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Introdu
tion
General 
ontextThe new generation of airplanes and spa
e shuttles need to �y further and furtheraway. Thus, the problem of fuel 
apa
ity has 
ome to the attention of the s
ienti�
world. In a

ordan
e, the tanks used to sto
k the fuel need to be enlarged. Thedrawba
k is that larger quantities of fuel imply that a potentially larger quantity ofliquid 
an be subje
t to movements if ne
essary preventive measures are not taken.Therefore, the question of 
ontrolling the liquid behavior has arisen and NASA startedfrom the early '60s to 
on
entrate on this issue. The �rst 
omplete study was doneby Abramson [2℄, based on many other studies dealing with this issue as [22℄, [34℄,[92℄ just to 
ite few of many.The 
ore problem with large quantities of liquid in large tanks is that, a phe-nomenon of sloshing o

urs at low frequen
y. As the sloshing frequen
ies get lower,an interferen
e with the 
ontrol frequen
ies generated by pilots may o

ur. This maylead to a 
ontinuous ex
itation of the liquid whi
h, in return, will a�e
t the vehi
lestability. Besides, this 
an even lead to the non-
ontrollability and destru
tion of thevehi
le [48℄. Even if su
h extreme 
ases are not willing to o

ur, the liquid strangebehavior 
an still pose serious problems [46℄. As an example, [3℄ and [129℄ give alists of airplanes that were 
onfronted to this issue during the testing phase: DouglasA4D, Lo
khead P-80, Boeing KC-135, Cessna T-37, North Ameri
an YF-100. More-over, liquid unpredi
table movement also a�e
ted the NEAR spa
e
raft whi
h hadto interrupt his insertion burn due to large fuel rea
tions. Even though the fuel was�nally 
ontrolled, the mission was still delayed for almost a year [138℄.In order to minimize the sloshing, various methods 
an be used. Firstly, the
ontainers with liquid 
an be divided, using ba�es, in several smaller 
ontainers sothat the eigenfrequen
ies of the sloshing modes are in
reased [124℄, [130℄. Se
ondly,sin
e the lo
ation of the 
ontainers also a�e
ts the damping of the stru
ture [20℄,better positioning 
an be found. Thirdly, the use of light elements to partially 
over1



2 Introdu
tionthe liquid free surfa
e 
an also in
rease the natural sloshing frequen
ies [20℄. Fourthly,a 
ontrol system 
an also be 
arefully 
hosen so that sloshing modes are attenuatedor at least not ex
ited too mu
h. We will 
on
entrate our work on this last method.In order to 
ontrol the sloshing, one needs to 
ompute for ea
h mode the naturalfrequen
y, the mode shape and then the total for
es and moment that it generates.Exa
t solutions though, are possible only for very few spe
ial 
ases, su
h as verti
al
ylindri
al tank or a re
tangular tank [67℄. Furthermore, in the 
ase when the exa
tsolutions exist, the 
oupling between these solutions and the equations of �uid motionis too 
omputationally demanding even with super 
omputers [48℄. Based on theseremarks, some approximations of the liquid sloshing have to be found. As presentedin [18℄, a good approximation is obtained by 
onsidering ea
h sloshing mode as asystem with a single degree of freedom and representing it either as a mass-pendulumsystem or a spring-mass system. Even though both methods are equivalent [67℄, themass-pendulum system is usually preferred due to some small advantages (his naturalfrequen
y varies with the 
hanges in axial a

eleration as the sloshing frequen
y does[48℄). Finally, the os
illating �uid 
an be represented as a simple me
hani
al system,in whi
h the lo
ation and the magnitude of the model variables are determined togive the same for
es and moments as the liquid does.Another 
hara
teristi
 of airplanes and spa
e shuttles of the future is the in
reaseof their size. As they be
ome larger, in order to redu
e the overall weight, the wingsand tail de�nitely need to be lighter, thus more �exible. See [13℄ for the Airbus A-380
ase or [137℄ for the NASA A
tive Aeroelasti
 Wing (AAW) 
on
ept. The study of�exible stru
tures has 
aptured the attention of resear
hers for many years and iswell 
overed in the literature. As an example, one 
an 
he
k the works of [30℄ or [56℄where the theory is presented and experimental results are given.It is well known that, espe
ially in the 
ase of large airplanes, a great part ofthe fuel is 
on
entrated in the wings. Thus, for some airplanes, the quantity of fuel
arried in the wing tanks be
omes a large per
entage of the total wing mass [92℄.Thus, the wing will be 
onsiderably in�uen
ed by the liquid movements.On the other hand, due to their 
hara
teristi
s, smart materials have been usedfor many years now, espe
ially in the �eld of 
ivil engineering, for measuring andattenuating the deformations of stru
tures [29℄. Therefore, the question of how it
an be useful to use them for 
ontrolling the �exible devi
es arose. Sin
e the �rstresults were promising, nowadays, the piezoele
tri
 pat
hes are very mu
h used to



Introdu
tion 3suppress the vibration of stru
tures [11℄, [23℄, [45℄, [65℄, [66℄, [144℄. However, up toour knowledge, only few works have addressed the 
oupling between liquid sloshingand �exible stru
ture [79℄, [132℄. Moreover, even fewer 
onsider this 
oupling in the
ase of airplanes [108℄, [109℄.The devi
e we are working on follows these lines, the purpose being to 
ontrol,using piezoele
tri
 pat
hes, a �exible plate 
onne
ted to a tank �lled with liquid.Furthermore, this devi
e was 
onstru
ted to have, in low frequen
y domain, the samebehavior as a real plane wing [110℄.Thesis outlineThe manus
ript is 
onstru
ted as follows.The �rst 
hapter gives a detailed presentation of the experimental devi
e we wantto model and 
ontrol: a re
tangular plate 
lamped at one of its ends, 
onne
ted to a
ylindri
al tank at its other end. After a geometri
 
hara
terization of the stru
ture,the a
quisition system is detailed and analyzed. The �nal part of the 
hapter 
on-
entrates on the presentation of a
tuator and sensor pat
hes. Sin
e they are madefrom piezoele
tri
 materials, a brief des
ription of the piezoele
tri
 phenomenon is�rst given. Then, some details are given on the optimal pla
ement of these pat
hes.Finally, the a
tuator speed and his in�uen
e on the total dynami
 of the system isanalyzed.Chapter 2 gathers the steps of the mathemati
al modeling of the devi
e and de-tails the 
omputation of the stru
ture model. Even though numeri
al methods are themost employed for the model 
omputation of 
omplex stru
tures like ours, we 
hooseto work with an analyti
al pro
edure. It will lead to a more tedious modeling phase,but, taking into a

ount many me
hani
al 
onsiderations will show its interest duringthe 
ontroller 
omputation phase. The main idea we follow for the 
omputation ofthe model is �rst to get two separate partial di�erential equation (PDE) models, onefor the plate and one for the tank with liquid, and se
ond to put them together bystudying the mutual in�uen
e. Thus, the model is �rst written using PDEs and thenis approximated using the Ritz method for the plate and using me
hani
al analoguesystems for the sloshing. Finally, the �nite dimensional system is written under theshape of a state-spa
e representation.



4 Introdu
tionIn Chapter 3 the theoreti
al bases of the Chapter 4 are set. Sin
e the 
ontrollerswe 
ompute are based on the �nite dimensional model, the issue of 
hoosing the suit-able amount of modes for the model approximation needs to be ta
kled. A methodbased on the energeti
 
ontribution of ea
h stru
ture mode solves this issue. Then,the theory to 
ompute a pole pla
ement 
ontroller 
oupled with a full state observeris brie�y reminded. Finally, the frame of robust H∞ 
ontrol is brie�y presented andmore attention is given to the parti
ularities of the method implementation in the
ase of in�nite dimension systems.The 
ore problem of 
ontrolling the experimental devi
e is treated in Chapter 4.After testing the in�uen
e of a
tuator dynami
s, the issue of 
hoosing the rightamount of modes for the model approximation is 
onsidered. Based on te
hni
al
onsiderations of airplanes and on the energeti
 
ontribution of ea
h mode, a 
hoi
eof the number of modes to be 
onsidered is made. Numeri
al simulations and experi-mental tests are 
ondu
ted afterward. First, a pole pla
ement 
ontroller is 
omputedand tested. Se
ond, a H∞ 
ontroller, robust to external perturbations, is 
omputed.Using the HIFOO pa
kage, redu
ed order 
ontrollers 
an also be found. Moreover,the simultaneous 
ontrol problem with redu
ed order 
ontrollers is also 
onsidered.Simulations and tests are shown and analyzed.The manus
ript ends with a last 
hapter dealing with the 
on
lusions of this workand with perspe
tives for further resear
h.Ea
h 
hapter (ex
ept for the last 
hapter whi
h presents the general 
on
lusionsof the manus
ript) ends with a short 
on
lusion dealing with the 
ontribution of the
hapter and its 
onne
tion with the forth
oming one.



Chapter 1Experimental devi
e presentationThis 
hapter is devoted to the des
ription of the experimental devi
e we are workingon. It is lo
ated at I'Institut Supérieur de l'Aéronautique et de l'Espa
e - É
oleNationale Supérieure d'Ingénieurs de Constru
tions Aéronautiques (ISAE - ENSICA)in Toulouse, Fran
e. The devi
e is pi
tured in Figure 1.1 and it has been 
onstru
tedto have the same behavior, in low frequen
ies, as a real plane wing with fuel (see [110℄or [114℄).

Figure 1.1: Experimental devi
e ISAE-ENSICA5



6 Chapter 1 � Experimental devi
e presentation �1.1 Chara
teristi
s of the experimental devi
eThe experimental devi
e is 
omposed of an aluminum plate and a plexiglas tip-tank�lled with liquid. The plate is re
tangular, 
lamped at one side and free on the otherthree sides. At the free end of the plate, opposite to the 
lamped end, is 
onne
ted the
ylindri
al tank, as it 
an be seen on Figures 1.2 and 1.3. The tank is in a horizontalposition and it 
an be �lled with water or i
e up to an arbitrary level.

Figure 1.2: Experimental devi
e, detailed presentation of main 
omponentsPSfrag repla
ements
x

y

z

O

w(y, z, t)Figure 1.3: Deformation of the re
tangular plate (1st mode)The length of the plate is along the horizontal axis and its width is along theverti
al one (see Figure 1.3). At the 
lamped end, there are two a
tuators gluedon one side and two sensors on the opposite side. The plate is 
onstru
ted from



1.1 � Chara
teristi
s of the experimental devi
e � 7aluminium and has the 
hara
teristi
s depi
ted in Table 1.1 below. A view of theplate without the 
ylindri
al tank 
an be seen in Figure 1.4.Plate length L 1.36 mPlate width l 0.16 mPlate thi
kness h 0.005 mPlate density ρ 2970 kg m−3Plate Young modulus Y 75 GPaPlate Poisson 
oe�
ient ν 0.33Table 1.1: Plate 
hara
teristi
s

Figure 1.4: Re
tangular plate without 
ylindri
al tankThe tank is 
entered at 1.28m from the plate 
lamped side and is symmetri
allyspread along the horizontal axis. Due to the 
on�guration of the whole system, thetank undergoes a longitudinal movement when the plate has a �exion movement anda pit
h movement if the plate has a torsion movement.The geometri
al 
hara
teristi
s of the horizontal 
ylindri
al tank are given inTable 1.2. It 
an be removed or �lled with i
e or water. If the tank is �lled with i
e,it 
an be easily modeled by a steady mass [123℄ equal to the empty tank mass plusthe mass of the i
e.The ratio between the liquid height and the total height of the tank gives thetank �ll level, whi
h is a good indi
ator of the tank behavior. When the tank �lllevel is 
lose to 0 or 
lose to 1 (the tank is almost empty or almost full), there is nosloshing behavior, and the modeling pro
ess is similar to the 
ase of frozen water.



8 Chapter 1 � Experimental devi
e presentation �Tank exterior diameter 0.11 mTank interior diameter 0.105 mTank length 0.5 mTank density 1180 kg m−3Tank Young modulus 4.5 GPaTable 1.2: Chara
teristi
s of the 
ylindri
al tankThe interesting 
ases are when the tank �ll level is between these values. In this
ase a sloshing phenomenon o

urs, whi
h is 
hara
terized by a periodi
 motion ofthe liquid free surfa
e. This motion 
reates periodi
 for
es and moments of for
e. Itis in this situation that this work is pla
ed, therefore, we will further 
onsider onlythe 
ases for whi
h the sloshing motion o

urs. A more 
omplete des
ription of thisphenomenon will be given later in Se
tion 2.3.1 of Chapter 2.The movement of the plate is generated by some piezoele
tri
 a
tuators while in-formation about plate deformation are gathered using piezoele
tri
 sensors. Moreover,the a
tuators 
an be used as a 
ontrol input or as a perturbation input. More detailsabout the a
tuators/sensors geometry and behavior are given below in Se
tion 1.3.Let us �rst des
ribe the data a
quisition 
hain.1.2 Data a
quisition 
hain
PSfrag repla
ements
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High V oltage
Amplifier

DSpace Card

+

Computer

P late
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Figure 1.5: Equipped experimental setupIn order to re
ord the information transmitted to the a
tuators and given by the sen-sors, some a
quisition 
hain is used. A s
hemati
 representation of the experimentaldevi
e with the a
quisition system is depi
ted in Figure 1.5. In the following lines we



1.2 � Data a
quisition 
hain � 9present the di�erent 
omponents of the 
hain that make possible the implementationof numeri
al 
ontrollers. They are listed below starting from the signal delivered bythe sensor until the voltage delivered to the a
tuator.The data delivered by the piezoele
tri
 sensor is �rst 
olle
ted by a 
harge ampli�erbefore being delivered to the DSpa
e 
© 
ard. The 
harge ampli�ers, one for ea
hsensor, are of type 2635 and are made by Brüel & Kjaer [33℄. Their pi
ture alongwith the 
onne
tions to the experimental devi
e are presented in Figure 1.6. Theprin
iple of the 
harge ampli�er is to set, using an operational ampli�er, a null voltagebetween the sensor ele
trodes so that the eventual parasite 
apa
itan
e vanishes. Inthis way, all the 
harges on the sensor ele
trodes are send towards a 
apa
itan
ewhere a voltage, 
orresponding to the 
harge di�eren
e, is measured. For furtherdetails about the ele
tri
 s
heme of the devi
e one 
an read referen
e [81℄.

Figure 1.6: Detail view of 
harge ampli�erThe signal delivered by the 
harge ampli�er is sent to a 
omputer using a DSpa
e
ard. Using the same 
ard, the signal delivered by the 
omputer is send to the highvoltage ampli�er. The 
ontrol laws are implemented on the 
omputer and exe
utedin real time with a sele
ted sampling time of 0.004s.In order to manipulate the di�erent signals, delivered to the a
tuators and re
eivedfrom the sensors, the software xPC Target from Matlab 
© is implemented on the



10 Chapter 1 � Experimental devi
e presentation �
omputer. It allows the real time exe
ution of a Simulink model on the 
omputer viaan optimized real-time kernel.The xPC Target 
reates a real-time testing environment for Simulink models by
onne
ting a host 
omputer, a target 
omputer and the experimental devi
e undertest. Visual details of the a
quisition 
hain are presented in Figure 1.7 where themaster (
omputer on the left side) and slave (
omputer on the right side) 
omputers,along with the DSpa
e 
© 
ard 
an be seen. The master 
omputer, on whi
h arerunning xPC Target, Simulink and an C-
ompiler, is 
onne
ted to the slave 
omputervia a single TCP/IP 
ommuni
ations link. The slave 
omputer is 
onne
ted to theexperimental setup. Based on the Simulink model, a 
ode is generated by Real-Time Workshop and downloaded to the target 
omputer via the 
ommuni
ationslink. During the a
quisition pro
ess, the results are stored on the slave 
omputer andthen 
an be uploaded to the master using Matlab 
© and xPC Target software.

Figure 1.7: Detail view of a
quisition system and xPC TargetFinally, the voltage delivered to the plate, by the DSpa
e 
© 
ard, is ampli�ed bya high voltage ampli�er. It has an amplifying gain of 13 and 
an deliver a maximumvoltage of ±100V. In order to be fun
tional, it has to be powered at ±15V and
±100V. One voltage ampli�er 
onne
ted to a sour
e delivering ±15V 
an be seen inFigure 1.8. Although the devi
e is home-made at ISAE-ENSICA, his 
hara
teristi
sare those of model PB58 from APEX Mi
rote
hnology Corporation [10℄.
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Figure 1.8: Detail view of high voltage ampli�er1.3 A
tuators and sensorsAs presented earlier, there are two a
tuators and two sensors whi
h are glued on theplate towards the 
lamped side (see Figure 1.9 for the a
tuators and Figure 1.10 forthe sensors). The a
tuators are glued on one side of the plate while the sensors areglued on the other side, thus there are two pairs of 
ollo
ated a
tuators and sensors.Sin
e they are all made from piezoele
tri
 materials some detailed information is givenin this se
tion 
on
erning their behavior.The piezoele
tri
 
erami
s belong to the larger group of ferroele
tri
 materials,that is to say, materials whi
h are spontaneously polarized (without an ele
tri
 �eldbeing applied).The piezoele
tri
 a
tuators are made from PZT (Lead zir
onate titanate), modelPIC 151. The material model used (PIC 151 is 
onsidered a "soft" PZT) it is thestandard material used for a
tuators. In order to 
reate a moment, both a
tuatorslengthen when a voltage is applied to their ele
trodes. The two sensors (made fromPVDF - Polyvinylidene �uoride, a relatively new 
lass of piezoele
tri
 materials usedas sensor devi
es) are lo
ated on the opposite side of the plate with respe
t to thea
tuators. They deliver a voltage proportional to their deformation. The 
hara
ter-isti
s of the 
ollo
ated sensors and a
tuators are given in Table 1.3. Both a
tuatorsand sensors are 
ommer
ialized by PI Cerami
, the piezo 
erami
 division of Physik
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e presentation �

Figure 1.9: A
tuators 
onne
ted to the plate

Figure 1.10: Sensors 
onne
ted to the plate



1.3 � A
tuators and sensors � 13Instrumente (PI) 
ompany [1℄.A
tuator length/width/thi
kness 0.14/0.075/5e−4 mSensor length/width/thi
kness 0.015/0.025/5e−4 mA
tuator/Sensor density 7800 kg m−3A
tuator/Sensor Young modulus 67 GPaA
tuator piezoele
tri
 
oe�
ient (d31) −210e−12 m V−1Sensor piezoele
tri
 
oe�
ient (e31) −9.6 C (m)−2A
tuator/Sensor Poisson 
oe�
ient 0.3Table 1.3: Chara
teristi
s of the piezoele
tri
 pat
hesThe piezoele
tri
 materials are generally used to attenuate the vibrations andmeasure the deformation of stru
tures (see [23℄, [29℄, [53℄ among other referen
es forsome examples). In the 
ase of �exible stru
tures, many studies also investigate theuse of piezoele
tri
 pat
hes to e�e
tively suppress the vibrations (see for instan
e[11℄, [45℄, [66℄, [140℄, [144℄). Indeed, piezoele
tri
 pat
hes o�er a fast response andhave a large bandwidth, they are light and low 
ost, and have good sensing anda
tuating 
apabilities. Moreover, they are self-sensing a
tuators, thus they 
an besimultaneously used as a
tuators and sensors. However, only a few results are alreadyavailable in the literature for �uid-stru
ture systems (see [108℄ or [109℄) for the samestru
ture as ours. For other stru
tures, one 
an 
he
k referen
e [79℄ whi
h gives are
ent theoreti
al result and [132℄ whi
h validates the a
tive 
ontrol method by meansof experimental results.Despite these advantages, some pre
autions need to be taken. First of all, thevoltage limitations of the materials should be 
onsidered. In order to avoid the depo-larization of the material, the voltage applied in the opposite dire
tion of the materialpolarization needs to be 
arefully 
ontrolled (maximum allowan
e for PZT material isaround 500Vmm−1). Se
ond, 
are should also be taken when the material is exposedto very high temperatures. The limit temperature for a piezoele
tri
 material is de-�ned as the Curie temperature and, again in the 
ase of a PZT material, is around 250degrees Celsius (ex
eeding this limit the material is not being ferroele
tri
 anymorethus loosing all piezoele
tri
 properties). In our 
ase though these 
onsiderations arerespe
ted sin
e the ambient temperature around the experimental setup does not ex-
eed 30 degrees Celsius, while the voltage delivered to the piezoele
tri
 a
tuators is�rst limited by the voltage ampli�er (see Se
tion 1.2).The stru
tures that integrate piezoele
tri
 a
tuators and sensors on a �exiblesystem are often known as a
tive stru
tures or smart stru
tures, while the 
ontrol onthese stru
tures is known as a
tive 
ontrol (in 
ontrast to the passive 
ontrol where
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e presentation �additional materials are glued to in
rease the stru
tural damping of the stru
tureand redu
e the vibrations [71℄, [136℄). The 
ontrol is a
tive due to the fa
t thatthe equipped devi
e is self-sensing and self-
ompensating, due to the piezoele
tri
pat
hes.1.3.1 Presentation of the piezoele
tri
 phenomenonBoth a
tuators and sensors use the piezoele
tri
 e�e
t. Let us shortly des
ribe it.The existen
e of the e�e
t was dis
overed in the 1880 by the Curie brothers onquartz 
rystals. When a stress is applied, these 
rystals have the property to de-velop a proportional ele
tri
 moment. Our purpose here is not to give a 
omplete
hara
terization of the phenomenon but just some details that will help the readerto better understand the behavior of the a
tuators/sensors. The modeling will begiven in Se
tion 2.2.3.2 of Chapter 2. For a detailed des
ription of the piezoele
tri
phenomenon [100℄, among others, gives a 
omplete 
hara
terization.The piezoele
tri
 e�e
t is twofold: the dire
t piezoele
tri
 e�e
t (also known inthe literature as the generator e�e
t) presented above and the 
onverse piezoele
tri
e�e
t. The latter is de�ned as the shape 
hange of a piezoele
tri
 
rystal when anele
tri
 �eld is applied. Moreover, it 
an be seen as a thermodynami
 
onsequen
e ofthe dire
t e�e
t.As it 
an be seen from the above statements, piezoele
tri
 materials experien
eboth ele
tri
 and me
hani
al phenomena. Therefore, the 
omplete piezoele
tri
 equa-tion is de�ned as a 
ombination between:
• a me
hani
al phenomenon, des
ribed, for an elasti
 material experien
ing onlysmall perturbations, by the tensor expression of the 
lassi
al Hook law 
on-ne
ting the strain ǫ to the stress σ by the means of the 
omplian
e tensor s[100℄:

ǫ = sσ; (1.1)
• an ele
tri
 phenomenon, des
ribed by the ele
tri
 behavior of the material 
on-ne
ting the ele
tri
 displa
ement D to the ele
tri
 �eld intensity E and theele
tri
 permittivity κ [100℄:

D = κE. (1.2)



1.3 � A
tuators and sensors � 15Moreover, in the 
ase of the polarization of a 
rystal produ
ed by an ele
tri
 �eld,(a piezoele
tri
 
rystal for instan
e), the last equation des
ribing the ele
tri
 behaviorbe
omes:
D = κ0E + P (1.3)where P is the polarization 
harge per unit area taken perpendi
ular to the dire
tionof polarization (or short polarization) and κ0 = 8.854 × 10−12Fm−1 is the va
uumpermittivity .At the same time, ea
h type of piezoele
tri
 e�e
t (dire
t or 
onverse) is des
ribedby his own spe
i�
 relations.

