

:
ǫ11i

= ǫ22i
=

β((h−δn+hp)2−(h−δn)2)
2(1−νp)

d31

hp

1
3(h−δn)

( (h−δn)3−(−δn)3

1−ν
+ ((h−δn+hp)3−(h−δn)3)β

1−νp
)
Va (2.53)where β = Yp

Y
.One the interfae stress of the plate is found, the resulting plate momentuman be found by integrating the atuator stress. After the integration on the platethikness the moment is written as:

ma
y = ma

z =

∫ h−δn

−δn

σ11zdz =
Y ǫ11i

1 − ν

(h− δn)3 − (−δn)3

3(h− δn)
= KbVa (2.54)where:

Kb =

β((h−δn+hp)2−(h−δn)2)((h−δn)3−(−δn)3)
6(1−νp)(1−ν)

(h−δn)3−(−δn)3

1−ν
+ ((h−δn+hp)3−(h−δn)3)β

1−νp

Y d31

hp

(2.55)Sine the momentum is applied only under the atuator, we use the Heaviside step(or unit step funtion) H to impose this (as in [62℄). Therefore, using the oordinatesof the atuator opposite orners (ya1, za1) and (ya2, za2), we an write my and mz:
ma

y = ma
z = KbVa[H(y − ya1) − H(y − ya2)][H(z − za1) − H(z − za2)] (2.56)



2.2 � Plate model � 45where the Heaviside step is de�ned as:
H(r) =

{

0 if r > 0,

1 if r < 0.
(2.57)In order to �nally obtain the input matrix Bp, we ompute the total bendingmomentum Γ generated by the piezoeletri path along both axes y and z:

Γ =

∫ L

0

∫ l

0

(
∂2ma

y

∂y2
+
∂2ma

z

∂z2
)w(y, z, t)dydz (2.58)where w(y, z, t) is the deformation of the plate.Realling that w(y, z, t) =

N
∑

k=1

Yik(y)Zjk
(z)qk(t) and that the momentum alongboth axes is given by (2.56), we obtain from the earlier equation the omponents bpkof the input matrix Bp. �2.2.3.3 Computation of the plate output matrix CpIn order to ompute the output matrix Cp we study the behavior of the piezoeletripath used as sensor. As detailed earlier in Setion 1.2 of Chapter 1, the sensor isonneted to a harge ampli�er whih imposes a null eletri �eld between the sensoreletrodes. In this way all the harges are sent to a apaity denoted Ca where wean just measure the voltage in order to have the total amount of harges.Proposition 2.2.3. The output matrix Cp has the shape:

Cp = (0, cp1
, ..., 0, cpk

, ..., 0, cpN
) (2.59)where eah omponent cpk

is given by
cpk

=
Kc

ωkCa

(Y ′
ik

(yc2) − Y ′
ik

(yc1))

∫ zc2

zc1

Zjk
(z)dz

+
Kc

ωkCa

(Z ′
jk

(zc2) − Z ′
jk

(zc1))

∫ yc2

yc1

Yik(y)dy. (2.60)and (yc1, zc1) and (yc2, zc2) denote the oordinates of the sensor opposite orners, Kc isa oe�ient depending on the plate and sensor harateristis while ωk is the angularfrequeny of the kth mode.



46 Chapter 2 � Mathematial modeling of the system �Proof:Due to the eletri properties of the piezoeletri material (the presene of aneletri polarization due to a mehanial strain) the eletri polarization is equivalentto a surfae harge distribution σp de�ned using the polarization vetor P (see [100℄):
σp = P−→nwhere −→n is the unitary vetor, normal to the surfae of the piezoeletri sensor.Moreover, due to the piezoeletri behavior, the eletri displaement D an berelated to the intensity of the eletri �eld E reated by the polarization. This relationis desribed by equation (1.3) realled here below:

D = κ0E + P.For our ase, the intensity of the eletri �eld is zero beause of the harge ampli�er.Therefore, using the last equation, the surfae harge distribution is:
σp = P −→n = D −→n .Integrating σp on a losed surfae denoted S of normal −→n we get the total harge Qpappearing on the sides of the material (see [106℄):

Qp = −
∫ ∫

S

σpdS = −
∫ ∫

S

D−→n dSIf we neglet, as in the ase of the atuator, the torsion e�et on the sensor, theeletrial displaement beomes:
D = e31(ǫ11 + ǫ22),where the fat that the PZT material of the sensor is transverse isotropi and thein�uene of the harge ampli�er (E = 0) were used. Moreover, under the samehypothesis as for the piezoeletri atuator, we approximate the deformation of thesensor path by the deformation in the middle of the path sine the deformation islinear along the sensor thikness:

D = −e31
(

(h− δn) +
hp

2

)(

∂2w

∂y2
+
∂2w

∂z2

) (2.61)



2.2 � Plate model � 47where w(y, z, t) is the plate displaement and e31 is a piezoeletri oe�ient of thesensor. Using the lassi equations of a piezoeletri material written for one dimen-sional path [27℄, the onnetion between the piezoeletri oe�ients e31 and d31 isproven in [26℄. Sine the sensor is on only one side of the plate, δn is the distaneomputed from (2.50).In this ase, we also have the eletri displaement di�erent from zero only underthe sensor and thus we use again the Heaviside step H from (2.57) to represent hisation on the plate [62℄.Using the last equation (2.61) we an write the expression of the total harge Qp:
Qp = Kc

∫ yc2

yc1

∫ zc2

zc1

(

∂2w

∂y2
+
∂2w

∂z2

)

dydz (2.62)where:
Kc = e31

(

(h− δn) +
hp

2

)

.From (2.62), we an ompute the total voltage in the output of the harge ampli-�er. This gives the terms of the output matrix Cp divided by a oe�ient.
Ck =

Kc

Ca

(

(Y ′
ik

(yc2) − Y ′
ik

(yc1))

∫ zc2

zc1

Zjk
(z)dz + (Z ′

jk
(zc2) − Z ′

jk
(zc1))

∫ yc2

yc1

Yik(y)dy

)Moreover, due to the hoie of the state-spae vetor (2.43) the omponents of theoutput matrix Cp are the one previously omputed, divided by the angular frequenyof eah mode, cpk
= 1

ωk
Ck. �Conlusion: We omputed a �nite dimensional approximation of the PDE platemodel by onsidering only the �rst N modes of the plate. The dynami matrix Apis omputed by onsidering two orthogonal beams. After analyzing the behavior ofthe piezoeletri atuators and sensors the input matrix Bp and output matrix Cp arealso omputed. Finally a state-spae representation of the system is realized:

{

Ẋp = ApXp +Bpu

y = CpXp

(2.63)where the state-spae vetor is omputed from (2.43), the dynami matrix fromProposition 2.2.1, the ontrol matrix from Proposition 2.2.2 and �nally the outputmatrix from Proposition 2.2.3.
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2.3 Tank modelIn this setion we present the di�erent steps to ompute the model of the tank �lledwith liquid.As the tank is partially �lled with liquid, any disturbane of the ontainer willause a motion of the liquid free surfae. This phenomenon of the liquid is alledsloshing. Depending on the ontainer shape, di�erent types of motions an be ob-served.2.3.1 Sloshing of liquids - state of the artLiquid sloshing in moving or stationary ontainers has been studied for many yearsdue to their appliability espeially in the aerospae and aeronauti domains. Thesestudies lead to the omplex work of Abramson [2℄ �nalized in the early 1960s. Later,these kinds of results were also published in [48℄ along with some improvements.Many other works an be found in the literature about the liquid sloshing, [34℄, [67℄,[92℄, [97℄ an be ited among many others.In the aeronauti and spae �ight domain, the inrease in size of the tank di-ameters dereases the sloshing frequenies of the propellants and thus a�ets thevehiles stability. Thus, the eigen (natural) frequenies of the tank liquid shift to-wards zero, thus oming loser to the ontrol frequenies. This leads to a ontinuousexitation of the liquid whih will in�uene the overall stability. One an read forinstane [138℄ where the authors present how fuel unpreditable reations, preventedthe NEAR-Shoemaker (Near Earth Asteroid Rendezvous) spaeraft from orbitingthe Eros asteroid, delaying the spae mission for almost a year. Other examples anbe found in [129℄, onerning the unontrollable fuel osillations during �ight test-ing of several planes: Douglas A4D, Lokhead P-80, Boeing KC-135, Cessna T-37 oragain the strange fuel shift during takeo� that lead to stati pith instability of NorthAmerian YF-100 plane.In order to redue the in�uene of the sloshing, there are several solutions. The�rst, immediate, solution will be to redue the quantity of liquid in tanks by dividingthem in several smaller tanks using walls of di�erent shapes. The seond solutionis to simply introdue ba�es into the liquid to disturb the �ow and to reate larger



2.3 � Tank model � 49damping whih will ontrol the wave magnitude. The third solution is, of ourse,to hoose a suitable ontrol algorithm whih will be able to diminish the fores andmomenta exerted by the sloshing. We are going to onsider further in this work thislast solution.To solve the sloshing problem we need to ompute the natural frequeny for eahsloshing mode along with the mode shape and then the total fores and momentagenerated by the sloshing. Moreover, it is easy to show that the natural frequenyof eah wave depends on the tank shape and on the aeleration (whih is either thetotal aeleration of the system if the tank ontaining the liquid is in movement, orthe gravity alone if the tank is in steady motion) [48℄. The knowledge of �uid densityand of tank fullness, whih will determine these frequenies, is therefore essential inthe design proess of liquid tanks and in implementing ative ontrol [92℄.For eah mode, though, the alulus of the natural frequenies, mode shape, totalfores and momenta is very di�ult, exat solutions being possible only for very fewspeial ases suh as vertial ylindrial or retangular tank [67℄.Moreover, as the natural frequenies are depending upon the tank shape, analyt-ial expressions of frequeny exist for di�erent tank geometries [19℄, [22℄, [48℄, [49℄,[67℄, [90℄, [124℄, [130℄. The general equations of motion for a �uid in losed ontainersan be simpli�ed by making the following hypothesis whih allow the use of lassialpotential �ow theory:
• the ontainer is rigid and impermeable;
• the �uid has no visosity, is invisid, inompressible and fritionless. This as-sumption of fritionless liquid is justi�ed sine the damping due to frition atthe tank walls is of very small magnitude [18℄;
• the wave motion is linear in the sense that the wave amplitude is linearly pro-portional to the imposed tank amplitude. The nonlinear ase is not treatedhere but the reader an hek [48℄ or [54℄ for nonlinear orretions to the lineartheory;
• the wave speed and motion are of small amplitude;In the ase of retangular and upright vertial ylindrial tanks, the sloshingproblem an be solved using the variable separation method whih gives a set ofdeoupled equations, one for eah sloshing mode. In the ase of tanks with di�erentgeometry, the analytial solutions, if they exist, are very di�ult to implement due



50 Chapter 2 � Mathematial modeling of the system �to their omplexity. In this ase the most used approah is the one of numerialapproximations.PSfrag replaements
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52 Chapter 2 � Mathematial modeling of the system �knowledge, the work [78℄ is the �rst one that, using an energy approah, determinedthe natural frequeny of the �rst transverse mode but only for a half full horizontalylinder, while the referene [34℄ it is the �rst who proved that the appliation of thealulus of variations (the energy minimization tehnique) oupled with suessivehanges in system oordinates (onformal mapping), allows to obtain some limitedresults for the general ase when the tank �lling level an vary. Based on this theory,[48℄ gives a graphi representation of the natural frequeny of the transverse modes.Figure 2.8 presents the dependene of the experimental natural frequenies of the�rst 3 transverse sloshing modes on the �lling level hs

2R
of the tank. As it an be seenthe values are inreasing when the �lling level tends to 1 (tank ompletely full). It isalso easy to notie that, espeially for the 2nd and 3rd modes, the natural frequenyis varying a lot omparing to the tank �lling.

Figure 2.8: Natural angular frequeny ωn of the �rst transverse sloshing modes (ex-trated from [48℄)Another method in �nding the natural frequenies of the horizontal ylindrialtank is given by [90℄ whih uses bipolar oordinates instead of the onformal mapping.Using these frequenies [6℄ and [7℄ among others, proposed approximate models inorder to estimate mode shapes for partially �lled tanks.A detailed analysis in the ase of symmetri and anti-symmetri modes, along



2.3 � Tank model � 53with details about analytially omputing the natural frequenies an be found in[67℄.Longitudinal sloshing modesLongitudinal sloshing modes have been muh less studied. Most of the known solu-tions for these modes are in general numerial solutions. As stated in [48℄ there areno strong analytial results for this type of �uid motion in the ase of arbitrary liquiddepths, the only results are urves faired through experimental data. In Figure 2.9the natural frequeny of the �rst three longitudinal sloshing mode is depited. As itan be seen, for this type of sloshing, the frequeny is not hanging muh omparedto the tank �lling level hs

2R
.

Figure 2.9: Natural angular frequeny ωn of the �rst longitudinal sloshing modes(extrated from [48℄)One notable exeption is the ase when the tank is half full. In this ase thereare some analytial results given by [70℄ and [91℄ regarding modes shape, fores andmomenta generated by the liquid sloshing.



54 Chapter 2 � Mathematial modeling of the system �After analyzing the behavior of the experimental devie, we notie that both typesof tank movements produe only longitudinal sloshing waves. Therefore, from nowon we analyze only this type of sloshing modes.2.3.2 Tank approximationAs we detailed earlier, for longitudinal sloshing modes in a horizontal ylindrialtank there are no analytial results for the natural frequenies and for the fores andmoments. This is why we deide, in this work, to make a geometrial approximationof the tank. In general, we state that the new tank an have any shape as long as itan be well desribed in the Cartesian (x, y, z) oordinate system. In our situation,we therefore approximate the horizontal ylindrial tank by a retangular horizontaltank. The idea of making a tank approximation is not new, one an also hek forexample the work [70℄.To ompute the dimensions of the virtual retangular tank we propose three dif-ferent omputation methods. The hoie of one or another method will be done om-paring the omputed natural frequenies to the experimental ones on one side (thepreision of the method) and the omputation omplexity plus the time employed inimplementing the method on the other side.First method
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Figure 2.10: Implementing the �rst method (only one retangular tank is shown)



2.3 � Tank model � 55The �rst method we proposed onsists in utting along the longitudinal axis theylindrial tank in a large (in�nite in theory) number of small retangular tanks.The length of the retangular tanks is equal to the length of the ylindrial one. Asthe number of retangular tanks is large, we an say that they approximate well theurvature of the ylinder and thus the whole ylindrial tank (see Figure 2.10 whereone retangular tank is shown). At the �rst iteration the �lling level in eah tankis onsidered the same as in the ase of the ylindrial tank. Further on, for eahretangular tank we ompute the natural frequenies depending on the �lling level.Based on this frequeny, at the seond and further iterations, we then hange the�lling level of eah small tank. The ore idea is to hoose for eah tank, a "virtual"�lling level so that eah tank has a natural sloshing frequeny as lose as possibleto the predited (from [48℄) sloshing frequeny. This is done for eah sloshing modefrom Figure 2.9.As we expet, (proof in Setion 4.3.1.2), this method allows us to obtain naturalfrequenies very lose to the natural frequenies measured on the experimental setup.Nevertheless, the implementation of this method is very tedious beause it onsists ofomputing, for eah sloshing mode and for eah onsidered small retangular tank, anew �lling level and then the exerted fore/moment.After some repeated experiments we even observed that, if the tank �ll level hs

2Rranges between 0.65 and 0.9 the sloshing natural frequenies given by the method areeven loser to the predited sloshing frequeny. This omes though with an inreasein di�ulty during the implementation phase.Seond methodAnother idea onsists in hoosing the length of the retangular tank equal to the lengthof the ylinder and the width of the retangular tank equal to the tank diameter. Theheight of the new tank is seleted so that the same volume is kept in both tanks.This method, whih is easier to implement than the former method, does not �ndsloshing natural frequenies lose to the ones from [48℄. This last issue will be provedlater in this work Setion 4.3.1.2.Third methodThe last method is very lose to the seond one but gives natural frequenies thatare loser to the experimental ones. As it will be proven later (see Setion 4.3.1.2),the frequenies of the retangular equivalent tank omputed using this method areup to only 5% di�erent than the ones from [48℄. Sine the method remains easy to
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Figure 2.11: Equivalent tanksimplement but also gives good frequeny values we deide from now on to use it inthe onstrution of the retangular tank.This method keeps the length b and the width a of the retangular tank equal tothe length of the ylinder L and the width ls of the free surfae at rest. The di�ereneof the seond method omes from the fat that in this ase, the liquid height is hosenso that the volume of liquid in both tanks is the same. Before atually implementingit, we an easily notie that, as for the seond method presented here, the parametersof the equivalent tank will need to be realulated eah time the value of the liquidin the tank hanges.Knowing the �lling level of the tank e = 2R
hs
, where R and hs are the radius andthe height of the liquid in the ylinder respetively, we an easily ompute the widthof the liquid free surfae sine:

ls =
R

2

√

1 − (2e− 1)2.From Figure 2.11 we an write the total volume of the horizontal ylinder Vcylbased on the diameter and on the angle θ desribing the width of the free surfae:
Vcyl =

R2

2
(θ − sin(θ))Lwhere θ = 2 arccos(1 − 2e).Making the analogy between the volume previously omputed and the volume ofthe new retangular tank whih an be easily written as a multipliation of all thetank dimensions (b× a×h), we ompute the height of the liquid h in the retangular



2.3 � Tank model � 57tank by:
h =

R(θ − sin(θ))
√

1 − (2e− 1)2
. (2.64)All the parameters of the retangular equivalent tank are now omputed. Asstated earlier, even though the results given by the �rst proposed method are morepreise (see Table 4.7 from Chapter 4), this last method is preferred due mainly tothe simpliity in the implementing phase.In this paragraph an approximation of the ylindrial tank was onduted. Eah ofthe three method presented will be tested on the experimental setup in Setion 4.3.1.2of Chapter 4 and the theoretial onlusions given here will be heked.2.3.3 Tank in�nite dimensional model2.3.3.1 General equationsFrom now on we onsider a rigid retangular ontainer, of length b and width a,partially �lled with an inompressible and invisid liquid to the height h, as shownin Figure 2.12. Thus, the earlier hypothesis given in the introdution of Setion 2.3.1are ful�lled. We �nally onsider that the dimensions of the ontainer are suh thatthe surfae tension is negleted.As seen from Figure 2.6, the tank is not free but onneted to the plate. There-fore, we annot study the tank alone but in relation with the plate. Sine the platehas mostly �exion movements (the torsion movements of the plate are of very smallamplitude omparing to the �exion ones, see Setion 4.2), we infer that the tankmovement is mostly along the generator axis, whih orresponds to the x - axis inthe oordinate system. Therefore, most of the ontainer moves are horizontal in the

x diretion. Moreover, based on the plate movement, the tank osillation has a smallonstant aeleration C0.The fat that the liquid is irrotational allow us to express the �uid veloity asa gradient of a veloity potential funtion φ. Therefore, the liquid speed in all thediretions an be written as (see [93, Chapter 2.70℄):
(Vx, Vy, Vz) =

(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

) (2.65)The introdution of the veloity potential φ = φ(x, y, z, t) has the main advan-
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Figure 2.12: Coordinate system for a partially �lled retangular ontainer underexternal aelerationtage that all the veloities, fores, moment of fores generated by the liquid sloshingan now be expressed with only one funtion (whih of ourse will depend on theoordinates x, y, z and on time t).Sine the �uid is inompressible, the equation of ontinuity (the veloity distribu-tion), that is to say the basi di�erential equation that the veloity vetor must satisfy,is obtained by di�erentiating with respet to the spatial oordinates, [48, Chapter 1℄:

∂Vx

∂x
+
∂Vy

∂y
+
∂Vz

∂z
= 0. (2.66)Furthermore, the Euler equation of motion [78, art. 20℄, also known as the unsteadyform of Bernoulli equation, written for a tank �lled with liquid undergoing a longitu-dinal movement along the x - axis admits the following representation:

∂φ

∂t
+

1

2
(V 2

x + V 2
y + V 2

z ) +
p

ρ
+ g(z − h) − C0x = 0 (2.67)for x ∈ (0, b), y ∈ (0, a), z ∈ (0, h) and t ≥ 0. In these last equations p = p(x, y, z, t)and ρ stand for the pressure and the density of the liquid while the term C0 standsfor the external aeleration.Using equation (2.66) oupled with equation (2.65), the veloity potential funtionis a solution of the Laplae equation, whih does not expliitly ontain the time:

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= ∆x,y,zφ = 0, ∀(x, y, z) ∈ (0, b) × (0, a) × (0, h), ∀t ≥ 0. (2.68)with appropriate boundary onditions.Given the equation of the free surfae like z = h+ξ(x, y, t), the equation of motion



2.3 � Tank model � 59from (2.67) beomes, for all x ∈ (0, b), y ∈ (0, a), t ≥ 0:
∂φ

∂t
+

1

2
(V 2

x + V 2
y + V 2

z ) + gξ(x, y, t)− C0x = 0 (2.69)and the kinemati free surfae ondition aording to [78, art. 9℄ is for all x ∈ (0, b),
y ∈ (0, a), t ≥ 0

d

dt
(ξ(x(t), y(t), t) − z) ≡ ∂ξ

∂t
+
∂φ

∂x

∂ξ

∂x
+
∂φ

∂y

∂ξ

∂y
− ∂φ

∂z
= 0 (2.70)where the equivalenes ∂φ

∂x
= Vx =

∂x

∂t
, ∂φ
∂y

= Vy =
∂y

∂t
and ∂φ

∂z
= Vz =

∂z

∂t
have beenused.Further progress in �nding the expression of φ an be made if (2.69) is linearized(by omitting squares and produts of x,y,z and ξ). This is a justi�ed approximation ifthe de�etion (the degree to whih a struture element is displaed under a load) andslope (gradient) of the free surfae are everywhere small 1. In this ase, the simpli�edequation beomes:

∂φ

∂t
+ gξ − C0x = 0, ∀x ∈ (0, b), y ∈ (0, a), t ≥ 0 (2.71)for the dynami free surfae ondition.Moreover, if equation (2.67) is linearized and written for the steady state (∂φ

∂t
= 0),also onsidering that the pressure p on the free surfae equals 0, we get anotherexpression for the free surfae equation: z = h + C0

g
x. Using this last equation, thekinemati free surfae ondition (2.70) an be simpli�ed in:

∂ξ

∂t
=
∂φ

∂z
−
∣

∣

∣

∣

C0

g

∣

∣

∣

∣

∂φ

∂x
, ∀x ∈ (0, b), t ≥ 0 (2.72)If we assume ∣∣

∣

C0

g

∣

∣

∣
to be of small quantity (we think that, at least in laboratoryonditions, the external aeleration is muh smaller than the gravity), from (2.72)we obtain ∀x ∈ (0, b), y ∈ (0, a), t ≥ 0

∂ξ

∂t
=
∂φ

∂z
(2.73)on the free surfae (z = h)When onsidering the other boundary onditions, we need to set that the relative1It is interesting to notie that for a real liquid this is not true near the walls [24℄.
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Vx = ∂φ

∂x
= 0 at x = 0, a;

Vy = ∂φ

∂y
= 0 at y = 0, b;

Vz = ∂φ

∂z
= 0 at z = 0.whih, written in a more ompat form, beomes:

∂φ

∂n
= −→n · ∇φ = 0 (2.74)where −→n is the unitary outward vetor and:

∇φ =

(

∂φ

∂x

∂φ

∂y

∂φ

∂z

)T

.The vetor −→n takes on the di�erent walls the well known shapes: nx =
(

±1 0 0
)T(on the two walls perpendiular to the x-axis), ny =

(

0 ± 1 0
)T (on the two wallsperpendiular to the y-axis) and nz =

(

0 0 − 1
)T (on the wall at the bottom ofthe tank).Proposition 2.3.1. The solutions φ and ξ of the unsteady Bernoulli equation (2.67)and of the Laplae equation (2.68), under the boundary onditions (2.73) and (2.74)are:

φ(x, z, t) =
∞
∑

i=1,3,5,···

ṙi(t)
cosh(Υiz)

Υi sinh(Υih)
cos

(

πix

a

) (2.75)and
ξ(x, y, t) =

∞
∑

i=1,3,5,···

ri(t) cos

(

πix

a

) (2.76)where the ri(t) are given by (denoting πi
a
=Υi):

r̈i(t) + gΥi tanh(Υih)ri = − 4C0

agΥ2

i

gΥi tanh(Υih) for i = 2p+ 1, p ∈ N

= 0 for i = 2p, p ∈ N
(2.77)Proof:In order to �nd the expressions of ξ and φ, and to prepare the �eld for �nite



2.3 � Tank model � 61dimensional approximation, we write them in the Hilbert basis L2([0, a]× [0, b]) om-posed of the eigenfuntions of ∆xy with Neumann homogeneous boundary onditions.Therefore we obtain for the two funtions the general shape:
φ(x, y, z, t) =

∞
∑

i=0

∞
∑

j=0

gij(t)fij(z)Sij(x, y)

ξ(x, y, t) =
∞
∑

i=0

∞
∑

j=0

rij(t)Sij(x, y)Sine the tank is retangular, we an apply the separation of variable methodalong the x and y oordinates, to the Sij funtion [67℄. Thus, it an be written as:
Sij(x, y) = cos (Υix) cos (Υjy) , ∀x ∈ (0, b), y ∈ (0, a) (2.78)where

Υij = π

(

i

a
+
j

b

) (2.79)Therefore, applying the boundary ondition on the free surfae (2.73) to the ex-pressions of φ and ξ from (2.78) we �nd the dependeny between the two funtionsdepending on time t, ∀x ∈ (0, b) and ∀y ∈ (0, a):
∂φ

∂z
(t, x, y, h) =

∞
∑

i=0

∞
∑

j=0

gij(t)f
′
ij(h)Sij(x, y) =

∂ξ

∂t
=

∞
∑

i=0

∞
∑

j=0

˙rij(t)Sij(x, y)whih yields to:
gij(t) = ˙rij(t), ∀t ≥ 0 and f ′

ij(h) = 1, ∀i, j ∈ N. (2.80)Using the boundary onditions (2.74), we have
∂φ

∂z
= 0 at z = 0, ∀x ∈ (0, b), y ∈ (0, a), t ≥ 0and thus we get f ′

ij(0) = 0 ∀i, j ∈ N .Moreover, after introduing the expression of φ into the Laplae equation (2.68),and taking into aount (2.80), we obtain:
∞
∑

i=0

∞
∑

j=0

˙rij(t)
(

−Υ2
ijfij(z)Sij(x, y) + f ′′

ij(z)Sij(x, y)
)

= 0
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∀t ≥ 0 and (x, y, z) in the liquid domain. It is easy to notie that the term f ′′

ij(z)omes from the last term in the Laplae equation ∂2φ

∂z2 and −Υ2
ij omes after using theexpression (2.78) on the �rst two terms of the same Laplae equation: ∂2φ

∂x2 + ∂2φ

∂y2 .This last equation gives, for all z ∈ (0, h) and ∀i, j ∈ N:
− Υ2

ijfij(z) + f ′′
ij(z) = 0whih is to be solved using the boundary onditions on z previously dedued f ′

ij(h) = 1and f ′
ij(0) = 0. This gives:

fij(z) =
cosh(Υijz)

Υij sinh(Υijh)
, ∀z ∈ (0, h), ∀i, j ∈ N (2.81)Using the expressions (2.80) and (2.81) we write the expressions of φ and ξ to-gether, ∀(x, y, z) ∈ (0, b) × (0, a) × (0, h), t ≥ 0:

ξ(x, y, t) =

∞
∑

i=0

∞
∑

j=0

rij(t)Sij(x, y)

φ(x, y, z, t) =

∞
∑

i=0

∞
∑

j=0

˙rij(t)
cosh(Υijz)

Υij sinh(Υijh)
Sij(x, y)where the values of Sij and Υij are the same one from (2.78) and (2.79).Now, the rij funtion are alulated by replaing φ and ξ into (2.71), realled herebelow:

∂φ

∂t
+ gξ − C0x = 0.The alulation is very tedious. One simplifying solution omes from the type ofmovement that the tank undergoes. As presented earlier in the beginning of thissetion, the retangular tank is moving along the x-axis. This onstraint, whih atthe beginning seems to ompliate the problem, will now give us some lues aboutsolving the equation.Taking into aount this onstraint, the former expressions of φ and ξ an besimpli�ed as follows. For the free surfae, equation (2.71) realled above, whihrepresents the equation of motion, an now be written using (2.80) and (2.81):

∞
∑

i=0

∞
∑

j=0

[

r̈ij(t)
cosh(Υijz)

Υij sinh(Υijh)
Sij(x, y) + grij(t)Sij(x, y)

]

= C0x (2.82)



2.3 � Tank model � 63where C0 is the external aeleration along the x-axis.Sine the right-hand side of the equation depends only on the oordinate x, theequality an be satis�ed if and only if the left hand side also depends only on x.Therefore we an write Sij(x, y) = Si(x) whih from (2.78) implies that Sij dependsonly on x. This is veri�ed if and only if j = 0.With this last simpli�ation, the whilom equations for φ and ξ beome:
ξ(x, y, t) = ξ(x, t) =

∞
∑

i=0

ri(t)Si(x) (2.83)
φ(x, y, z, t) = φ(x, z, t) =

∞
∑

i=0

ṙi(t)
cosh(Υiz)

Υi sinh(Υih)
Si(x) (2.84)where (see (2.79))

Υij = Υi =
πi

a
(2.85)Equation (2.82) an be written as:

∞
∑

i=0

[

r̈i(t)
cosh(Υiz)

Υi sinh(Υih)
Si(x) + gri(t)Si(x)

]

= C0x (2.86)and ri an be found using the approah of [72℄, whih onsists of multiplying bothsides by cos
(

i0πx
a

) for a given i0 ∈ N and integrating over the whole length of thetank [0, a]. With (2.78) this leads to (2.77) by observing (as in [72℄) that the integralof the right-hand side is di�erent from 0 for the odd values of i and equal to 0 for theeven indexes. This onludes the proof of Proposition 2.3.1.From this last equation we observe that, having the ri, we an ompute the veloitypotential φ from (2.75) and ξ from (2.76). For a detailed expression of the veloitypotential, in the ase when the �uid behavior is treated as a two or three-dimensional�ow, one an hek [67, Chapter 1℄. �The omputation of the natural frequeny of the modes is also quite easy. We startby omputing the time derivative for the simpli�ed version of the unsteady Bernoulliequation (2.71) without external aeleration, ombined with the simpli�ed kinemati



64 Chapter 2 � Mathematial modeling of the system �free surfae ondition (2.73). Therefore, we obtain:
∂2φ

∂t2
+ g

∂φ

∂z
= 0 (2.87)As it an be seen, the equation depends only on the the veloity potential, whihharaterizes the liquid movement and whih is already known.Further on, sine the liquid in the tank is ontinuously moving bak and forthwith a ertain frequeny, we an write the veloity potential previously omputed(impliitly all the funtions depending on time t that are in the expression of φ), asa harmoni periodi funtion exp(iωit). Here, the variable ωi stands for the naturalfrequeny of the ith mode.After replaing the two times derivative in (2.87) by the equivalent term−ω2

i exp(iωit)and aneling out the term exp(iωit) whih multiplies both sides, we �nd the expres-sion of the natural frequeny for the retangular tank (where (2.77) was used):
ω2

i = gΥi tanh(Υih) (2.88)where i ∈ N
∗ is the index of the sloshing wave.In theory we have two types of longitudinal sloshing modes: symmetri modesand antisymmetri modes. The di�erene omes from the value of i (odd or even)that omes in the expression of Si and orresponds to the natural frequeny (2.88).

Symmetri sloshing modesThe symmetri sloshing modes are found for the even values of i, starting with i = 2,in (2.88). The shape of the �rst three sloshing modes is depited in Figure 2.13.
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Figure 2.13: The mode shape of the �rst three symmetri waves (from left to right)
One tool we an use to quantify the sloshing motion is the study of the enterof mass. It represents the mean loation of all the liquid mass and his position isdepited in our �gures by a blue irle in the interior of the tanks.As it an be seen, the symmetri sloshing modes do not shift the position of theenter of mass. Moreover, sine the enter of mass does not osillate, there will be nofores or moment of fore generated by the liquid sloshing and thus no movement atall of the tank.

Antisymmetri sloshing modesThe antisymmetri modes are found for the odd values of i, starting from i = 1. Thenatural frequeny of the antisymmetri modes is again omputed from (2.88) (for theodd values of i).Sine the �rst mode is antisymmetri (i = 1), all the frequenies of the symmetrialmodes are higher than those of the antisymmetri modes. The shape of the �rst threemodes is depited in Figure 2.14. The �rst mode omputed for i = 1, whih is the�rst on the left, is alled the fundamental antisymmetri mode and has the lowestfrequeny.
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Figure 2.14: The mode shape of the �rst three antisymmetri waves (from left toright)
As it an be seen from Figure 2.14, during wave movement, a visible shifting inthe position of the enter of mass an be notied. Moreover, the osillation of thisposition signi�es that a large amount of liquid moves from one side to the other sideof the tank, thus reating a liquid sloshing whih at his turn will reate fores andtorques. The fundamental mode makes the largest displaement of the enter of massfrom his equilibrium position. This will reate the most powerful sloshing wave, whihwill indue the greater fore and moment on the tank.Therefore, as a onlusion, for our disposal, the important modes are only theantisymmetri ones sine, only they reate the sloshing motion. From now on, weonentrate our attention only on this types of sloshing modes.
Until here, after a tank approximation, we omputed the in�nite dimensionalmodel of the tank with liquid. After analyzing the types of sloshing waves in thetank, our purpose is now to ompute all the fores and moments generated by thesloshing. Their value will allow us to desribe the tank behavior and its in�uene onthe retangular plate that is onneted on.



2.3 � Tank model � 672.3.3.2 Determination of fores and momentsProposition 2.3.2. The total fore generated by the sloshing is F = (Fx, Fy, Fz)where:
Fx = ρabhC0 − 2ρb

∞
∑

i=1,3,5,...

r̈i(t)

Υ2
i

, (2.89)
Fy = 0, (2.90)

Fz = ρabgh+ ρbC0
a2

2
. (2.91)Proof:The total pressure ating at any point of the liquid is ompeted from (2.67). Afternegleting the seond order terms one an write

p = ρ

[

−∂φ
∂t

− g(z − h) + C0x

] (2.92)The resultant fore in the x,y,z-diretion is F = (Fx, Fy, Fz) (see [48℄). Eah ompo-nent of the fore is therefore found by integration of the liquid pressure [122℄:
Fx =

∫ h

0

∫ b

0

(p|x=a − p|x=0) dydz, (2.93)
Fy =

∫ h

0

∫ a

0

(p|y=b − p|y=0) dxdz, (2.94)
Fz =

∫ a

0

∫ b

0

(p|z=h − p|z=0) dxdy = −
∫ a

0

∫ b

0

p|z=0dxdy. (2.95)The minus sign between the two pressures, while omputing the total fore fromthe previous three equations, is not due to the sign of the pressure, whih is a salarquantity, but due to the diretion of the −→n vetor (whih is the vetor normal to theonsidered surfae). Sine the tank length is along the positive sense of the x-axis (seeFigure 2.12), the −→n vetor alulated for x = a is "positive" and the one alulatedfor x = 0 is "negative". The same explanations are valid for the other axis.



68 Chapter 2 � Mathematial modeling of the system �In the ase of the fore along the z-axis, the pressure on the free surfae is onsid-ered equal to zero and thus the �rst term of (2.95) omputed for z = h is aneled.Sine the movement of the ontainer is only in the x-diretion (having only lon-gitudinal sloshing waves) we an simplify the equations (2.93), (2.94) and (2.95).Indeed, beause of these onsiderations the fore along the y-axis is equal to zero.Sine there are no transverse sloshing waves we have: p|y=b = p|y=0 and thus Fy = 0.Moreover, using (2.92) in (2.93) we get:
Fx = ρabhC0 − ρb

∫ h

0

∂φ

∂t
|x=adz + ρb

∫ h

0

∂φ

∂t
|x=0dz.As stated at the end of the previous setion, the sloshing motion of the liquid (theone responsible for reating fores and moments of fores) is generated only by theantisymmetri sloshing modes. Therefore, only odd values of i are onsidered in thein�nite sum. In this ase we have cos(Υia) = − cos(Υi0) (where Υi =

(

iπ
a

)) and wededue that ∂φ

∂t
|x=a = −∂φ

∂t
|x=0. Thus:

Fx = ρabhC0 − 2ρb

∫ h

0

∂φ

∂t
|x=0dz.Replaing φ by (2.75), giving

∂φ

∂t
(x, z, t) =

∑

i=1,3,5,...

r̈i(t)
cosh(Υiz)

Υi sinh(Υih)
cos(Υix),we obtain:

Fx = ρabhC0 + 2ρb

∞
∑

i=1,3,5,...

1

Υi sinh(Υih)

∫ h

0

r̈i cosh(Υiz)dz,and integrating along the height of the liquid we get the �nal expression of the x-oordinate of the fore from (2.89).Conerning the oordinate of the fore along the z-axis, we use the same method-ology. The di�erene between the two situations omes from the fat that for the
z-axis fore, sine the tank movement is along x-axis, the term C0x from (2.92) hasto be taken into aount when omputing the integrals. Using the pressure desribedby (2.92) in equation (2.95) we obtain:

Fz = ρabgh + ρbC0

∫ a

0

xdx− ρb

∫ a

0

∂φ

∂t
|z=0dx.



2.3 � Tank model � 69The last term of the equation is integrated separately and we get:
∫ a

0

∂φ

∂t
|z=0dx =

∞
∑

i=1,3,5,...

r̈i

Υi sinh(Υih)

∫ a

0

cos(
iπx

a
)dx = 0.Therefore, the total fore along the z-axis is then written as (2.91). �Proposition 2.3.3. The total moment of fore generated by the sloshing is M =

(Mx,My,Mz), where:
Mx = Mz = 0,

My =
ρC0a

3b

12
+ 2ρb

∞
∑

i=1,3,5,...

r̈i(t)

Υ2
i

[

h

2
− 1

Υi tanh(Υih)
+

2

Υ3
i sinh(Υih)

]

. (2.96)Proof:In a general manner the moment is written [58℄: M =
−−−−−→
distance ∧ −−−→

force, where ∧represents the ross produt (or vetor produt). We are going to study the momentgenerated by the liquid sloshing along the three axis. The moment along the x-axisis aused by the pressure ating on the y walls and at the bottom of the tank (thepressure ating on the top of the tank is null). The moment along the y-axis and isaused by the pressure ating on the x walls and again at the bottom of the tank(z = 0), while the moment along the z-axis is aused by the pressure ating on the
x and y walls. This an be written in a more ompat form using the di�erentialelement of moment, omputed in the enter of gravity of the liquid:

dMx = (z − h

2
)dFy + (y − b

2
)dFz = (z − h

2
)pdAy + (y − b

2
)pdAz, (2.97)

dMy = (z − h

2
)dFx + (x− a

2
)dFz = (z − h

2
)pdAx + (x− a

2
)pdAz, (2.98)

dMz = (y − b

2
)dFx + (x− a

2
)dFy = (y − b

2
)pdAx + (x− a

2
)pdAy. (2.99)One important issue in dealing with the moment of fore is its diretion sine it isa vetor. Therefore we onsider ~r, ~s and ~t the unity vetors in the positive diretionof the x, y and z-axis. Taking into onsideration that ~r ∧ ~−t = −( ~−s) and ~t ∧ ~r = ~s,we an ompute the diretion of the total moment along a spei� axis.As presented before, the fore Fy along the y-axis is equal to zero. Moreover, sine



70 Chapter 2 � Mathematial modeling of the system �there are no lateral sloshing waves, the enter of gravity along the y-axis is exatlyin the middle of the tank. With (2.97) and (2.99), we get:
dMx = dMz = 0.Replaing the fores by their expressions omputed in (2.89) and (2.91), we �nallyget from (2.98):

My =

∫ h

0

∫ b

0

(z − h

2
)p|x=a dydz −

∫ h

0

∫ b

0

(z − h

2
)p|x=0 dydz (2.100)

+

∫ a

0

∫ b

0

(x− a

2
)p|z=0 dxdy.On one hand, replaing the pressure (2.92) in (2.100), we have:

∫ h

0

∫ b

0

(z − h

2
)p|x=a dydz −

∫ h

0

∫ b

0

(z − h

2
)p|x=0 dydz (2.101)

= 2ρb

∫ h

0

z
∂φ

∂t
|x=0 dz − hρb

∫ h

0

∂φ

∂t
|x=0 dzwhere the part depending on C0 is equal to zero. Of ourse, we used the relationbetween the time derivatives of the veloity potential, omputed for x = 0 and x = a:

∂φ

∂t
|x=0 = −∂φ

∂t
|x=a.On the other hand, using again (2.92), we have:

∫ a

0

∫ b

0

(x− a

2
)p|z=0 dxdy = ρb

(

C0
a3

12
−
∫ a

0

x
∂φ

∂t
|z=0 dx+

a

2

∫ a

0

∂φ

∂t
|z=0 dx

)Summing up these last two equations we �nd the expression of the moment along
y-axis depending only on time derivatives of the veloity potential:

My = ρb

(

2

∫ h

0

z
∂φ

∂t
|x=0 dz − h

∫ h

0

∂φ

∂t
|x=0 dz −

∫ a

0

x
∂φ

∂t
|z=0 dx (2.102)

+
a

2

∫ a

0

∂φ

∂t
|z=0 dx+ C0

a3

12

)After omputing the time derivatives and integrating, we obtain the expression (2.96)of the moment, where the ri are omputed from (2.77). �In this paragraph we omputed the totality of fores and moments of fores gen-



2.3 � Tank model � 71erated by the liquid sloshing. This is done for the theoretial ase when an in�niteamount of sloshing modes is onsidered.2.3.4 Tank �nite dimensional model2.3.4.1 General presentation of the equivalent mehanial modelThe objetive of this setion is to onstrut an approximate model of the liquidsloshing in the tank. As stated in Setion 2.3.3.1 the dynamial e�et of the sloshingis a horizontal osillation of the liquid enter of mass relative to the tank. Fromthe works [48℄, [22℄, [124℄, [130℄ this e�et an be well represented by an equivalentlinear mehanial model: a mass pendulum system or an equivalent spring masssystem. Both mehanial models are presented in Figure 2.15. In the �rst model,the osillation of the enter of mass, generated by liquid sloshing, is represented bya vertial pendulum with a mass, while in the seond model, the same osillationis represented by a horizontal spring with a mass. A omplete overview of the twomehanial models an be found in [67℄.PSfrag replaements
l

M

1/2K 1/2K
m

m0m0

liquid free surfae

Figure 2.15: Mass pendulum and mass spring mehanial modelsIn our ase there are many reasons why we need to ompute the �nite dimen-sional model of the tank with liquid using an equivalent mehanial model. The �rstreason is beause the use of the potential of veloity equation (2.75) is quite di�ultto numerially manipulate due to its omplexity. For example, as mentioned in [48,Chapter 3℄, in the ase of a spae vehile, oupling of the equations of motion ofthe vehile to the equation of motion of a ontinuous liquid is too omputationallydemanding even with super omputers. Thus, it is onvenient to replae the liquidsloshing by a simple linear mehanial system. Besides, as explained in [18℄, themehanial model is a good and easy tool for the introdution of linear damping, es-peially when the magnitude of the damping needs to be determined by experiments.