• On the one hand, the dire
t piezoele
tri
 e�e
t is des
ribed by a relation linkingup the polarization 
harge P of the stress σ applied to the 
rystal sides:
P = dσ (1.4)where d is a 
onstant value 
alled piezoele
tri
 modulus [100, Chapter 7℄;

• On the other hand, the 
onverse piezoele
tri
 e�e
t is des
ribed also by a relationbetween the strain ǫ, responsible for the 
hange of shape of the material, and theintensity of the ele
tri
 �eld E [100, Chapter 7℄:
ǫ = dE (1.5)where the 
oe�
ient d is the same as in (1.4).By 
ombining the relations (1.1) and (1.3) with (1.4) and (1.5) we obtain the
omplete piezoele
tri
 equations [75, Chapter 13℄:

ǫ = sσ + dE, (1.6)
D = dσ + κ0E.These equations will be later used in Se
tions 2.2.3.2 and 2.2.3.3 of Chapter 2 to
ompute the analyti
al model of a
tuators and sensors.1.3.2 Optimal pla
ement of a
tuators and sensorsThe optimal pla
ement of a
tuators and sensors is a key problem in the 
ontrol of�exible stru
tures. Due to the nature of �exible stru
tures, spatially distributedsystems, the a
tuators and sensors 
an be pla
ed in many lo
ations. Therefore,
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e presentation �the study of the optimal pla
ement is natural when some performan
e 
riteria needto be obtained. There are many referen
es whi
h suggest di�erent methods for abetter positioning of the a
tuators as [44℄, [52℄, [63℄, [66℄ or [86℄ by analyzing the
ontrollability and observability matri
es for a �xed amount of vibration modes or as[8℄ by studying the energy spa
e of the stru
ture. Even the thi
kness of the a
tuator
an be 
al
ulated in order to have optimum values for the bending moment of thea
tuator. For this last issue one 
an 
he
k the work of [81℄ where the author 
omputesthe suitable thi
kness of a piezoele
tri
 pat
h in order to have maximum values of thebending moment for a spe
i�
 plate stru
ture.In the experimental devi
e of this thesis, the position of a
tuators and sensorswas already �xed and 
ould not be 
hanged. Thus, we do not 
onsider the optimalposition problem. We give nevertheless, in the following lines, some details about thisinteresting issue. In the literature, two main types of approa
hes 
an be found:
• The 
losed-loop approa
h type 
onsists �rst at 
hoosing the 
ontrol law to imple-ment on the stru
ture and then to determine, for this spe
i�
 law, the optimalpla
ement of a
tuators and sensors. In this 
ase, the lo
ation of a
tuators andsensors is treated as some extra design parameters in the 
ontrol law 
ompu-tation. For more details one 
an read referen
e [141℄. The greatest advantageof this method is the optimization for a spe
i�
 
ontrol law but the greatestdrawba
k of the method is also the fa
t that the position of sensor/a
tuatorpat
hes depends on this 
ontrol law;
• The open-loop approa
h type 
onsists in treating this problem independentlyfrom the 
ontrolled design problem. This 
ase has the main advantage thatseveral 
ontrol laws 
an be tested for the same a
tuator/sensor positioning. Formore details one 
an 
onsider [61℄, [66℄, [69℄, [81℄, [95℄ or [96℄ among manyothers. In the following lines, we give some details 
on
erning this method.There are several open-loop approa
hes in the literature 
on
erning the optimalpla
ement of a
tuators and sensors. For example one 
an 
he
k [95℄ where the ideas of
ontrollability and observability of a
tuators/sensors are employed. Another approa
h
an be read in [66℄, where the a
tuators/sensors are 
ollo
ated and pla
ed at thelo
ation where the highest position sensitivity of ea
h mode is experien
ed.We will now explain brie�y the method detailed in [95℄ sin
e it is very easy toimplement.This method is based on the notions of 
ontrollability for a
tuator pla
ement andof observability for sensor pla
ement. These notions, although they are well known,



1.3 � A
tuators and sensors � 17will also be brie�y detailed, for the general 
ase of a linear system, in Se
tion 3.2of Chapter 3. This approa
h seems natural if we think that, usually, a
tuators needto be pla
ed where they have the highest authority to 
ontrol the system while thesensors should be pla
ed where they have the highest strength to observe the system.The method is 
omputed separately for the piezoele
tri
 a
tuators and sensors.On the one hand, for the a
tuators, a di�eren
e is made between the modal 
on-trollability and the spatial 
ontrollability. The modal 
ontrollability measures the
ontroller authority over ea
h mode of the �exible stru
ture while the spatial 
ontrol-lability measures the a
tuator authority only over the presele
ted modes (usually the�rst vibration modes sin
e the low frequen
y modes tend to 
ontribute more than thehigh frequen
y modes to the stru
ture vibrations). This di�eren
e is natural sin
e wewant the a
tuator to have a high authority over the sele
ted modes but, at the sametime, to have a low authority over the non sele
ted ones. This is espe
ially true inorder to prevent the spillover e�e
t (ex
itation of high frequen
y modes). Therefore,in the 
ase of the a
tuators, the optimization problem proposed by [95℄ is to maxi-mize the spatial 
ontrollability measure while keeping some a
tuator 
ontrol over allmodes, thus keeping some level of modal 
ontrollability.On the other hand, for the sensors, the optimization problem in �nding their lo-
ation is formulated in a similar way in referen
e [95℄ by di�erentiating the modalobservability (observability of the sensor over all the modes) from the spatial ob-servability (observability of the sensor over some sele
ted modes). Finally the opti-mization problem is formulated in order to maximize the spatial observability whilemaintaining a minimum level of modal observability.After �nding the optimal position of a
tuator lo
ation and of sensor lo
ationseparately, the inherent question is wether or not this method 
an be implementedfor the position 
omputation of both piezoele
tri
 a
tuators and sensors. It is provenin [95℄ that it is easier to �nd the optimal pla
ement of a 
ollo
ated a
tuator/sensorpair by studying only the 
ontrollability or the observability and not both (whi
h 
anbe time 
onsuming).For our experimental setup, as said earlier, the position of the a
tuators and sen-sors was �xed in advan
e. Thus, we did not study the problem of optimal pla
ementand use the devi
e as it is.
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e presentation �1.3.3 Dynami
 of piezoele
tri
 pat
hesAnother thing that should be 
onsidered is the inherent dynami
s of a
tuators andsensors. This is an important issue during the modeling of the piezoele
tri
 pat
hessin
e their dynami
s may modify the total dynami
 of the modeled system.As detailed earlier in Se
tion 1.2, some high voltage ampli�ers are used before thepiezoele
tri
 a
tuators for the 
ontrol of the �exible stru
ture. A �rst order dynami
almodel of this type of a
tuator, similar to the one in [131℄, is 
omputed below:
τ v̇ + v = ku (1.7)where u is the input voltage and v is the output delivered voltage. Moreover, the
onstants have the values τ = 4.85e−7s and k = 1, determined from the te
hni
alspe
i�
ations in order to �x the 
ut-o� frequen
y of the model at the same level asthe ampli�er bandwidth. Based on these issues, the minimal period of the outputvoltage delivered by the ampli�er is 3.25e−5s.At the same time, we need to 
ompute the maximal response speed for the piezo-ele
tri
 a
tuator. We remark that, if the speed of the a
tuator is larger than the speedof the voltage ampli�er, then we do not need to take into 
onsideration the a
tuatordynami
s. In this 
ase, the speed of the piezoele
tri
 a
tuator response saturatesafter the voltage ampli�er does.A

ording to the te
hni
al spe
i�
ations from PI Cerami
 
atalog [1℄, the PZTrea
hes his nominal displa
ement in 1/3 of its resonant period, provided that thene
essary 
urrent is delivered. Besides this, the resonant period is de�ned as T0 = L

N1
,where L is the length of the piezoele
tri
 a
tuator and N1 is the frequen
y 
onstantfor the transverse os
illation of a slim rod polarized in the longitudinal dire
tion. Inour 
ase, the length in taken from Table 1.3 while the frequen
y 
onstant for thePIC 151 material is N1 = 1500. Therefore, the resonant period of the piezoele
tri
a
tuator is 3.11e−5s.As it 
an be seen, the maximal speed for the a
tuator is larger than the maximalspeed for the voltage ampli�er. Thus, for a given ex
itation, the a
tuator responsetime is mu
h smaller than the one of the voltage ampli�er. Therefore, his dynami

an be negle
ted sin
e is not interfering in the response time of the total stru
ture.Tests regarding this issue are done in Se
tion 4.1 of Chapter 4.



1.4 � Con
lusion of the 
hapter � 191.4 Con
lusion of the 
hapterIn this 
hapter we gave a general presentation of the experimental devi
e we areworking on. The a
quisition 
hain that will help us implement the 
ontroller forvibration attenuation is also shown. Moreover, the 
hara
teristi
s of the plate/tanksystem along with those of the piezoele
tri
 a
tuators and sensors are presented.These 
hara
teristi
s will allow us to 
ompute the analyti
al model of the devi
e inChapter 2.





Chapter 2Mathemati
al modeling of the system
2.1 Introdu
tionIn this 
hapter we detail the di�erent steps to build the mathemati
al model of the�uid/stru
ture system depi
ted earlier. We 
an �nd in the literature two di�erentapproa
hes 
on
erning the modeling of su
h devi
es:

• A numeri
al approa
h based on �nite element method (FEM). The methodapproximates the distributed parameter system with an unlimited number ofdegrees of freedom and modes by a �nite dimensional dis
rete system. Todo this, the whole stru
ture body is divided in several subdivisions or �niteelements. Finally, the �nite element des
ription of the stru
ture is a sum ofbeam and lumped mass elements. Further on, the mass and sti�ness matri
esare found from the expression of the kineti
 and potential energies for the systemwith �nite degrees of freedom. As a result the �nite element method providesa quite good approximation for the frequen
ies and mode shapes. For furtherdetails about the des
ription of the method one 
an 
he
k for example [83℄or [147℄. The 
ases where FEM is employed during the modeling phase arenumerous, as an example one 
an 
he
k [86℄, [133℄ for a �exible plate system or[108℄, [109℄ for a �uid plate system, among many others;
• An analyti
al approa
h whi
h allows to �nd an analyti
al solution, of in�nitedimension, for the ele
trome
hani
al in�nite dimension problem. For this 
asealso, the referen
es in the literature are numerous. Among many others, for a�exible stru
ture system we 
an 
ite [63℄, [81℄, [107℄.Usually in the literature, for " simpler " a
ademi
al stru
tures like beams or evenplates with a geometry not very 
ompli
ate, the preferred approa
h is the analyti
al21
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al modeling of the system �one whi
h allows the 
omputation of a simple model. While thinking of more 
omplexstru
tures, like the one in our 
ase, the approa
h mostly employed in the literature isusing the numeri
al modeling based on FEM method. Even though this method o�ersthe possibility to model items with a 
ompli
ated shape, their stru
ture geometry 
annot 
hange in time. To the best of our knowledge, only stru
tures that are in a solidform (oil pipelines, plates, beams, rings of di�erent shapes and sizes, full tanks) 
an bemodeled, but we 
an not model the liquid sloshing. Nevertheless, re
ent advan
es (∼year 2006-2007) in the ANSYS 
© software (�nite element method simulator software),show that a re
ent toolbox on 
omputational �uid dynami
s 
alled FLUENT 
© mightbe able to solve this type of issue.In our 
ase though, this method is di�
ult to use. Using �nite element method,the liquid, 
an only be modeled as a "frozen liquid" whi
h a
ts as a steady masswith no sloshing phenomenon. Moreover, in our 
ase, the sloshing behavior is ofgreat importan
e sin
e it signi�
antly 
hanges the system dynami
s espe
ially in lowfrequen
ies. For a study that 
onsiders the 
oupling between a �exible stru
ture anda �uid one 
an 
he
k [98℄ or again [25℄. In the latter, the e�e
t of the �uid is takeninto a

ount in the FEM modeling phase by means of an added mass formulationdetailed in [97℄.For another example one 
an 
he
k the work [114℄ for the same stru
ture as ours.In this work the author uses the FEM to 
ompute the numeri
al model of the stru
turewithout liquid (therefore without any sloshing behavior). Even though the experi-en
es in [114℄ are done for three 
ases: empty tank, full tank and half full tank, the
ontrollers are 
omputed by always 
onsidering the tank to be empty.Therefore, we 
hoose to go on with the analyti
al approa
h even though we thinkthat it leads to a more 
omplex modeling phase.In this 
hapter we are going to detail the di�erent steps that will lead us to a
omplete model of the disposal. Sin
e the plate and the tank 
an be viewed as twoseparate entities 
oupled together, the main idea we have in mind is to 
ompute twoseparate models and then to unite them. Therefore, we will �rst 
ompute one modelfor the plate and another model for the tank with liquid. Finally, in order to have the
omplete stru
ture model we study the intera
tions between the two models, that isto say the way the behavior of one model a�e
ts the behavior of the other.More pre
isely we will �rst write a model for the �exible plate and another for the
ylindri
al tank with liquid using partial di�erential equations. The 
oupling betweenthe two in�nite dimensional models is obtained by studying the in�uen
e of the platemovement on liquid sloshing and vi
e-versa. We then make an approximation of the



2.2 � Plate model � 23in�nite dimensional model by taking into a

ount only a �nite number of modes forthe plate and liquid. Based on this, the 
oupling of the two �nite dimensional modelsis also expressed in �nite dimension.2.2 Plate modelIn this se
tion we detail the 
onstru
tion of the model for the re
tangular plate withpiezoele
tri
 a
tuators and sensors. The partial derivative equation (PDE) platemodel is well known in the literature. For a more detailed presentation one 
an seefor example [30℄ or [56℄.We start from the beam equation (whi
h is a 1-dimensional plate), for the sakeof simpli
ity during the modeling phase. We then study the plate and 
ompute anin�nite dimensional model using partial derivative equations (we will see in the nextse
tions that the plate model is 
onstru
ted on the basis of the beam model). Theobje
tive is to give a 
lassi
al state-spa
e approximation (�nite dimension) using theRitz method to approximate the PDE model. We will get:
{

Ẋp(t) = ApXp(t) + Bpu(t)

y(t) = CpXp(t)
(2.1)where Xp is the state-spa
e ve
tor of the plate and Ap, Bp, Cp are respe
tively thedynami
, 
ontrol and output matri
es. u(t) will be the 
ontrol (input) variable (thevoltage applied to the piezoele
tri
 a
tuator) and y(t) the output variable (the voltagedelivered by the piezoele
tri
 sensor).2.2.1 Beam modelThe beam represents the transposition of a plate in a 1-dimensional spa
e. Sin
e weare dealing with a beam, whi
h is des
ribed by only one dimension as it 
an be seenin Figure 2.1, we dedu
e that only the �exion movement is possible.The beam PDE modeling is well known in the literature, one 
an 
he
k for example[30℄ where models for di�erent types of beams are presented.We 
onsider an homogeneous beam, 
lamped at one end and free at the other,of 
onstant se
tion, whi
h has the length L and the mass m. By de�nition, thedimensions of the beam 
ross se
tion are mu
h smaller (in theory are null dimensions)than the length of the beam.The 
oordinate system Oxyz is sele
ted so that the axes Ox, Oy 
orrespond to
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ements y
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w(y, t)

beam
Figure 2.1: Beam with a �exion movementthe main inertia axes. We start the study of transverse beam vibrations supposingthat the beam has only �exing movements.We make the 
lassi
al 
inemati
 hypotheses as in [56℄:

• the beam is uniform and 
omposed of a homogeneous, isotropi
 elasti
 material;
• the beam is redu
ed to its neutral �ber, whi
h by de�nition will be the part ofthe beam that does not feel any 
onstraint, thus the axis where the elementsare neither lengthened or shortened;
• Bernoulli hypothesis: plane se
tions remain plane, thus only deformations nor-mal to the undeformed beam axis are 
onsidered. This is equivalent to the fa
tthat shear deformations are negle
ted;
• the beam deformation is only along the x axis. This deformation w is thereforewritten as a fun
tion of the 
oordinate y de�ned along the beam length and oftime t:

w = w(y, t);

• the hypothesis of geometri
al linearity is veri�ed. This is equivalent to the fa
tthat the deformations have a in�nitely small amplitude. The normal longitudi-nal strain tensor ǫy is therefore a linear fun
tion of displa
ement and rotation:
ǫy = −x∂

2w

∂y2
.Under these hypotheses and assuming that a �exion moment my is a
ting on thebeam, the 
al
ulus of potential and kineti
 energies lead to the following movementequation by applying the Hamilton prin
iple. Thus, we get the following PDE:
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∂2w

∂t2
+
Y I

ml

∂4w

∂y4
= 0 (2.2)where ml = m

L
is the linear density of the beam, I the area moment of inertia (se
ondmoment of inertia) of the beam 
ross se
tion about the beam neutral axis and Y theYoung modulus of the beam material. Moreover, for a beam of re
tangular se
tion ofheight h and width l, we write the area inertial momentum as (see [30℄) I = lh3

12
andthe linear density as ml = ρlh = ρS, where ρ is the density of the beam material.Con
erning the initial 
onditions, they are de�ned as:

w(y, 0) = w0(y) and ∂w

∂y
(y, 0) = w1(y) (2.3)where w0 and w1 stand for the initial deformation and velo
ity respe
tively.

Clamped-free beamAs one 
an read in referen
e [30, Chapter 8℄, the boundary 
onditions of the beamare written for the 
lamped side by 
onstraining the transverse deformation and hisderivative to be null:
w(0, t) =

∂w

∂y
(0, t) = 0 (2.4)and for the free side by 
onstraining that the bending moment and Kelvin-Kir
ho�edge rea
tion (whi
h depends on the transverse shearing for
e and the derivative ofthe bending moment) are also equal to zero:

∂2w

∂y2
(L, t) =

∂3w

∂y3
(L, t) = 0. (2.5)Of 
ourse, other boundary 
onditions are possible (see [30, Chapter 8℄) and someof them will be used latter in this work (for the "free-free" beam for instan
e).First, the beam vibration response is obtained by solving the homogeneous equa-tion (2.2) with the initial 
onditions (2.3) and the boundary 
onditions (2.4) and(2.5). In our 
ase, homogeneous beam with 
onstant se
tion, it is possible to �nd ananalyti
al approximate solution for w under the shape of a series [36℄, [113℄ using the
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omposition method [30, Chapter 8℄:
w(y, t) =

∞
∑

i=1

Yi(y)qi(t). (2.6)To ensure the 
onvergen
e of the series, we 
hoose the fun
tions {Yi}i as a setforming a Hilbert orthogonal basis (L2) of the eigenfun
tions of the spa
e di�erentialoperator ∂4

∂y4 = ∆2. The existen
e of this basis is due to the fa
t that ∆2 is a 
ompa
tand symmetri
 operator [32℄. Therefore, the fun
tions {Yi}i have to be a solution ofthe eigenvalues problem:
d4Yi(y)

dy4
= λiYi(y), y ∈ [0, L] (2.7)

Yi(0) =
dYi

dy
(0) = 0,

d2Yi

dy2
(L) =

d3Yi

dy3
(L) = 0.whi
h has an in�nity of solutions (λi, Yi) detailed below.Sin
e {Yi}i is an orthogonal basis, one 
an use the s
alar produ
t to 
ompute thebeam displa
ement w:

w(y, t) =

∞
∑

i=1

< w(y, t), Yi(y) > Yi(y) =

∞
∑

i=1

qi(t)Yi(y)where < Yi, Yk >= δik, the Krone
ker delta symbol, equal to 1 when i = k and 0otherwise.Combining the previous equation with (2.2), we 
an rewrite the homogeneousequation as:
∞
∑

i=1

qi
d4Yi

dy4
+
ρS

Y I

∞
∑

i=1

d2qi
dt2

Yi = 0.Using (2.7) we get:
∞
∑

i=1

(

qiλiYi +
ρS

Y I
q̈iYi

)

= 0.The s
alar produ
t with Yk, for k ∈ N
∗ gives:

∞
∑

i=1

(

qiλi < Yi, Yk > +
ρS

Y I
q̈i < Yi, Yk >

)

= 0



2.2 � Plate model � 27and using the orthogonality of the hilbertian basis, we get:
qiλi +

ρS

Y I
q̈i = 0.Therefore, the 
inemati
 parameters qi verify the di�erential equations, for i ∈ N

∗:
q̈i(t) +

Y Iλi

ρS
qi(t) = 0, (2.8)

qi(0) =< w0(y), Yi >L2 ,

q̇i(0) =< w1(y), Yi >L2 .and the modal displa
ements Yi verify the di�erential equations (2.7).Therefore, the solutions of the ordinary di�erential equation (2.8) are given by:
qi(t) = Ei cosωit+ Fi sinωitwhere

ωi =

√

λi

Y I

ρS
(2.9)and Ei, Fi are 
omputed from the boundary 
onditions.We then �nd the modal displa
ements Yi by solving the di�erential equation (2.7).From (2.9), we infer that there are only two possible 
ases for λi for the "
lamped-free" beam: λi = 0 and λi > 0. The third 
ase λi < 0 is not valid, sin
e it will implythat, as the other plate 
oe�
ients are positive, there are vibration modes with a
omplex natural angular frequen
y.Let us �rst 
onsider the simpler 
ase when λi = 0. From (2.7) we have

d4Yi

dy4
(y) = 0whi
h has a possible solution of the following shape: Yi(y) = Aiy

3 +Biy
2 +Ciy+Di.Solving this equation using the boundary 
onditions we �nd the 
oe�
ients Ai =

Bi = Ci = Di = 0, thus Yi(y) = 0. This solution is again not valid sin
e, as detailedearlier, the Yi(y) are forming an orthogonal basis thus they 
an't be equal to zero.Let us now 
onsider the 
ase λi > 0. Again we need to solve (2.7) with theboundary 
onditions. There are several approa
hes in the literature for writing thesolutions of this equation. For example one 
an 
he
k [81℄ where the author writes the
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al modeling of the system �total expression of the modal displa
ement as a sum of sine, 
osine, hyperboli
 sineand hyperboli
 
osine fun
tions, ea
h fun
tion multiplied by an unknown 
onstantwhi
h needs to be determined.Another more elegant and faster approa
h is the one proposed by [56℄. We writethe solution of the equation as:
Yi(y) = Ais1(Ωiy) +Bic1(Ωiy) + Cis2(Ωiy) +Dic2(Ωiy) (2.10)where

(Ωi)
4 = λi =

ρS

Y I
(ωi)