72 Chapter 2 � Mathematial modeling of the system �Finally, another reason is that with a mehanial model, the shape of the model willnot depend on the tank geometry or �ll level.An alternative idea in order to ompute the state-spae representation of the tankwith liquid would be to do some model identi�ation. This approah though, whihis not based on a PDE model, is di�ult to implement due to the struture of theexperimental setup. As we an see from Figure 2.6 we annot deouple the tank fromthe plate, thus the identi�ation of the tank model will be done through the plate.In this ase the eventual errors from the plate model will propagate to the tank model.One an �nd two equivalent mehanial models for sloshing behavior in the litera-ture. The natural frequenies of both mehanial systems are easy to ompute. In thease of the mass pendulum system, the natural frequeny is 1
2π

√

g

l
; while in ase ofthe spring mass system, the natural frequeny is 1

2π

√

K
m
, where l and g are the lengthof the pendulum and the gravitational aeleration, while K and m are the springonstant and the mass of the spring system as depited in Figure 2.15. Moreover, thetransformation between the models is straightforward if we onsider the spring massloated at the same height as the pendulum mass (not at the onnetion point of thependulum hinge) and that the spring mass is attahed to the walls through a springwith a onstant of K =

√

mg

l
.The question that rises now is whih of the two models is better to use sinethey are similar, thus exerting the same fores and moment on the tank. Generally,the mass pendulum system is onsidered more adequate (see [3℄, [70℄ or [123℄ amongothers) beause of his natural frequeny 1

2π

√

g

l
whih varies with the hanges in axial(or gravitational) aeleration g as the sloshing frequeny of the liquid does. Inthe ase of the spring mass system, we will need to hange the spring onstant Kevery time the value of g will hange (in spite of this issue this approximation is alsoused by [18℄). Even though, for the moment we do not plan to use a time hanginggravitational aeleration (although when onsidering a �ying airplane g hanges withthe altitude), we still prefer this formulation sine we onsider it more general.Remark: Before starting the model omputation, one an notie that the mehan-ial model is ompatible with our early onlusion, that a longitudinal tank motionwill reate sloshing while a vertial osillation will not.The main riterion when omputing the equivalent model of the liquid osillationin the ontainer are the following [67℄:

• The equivalent system must produe the same fore and moment, under some



2.3 � Tank model � 73external exitation, as the atual system;
• The enter of gravity G must remain the same for small osillations;
• The equivalent system must preserve the equivalent masses and moments ofinertia;
• The equivalent system must have the same modes of osillations and produethe same damping fore.Therefore, orresponding to eah sloshing mode we will hoose an osillating mass.Sine the ontribution to the resultant fore and moment omes through the oddsloshing modes (see (2.89), (2.91), (2.96)), the mehanial model would inorporateosillating masses orresponding to odd sloshing modes only.Figure 2.16 shows a mass-pendulum model representing the liquid motion underhorizontal aeleration C0 ating upon the enter of gravity of the tank and liquid.The osillating masses, mni

are attahed through a pendulum rod of length lni
andthe pivot of the pendulum is plaed at a distane Lni

from the liquid enter of gravity.A �xed mass m0 is plaed at a distane L0 also from the liquid enter of gravity. Theintrodution of the �xed mass is ompulsory sine not all the liquid in the tank is freeto move but only a small amount of liquid on the free surfae.
xaxis
C0

m0

G

l1

m1

l2

m2

m3

l3

L0

L1

L2

L3

Figure 2.16: Mehanial model with one �xed mass and 3 sloshing masses, represent-ing fuel sloshing under longitudinal exitation



74 Chapter 2 � Mathematial modeling of the system �2.3.4.2 Determination of parameters for the mass-pendulum modelProposition 2.3.4. The equivalent mass-pendulum model is omposed of M equa-tions:
θ̈i + 2ξθ

√

g

li
θ̇i +

g

li
θi = −1

li
C0, i = 1 · · ·M (2.103)where θi is the angle of the ith pendulum ompared to its equilibrium position, ξθ =

0.001 is the damping of the pendulum and li the length of the pendulum omputedfrom
li =

g

Ω2
i

(2.104)where Ωi is the angular frequeny of the orresponding liquid sloshing mode.Eah mass-pendulum system is haraterized by his mass mi

mi =
8ρbh

πi
(2.105)and his position to the gravity enter of the liquid in steady motion Li

Li =
h

2
− 1

πi
a

tanh(πi
a
h)

+
2

πi
a

sinh(πi
a
h)
. (2.106)Moreover, the mass-pendulum model ontains a �xed mass m0

m0 = ρabh −
M
∑

i=1

mi (2.107)situated at a distane L0 from G

L0 =
1

m0

[

ρba3

12
−

M
∑

i=1

miLi

]

. (2.108)Proof:Step 1: liThe length of the pendulum, lni
is determined so that the angular natural frequeny(whih is equal to 2π times the natural frequeny) of the pendulum is the same as



2.3 � Tank model � 75the orresponding liquid mode (Ωi). Hene,
Ωi =

√

g

lni

(2.109)where ni ∈ N
∗ is the pendulum number 2. Therefore, from this last equation weompute the pendulum length (2.104). Note that a perfet approximation of thesystem is attained when hoosing an in�nite number of mass pendulum systems.Step 2: mi and m0The equation of motion of a pendulum under a horizontal aeleration C0 [112℄, underthe assumption of small osillating angles for whih sin(θni

) = θni
and cos(θni

) = 1,is:
lni
θ̈ni

+ gθni
= −C0 (2.110)where θni

is the osillating angle taken from the equilibrium position.Using this equation, we ompute the total horizontal fore generated by the me-hanial model. The expression of the fore is found using Newton's seond law ofmehanis Fmech
x = ma, where the m is the total mass of the system omposed bythe pendulum masses and by the �xed mass and the a is the total aeleration of thesystem.The aeleration the system undergoes is a sum of two omponents, one omponentis generated by the pendulum free movement and the other omponent is the tankexternal aeleration C0. The �rst omponent of the two aelerations, is foundby writing the fore equilibrium on the pendulum mass, when the onnetion pointof the pendulum hinge is in steady motion (null external aeleration). Thus thehorizontal aeleration is given only by the horizontal omponent of the fore ofgravity: mni
g sin(θni

(t)). The fore equilibrium then gives:
mni

g sin(θni
(t)) = mni

lni
θ̈ni

(t).

Therefore, the total aeleration is a = lni
θ̈ni

(t) + C0 and one an write the total2Here we use the subsript ni to di�erentiate the mehanial system from the orrespondingsloshing mode. One this relation is set, we will use for sake of simpliity, i instead of ni
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x generated by the mass pendulums movement:

Fmech
x = m0C0 +

∞
∑

ni=1

mni
C0 +

∞
∑

ni=1

mni
lni
θ̈ni

(t). (2.111)Imposing that the fore generated by the mass pendulums is idential to the onegenerated by the liquid sloshing, (Fx = Fmech
x from (2.89) and (2.111)), we omputethe value of the �xed mass m0 from (2.107), where the mni

are the masses of thependulums and the produt ρabh is the total mass of the liquid. Moreover, againfrom Fx = Fmech
x we an also write:

∞
∑

ni=1

mni
lni
θ̈ni

(t) = 2ρ

∞
∑

i=1,3,5,...

r̈i(t)

Υ2
i

. (2.112)From this last equation, sine eah sloshing mode is independent of the others, onean write for eah odd mode:
mni

lni
Υ2

i

2ρ
=

r̈i(t)

θ̈ni
(t)

(2.113)whih gives the dependeny between the sloshing mode and the orresponding masspendulum system.The relation between ni and i is that every liquid mode i ∈ {1, 3, 5, ...} (as it anbe seen from equation (2.77) the modes of liquid sloshing are only odd modes) is or-responding to a pendulum denoted ni ∈ {1, 2, 3, ...}. Even if a perfet approximationomes only with ni → ∞ in real situations it is possible to trunate ni at a ertainnatural number M .As an example for M = 3 we an see that to the �rst sloshing mode i = 1 is or-responding a �rst pendulum (ni = 1), to the third liquid mode i = 3 is orrespondinga seond pendulum (ni = 2) and to the �fth liquid mode i = 5 is orresponding athird pendulum (ni = 3).Remark: Sine the relation between the sloshing modes and the mass pendulumsystems is well established, from now on, we will denote the mass pendulum systemsby the subsript i instead of ni in order to simplify the writing.As mentioned before, we further make the assumption of small displaements ofthe pendulum above the equilibrium position (tanh(Υih) ∼ Υih) and dedue from
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r̈i(t) = −4C0h

a
− gΥ2

ihri(t). (2.114)Using (2.114) and (2.110), the ratio between r̈i(t) and θ̈i(t) beomes:
r̈i(t)

θ̈i(t)
=

4hli
a





C0

g
+

Υ2

i ari(t)

4

C0

g
+ θi(t)



 (2.115)whih with (2.113) gives:
miΥ

2
ia

8ρh
=

C0

g
+

Υ2

i ari(t)

4

C0

g
+ θi(t)

(2.116)Analyzing the struture of both sides of equation (2.116), note that, for a givenpendulum system, the left-hand side is onstant number. Thus, the right-hand sidemust be a onstant too (independent of ri(t), θi(t) for all t ≥ 0 ). Sine at the initialstate the liquid is supposed at rest (ri(0) = 0) and the pendulums in their vertialposition (θi(0) = 0), we onlude that the right side of the equation an be only equalto 1:
miΥ

2
ia

8ρbh
=

C0

g

C0

g

= 1.Sine the right-hand side of the equation is unitary, we obtain the following relationbetween free surfae displaement and pendulum rotation:
θi(t) =

Υ2
ia

4
ri(t),and �nally we an ompute the value of pendulum mass mi:

mi =
8ρbh

Υ2
i a
. (2.117)where a simple replaement of Υi by his expression from (2.85) gives the value of eahpendulum mass from (2.105).Step 3: Li and L0The distane between the enter of gravity of the liquid in steady motion and theonnetion point of the pendulum hinge is denoted Li (measured positive above theenter of gravity). It will be omputed using the equivalene of moments.



78 Chapter 2 � Mathematial modeling of the system �In the ase of the mass pendulum system, the moment is omputed, as in the aseof the liquid sloshing, by multiplying the distane and the foreM =
−−−−−→
distance∧−−−→force.Thus, the moment omputed at the enter of gravity is:

Mmech
y = m0L0C0 +

∞
∑

i=1

miLiC0 +

∞
∑

i=1

miliLiθ̈i (2.118)where the fore reated by the mass pendulum system (2.111) is multiplied by thedistane orresponding to eah pendulum system.The two systems generate the same resultant moment. Thus, imposing thatMy =

Mmech
y , one an write from (2.96) and (2.118):

miliLiθ̈i(t) = 2
ρ

Υ2
i

r̈i(t)

[

h

2
− 1

Υi tanh(Υih)
+

2

Υi sinh(Υih)

]Using the relation between r̈i and θ̈i from (2.113), we get, ∀i ∈ N
∗

Li =
h

2
− 1

Υi tanh(Υih)
+

2

Υi sinh(Υih)
(2.119)whih is exatly the expression from (2.106), with Υi from (2.85).Conerning the distane L0 of the �xed mass, it is found omparing the termsdepending on the exterior aeleration C0 from the equations (2.96) and (2.118):

m0L0C0 +
∞
∑

i=1

miLiC0 =
ρC0a

3b

12
.After eliminating the external aeleration we get equation (2.108).Step 4: Mass-pendulum equationThe state-spae representation of the tank with liquid is straightforward from equation(2.110). Moreover, as stated earlier, one of the advantages of the use of mehanialmodels is the easiness in onsidering the inherent damping. The damping ξθ an beeasily introdued in the pendulum representation (2.110) to obtain equation (2.103).We did not �nd a methodology to measure the damping, so we �xed it at 0.001 forall the M modes, whih represents the visous oe�ient of the water at normaltemperature of around 20◦C.This last issue onludes the proof of Proposition 2.3.4. �The hoie of the state-spae vetor for the liquid sloshing, as in the ase of the



2.3 � Tank model � 79plate, is subjet to several solutions. Finally, we hoose the state-spae vetor as
Xθ =

(

θ̇1
√

g

l1
θ1 · · · θ̇i

√

g

li
θi · · · ˙θM

√

g

lM
θM

)T (2.120)instead of ( θ̇1 θ1 · · · θ̇i θi · · · ˙θM θM

)T . This hoie is done in order toobtain a better onditioning of the system.Using the state-spae vetor (2.120), the dynami equation, for the general aseof an input uacc, is given by the following proposition:Proposition 2.3.5. The dynami equation for the mass-pendulum system is
Ẋθ = AθXθ +Bθuacc (2.121)where the matrix Aθ omputed from (2.103) for eah i satis�es

Aθ =













Aθ1
0 · · · 0

0 Aθ2
· · · 0

· · ·
0 0 · · · AθM













(2.122)
with Aθi

=





−2ξθ
√

g

li
−
√

g

li
√

g

li
0



 and the ontrol matrix Bθ is given by:
Bθ = (bθ1

, 0, ..., bθi
, 0, ..., bθM

, 0)T (2.123)where bθi
=

(

− 1
li

0

) and uacc = C0 as the ontrol variable.
With this last proposition the equivalent mehanial model is set. Based on themethod of alulus, the equivalent fore and moment generated by the equivalentmodel is idential to the one generated by the sloshing of liquid. Besides, as one anobserve from Proposition 2.3.4, all the parameters of the mass pendulum systems:length, mass, position omparing to the enter of gravity are independent from theexitation parameters (time, frequeny, amplitude).



80 Chapter 2 � Mathematial modeling of the system �Conlusion: In this setion we omputed the model of the tank and liquid slosh-ing. In order to easily manipulate the in�nite dimensional model of the liquid wemade an analogy with a mehanial mass pendulum system. Finally, a state-spaerepresentation of the sloshing behavior is omputed.2.4 Complete model representation2.4.1 In�nite dimensional ouplingAs presented earlier in the introdution, the idea in omputing the omplete modelof the entire struture is �rst to build one model for the plate and one for the tankwith liquid and seond to ombine them by studying the mutual interations betweenthe two separate models. Therefore, as shown, in Setion 2.2.2 we omputed thein�nite dimensional model of the retangular plate, given by the equation (2.27) andin Setion 2.3.3 we omputed the in�nite dimensional model of the tank with liquid,given by the equation (2.67) and (2.68) for the liquid movement. The oupling is themost di�ult and a key point in our work.For further details onerning the oupling between a sloshing liquid and a �exiblestruture one an hek [123℄ or [103℄. Thus, to the best of our knowledge there areno other works that will detail the oupling between a �exible plate and a tank withsloshing liquid, in both in�nite and in �nite dimension.In order to omplete the model we �rst analyze the in�uene of the liquid sloshingon the plate movement and seond we analyze the in�uene of the plate bending onthe sloshing of liquid.2.4.1.1 In�uene of the liquid sloshing on the plate movementThe liquid sloshing is sensed by the plate as an external moment whih, along withthe piezoeletri atuators, will ontribute to the plate bending. As it an be seenfrom the partial derivative equation of the plate (2.27), on the right-hand side of theequation, we have my and mz whih are the external moments along the y and z-axis:We reall this equation here:
ms

∂2w

∂t2
+ ζ(w)

∂w

∂t
+ Y Is∆

2w =
∂2my

∂y2
+
∂2mz

∂z2where w is the plate displaement from its equilibrium position. The other variableswere detailed before in (2.27).



2.4 � Complete model representation � 81These moments are generated by the piezoeletri atuators glued to the plateand by the sloshing of the liquid:
my = ma

y +mf
y , mz = ma

z +mf
zwhere ma

y and ma
z are the moments delivered by the atuators and mf

y and mf
z aredelivered by liquid sloshing along the y and z axis. Furthermore, the moments gen-erated by liquid sloshing were omputed in Proposition 2.3.3 for the moments alongthe y-axis and z-axis.2.4.1.2 In�uene of plate deformation on the liquid sloshingThe plate deformation is sensed by the liquid sloshing as an external aelerationthat disturbs the liquid. The study of the liquid subjet to an external aelerationis given by the linear equation of motion of the liquid (2.67):

∂φ

∂t
+
p

ρ
+ g(z − h) − C0x = 0where C0 is the external aeleration.In our ase, this aeleration is generated by the plate bending. Therefore, it anbe expressed as a two time derivative of the plate deformation w(y, z, t) omputed inthe gravity enter of the tank in steady motion G = (yG, zG):

C0 = ẅ(yG, zG, t) =

∞
∑

k=1

ηk(yG, zG)q̈k(t) (2.124)Based on the issues detailed earlier in this hapter, we an write the omplete PDEmodel of the system. This model though, is not implementable on the experimentaldevie. Therefore, in the next setion, we express the oupling in �nite dimensionand we expliitly ompute all the new matries entering the model formulation.2.4.2 Finite dimensional ouplingIn this setion we will write the �nite dimensional approximation of the ompletesystem. As detailed earlier, we �rst omputed PDE models for the plate and for thesloshing liquid in the tank and seond we made �nite dimensional approximationsof two di�erent kinds (modal for the plate and mehanial for the sloshing) to on-strut state-spae models. Now, we also need to study the in�uene of eah model



82 Chapter 2 � Mathematial modeling of the system �approximation onto the other.Therefore, we onsider again the two separate ases: the in�uene of the liquidsloshing on the deformation of the plate and the in�uene of the plate deformationon the tank �lled with liquid up to an arbitrary level.Before detailing these issues let us remind that in Setion 2.2.3 we omputedthe state-spae approximation of the retangular plate undergoing deformation (byonsidering only the �rst N deformation modes) while in Setion 2.3.4.2 we omputedthe state-spae approximation of the tank with liquid (by making an analogy withMmass pendulum system orresponding to the �rst 2M − 1 odd sloshing modes).Let us now detail the oupling issue.2.4.2.1 Liquid sloshing in�uene on the retangular plateThe liquid sloshing is sensed by the retangular plate as an external perturbationwhih omes by the mean of an external moment. Moreover, we suppose that thetotal moment generated by the liquid sloshing is onentrated in a small square areaaround the gravity enter G (measured in steady motion) of the tank with liquid. Thisarea an be geometrially desribed by the position of the opposite orners (y1G, z1G)and (y2G, z2G).If we denote Mθp the moment generated by the M onsidered mass-pendulumssystem, his expression an be written from (2.118) by aneling the external aeler-ation of the tank:
Mθp =

M
∑

i=1

miLiliθ̈iwhere the �xed mass denoted m0 was not taken into aount sine is not reating anysloshing.Further on, we an notie that the variable θ̈i an be expressed using the state-spae vetor of the pendulum approximation given by (2.120). Thus, the previousexpression of the moment an be equivalently written:
Mθp =

M
∑

i=1

(

miLili 0
)
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√
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 . (2.125)This equation an also be further simpli�ed if we notie that the olumn vetor is



2.4 � Complete model representation � 83the time derivative of the state-spae vetor Xθ of the liquid:
Ẋθ =













· · ·
θ̈i

√
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θ̇i

· · ·













.

The last expression (2.125) beomes, developing the sum:
Mθp =

(

m1L1l1 0 · · · miLili 0 · · · mMLM lM 0
)

Ẋθor again
Mθp =

(

m1L1l1 0 · · · miLili 0 · · · mMLM lM 0
)

AθXθ, (2.126)the dynami matrix Aθ being omputed from (2.122).We make the same analogy as in the ase of the moment generated by the piezo-eletri atuators (see Setion 2.2.3.2). We onsider that the moment generated byliquid sloshing is being sensed by the plate as an external perturbation.Sine the moment is onentrated around the gravity enter, we use again theHeaviside step H from (2.57) to ompute it.As we did for the ase of ontrol atuator in Setion 2.2.3.2, we integrate on thesurfae where the moment is di�erent than zero and we get the 2N omponents aθpkof the perturbation matrix denoted Aθp:
aθpk

= Kθp(Y
′
ik

(y2G) − Y ′
ik

(y1G))

∫ z2G

z1G

Zjk
(z)dz (2.127)

+Kθp(Z
′
jk

(z2G) − Z ′
jk

(z1G))

∫ y2G

y1G

Yik(y)dywhere aθpk
∈ R

1×2M and the matrix
Kθp =

(

m1l1L1 0 · · · miliLi 0 · · · mM lMLM 0
)

Aθis omputed from (2.126). As in (2.46), ik, jk express the deformations of the two on-sidered beams of the plate deformation (see Setion 2.2.3 and more preisely equation(2.32)).