2 (2.11)was used to simplify the writing. The fun
tions s1, c1, s2, c2 are independent andde�ned as:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s1(Ωiy) = sin(Ωiy) + sinh(Ωiy),

c1(Ωiy) = cos(Ωiy) + cosh(Ωiy),

s2(Ωiy) = − sin(Ωiy) + sinh(Ωiy),

c2(Ωiy) = − cos(Ωiy) + cosh(Ωiy).As usual, the 
onstants from the displa
ement equation (2.10) are found by writingthe boundary 
onditions of the beam. As it 
an be seen, the fun
tions: s1, c1, s2 and
c2 
an be easily obtained one from another by a simple derivative operation. Thus,the boundary 
onditions, that use the derivative of the 
oordinate up to the thirdorder, are very easy to express. After 
he
king the boundary 
onditions we noti
e thatwe have only four equations but �ve unknown elements: Ai, Bi, Ci,Di and λi = Ωi.A �fth equation is therefore found by imposing a normalization equation, whi
hinvolves the length L of the beam and the modal deformation, for all i ∈ N

∗:
1

L

∫ L

0

Yi(y)
2dy = 1. (2.12)We solve (2.7) imposing the shape (2.10) of the solution, with the normalization
ondition (2.12). We obtain the following solutions for our "
lamped-free" beam:

Yi(y) = cos(Ωiy) − cosh(Ωiy) + ςLi (sinh(Ωiy) − sin(Ωiy)) (2.13)where ςLi is de�ned by:
ςLi =

cos(ΩiL) + cosh(ΩiL)

sin(ΩiL) + sinh(ΩiL)
(2.14)
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y variableΩi is the ith positive solution of the impli
it equation:
1 + cos(ΩiL) cosh(ΩiL) = 0. (2.15)In order to obtain the angular frequen
y ωi of the beam modes we �rst solve theequation (2.15) using a graphi
al method (a simple plot is drawn and the solutionsare 
he
ked) and se
ond we used the value of Ωi in (2.11) to 
ompute it.Free-free beamLet us now 
onsider a "free-free" beam of length l along the z axis. The methodologyin �nding the modal displa
ements and frequen
ies is the same. The only 
hangesare of 
ourse the boundary 
onditions (2.4) and (2.5), whi
h now be
ome (see [30,Chapter 8℄):
∂2w

∂z2
(0, t) =

∂3w

∂z3
(0, t) = 0, (2.16)

∂2w

∂z2
(l, t) =

∂3w

∂z3
(l, t) = 0.We 
onsider that the hypothesis given in the 
ase of the "
lamped-free" beam arerespe
ted. Therefore, we 
an write the displa
ement w of the beam using again theseparation of variable method [30, Chapter 8℄:

w(z, t) =

∞
∑

j=1

Zj(z)qj(t). (2.17)Following the same approa
h as earlier, we express the deformation of the "free-free" beam as a solution of the following equations:
d4Zj(z)

dz4
= λjZj(z), z ∈ [0, l] (2.18)

∂2Zj

∂z2
(0) =

∂3Zj

∂z3
(0) = 0,

∂2Zj

∂z2
(l) =

∂3Zj

∂z3
(l) = 0.Di�erent solutions are found based on the values of λj. Sin
e for the "free-free"beam, the natural frequen
y of the modes is again given by (2.9) we infer that, thesolution with λj < 0 is physi
ally impossible. Therefore, λj ≥ 0.Let us �st solve the equation for the 
ase when λj > 0. In this 
ase we use the
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h as earlier, and solve the general equation of the beam (2.18), imposingthe shape
Zj(z) = Ajs1(Γjz) +Bjc1(Γjz) + Cjs2(Γjz) +Djc2(Γjz)of the solution, using the normalization 
ondition:

1

l

∫ l

0

Zj(z)
2dz = 1 (2.19)and the boundary 
onditions. This allows us to �nd the expression of modal displa
e-ments:

Zj(z) = cos(Γjz) + cosh(Γjz) − ςj(sinh(Γjz) + sin(Γjz)) (2.20)where ς lj is de�ned by:
ς lj =

− cos(Γjl) + cosh(Γjl)

sin(Γjl) + sinh(Γjl)
(2.21)and the frequen
ies are 
omputed from:

1 − cos(Γjl) cosh(Γjl) = 0 (2.22)where the angular frequen
y γj of the jth mode of the "free-free" beam is su
h that:
(Γj)

4 =
ρS

Y I
(γj)

2 = λj. (2.23)Let us now 
onsider the 
ase when λj = 0, therefore Γj = 0. In this 
ase weobtain the so-
alled rigid modes. They are 
hara
terized by the fa
t that the "free-free" beam 
an vibrate (with a frequen
y equal to zero) without bending itself, likea rigid body.In this 
ase we have
d4Zj

dz4
(z) = 0whi
h has a possible solution Zj(z) = Ajz
3 +Bjz

2 + Cjz +Dj . Using the boundary
onditions we obtain Zj(z) = Cjz +Dj whi
h still has variables to be found.We think that, a priori, for this type of beam the rigid modes 
an represent asolution. Therefore, we �rst impose that the deformation at both ends of the beam areidenti
al: Zj(0) = Zj(l). Using the normalization 
ondition (2.19), the 
orresponding
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Zj(z) = 1, ∀z ∈ [0, l]. (2.24)On the other hand, we impose that the deformation at both beam ends are identi
albut in opposite dire
tions: Zj(0) = −Zj(l) (rotation of the beam). In this 
asethe mode is 
alled rotation rigid mode and is 
hara
terized by a deformation (afternormalization):

Zj(z) = −
√

12(
z

l
− 1

2
), ∀z ∈ [0, l]. (2.25)

Until here we voluntarily forgot the inherent stru
tural damping and we 
onsid-ered only the 
ase of 
onservative stru
tures. The presen
e of a damping in a beamequation makes it more di�
ult to solve sin
e the damping 
reates a system in whi
hthe modes are not de
oupled anymore (see [40℄).Nevertheless, when 
omputing the exa
t value of the frequen
ies and mode shapesfor a real stru
ture it is 
ompulsory to take the damping into 
onsideration. Onesolution to this problem is given by the Basile hypothesis: even with a damping
oe�
ient, the movement equations 
an remain de
oupled if the stru
tural dampingis su�
iently small and the modes frequen
ies of the stru
ture are spa
ed enough.This hypothesis allows us to des
ribe the entire stru
ture, a beam in our 
ase, by a
omplete set of equations with no 
oupling, ea
h equation des
ribing the behavior ofa single mode (see [86℄).In the 
ase of the "
lamped-free" beam for example, this is written as (see [56,Chapter 3℄):
q̈i + 2ζiωiq̇i + ωi

2qi = 0 (2.26)where i ∈ N
∗ stands for the mode number and ζi being the damping of the ith modeof the "
lamped-free" beam. In the 
ase of the "free-free" beam the expression isidenti
al with respe
t to the mode frequen
y and damping.Until here, we 
omputed the PDE model of two beams: a "
lamped-free" beamwhi
h is along the y-axis and a "free-free" beam whi
h is along the z-axis. As it willbe seen in the next se
tion, the beam PDE model and deformations are needed for
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omputing the re
tangular plate model.2.2.2 Plate in�nite dimensional modelIn this part we are going to build the model of the re
tangular plate with piezoele
tri
a
tuators and sensors glued on ea
h side. The plate is 
lamped at one end and freeat the three others. It has a length L, a width l and a thi
kness h.
O
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Figure 2.2: Plate bending along x axisWe 
onsider that the plate movement is only along the x-axis (see Figure 2.2)and, as for the beam, we suppose that the following kinemati
 hypothesis (see [30℄ or[81℄) are veri�ed:
• the material of the plate is 
onsidered homogeneous, elasti
 and isotropi
;
• the plate has a 
onstant height;
• the plate is 
onsidered very thin;
• the plate se
tions, whi
h in steady motion are perpendi
ular to the neutral �berof the plate, remain perpendi
ular to the neutral �ber also during movement(this means that the rotary inertia and shear movement along the x axis are
onsidered zero; furthermore, we de�ne the neutral �ber as the imaginary linethat stays undeformed during movement);
• we 
onsider only small deformations of the plate.Further on, we 
ompute the expression of the potential and kineti
 energies inorder to �nd the mass and sti�ness matri
es. A more detailed expression of thesematri
es is given in [56℄. Using this expressions we 
an infer the partial derivativeequation of the plate:

ms

∂2w

∂t2
+ ζ(w)

∂w

∂t
+ Y Is∆

2w =
∂2my

∂y2
+
∂2mz

∂z2
(2.27)



2.2 � Plate model � 33where ms is the mass per unit plate area, Y and ν are the Young modulus andrespe
tively the Poisson 
oe�
ient of the plate material. The area moment of inertiaof the plate about the neutral �ber is Is = h3

12(1−ν2)
, similar in expression with the oneof the beam (see (2.2) and the details therein). In (2.27) w = w(y, z, t) stands forthe displa
ement (deformation) of the plate along the x axis thus, it depends only onthe 
oordinates y and z and on the time t. The operator quantifying the dampingis denoted ζ(w) and his expression will be detailed latter. Furthermore, ∆ is theLapla
e operator, ∆2 being equal to ( ∂2

∂y2 + ∂2

∂z2

)2.On the right hand side of the equation, my and mz are the external momentsalong the y and z-axis. The moment along ea
h axis is delivered to the plate by thea
tuators (see [47℄ or [42℄) and, as it will be demonstrated latter in this work (see2.4), by the sloshing modes of the liquid in the tank. Even though, for the time being,we study the plate alone (without the tank �lled with liquid), it is easy to see fromthe moment expression the in�uen
e of the tank on the plate.Equation (2.27) is to be solved using the appropriate boundary 
onditions andinitial 
onditions. More pre
isely the boundary 
onditions are given for the three freesides by:
∂3w

∂y3
=
∂3w

∂z3
=
∂2w

∂y2
=
∂2w

∂z2
= 0, ∀(y, z) ∈ {L} × [0, l],

∂3w

∂y3
=
∂3w

∂z3
=
∂2w

∂y2
=
∂2w

∂z2
= 0, ∀(y, z) ∈ (0, L) × {0, l}.and for the 
lamped side:

w =
∂w

∂y
=
∂w

∂z
= 0, ∀(y, z) ∈ {0} × [0, l]. (2.28)The initial 
onditions are:

w(y, z, 0) = w0(y, z), ∀(y, z) ∈ [0, L] × [0, l]

∂w

∂t
(y, z, 0) = w1(y, z), ∀(y, z) ∈ [0, L] × [0, l] (2.29)where w0 and w1 stand for the initial deformation and velo
ity respe
tively.The �rst step in �nding the expression for plate deformation, of w(y, z, t), is to
onsider the plate equation (2.27) in the absen
e of the exterior for
es and damping:

ms

∂2w

∂t2
+ Y Is∆

2w = 0 (2.30)
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clamped sideFigure 2.3: The plate and the two beams sele
ted for the 
hoi
e of the Ritz fun
tions
We use the same approa
h as in the 
ase of the beam. Therefore the deformation iswritten in a orthogonal Hilbertian basis using Ritz method:

w(y, z, t) =

∞
∑

k=1

ηk(y, z)qk(t) (2.31)We 
an �nd many Ritz fun
tions that 
an approximate the plate deformation.An intuitive idea is to use a group of fun
tions with a parti
ular shape, resemblingas mu
h as possible to the plate. As in [81℄, we 
hose two orthogonal beams, theirboundary 
onditions given by the plate boundary 
onditions. As we have a "
lamped-free-free-free" plate, we thus 
hoose a "
lamped-free" beam and a "free-free" beamto approximate the deformations. Due to this 
hoi
e for beam geometry, the Ritzfun
tions ηk, are de�ned as a produ
t of modal deformations of the two 
onsideredbeams (see Figure 2.3).
ηk(y, z) = Yik(y)Zjk

(z) (2.32)where Yik(y) and Zjk
(z) are the beam modal deformations along the y and z axisrespe
tively. Moreover, ea
h k mode of the plate variable 
orresponds to a pairdenoted (ik, jk).Until here we 
omputed the in�nite dimensional model of the plate (see equation(2.27)) using partial derivative equations. Let us now make a �nite approximation ofthe model under the shape of a state-spa
e representation.



2.2 � Plate model � 352.2.3 Plate �nite dimensional approximation
In this se
tion we detail the steps to make the �nite dimensional approximation ofequation (2.27) (thus impli
itly, of equation (2.31) previously written).It is known (see [63℄) that the �rst modes 
ontain the main part of the energyof the deformation of the �exible stru
ture. It is therefore important to study thebehavior of the system spe
ially in low frequen
ies. Moreover, due to the limitedbandwidth of a
tuators and sensors (their response time is limited thus they 
annotrespond to very high frequen
ies), the high frequen
y modes 
an not be 
ontrolled [15℄.Furthermore, using the energy approa
h presented in Se
tion 3.1 of Chapter 3 andtested in Se
tion 4.2 of Chapter 4, it is possible to 
he
k that the �rst modes 
ontainalmost all the energy of the stru
ture. Due to this last issue we think of trun
atingour model based on the energeti
 
ontribution of ea
h mode, thus 
onsidering only a�nite number of modes.Using modal analysis te
hniques we aim at extra
ting from equation (2.27) astate-spa
e dynami
al model, of �nite dimension, whi
h will su�
iently represent thedynami
al behavior of the stru
ture espe
ially in low frequen
ies.Ritz method is widely spread in analyti
al modeling of re
tangular plates. One
an 
he
k [28℄, [73℄ or [80℄ among many other referen
es. When 
hoosing the Ritzfun
tions, some 
onditions must be ful�lled. As it is detailed in [56℄ and in [142℄,one important 
ondition that must be satis�ed is the kinemati
 boundary 
ondition.In the 
ase of a "
lamped-free-free-free" plate as here, this 
ondition states that thetransverse deformation and its �rst derivative must be zero at the 
lamped side.As an example, we give in Table 2.1 the 
onstru
tion of the �rst Ritz fun
tions,based on the �rst modal displa
ement of the "
lamped-free" beam and on the �rstmodal displa
ements of the "free-free" beam.
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tions k ik jk

η1(x, y) = Y1(y)Z1(z) 1 1 1
η2(x, y) = Y2(y)Z1(z) 2 2 1
η3(x, y) = Y3(y)Z1(z) 3 3 1
η4(x, y) = Y1(y)Z2(z) 4 1 2
η5(x, y) = Y4(y)Z1(z) 5 4 1
η6(x, y) = Y2(y)Z2(z) 6 2 2
η7(x, y) = Y5(y)Z1(z) 7 5 1
η8(x, y) = Y3(y)Z2(z) 8 3 2
η9(x, y) = Y6(y)Z1(z) 9 6 1Table 2.1: Plate Ritz fun
tions (Z1 means the mode is a �exion mode while Z2 meansis a torsion mode)Moreover, be
ause of the number of Ritz fun
tions we sele
t to use (let us denoteit N), the plate deformation w from (2.31) now be
omes

w(y, z, t) =

N
∑

k=1

ηk(y, z)qk(t) = η(y, z)T · q(t) (2.33)where the Ritz fun
tions 
an be sta
ked in a ve
tor denoted
ηT = (η1(y, z), ..., ηk(y, z), ..., ηN(y, z)) (2.34)and the general 
oordinates in another ve
tor denoted:

qT = (q1(t), ..., qk(t), ..., qN (t)). (2.35)As stated earlier, in order to ease our work in the 
ontrol problem, we aim at
omputing a state-spa
e approximation of the plate model des
ribed by (2.27). Wetherefore detail the 
omputation of ea
h matrix of the state-spa
e representation andat the end this representation will be shown in a 
ompa
t manner.2.2.3.1 Computation of the dynami
 plate matrix ApWe used two beams to approximate the deformation of the plate. The exa
t val-ues of their natural frequen
y along with their mode shape will be detailed later inSe
tion 4.3.1.1 of Chapter 4, Figures 4.5 to 4.9 and Table 4.3.



2.2 � Plate model � 37There are two di�erent approa
hes in the literature for the 
omputation of themodal frequen
ies of the plate:
• A numeri
al 
al
ulus. The approa
h is detailed in [30℄ for a plate with di�erentboundary 
onditions. Based on the boundary 
onditions, several parametersare 
omputed and �nally, the value of the frequen
y is approximated. Eventhough the 
al
ulus is tedious, the �nal approximation is quite similar to theanalyti
al result;
• An analyti
al 
al
ulus. This is the approa
h we use to 
ompute the frequen
y,�rst of all be
ause the pre
ision of the method but also for the simpli
ity of the
al
ulus. Another motivation is that we want to build a fully analyti
 model.Using the analyti
al method, the frequen
y of the kth mode is written as [30℄:

fk =
ϑ2

k

2πLl

√

Y Is
ms

=
ϑ2

k

2πLl

(

Y h3

12ms(1 − ν2)

)
1

2 (2.36)where ν is the Poisson 
oe�
ient and Y the Young modulus of the plate material.The thi
kness of the plate is denoted h, the mass per unit plate area is ms and ϑk is adimensionless 
oe�
ient. The 
oe�
ient ϑk is 
alled the natural frequen
y parameterand is a fun
tion of the Poisson 
oe�
ient. It also depends on the mode, on theapplied boundary 
onditions and on the plate ratio L
l
:

ϑk = ϑk(boundary 
onditions, L
l
, ν).Con
erning the inherent damping of ea
h mode, we use the approa
h detailed in[87℄. In the 
ase of a beam equation, the damping is usually taken 
onstant in time andspa
e and identi
al for all the modes. In the 
ase of plates, even though many authors
onsider it as a 
onstant term in time and spa
e and identi
al for all modes (see forexample [73℄, [81℄ or [133℄ among many others), we noti
e during measurements thatfor our stru
ture it is di�erent for ea
h vibration mode and is even 
hanging with theinput voltage delivered to the a
tuators. This implies that, for example, the dampingof ea
h mode 
hanges when two di�erent voltages are applied to the a
tuators.
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Figure 2.4: Quality fa
tor Q
In order to quantify the damping asso
iated to a mode we use the quality fa
torQk(also known as the Q fa
tor). It is used to 
hara
terize the bandwidth of an os
illatorrelative to its 
enter frequen
y as it is shown in Figure 2.4. It is a dimensionlessparameter that 
ompares the frequen
y at whi
h a system os
illates to the rate atwhi
h it dissipates its energy. The quality fa
tor Qk 
an be measured starting fromthe width of the resonan
e [127℄:

Qk =
fk

∆fk

(2.37)where fk is the resonant frequen
y in Hertz[Hz] of the kth mode and the bandwidth
∆fk is the width of the range of frequen
ies for whi
h the energy is at least equal to
1√
2
≃ 0.7 of its peak value. This is equivalent to 3dB of attenuation.To experimentally measure the quality fa
tor we use a signal generator and anos
illos
ope. Form (2.37) we 
an de�ne it using the angular frequen
ies ωk = 2πfk in

[ rads ]:
Qk =

ωk

∆ω−3dB

=
ωk

ωk2 − ωk1
. (2.38)Let us now detail the pro
edure of 
al
ulus of ζk from the quality fa
tor Qk.As stated earlier in the 
ase of the two beams, we 
an write an equation forea
h mode using the dynami
al model (2.26). In the 
ase of the plate we make thesame analogy as for the beam. Using the Basile hypothesis presented earlier and the
inemati
 parameters qk for ea
h mode k of the plate (see (2.35)), we 
an write a set
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oupled equations, one equation modeling ea
h mode:
q̈k + 2ζkωkq̇k + ωk

2qk = 0, k ∈ [0, N ] (2.39)where ζk is the damping of the kth mode and ωk the angular resonant frequen
y in
[ rads ].The same set of de
oupled N equations 
an be regrouped using the me
hani
alequation of the plate in the absen
e of exterior in�uen
e [56, Chapter 3.1℄:

Mq̈ +Dsq̇ +Kq = 0 (2.40)where M is the mass matrix and K the sti�ness matrix. The ve
tor q gathers the
oordinates of all modes (see equation (2.35)). We suppose that the energy dissipationof the stru
ture takes the shape of a vis
ous damping 
ontained in the diagonal matrix
Ds.In our 
ase, sin
e the modes are perfe
tly de
oupled, the mass M is an identitymatrix of appropriate dimensions and the sti�ness matrix is a diagonal matrix

K = diag(ω1
2, · · · , ωk

2, · · · , ωN
2).Therefore, for the kth mode, the vis
ous damping be
omes:

Dsk
=

1

Qk

√

ωk
2 (2.41)where Dsk

is the kth diagonal term of the Ds matrix.The analogy between (2.39) and (2.40), allows to �nd the damping ζk of ea
hmode:
ζk =

1

2Qk

(2.42)Pra
ti
ally, Qk is measured for ea
h mode using (2.38). We �nd the resonantfrequen
y of the mode and we measure the amplitude of the vibrations with an os
il-los
ope. We divide this value by √
2 (whi
h is equivalent with pla
ing ourselves onthe bandwidth of −3dB) and we sear
h on ea
h side of the resonant frequen
y thetwo frequen
ies whi
h have this amplitude of vibration. This pro
edure is depi
ted inFigure 2.4. As it 
an be easily noti
ed, the quality fa
tor will depend not only on the
onsidered mode, by means of its resonant frequen
y, but also on the input voltage
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al modeling of the system �used to measure the frequen
ies. The 
al
ulus of the damping fa
tor of ea
h platemode will be given in Se
tion 4.3.2 of Chapter 4.When 
hoosing the state-spa
e ve
tor, we have a variety of 
hoi
es for the state-spa
e variables. The most 
ommon 
hoi
e is Xp =
(

q̇1 q1 · · · ˙qN qN

). Insteadof 
hoosing this, we will use the state-spa
e ve
tor proposed in [61℄ and used also in[81℄:
Xp =

(

q̇1 ω1q1 ... ˙qN ωNqN

)

. (2.43)It allows us to have only elements of 
omparable amplitude in the dynami
 matrix.This will imply a better 
onditioning for the dynami
 matrix and thus for the wholesystem.Having the state-spa
e ve
tor from (2.43), we 
ompute the frequen
ies of ea
hmode using (2.36) and the damping using (2.42). Then the 
omputation of the dy-nami
 matrix Ap of the plate is straightforward using the formulation (2.39) and givesthe following proposition:Proposition 2.2.1. The dynami
 matrix of the plate is:
Ap =













Ap1
0 · · · 0

0 Ap2
· · · 0

· · ·
0 0 · · · ApN













(2.44)where for ea
h k from 1 to N the blo
k matri
es of the diagonal are equal to:
Apk

=

(

−2ζkωk −ωk

ωk 0

)

.2.2.3.2 Computation of the plate input matrix BpThe plate de�e
tion is modi�ed by the moment of for
e delivered by the expandingpiezoele
tri
 a
tuator. As presented in Se
tion 1.3 of Chapter 1, when a voltage isapplied to the fa
es of the piezoele
tri
 material, the latter is 
hanging his dimensions,thus 
reating a momentum whi
h is bending the plate. This voltage applied to oneof the two piezoele
tri
 pat
hes used as a
tuators is the 
ontrol input of our plate.Therefore, for the 
al
ulus of the 
ontrol matrix Bp of the plate, we have to take intoa

ount the behavior of the a
tuator.Let us now 
onsider the 
ase of the plate without external in�uen
e. We suppose



2.2 � Plate model � 41that the only way the plate 
an be moved from the equilibrium position is by applyinga sinusoidal voltage to the a
tuators whi
h will deliver a proportional momentum thatbends the plate. Furthermore, we 
onsider that the presen
e of the a
tuator is notsigni�
antly 
hanging the plate mass or plate sti�ness, thus is not 
hanging the shapenor the frequen
y of the modes 
omputed in Se
tion 2.2.3.1, [47℄.The piezoele
tri
 a
tuator model is well known in the literature. As an exampleone 
an 
he
k the work of [47℄, [94℄ or even [81℄ for the model 
omputation. In thelast two 
ases, in order to maintain the symmetry of the stru
ture and to in
rease thee�e
t of the pat
hes, two a
tuators are used. One is glued at the top of the stru
tureand the other at the bottom. They are then a
tivated by applying an identi
al voltageof opposite sign.We are aware that the a
tuator position is very important for the su

ess of thea
tive 
ontrol. In our 
ase though, the problem is di�erent. As it was detailed inSe
tion 1.3.2 of Chapter 1, due to the system 
on�guration, we 
an not 
hange thethi
kness of the a
tuators nor their position on the plate. Moreover, in our 
ase the
ontrol a
tuator is glued only on one side of the plate and not on both sides as in thereferen
es [47℄, [81℄.Furthermore, we propose below an analyti
al model of the a
tuators.Piezoele
tri
 a
tuators 
an be used in di�erent 
on�gurations depending on whatthe user wants to do. These di�erent modes are a fun
tion of the dire
tion of theele
tri
 �eld (the polarization) and the dire
tion of the material deformation. This
oupling gives three main types of behavior for the pat
hes, denoted as modes: lon-gitudinal mode (denoted mode 33), transverse mode (denoted mode 31) and shearstress mode (denoted mode 51). The �rst two modes are interdependent due to therelation between their 
orresponding piezoele
tri
 
oe�
ients d31 and d33 [102℄.Let us 
onsider a piezoele
tri
 a
tuator used in "mode 31", initially su�ering noexternal 
onstraint. The 
onsidered mode "31" implies that for a polarization alongthe x axis, equal stains are indu
ed in both y and z-axis.Based on the physi
al behavior of the a
tuator we 
an also assume the followinghypothesis:
• the pat
h deformation is identi
al in the dire
tions y and z due to the equality ofstrains in these dire
tions. From the pat
h anisotropy (a
tuator used in "mode31") we also infer that the deformation along the x-axis is zero;
• the a
tuator pat
h undergoes no torsion e�e
t. A
tually we suppose that evenif the plate has a torsion movement, the piezoele
tri
 pat
h does not sense it;
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• the deformations are linear along the stru
ture thi
kness.

Proposition 2.2.2. The shape of the 
ontrol matrix Bp is the following:
Bp = (bp1

, 0, ..., bpk
, 0, ..., bpN

, 0)T (2.45)where the 
omponents bpk
are given by

bpk
= Kb(Y

′
ik

(ya2) − Y ′
ik

(ya1))

∫ za2

za1

Zjk
(z)dz

+Kb(Z
′
jk

(za2) − Z ′
jk

(za1))

∫ ya2

ya1

Yik(y)dy (2.46)and (ya1, za1), (ya2, za2) are the 
oordinates of the a
tuator opposite 
orners positionand Kb is a 
onstant depending on the plate and piezoele
tri
 pat
h 
hara
teristi
s.
Proof:Under the hypothesis detailed before the proposition, the piezoele
tri
 equationsfor the plate and piezoele
tri
 pat
hes are written using the strain ve
tor (for moredetails see [100℄)

ǫ =
(

ǫ11 ǫ22 ǫ33
√

2ǫ23
√

2ǫ13
√

2ǫ12

)

,and the stress ve
tor
σ =

(

σ11 σ22 σ33

√
2σ23

√
2σ13

√
2σ12

)

.Due to the transverse mode of utilization of the piezoele
tri
 a
tuator, the strain andstress ve
tors are redu
ed to three 
omponents whi
h 
orrespond to the two axes ofthe indu
ed stress [47℄. Therefore, the tensoral Hook law (1.1) 
an be written:
∣

∣

∣

∣

∣

∣

∣

σ11 = Y
1−ν2 (ǫ11 + νǫ22)

σ22 = Y
1−ν2 (ǫ22 + νǫ11)

σ12 = Y
2(1+ν)

(ǫ12)

(2.47)



2.2 � Plate model � 43for the plate and identi
ally
∣

∣

∣

∣

∣

∣

∣

∣

σp11
= Y p

1−ν2
p
(ǫ11 + νpǫ22 − d31(1 + νp)

Va

hp
)

σp22
= Y p

1−ν2
p
(ǫ22 + νpǫ11 − d31(1 + νp)

Va

hp
)

σp12
= Y p

2(1+νp)
(ǫ12)

(2.48)for the piezoele
tri
 pat
h. Furthermore, for the a
tuator hp is the thi
kness, νp thePoisson 
oe�
ient and Yp the Young modulus. As it 
an be seen, the last term thatappears in the expression of the strain 
omponents σp11
, σp22

is an expression of themagnitude of the indu
ed strains. It is expressed as a fun
tion of the piezoele
tri

onstant d31, a
tuator thi
kness hp and the voltage applied to the pat
h Va.Based on the earlier hypothesis, some simpli�
ations are possible. Sin
e the pat
hhas no torsion e�e
t, we get ǫ12 = 0 whi
h implies σ12 = 0.Due to the linearity of the deformations in the stru
ture we have ǫ11 = ǫ22. More-over, the deformation elements ǫ11 and ǫ22 are expressed using their value on the
onne
ting 
ommon points on their surfa
e (denoted with the subs
ript i):
∣

∣

∣

∣

∣

∣

∣

ǫ11 = z
h−δn

ǫ11i

ǫ22 = z
h−δn

ǫ22i

ǫ12 = 0.

(2.49)Here δn is the distan
e of the plate inferior side to the neutral �ber of the stru
ture(plate + piezoele
tri
 pat
h) as shown in the Figure 2.5.In the 
ase of the symmetri
 stru
tures, the values of δn be
omes equal to thehalf thi
kness of the plate. In our 
ase though, sin
e the stru
ture is asymmetri
al(piezoele
tri
 a
tuator pat
h only on one side of the plate) we have to 
ompute thenew position of the neutral plane. Using the method detailed in [74℄ we 
omputedthe distan
e of the neutral plane to the inferior side of the plate:
δn =

h2Y + h2
pYp + 2hhpY

2(hY + hpYp)
. (2.50)
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al modeling of the system �The position of the neutral plane is of great importan
e sin
e it is used for theequality of moments 
oming from the plate and the piezoele
tri
 pat
h. Sin
e wenegle
ted the torsion e�e
t, we 
an write for the two axes y and z the plane equilibrium
ondition using the moment expression:
∫ h−δn

−δn

σ11ydy +

∫ h−δn+hp

h−δn

σ11pydy = 0 (2.51)
∫ h−δn

−δn

σ22zdz +

∫ h−δn+hp

h−δn

σ22pzdz = 0 (2.52)Using in (2.51) and (2.52) the values from (2.47) and (2.48) 
ombined with (2.49)and the distan
e from (2.50), we �nd the unknown variables ǫ11i
and ǫ22i

:
ǫ11i

= ǫ22i
=

β((h−δn+hp)2−(h−δn)2)
2(1−νp)

d31

hp

1
3(h−δn)

( (h−δn)3−(−δn)3

1−ν
+ ((h−δn+hp)3−(h−δn)3)β

1−νp
)
Va (2.53)where β = Yp

Y
.On
e the interfa
e stress of the plate is found, the resulting plate momentum
an be found by integrating the a
tuator stress. After the integration on the platethi
kness the moment is written as:

ma
y = ma

z =

∫ h−δn

−δn

σ11zdz =
Y ǫ11i

1 − ν

(h− δn)3 − (−δn)3

3(h− δn)
= KbVa (2.54)where:

Kb =

β((h−δn+hp)2−(h−δn)2)((h−δn)3−(−δn)3)
6(1−νp)(1−ν)

(h−δn)3−(−δn)3

1−ν
+ ((h−δn+hp)3−(h−δn)3)β

1−νp

Y d31

hp

(2.55)Sin
e the momentum is applied only under the a
tuator, we use the Heaviside step(or unit step fun
tion) H to impose this (as in [62℄). Therefore, using the 
oordinatesof the a
tuator opposite 
orners (ya1, za1) and (ya2, za2), we 
an write my and mz:
ma

y = ma
z = KbVa[H(y − ya1) − H(y − ya2)][H(z − za1) − H(z − za2)] (2.56)



2.2 � Plate model � 45where the Heaviside step is de�ned as:
H(r) =

{

0 if r > 0,

1 if r < 0.
(2.57)In order to �nally obtain the input matrix Bp, we 
ompute the total bendingmomentum Γ generated by the piezoele
tri
 pat
h along both axes y and z:

Γ =

∫ L

0

∫ l

0

(
∂2ma

y

∂y2
+
∂2ma

z

∂z2
)w(y, z, t)dydz (2.58)where w(y, z, t) is the deformation of the plate.Re
alling that w(y, z, t) =

N
∑

k=1

Yik(y)Zjk
(z)qk(t) and that the momentum alongboth axes is given by (2.56), we obtain from the earlier equation the 
omponents bpkof the input matrix Bp. �2.2.3.3 Computation of the plate output matrix CpIn order to 
ompute the output matrix Cp we study the behavior of the piezoele
tri
pat
h used as sensor. As detailed earlier in Se
tion 1.2 of Chapter 1, the sensor is
onne
ted to a 
harge ampli�er whi
h imposes a null ele
tri
 �eld between the sensorele
trodes. In this way all the 
harges are sent to a 
apa
ity denoted Ca where we
an just measure the voltage in order to have the total amount of 
harges.Proposition 2.2.3. The output matrix Cp has the shape:

Cp = (0, cp1
, ..., 0, cpk

, ..., 0, cpN
) (2.59)where ea
h 
omponent cpk

is given by
cpk

=
Kc

ωkCa

(Y ′
ik

(yc2) − Y ′
ik

(yc1))

∫ zc2

zc1

Zjk
(z)dz

+
Kc

ωkCa

(Z ′
jk

(zc2) − Z ′
jk

(zc1))

∫ yc2

yc1

Yik(y)dy. (2.60)and (yc1, zc1) and (yc2, zc2) denote the 
oordinates of the sensor opposite 
orners, Kc isa 
oe�
ient depending on the plate and sensor 
hara
teristi
s while ωk is the angularfrequen
y of the kth mode.
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al modeling of the system �Proof:Due to the ele
tri
 properties of the piezoele
tri
 material (the presen
e of anele
tri
 polarization due to a me
hani
al strain) the ele
tri
 polarization is equivalentto a surfa
e 
harge distribution σp de�ned using the polarization ve
tor P (see [100℄):
σp = P−→nwhere −→n is the unitary ve
tor, normal to the surfa
e of the piezoele
tri
 sensor.Moreover, due to the piezoele
tri
 behavior, the ele
tri
 displa
ement D 
an berelated to the intensity of the ele
tri
 �eld E 
reated by the polarization. This relationis des
ribed by equation (1.3) re
alled here below:

D = κ0E + P.For our 
ase, the intensity of the ele
tri
 �eld is zero be
ause of the 
harge ampli�er.Therefore, using the last equation, the surfa
e 
harge distribution is:
σp = P −→n = D −→n .Integrating σp on a 
losed surfa
e denoted S of normal −→n we get the total 
harge Qpappearing on the sides of the material (see [106℄):

Qp = −
∫ ∫

S

σpdS = −
∫ ∫

S

D−→n dSIf we negle
t, as in the 
ase of the a
tuator, the torsion e�e
t on the sensor, theele
tri
al displa
ement be
omes:
D = e31(ǫ11 + ǫ22),where the fa
t that the PZT material of the sensor is transverse isotropi
 and thein�uen
e of the 
harge ampli�er (E = 0) were used. Moreover, under the samehypothesis as for the piezoele
tri
 a
tuator, we approximate the deformation of thesensor pat
h by the deformation in the middle of the pat
h sin
e the deformation islinear along the sensor thi
kness:

D = −e31
(

(h− δn) +
hp

2

)(

∂2w

∂y2
+
∂2w

∂z2

) (2.61)



2.2 � Plate model � 47where w(y, z, t) is the plate displa
ement and e31 is a piezoele
tri
 
oe�
ient of thesensor. Using the 
lassi
 equations of a piezoele
tri
 material written for one dimen-sional pat
h [27℄, the 
onne
tion between the piezoele
tri
 
oe�
ients e31 and d31 isproven in [26℄. Sin
e the sensor is on only one side of the plate, δn is the distan
e
omputed from (2.50).In this 
ase, we also have the ele
tri
 displa
ement di�erent from zero only underthe sensor and thus we use again the Heaviside step H from (2.57) to represent hisa
tion on the plate [62℄.Using the last equation (2.61) we 
an write the expression of the total 
harge Qp:
Qp = Kc

∫ yc2

yc1

∫ zc2

zc1

(

∂2w

∂y2
+
∂2w

∂z2

)

dydz (2.62)where:
Kc = e31

(

(h− δn) +
hp

2

)

.From (2.62), we 
an 
ompute the total voltage in the output of the 
harge ampli-�er. This gives the terms of the output matrix Cp divided by a 
oe�
ient.
Ck =

Kc

Ca

(

(Y ′
ik

(yc2) − Y ′
ik

(yc1))

∫ zc2

zc1

Zjk
(z)dz + (Z ′

jk
(zc2) − Z ′

jk
(zc1))

∫ yc2

yc1

Yik(y)dy

)Moreover, due to the 
hoi
e of the state-spa
e ve
tor (2.43) the 
omponents of theoutput matrix Cp are the one previously 
omputed, divided by the angular frequen
yof ea
h mode, cpk
= 1

ωk
Ck. �Con
lusion: We 
omputed a �nite dimensional approximation of the PDE platemodel by 
onsidering only the �rst N modes of the plate. The dynami
 matrix Apis 
omputed by 
onsidering two orthogonal beams. After analyzing the behavior ofthe piezoele
tri
 a
tuators and sensors the input matrix Bp and output matrix Cp arealso 
omputed. Finally a state-spa
e representation of the system is realized:

{

Ẋp = ApXp +Bpu

y = CpXp

(2.63)where the state-spa
e ve
tor is 
omputed from (2.43), the dynami
 matrix fromProposition 2.2.1, the 
ontrol matrix from Proposition 2.2.2 and �nally the outputmatrix from Proposition 2.2.3.
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al modeling of the system �
2.3 Tank modelIn this se
tion we present the di�erent steps to 
ompute the model of the tank �lledwith liquid.As the tank is partially �lled with liquid, any disturban
e of the 
ontainer will
ause a motion of the liquid free surfa
e. This phenomenon of the liquid is 
alledsloshing. Depending on the 
ontainer shape, di�erent types of motions 
an be ob-served.2.3.1 Sloshing of liquids - state of the artLiquid sloshing in moving or stationary 
ontainers has been studied for many yearsdue to their appli
ability espe
ially in the aerospa
e and aeronauti
 domains. Thesestudies lead to the 
omplex work of Abramson [2℄ �nalized in the early 1960s. Later,these kinds of results were also published in [48℄ along with some improvements.Many other works 
an be found in the literature about the liquid sloshing, [34℄, [67℄,[92℄, [97℄ 
an be 
ited among many others.In the aeronauti
 and spa
e �ight domain, the in
rease in size of the tank di-ameters de
reases the sloshing frequen
ies of the propellants and thus a�e
ts thevehi
les stability. Thus, the eigen (natural) frequen
ies of the tank liquid shift to-wards zero, thus 
oming 
loser to the 
ontrol frequen
ies. This leads to a 
ontinuousex
itation of the liquid whi
h will in�uen
e the overall stability. One 
an read forinstan
e [138℄ where the authors present how fuel unpredi
table rea
tions, preventedthe NEAR-Shoemaker (Near Earth Asteroid Rendezvous) spa
e
raft from orbitingthe Eros asteroid, delaying the spa
e mission for almost a year. Other examples 
anbe found in [129℄, 
on
erning the un
ontrollable fuel os
illations during �ight test-ing of several planes: Douglas A4D, Lo
khead P-80, Boeing KC-135, Cessna T-37 oragain the strange fuel shift during takeo� that lead to stati
 pit
h instability of NorthAmeri
an YF-100 plane.In order to redu
e the in�uen
e of the sloshing, there are several solutions. The�rst, immediate, solution will be to redu
e the quantity of liquid in tanks by dividingthem in several smaller tanks using walls of di�erent shapes. The se
ond solutionis to simply introdu
e ba�es into the liquid to disturb the �ow and to 
reate larger
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h will 
ontrol the wave magnitude. The third solution is, of 
ourse,to 
hoose a suitable 
ontrol algorithm whi
h will be able to diminish the for
es andmomenta exerted by the sloshing. We are going to 
onsider further in this work thislast solution.To solve the sloshing problem we need to 
ompute the natural frequen
y for ea
hsloshing mode along with the mode shape and then the total for
es and momentagenerated by the sloshing. Moreover, it is easy to show that the natural frequen
yof ea
h wave depends on the tank shape and on the a

eleration (whi
h is either thetotal a

eleration of the system if the tank 
ontaining the liquid is in movement, orthe gravity alone if the tank is in steady motion) [48℄. The knowledge of �uid densityand of tank fullness, whi
h will determine these frequen
ies, is therefore essential inthe design pro
ess of liquid tanks and in implementing a
tive 
ontrol [92℄.For ea
h mode, though, the 
al
ulus of the natural frequen
ies, mode shape, totalfor
es and momenta is very di�
ult, exa
t solutions being possible only for very fewspe
ial 
ases su
h as verti
al 
ylindri
al or re
tangular tank [67℄.Moreover, as the natural frequen
ies are depending upon the tank shape, analyt-i
al expressions of frequen
y exist for di�erent tank geometries [19℄, [22℄, [48℄, [49℄,[67℄, [90℄, [124℄, [130℄. The general equations of motion for a �uid in 
losed 
ontainers
an be simpli�ed by making the following hypothesis whi
h allow the use of 
lassi
alpotential �ow theory:
• the 
ontainer is rigid and impermeable;
• the �uid has no vis
osity, is invis
id, in
ompressible and fri
tionless. This as-sumption of fri
tionless liquid is justi�ed sin
e the damping due to fri
tion atthe tank walls is of very small magnitude [18℄;
• the wave motion is linear in the sense that the wave amplitude is linearly pro-portional to the imposed tank amplitude. The nonlinear 
ase is not treatedhere but the reader 
an 
he
k [48℄ or [54℄ for nonlinear 
orre
tions to the lineartheory;
• the wave speed and motion are of small amplitude;In the 
ase of re
tangular and upright verti
al 
ylindri
al tanks, the sloshingproblem 
an be solved using the variable separation method whi
h gives a set ofde
oupled equations, one for ea
h sloshing mode. In the 
ase of tanks with di�erentgeometry, the analyti
al solutions, if they exist, are very di�
ult to implement due
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al modeling of the system �to their 
omplexity. In this 
ase the most used approa
h is the one of numeri
alapproximations.PSfrag repla
ements
x
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O

w(y, z, t)Figure 2.6: Cylindri
al tank 
onne
ted to the plateIn our 
ase, the 
ylindri
al tank is horizontal, has a length L, diameter 2R and is�lled with liquid up to a level denoted hs. In Figure 2.6 it 
an be seen how the tankis 
onne
ted to the re
tangular plate.The solution of the sloshing problem depends on the type of movement the tankundergoes. We 
an 
ite several types of tank movements:
• horizontal motion parallel to either x or y axis due to a for
e or a momentumalong the x or y axis respe
tively. In this 
ase the solution of the sloshing 
an befound if we impose for ea
h axis of motion, the equivalen
e between the velo
ityof the liquid perpendi
ular to the plane of the wall and the velo
ity of the tankwall itself;
• pit
hing motion along y or even along x axis. In this 
ase also the sloshing prob-lem 
an be solved imposing that for any point on the tank wall the displa
ementis proportional to the distan
e from that point to the pit
h axis.
• rolling motion about z axis. In the 
ase of an axisymmetri
al tank withoutinternal walls, the rolling motion will 
ause liquid motion only in a very thinlayer near the tank walls and only if the liquid is vis
ous. Furthermore, thisliquid motion, will 
reate, if any, only waves of small amplitude [48℄. Under thegeneral assumption of a liquid without vis
osity though, no liquid sloshing willbe experien
ed for this type of tank motion, [48℄.
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ements x y
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transverseFigure 2.7: Horizontal 
ylindri
al tankRelated to this types of movements (and also sin
e the liquid is 
onsidered withno vis
osity), the tank 
onne
ted to the plate 
an sense only two types of wavemovements: a pit
h movement along the 
ylinder y-axis or a longitudinal movementalong the longitudinal axis (x-axis) as it 
an be seen from Figure 2.6 or 2.7.Usually, the �rst mode (the one 
orresponding to the lowest sloshing frequen
y)is along the longest axis of the 
ylinder [48℄. Thus, the �rst sloshing mode will belongitudinal if L > 2R (as it is our 
ase here, see Table 1.2) or transverse if L < 2R.In the 
ase where the liquid depth h is very small, a notable ex
eption o

urs: the�rst mode is always a transverse one even though L > 2R.Horizontal 
ylinders partially �lled with liquid, as we 
onsider here in this work,are very di�
ult to analyze in order to determine the natural frequen
ies and modeshapes. This 
omes from the fa
t that the tank walls are not straight and parallel tothe axis of symmetry [67℄, thus the sloshing 
an't be 
omputed using the separationof variable method.Based on the two types of movements the tank undergoes, two types of sloshingmodes are experien
ed: a longitudinal sloshing mode along the tank length and atransverse sloshing mode along the tank diameter. Both types are detailed below.Transverse sloshing modesMany of the work done in the study of the horizontal 
ylindri
al tanks is for the
ase of transverse sloshing modes. These modes are along the smaller axis of thetank, their motion being perpendi
ular to the 
ylinder generators. To the best of our
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al modeling of the system �knowledge, the work [78℄ is the �rst one that, using an energy approa
h, determinedthe natural frequen
y of the �rst transverse mode but only for a half full horizontal
ylinder, while the referen
e [34℄ it is the �rst who proved that the appli
ation of the
al
ulus of variations (the energy minimization te
hnique) 
oupled with su

essive
hanges in system 
oordinates (
onformal mapping), allows to obtain some limitedresults for the general 
ase when the tank �lling level 
an vary. Based on this theory,[48℄ gives a graphi
 representation of the natural frequen
y of the transverse modes.Figure 2.8 presents the dependen
e of the experimental natural frequen
ies of the�rst 3 transverse sloshing modes on the �lling level hs

2R
of the tank. As it 
an be seenthe values are in
reasing when the �lling level tends to 1 (tank 
ompletely full). It isalso easy to noti
e that, espe
ially for the 2nd and 3rd modes, the natural frequen
yis varying a lot 
omparing to the tank �lling.