84 Chapter 2 � Mathematial modeling of the system �The total perturbation matrix is �nally written:
Aθp =



































aθp1

0...
aθpk

0...
aθpN

0



































∈ R
2N×2M (2.128)

where the lines aθpk
are omputed from (2.127).The state-spae representation of the plate (2.63) an �nally be rewritten takinginto aount also the in�uene of the liquid sloshing and beomes:

{

Ẋp = ApXp +Bpu+ AθpXθ

y = CpXp

(2.129)2.4.2.2 Plate deformation in�uene on tank liquid sloshingThe tank senses the plate movement as an external horizontal aeleration, super-posed on the tank own aeleration reated by liquid movement without externalin�uene.The mass pendulum systems were already analyzed under an external aeleration
C0 (see (2.110) or Figure 2.16). Now, we express this aeleration as a two timesderivative of the plate deformation w(y, z, t) at the tank gravity enter (sine theexternal aeleration ating on the mehanial systems is loated there). Thereforewe get:

C0 = ẅ(yG, zG, t) =

N
∑

k=1

ηk(yG, zG)q̈k(t)where yG, zG are the oordinates of the gravity enter G along the y and z-axis.Furthermore, for sake of simpliity, the terms not depending on the plate kinematiparameters are introdued in a vetor denoted KG. Finally we get:
C0 = KG

(

q̈1(t) ω1q̇1(t) · · · q̈k(t) ωkq̇k(t) · · · q̈N (t) ωN ˙qN (t)
)T (2.130)



2.4 � Complete model representation � 85where
KG =

(

Yi1(yG)Zj1(zG) 0 · · · Yik(yG)Zjk
(zG) 0 · · · YiN (yG)ZjN

(zG) 0
)and the olumn vetor is exatly the derivative of the state-spae vetor of the plate

Xp as it an be seen from (2.43).Thus, the latter equation an be written in a more ompat form:
C0 = KGẊp (2.131)or again using (2.63),

C0 = KGApXp +KGBpu. (2.132)Using the equation (2.132) into the state-spae representation of the mass pen-dulum systems (2.121) we get the omplete state-spae representation of the masspendulum systems onneted to the plate:
Ẋθ = AθXθ +Bθ(KGApXp +KGBpu) (2.133)where all the matries are detailed in Setion 2.2.3 and in Setion 2.3.4.2.

2.4.2.3 Compat writing of omplete modelThe state-spae representation of the omplete model an be written in a ompatform by using equations (2.129) and (2.133). By taking the state-spae vetor of theomplete system as a ombination of the plate state-spae vetor and liquid state-spae vetor
X =

(

Xp

Xθ

)the omplete model written for N modes of the plate and M 6= N mass pendulumsystems is:














Ẋ =

(

Ap Aθp

Apθ Aθ

)

X +

(

Bp

Bpθ

)

u

y =
(

Cp 0 )X. (2.134)



86 Chapter 2 � Mathematial modeling of the system �where Apθ = BθKGAp, Bpθ = BθKGBp and 0 denotes null matrix beause the outputvariable is the piezoeletri sensor whih is not in�uened in any way by the liquidsloshing.In this setion we �rst expressed the oupling between the PDE plate model andthe PDE liquid model. This is done by studying the in�uene of the plate bending onthe liquid sloshing and vie-versa. Based on this, an approximation of the ouplingwas then onduted.
2.5 Conlusion of the hapterIn this hapter, the omplete model of the experimental devie was omputed. Itwas �rst wrote in in�nite dimension and then approximated under the shape of astate-spae representation. The �nal expression of the model is given by (2.134).This model will be used in Chapter 4 in order to ompute di�erent types ofontrollers that will be used to attenuate the vibrations of the struture.



Chapter 3
Controller synthesis - Theoretialapproah
The model of the struture was previously omputed in Chapter 2 and is written asthe system of equations (2.134).In this hapter we detail some preliminary tehniques in order to e�etively om-pute the model, along with some details for the appliation of di�erent ontrol meth-ods. We propose two types of ontrol starting from the state-spae representation:�rst, a lassial pole plaement ontrol oupled with a Luenberger observer and se-ond, a frequeny domain H∞ ontrol, designed with meeting frequeny-domain per-formane riteria.In this hapter we also detail some of the theoretial onsiderations regardingthe problem of ative ontrol of vibrations for our experimental setup imitating aplane wing (see [4℄ for more details about airplane harateristis and ontrol). Theexperimental plant is a �exible struture thus our ontrol problem an be onsideredas a part of the omplex lass of ative ontrol problems of �exible strutures. Onean read [82℄ for di�erent ontrol strategies that an be applied on �exible systems,[131℄ for a ontroller that takes into aount the nonlinear behavior of these systems,[17℄ for a feedbak ontroller or again [14℄, [12℄, [126℄, [15℄, [88℄ where the robust
H∞ ontrol of �exible systems is detailed. In our ase, the objetive is to attenuatethe vibrations of the struture while maintaining some predetermined performanes.More preisely, the issue is to attenuate the mode vibration while the struture (thusthe dynami) is a�eted by perturbations.87



88 Chapter 3 � Controller synthesis - Theoretial approah �3.1 Energy omputationBefore starting the ontrol proedure, an important step is to hose the number N ofplate modes and the number M of mass pendulum systems we will use for omputingthe analytial model. As it will be proven latter in this paragraph, the in�uene ofthe sloshing modes on the total plant dynamis is muh smaller than the in�ueneof the plate's bending modes. We will indeed see latter that the magnitude of thesloshing modes is very small omparing to the one of the plate modes. Therefore,the most important hoie is the one of the appropriate number of plate modes.Nevertheless, the method will be detailed for the whole oupled system, retangularplate and ylindrial tank together.Several fators must be taken into onsideration. First of all, we should insurethat the number of modes we selet give a lose representation of the experimentalsetup. Sine the experiment orresponds theoretially to an in�nite number of modes,the trunation we perform should gather the largest number of modes. But this isnot relevant in pratie sine in this ase the ontrol annot be omputed due to thevery large dimension of the system.Considering the plate, sine we want to ontrol �exion and torsion movements, itis natural to onsider both �exion and torsion modes in our trunated model. Evenin this ase, we need to �nd how many torsion and �exion modes have to be takeninto onsideration in order to have a good approximation. For example one an hekthe work [114℄ where, on the same experimental setup as ours, the author hoosesonly one �exion mode and only one torsion mode of the plate with no sloshing mode.Another example an be found in the works [81℄ and [133℄ where the authors hoosea priori the number of onsidered modes.In our ase, even though the a priori hoie is still possible, we propose also an-other method based on the energeti ontribution of eah mode of the model. Thebasis for the energy alulation used in this approah an be read in [146, Chapter 4.6℄.The �rst point is to onsider that the system is in his diagonal representation.Even though the plate modes and the liquid sloshing modes are deoupled (beausetheir dynami matries are in a diagonal representation due to the deoupled modeshypothesis), the oupled dynami matrix is not diagonal due to the oupling betweenthe plate and the tank, as detailed in Setion 2.4. This last issue an be easily notiedby onsidering only the �nal equation of the omplete system (2.134). If the systemis diagonal, the ontrollability and observability Gramians have a speial shape whih



3.1 � Energy omputation � 89will make possible the energy omputation (see equation (3.3) below).Consider the total output energy eT of our system denoted Σ(s) of dimension
R

(2M+2N)×(2M+2N) represented by equation (2.134). When the system is exited by aDira unit impulse on his input, the energy an be written as:
eT = ||y(t)||22 = ||Σ(s)||22. (3.1)Moreover, using the observability Gramian Wo and the ontrollability Gramian

Wc, this expression an be rewritten as in [146, Chapter 4.6℄:
eT = Trae{BWoB

T} = Trae{CWcC
T} (3.2)where the B and C are the ontrol and output matrix of the system written in thediagonal state-spae representation.We suppose that the ontrollability Gramian has the following shape:

Wc =













W11 · · · W1j · · · W1(2M+2N)

· · ·
Wi1 · · · Wij · · · Wi(2M+2N)

W(2M+2N)1 · · · W(2M+2N)j · · · W(2M+2N)(2M+2N)













(3.3)where Wij = W T
ij sine the dynami matrix is diagonal.Sine the system is written in a diagonal basis, and the dynami matrix has onlyomplex onjugate pairs of eigenvalues, eah element of the ontrollability Gramianveri�es an autonomous Lyapunov equation:

AiWij +WijA
T
j +BiB

T
j = 0 (3.4)where Ai ∈ R

2×2 and Aj ∈ R
2×2 are the dynami matries orresponding to the ithand jth modes.The output ontribution of eah mode, an be omputed by substat from the totalenergy eT the energy that the system would have had if this mode was unontrollable.Therefore, the methodology we are using is simple: we onsider that for a spei�mode of index k, the orresponding ontrol matrix Bk (see (3.4)) is equal to zero. Inthis ase we notie that, the newly omputed Gramian matrix, denoted Wck

in orderto emphasize the unontrolled mode k, has the elements ontaining the kth mode,equal to zero.If we denote the output energeti ontribution of the kth mode by Eok
, its value



90 Chapter 3 � Controller synthesis - Theoretial approah �an be written:
Eok

= eT − Trae{CWck
CT} (3.5)For us, it is more onvenient to ompute the modal energeti ontribution instead[134℄. This is easily done by replaing the output matrix C in equation (3.5) bythe identity matrix I of dimension (2M + 2N) × (2M + 2N). Therefore the modalenergeti ontribution of the kth mode is:

Ek = eT − Trae{IWck
IT} (3.6)Finally, using a simple perentage operation Ek

eT
100 we an ompute the energy on-tribution of the kth mode omparing to the total amount of energy of the plant.In our ase, we ompute analytially the state-spae model of the plate using alarge number of modes (14 modes for the struture). We then use this methodologyand equation (3.6) to ompute the energy ontribution of eah mode. Finally, we sumthe energy of all the modes until more than 90% of the total plate energy is reahed.Thus, the onsidered modes desribe well the plate behavior in terms of energy. Theorret amount of modes is set. See below in Setion 4.2 of Chapter 4 for the resultsof this algorithm on the experimental devie.3.2 Pole plaement and full state observerUsing the state-spae representation (2.134), we now aim at omputing a ontrollerusing the pole plaement method. As seen from Figure 1.1, there are two piezoeletriatuators in the system input and two piezoeletri sensors in the system output.Atually, they are not both used as inputs and outputs of the system. One atuatoris used for system input and one sensor for system output. The other atuator gluedon the plate is used, as it will be shown latter in Setion 3.3 below, as a possibleinput for applying perturbations to the system. The other sensor is used only forfurther omplementary measurements, when needed. Thus, the system we onsideris a single input single output system (SISO).Pole plaement ontrolThe pole plaement method is well known in ontrol system theory. Our purposehere is not to o�er a detailed presentation of the method but just to give a fewdetails onerning the implementation of the method in our ase. For further details
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Figure 3.1: State feedbak ontrolabout state-feedbak and pole plaement oupled with observer onstrution one anhek for example the referenes [9℄, [57℄, [77℄, [143℄ among others. For a feedbakontrol implementation on a �exible struture, one an see [89℄ for example. Thepole plaement method gives the user the possibility to hoose himself the loationof the losed-loop system poles, therefore allowing the possibility of plaing themat some predetermined loations. Although this method has some drawbaks whenonsidering very omplex systems, it is quite good for our ase and may be seen asan introdution to the ontrol of more omplex systems.Usually, the state-spae design ontrol methods, suh as the pole plaement in ourase, are more easily performed using a full or partial state feedbak. In the ase of thestate feedbak, the ontrol ation is ahieved by feeding bak a linear ombination ofthe system's states through a matrix (or gain depending on the feedbak type) usuallydenoted K. The diagram of the state feedbak ontrol is depited in Figure 3.1, wherethe di�erent bloks are exatly the ones from the state-spae representation (2.134).Let us onsider a state-spae representation of a 2M + 2N dimension linear timeinvariant (LTI) system, written in the ompat standard form:
{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(3.7)where the �rst equation desribes the dynami of the system and the seond equationthe measured output. The values M and N stand respetively for the number of



92 Chapter 3 � Controller synthesis - Theoretial approah �plate modes and mass pendulum systems. The physial meaning and the dimensionsof y and u are presented in Setion 2.4.2.3 of Chapter 2. Furthermore, we assume thesystem is ausal, and therefore the usual feed-forward matrix is zero.Using the feedbak law, the ontrol signal an be written
u(t) = −Kx(t) + r(t)where x(t) is the state-spae vetor of the system and r(t) is a referene signal. Twodi�erent ases an be found for the referene signal. It an be di�erent from 0 andvariable in an unstrutured manner. In this ase we need the system output to trakrapidly, for a spei� lass of systems, this referene signal. The other possibility iswhen the referene vanishes (r(t) ≡ 0). In this ase, the ontroller generates a ertainommand to the plant based on the error between the system referene r and thesystem measured output y. The goal in this ase is to generate a ontrol that �rstwill rapidly and smoothly take the values of the system output to the value of thereferene (or set point) and seond will maintain the reahed value in the presene ofsome external disturbanes. In this ase the ontrol system problem is a regulationproblem and the ontroller is alled a regulator. Afterward, we plae ourselves inthis type of ontrol problem. Taking this last issue into aount, the earlier equationbeomes:
u(t) = −Kx(t). (3.8)Replaing this last equation into the dynami representation (3.7), we obtain thelosed-loop representation of the system with feedbak:

ẋ(t) = (A− BK)x(t). (3.9)In this ase, all the losed-loop poles of the system an be plaed by seleting thevalue of the K matrix suh that the eigenvalues of (A−BK) are at the desired polevalues. This an be done only if the open-loop system is fully ontrollable, that is tosay the rank of the ontrollability matrix is the same as the dimension 2M + 2N ofthe dynami matrix A.The ontrollability of a system is a key onept in the omputation of systemontrol laws sine it tells if the implementation of lassial ontrol laws will be ofsome result or not. A system is said to be ontrollable if any initial state x0 at anyinitial time t0 an be moved to any other desired state xf = x(tf ) in a �nite time



3.2 � Pole plaement and full state observer � 93interval tf − t0 > 0 and by applying an admissible ontrol funtion. The diret resultof this formulation is the de�nition of the ontrollable system using the ontrollabilitymatrix Qc de�ned as in [139℄ by:
Qc =

(

B AB · · · A(2M+2N)−1B
)

. (3.10)As a onlusion, the ontrollability of the system is assured, meaning that thematrix pair (A,B) is ontrollable, if rank(Qc) = 2M + 2N .Finally, if the system is fully ontrollable, we hoose the value of the losed-looppoles, whih are the eigenvalues of (A−BK), and then we ompute the matrix K.There are di�erent methods for omputing this matrix and for further details one anhek referene [101℄. For example, the diret substitution method ombined with theomputation of the oe�ients of like powers an be used, or again the Akermann'sformula (see [99℄). Another elegant way is to write the system in the ontrollableanonial form, using an adequate transformation matrix, and then simply omputeeah element of the K matrix by simple subtration operations.Observer designThe �rst assumption when designing a state feedbak ontrol is that all the systemstates gathered in the state-spae vetor x(t) are known, and thus they an be usedfor the feedbak law. In pratie thus, this is only sometimes, but mostly never,true. There are many reasons. One �rst reason may be simply from the impossibilityto measure some of the system states, either beause of their very large quantity orbeause of the great ost that will be needed for speialized sensors. Another reasonmay be just simply the impossibility to measure some system states sine they have nophysial meaning or beause the noise in the measurements is too large and thereforeit gives a faulty measurement.A straightforward lass of solutions are the observers (or estimators). They were�rst introdued by Luenberger [84℄ and are de�ned as a system whih (see [139℄):
• is intended to approximate the state vetor x of another system by means of avetor x̂;
• has at its inputs the inputs and available outputs of the latter system.The observer an be either a Luenberger observer (see [84℄), if the signal-to-noiseratios are su�iently high (thus the system an be treated as deterministi) or a



94 Chapter 3 � Controller synthesis - Theoretial approah �Kalman �lter (see [68℄) if the signal-to-noise ratios are not very high. In our asethough, we onsider the system deterministi. Therefore we will further use Luen-berger observers.Moreover, sine we do not have information about any of the parameters of thestate-spae vetor, we need to reonstrut all the state-spae vetor x of the system. Inthis ase the state-spae vetor of the observer beomes idential to the approximatedstate-spae vetor of the plant x̂. This observer is alled full state Luenberger observerand some steps regarding his onstrution are detailed in the following lines.Before starting the ontroller omputation, we suppose that there is no additivenoise in the state equation or in the measurements and ontrols. Using this assump-tion, we think of estimating the entire state-spae vetor of the LTI system usingonly the output and ontrol measurements. The error between the estimated state
x̂ and the true state should beome minimal. There are several ways of de�ning theminimal error [99℄, either as the minimum square error, minimum absolute error, et.,but in our ase the estimation error is de�ned as:

e(t) = x(t) − x̂(t). (3.11)Therefore, as stated earlier, the onstruted observer should satisfy e(t) −→
t→+∞

0.The main idea in the observer onstrution is to hoose a predetermined shapefor the observer:
˙̂x(t) = F x̂+Gy(t) +Hu(t) (3.12)where y(t) and u(t) are the measurement output and the ontrol input of the realplant (3.7). The vetor x̂ has the same dimension as the state-spae vetor x sinethe observer is a full state observer. Furthermore, the matrix F is a square matrix ofdimension (2M + 2N) × (2M + 2N) while G and H are in R

(2M+2N)×1 sine y and uare salar measures.Putting the dynami equations (3.7) and (3.12) in the error equation (3.11) weobtain
ė(t) = ẋ(t) − ˙̂x(t) = Ax(t) +Bu(t) − (F x̂+Gy(t) +Hu(t))or again using the measured output equation from (3.7)

ė(t) = Fe(t) + (A−GC − F )x(t) + (B −H)u(t). (3.13)



3.2 � Pole plaement and full state observer � 95Furthermore, we want this error to be independent both of the ontrol law weare onsidering and of the state-spae vetor we want to reonstrut. Therefore, weneed it to tend asymptotially to zero regardless these issues. This means that it isompulsory to have H = B and F = A−GC.Moreover, the G matrix is omputed using the pole plaement method detailed inthe previous part. From the ontrol theory we know that we an �nd the G matrix,that will arbitrarily plae the poles of A − GC at the desired loations, but only ifthe system is observable.The observability of a spei� state or of the whole system is a key onept inthe omputation of observers. In this ase the output has all the omponents of thestate, therefore, it is possible to estimate all the system's states using only the inputand output of the system. Moreover, the onept of observability is mathematiallydual with the onept of ontrollability presented earlier.A system is said to be observable if any initial state x(t0) an be determined aftera �nite time interval t− t0 from the measurement history Y (t) = {y(τ), t0 ≤ τ < t}.Thus, the whole vetor x an be omputed given the uniqueness of the initial state(see [139℄).Using the observability test matrix Qo:
Qo =













C

CA...
CA(2M+2N)−1













, (3.14)the observability of the system an be written: the system (3.7) is fully observable(or the matrix pair (A;C) is said to be observable), if the observability matrix hasfull rank: rank(Qo) = 2M + 2N .Separation prinipleUntil now we treated separately the two issues, observer design and state feedbakontrol design, without taking into onsideration the in�uene of one to the other.Atually, we onsidered them to be ompletely separate and we did not hek ifthere is, or not, a reiproal in�uene of their dynamis. But, as it an also be seenfrom Figure 3.2, they an not be treated separately sine the feedbak law uses theestimated system state sine the real state vetor is ompletely unknown.It an be easily proven that, in our ase, when the referene signal is equal to zero,
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yẋ = Ax+Bu
y = Cx

Observer

u = −Kx̂Figure 3.2: Feedbak ontrol law and observerusing (3.9) and (3.13) we an write ∀t ≥ 0:






















(
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(3.15)Computing the harateristi equation of the system (3.15), we obtain:
ψ(s) = det

[

sI − (A− BK) −BK
0 sI − (A−GC)

]

= 0and sine the system is blok triangular, the harateristi equation beomes
ψ(s) = det[sI − (A− BK)] det[sI − (A−GC)] = 0.This last equation indiates learly all the poles of the losed-loop system with theobserver. They are only the poles of the plant that result from the omputation of thefeedbak gain K and the desired observer poles, hosen when omputing the matrix

G. This is alled the priniple of separation of estimation and ontrol (or shortlyseparation priniple or deterministi separation priniple [15℄, [104℄). Therefore, theoptimal feedbak ontroller an be solved by separately design an optimal observer,



3.3 � H∞ ontroller � 97for the state-spae system, whih will feed the optimal deterministi ontroller.Some pratial preautions have to be taken while hoosing the poles. First ofall, we would like the estimator error to vanish as quikly as possible so that thefeedbak law beomes in reality u = −Kx and not u = −Kx̂. In order to do this,the observer poles will be hosen so that they are faster than those of the system weare estimating. Hene the observer will be delivering a faster response. This meansthat the smallest hosen pole (in absolute value) of the observer will need to haveits magnitude onsiderably larger than the value of the smallest system pole. At thesame time, we need to be areful sine very large observer poles will imply a veryfast response from the observer. This suggest that it will not follow only the systembut also the noise of the ignored measurements. The same rule applies also in thease of the feedbak ontrol. Here, the observer poles must be hosen faster that thelosed-loop system poles. There are di�erent methods in the literature onerninghow fast the observer poles have to be in omparison to the feedbak poles (see [9℄or [128℄), but the riteria used are only empirial. In spite of this, we state that wean not a priori impose a ertain amount sine this basially depends on the systemunder onsideration.It is well know that only the real part of the omplex eigenvalues in�uenes theresponse time [9℄. In our ase we observe that hoosing all the feedbak poles withtheir real part larger than the real part of the open-loop poles is a ompliated issue.This is due to the voltage delivered by the feedbak ontroller whih is exeeding theatuator amplitude limitations.Further details about the implementation of the state feedbak law, along withtests on the experimental devie are given later in Setion 4.4 of Chapter 4.3.3 H∞ ontrollerWhen onsidering the problem of ative ontrol of �exible strutures, the most em-ployed approah is the one using H∞ theory. This is mainly due to the fat that,in the ontrol problem, many issues usually need to be taken into aount. Let usdetail these issues for our ase. First, sine the modes we onsider are the most ener-geti ones (see Setion 4.2), the ontroller has to attenuate espeially the vibrationsof these ones. Seond, the ontroller needs to attenuate vibrations in spite of modelmismathing or unertain desription of some physial phenomena. Third, the dy-nami of high frequenies, whih has been negleted in the model omputation, needs



98 Chapter 3 � Controller synthesis - Theoretial approah �also to be taken into aount. Finally, our purpose is to see how the system reatsto exterior perturbations, thus the ontroller must be robust enough in order to takethis spei�ation into aount. Based on these issues, the H∞ approah seems to bethe most natural one.The work in the �eld of robust H∞ ontrol is very dense. The purpose of thisparagraph is not to give a fully detailed presentation of the theory but just to givesome pointy details and to fous on the atual implementation of the ontrol to oursetup. For a omplete overview of the method, one an hek the �rst works [51℄ or[145℄. For a more pratial approah, one an read referenes [12℄, [59℄ or [85℄ whereimplementation methods are arried out. The spei� ase of H∞ ontrol on �exiblestrutures an be heked in [5℄, [37℄, [69℄, [88℄, [135℄ among others.When omputing the model of a �exible struture oupled with a liquid �ow,numerous soures of errors may exist. For instane, we an ite the damping of theliquid sloshing whih in our ase is hosen onstant for all modes and whih in realityis not. Another example we an mention onerns the lamped side of the plate whihwe onsidered to be perfetly �xed. In reality this is not always true, and eah smallmovement of the lamped side an hange the value of the frequeny and the modesshape. Finally, and probably the most important soure of errors to our knowledge, isthe ontat between the tank and the retangular plate or the perfet entering of thetank to the plate. The ontat is assumed to be perfetly rigid during the modelingphase but in reality, we an observe that it is not. Furthermore, experienes on theexperimental devie show that the system behavior is di�erent based on the tankbeing perfetly entered or not (dereases in the amplitude of the �rst �exion modeof the plate are visible if the tank is not perfetly entered, espeially when a largeamount of liquid is onsidered).This gap between the dynami model and the atual experimental setup, leads usto hoose a type of ontrol that an be robust to all these issues. At the same time,one should be aware of the inherent trade-o� that exists between the robustness ofthe ontrol law and the performane objetives [14℄. Finally, one should also keepin mind, that, in the ase of airplanes and spae vehiles the natural frequenies ofthe ontrols generated by the pilot and the natural frequenies of the �rst sloshingmodes of the fuel are very lose [21℄. This implies that great are should be takenwhen eliminating the unwanted sloshing modes.The robust method we employ here is based on the ||·||∞ norm whih indiates the



3.3 � H∞ ontroller � 99maximum gain value of the frequeny response of an arbitrary transfer funtion F :
||F ||∞ = sup

ω∈R

σ(F (jω)) (3.16)where σ denotes the maximum singular value. For a SISO system, this equation statesthat ||F ||∞ represents, on the Nyquist plot of F (p), the distane from the origin tothe farthest point on the plot. On the Bode plot, ||F ||∞ is the highest point on themagnitude frequeny response.As stated in Setion 3.1 the �rst modes are the most important in terms of defor-mation energy of the struture (therefore having large amplitudes on the Bode plot -see the experimental Bode plot from Figure 4.2 in Setion 4.2 of Chapter 4). We wantto attenuate these resonant peaks of the transfer funtion between the perturbationand the ontrolled output.
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K(s)Figure 3.3: Standard H∞ problemBefore starting the omputations, we �rst write our problem in the standard formof the robust ontrol, depited in Figure 3.3. In this �gure, w is the vetor gatheringall the perturbation signals, u is the ontrol signal generated by the robust ontroller,
y the output signal of the plant (the voltage delivered by the piezoeletri sensor) and
z is a vetor that ontains all the to-be-ontrolled outputs. The hoie of the variablesontained by the z vetor is very di�ult. In our ase, we propose a �rst hoie for theto-be-ontrolled outputs by onsidering: the output signal of the plant y and the signal
u generated by the H∞ ontroller. The experimental state-spae representation of theexperimental setup (2.134) is denoted by P (s), and the omputed robust ontrollerby K(s).



100 Chapter 3 � Controller synthesis - Theoretial approah �If we take into aount the four input and output signals: w, u, y and z, the plant
P an be written by deomposition in four distint matries:

{

z = P11w + P12u

y = P21w + P22u
(3.17)or in a ompat form

P (s) =

[

P11(s) P12(s)

P21(s) P22(s)

]

.Taking into aount the feedbak law u = Ky, equation (3.17) gives:
z = (P11 + P12K(I − P22)

−1P21)w,where (P11+P12K(I−P22)
−1P21) = Fl(P,K) is the lower linear frational transforma-tion (LFT). In addition we an also write the upper linear frational transformation

Fu(P,K) whih express the transfer between the ontrol and the output of the plant:
y = Fu(P,K)u.Using the LFT, the H∞ ontrol problem now beomes:Finding the system K(s) that will satisfy the optimization problem:

min
stabilizing K

||Fl(P,K)||∞. (3.18)This optimization problem is further solved either using DGKF method and Ri-atti equations (see [51℄) or linear matrix inequalities (LMI) method and semi-de�niteprogramming (SDP) (see [31℄, [55℄).The state-spae representation of the omplete model, in the H∞ framework (seeFigure 3.3) an be summed up by:










ẋ(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D12u(t)

y(t) = C2x(t),where matries D11, D21 and D22 (see the H∞ framework of [145, Chapter 14℄) areequal to zero. The ontrol variable u(t) is the voltage applied to one of the piezo-



3.3 � H∞ ontroller � 101eletri atuator path, the perturbation variable w(t) is a perturbation applied tothe other piezoeletri atuator, the output variable y(t) is the voltage delivered byone of the piezoeletri sensors and z(t) =

(

u(t)

y(t)

) is the to-be-ontrolled output.Furthermore, the variable u(t) is seleted as a ontrolled variable sine we need tokeep the voltage delivered by the ontroller in the limits imposed by the atuatorsaturation.To take into onsideration the value of the perturbation, we need to express it ina mathematial way so that it an be introdued in the robust ontroller synthesis.In our ase, it is a random perturbation haraterized by his frequeny spetrum.Sine the modes we onsider are only of low frequeny, it is natural to onsider aperturbation whose frequeny spetrum is also in low frequeny. Furthermore, as itwill be proved later in Setion 4.2 of Chapter 4, we want to ontrol all the system'smodes until almost 30Hz. Therefore, we hose the low frequeny spetrum [0 . . . 50]Hzfor the perturbation, whih is large enough in order to in�uene all the modes.One an imagine many ways of modeling a frequeny spetrum using �lters. First,the order of the �lter has to be seleted. Seond, depending on the frequeny bandwe want to over, we an hoose di�erent types of �lters (low pass, high pass, bandpass). In our ase, sine we want to over the low frequenies band, the spetrumis modeled by a �rst order low pass �lter. Indeed, sine the perturbation has not avery ompliated shape, we onsider that a �rst order is su�ient to make a goodapproximation. Moreover, the ut o� frequeny of the �lter is 50Hz. Under theseonsiderations, the transfer funtion of the �lter at the input of the perturbations, is:
H1(s) =

100π

s+ 100π
. (3.19)We also have to take into aount the unertainties related to the negleted modes.As stated earlier in the model presentation (see Setion 2.2.3 for the plate and Se-tion 2.3.4.1 for the tank with liquid, in Chapter 2), we negleted the higher ordermodes, thus the in�uene of their dynami on the total dynami of the system. Theproblem that may appear is an inherent and very important one in the ontrol ofin�nite dimension systems: the spillover (the ontroller in�uene on the negletedhigh frequeny modes). This issue is well analyzed in [15℄ or [16℄. Moreover, it wasproven that spillover is funtion of the atuator - sensor loation and their e�et onthe negleted modes. The idea behind this is to see if the ontroller omputed forsome modes, does not destabilize the negleted ones. It is also well known that the



102 Chapter 3 � Controller synthesis - Theoretial approah �most likely mode to be destabilized is the �rst negleted mode [64℄.Solutions to overome the spillover are numerous. Let us mention a few of them:pre�ltering the system output (pre�ltering the piezoeletri sensor for us) [15℄, re-design of the struture and/or the ontroller [16℄ or plaing the piezoeletri atu-ators and sensors where the spillover e�et of the unontrolled modes is small [66℄(although this will diminish onsiderably the ontrollability and the observability ofthe system [15℄).The ore idea of our reasoning, is to hoose a low pass �lter [125℄, whih willintrodue a roll-o� spei�ation in the ontroller synthesis, with a ut-o� frequenyfairly lower than the natural frequeny of the �rst negleted mode [69℄. This, on theother hand, will unavoidably worsen the ontrol of the last onsidered mode [69℄. Asan example, one an hek the work [88℄ onerning the implementation of the lowpass roll-o� �lter on a �exible retangular lamped-free-free-free paddle, similar toour plate.Moreover, due to the loseness of the natural frequenies, the low pass �lter has tohave a sharp ut between the frequeny of the last mode under onsideration and the�rst negleted one. Thus, we hoose more than 60dB/de attenuation for the �lter.There are di�erent shapes of �lters with di�erent behavior in the low pass frequeniesdomain (see [133℄). In our ase we hoose the roll-o� �lter with the transfer funtion:
H2(s) =

(

1 + s
ω1

1 + s
ω2

)n (3.20)where ω1 is the angular frequeny of the ut-o� while ω2 is the angular frequenyfrom whih the high frequeny attenuation gain is onstant. Moreover, n is the orderof the �lter, that gives also the attenuation slope desired. Sine we want at least
60dB/de attenuation, the order is n ≥ 3.In order to use this �lter in the robust analysis, we add it on the ontrol signal uas it an be notied on Figure 3.4. The H1 �lter modeling the perturbation is alsoadded in the input of the system on the perturbation hannel.When onsidering the "to-be-ontrolled" output z, a more areful analysis needsto be arried out. First of all, as said earlier, we must monitor the amplitude ofthe ontrol u sine we do not want to reah the saturation levels of the piezoeletriatuators. Therefore, one omponent of the z vetor will be neessarily the ontrol
u. Sine we also want to attenuate the struture vibrations, we also need a variablethat an quantify this.In order to quantify the struture's vibrations we have two types of measures at



3.4 � Conlusion of the hapter � 103our disposal: the measures given by the piezoeletri sensors and the measures givenby some mobile aelerometers. Both have the advantage of having a wide and regularband pass. The seond measure is easier to use in the ontrol problem sine aftertwo suessive integrations we an �nd diretly the position of the struture. Thisomes with a great drawbak whih is the noise level. Even though both measuresare related to a harge ampli�er (see Setion 1.1 of Chapter 1), whih is intended toredue the noise level in the measurements, we notie that the measure given by theaelerometers is more noisy sine they are more sensitive to the eletri environmental�eld. This sensitivity oupled with the two integrations leads to very noisy measuresat the end. This last issue lead us to use the data given by the piezoeletri sensors.The whole robust synthesis, put under the shape of a standard H∞ problem, isdepited in Figure 3.4.PSfrag replaements
u

z1

z2

z

y

w

u
y

H1(s)

H2(s)

K(s)

System

Figure 3.4: Standard H∞ problem3.4 Conlusion of the hapterThis hapter details the theory behind the tests of the next hapter. First, a the-oretial basis for analyzing the experimental setup in terms of energy was given inthe beginning of this hapter. Then, some theoretial details onerning the poleplaement ontrol and the robust H∞ ontrol are also presented.Details about the omputation of the most energeti modes of the system willbe given in Setion 4.2 while the ontrollers will be implemented and tested in Se-
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Chapter 4Experimental resultsIn this �nal hapter the theory depited earlier is implemented on the experimentaldevie desribed in Chapter 1. This hapter will be onstruted as follows: we �rsthoose a suitable amount of modes for the �nite dimensional approximation and se-ond, for eah mode, we make a very preise determination of its natural frequenyand of the value of its damping. Using the theory desribed in Setion 3.2 of Chap-ter 3, we propose a pole plaement ontroller that will attenuate the plate vibrations.Then, using the framework of Setion 3.3, we ompute an H∞ robust ontroller that,besides attenuating the plate vibrations, makes the system robust to some externalperturbations. We will ompare the results of both methods in Setion 4.6 below.4.1 In�uene of the atuator dynamisFirst of all we think that it is of great importane to test, wether or not the dynamisof the atuators has an in�uene on the dynamis of the model. As presented inSetion 1.3.3 of Chapter 1, the response time of the piezoeletri path is greater thanthe one of the voltage ampli�er. Moreover, the speed limit of the voltage ampli�er isgreater than the normal frequeny at whih the system works (whih is, as it will beproven later in Setion 4.2, of a few Hertz). Based on these issues we infer that theatuator dynamis will not in�uene at all the dynamis of the system sine it has amuh larger bandwidth than the frequenies we onsider.Before proeeding to further tests, this issue is veri�ed for numerial simulations.Therefore, we ompute our model for a great amount of modes and for a �xed tank�lling level of 0.9. We use 13 modes in this ase, the �rst 3 for the liquid sloshingand the �rst 10 for the plate bending. These modes over a natural frequeny rangebetween 0Hz and 200Hz and their amplitude and natural frequeny are idential to105
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Figure 4.1: Bode plot of the system with and without onsidering the atuator dy-namis, tank �ll level of 0.9

the ones retrieved experimentally (see Figure 4.2 for an experimental Bode plot).The Bode plots are given in Figure 4.1, for the ase when the atuator dynami isonsidered or not. As it an be seen, the two Bode plots are exatly the same whihprove, as we expeted, that the dynami of the atuator does not in�uene the overalldynami of the system for this frequeny range.Therefore, in the �nal system's model, the dynami of the atuator will be modeledonly by a unitary gain.Remark: As it was proven in Setion 2.2.3.1 of Chapter 2, the damping of theplate is omputed from the quality fator Qk using equation (2.42). Sine the qualityfator depends on the voltage applied to the struture, the damping of eah modewill also depend on the voltage. Therefore, from now on, all the experimental testsare done using the same voltage of 2.5V amplitude at the input of the struture.



4.2 � Choie of the suitable amount of modes � 1074.2 Choie of the suitable amount of modes
Before omputing di�erent ontrollers for our system and alulating the state-spaerepresentation of the experimental set-up (see Setion 2.2.3 where the proedure isdetailed), we need to determine the number of plate and sloshing modes we are goingto onsider for this �nite dimensional approximation. The omputed ontroller willthen be simulated on a larger model. This is done in partiular in order to test theexistene or not of the spillover e�et.Several issues need to be kept in mind before �xing the number of modes.One �rst issue onerns the frequeny of the ontrol signals generated by the pilotof the airplane. These ommands are at low frequeny (see [111℄, [129℄), independentlyon the �ight ontrol of the airplane being �y-by-wire (the eletroni ontrol signalsare transmitted by the pilot through wires to omputers whih determine how tomove eah atuator in order to have the desired response [4℄) or �y-by-able (thepilot himself has a physial onnetion to the �ight ontrol atuators whih give thedesired response to the airplane). Therefore, we should be aware of onsidering,in the model state-spae approximation, espeially low frequeny modes sine onlythese mode will interat with the ontrol frequenies of the signals generated by thepilot (see [120℄ for an overview about the airplane modeling and �ight requirements).The high frequeny plate and sloshing modes, that are not in the range of ontrolfrequenies, an be easily dealt with (even removed) using a low-pass �lter. Sinethey are not exited by the ontrol frequenies, they are also prevented for getting toresonane.Moreover, we would like to onsider besides the inherent �exion modes, at leastthe �rst torsion mode of the plate, in order to see how the ontroller reats to bothtypes of plate movements.In addition to all this, the main issue is that we must ontrol the most energetimodes of the system. Using the energy approah detailed in Setion 3.1 of Chapter 3,we ompute the energeti ontribution ratio of eah mode to the total energy ofthe system. The hoie of the modes will then be done by studying their energetiontribution.
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Figure 4.2: Experimental Bode plot for a tank �ll level of 0.9 in the frequeny range
[0, 200]Hz. #1 is the �rst �exion mode of the plate, #2 is the �rst sloshing mode ofthe liquid, #3 and #4 are the seond and third sloshing mode of the liquid (they arealmost invisible due to their very small amplitude), #5 is the �rst torsion mode ofthe plate, #6 is the seond �exion mode of the plate, #7 is the third �exion mode ofthe plate, #8 is the forth �exion mode of the plate, #9 is the �fth �exion mode ofthe plate, #10 is the sixth �exion mode of the plate, #11 is the seond torsion modeof the plate, #12 is the seventh �exion mode of the plate, #13 is the eight �exionmode of the plateWe �rst start with a Bode plot of the experimental set-up in the ase where thetank �ll level is hs

2R
= 0.9 (see Setion 2.3.2). The plot is depited in Figure 4.2 forfrequenies ranging from 0Hz to 200Hz. Based on this Bode plot we are able toompute the mode energy. The plot is obtained using a spetrum analyzer. Givingthe input voltage and the range of frequenies, the spetrum analyzer generates ahirp signal, reords the output of the devie and generates the Bode plot. Theadvantage of employing the spetrum analyzer is the speed and simpliity of themethod while the drawbak is the �nite number of points that the spetrum analyzer



4.2 � Choie of the suitable amount of modes � 109an reord. Therefore, a large frequeny range implies a large distane between thereorded points. To overome this issue, the Bode plot from Figure 4.2 was done asa superposition of several Bode plots. Using this approah, as the frequeny rangedereases and the maximum number of reorded points is onstant, the distanebetween two onseutive reorded points dereases. Another advantage is that, sinewe have a small frequeny range, eah mode (espeially the low frequeny ones) passesthe settling state and is thus reorded in the steady state.Remark: Although we are aware that the experimental Bode plot may be used to�nd diretly the state-spae representation of the system, this is not our purpose here.If this would have been the ase, we ould have modeled the experimental devie fromthe beginning using the �nite element method. As explained in the introdution ofChapter 2, during the modeling phase we want to stay as lose as possible to thephysial meaning of the devie and we do not want to see the plate and the ylinderjust as a system with no physial interpretation. Using the system identi�ation, or�nite element method, we would obtain a system in whih we an not di�erentiate theplate parameters from the liquid parameters. In this ase it would be impossible, forexample, to ontrol only one parameter of the plate (like for example the �rst �exionmode) or only one parameter of the liquid (the �rst sloshing mode for example).Mode Charateristi Natural freq. Energeti ontribution rate % Total %
1st mode �exion 0.6238Hz 62.9542 62.9542
2nd mode sloshing 1.1556Hz 7.3177×10−7 ∼62.9542
3rd mode sloshing 2.1454Hz 0.0010 62.9552
4th mode sloshing 2.7929Hz 3.7632×10−4 62.9556
5rd mode torsion 5.9977Hz 0.0220 62.9776
6rd mode �exion 8.2508Hz 9.1247 72.1023
7rd mode �exion 14.2495Hz 10.0202 82.1225
8rd mode �exion 21.0321Hz 13.5014 95.6239
9rd mode �exion 46.2245Hz 1.6166
10rd mode �exion 58.0139Hz 2.3702
11rd mode torsion 86.7584Hz 0.3873
12rd mode �exion 132.6601Hz 0.0012
13rd mode �exion 199.9073Hz 0.0752Table 4.1: Modal energeti ontribution rate of eah mode



110 Chapter 4 � Experimental results �As seen in Setion 2.3.2, in order to apply the energy approah method, it isompulsory for the struture model to be in the diagonal form. Sine initially themodel is not diagonal due to tank/plate ouplings, we use a system transformationwhih will put the model into a diagonal form. The natural frequeny of the modesalong with the results of the method are given in Table 4.1.As it an be seen from Table 4.1, the �rst 8 modes of the system, with frequeniesup to 21Hz, ontain 95% of the total energy of the system. One should notie thatin this ase all the onstraints detailed earlier are respeted: the onsidered modesare the most energeti ones, at least one torsion mode of the plate is present and themode frequeny is low enough so that it an interfere with the natural frequeny ofthe airplane ontrols.Therefore, from now on, for all the ontroller omputations, we onsider M = 3modes for the liquid sloshing and N = 5 modes for the plate bending. The modalenergeti ontribution is omputed for a �xed tank �ll level. Conerning other tank�ll levels, the energeti ontribution of the modes is similar, the only di�erene beingthat, as the �ll level dereases, the in�uene of the �rst �exion mode of the platedereases. In spite of this issue, we onsider that the �rst 8 modes still represent themain part of the energy of the total plate.4.3 Model adjustmentsBefore performing the tests on the experimental set-up, some model omputationsneed to be made. As presented, in Setion 2.4 of Chapter 2, we write the ompletemodel of the system: the retangular plate oupled with the tank �lled with liquidup to an arbitrary depth. This model, whih is omputed in the in�nite dimension,is approximated by the state-spae representation (2.134). We are realling here thisrepresentation:
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4.3 � Model adjustments � 111In order to have an aurate model of the devie, some analytial alulus orre-lated with measurements on the experimental setup need to be done. This takes threesteps: the �rst two steps an be seen as a preparation in order to implement the setof equations (4.1), while the third one onsists of a mathing between the analytialmodel and the experimental set-up. They are detailed below:
• Step 1: As it an be seen from equation (2.134), the normal frequenies of theplate and of the liquid sloshing have to be alulated. First they are omputedanalytially, using equation (2.36) for the plate and using the experimentalurves depited in Figure 2.9 for the liquid sloshing, and then are omparedwith the values measured on the devie. The method is detailed below inSetion 4.3.1;
• Step 2: After the frequeny omputation, the inherent damping orrespondingof eah mode also needs to be found. This is done by diret measures on thedevie. More details are given below in Setion 4.3.2;
• Step 3: One the model is omputed, we make a omparison for di�erent �ll-ing levels between the analytial model and the experimental setup. Sine wenotie a disrepany between the analytial model and the data olleted byexperiments, a trial and error method is employed in order to diminish thisdisrepany. The method is implemented and the results are shown in Se-tion 4.3.3.4.3.1 Computation of the natural frequenyIt is important to establish the natural frequenies of eah mode with great aurayin order to have a model as lose as possible to the experimental devie.4.3.1.1 Computation of plate natural frequeniesAs detailed in Setion 2.2.1 of Chapter 2, the plate model is based on the model of twoorthogonal beams (see equation (2.32) for the approximation of plate deformation).The modal deformations of the beam give the modal deformation of eah mode of theplate by a simple multipliation operation.Beam natural frequeny omputationWe �rst ompute the natural frequenies of the two beams sine they are needed inorder to ompute the modal displaements. They annot be measured experimentally,



112 Chapter 4 � Experimental results �thus they are only analytially omputed for the ase of a lamped-free beam and of afree-free beam. In the ase of the lamped-free beam, the natural frequeny of the ithmode ωL
i (in Hz) is omputed by replaing equation (2.11) into (2.15). For the free-free beam, the natural frequeny of the jth mode, denoted respetively ωl

j, is againfound by solving equation (2.22) oupled with (2.23). The value of the frequeniesfor both beams is detailed below:Clamped-free beamMode 1 Mode 2 Mode 3 Mode42.3244Hz 14.5679Hz 40.7920Hz 79.8557HzFree-free beamMode 1 Mode 2 Mode 3 Mode 40Hz 0Hz 1.0687kHz 2.9461kHzTable 4.2: Natural frequenies of the beams assoiated to the plateFor eah beam, the �rst modal displaements (mode shapes) are drawn below inFigures 4.3 and 4.4. The lengths of the beam are taken from Table 1.1, Chapter 1,and represent the length L = 1.36m and the width l = 0.16m of the plate.
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Figure 4.3: First three modal displaements of the free-free beam
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Figure 4.4: First �ve modal displaements of the lamped-free beamIn the ase of the free-free beam we an notie (see Figure 4.3) the presene ofthe two rigid modes with natural frequeny of 0Hz, as predited in Setion 2.2.1 ofChapter 2. The deformation of the �rst two modes implies that we an move theposition of the beam without deforming the beam at all. We remind to the readerthat the alulus of all the modal displaements was detailed in Setion 2.2.1 andis given for the lamped-free beam by equation (2.13) and for the free-free beam byequation (2.20), oupled with (2.24) and (2.25) for the two rigid modes.We now ompute the natural frequeny and mode shape for eah mode of theplate based on the beam theory. We detail below several methods that we usedto determine eah frequeny. These methods rely either on alulus (analytial ornumerial) or on experimental measurements.Plate natural frequenies alulation - analytial methodThe analytial alulus of the plate natural frequenies is done using the methodologypresented in Setion 2.2.3.1 of Chapter 2. Therefore, the plate frequenies are diretlyfound by implementing the equation (2.36). Using the harateristis of the platedepited in Chapter 1 (whih are presented in Table 1.1), the natural frequeniesan be omputed. After the alulus, the frequeny of the modes and their modalharateristis (type of mode) are given in Table 4.3.