Figure 2.8: Natural angular frequen
y ωn of the �rst transverse sloshing modes (ex-tra
ted from [48℄)Another method in �nding the natural frequen
ies of the horizontal 
ylindri
altank is given by [90℄ whi
h uses bipolar 
oordinates instead of the 
onformal mapping.Using these frequen
ies [6℄ and [7℄ among others, proposed approximate models inorder to estimate mode shapes for partially �lled tanks.A detailed analysis in the 
ase of symmetri
 and anti-symmetri
 modes, along



2.3 � Tank model � 53with details about analyti
ally 
omputing the natural frequen
ies 
an be found in[67℄.Longitudinal sloshing modesLongitudinal sloshing modes have been mu
h less studied. Most of the known solu-tions for these modes are in general numeri
al solutions. As stated in [48℄ there areno strong analyti
al results for this type of �uid motion in the 
ase of arbitrary liquiddepths, the only results are 
urves faired through experimental data. In Figure 2.9the natural frequen
y of the �rst three longitudinal sloshing mode is depi
ted. As it
an be seen, for this type of sloshing, the frequen
y is not 
hanging mu
h 
omparedto the tank �lling level hs

2R
.

Figure 2.9: Natural angular frequen
y ωn of the �rst longitudinal sloshing modes(extra
ted from [48℄)One notable ex
eption is the 
ase when the tank is half full. In this 
ase thereare some analyti
al results given by [70℄ and [91℄ regarding modes shape, for
es andmomenta generated by the liquid sloshing.



54 Chapter 2 � Mathemati
al modeling of the system �After analyzing the behavior of the experimental devi
e, we noti
e that both typesof tank movements produ
e only longitudinal sloshing waves. Therefore, from nowon we analyze only this type of sloshing modes.2.3.2 Tank approximationAs we detailed earlier, for longitudinal sloshing modes in a horizontal 
ylindri
altank there are no analyti
al results for the natural frequen
ies and for the for
es andmoments. This is why we de
ide, in this work, to make a geometri
al approximationof the tank. In general, we state that the new tank 
an have any shape as long as it
an be well des
ribed in the Cartesian (x, y, z) 
oordinate system. In our situation,we therefore approximate the horizontal 
ylindri
al tank by a re
tangular horizontaltank. The idea of making a tank approximation is not new, one 
an also 
he
k forexample the work [70℄.To 
ompute the dimensions of the virtual re
tangular tank we propose three dif-ferent 
omputation methods. The 
hoi
e of one or another method will be done 
om-paring the 
omputed natural frequen
ies to the experimental ones on one side (thepre
ision of the method) and the 
omputation 
omplexity plus the time employed inimplementing the method on the other side.First method
PSfrag repla
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Figure 2.10: Implementing the �rst method (only one re
tangular tank is shown)



2.3 � Tank model � 55The �rst method we proposed 
onsists in 
utting along the longitudinal axis the
ylindri
al tank in a large (in�nite in theory) number of small re
tangular tanks.The length of the re
tangular tanks is equal to the length of the 
ylindri
al one. Asthe number of re
tangular tanks is large, we 
an say that they approximate well the
urvature of the 
ylinder and thus the whole 
ylindri
al tank (see Figure 2.10 whereone re
tangular tank is shown). At the �rst iteration the �lling level in ea
h tankis 
onsidered the same as in the 
ase of the 
ylindri
al tank. Further on, for ea
hre
tangular tank we 
ompute the natural frequen
ies depending on the �lling level.Based on this frequen
y, at the se
ond and further iterations, we then 
hange the�lling level of ea
h small tank. The 
ore idea is to 
hoose for ea
h tank, a "virtual"�lling level so that ea
h tank has a natural sloshing frequen
y as 
lose as possibleto the predi
ted (from [48℄) sloshing frequen
y. This is done for ea
h sloshing modefrom Figure 2.9.As we expe
t, (proof in Se
tion 4.3.1.2), this method allows us to obtain naturalfrequen
ies very 
lose to the natural frequen
ies measured on the experimental setup.Nevertheless, the implementation of this method is very tedious be
ause it 
onsists of
omputing, for ea
h sloshing mode and for ea
h 
onsidered small re
tangular tank, anew �lling level and then the exerted for
e/moment.After some repeated experiments we even observed that, if the tank �ll level hs

2Rranges between 0.65 and 0.9 the sloshing natural frequen
ies given by the method areeven 
loser to the predi
ted sloshing frequen
y. This 
omes though with an in
reasein di�
ulty during the implementation phase.Se
ond methodAnother idea 
onsists in 
hoosing the length of the re
tangular tank equal to the lengthof the 
ylinder and the width of the re
tangular tank equal to the tank diameter. Theheight of the new tank is sele
ted so that the same volume is kept in both tanks.This method, whi
h is easier to implement than the former method, does not �ndsloshing natural frequen
ies 
lose to the ones from [48℄. This last issue will be provedlater in this work Se
tion 4.3.1.2.Third methodThe last method is very 
lose to the se
ond one but gives natural frequen
ies thatare 
loser to the experimental ones. As it will be proven later (see Se
tion 4.3.1.2),the frequen
ies of the re
tangular equivalent tank 
omputed using this method areup to only 5% di�erent than the ones from [48℄. Sin
e the method remains easy to
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Figure 2.11: Equivalent tanksimplement but also gives good frequen
y values we de
ide from now on to use it inthe 
onstru
tion of the re
tangular tank.This method keeps the length b and the width a of the re
tangular tank equal tothe length of the 
ylinder L and the width ls of the free surfa
e at rest. The di�eren
eof the se
ond method 
omes from the fa
t that in this 
ase, the liquid height is 
hosenso that the volume of liquid in both tanks is the same. Before a
tually implementingit, we 
an easily noti
e that, as for the se
ond method presented here, the parametersof the equivalent tank will need to be re
al
ulated ea
h time the value of the liquidin the tank 
hanges.Knowing the �lling level of the tank e = 2R
hs
, where R and hs are the radius andthe height of the liquid in the 
ylinder respe
tively, we 
an easily 
ompute the widthof the liquid free surfa
e sin
e:

ls =
R

2

√

1 − (2e− 1)2.From Figure 2.11 we 
an write the total volume of the horizontal 
ylinder Vcylbased on the diameter and on the angle θ des
ribing the width of the free surfa
e:
Vcyl =

R2

2
(θ − sin(θ))Lwhere θ = 2 arccos(1 − 2e).Making the analogy between the volume previously 
omputed and the volume ofthe new re
tangular tank whi
h 
an be easily written as a multipli
ation of all thetank dimensions (b× a×h), we 
ompute the height of the liquid h in the re
tangular
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h =

R(θ − sin(θ))
√

1 − (2e− 1)2
. (2.64)All the parameters of the re
tangular equivalent tank are now 
omputed. Asstated earlier, even though the results given by the �rst proposed method are morepre
ise (see Table 4.7 from Chapter 4), this last method is preferred due mainly tothe simpli
ity in the implementing phase.In this paragraph an approximation of the 
ylindri
al tank was 
ondu
ted. Ea
h ofthe three method presented will be tested on the experimental setup in Se
tion 4.3.1.2of Chapter 4 and the theoreti
al 
on
lusions given here will be 
he
ked.2.3.3 Tank in�nite dimensional model2.3.3.1 General equationsFrom now on we 
onsider a rigid re
tangular 
ontainer, of length b and width a,partially �lled with an in
ompressible and invis
id liquid to the height h, as shownin Figure 2.12. Thus, the earlier hypothesis given in the introdu
tion of Se
tion 2.3.1are ful�lled. We �nally 
onsider that the dimensions of the 
ontainer are su
h thatthe surfa
e tension is negle
ted.As seen from Figure 2.6, the tank is not free but 
onne
ted to the plate. There-fore, we 
annot study the tank alone but in relation with the plate. Sin
e the platehas mostly �exion movements (the torsion movements of the plate are of very smallamplitude 
omparing to the �exion ones, see Se
tion 4.2), we infer that the tankmovement is mostly along the generator axis, whi
h 
orresponds to the x - axis inthe 
oordinate system. Therefore, most of the 
ontainer moves are horizontal in the

x dire
tion. Moreover, based on the plate movement, the tank os
illation has a small
onstant a

eleration C0.The fa
t that the liquid is irrotational allow us to express the �uid velo
ity asa gradient of a velo
ity potential fun
tion φ. Therefore, the liquid speed in all thedire
tions 
an be written as (see [93, Chapter 2.70℄):
(Vx, Vy, Vz) =

(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

) (2.65)The introdu
tion of the velo
ity potential φ = φ(x, y, z, t) has the main advan-
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ements
x

y

z

O

C0free surfa
e
Figure 2.12: Coordinate system for a partially �lled re
tangular 
ontainer underexternal a

elerationtage that all the velo
ities, for
es, moment of for
es generated by the liquid sloshing
an now be expressed with only one fun
tion (whi
h of 
ourse will depend on the
oordinates x, y, z and on time t).Sin
e the �uid is in
ompressible, the equation of 
ontinuity (the velo
ity distribu-tion), that is to say the basi
 di�erential equation that the velo
ity ve
tor must satisfy,is obtained by di�erentiating with respe
t to the spatial 
oordinates, [48, Chapter 1℄:

∂Vx

∂x
+
∂Vy

∂y
+
∂Vz

∂z
= 0. (2.66)Furthermore, the Euler equation of motion [78, art. 20℄, also known as the unsteadyform of Bernoulli equation, written for a tank �lled with liquid undergoing a longitu-dinal movement along the x - axis admits the following representation:

∂φ

∂t
+

1

2
(V 2

x + V 2
y + V 2

z ) +
p

ρ
+ g(z − h) − C0x = 0 (2.67)for x ∈ (0, b), y ∈ (0, a), z ∈ (0, h) and t ≥ 0. In these last equations p = p(x, y, z, t)and ρ stand for the pressure and the density of the liquid while the term C0 standsfor the external a

eleration.Using equation (2.66) 
oupled with equation (2.65), the velo
ity potential fun
tionis a solution of the Lapla
e equation, whi
h does not expli
itly 
ontain the time:

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= ∆x,y,zφ = 0, ∀(x, y, z) ∈ (0, b) × (0, a) × (0, h), ∀t ≥ 0. (2.68)with appropriate boundary 
onditions.Given the equation of the free surfa
e like z = h+ξ(x, y, t), the equation of motion
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omes, for all x ∈ (0, b), y ∈ (0, a), t ≥ 0:
∂φ

∂t
+

1

2
(V 2

x + V 2
y + V 2

z ) + gξ(x, y, t)− C0x = 0 (2.69)and the kinemati
 free surfa
e 
ondition a

ording to [78, art. 9℄ is for all x ∈ (0, b),
y ∈ (0, a), t ≥ 0

d

dt
(ξ(x(t), y(t), t) − z) ≡ ∂ξ

∂t
+
∂φ

∂x

∂ξ

∂x
+
∂φ

∂y

∂ξ

∂y
− ∂φ

∂z
= 0 (2.70)where the equivalen
es ∂φ

∂x
= Vx =

∂x

∂t
, ∂φ
∂y

= Vy =
∂y

∂t
and ∂φ

∂z
= Vz =

∂z

∂t
have beenused.Further progress in �nding the expression of φ 
an be made if (2.69) is linearized(by omitting squares and produ
ts of x,y,z and ξ). This is a justi�ed approximation ifthe de�e
tion (the degree to whi
h a stru
ture element is displa
ed under a load) andslope (gradient) of the free surfa
e are everywhere small 1. In this 
ase, the simpli�edequation be
omes:

∂φ

∂t
+ gξ − C0x = 0, ∀x ∈ (0, b), y ∈ (0, a), t ≥ 0 (2.71)for the dynami
 free surfa
e 
ondition.Moreover, if equation (2.67) is linearized and written for the steady state (∂φ

∂t
= 0),also 
onsidering that the pressure p on the free surfa
e equals 0, we get anotherexpression for the free surfa
e equation: z = h + C0

g
x. Using this last equation, thekinemati
 free surfa
e 
ondition (2.70) 
an be simpli�ed in:

∂ξ

∂t
=
∂φ

∂z
−
∣

∣

∣

∣

C0

g

∣

∣

∣

∣

∂φ

∂x
, ∀x ∈ (0, b), t ≥ 0 (2.72)If we assume ∣∣

∣

C0

g

∣

∣

∣
to be of small quantity (we think that, at least in laboratory
onditions, the external a

eleration is mu
h smaller than the gravity), from (2.72)we obtain ∀x ∈ (0, b), y ∈ (0, a), t ≥ 0

∂ξ

∂t
=
∂φ

∂z
(2.73)on the free surfa
e (z = h)When 
onsidering the other boundary 
onditions, we need to set that the relative1It is interesting to noti
e that for a real liquid this is not true near the walls [24℄.
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ity normal to the wall is equal to zero. Hen
e
Vx = ∂φ

∂x
= 0 at x = 0, a;

Vy = ∂φ

∂y
= 0 at y = 0, b;

Vz = ∂φ

∂z
= 0 at z = 0.whi
h, written in a more 
ompa
t form, be
omes:

∂φ

∂n
= −→n · ∇φ = 0 (2.74)where −→n is the unitary outward ve
tor and:

∇φ =

(

∂φ

∂x

∂φ

∂y

∂φ

∂z

)T

.The ve
tor −→n takes on the di�erent walls the well known shapes: nx =
(

±1 0 0
)T(on the two walls perpendi
ular to the x-axis), ny =

(

0 ± 1 0
)T (on the two wallsperpendi
ular to the y-axis) and nz =

(

0 0 − 1
)T (on the wall at the bottom ofthe tank).Proposition 2.3.1. The solutions φ and ξ of the unsteady Bernoulli equation (2.67)and of the Lapla
e equation (2.68), under the boundary 
onditions (2.73) and (2.74)are:

φ(x, z, t) =
∞
∑

i=1,3,5,···

ṙi(t)
cosh(Υiz)

Υi sinh(Υih)
cos

(

πix

a

) (2.75)and
ξ(x, y, t) =

∞
∑

i=1,3,5,···

ri(t) cos

(

πix

a

) (2.76)where the ri(t) are given by (denoting πi
a
=Υi):

r̈i(t) + gΥi tanh(Υih)ri = − 4C0

agΥ2

i

gΥi tanh(Υih) for i = 2p+ 1, p ∈ N

= 0 for i = 2p, p ∈ N
(2.77)Proof:In order to �nd the expressions of ξ and φ, and to prepare the �eld for �nite
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om-posed of the eigenfun
tions of ∆xy with Neumann homogeneous boundary 
onditions.Therefore we obtain for the two fun
tions the general shape:
φ(x, y, z, t) =

∞
∑

i=0

∞
∑

j=0

gij(t)fij(z)Sij(x, y)

ξ(x, y, t) =
∞
∑

i=0

∞
∑

j=0

rij(t)Sij(x, y)Sin
e the tank is re
tangular, we 
an apply the separation of variable methodalong the x and y 
oordinates, to the Sij fun
tion [67℄. Thus, it 
an be written as:
Sij(x, y) = cos (Υix) cos (Υjy) , ∀x ∈ (0, b), y ∈ (0, a) (2.78)where

Υij = π

(

i

a
+
j

b

) (2.79)Therefore, applying the boundary 
ondition on the free surfa
e (2.73) to the ex-pressions of φ and ξ from (2.78) we �nd the dependen
y between the two fun
tionsdepending on time t, ∀x ∈ (0, b) and ∀y ∈ (0, a):
∂φ

∂z
(t, x, y, h) =

∞
∑

i=0

∞
∑

j=0

gij(t)f
′
ij(h)Sij(x, y) =

∂ξ

∂t
=

∞
∑

i=0

∞
∑

j=0

˙rij(t)Sij(x, y)whi
h yields to:
gij(t) = ˙rij(t), ∀t ≥ 0 and f ′

ij(h) = 1, ∀i, j ∈ N. (2.80)Using the boundary 
onditions (2.74), we have
∂φ

∂z
= 0 at z = 0, ∀x ∈ (0, b), y ∈ (0, a), t ≥ 0and thus we get f ′

ij(0) = 0 ∀i, j ∈ N .Moreover, after introdu
ing the expression of φ into the Lapla
e equation (2.68),and taking into a

ount (2.80), we obtain:
∞
∑

i=0

∞
∑

j=0

˙rij(t)
(

−Υ2
ijfij(z)Sij(x, y) + f ′′

ij(z)Sij(x, y)
)

= 0
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∀t ≥ 0 and (x, y, z) in the liquid domain. It is easy to noti
e that the term f ′′

ij(z)
omes from the last term in the Lapla
e equation ∂2φ

∂z2 and −Υ2
ij 
omes after using theexpression (2.78) on the �rst two terms of the same Lapla
e equation: ∂2φ

∂x2 + ∂2φ

∂y2 .This last equation gives, for all z ∈ (0, h) and ∀i, j ∈ N:
− Υ2

ijfij(z) + f ′′
ij(z) = 0whi
h is to be solved using the boundary 
onditions on z previously dedu
ed f ′

ij(h) = 1and f ′
ij(0) = 0. This gives:

fij(z) =
cosh(Υijz)

Υij sinh(Υijh)
, ∀z ∈ (0, h), ∀i, j ∈ N (2.81)Using the expressions (2.80) and (2.81) we write the expressions of φ and ξ to-gether, ∀(x, y, z) ∈ (0, b) × (0, a) × (0, h), t ≥ 0:

ξ(x, y, t) =

∞
∑

i=0

∞
∑

j=0

rij(t)Sij(x, y)

φ(x, y, z, t) =

∞
∑

i=0

∞
∑

j=0

˙rij(t)
cosh(Υijz)

Υij sinh(Υijh)
Sij(x, y)where the values of Sij and Υij are the same one from (2.78) and (2.79).Now, the rij fun
tion are 
al
ulated by repla
ing φ and ξ into (2.71), re
alled herebelow:

∂φ

∂t
+ gξ − C0x = 0.The 
al
ulation is very tedious. One simplifying solution 
omes from the type ofmovement that the tank undergoes. As presented earlier in the beginning of thisse
tion, the re
tangular tank is moving along the x-axis. This 
onstraint, whi
h atthe beginning seems to 
ompli
ate the problem, will now give us some 
lues aboutsolving the equation.Taking into a

ount this 
onstraint, the former expressions of φ and ξ 
an besimpli�ed as follows. For the free surfa
e, equation (2.71) re
alled above, whi
hrepresents the equation of motion, 
an now be written using (2.80) and (2.81):

∞
∑

i=0

∞
∑

j=0

[

r̈ij(t)
cosh(Υijz)

Υij sinh(Υijh)
Sij(x, y) + grij(t)Sij(x, y)

]

= C0x (2.82)
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eleration along the x-axis.Sin
e the right-hand side of the equation depends only on the 
oordinate x, theequality 
an be satis�ed if and only if the left hand side also depends only on x.Therefore we 
an write Sij(x, y) = Si(x) whi
h from (2.78) implies that Sij dependsonly on x. This is veri�ed if and only if j = 0.With this last simpli�
ation, the whilom equations for φ and ξ be
ome:
ξ(x, y, t) = ξ(x, t) =

∞
∑

i=0

ri(t)Si(x) (2.83)
φ(x, y, z, t) = φ(x, z, t) =

∞
∑

i=0

ṙi(t)
cosh(Υiz)

Υi sinh(Υih)
Si(x) (2.84)where (see (2.79))

Υij = Υi =
πi

a
(2.85)Equation (2.82) 
an be written as:

∞
∑

i=0

[

r̈i(t)
cosh(Υiz)

Υi sinh(Υih)
Si(x) + gri(t)Si(x)

]

= C0x (2.86)and ri 
an be found using the approa
h of [72℄, whi
h 
onsists of multiplying bothsides by cos
(

i0πx
a

) for a given i0 ∈ N and integrating over the whole length of thetank [0, a]. With (2.78) this leads to (2.77) by observing (as in [72℄) that the integralof the right-hand side is di�erent from 0 for the odd values of i and equal to 0 for theeven indexes. This 
on
ludes the proof of Proposition 2.3.1.From this last equation we observe that, having the ri, we 
an 
ompute the velo
itypotential φ from (2.75) and ξ from (2.76). For a detailed expression of the velo
itypotential, in the 
ase when the �uid behavior is treated as a two or three-dimensional�ow, one 
an 
he
k [67, Chapter 1℄. �The 
omputation of the natural frequen
y of the modes is also quite easy. We startby 
omputing the time derivative for the simpli�ed version of the unsteady Bernoulliequation (2.71) without external a

eleration, 
ombined with the simpli�ed kinemati




64 Chapter 2 � Mathemati
al modeling of the system �free surfa
e 
ondition (2.73). Therefore, we obtain:
∂2φ

∂t2
+ g

∂φ

∂z
= 0 (2.87)As it 
an be seen, the equation depends only on the the velo
ity potential, whi
h
hara
terizes the liquid movement and whi
h is already known.Further on, sin
e the liquid in the tank is 
ontinuously moving ba
k and forthwith a 
ertain frequen
y, we 
an write the velo
ity potential previously 
omputed(impli
itly all the fun
tions depending on time t that are in the expression of φ), asa harmoni
 periodi
 fun
tion exp(iωit). Here, the variable ωi stands for the naturalfrequen
y of the ith mode.After repla
ing the two times derivative in (2.87) by the equivalent term−ω2

i exp(iωit)and 
an
eling out the term exp(iωit) whi
h multiplies both sides, we �nd the expres-sion of the natural frequen
y for the re
tangular tank (where (2.77) was used):
ω2

i = gΥi tanh(Υih) (2.88)where i ∈ N
∗ is the index of the sloshing wave.In theory we have two types of longitudinal sloshing modes: symmetri
 modesand antisymmetri
 modes. The di�eren
e 
omes from the value of i (odd or even)that 
omes in the expression of Si and 
orresponds to the natural frequen
y (2.88).

Symmetri
 sloshing modesThe symmetri
 sloshing modes are found for the even values of i, starting with i = 2,in (2.88). The shape of the �rst three sloshing modes is depi
ted in Figure 2.13.
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Figure 2.13: The mode shape of the �rst three symmetri
 waves (from left to right)
One tool we 
an use to quantify the sloshing motion is the study of the 
enterof mass. It represents the mean lo
ation of all the liquid mass and his position isdepi
ted in our �gures by a blue 
ir
le in the interior of the tanks.As it 
an be seen, the symmetri
 sloshing modes do not shift the position of the
enter of mass. Moreover, sin
e the 
enter of mass does not os
illate, there will be nofor
es or moment of for
e generated by the liquid sloshing and thus no movement atall of the tank.