114 Chapter 4 � Experimental results �Mode Natural frequeny Type
1st mode 2.301Hz 1st �exion
2nd mode 14.413Hz 2nd �exion
3rd mode 40.3583Hz 3rd �exion
4th mode 49.2027Hz 1st torsionTable 4.3: Natural frequenies of plate modes - analytial alulus

Here below, the modal displaements of the plate, are presented for the ase when a�exion movement and a torsion movement are observed. The order in whih the modesappear is aording to the plate natural frequeny omputed earlier and detailed inTable 4.3. We reall that the modal displaements of the plate are obtained just bymultiplying the modal displaements of the perpendiular beams, as demonstrated inSetion 2.2.3 and given by (2.32).
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 Figure 4.5: Plate �rst �exion mode at 2.301Hz, η1(y, z) = Y1(y)Z1(z)
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Figure 4.6: Plate seond �exion mode at 14.413Hz, η2(y, z) = Y2(y)Z1(z)
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Figure 4.7: Plate third �exion mode at 40.3583Hz, η3(y, z) = Y3(y)Z1(z)
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Figure 4.8: Plate �rst torsion mode at 49.2027Hz, η4(y, z) = Y1(y)Z2(z)
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Figure 4.9: Plate seond torsion mode, η8(y, z) = Y3(y)Z2(z) (not taken into aountduring the modeling phase)Sine there is an in�nity of modal displaements of the beam, we suggest a nu-merial method in order to hek if the ones we hoose for expressing the modaldisplaements of the plate are orret or not. Sine, as we stated in Setion 2.2.3 ofChapter 2, the Ritz basis of the plate is orthogonal, we suggest to e�etively hekthis orthogonality between the modal displaements of the two beams. Therefore, foreah plate mode, we ompute the salar produt of the orresponding beam defor-mation [42℄. In our ase, the salar produt is not exatly 0 but ranges from 10−4 to
10−17 depending on the modes. Based on these results, we onlude that the modaldisplaements of the two beams are well hosen and thus the modal displaements ofthe plate are well onstruted.One important thing to notie is that all the omputations done in the analytialase impose the plate to be homogeneous. Thus, we annot take into onsiderationsome struture disrepanies like the hole in the plate reated for the tank attahmentor the mass non homogeneity aused by the presene of atuators and sensors.Plate natural frequeny alulation - numerial methodIn order to verify the analytial alulus of the plate natural frequenies (Table 4.3),we propose a hek-up method using the numerial �nite elements analysis andANSYS © program. After starting the numerial routine, one an see a lose approx-imation between the natural frequenies found by the analytial alulus in Table 4.3and those found by the numerial alulus in Table 4.4, espeially for the �exionmodes.



4.3 � Model adjustments � 117Mode With piezo. atuators Without piezo. atuators Type
1st mode 2.3992 Hz 2.4983 Hz 1st �exion
2nd mode 14.678 Hz 15.104 Hz 2nd �exion
3rd mode 37.326 Hz 38.073 Hz 1st torsion
4th mode 40.242 Hz 41.056 Hz 3rd �exionTable 4.4: Natural frequeny of plate modes when the tank hole is taken into aount- numerial alulusMoreover, this numerial method allows us to onsider issues that were negletedearlier and that make the plate non homogeneous: the piezoeletri atuator pathesor the irular avity where the ylindrial tank is attahed.Afterward, we plan to ondut some numerial simulations in order to measurethe in�uene of the negleted phenomena (atuators and tank presene) on the platenatural frequenies. The results learly demonstrate the predition on the plate natu-ral frequenies: the simple introdution of the piezoeletri atuators (translated intoa small hange of plate mass and a hange in plate mass enter) shifts the naturalfrequenies and hanges the damping of the plate. This di�erene an not be provedon the experimental devie, sine the atuators and sensors are glued on the plate,neither an be taken into aount by the analyti alulus. In reverse, it an bestudied using the numeri method of alulus.The mode shapes of the �rst four modes, omputed using ANSYS ©, are depitedin Figure 4.10.Moreover, we proved in [115℄ that the presene of the empty ylindrial tankdiminishes even more the natural frequenies of the modes and inreases the ationof the torsion modes.Plate natural frequeny - experimental measurementsFinally, after the omputation of the natural frequenies using the analytial methodand after shortly omparing with the results from the numerial method, we measurethe values diretly on the experimental setup. As explained in Chapter 1, we anmeasure the natural frequenies of the plate only in the ase when the piezoeletriatuators/sensors and the hole for the ylinder attahment are present (see Figure 1.9and Figure 1.10 for an atuator/sensor view and Figure 1.4 for a plate view withoutthe ylindrial tank). Consequently, the measured frequenies will be loser to theones from Table 4.4, for the ase when the atuators are onsidered, than to the
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Figure 4.10: First 4 modal displaements of the plateones from Table 4.3, omputed with the analytial method (sine, in the analytialmethod, the plate is onsidered homogeneous).Let us desribe the proedure we followed to make the experimental measurements.We �rst restrit ourselves on the frequeny band of [0, 50]Hz sine it is the range wherethe �rst modes are onentrated. Then, using a spetrum analyzer, we identify thenatural frequenies of the modes. We �rst obtain a rough Bode plot with an estimationof the natural frequenies and then, based on this, we searh in the neighborhood ofthe estimated frequenies to obtain the real natural frequeny of eah mode. Sine�nding the natural frequeny of a mode is equivalent with �nding the frequenyfor whih the mode is at resonane, we hek on an osillosope the amplitude ofthe output signal and when this amplitude is maximum then the exat value of thenatural frequeny is reahed.In order to know the natural frequenies of the plate, we use a Bode plot of thesystem given by a spetrum analyzer devie. It generates an input signal using thespei�ations we impose: a sinusoidal hirp signal of onstant amplitude of 5V andwith a frequeny varying between 0Hz and 50Hz. Conerning the output signal,we have two types of sensors that an give us some information about the platedeformation: piezoeletri sensors and aelerometers. We know that in theory, the



4.3 � Model adjustments � 119Mode Natural freq. 1 atuator Natural freq. 2 atuators
1st mode 2.37Hz 2.375Hz
2nd mode 14.41Hz 14.438Hz
3rd mode 39.18Hz 39.25Hz
4th mode 43.40Hz 43.875HzTable 4.5: Comparison between the natural frequenies in the ase where one or twoatuators are usedmeasures given by the piezoeletri sensors are more aurate than the ones given bythe aelerometers whih are more in�uened by the environmental inherent noise.This last issue is well presented in [115℄, thus, it will not be detailed here. Weonly repeat the onlusion: the frequenies given by the piezoeletri sensor are loserto the real natural frequenies and the Bode plot. Moreover the Bode plot obtainedwith aelerometer sensors, is more noisy. Therefore, from now on we onsider forour measurements only the piezoeletri sensors, the aelerometers being only usedfor deiding about the mode type (�exion or torsion) as detailed in [115℄ or below.We remind that our purpose is to attenuate the system vibrations but also to makethe system robust to external perturbations. One way for applying perturbations isto send a voltage to one of the piezoeletri atuators. Sine applying the samevoltage to both atuators does not seem to hange the frequeny of the modes norto aentuate their in�uene (see Table 4.5 for a omparison of the frequenies and[115℄ for more details regarding this issue), we intend to use one of the atuators asan external exterior perturbations entry to the system.Consequently, from now on, we onsider the plate natural frequenies from Ta-ble 4.5, for the ase where only one atuator is used.Experimental determination of mode typeThe natural frequeny of the �rst modes an be measured or omputed using thetheory desribed above. Besides this, the determination of the mode type is of greatimportane in order to be sure that at least one torsion mode of the plate is onsidered.This issue was also well detailed in our previous work [115℄, thus, only brief resultsare presented below.The mode harateristi an be found using an easy method based on two a-elerometer sensors. The two aelerometers are plaed on the free end of the plateon vertial extremities. The analog signal delivered by the sensors is viewed on an os-illosope when the plate vibrates. If the two signals are on phase then the vibration



120 Chapter 4 � Experimental results �has a �exion movement. At In the same time, if the two signals have a phase di�er-ene of π (phase opposition) then we have a torsion movement of the plate. Usingthis intuitive method we are able to determine the harateristi of eah mode.After analyzing the aelerometer signals, the results are brie�y presented here.One an found more details in [115℄.
• The 1st mode with a frequeny around 2.37Hz is a �exion mode. The shape ofthe mode is the same as in Figure 4.5;
• The 2nd mode with a frequeny around 14.4Hz is also a �exion mode and hisshape is the one from Figure 4.6;
• The 3rd mode has a predited numerial frequeny around 37 − 38Hz (see Ta-ble 4.4) or around 49Hz (see Table 4.3). Moreover, the mode shape is the onefrom Figure 4.8. We say on purpose, a "predited" natural frequeny sine itis invisible on the experimental set-up. A possible explanation of this mightbe the loseness between his natural frequeny and the natural frequeny ofthe �exion mode right next to him. Another reason might also be the plateon�guration whih makes di�ult the exitation of the torsion movement byjust one piezoeletri atuator;
• The 4th mode with a natural frequeny around 43.4Hz is also a �exion modeand his shape is the one from Figure 4.7.As a onlusion, we an summarize in the following Table 4.6 the results onerningthe natural frequenies of the plate:Mode Measured freq. Analytial freq. ANSYS freq. Mode type
1st mode 2.37Hz 2.301Hz 2.399Hz �exion
2nd mode 14.41Hz 14.413Hz 14.678Hz �exion
3rd mode 39.18Hz 49.202Hz 37.326Hz torsion/invisible
4th mode 43.40Hz 40.358Hz 40.242Hz �exionTable 4.6: Natural frequeny and the mode desription for the �rst 4 plate modes4.3.1.2 Computation of the natural frequenies of sloshing modesConerning the natural frequenies of the sloshing waves, they are omputed usingthe methodology detailed in Setion 2.3.1 of Chapter 2 and given by Figure 2.9.



4.3 � Model adjustments � 121Sine, as explained in Setion 2.3.2, there are no theoretial results for the longitu-dinal liquid sloshing of the ylindrial horizontal tank, we made a tank approximationby keeping unhanged the natural frequenies of the sloshing modes. After the "vir-tual" retangular tank is alulated, the natural sloshing frequenies an easily beomputed using equation (2.88) from Setion 2.3.3.In order to approximate the ylindrial tank we proposed three di�erent methods,eah method being well detailed before in Setion 2.3.2. In Table 4.7, we give theomparison between the sloshing frequenies delivered by eah approximation methodand the natural sloshing frequenies omputed from the experimental urves (seeFigure 2.9).Mode 1st method 2nd method 3rd method Empirial urves [48℄
1st mode 0.7848 Hz 3.6175 Hz 0.7891 Hz 0.7869 Hz
2nd mode 2.0304 Hz 12.7347 Hz 1.9982 Hz 2.1177 Hz
3rd mode 2.7647 Hz 24.1601 Hz 2.7521 Hz 2.7907 HzTable 4.7: Comparison of the sloshing frequenies obtained from the experimentalurves and with di�erent approximation methods. Tank �ll level hs

2R
= 0.7. For othertank �ll levels, the results respet the same pattern.The method we suggest for tank approximation is the third method tested abovesine it gives sloshing frequenies lose to the experimental ones. Moreover, eventhough the sloshing frequenies obtained using the �rst method are loser to theexperimental ones, the implementation of this method is very tedious as explained inSetion 2.3.2.The exat measurement of the sloshing frequenies on the experimental set-upwas not done sine we did not �nd a suitable devie to do this. This is due to theimpossibility of studying the sloshing of the liquid in the tank alone, without anyonnetion to the plate. Even though this measurement was done in the literature,(see [105℄ where sensors were onstruted for this spei� issue or [50, Chapter 42℄where the laser Doppler anemometry method is desribed for measuring �uid param-eters), our purpose here was not to measure expliitly these values but to ontrol themotion of the plate and the sloshing. Moreover, we will onsider that the ontrollerwe ompute will be robust enough to take this issue into aount.Despite the impossibility to exatly measure the value of the frequeny, using areording video amera, we still managed to see the shape of the liquid sloshing. We



122 Chapter 4 � Experimental results �observed that for the �rst three antisymmetri modes, the mode shape is exatly asthe one from Figure 2.14.4.3.1.3 Natural frequenies of the omplete system: plate and tankUntil here we omputed the plate natural frequenies and the liquid natural sloshingfrequenies separately. The liquid sloshing frequenies were omputed in order tovalidate the geometri approximation approah we are using, thus the validity of theonsidered retangular tank. Conerning the plate natural frequenies, they were�rst omputed in order to demonstrate their variation when the plate on�gurationhanges and seond in order to have a rough approximation of their values. The nextlogial step now is the study of the natural frequenies when the plate and the tankwith liquid are oupled. The last issue is of ritial importane if we want a modellose to the reality depited in Figure 4.2.Our purpose in this study is to ontrol the system vibrations for di�erent tank�lling levels. Therefore, we onsider two di�erent tank �lling levels: in the �rst ase,the tank �lling is equal to 0.7, that is to say hs

2R
= 0.7 and in the seond ase it isequal to 0.9, (see Setion 2.3.2 for further details). Moreover, as from [114℄, for thisexperimental devie, the ases for whih the tank �ll level tends to 1 are the mostdi�ult to ontrol.Using a spetrum analyzer we �rst obtain a Bode plot for eah level. The twoplots are depited in Figure 4.11 and in Figure 4.12 (Figure 4.12 being the same asFigure 4.2 for the [0 · · ·50]Hz band).
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Figure 4.11: Experimental Bode plot for the plate and a tank �ll level of 0.7
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Figure 4.12: Experimental Bode plot the plate and a tank �ll level of 0.9Then, using a frequeny generator, we searh around eah peak value of the Bodeplot in order to �nd the exat natural frequenies of eah mode. The alulus is verytedious sine we want to �nd the most preise values. The results are given below inTable 4.8 for the plate and liquid sloshing:Mode Desription Tank �ll level of 0.7 Tank �ll level of 0.9 Plate alone
1st mode 1st �exion 0.6249Hz 0.6237Hz 2.37Hz
2nd mode 2nd �exion 8.8777Hz 8.2509Hz 14.41Hz
3rd mode 1st torsion 6.3753Hz 5.9979Hz 39.18Hz
4th mode 3rd �exion 15.3755Hz 14.2498Hz 43.40Hz
5th mode 4th �exion 21.4996Hz 21.0321Hz 55Hz
6th mode 1st sloshing 1.2655Hz 1.4149Hz -
7th mode 2nd sloshing 1.9977Hz 2.1480Hz -
8th mode 3rd sloshing 2.7510Hz 2.7940Hz -Table 4.8: The measured natural frequenies for the omplete system (plate andliquid) when the tank is �lled up to some arbitrary depthsWhen omparing Table 4.8 for a tank �ll of 0.7, with the previous Table 4.7,where the sloshing frequenies are omputed for the free tank without any externalinteration, one an notie a slight shift of the frequenies. This is not beause ofsome errors in the omputation proess. On the ontrary, this proves, as we expeted,



124 Chapter 4 � Experimental results �that the sloshing frequenies of the liquid also hange when the oupling between thetank and the plate is onsidered.Moreover, sine we are doing a mass-pendulum approximation, we also need todetermine, for the oupled system, the parameters of the mass-pendulum systems asdetailed in Setion 2.3.4.2. These parameters are presented here for the two di�erenttank �lling levels:
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Mode Pendulum Length Mass Hinge loation Measured freq.
1st sloshing 0.1550m 2.4780kg 0.3659m 1.2655Hz
2nd sloshing 0.0622m 0.1961kg 0.0363m 1.9977Hz
3rd sloshing 0.0328m 0.0482kg 0.0165m 2.7510HzTable 4.9: Charateristis of the mass-pendulum systems for tank �ll level 0.7
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Mode Pendulum Length Mass Hinge loation Measured freq.
1st sloshing 0.1240m 2.7404kg 0.1777m 1.4149Hz
2nd sloshing 0.0538m 0.1483kg 0.0296m 2.1480Hz
3rd sloshing 0.0318m 0.0325kg 0.0354m 2.7940HzTable 4.10: Charateristis of the mass-pendulum systems for tank �ll level 0.9Two important things need to be notied from Table 4.8. The �rst one is that,now, the torsion mode is visible on the experimental set-up, that is to say we founda on�guration that will �nally exite the torsion mode. Moreover, omparing thefrequeny values of the modes, the position of the torsion mode has hanged. It isnow right after the �rst �exion mode of the plate, that is to say the third peak ofFigures 4.11 and 4.12. The seond thing is that, due to the addition of liquid in thetank (the weight di�erene between the two tank �llings is 0.8671kg), the total massof the plate inreases and the natural frequeny of eah plate mode shift a lot towardszero. This shift is more prominent when more liquid is added in the tank, that is tosay for a �ll level of 0.9. 11The mass of the plate alone, without the tank, is 3.2313kg while the mass of the liquid, alone,when the tank �ll level is 0.7 equals 3.2371kg and the mass of the liquid when the tank �ll level is

0.9 equals 4.1042kg.



4.3 � Model adjustments � 1254.3.2 Computation of modal dampingThe modal damping is, along with the natural frequeny, another important param-eter that need to be well alulated. Conerning the omputing of the plate modaldamping, we used the approah detailed in Setion 2.2.3.1 of Chapter 2.As explained there, the damping of eah mode Qk is expressed using equation(2.38) detailed here:
Qk =

ωk

ωk2 − ωk1

,where ωk is the natural angular frequeny of the mode. The angular frequenies ωk1and ωk2 are omputed in order to have the amplitude of the mode attenuated by 3dB.The plate natural frequenies are the ones from Table 4.8. After heking on anosillosope the amplitude of the resonane signal, we divide this amplitude by √
2(equal to 3dB attenuation) in order to �nd the two frequenies ωk1 and ωk2. Usingthe above equation we obtain the damping for the �rst �ve modes of the plate. Theresults are given in Table 4.11.Mode Natural freq. 0.7 Damping 0.7 Natural freq. 0.9 Damping 0.9

1st mode 0.6249Hz 0.0019 0.6237Hz 0.0020
2nd mode 6.3753Hz 0.0015 5.9979Hz 0.0015
3rd mode 8.8777Hz 0.0083 8.2509Hz 0.0083
4th mode 15.3755Hz 0.0039 14.2498Hz 0.0039
5th mode 21.4996Hz 0.0030 20.4675Hz 0.0030Table 4.11: Measurement of the damping of eah vibration modeThe measure of the liquid damping is di�ult sine it has to be done by the biasof the plate. The measuring proedure is, in theory, the same as in the ase of theplate. Sine, at resonane, the amplitude of the sloshing is very di�ult to analyzeon the osillosope, we hoose the damping of the sloshing modes to be onstant,equal to 0.001 whih is the visous oe�ient of the water at normal temperature of

∼ 20◦C [76℄.4.3.3 Model mathing problemThe omplete system model, desribed by the equation set (2.134), was �rst vali-dated in [116℄ by a omparison of a time-response for a given initial deformationof the plate. However, in order to obtain a model whih provides a good math of



126 Chapter 4 � Experimental results �the measured frequeny response, some adjustments are required by onsidering theBode plots. These adjustments are done following a trial-and-error method (�rst thefrequenies are mathed and then is the damping). Other methods are possible for�exible strutures (see for example [119℄ and referenes therein).This model mathing is neessary sine some mehanial elements are not wellknown and have not been taken into aount in the analytial modeling of the stru-ture. These elements inlude the irular ring used to attah the tank on the plate(see Figure 1.1), the non-homogeneity of the plate and the weight of the tank.As a �rst step of the model mathing, the frequenies of the plate are adjusted.A seond step of the model mathing is the adding of a stati gain that orrespondsto the high frequeny modes negleted during the model redution stati orretion[121℄. This allows to get a more realisti model at low frequenies. The omparisonof the Bode plots for e = 0.7 and e = 0.9 on Figures 4.13 and 4.14 shows that themodel, for e = 0.7 is quite aurate with respet to the real data while there is somedisrepany in the amplitude of the �rst sloshing mode for e = 0.9.
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Figure 4.13: Frequeny mathing for the tank �lling level e = 0.7 (numerial model -plain line and experimental set-up - dotted line)In the two �gures, the �rst peak orresponds to the �rst �exion mode of the plate(0.625Hz) and the seond peak to the �rst sloshing mode (1.2655Hz for e = 0.7 and
1.4149Hz for e = 0.9) in the tank. The next four peaks are respetively representing:the �rst torsional mode (the third peak) (6.38Hz) and the seond (8.75Hz), third



4.4 � Pole plaement ontroller � 127(14.45Hz) and forth (21.50Hz) �exion modes of the plate. The seond and thirdmodes of the liquid sloshing annot be identi�ed on the Bode plots due to their verysmall amplitude.
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Figure 4.14: Frequeny mathing for the tank �lling level e = 0.9 (numerial model -plain line and experimental set-up -dotted line)Conlusion: In this setion, we established an initial model of the struture basedon omputation and measurements of all natural frequenies and damping. Then wedid a model mathing in order to takle the mismath due to some negleted physialphenomena. In the following, we are onsidering the ontroller synthesis on these newmathed models.4.4 Pole plaement ontrollerThis setion aims at omputing a ontroller attenuating the plate vibrations. We areusing here a state feedbak strategy oupled with a Luenberger full state observer,sine all the state-spae vetor of the system is unknown. Furthermore, based on thetheory detailed in Setion 3.2 of Chapter 3, we use a pole plaement method in orderto speify the losed-loop poles and the observer poles. Furthermore, the ontrolsheme we are following is the one depited in Figure 4.15, where the matries to bedetermined are K and G.
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PSfrag replaements u yẋ = Ax+Bu
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Figure 4.15: Feedbak ontrol law and observerFirst, we ompute the observability and ontrollability test matries in order tobe sure that all the system states are ontrollable and observable. One this is set, weimpose the dynami of the state feedbak law and of the observer. The poles whihwill speify the dynami of the losed-loop system are hosen by seleting the poles of
A−BK while the ones for the observer dynamis are given by the poles of A−GC.When hoosing the poles one has to be very areful. In general the observer polesneed to be faster than the losed-loop poles, sine we want that the use of the ob-server does not derease too muh the performane with respet to the state feedbakontroller. We observed in pratie that the fat of imposing very rapid poles forthe observer leads to a noise ampli�ation, thus a possible exitation of the high fre-queny system modes. This fat is presented in [41℄. Consequently this will reate aspillover e�et (see Setion 3.3), sine the measurement noise is ampli�ed. The sameonsiderations are done for the losed-loop poles. Very fast losed-loop poles implythat: �rst, the voltage delivered by the ontroller might exeed the atuator limitsof ±100V , thus possibly destabilizing the losed-loop system; seond, the generatedvoltage might osillate too fast in order to ontrol the system. Thus, if the osillatingfrequeny is very high, the noise will be ampli�ed, making the measurement impos-sible. One solution to this last issue is to selet slower losed-loop poles but this willunavoidably lead to slower losed-loop response. We see therefore that a middle pathneeds to be found between the response time and the noise ampli�ation.By heking the open-loop system poles we �nd 8 omplex onjugate poles (3 forthe liquid sloshing and 5 for the plate), all of them having their real part negative.Thus the open-loop system is stable. The position of the open-loop poles an be seenin Figure 4.16, while their value is presented in Table 4.12 below.
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Figure 4.16: Pole/zero map of the open-loop system (× for the poles, ◦ for the zeros)Sine the proedure for the ontroller synthesis is idential for all the tank �llinglevels, details are given here only for the ase when the tank �ll level is 0.9. Let us�rst onsider the hoie of the pole plaement ontroller K from Figure 4.15.Open-loop poles Closed-loop poles-0.5093 ± 132.14i -0.5093 ± 132.14i-0.3447 ± 89.53i -0.3447 ± 89.53i-0.0803 ± 51.84i -0.0803 ± 51.84i-0.3146 ± 37.68i -0.3146 ± 37.68i-0.0175 ± 17.55i -0.0325 ± 17.55i-0.0135 ± 13.48i -0.0384 ± 13.48i-0.0059 ± 7.26i -0.0333 ± 7.26i-0.0074 ± 3.92i -0.0324 ± 3.92iTable 4.12: Closed-loop poles with the pole plaement ontroller, tank �ll level 0.9The hoie of the losed-loop poles is very di�ult. The best solution is to hangeonly the real part of the dominant poles. In this ase, the best losed-loop poles are



130 Chapter 4 � Experimental results �given in Table 4.12. Conerning all the observer poles, their real part is three timesbigger than the real part of the losed-loop poles.The pole plaement ontroller is tested on the experimental set-up for a platedisplaement of 10m at the free end. The ontroller response in attenuating thevibrations is presented in Figure 4.17, while the voltage delivered by the ontroller tomake this attenuation is depited in Figure 4.18.
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Figure 4.17: Experimental output of the of open-loop (dotted line) and losed-loop(plain line) systems using a pole plaement ontroller with a tank �ll level of 0.9

It is important to notie that sine the voltage delivered by the ontroller exeedsthe maximum value of the voltage ampli�er ±100V , the real voltage delivered to theplate in the interval 0 . . . 30 seonds is atually between −100V and +100V.
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Figure 4.18: Voltage delivered by the pole plaement ontroller during experiments,tank �ll level of 0.9
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Figure 4.19: Frequeny response of the pole plaement ontroller, tank �ll level of 0.9



132 Chapter 4 � Experimental results �The frequeny response of the system in losed-loop with the feedbak ontrollerpreviously omputed is presented in Figure 4.19. We an notie that the �rst mode iswell attenuated and also the seond mode (the 1st sloshing mode). We expeted thisto happen sine the dominant poles, orresponding to the �rst mode of the plate andthe �rst sloshing mode, are the ones that were mostly diminished. The other polesthat were hanged are orresponding to the other sloshing modes but their e�et is notvisible on the Bode plot. This might be due to their very small energeti ontribution(see Table 4.1 in Setion 4.2).It is also interesting to notie that the 2nd �exion mode also experienes a smallattenuation, even though the orresponding poles have not been hanged. This mightbe an in�uene of the other poles that have been shifted.At the same time, we notie that the peaks orresponding to the torsion modeand to the other �exion modes have a larger amplitude. This means that testingthe ontroller for a high frequeny input would not give the best results sine theontroller is not omputed to attenuate the large frequeny values.Conlusion: In this setion a pole plaement ontroller oupled with a full-stateobserver have been onstruted. The hoie of the losed-loop poles is very triky.After hanging only the dominant poles, the omputed ontroller an be tested onthe experimental set-up. Temporal and frequeny tests show that the ontroller ise�etive espeially in attenuating the �rst �exion mode of the plate. In the nextsetion we will ompute a H∞ ontroller. Finally, in Setion 4.6 both ontrollers willbe ompared.



4.5 � H∞ robust ontroller � 1334.5 H∞ robust ontrollerIn this setion a robust ontroller is omputed and some experiments are performed.The ontroller is alulated using the theory detailed in Setion 3.3 of Chapter 3.In order to solve the robust ontrol problem we write our system in the standardform given by Figure 4.20 where the following notation is used:
• u - system input (the voltage delivered by the H∞ ontroller);
• y - measured system output (voltage delivered by the piezoeletri sensor);
• w - the perturbation of the system;
• z - the ontrolled outputs of the system.
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KFigure 4.20: Standard H∞ problemWe want to minimize the in�uene of the perturbation, staked in the vetor w,on the ontrolled outputs, gathered in the vetor z.During our tests we observed that are should be taken when hoosing the outputsto be ontrolled. In our ase, the ontrolled outputs staked in the z vetor are theposition of the plate given by the piezoeletri sensor and the ontrol generated bythe robust ontroller K. The amplitude of the ontrol is limited sine the piezoele-tri atuators have a ±100V limitation in amplitude (their frequeny limitation isnot taken into aount sine they respond muh faster than the system does). The



134 Chapter 4 � Experimental results �perturbation w will be a sinusoidal voltage sent to the seond piezoeletri atuatorpath glued on the plate.We ompute the H∞ ontroller, with M = 3 modes of liquid sloshing and N = 5plate's modes (see Setion 4.2). The system is tested on the experimental set-updesribed in Chapter 1. The ability of the ontroller, under external perturbations,to suppress the system vibrations but also to eliminate the spillover e�et when itappears, will demonstrate the validity of the ontroller.Therefore, we followed two approahes in order to solve the robust ontrol problem.These approahes lead to two types of models:
• model without �lters. In this ase, using a gain, we balane the ontrol outputdelivered by the ontroller in order to have a maximum voltage of ±100V ;
• model with �lters (in partiular to suppress the spillover e�et).4.5.1 Synthesis of a H∞ ontroller without �ltersHere, the H∞ standard problem is applied to our problem. The omplete state-spaerepresentation of the system and ontroller, is given by the equation set:











ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D12u(t)

y(t) = C2x(t) + D22u(t)

(4.2)where A ∈ R
16×16, B2 ∈ R

16×1, C2 ∈ R
1×16 and D22 ∈ R

1×1 (the feedforward matrixis di�erent from zero due to the model mathing of Setion 4.3.3). The system isperturbed by the mean of the matrix B1 ∈ R
16×1, similar in onstrution as theontrol matrix of the plate (see Proposition 2.2.2) exept for the position of pathorners.The to-be-ontrolled output z is omposed of the plate position and the voltagedelivered by the H∞ ontroller. In order to assure that this voltage remains in theamplitude limits ±100V , we use a weighting under the shape of the matrix D12 ∈

R
17×1:

D12 =
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4.5 � H∞ robust ontroller � 135Moreover, the matrix C1 ∈ R
17×16 has the shape:

C1 =

(

C2

0

)

.Other hoies for the to-be-ontrolled output are of ourse still possible. Besidesthe plate position and the voltage delivered by the ontroller, we also made testswith the position of the �rst pendulum-mass system in the to-be-ontrolled output.This was done in order to better ontrol the sloshing modes but, sine the resultsare not satisfatory they are not realled here. Preliminary tests are in progressby onsidering, in the to-be-ontrolled output, the state-spae vetor of the modelinstead of y, see [43℄.Furthermore, for omputation we use the Matlab © Robust Control Toolbox,and the ontroller we obtain is �rst tested in numerial simulation and then on theexperimental setup.
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Figure 4.21: Temporal response for robust ontrollers using Robust Control Toolbox,without �lters; simulations on a system with the same amount of modes; tank �lllevel equal 0.9. Thin line is obtained with d12 = 0.1, plain line with d12 = 0.25 andbold line with d12 = 1First the value of d12 is equal to 1, in whih ase the ontroller needs to minimize
u as muh as possible. The ontroller is omputed and is numerially simulated on a



136 Chapter 4 � Experimental results �system of the same dimension. The results are shown in Figure 4.21 and orrespond toan initial ondition of the system when the liquid is motionless and the plate free endundergoes a 10m displaement from the equilibrium position. The voltage deliveredby the ontroller is depited in Figure 4.22. As it an be notied the maximumvoltage delivered is ±12.75V whih is far away from the atuator saturation levelof ±100V. Therefore, we derease the value of the d12 oe�ient. In this ase, thevoltage delivered by the ontroller will inrease but in the same time the response timeof the losed-loop system will derease. This yields: d12 = 0.25 and d12 = 0.1. Theresults of the response time, in open-loop and in losed-loop, are given in Figure 4.21while the voltage delivered by the respetive ontrollers are given in Figure 4.22.
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Figure 4.22: Voltage delivered by the robust ontrollers; tank �ll level equal 0.9 with
d12 = 0.1 (thin line), d12 = 0.25 (plain line) and d12 = 1 (bold line)The next step is to numerially simulate these ontrollers on an augmented system.The main reason is to verify the presene or not of a spillover e�et. We thereforeonsider an augmented system, where one plate mode has been added to the previoussystem. The frequeny responses are shown in Figure 4.23 for all the previouslyonsidered ontrollers. We notie that all the ontrollers previously omputed atstrangely on the augmented system. Even though the high frequeny modes areattenuated, the magnitude of the �rst modes (espeially the magnitude of the �rstsloshing mode) is inreased. Moreover, to visualize the spillover e�et, the temporalresponse for the ase when d12 = 0.1 is shown in Figure 4.24. The initial ondition of



4.5 � H∞ robust ontroller � 137the plant is again equivalent to a free end's plate deformation of 10m. The spilloverexistene an be easily notied due to the signal divergene.
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Figure 4.23: Bode plot of the robust ontrollers simulated on an augmented system;tank �ll level equal 0.9. The thin line is for d12 = 0.1, plain line for d12 = 0.25 andbold line for d12 = 1
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Figure 4.24: Temporal response for robust ontrollers using Robust Control Toolbox,without �lters and with d12 = 0.1; tests on an augmented system; tank �ll level 0.9
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Figure 4.25: Pole/ zero map for the open-loop system augmented with one mode;tank �ll level equal 0.9The position of the poles and zeros, for the losed-loop system, an be seen inFigure 4.26. Some fast poles an be observed, muh larger than the open-loop ones(see Figure 4.25) and also larger than the ones we experiene earlier for the poleplaement problem (see Table 4.12).
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Figure 4.26: Pole/ zero map for the losed-loop system augmented with one modeand with the ontroller omputed with d12 = 0.1; tank �ll level equal 0.9
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Figure 4.27: Pole/zero map of the previously omputed ontroller, d12 = 0.1; tank �lllevel equal 0.9In spite of all these problems, we tested all the previously omputed ontrollerson the experimental setup. During all the tests we notie a sudden stop in theaquisition proess just after the ontroller introdution. After analyzing the H∞ontroller poles from Figure 4.27, we notie the poles with large real part. We thinkthat these poles are the ause for whih the experimental tests are not working.Di�erent manipulations are tried to overome this issue.A �rst idea is to eliminate the fast poles supposing a priori that they will notin�uene the system behavior in the steady state. Therefore, we eliminated thefast poles and we onsidered only their stati gain. Realulating the ontroller andtesting it in simulation, we obtain a losed-loop settling time idential to the open-loop settling time. From this we draw the onlusion that the new ontroller is notworking and the fast pole have a great in�uene on the ontroller behavior.A seond solution that omes to our mind is to selet ourselves, in some way, thepoles of the omputed H∞ ontroller. This is done by setting some allowane zonesfor the ontroller poles. We an therefore desribe these zones using linear matrixinequalities (LMI) (see [39℄ or [38℄). Our purpose is to ompute this region so thatthe losed-loop poles are on the left-hand side of the omplex plane and have theirreal part (in modulus) as big as possible. At the same time, we do not want to keepvery fast poles sine they might not be implemented on the experimental setup. Theregion needs to be found by making a ompromise between these onstraints.Unfortunately, we did not �nd the suitable region. We found either regions wherethe poles are still very fast, thus unimplementable, or regions where the poles are



140 Chapter 4 � Experimental results �slow and the losed-loop settling time is idential to the open-loop one.We thus �nally dedue that this method is not implementable on the real system.One an think of a further study onsisting in using an aquisition set-up that anhandle a bigger sampling frequeny. In this way, a lari�ation may be obtained.4.5.2 Synthesis of a H∞ ontroller with �ltersThe robust ontrol of a system with �lters gave us the best results on the experimentaldevie and will be detailed below. These tests were already brie�y presented in [117℄and [118℄ and more details are given in this setion.The hoie of the �lters is a di�ult problem and will have an impat on theontroller behavior. Later on, we propose a hoie of the �lters and then we omputethe ontroller using these �lters.In order to take the disturbanes into aount, the low-pass �lter H1(s) is inludedin the design sheme. As explained in Setion 3.3, it models the range of frequenieswhere all the modes of the �nite dimensional system are onsidered (between 0Hzand 21Hz, see Setion 4.2). This perturbation, indued by a frequeny generatordevie, is applied to the piezoeletri atuator that is not used in the ontrol law.The perturbation will be a soure of vibrations of the �uid-struture system andis modeled by a low-pass �lter of order 1 with a bandwidth of 50Hz. The �lter,plaed before the piezoeletri atuator used as a disturbane atuator has thereforea transfer funtion given by
H1(s) =

100π

s + 100π
.The residual modes divergene desribing the spillover phenomenon is a ommonproblem when working with a trunation of an in�nite-dimensional model (see Se-tion 3.3). In order to avoid this undesirable e�et, a high-pass �lter H2(s) of transferfuntion:

H2(s) =
(1 + s

2π27
)3

(1 + s
2π160

)3is added on the ontrolled output. This allows to get a 60 dB attenuation above theut-o� frequeny of 27Hz where the ut-o� frequeny is slightly greater than thefrequeny of the last onsidered mode in the ontroller synthesis. The H∞ ontrolleris designed and is �rst tested through simulations and on the experimental set-upafterwards for the two di�erent levels of tank �lling (denoted 0.7 and 0.9). Themodel used for simulations is again a system of larger dimension, in order to test theexistene of the spillover e�et.



4.5 � H∞ robust ontroller � 141A ontroller is alulated using the following standard H∞ problem given in Fig-ure 4.28:PSfrag replaements
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Figure 4.28: Standard H∞ problem with �lters4.5.2.1 Matlab © Robust Control Toolbox ontrollerThe �rst attempt to solve this problem is by using the Matlab © Robust ControlToolbox whih allows the omputation of only full order ontrollers. Tries are madeand due to memory over�ow, full order ontrollers annot be omputed for the systemwith Xp ∈ R
10 and Xθ ∈ R

6 and both �lters. This would lead to a full order ontrollerof dimension 20.One solution to solve this problem would be to redue the number of modes inthe model. After suessive tries, we an �nd a on�guration for whih a ontrolleran be omputed but it ontains only the �rst plate mode and the �rst liquid modeand no spillover �lter. Instead of the �lter, a gain is used in order to keep the ontrolvoltage in the desired limits. Therefore, in this setion only, we onsider one mode ofthe plate and one mode of the liquid: Xp ∈ R
2 and Xθ ∈ R

2.The results of the ontroller implementation are tested for only one tank �ll levelof 0.7. The results are given in Figure 4.29.We an see that even though the ontroller attenuates well the �rst mode, wean not use this tehnique sine it does not allow us to onsider a greater number ofmodes or the roll-o� �lter in order to prevent spillover. For this simulation only, the
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Figure 4.29: Experimental Bode plot of the open-loop system (plain line) and of thelosed-loop system (bold line) omputed with the Robust ontroller from Matlab for2 modes and a �xed tank �lling of 0.7

Simulink shema in Figure 4.28 used for the alulus of the ontroller has the H2(s)�lter replaed by a gain suitably tuned. The roll-o� �lter is neessary to suppressthe spillover phenomenon, thus maintaining the overall stability of the system. Whenperforming numerial simulations, we experiened problems due to the non-desirablespillover (see Figure 4.24). We onlude that we annot eliminate the roll-o� �lterfrom our ontroller synthesis.Moreover, when using the Robust Control Toolbox, we selet ourselves a suitableweighting funtion on the ontrolled output u so that the voltage delivered by theontroller stays in the range ±100V , in this way the atuators do not saturate andthe system stability is preserved. On the other hand, the Robust Control Toolboxannot diretly takle the problem of simultaneous ontrol for di�erent �lling levelsin the tip-tank.For all these reasons we deided to onsider synthesis algorithms of redued-orderontrollers and takling also the simultaneous H∞ ontrol problem.