Antisymmetri
 sloshing modesThe antisymmetri
 modes are found for the odd values of i, starting from i = 1. Thenatural frequen
y of the antisymmetri
 modes is again 
omputed from (2.88) (for theodd values of i).Sin
e the �rst mode is antisymmetri
 (i = 1), all the frequen
ies of the symmetri
almodes are higher than those of the antisymmetri
 modes. The shape of the �rst threemodes is depi
ted in Figure 2.14. The �rst mode 
omputed for i = 1, whi
h is the�rst on the left, is 
alled the fundamental antisymmetri
 mode and has the lowestfrequen
y.
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Figure 2.14: The mode shape of the �rst three antisymmetri
 waves (from left toright)
As it 
an be seen from Figure 2.14, during wave movement, a visible shifting inthe position of the 
enter of mass 
an be noti
ed. Moreover, the os
illation of thisposition signi�es that a large amount of liquid moves from one side to the other sideof the tank, thus 
reating a liquid sloshing whi
h at his turn will 
reate for
es andtorques. The fundamental mode makes the largest displa
ement of the 
enter of massfrom his equilibrium position. This will 
reate the most powerful sloshing wave, whi
hwill indu
e the greater for
e and moment on the tank.Therefore, as a 
on
lusion, for our disposal, the important modes are only theantisymmetri
 ones sin
e, only they 
reate the sloshing motion. From now on, we
on
entrate our attention only on this types of sloshing modes.
Until here, after a tank approximation, we 
omputed the in�nite dimensionalmodel of the tank with liquid. After analyzing the types of sloshing waves in thetank, our purpose is now to 
ompute all the for
es and moments generated by thesloshing. Their value will allow us to des
ribe the tank behavior and its in�uen
e onthe re
tangular plate that is 
onne
ted on.



2.3 � Tank model � 672.3.3.2 Determination of for
es and momentsProposition 2.3.2. The total for
e generated by the sloshing is F = (Fx, Fy, Fz)where:
Fx = ρabhC0 − 2ρb

∞
∑

i=1,3,5,...

r̈i(t)

Υ2
i

, (2.89)
Fy = 0, (2.90)

Fz = ρabgh+ ρbC0
a2

2
. (2.91)Proof:The total pressure a
ting at any point of the liquid is 
ompeted from (2.67). Afternegle
ting the se
ond order terms one 
an write

p = ρ

[

−∂φ
∂t

− g(z − h) + C0x

] (2.92)The resultant for
e in the x,y,z-dire
tion is F = (Fx, Fy, Fz) (see [48℄). Ea
h 
ompo-nent of the for
e is therefore found by integration of the liquid pressure [122℄:
Fx =

∫ h

0

∫ b

0

(p|x=a − p|x=0) dydz, (2.93)
Fy =

∫ h

0

∫ a

0

(p|y=b − p|y=0) dxdz, (2.94)
Fz =

∫ a

0

∫ b

0

(p|z=h − p|z=0) dxdy = −
∫ a

0

∫ b

0

p|z=0dxdy. (2.95)The minus sign between the two pressures, while 
omputing the total for
e fromthe previous three equations, is not due to the sign of the pressure, whi
h is a s
alarquantity, but due to the dire
tion of the −→n ve
tor (whi
h is the ve
tor normal to the
onsidered surfa
e). Sin
e the tank length is along the positive sense of the x-axis (seeFigure 2.12), the −→n ve
tor 
al
ulated for x = a is "positive" and the one 
al
ulatedfor x = 0 is "negative". The same explanations are valid for the other axis.
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ase of the for
e along the z-axis, the pressure on the free surfa
e is 
onsid-ered equal to zero and thus the �rst term of (2.95) 
omputed for z = h is 
an
eled.Sin
e the movement of the 
ontainer is only in the x-dire
tion (having only lon-gitudinal sloshing waves) we 
an simplify the equations (2.93), (2.94) and (2.95).Indeed, be
ause of these 
onsiderations the for
e along the y-axis is equal to zero.Sin
e there are no transverse sloshing waves we have: p|y=b = p|y=0 and thus Fy = 0.Moreover, using (2.92) in (2.93) we get:
Fx = ρabhC0 − ρb

∫ h

0

∂φ

∂t
|x=adz + ρb

∫ h

0

∂φ

∂t
|x=0dz.As stated at the end of the previous se
tion, the sloshing motion of the liquid (theone responsible for 
reating for
es and moments of for
es) is generated only by theantisymmetri
 sloshing modes. Therefore, only odd values of i are 
onsidered in thein�nite sum. In this 
ase we have cos(Υia) = − cos(Υi0) (where Υi =

(

iπ
a

)) and wededu
e that ∂φ

∂t
|x=a = −∂φ

∂t
|x=0. Thus:

Fx = ρabhC0 − 2ρb

∫ h

0

∂φ

∂t
|x=0dz.Repla
ing φ by (2.75), giving

∂φ

∂t
(x, z, t) =

∑

i=1,3,5,...

r̈i(t)
cosh(Υiz)

Υi sinh(Υih)
cos(Υix),we obtain:

Fx = ρabhC0 + 2ρb

∞
∑

i=1,3,5,...

1

Υi sinh(Υih)

∫ h

0

r̈i cosh(Υiz)dz,and integrating along the height of the liquid we get the �nal expression of the x-
oordinate of the for
e from (2.89).Con
erning the 
oordinate of the for
e along the z-axis, we use the same method-ology. The di�eren
e between the two situations 
omes from the fa
t that for the
z-axis for
e, sin
e the tank movement is along x-axis, the term C0x from (2.92) hasto be taken into a

ount when 
omputing the integrals. Using the pressure des
ribedby (2.92) in equation (2.95) we obtain:

Fz = ρabgh + ρbC0

∫ a

0

xdx− ρb

∫ a

0

∂φ

∂t
|z=0dx.
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∫ a

0

∂φ

∂t
|z=0dx =

∞
∑

i=1,3,5,...

r̈i

Υi sinh(Υih)

∫ a

0

cos(
iπx

a
)dx = 0.Therefore, the total for
e along the z-axis is then written as (2.91). �Proposition 2.3.3. The total moment of for
e generated by the sloshing is M =

(Mx,My,Mz), where:
Mx = Mz = 0,

My =
ρC0a

3b

12
+ 2ρb

∞
∑

i=1,3,5,...

r̈i(t)

Υ2
i

[

h

2
− 1

Υi tanh(Υih)
+

2

Υ3
i sinh(Υih)

]

. (2.96)Proof:In a general manner the moment is written [58℄: M =
−−−−−→
distance ∧ −−−→

force, where ∧represents the 
ross produ
t (or ve
tor produ
t). We are going to study the momentgenerated by the liquid sloshing along the three axis. The moment along the x-axisis 
aused by the pressure a
ting on the y walls and at the bottom of the tank (thepressure a
ting on the top of the tank is null). The moment along the y-axis and is
aused by the pressure a
ting on the x walls and again at the bottom of the tank(z = 0), while the moment along the z-axis is 
aused by the pressure a
ting on the
x and y walls. This 
an be written in a more 
ompa
t form using the di�erentialelement of moment, 
omputed in the 
enter of gravity of the liquid:

dMx = (z − h

2
)dFy + (y − b

2
)dFz = (z − h

2
)pdAy + (y − b

2
)pdAz, (2.97)

dMy = (z − h

2
)dFx + (x− a

2
)dFz = (z − h

2
)pdAx + (x− a

2
)pdAz, (2.98)

dMz = (y − b

2
)dFx + (x− a

2
)dFy = (y − b

2
)pdAx + (x− a

2
)pdAy. (2.99)One important issue in dealing with the moment of for
e is its dire
tion sin
e it isa ve
tor. Therefore we 
onsider ~r, ~s and ~t the unity ve
tors in the positive dire
tionof the x, y and z-axis. Taking into 
onsideration that ~r ∧ ~−t = −( ~−s) and ~t ∧ ~r = ~s,we 
an 
ompute the dire
tion of the total moment along a spe
i�
 axis.As presented before, the for
e Fy along the y-axis is equal to zero. Moreover, sin
e
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al modeling of the system �there are no lateral sloshing waves, the 
enter of gravity along the y-axis is exa
tlyin the middle of the tank. With (2.97) and (2.99), we get:
dMx = dMz = 0.Repla
ing the for
es by their expressions 
omputed in (2.89) and (2.91), we �nallyget from (2.98):

My =

∫ h

0

∫ b

0

(z − h

2
)p|x=a dydz −

∫ h

0

∫ b

0

(z − h

2
)p|x=0 dydz (2.100)

+

∫ a

0

∫ b

0

(x− a

2
)p|z=0 dxdy.On one hand, repla
ing the pressure (2.92) in (2.100), we have:

∫ h

0

∫ b

0

(z − h

2
)p|x=a dydz −

∫ h

0

∫ b

0

(z − h

2
)p|x=0 dydz (2.101)

= 2ρb

∫ h

0

z
∂φ

∂t
|x=0 dz − hρb

∫ h

0

∂φ

∂t
|x=0 dzwhere the part depending on C0 is equal to zero. Of 
ourse, we used the relationbetween the time derivatives of the velo
ity potential, 
omputed for x = 0 and x = a:

∂φ

∂t
|x=0 = −∂φ

∂t
|x=a.On the other hand, using again (2.92), we have:

∫ a

0

∫ b

0

(x− a

2
)p|z=0 dxdy = ρb

(

C0
a3

12
−
∫ a

0

x
∂φ

∂t
|z=0 dx+

a

2

∫ a

0

∂φ

∂t
|z=0 dx

)Summing up these last two equations we �nd the expression of the moment along
y-axis depending only on time derivatives of the velo
ity potential:

My = ρb

(

2

∫ h

0

z
∂φ

∂t
|x=0 dz − h

∫ h

0

∂φ

∂t
|x=0 dz −

∫ a

0

x
∂φ

∂t
|z=0 dx (2.102)

+
a

2

∫ a

0

∂φ

∂t
|z=0 dx+ C0

a3

12

)After 
omputing the time derivatives and integrating, we obtain the expression (2.96)of the moment, where the ri are 
omputed from (2.77). �In this paragraph we 
omputed the totality of for
es and moments of for
es gen-



2.3 � Tank model � 71erated by the liquid sloshing. This is done for the theoreti
al 
ase when an in�niteamount of sloshing modes is 
onsidered.2.3.4 Tank �nite dimensional model2.3.4.1 General presentation of the equivalent me
hani
al modelThe obje
tive of this se
tion is to 
onstru
t an approximate model of the liquidsloshing in the tank. As stated in Se
tion 2.3.3.1 the dynami
al e�e
t of the sloshingis a horizontal os
illation of the liquid 
enter of mass relative to the tank. Fromthe works [48℄, [22℄, [124℄, [130℄ this e�e
t 
an be well represented by an equivalentlinear me
hani
al model: a mass pendulum system or an equivalent spring masssystem. Both me
hani
al models are presented in Figure 2.15. In the �rst model,the os
illation of the 
enter of mass, generated by liquid sloshing, is represented bya verti
al pendulum with a mass, while in the se
ond model, the same os
illationis represented by a horizontal spring with a mass. A 
omplete overview of the twome
hani
al models 
an be found in [67℄.PSfrag repla
ements
l

M

1/2K 1/2K
m

m0m0

liquid free surfa
e

Figure 2.15: Mass pendulum and mass spring me
hani
al modelsIn our 
ase there are many reasons why we need to 
ompute the �nite dimen-sional model of the tank with liquid using an equivalent me
hani
al model. The �rstreason is be
ause the use of the potential of velo
ity equation (2.75) is quite di�
ultto numeri
ally manipulate due to its 
omplexity. For example, as mentioned in [48,Chapter 3℄, in the 
ase of a spa
e vehi
le, 
oupling of the equations of motion ofthe vehi
le to the equation of motion of a 
ontinuous liquid is too 
omputationallydemanding even with super 
omputers. Thus, it is 
onvenient to repla
e the liquidsloshing by a simple linear me
hani
al system. Besides, as explained in [18℄, theme
hani
al model is a good and easy tool for the introdu
tion of linear damping, es-pe
ially when the magnitude of the damping needs to be determined by experiments.



72 Chapter 2 � Mathemati
al modeling of the system �Finally, another reason is that with a me
hani
al model, the shape of the model willnot depend on the tank geometry or �ll level.An alternative idea in order to 
ompute the state-spa
e representation of the tankwith liquid would be to do some model identi�
ation. This approa
h though, whi
his not based on a PDE model, is di�
ult to implement due to the stru
ture of theexperimental setup. As we 
an see from Figure 2.6 we 
annot de
ouple the tank fromthe plate, thus the identi�
ation of the tank model will be done through the plate.In this 
ase the eventual errors from the plate model will propagate to the tank model.One 
an �nd two equivalent me
hani
al models for sloshing behavior in the litera-ture. The natural frequen
ies of both me
hani
al systems are easy to 
ompute. In the
ase of the mass pendulum system, the natural frequen
y is 1
2π

√

g

l
; while in 
ase ofthe spring mass system, the natural frequen
y is 1

2π

√

K
m
, where l and g are the lengthof the pendulum and the gravitational a

eleration, while K and m are the spring
onstant and the mass of the spring system as depi
ted in Figure 2.15. Moreover, thetransformation between the models is straightforward if we 
onsider the spring masslo
ated at the same height as the pendulum mass (not at the 
onne
tion point of thependulum hinge) and that the spring mass is atta
hed to the walls through a springwith a 
onstant of K =

√

mg

l
.The question that rises now is whi
h of the two models is better to use sin
ethey are similar, thus exerting the same for
es and moment on the tank. Generally,the mass pendulum system is 
onsidered more adequate (see [3℄, [70℄ or [123℄ amongothers) be
ause of his natural frequen
y 1

2π

√

g

l
whi
h varies with the 
hanges in axial(or gravitational) a

eleration g as the sloshing frequen
y of the liquid does. Inthe 
ase of the spring mass system, we will need to 
hange the spring 
onstant Kevery time the value of g will 
hange (in spite of this issue this approximation is alsoused by [18℄). Even though, for the moment we do not plan to use a time 
hanginggravitational a

eleration (although when 
onsidering a �ying airplane g 
hanges withthe altitude), we still prefer this formulation sin
e we 
onsider it more general.Remark: Before starting the model 
omputation, one 
an noti
e that the me
han-i
al model is 
ompatible with our early 
on
lusion, that a longitudinal tank motionwill 
reate sloshing while a verti
al os
illation will not.The main 
riterion when 
omputing the equivalent model of the liquid os
illationin the 
ontainer are the following [67℄:

• The equivalent system must produ
e the same for
e and moment, under some
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itation, as the a
tual system;
• The 
enter of gravity G must remain the same for small os
illations;
• The equivalent system must preserve the equivalent masses and moments ofinertia;
• The equivalent system must have the same modes of os
illations and produ
ethe same damping for
e.Therefore, 
orresponding to ea
h sloshing mode we will 
hoose an os
illating mass.Sin
e the 
ontribution to the resultant for
e and moment 
omes through the oddsloshing modes (see (2.89), (2.91), (2.96)), the me
hani
al model would in
orporateos
illating masses 
orresponding to odd sloshing modes only.Figure 2.16 shows a mass-pendulum model representing the liquid motion underhorizontal a

eleration C0 a
ting upon the 
enter of gravity of the tank and liquid.The os
illating masses, mni

are atta
hed through a pendulum rod of length lni
andthe pivot of the pendulum is pla
ed at a distan
e Lni

from the liquid 
enter of gravity.A �xed mass m0 is pla
ed at a distan
e L0 also from the liquid 
enter of gravity. Theintrodu
tion of the �xed mass is 
ompulsory sin
e not all the liquid in the tank is freeto move but only a small amount of liquid on the free surfa
e.
xaxis
C0

m0

G

l1

m1

l2

m2

m3

l3

L0

L1

L2

L3

Figure 2.16: Me
hani
al model with one �xed mass and 3 sloshing masses, represent-ing fuel sloshing under longitudinal ex
itation
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al modeling of the system �2.3.4.2 Determination of parameters for the mass-pendulum modelProposition 2.3.4. The equivalent mass-pendulum model is 
omposed of M equa-tions:
θ̈i + 2ξθ

√

g

li
θ̇i +

g

li
θi = −1

li
C0, i = 1 · · ·M (2.103)where θi is the angle of the ith pendulum 
ompared to its equilibrium position, ξθ =

0.001 is the damping of the pendulum and li the length of the pendulum 
omputedfrom
li =

g

Ω2
i

(2.104)where Ωi is the angular frequen
y of the 
orresponding liquid sloshing mode.Ea
h mass-pendulum system is 
hara
terized by his mass mi

mi =
8ρbh

πi
(2.105)and his position to the gravity 
enter of the liquid in steady motion Li

Li =
h

2
− 1

πi
a

tanh(πi
a
h)

+
2

πi
a

sinh(πi
a
h)
. (2.106)Moreover, the mass-pendulum model 
ontains a �xed mass m0

m0 = ρabh −
M
∑

i=1

mi (2.107)situated at a distan
e L0 from G

L0 =
1

m0

[

ρba3

12
−

M
∑

i=1

miLi

]

. (2.108)Proof:Step 1: liThe length of the pendulum, lni
is determined so that the angular natural frequen
y(whi
h is equal to 2π times the natural frequen
y) of the pendulum is the same as
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orresponding liquid mode (Ωi). Hen
e,
Ωi =

√

g

lni

(2.109)where ni ∈ N
∗ is the pendulum number 2. Therefore, from this last equation we
ompute the pendulum length (2.104). Note that a perfe
t approximation of thesystem is attained when 
hoosing an in�nite number of mass pendulum systems.Step 2: mi and m0The equation of motion of a pendulum under a horizontal a

eleration C0 [112℄, underthe assumption of small os
illating angles for whi
h sin(θni

) = θni
and cos(θni

) = 1,is:
lni
θ̈ni

+ gθni
= −C0 (2.110)where θni

is the os
illating angle taken from the equilibrium position.Using this equation, we 
ompute the total horizontal for
e generated by the me-
hani
al model. The expression of the for
e is found using Newton's se
ond law ofme
hani
s Fmech
x = ma, where the m is the total mass of the system 
omposed bythe pendulum masses and by the �xed mass and the a is the total a

eleration of thesystem.The a

eleration the system undergoes is a sum of two 
omponents, one 
omponentis generated by the pendulum free movement and the other 
omponent is the tankexternal a

eleration C0. The �rst 
omponent of the two a

elerations, is foundby writing the for
e equilibrium on the pendulum mass, when the 
onne
tion pointof the pendulum hinge is in steady motion (null external a

eleration). Thus thehorizontal a

eleration is given only by the horizontal 
omponent of the for
e ofgravity: mni
g sin(θni

(t)). The for
e equilibrium then gives:
mni

g sin(θni
(t)) = mni

lni
θ̈ni

(t).

Therefore, the total a

eleration is a = lni
θ̈ni

(t) + C0 and one 
an write the total2Here we use the subs
ript ni to di�erentiate the me
hani
al system from the 
orrespondingsloshing mode. On
e this relation is set, we will use for sake of simpli
ity, i instead of ni
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al modeling of the system �for
e Fmech
x generated by the mass pendulums movement:

Fmech
x = m0C0 +

∞
∑

ni=1

mni
C0 +

∞
∑

ni=1

mni
lni
θ̈ni

(t). (2.111)Imposing that the for
e generated by the mass pendulums is identi
al to the onegenerated by the liquid sloshing, (Fx = Fmech
x from (2.89) and (2.111)), we 
omputethe value of the �xed mass m0 from (2.107), where the mni

are the masses of thependulums and the produ
t ρabh is the total mass of the liquid. Moreover, againfrom Fx = Fmech
x we 
an also write:

∞
∑

ni=1

mni
lni
θ̈ni

(t) = 2ρ

∞
∑

i=1,3,5,...

r̈i(t)

Υ2
i

. (2.112)From this last equation, sin
e ea
h sloshing mode is independent of the others, one
an write for ea
h odd mode:
mni

lni
Υ2

i

2ρ
=

r̈i(t)

θ̈ni
(t)

(2.113)whi
h gives the dependen
y between the sloshing mode and the 
orresponding masspendulum system.The relation between ni and i is that every liquid mode i ∈ {1, 3, 5, ...} (as it 
anbe seen from equation (2.77) the modes of liquid sloshing are only odd modes) is 
or-responding to a pendulum denoted ni ∈ {1, 2, 3, ...}. Even if a perfe
t approximation
omes only with ni → ∞ in real situations it is possible to trun
ate ni at a 
ertainnatural number M .As an example for M = 3 we 
an see that to the �rst sloshing mode i = 1 is 
or-responding a �rst pendulum (ni = 1), to the third liquid mode i = 3 is 
orrespondinga se
ond pendulum (ni = 2) and to the �fth liquid mode i = 5 is 
orresponding athird pendulum (ni = 3).Remark: Sin
e the relation between the sloshing modes and the mass pendulumsystems is well established, from now on, we will denote the mass pendulum systemsby the subs
ript i instead of ni in order to simplify the writing.As mentioned before, we further make the assumption of small displa
ements ofthe pendulum above the equilibrium position (tanh(Υih) ∼ Υih) and dedu
e from
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r̈i(t) = −4C0h

a
− gΥ2

ihri(t). (2.114)Using (2.114) and (2.110), the ratio between r̈i(t) and θ̈i(t) be
omes:
r̈i(t)

θ̈i(t)
=

4hli
a





C0

g
+

Υ2

i ari(t)

4

C0

g
+ θi(t)



 (2.115)whi
h with (2.113) gives:
miΥ

2
ia

8ρh
=

C0

g
+

Υ2

i ari(t)

4

C0

g
+ θi(t)

(2.116)Analyzing the stru
ture of both sides of equation (2.116), note that, for a givenpendulum system, the left-hand side is 
onstant number. Thus, the right-hand sidemust be a 
onstant too (independent of ri(t), θi(t) for all t ≥ 0 ). Sin
e at the initialstate the liquid is supposed at rest (ri(0) = 0) and the pendulums in their verti
alposition (θi(0) = 0), we 
on
lude that the right side of the equation 
an be only equalto 1:
miΥ

2
ia

8ρbh
=

C0

g

C0

g

= 1.Sin
e the right-hand side of the equation is unitary, we obtain the following relationbetween free surfa
e displa
ement and pendulum rotation:
θi(t) =

Υ2
ia

4
ri(t),and �nally we 
an 
ompute the value of pendulum mass mi:

mi =
8ρbh

Υ2
i a
. (2.117)where a simple repla
ement of Υi by his expression from (2.85) gives the value of ea
hpendulum mass from (2.105).Step 3: Li and L0The distan
e between the 
enter of gravity of the liquid in steady motion and the
onne
tion point of the pendulum hinge is denoted Li (measured positive above the
enter of gravity). It will be 
omputed using the equivalen
e of moments.
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al modeling of the system �In the 
ase of the mass pendulum system, the moment is 
omputed, as in the 
aseof the liquid sloshing, by multiplying the distan
e and the for
eM =
−−−−−→
distance∧−−−→force.Thus, the moment 
omputed at the 
enter of gravity is:

Mmech
y = m0L0C0 +

∞
∑

i=1

miLiC0 +

∞
∑

i=1

miliLiθ̈i (2.118)where the for
e 
reated by the mass pendulum system (2.111) is multiplied by thedistan
e 
orresponding to ea
h pendulum system.The two systems generate the same resultant moment. Thus, imposing thatMy =

Mmech
y , one 
an write from (2.96) and (2.118):

miliLiθ̈i(t) = 2
ρ

Υ2
i

r̈i(t)

[

h

2
− 1

Υi tanh(Υih)
+

2

Υi sinh(Υih)