4.5 � H∞ robust ontroller � 1434.5.2.2 HIFOO ontroller
We will use here the HIFOO pakage for the ontroller omputation. The algorithmis based on non-smooth optimization issued from [60℄ and [35℄ and it omputes fullorder ontrollers but also redued order ontrollers that are less demanding in termsof memory.Before onsidering all the plate and liquid sloshing modes, we experiment theHIFOO ontroller on the previous system in order to ompare it with the full order(seond order in this ase) Matlab © Robust Control Toolbox. Therefore, for thissimulation only, the HIFOO ontroller is omputed for a system with only one modeof the plate and one mode of the liquid: Xp ∈ R

2 and Xθ ∈ R
2. Sine HIFOO allowsus to speify the order of the ontroller, in this ase the resultant ontroller will be a�rst order. The omparison is given in Figure 4.30. We notie that, both ontrollersattenuate the �rst �exion mode with around 4dB (∼ 7dB for HIFOO) but not the�rst sloshing mode, whih they atually amplify. Moreover, the HIFOO ontrollerampli�es also the torsion mode and the frequeny mode at 50Hz, modes that havenot been onsidered in the ontroller synthesis.One very important thing to notie is that, while inreasing the number of onsid-ered modes, HIFOO always �nds a suitable ontroller, in the presene of both �ltersfrom Figure 4.28 and by keeping the voltage delivered by the ontroller in the allowedrange.Some experiments are also performed for a tank �ll level of 0.9 in the same on-�guration (1 mode for the plate and 1 for liquid sloshing). The results are given inFigure 4.31. Sine the ontroller was built with only the �rst two modes, we notiethat only these modes are attenuated, the �rst mode attenuation being of almost

13 dB. A slight attenuation is also notied for the seond and third �exion modes(2.3 dB and 1 dB respetively) even though those modes were not taken into aountfor the ontroller design. We also notie an ampli�ation of the torsion mode (0.5 dB)and of the forth and �fth �exion mode (1 dB and 1.7 dB respetively) omparing tothe open-loop ase.
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Figure 4.30: Experimental Bode plot of the open-loop system (thin line) and of thelosed-loop system using a HIFOO ontroller and a Robust ontroller omputed withMatlab (2 modes and a �xed tank �lling of 0.7)
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Figure 4.31: Experimental Bode plots of the open-loop system (thin line) and thelosed-loop system (bold line) with a HIFOO ontroller omputed for 2 modes and a�xed tank �lling of 0.9

Analyzing the �gures presented earlier, two onlusions an be drawn. The �rstis that HIFOO algorithm needs to be hosen instead of the usual Robust Toolboxfrom Matlab due to the reasons detailed before. Seond, a larger number of modesde�nitely needs to be onsidered during the ontroller omputation even in the asewhen HIFOO is used, in order to avoid mode ampli�ation.From this setion on, ontrollers are omputed using the suitable amount of modesneeded for the system (N = 5, M = 3), in agreement with the theory in Setion 3.1of Chapter 3 and implemented in Table 4.1.We onsidered one spei� ontroller for eah tank �lling level. In order to hoosethe suitable order of these HIFOO ontrollers, H∞ ontrollers of di�erent orders for a�xed tank �lling of 0.7 are omputed using the standardH∞ problem from Figure 4.28.The analyti omputations show that ontrollers of order 1 and 4, have almost thesame H∞ norm γ: γ = 4.24 for a 1st order and γ = 4.28 for a 4th order.Consequently, a 4th order ontroller and a 1st order ontroller for the same tank�lling e = 0.7 are tested on the plant. The idea is to see if greater order ontrollersare really more e�ient than a very simple �rst-order ontroller.
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Figure 4.32: Comparison between a 1st and a 4th order HIFOO ontroller; experimen-tal results for a �xed tank �lling e = 0.7 and omparison to the open-loop system(thin line)
The experimental results are plotted in Figure 4.32. The Bode plots show thelosed-loop attenuation in the ase of a 1st order and 4th order ontroller omputedusing HIFOO. One an notie a slightly better attenuation for the �rst sloshing modein ase of the 4th order ontroller and a better attenuation (almost 4 dB) for the �rst�exion mode in the ase of the 1st order ontroller.Consequently, we infer that the omplexity of a 4th order ontroller is not justi�ed.Therefore, from now on, only �rst-order ontrollers will be omputed with HIFOO.

4.5.2.3 First order HIFOO ontrollerWe ompute a �rst order HIFOO ontroller for eah tank �ll level: e = 0.7 and
e = 0.9. Experimental results are given in Figures 4.33 and 4.34 for eah ase.
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Figure 4.34: Experimental Bode plots for the open-loop system (plain line) and ofthe losed-loop system (bold line) using HIFOO ontroller - e = 0.7
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Figure 4.33: Experimental Bode plots for the open-loop system (plain line) and ofthe losed-loop system (bold line) using HIFOO ontroller - e = 0.9It may be observed that the �rst peak is well attenuated for the di�erent onsideredtank �llings. An attenuation of 14 dB is measured when e = 0.9 and of 11.7 dB



148 Chapter 4 � Experimental results �when e = 0.7. Conerning the �rst torsion mode (3rd peak on the Bode plots) theattenuation is very small for e = 0.7 and quite good for e = 0.9 (1.5 dB). For higherorder modes, one an see that the ontroller for e = 0.9 is also quite e�ient.
Moreover, the HIFOO ontroller omputed earlier, is tested on the experimentalsetup in the ase of a plate displaement of 10m on the free end. The temporalresponse of the ontroller is given in Figure 4.35 and the voltage delivered in Fig-ure 4.36. As it an be seen, the voltage delivered is muh lower than the atuatorlimits.
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Figure 4.35: Experimental output of the losed-loop ontroller using HIFOO on-troller (bold line) and of the open-loop (dotted line); plate deformation of 10m,
e = 0.9
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Figure 4.36: Voltage delivered by the HIFOO ontroller; plate deformation of 10m,
e = 0.9
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Figure 4.37: Experimental Bode plot, omparison between the open-loop (plain line)and the losed-loop system with HIFOO omputed onsidering 2 or 8 modes of thesystem; �xed tank �lling of 0.9It is also very interesting to ompare this HIFOO ontroller with the one om-puted when only 1 plate mode and 1 sloshing mode are onsidered. This is donein Figure 4.37 for the ase of 0.9 tank �ll level. As one an see, the results of theontrollers are similar on the �rst two modes, as we expeted. On the ontrary, forall the other modes, we notie a better attenuation for the HIFOO ontroller om-puted with the 8 modes. Moreover, in this ase, the torsion and last �exion modes,



150 Chapter 4 � Experimental results �whih were ampli�ed by the HIFOO ontroller omputed with only 2 modes, are nowslightly attenuated.A onlusion of this part is that the �rst �exion mode, whih is the most importantin terms of plate displaement from its equilibrium position as well as in terms ofmodal energeti ontribution (see Table 4.1), is well attenuated for all the ases (2and 8 modes onsidered for the ontroller omputation). Moreover, onsidering alarger amount of modes in the ontroller synthesis is not only done to math sometheoretial riteria (energeti ontribution of modes, presene of a torsion mode) butatually shows better results in the implementation on the experimental set-up.4.5.2.4 Simultaneous redued-order HIFOO ontrollerIn pratie the liquid in the plane tanks is varying during �ight. Therefore, oneontroller must be valid for di�erent �llings.As a �rst step we test the 1st order ontroller previously alulated for the tank
90% �lled on a tank 70% �lled. The idea behind this is to see if the ontroller isrobust enough onerning suh a model hange. One an notie from Figure 4.38that the ontroller inreases the amplitude of the �rst vibration mode of the plateand does not attenuate the other modes.
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Figure 4.38: HIFOO ontroller alulated for the tank �ll level 0.9 and tested on thetank �ll 0.7Consequently it is normal to onsider a simultaneous 1st order robust ontroller



4.5 � H∞ robust ontroller � 151omputed for di�erent levels. This simultaneous analysis is possible using the HIFOOpakage under Matlab ©.In this ase, we also onsider also another �lling level of the tank: tank half fullfor whih e = 0.5. Therefore, the simultaneous ontroller is omputed for three �lllevels (e = 0.5, e = 0.7 and e = 0.9). The results are given in Figures 4.39, 4.40and 4.41. Eah �gure shows the experimental Bode plot of the open-loop devie andthe experimental Bode plot of the losed-loop using the same simultaneous HIFOOontroller.
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Figure 4.39: Experimental Bode plot of the open-loop system (dotted line) and of thelosed-loop system (bold line) using simultaneous HIFOO ontroller - e = 0.9
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Figure 4.40: Experimental Bode plot of the open-loop system (dotted line) and of thelosed-loop system (bold line) using simultaneous HIFOO ontroller - e = 0.7
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Figure 4.41: Experimental Bode plot of the open-loop system (dotted line) and of thelosed-loop system (bold line) using simultaneous HIFOO ontroller - e = 0.5



4.6 � Comparison of the ontrol methods � 153One an observe that the �rst mode is very well attenuated for e = 0.9 (10dB)and e = 0.7 (5.7dB) and only a few for e = 0.5 (1.5dB). Regarding the torsionmode and higher order modes, they are also well attenuated espeially for e = 0.9.Unfortunately, they are not at all attenuated for e = 0.5. This issue is normal sine thesimultaneous ontroller will reate a mean level of attenuation for all the onsideredases.4.6 Comparison of the ontrol methodsThis setion aims at omparing the two ontrol methods: pole plaement feedbakontroller and H∞ ontroller. Two on�gurations are analyzed: a response to aninitial plate deformation and the Bode frequeny response.

Figure 4.42: Temporal evolution of the experimental output for the losed-loop sys-tems with pole plaement ontroller (plain line) and HIFOO ontroller (bold line);plate free end deformation of 10m, e = 0.9First of all, let us onsider the ase of the plate free end deformation of 10m. Inthis ase the Figures 4.17 and 4.35 are ompared in Figure 4.42. As it an learly beseen, the pole plaement ontroller attenuates the plate osillations muh better thanthe HIFOO ontroller does. This is normal, sine the test on�guration advantagesthe pole plaement ontroller. For this ontroller, the dominant poles, whih areorresponding to the �rst vibration and sloshing modes, were the one mostly hanged(see Table 4.12). Also, the robust ontroller is set to minimize the in�uene of theperturbations on the voltage generated by the ontroller. Thus, the voltage generatedto ontrol the plate movements, is minimized for the HIFOO ase while for the pole



154 Chapter 4 � Experimental results �plaement ase is left free. This is learly seen when omparing the voltage deliveredby both ontrollers: ∼ 500V (see Figure 4.18) for the pole plaement ontroller andonly ∼ 15V (see Figure 4.36) for the HIFOO ontroller.Now, let us onsider the Bode plots of the losed-loop systems. In this ase,Figures 4.19 and 4.33 are ompared on Figure 4.43. It an be easily seen that eventhough the pole plaement ontroller attenuates more the �rst �exion mode, as weexpeted, the HIFOO ontroller attenuates more the other high frequeny modes andeven attenuates the modes that were ampli�ed by the former ontroller.
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Figure 4.43: Experimental Bode plots for the losed-loop system with pole plaementontroller (plain line) and HIFOO ontroller (bold line); frequeny response, e = 0.9Until now we an not give a deisive response about the best ontroller. Thisdepends on the type of problem to be solved. If one knows that the struture willvibrate most of the time along the �rst �exion mode, then the pole plaement on-troller is the best hoie. On the other hand, if we onsider that the frequeny rangein whih the plate vibrates is large, we will prefer the HIFOO ontroller.However, probably the most important issue also needs to be kept in mind. Thisis the size of the ontroller. Atually, until now we ompared a full order ontrollerof order 20 with a single order ontroller of order 1. When the omputation time andpower are limited this issue is ruial and an be deisive in onsidering the HIFOOontroller.Conlusion: In this setion a ontroller robust to external perturbations has beenomputed and tested on the experimental set-up. We employed the Matlab © Ro-bust Control Toolbox and the HIFOO library. Due to memory over�ow, the full order



4.7 � Conlusion of the hapter � 155ontrollers omputed using Robust Control Toolbox an not be implemented. There-fore, a �rst order order ontroller using HIFOO library is omputed and implemented.Finally, again using HIFOO, a unique �rst order ontroller that an take into aountdi�erent �ll levels of the tank is omputed and tested for di�erent �ll levels e = 0.5,
e = 0.7 and e = 0.9. Experiments show a good attenuation espeially of the mostenergeti mode of the struture.4.7 Conlusion of the hapterIn this hapter, tests on the experimental devie are onduted. After proving thatthe in�uene of atuator dynamis on the system behavior is null for the frequenyband we onsider, the number of modes for the state-spae approximation have beendetermined. In this ase we used the method of modal energeti ontribution fromChapter 3 along with some tehnial aeronautial aspets. Then, we omputed thenatural frequenies of the plate and the sloshing frequenies of the liquid. For thiswe �rst used the analyti method, whih was veri�ed by a numerial method, andthen we diretly measured the frequenies. The damping is then measured and theomplete model is determined.Afterward, we proeeded to the ontrol of the struture. We �rst realized a poleplaement ontrol, that proves to be very e�etive for the ase when the plate isdeformed along the �rst �exion mode. Moreover, sine the frequeny response of thepole plaement is not suitable for high frequenies, we omputed a robust ontroller.Sine the Matlab © Robust Control Toolbox fails to do this, the HIFOO algorithmis employed. Using HIFOO, we omputed �rst order ontrollers that showed theire�etiveness during experiments. Moreover, using HIFOO we were also able to makesimultaneous ontrol for three di�erent tank �ll levels, an impossible thing to do withthe Robust Control Toolbox from Matlab © .





General onlusion
Contribution of the manusriptThe devie we are working on was desribed in Chapter 1 and pitured in Figure 1.1.It is omposed of a retangular plate onneted to a ylindrial tank �lled with liquidup to an arbitrary level. Moreover, as it was already said, it was built to have, in lowfrequeny domain, the same behavior as a real plane wing with liquid.Therefore, we started the manusript by presenting this experimental devie alongwith the aquisition hain that onnets it to the omputer, the purpose of this workbeing to ontrol the plate vibrations when they our. Moreover, sine the ontrol ofthe devie is done through piezoeletri atuators and sensors, the �rst hapter endswith a short presentation of the piezoeletri phenomenon.We omputed in Chapter 2 an analytial model of the devie. The hapter isdivided in three distintive parts: the �rst part ontains the model of the retangularplate and the seond details the model of the tank with liquid. In order to ompletethe model of the devie, the third part studies the mutual interation between thevibrations of the plate and the sloshing of the liquid in the tank.On the one hand, we onsidered the plate model in Setion 2.2. For sake ofsimpliity, we started from the PDE model of a beam, whih represents the platetransposition in a 1-dimensional spae. Using the Ritz method, we determined, foreah mode of the beam, the expression of its natural frequeny and assoiate defor-mation. We then onsidered the PDE model of a retangular "lamped-free-free-free"plate (2.27). We omputed the deformation of the plate based on the deformationsof two theoretial perpendiular beams. Sine, as it was proved later in Setion 4.2of Chapter 4, the �rst modes of the plate are the most energeti ones, we made anapproximation of the PDE plate model by onsidering only the �rst modes. Basedon this, we onstruted the dynami matrix, onsidering that all the vibration modesare deoupled even in the presene of damping. Then, studying the behavior of the157



158 General onlusionpiezoeletri atuator, we omputed the ontrol matrix. We �nally obtain the outputmatrix from the behavior of the piezoeletri sensor.On the other hand, we studied the modeling of the sloshing of the liquid in thetank. Sine there are no analytial results for horizontal ylindrial tank, we madea geometri approximation in Setion 2.3. Therefore, we onstruted a "virtual"retangular tank for whih the sloshing frequenies of the liquid are exatly the sameas the one of the ylindrial tank. Then, we omputed the PDE model of the liquidin the retangular tank (see equations (2.67) and (2.68)). In order to develop a �nitedimensional approximation, we made an analogy with a mass-pendulum mehanialsystem. Therefore, onsidering one mass-pendulum system for eah liquid mode, theparameters of the mehanial systems were omputed to develop the same fore andmoment of fore as the liquid does. One the parameters of the mass-pendulumsystems were set, the omputation of the orresponding dynami, ontrol and outputmatries was straightforward from the pendulum equation.We �nally studied in Setion 2.4 the in�uene of the plate vibration on the liquidsloshing and vie-versa. The plate senses the liquid sloshing as an external momentthat bends the plate along with the piezoeletri atuators. At the same time, theliquid senses the plate in�uene as an external aeleration that ampli�es the sloshinge�et. Therefore, we �rst oupled both PDE models and seond we detailed the �nitedimensional approximation oupling. The omplete model of the experimental devie,under the shape of a state-spae representation, was �nally given by equation (2.134).Chapter 3 has mainly a theoretial interest. We proposed �rst in Setion 3.1 amethod that allows to ompute the �nite dimensional approximation by studyingthe energeti ontribution of eah mode of the struture. Then, we detailed in Se-tion 3.2 the theory of pole plaement ontroller oupled with a full state observer.Sine we were planning to implement ontrollers robust to external perturbations, wealso brie�y presented the robust H∞ framework in Setion 3.3.Tests on the experimental devie are illustrated and analyzed in Chapter 4. Afterheking the in�uene of the atuator dynami on the plate vibrations in Setion 4.1,we applied the energeti method detailed in the previous hapter to determine in Se-tion 4.2 the number of modes for the �nite dimensional approximation of the PDEmodel. Then, an analyti alulus, oupled with some numerial veri�ations andexperimental measurements, is done in order to ompute the natural frequenies anddamping of eah system mode. Moreover, we also proved by experimental measure-



General onlusion 159ments that the presene of the extra weight of the tank �lled with liquid dereasesthe plate natural vibration frequenies while the plate presene dereases the sloshingfrequenies when onneted. Sine we observed minor di�erenes between the fre-queny response of the omputed model and the experimental set-up, we performeda model mathing in order to diminish these mismathes.In Setion 4.4, we omputed and tested the pole plaement ontroller. Tests on theexperimental devie show a good attenuation of the plate vibrations when the plateis initially deformed along the �rst vibration mode. This an be easily explained,sine the losed-loop poles orresponding to the �rst vibration modes are the onesthat hanged their position. However, on the Bode plot, we notie an ampli�ationof some high frequeny modes, a sign that the ontroller response in high frequenieswill not be as good as in low frequenies.Furthermore, in Setion 4.5, we omputed a ontroller robust to external pertur-bations and whih attenuates a higher range of frequenies. Two distint ases wereonsidered. First, no �lters were used to simulate the perturbations or to ounter thespill-over e�et that may our. The ontroller was omputed using the Matlab © Ro-bust Control Toolbox. Simulations on a system with the same amount of modesshowed a good attenuation of the plate vibrations while tests on an augmented sys-tem showed that the system diverges. This is due to the spill-over e�et and thus thepresene of the �lter on the system input u is neessary. Moreover, tests on the ex-perimental devie ould not be performed, probably due to the ontroller poles whihwere too fast. Therefore, in the seond set of tests, �lters were used. The �rst surprisewas to notie that Matlab © Robust Control Toolbox fails to ompute a ontrollerwhen the �lters plus a large amount of system modes are onsidered. An alternativehad to be found and the HIFOO algorithm was onsidered. In ontrast with RobustControl Toolbox whih omputes only full order ontrollers, HIFOO omputes alsoredued order ones. Using HIFOO, we omputed 1st order ontrollers for two di�er-ent tank �ll levels: 0.9 and 0.7. Experimental Bode plots showed a good attenuationespeially for the �rst vibration modes. Tests for a plate deformation along the �rstvibration mode showed also good results. Finally, using again HIFOO, we takledthe problem of simultaneous ontrol of the system for di�erent �lling levels. We om-puted a 1st order ontroller that simultaneously attenuates the vibrations for threetank �ll levels: 0.9, 0.7 and 0.5. Here also, attenuation is obtained, espeially for the�rst vibration mode.Finally, Setion 4.6 ontains the omparison of the di�erent ontrol methods weemployed. As expeted, pole plaement ontroller showed a better result when the



160 General onlusionplate is deformed along the �rst vibration mode while HIFOO ontroller showed bet-ter results when a large frequeny spetrum is onsidered. Finally, based on theontroller size (full order pole plaement ontroller versus the 1st order HIFOO on-troller) the HIFOO ontroller was onsidered the most suitable.
Perspetives and Open questionsThere are still many points that may be onsidered. Some of them onern the modelonstrution while others onern the vibration ontrol or the perturbation design.Let us detail some of them here below.As stated in the introdution of Chapter 2, there are two di�erent approahesfor the omputation of the model: analytial (the approah we followed in thismanusript) and numerial. One of the main reasons for whih we hoose the an-alytial approah was the possibility to model the sloshing of the liquid. However, wefound that some reent toolboxes from a FEM software an also solve this. Therefore,this issue ould also be exploited in order to ompare a numerial model using thisapproah with the analytial one obtained here. Conerning the analytial model,some model improvements ould be worked on if we onsider the nonlinear dynamisof the atuators and sensors. In partiular, it is well known that piezoeletri atua-tors and sensors have a limited deformation [94℄ or [131℄.Conerning the ontrol of vibrations, there are issues that require further atten-tion. For example the hoie of weighting funtions for the robust H∞ ontrol. Weknow, from the literature [145, Chapter 6.3℄, that the hoie of the weighting funtionsis extremely important for the results we obtain. The hoie of the to-be-ontrolledoutputs ould also be addressed di�erently. Tests are in progress using the systemstate X in the ontrolled outputs [43℄ instead of the measured output y as we did.Preliminary results show a better attenuation (than the one we experiened with HI-FOO) when a large spetral frequeny is onsidered but a smaller attenuation, forthe �rst mode, than the one we observed with the pole plaement ontroller. An-other interesting issue should be to study the interest of a mixed synthesis H2/H∞.Moreover, methods that better ontrol the liquid sloshing or the twisting modes ofthe plate ould also be of great interest.



General onlusion 161Conerning the perturbations, until now we used a random hirp of onstantamplitude. A more sophistiated perturbation, that uses a vibrating devie onnetedto the lamped side of the plate, ould be onsidered. Besides, a more sophistiateddevie that exites more the torsion of the plate or the sloshing modes may be used.In any ase, paths for further researh on this devie are numerous, some of them(probably the most interesting ones!) are still to be disovered ...
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