]Using the relation between r̈i and θ̈i from (2.113), we get, ∀i ∈ N
∗

Li =
h

2
− 1

Υi tanh(Υih)
+

2

Υi sinh(Υih)
(2.119)whi
h is exa
tly the expression from (2.106), with Υi from (2.85).Con
erning the distan
e L0 of the �xed mass, it is found 
omparing the termsdepending on the exterior a

eleration C0 from the equations (2.96) and (2.118):

m0L0C0 +
∞
∑

i=1

miLiC0 =
ρC0a

3b

12
.After eliminating the external a

eleration we get equation (2.108).Step 4: Mass-pendulum equationThe state-spa
e representation of the tank with liquid is straightforward from equation(2.110). Moreover, as stated earlier, one of the advantages of the use of me
hani
almodels is the easiness in 
onsidering the inherent damping. The damping ξθ 
an beeasily introdu
ed in the pendulum representation (2.110) to obtain equation (2.103).We did not �nd a methodology to measure the damping, so we �xed it at 0.001 forall the M modes, whi
h represents the vis
ous 
oe�
ient of the water at normaltemperature of around 20◦C.This last issue 
on
ludes the proof of Proposition 2.3.4. �The 
hoi
e of the state-spa
e ve
tor for the liquid sloshing, as in the 
ase of the
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t to several solutions. Finally, we 
hoose the state-spa
e ve
tor as
Xθ =

(

θ̇1
√

g

l1
θ1 · · · θ̇i

√

g

li
θi · · · ˙θM

√

g

lM
θM

)T (2.120)instead of ( θ̇1 θ1 · · · θ̇i θi · · · ˙θM θM

)T . This 
hoi
e is done in order toobtain a better 
onditioning of the system.Using the state-spa
e ve
tor (2.120), the dynami
 equation, for the general 
aseof an input uacc, is given by the following proposition:Proposition 2.3.5. The dynami
 equation for the mass-pendulum system is
Ẋθ = AθXθ +Bθuacc (2.121)where the matrix Aθ 
omputed from (2.103) for ea
h i satis�es

Aθ =













Aθ1
0 · · · 0

0 Aθ2
· · · 0

· · ·
0 0 · · · AθM













(2.122)
with Aθi

=





−2ξθ
√

g

li
−
√

g

li
√

g

li
0



 and the 
ontrol matrix Bθ is given by:
Bθ = (bθ1

, 0, ..., bθi
, 0, ..., bθM

, 0)T (2.123)where bθi
=

(

− 1
li

0

) and uacc = C0 as the 
ontrol variable.
With this last proposition the equivalent me
hani
al model is set. Based on themethod of 
al
ulus, the equivalent for
e and moment generated by the equivalentmodel is identi
al to the one generated by the sloshing of liquid. Besides, as one 
anobserve from Proposition 2.3.4, all the parameters of the mass pendulum systems:length, mass, position 
omparing to the 
enter of gravity are independent from theex
itation parameters (time, frequen
y, amplitude).
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al modeling of the system �Con
lusion: In this se
tion we 
omputed the model of the tank and liquid slosh-ing. In order to easily manipulate the in�nite dimensional model of the liquid wemade an analogy with a me
hani
al mass pendulum system. Finally, a state-spa
erepresentation of the sloshing behavior is 
omputed.2.4 Complete model representation2.4.1 In�nite dimensional 
ouplingAs presented earlier in the introdu
tion, the idea in 
omputing the 
omplete modelof the entire stru
ture is �rst to build one model for the plate and one for the tankwith liquid and se
ond to 
ombine them by studying the mutual intera
tions betweenthe two separate models. Therefore, as shown, in Se
tion 2.2.2 we 
omputed thein�nite dimensional model of the re
tangular plate, given by the equation (2.27) andin Se
tion 2.3.3 we 
omputed the in�nite dimensional model of the tank with liquid,given by the equation (2.67) and (2.68) for the liquid movement. The 
oupling is themost di�
ult and a key point in our work.For further details 
on
erning the 
oupling between a sloshing liquid and a �exiblestru
ture one 
an 
he
k [123℄ or [103℄. Thus, to the best of our knowledge there areno other works that will detail the 
oupling between a �exible plate and a tank withsloshing liquid, in both in�nite and in �nite dimension.In order to 
omplete the model we �rst analyze the in�uen
e of the liquid sloshingon the plate movement and se
ond we analyze the in�uen
e of the plate bending onthe sloshing of liquid.2.4.1.1 In�uen
e of the liquid sloshing on the plate movementThe liquid sloshing is sensed by the plate as an external moment whi
h, along withthe piezoele
tri
 a
tuators, will 
ontribute to the plate bending. As it 
an be seenfrom the partial derivative equation of the plate (2.27), on the right-hand side of theequation, we have my and mz whi
h are the external moments along the y and z-axis:We re
all this equation here:
ms

∂2w

∂t2
+ ζ(w)

∂w

∂t
+ Y Is∆

2w =
∂2my

∂y2
+
∂2mz

∂z2where w is the plate displa
ement from its equilibrium position. The other variableswere detailed before in (2.27).



2.4 � Complete model representation � 81These moments are generated by the piezoele
tri
 a
tuators glued to the plateand by the sloshing of the liquid:
my = ma

y +mf
y , mz = ma

z +mf
zwhere ma

y and ma
z are the moments delivered by the a
tuators and mf

y and mf
z aredelivered by liquid sloshing along the y and z axis. Furthermore, the moments gen-erated by liquid sloshing were 
omputed in Proposition 2.3.3 for the moments alongthe y-axis and z-axis.2.4.1.2 In�uen
e of plate deformation on the liquid sloshingThe plate deformation is sensed by the liquid sloshing as an external a

elerationthat disturbs the liquid. The study of the liquid subje
t to an external a

elerationis given by the linear equation of motion of the liquid (2.67):

∂φ

∂t
+
p

ρ
+ g(z − h) − C0x = 0where C0 is the external a

eleration.In our 
ase, this a

eleration is generated by the plate bending. Therefore, it 
anbe expressed as a two time derivative of the plate deformation w(y, z, t) 
omputed inthe gravity 
enter of the tank in steady motion G = (yG, zG):

C0 = ẅ(yG, zG, t) =

∞
∑

k=1

ηk(yG, zG)q̈k(t) (2.124)Based on the issues detailed earlier in this 
hapter, we 
an write the 
omplete PDEmodel of the system. This model though, is not implementable on the experimentaldevi
e. Therefore, in the next se
tion, we express the 
oupling in �nite dimensionand we expli
itly 
ompute all the new matri
es entering the model formulation.2.4.2 Finite dimensional 
ouplingIn this se
tion we will write the �nite dimensional approximation of the 
ompletesystem. As detailed earlier, we �rst 
omputed PDE models for the plate and for thesloshing liquid in the tank and se
ond we made �nite dimensional approximationsof two di�erent kinds (modal for the plate and me
hani
al for the sloshing) to 
on-stru
t state-spa
e models. Now, we also need to study the in�uen
e of ea
h model
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al modeling of the system �approximation onto the other.Therefore, we 
onsider again the two separate 
ases: the in�uen
e of the liquidsloshing on the deformation of the plate and the in�uen
e of the plate deformationon the tank �lled with liquid up to an arbitrary level.Before detailing these issues let us remind that in Se
tion 2.2.3 we 
omputedthe state-spa
e approximation of the re
tangular plate undergoing deformation (by
onsidering only the �rst N deformation modes) while in Se
tion 2.3.4.2 we 
omputedthe state-spa
e approximation of the tank with liquid (by making an analogy withMmass pendulum system 
orresponding to the �rst 2M − 1 odd sloshing modes).Let us now detail the 
oupling issue.2.4.2.1 Liquid sloshing in�uen
e on the re
tangular plateThe liquid sloshing is sensed by the re
tangular plate as an external perturbationwhi
h 
omes by the mean of an external moment. Moreover, we suppose that thetotal moment generated by the liquid sloshing is 
on
entrated in a small square areaaround the gravity 
enter G (measured in steady motion) of the tank with liquid. Thisarea 
an be geometri
ally des
ribed by the position of the opposite 
orners (y1G, z1G)and (y2G, z2G).If we denote Mθp the moment generated by the M 
onsidered mass-pendulumssystem, his expression 
an be written from (2.118) by 
an
eling the external a

eler-ation of the tank:
Mθp =

M
∑

i=1

miLiliθ̈iwhere the �xed mass denoted m0 was not taken into a

ount sin
e is not 
reating anysloshing.Further on, we 
an noti
e that the variable θ̈i 
an be expressed using the state-spa
e ve
tor of the pendulum approximation given by (2.120). Thus, the previousexpression of the moment 
an be equivalently written:
Mθp =

M
∑

i=1

(

miLili 0
)





θ̈i
√

g

li
θ̇i



 . (2.125)This equation 
an also be further simpli�ed if we noti
e that the 
olumn ve
tor is
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e ve
tor Xθ of the liquid:
Ẋθ =













· · ·
θ̈i

√

g

li
θ̇i

· · ·













.

The last expression (2.125) be
omes, developing the sum:
Mθp =

(

m1L1l1 0 · · · miLili 0 · · · mMLM lM 0
)

Ẋθor again
Mθp =

(

m1L1l1 0 · · · miLili 0 · · · mMLM lM 0
)

AθXθ, (2.126)the dynami
 matrix Aθ being 
omputed from (2.122).We make the same analogy as in the 
ase of the moment generated by the piezo-ele
tri
 a
tuators (see Se
tion 2.2.3.2). We 
onsider that the moment generated byliquid sloshing is being sensed by the plate as an external perturbation.Sin
e the moment is 
on
entrated around the gravity 
enter, we use again theHeaviside step H from (2.57) to 
ompute it.As we did for the 
ase of 
ontrol a
tuator in Se
tion 2.2.3.2, we integrate on thesurfa
e where the moment is di�erent than zero and we get the 2N 
omponents aθpkof the perturbation matrix denoted Aθp:
aθpk

= Kθp(Y
′
ik

(y2G) − Y ′
ik

(y1G))

∫ z2G

z1G

Zjk
(z)dz (2.127)

+Kθp(Z
′
jk

(z2G) − Z ′
jk

(z1G))

∫ y2G

y1G

Yik(y)dywhere aθpk
∈ R

1×2M and the matrix
Kθp =

(

m1l1L1 0 · · · miliLi 0 · · · mM lMLM 0
)

Aθis 
omputed from (2.126). As in (2.46), ik, jk express the deformations of the two 
on-sidered beams of the plate deformation (see Se
tion 2.2.3 and more pre
isely equation(2.32)).
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al modeling of the system �The total perturbation matrix is �nally written:
Aθp =



































aθp1

0...
aθpk

0...
aθpN

0



































∈ R
2N×2M (2.128)

where the lines aθpk
are 
omputed from (2.127).The state-spa
e representation of the plate (2.63) 
an �nally be rewritten takinginto a

ount also the in�uen
e of the liquid sloshing and be
omes:

{

Ẋp = ApXp +Bpu+ AθpXθ

y = CpXp

(2.129)2.4.2.2 Plate deformation in�uen
e on tank liquid sloshingThe tank senses the plate movement as an external horizontal a

eleration, super-posed on the tank own a

eleration 
reated by liquid movement without externalin�uen
e.The mass pendulum systems were already analyzed under an external a

eleration
C0 (see (2.110) or Figure 2.16). Now, we express this a

eleration as a two timesderivative of the plate deformation w(y, z, t) at the tank gravity 
enter (sin
e theexternal a

eleration a
ting on the me
hani
al systems is lo
ated there). Thereforewe get:

C0 = ẅ(yG, zG, t) =

N
∑

k=1

ηk(yG, zG)q̈k(t)where yG, zG are the 
oordinates of the gravity 
enter G along the y and z-axis.Furthermore, for sake of simpli
ity, the terms not depending on the plate kinemati
parameters are introdu
ed in a ve
tor denoted KG. Finally we get:
C0 = KG

(

q̈1(t) ω1q̇1(t) · · · q̈k(t) ωkq̇k(t) · · · q̈N (t) ωN ˙qN (t)
)T (2.130)
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KG =

(

Yi1(yG)Zj1(zG) 0 · · · Yik(yG)Zjk
(zG) 0 · · · YiN (yG)ZjN

(zG) 0
)and the 
olumn ve
tor is exa
tly the derivative of the state-spa
e ve
tor of the plate

Xp as it 
an be seen from (2.43).Thus, the latter equation 
an be written in a more 
ompa
t form:
C0 = KGẊp (2.131)or again using (2.63),

C0 = KGApXp +KGBpu. (2.132)Using the equation (2.132) into the state-spa
e representation of the mass pen-dulum systems (2.121) we get the 
omplete state-spa
e representation of the masspendulum systems 
onne
ted to the plate:
Ẋθ = AθXθ +Bθ(KGApXp +KGBpu) (2.133)where all the matri
es are detailed in Se
tion 2.2.3 and in Se
tion 2.3.4.2.

2.4.2.3 Compa
t writing of 
omplete modelThe state-spa
e representation of the 
omplete model 
an be written in a 
ompa
tform by using equations (2.129) and (2.133). By taking the state-spa
e ve
tor of the
omplete system as a 
ombination of the plate state-spa
e ve
tor and liquid state-spa
e ve
tor
X =

(

Xp

Xθ

)the 
omplete model written for N modes of the plate and M 6= N mass pendulumsystems is:














Ẋ =

(

Ap Aθp

Apθ Aθ

)

X +

(

Bp

Bpθ

)

u

y =
(

Cp 0 )X. (2.134)
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al modeling of the system �where Apθ = BθKGAp, Bpθ = BθKGBp and 0 denotes null matrix be
ause the outputvariable is the piezoele
tri
 sensor whi
h is not in�uen
ed in any way by the liquidsloshing.In this se
tion we �rst expressed the 
oupling between the PDE plate model andthe PDE liquid model. This is done by studying the in�uen
e of the plate bending onthe liquid sloshing and vi
e-versa. Based on this, an approximation of the 
ouplingwas then 
ondu
ted.
2.5 Con
lusion of the 
hapterIn this 
hapter, the 
omplete model of the experimental devi
e was 
omputed. Itwas �rst wrote in in�nite dimension and then approximated under the shape of astate-spa
e representation. The �nal expression of the model is given by (2.134).This model will be used in Chapter 4 in order to 
ompute di�erent types of
ontrollers that will be used to attenuate the vibrations of the stru
ture.



Chapter 3
Controller synthesis - Theoreti
alapproa
h
The model of the stru
ture was previously 
omputed in Chapter 2 and is written asthe system of equations (2.134).In this 
hapter we detail some preliminary te
hniques in order to e�e
tively 
om-pute the model, along with some details for the appli
ation of di�erent 
ontrol meth-ods. We propose two types of 
ontrol starting from the state-spa
e representation:�rst, a 
lassi
al pole pla
ement 
ontrol 
oupled with a Luenberger observer and se
-ond, a frequen
y domain H∞ 
ontrol, designed with meeting frequen
y-domain per-forman
e 
riteria.In this 
hapter we also detail some of the theoreti
al 
onsiderations regardingthe problem of a
tive 
ontrol of vibrations for our experimental setup imitating aplane wing (see [4℄ for more details about airplane 
hara
teristi
s and 
ontrol). Theexperimental plant is a �exible stru
ture thus our 
ontrol problem 
an be 
onsideredas a part of the 
omplex 
lass of a
tive 
ontrol problems of �exible stru
tures. One
an read [82℄ for di�erent 
ontrol strategies that 
an be applied on �exible systems,[131℄ for a 
ontroller that takes into a

ount the nonlinear behavior of these systems,[17℄ for a feedba
k 
ontroller or again [14℄, [12℄, [126℄, [15℄, [88℄ where the robust
H∞ 
ontrol of �exible systems is detailed. In our 
ase, the obje
tive is to attenuatethe vibrations of the stru
ture while maintaining some predetermined performan
es.More pre
isely, the issue is to attenuate the mode vibration while the stru
ture (thusthe dynami
) is a�e
ted by perturbations.87
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al approa
h �3.1 Energy 
omputationBefore starting the 
ontrol pro
edure, an important step is to 
hose the number N ofplate modes and the number M of mass pendulum systems we will use for 
omputingthe analyti
al model. As it will be proven latter in this paragraph, the in�uen
e ofthe sloshing modes on the total plant dynami
s is mu
h smaller than the in�uen
eof the plate's bending modes. We will indeed see latter that the magnitude of thesloshing modes is very small 
omparing to the one of the plate modes. Therefore,the most important 
hoi
e is the one of the appropriate number of plate modes.Nevertheless, the method will be detailed for the whole 
oupled system, re
tangularplate and 
ylindri
al tank together.Several fa
tors must be taken into 
onsideration. First of all, we should insurethat the number of modes we sele
t give a 
lose representation of the experimentalsetup. Sin
e the experiment 
orresponds theoreti
ally to an in�nite number of modes,the trun
ation we perform should gather the largest number of modes. But this isnot relevant in pra
ti
e sin
e in this 
ase the 
ontrol 
annot be 
omputed due to thevery large dimension of the system.Considering the plate, sin
e we want to 
ontrol �exion and torsion movements, itis natural to 
onsider both �exion and torsion modes in our trun
ated model. Evenin this 
ase, we need to �nd how many torsion and �exion modes have to be takeninto 
onsideration in order to have a good approximation. For example one 
an 
he
kthe work [114℄ where, on the same experimental setup as ours, the author 
hoosesonly one �exion mode and only one torsion mode of the plate with no sloshing mode.Another example 
an be found in the works [81℄ and [133℄ where the authors 
hoosea priori the number of 
onsidered modes.In our 
ase, even though the a priori 
hoi
e is still possible, we propose also an-other method based on the energeti
 
ontribution of ea
h mode of the model. Thebasis for the energy 
al
ulation used in this approa
h 
an be read in [146, Chapter 4.6℄.The �rst point is to 
onsider that the system is in his diagonal representation.Even though the plate modes and the liquid sloshing modes are de
oupled (be
ausetheir dynami
 matri
es are in a diagonal representation due to the de
oupled modeshypothesis), the 
oupled dynami
 matrix is not diagonal due to the 
oupling betweenthe plate and the tank, as detailed in Se
tion 2.4. This last issue 
an be easily noti
edby 
onsidering only the �nal equation of the 
omplete system (2.134). If the systemis diagonal, the 
ontrollability and observability Gramians have a spe
ial shape whi
h



3.1 � Energy 
omputation � 89will make possible the energy 
omputation (see equation (3.3) below).Consider the total output energy eT of our system denoted Σ(s) of dimension
R

(2M+2N)×(2M+2N) represented by equation (2.134). When the system is ex
ited by aDira
 unit impulse on his input, the energy 
an be written as:
eT = ||y(t)||22 = ||Σ(s)||22. (3.1)Moreover, using the observability Gramian Wo and the 
ontrollability Gramian

Wc, this expression 
an be rewritten as in [146, Chapter 4.6℄:
eT = Tra
e{BWoB

T} = Tra
e{CWcC
T} (3.2)where the B and C are the 
ontrol and output matrix of the system written in thediagonal state-spa
e representation.We suppose that the 
ontrollability Gramian has the following shape:

Wc =













W11 · · · W1j · · · W1(2M+2N)

· · ·
Wi1 · · · Wij · · · Wi(2M+2N)

W(2M+2N)1 · · · W(2M+2N)j · · · W(2M+2N)(2M+2N)













(3.3)where Wij = W T
ij sin
e the dynami
 matrix is diagonal.Sin
e the system is written in a diagonal basis, and the dynami
 matrix has only
omplex 
onjugate pairs of eigenvalues, ea
h element of the 
ontrollability Gramianveri�es an autonomous Lyapunov equation:

AiWij +WijA
T
j +BiB

T
j = 0 (3.4)where Ai ∈ R

2×2 and Aj ∈ R
2×2 are the dynami
 matri
es 
orresponding to the ithand jth modes.The output 
ontribution of ea
h mode, 
an be 
omputed by substa
t from the totalenergy eT the energy that the system would have had if this mode was un
ontrollable.Therefore, the methodology we are using is simple: we 
onsider that for a spe
i�
mode of index k, the 
orresponding 
ontrol matrix Bk (see (3.4)) is equal to zero. Inthis 
ase we noti
e that, the newly 
omputed Gramian matrix, denoted Wck

in orderto emphasize the un
ontrolled mode k, has the elements 
ontaining the kth mode,equal to zero.If we denote the output energeti
 
ontribution of the kth mode by Eok
, its value
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al approa
h �
an be written:
Eok

= eT − Tra
e{CWck
CT} (3.5)For us, it is more 
onvenient to 
ompute the modal energeti
 
ontribution instead[134℄. This is easily done by repla
ing the output matrix C in equation (3.5) bythe identity matrix I of dimension (2M + 2N) × (2M + 2N). Therefore the modalenergeti
 
ontribution of the kth mode is:

Ek = eT − Tra
e{IWck
IT} (3.6)Finally, using a simple per
entage operation Ek

eT
100 we 
an 
ompute the energy 
on-tribution of the kth mode 
omparing to the total amount of energy of the plant.In our 
ase, we 
ompute analyti
ally the state-spa
e model of the plate using alarge number of modes (14 modes for the stru
ture). We then use this methodologyand equation (3.6) to 
ompute the energy 
ontribution of ea
h mode. Finally, we sumthe energy of all the modes until more than 90% of the total plate energy is rea
hed.Thus, the 
onsidered modes des
ribe well the plate behavior in terms of energy. The
orre
t amount of modes is set. See below in Se
tion 4.2 of Chapter 4 for the resultsof this algorithm on the experimental devi
e.3.2 Pole pla
ement and full state observerUsing the state-spa
e representation (2.134), we now aim at 
omputing a 
ontrollerusing the pole pla
ement method. As seen from Figure 1.1, there are two piezoele
tri
a
tuators in the system input and two piezoele
tri
 sensors in the system output.A
tually, they are not both used as inputs and outputs of the system. One a
tuatoris used for system input and one sensor for system output. The other a
tuator gluedon the plate is used, as it will be shown latter in Se
tion 3.3 below, as a possibleinput for applying perturbations to the system. The other sensor is used only forfurther 
omplementary measurements, when needed. Thus, the system we 
onsideris a single input single output system (SISO).Pole pla
ement 
ontrolThe pole pla
ement method is well known in 
ontrol system theory. Our purposehere is not to o�er a detailed presentation of the method but just to give a fewdetails 
on
erning the implementation of the method in our 
ase. For further details
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Figure 3.1: State feedba
k 
ontrolabout state-feedba
k and pole pla
ement 
oupled with observer 
onstru
tion one 
an
he
k for example the referen
es [9℄, [57℄, [77℄, [143℄ among others. For a feedba
k
ontrol implementation on a �exible stru
ture, one 
an see [89℄ for example. Thepole pla
ement method gives the user the possibility to 
hoose himself the lo
ationof the 
losed-loop system poles, therefore allowing the possibility of pla
ing themat some predetermined lo
ations. Although this method has some drawba
ks when
onsidering very 
omplex systems, it is quite good for our 
ase and may be seen asan introdu
tion to the 
ontrol of more 
omplex systems.Usually, the state-spa
e design 
ontrol methods, su
h as the pole pla
ement in our
ase, are more easily performed using a full or partial state feedba
k. In the 
ase of thestate feedba
k, the 
ontrol a
tion is a
hieved by feeding ba
k a linear 
ombination ofthe system's states through a matrix (or gain depending on the feedba
k type) usuallydenoted K. The diagram of the state feedba
k 
ontrol is depi
ted in Figure 3.1, wherethe di�erent blo
ks are exa
tly the ones from the state-spa
e representation (2.134).Let us 
onsider a state-spa
e representation of a 2M + 2N dimension linear timeinvariant (LTI) system, written in the 
ompa
t standard form:
{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(3.7)where the �rst equation des
ribes the dynami
 of the system and the se
ond equationthe measured output. The values M and N stand respe
tively for the number of
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al approa
h �plate modes and mass pendulum systems. The physi
al meaning and the dimensionsof y and u are presented in Se
tion 2.4.2.3 of Chapter 2. Furthermore, we assume thesystem is 
ausal, and therefore the usual feed-forward matrix is zero.Using the feedba
k law, the 
ontrol signal 
an be written
u(t) = −Kx(t) + r(t)where x(t) is the state-spa
e ve
tor of the system and r(t) is a referen
e signal. Twodi�erent 
ases 
an be found for the referen
e signal. It 
an be di�erent from 0 andvariable in an unstru
tured manner. In this 
ase we need the system output to tra
krapidly, for a spe
i�
 
lass of systems, this referen
e signal. The other possibility iswhen the referen
e vanishes (r(t) ≡ 0). In this 
ase, the 
ontroller generates a 
ertain
ommand to the plant based on the error between the system referen
e r and thesystem measured output y. The goal in this 
ase is to generate a 
ontrol that �rstwill rapidly and smoothly take the values of the system output to the value of thereferen
e (or set point) and se
ond will maintain the rea
hed value in the presen
e ofsome external disturban
es. In this 
ase the 
ontrol system problem is a regulationproblem and the 
ontroller is 
alled a regulator. Afterward, we pla
e ourselves inthis type of 
ontrol problem. Taking this last issue into a

ount, the earlier equationbe
omes:
u(t) = −Kx(t). (3.8)Repla
ing this last equation into the dynami
 representation (3.7), we obtain the
losed-loop representation of the system with feedba
k:

ẋ(t) = (A− BK)x(t). (3.9)In this 
ase, all the 
losed-loop poles of the system 
an be pla
ed by sele
ting thevalue of the K matrix su
h that the eigenvalues of (A−BK) are at the desired polevalues. This 
an be done only if the open-loop system is fully 
ontrollable, that is tosay the rank of the 
ontrollability matrix is the same as the dimension 2M + 2N ofthe dynami
 matrix A.The 
ontrollability of a system is a key 
on
ept in the 
omputation of system
ontrol laws sin
e it tells if the implementation of 
lassi
al 
ontrol laws will be ofsome result or not. A system is said to be 
ontrollable if any initial state x0 at anyinitial time t0 
an be moved to any other desired state xf = x(tf ) in a �nite time
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ement and full state observer � 93interval tf − t0 > 0 and by applying an admissible 
ontrol fun
tion. The dire
t resultof this formulation is the de�nition of the 
ontrollable system using the 
ontrollabilitymatrix Qc de�ned as in [139℄ by:
Qc =

(

B AB · · · A(2M+2N)−1B
)

. (3.10)As a 
on
lusion, the 
ontrollability of the system is assured, meaning that thematrix pair (A,B) is 
ontrollable, if rank(Qc) = 2M + 2N .Finally, if the system is fully 
ontrollable, we 
hoose the value of the 
losed-looppoles, whi
h are the eigenvalues of (A−BK), and then we 
ompute the matrix K.There are di�erent methods for 
omputing this matrix and for further details one 
an
he
k referen
e [101℄. For example, the dire
t substitution method 
ombined with the
omputation of the 
oe�
ients of like powers 
an be used, or again the A
kermann'sformula (see [99℄). Another elegant way is to write the system in the 
ontrollable
anoni
al form, using an adequate transformation matrix, and then simply 
omputeea
h element of the K matrix by simple subtra
tion operations.Observer designThe �rst assumption when designing a state feedba
k 
ontrol is that all the systemstates gathered in the state-spa
e ve
tor x(t) are known, and thus they 
an be usedfor the feedba
k law. In pra
ti
e thus, this is only sometimes, but mostly never,true. There are many reasons. One �rst reason may be simply from the impossibilityto measure some of the system states, either be
ause of their very large quantity orbe
ause of the great 
ost that will be needed for spe
ialized sensors. Another reasonmay be just simply the impossibility to measure some system states sin
e they have nophysi
al meaning or be
ause the noise in the measurements is too large and thereforeit gives a faulty measurement.A straightforward 
lass of solutions are the observers (or estimators). They were�rst introdu
ed by Luenberger [84℄ and are de�ned as a system whi
h (see [139℄):
• is intended to approximate the state ve
tor x of another system by means of ave
tor x̂;
• has at its inputs the inputs and available outputs of the latter system.The observer 
an be either a Luenberger observer (see [84℄), if the signal-to-noiseratios are su�
iently high (thus the system 
an be treated as deterministi
) or a
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al approa
h �Kalman �lter (see [68℄) if the signal-to-noise ratios are not very high. In our 
asethough, we 
onsider the system deterministi
. Therefore we will further use Luen-berger observers.Moreover, sin
e we do not have information about any of the parameters of thestate-spa
e ve
tor, we need to re
onstru
t all the state-spa
e ve
tor x of the system. Inthis 
ase the state-spa
e ve
tor of the observer be
omes identi
al to the approximatedstate-spa
e ve
tor of the plant x̂. This observer is 
alled full state Luenberger observerand some steps regarding his 
onstru
tion are detailed in the following lines.Before starting the 
ontroller 
omputation, we suppose that there is no additivenoise in the state equation or in the measurements and 
ontrols. Using this assump-tion, we think of estimating the entire state-spa
e ve
tor of the LTI system usingonly the output and 
ontrol measurements. The error between the estimated state
x̂ and the true state should be
ome minimal. There are several ways of de�ning theminimal error [99℄, either as the minimum square error, minimum absolute error, et
.,but in our 
ase the estimation error is de�ned as:

e(t) = x(t) − x̂(t). (3.11)Therefore, as stated earlier, the 
onstru
ted observer should satisfy e(t) −→
t→+∞

0.The main idea in the observer 
onstru
tion is to 
hoose a predetermined shapefor the observer:
˙̂x(t) = F x̂+Gy(t) +Hu(t) (3.12)where y(t) and u(t) are the measurement output and the 
ontrol input of the realplant (3.7). The ve
tor x̂ has the same dimension as the state-spa
e ve
tor x sin
ethe observer is a full state observer. Furthermore, the matrix F is a square matrix ofdimension (2M + 2N) × (2M + 2N) while G and H are in R

(2M+2N)×1 sin
e y and uare s
alar measures.Putting the dynami
 equations (3.7) and (3.12) in the error equation (3.11) weobtain
ė(t) = ẋ(t) − ˙̂x(t) = Ax(t) +Bu(t) − (F x̂+Gy(t) +Hu(t))or again using the measured output equation from (3.7)

ė(t) = Fe(t) + (A−GC − F )x(t) + (B −H)u(t). (3.13)



3.2 � Pole pla
ement and full state observer � 95Furthermore, we want this error to be independent both of the 
ontrol law weare 
onsidering and of the state-spa
e ve
tor we want to re
onstru
t. Therefore, weneed it to tend asymptoti
ally to zero regardless these issues. This means that it is
ompulsory to have H = B and F = A−GC.Moreover, the G matrix is 
omputed using the pole pla
ement method detailed inthe previous part. From the 
ontrol theory we know that we 
an �nd the G matrix,that will arbitrarily pla
e the poles of A − GC at the desired lo
ations, but only ifthe system is observable.The observability of a spe
i�
 state or of the whole system is a key 
on
ept inthe 
omputation of observers. In this 
ase the output has all the 
omponents of thestate, therefore, it is possible to estimate all the system's states using only the inputand output of the system. Moreover, the 
on
ept of observability is mathemati
allydual with the 
on
ept of 
ontrollability presented earlier.A system is said to be observable if any initial state x(t0) 
an be determined aftera �nite time interval t− t0 from the measurement history Y (t) = {y(τ), t0 ≤ τ < t}.Thus, the whole ve
tor x 
an be 
omputed given the uniqueness of the initial state(see [139℄).Using the observability test matrix Qo:
Qo =













C

CA...
CA(2M+2N)−1













, (3.14)the observability of the system 
an be written: the system (3.7) is fully observable(or the matrix pair (A;C) is said to be observable), if the observability matrix hasfull rank: rank(Qo) = 2M + 2N .Separation prin
ipleUntil now we treated separately the two issues, observer design and state feedba
k
ontrol design, without taking into 
onsideration the in�uen
e of one to the other.A
tually, we 
onsidered them to be 
ompletely separate and we did not 
he
k ifthere is, or not, a re
ipro
al in�uen
e of their dynami
s. But, as it 
an also be seenfrom Figure 3.2, they 
an not be treated separately sin
e the feedba
k law uses theestimated system state sin
e the real state ve
tor is 
ompletely unknown.It 
an be easily proven that, in our 
ase, when the referen
e signal is equal to zero,



96 Chapter 3 � Controller synthesis - Theoreti
al approa
h �
PSfrag repla
ements
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yẋ = Ax+Bu
y = Cx

Observer

u = −Kx̂Figure 3.2: Feedba
k 
ontrol law and observerusing (3.9) and (3.13) we 
an write ∀t ≥ 0:






















(

ẋ(t)

ė(t)

)

=

(

A−BK BK

0 A−GC

)(

x(t)

e(t)

)

y(t) =
(

C 0
)

(

x(t)

e(t)

)

.

(3.15)Computing the 
hara
teristi
 equation of the system (3.15), we obtain:
ψ(s) = det

[

sI − (A− BK) −BK
0 sI − (A−GC)

]

= 0and sin
e the system is blo
k triangular, the 
hara
teristi
 equation be
omes
ψ(s) = det[sI − (A− BK)] det[sI − (A−GC)] = 0.This last equation indi
ates 
learly all the poles of the 
losed-loop system with theobserver. They are only the poles of the plant that result from the 
omputation of thefeedba
k gain K and the desired observer poles, 
hosen when 
omputing the matrix

G. This is 
alled the prin
iple of separation of estimation and 
ontrol (or shortlyseparation prin
iple or deterministi
 separation prin
iple [15℄, [104℄). Therefore, theoptimal feedba
k 
ontroller 
an be solved by separately design an optimal observer,
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ontroller � 97for the state-spa
e system, whi
h will feed the optimal deterministi
 
ontroller.Some pra
ti
al pre
autions have to be taken while 
hoosing the poles. First ofall, we would like the estimator error to vanish as qui
kly as possible so that thefeedba
k law be
omes in reality u = −Kx and not u = −Kx̂. In order to do this,the observer poles will be 
hosen so that they are faster than those of the system weare estimating. Hen
e the observer will be delivering a faster response. This meansthat the smallest 
hosen pole (in absolute value) of the observer will need to haveits magnitude 
onsiderably larger than the value of the smallest system pole. At thesame time, we need to be 
areful sin
e very large observer poles will imply a veryfast response from the observer. This suggest that it will not follow only the systembut also the noise of the ignored measurements. The same rule applies also in the
ase of the feedba
k 
ontrol. Here, the observer poles must be 
hosen faster that the
losed-loop system poles. There are di�erent methods in the literature 
on
erninghow fast the observer poles have to be in 
omparison to the feedba
k poles (see [9℄or [128℄), but the 
riteria used are only empiri
al. In spite of this, we state that we
an not a priori impose a 
ertain amount sin
e this basi
ally depends on the systemunder 
onsideration.It is well know that only the real part of the 
omplex eigenvalues in�uen
es theresponse time [9℄. In our 
ase we observe that 
hoosing all the feedba
k poles withtheir real part larger than the real part of the open-loop poles is a 
ompli
ated issue.This is due to the voltage delivered by the feedba
k 
ontroller whi
h is ex
eeding thea
tuator amplitude limitations.Further details about the implementation of the state feedba
k law, along withtests on the experimental devi
e are given later in Se
tion 4.4 of Chapter 4.3.3 H∞ 
ontrollerWhen 
onsidering the problem of a
tive 
ontrol of �exible stru
tures, the most em-ployed approa
h is the one using H∞ theory. This is mainly due to the fa
t that,in the 
ontrol problem, many issues usually need to be taken into a

ount. Let usdetail these issues for our 
ase. First, sin
e the modes we 
onsider are the most ener-geti
 ones (see Se
tion 4.2), the 
ontroller has to attenuate espe
ially the vibrationsof these ones. Se
ond, the 
ontroller needs to attenuate vibrations in spite of modelmismat
hing or un
ertain des
ription of some physi
al phenomena. Third, the dy-nami
 of high frequen
ies, whi
h has been negle
ted in the model 
omputation, needs
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al approa
h �also to be taken into a

ount. Finally, our purpose is to see how the system rea
tsto exterior perturbations, thus the 
ontroller must be robust enough in order to takethis spe
i�
ation into a

ount. Based on these issues, the H∞ approa
h seems to bethe most natural one.The work in the �eld of robust H∞ 
ontrol is very dense. The purpose of thisparagraph is not to give a fully detailed presentation of the theory but just to givesome pointy details and to fo
us on the a
tual implementation of the 
ontrol to oursetup. For a 
omplete overview of the method, one 
an 
he
k the �rst works [51℄ or[145℄. For a more pra
ti
al approa
h, one 
an read referen
es [12℄, [59℄ or [85℄ whereimplementation methods are 
arried out. The spe
i�
 
ase of H∞ 
ontrol on �exiblestru
tures 
an be 
he
ked in [5℄, [37℄, [69℄, [88℄, [135℄ among others.When 
omputing the model of a �exible stru
ture 
oupled with a liquid �ow,numerous sour
es of errors may exist. For instan
e, we 
an 
ite the damping of theliquid sloshing whi
h in our 
ase is 
hosen 
onstant for all modes and whi
h in realityis not. Another example we 
an mention 
on
erns the 
lamped side of the plate whi
hwe 
onsidered to be perfe
tly �xed. In reality this is not always true, and ea
h smallmovement of the 
lamped side 
an 
hange the value of the frequen
y and the modesshape. Finally, and probably the most important sour
e of errors to our knowledge, isthe 
onta
t between the tank and the re
tangular plate or the perfe
t 
entering of thetank to the plate. The 
onta
t is assumed to be perfe
tly rigid during the modelingphase but in reality, we 
an observe that it is not. Furthermore, experien
es on theexperimental devi
e show that the system behavior is di�erent based on the tankbeing perfe
tly 
entered or not (de
reases in the amplitude of the �rst �exion modeof the plate are visible if the tank is not perfe
tly 
entered, espe
ially when a largeamount of liquid is 
onsidered).This gap between the dynami
 model and the a
tual experimental setup, leads usto 
hoose a type of 
ontrol that 
an be robust to all these issues. At the same time,one should be aware of the inherent trade-o� that exists between the robustness ofthe 
ontrol law and the performan
e obje
tives [14℄. Finally, one should also keepin mind, that, in the 
ase of airplanes and spa
e vehi
les the natural frequen
ies ofthe 
ontrols generated by the pilot and the natural frequen
ies of the �rst sloshingmodes of the fuel are very 
lose [21℄. This implies that great 
are should be takenwhen eliminating the unwanted sloshing modes.The robust method we employ here is based on the ||·||∞ norm whi
h indi
ates the
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ontroller � 99maximum gain value of the frequen
y response of an arbitrary transfer fun
tion F :
||F ||∞ = sup

ω∈R

σ(F (jω)) (3.16)where σ denotes the maximum singular value. For a SISO system, this equation statesthat ||F ||∞ represents, on the Nyquist plot of F (p), the distan
e from the origin tothe farthest point on the plot. On the Bode plot, ||F ||∞ is the highest point on themagnitude frequen
y response.As stated in Se
tion 3.1 the �rst modes are the most important in terms of defor-mation energy of the stru
ture (therefore having large amplitudes on the Bode plot -see the experimental Bode plot from Figure 4.2 in Se
tion 4.2 of Chapter 4). We wantto attenuate these resonant peaks of the transfer fun
tion between the perturbationand the 
ontrolled output.
PSfrag repla
ements w z
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P (s)

K(s)Figure 3.3: Standard H∞ problemBefore starting the 
omputations, we �rst write our problem in the standard formof the robust 
ontrol, depi
ted in Figure 3.3. In this �gure, w is the ve
tor gatheringall the perturbation signals, u is the 
ontrol signal generated by the robust 
ontroller,
y the output signal of the plant (the voltage delivered by the piezoele
tri
 sensor) and
z is a ve
tor that 
ontains all the to-be-
ontrolled outputs. The 
hoi
e of the variables
ontained by the z ve
tor is very di�
ult. In our 
ase, we propose a �rst 
hoi
e for theto-be-
ontrolled outputs by 
onsidering: the output signal of the plant y and the signal
u generated by the H∞ 
ontroller. The experimental state-spa
e representation of theexperimental setup (2.134) is denoted by P (s), and the 
omputed robust 
ontrollerby K(s).
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al approa
h �If we take into a

ount the four input and output signals: w, u, y and z, the plant
P 
an be written by de
omposition in four distin
t matri
es:

{

z = P11w + P12u

y = P21w + P22u
(3.17)or in a 
ompa
t form

P (s) =

[

P11(s) P12(s)

P21(s) P22(s)

]

.Taking into a

ount the feedba
k law u = Ky, equation (3.17) gives:
z = (P11 + P12K(I − P22)

−1P21)w,where (P11+P12K(I−P22)
−1P21) = Fl(P,K) is the lower linear fra
tional transforma-tion (LFT). In addition we 
an also write the upper linear fra
tional transformation

Fu(P,K) whi
h express the transfer between the 
ontrol and the output of the plant:
y = Fu(P,K)u.Using the LFT, the H∞ 
ontrol problem now be
omes:Finding the system K(s) that will satisfy the optimization problem:

min
stabilizing K

||Fl(P,K)||∞. (3.18)This optimization problem is further solved either using DGKF method and Ri-
atti equations (see [51℄) or linear matrix inequalities (LMI) method and semi-de�niteprogramming (SDP) (see [31℄, [55℄).The state-spa
e representation of the 
omplete model, in the H∞ framework (seeFigure 3.3) 
an be summed up by:










ẋ(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D12u(t)

y(t) = C2x(t),where matri
es D11, D21 and D22 (see the H∞ framework of [145, Chapter 14℄) areequal to zero. The 
ontrol variable u(t) is the voltage applied to one of the piezo-
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tri
 a
tuator pat
h, the perturbation variable w(t) is a perturbation applied tothe other piezoele
tri
 a
tuator, the output variable y(t) is the voltage delivered byone of the piezoele
tri
 sensors and z(t) =

(

u(t)

y(t)

) is the to-be-
ontrolled output.Furthermore, the variable u(t) is sele
ted as a 
ontrolled variable sin
e we need tokeep the voltage delivered by the 
ontroller in the limits imposed by the a
tuatorsaturation.To take into 
onsideration the value of the perturbation, we need to express it ina mathemati
al way so that it 
an be introdu
ed in the robust 
ontroller synthesis.In our 
ase, it is a random perturbation 
hara
terized by his frequen
y spe
trum.Sin
e the modes we 
onsider are only of low frequen
y, it is natural to 
onsider aperturbation whose frequen
y spe
trum is also in low frequen
y. Furthermore, as itwill be proved later in Se
tion 4.2 of Chapter 4, we want to 
ontrol all the system'smodes until almost 30Hz. Therefore, we 
hose the low frequen
y spe
trum [0 . . . 50]Hzfor the perturbation, whi
h is large enough in order to in�uen
e all the modes.One 
an imagine many ways of modeling a frequen
y spe
trum using �lters. First,the order of the �lter has to be sele
ted. Se
ond, depending on the frequen
y bandwe want to 
over, we 
an 
hoose di�erent types of �lters (low pass, high pass, bandpass). In our 
ase, sin
e we want to 
over the low frequen
ies band, the spe
trumis modeled by a �rst order low pass �lter. Indeed, sin
e the perturbation has not avery 
ompli
ated shape, we 
onsider that a �rst order is su�
ient to make a goodapproximation. Moreover, the 
ut o� frequen
y of the �lter is 50Hz. Under these
onsiderations, the transfer fun
tion of the �lter at the input of the perturbations, is:
H1(s) =

100π

s+ 100π
. (3.19)We also have to take into a

ount the un
ertainties related to the negle
ted modes.As stated earlier in the model presentation (see Se
tion 2.2.3 for the plate and Se
-tion 2.3.4.1 for the tank with liquid, in Chapter 2), we negle
ted the higher ordermodes, thus the in�uen
e of their dynami
 on the total dynami
 of the system. Theproblem that may appear is an inherent and very important one in the 
ontrol ofin�nite dimension systems: the spillover (the 
ontroller in�uen
e on the negle
tedhigh frequen
y modes). This issue is well analyzed in [15℄ or [16℄. Moreover, it wasproven that spillover is fun
tion of the a
tuator - sensor lo
ation and their e�e
t onthe negle
ted modes. The idea behind this is to see if the 
ontroller 
omputed forsome modes, does not destabilize the negle
ted ones. It is also well known that the
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h �most likely mode to be destabilized is the �rst negle
ted mode [64℄.Solutions to over
ome the spillover are numerous. Let us mention a few of them:pre�ltering the system output (pre�ltering the piezoele
tri
 sensor for us) [15℄, re-design of the stru
ture and/or the 
ontroller [16℄ or pla
ing the piezoele
tri
 a
tu-ators and sensors where the spillover e�e
t of the un
ontrolled modes is small [66℄(although this will diminish 
onsiderably the 
ontrollability and the observability ofthe system [15℄).The 
ore idea of our reasoning, is to 
hoose a low pass �lter [125℄, whi
h willintrodu
e a roll-o� spe
i�
ation in the 
ontroller synthesis, with a 
ut-o� frequen
yfairly lower than the natural frequen
y of the �rst negle
ted mode [69℄. This, on theother hand, will unavoidably worsen the 
ontrol of the last 
onsidered mode [69℄. Asan example, one 
an 
he
k the work [88℄ 
on
erning the implementation of the lowpass roll-o� �lter on a �exible re
tangular 
lamped-free-free-free paddle, similar toour plate.Moreover, due to the 
loseness of the natural frequen
ies, the low pass �lter has tohave a sharp 
ut between the frequen
y of the last mode under 
onsideration and the�rst negle
ted one. Thus, we 
hoose more than 60dB/de
 attenuation for the �lter.There are di�erent shapes of �lters with di�erent behavior in the low pass frequen
iesdomain (see [133℄). In our 
ase we 
hoose the roll-o� �lter with the transfer fun
tion:
H2(s) =

(

1 + s
ω1

1 + s
ω2

)n (3.20)where ω1 is the angular frequen
y of the 
ut-o� while ω2 is the angular frequen
yfrom whi
h the high frequen
y attenuation gain is 
onstant. Moreover, n is the orderof the �lter, that gives also the attenuation slope desired. Sin
e we want at least
60dB/de
 attenuation, the order is n ≥ 3.In order to use this �lter in the robust analysis, we add it on the 
ontrol signal uas it 
an be noti
ed on Figure 3.4. The H1 �lter modeling the perturbation is alsoadded in the input of the system on the perturbation 
hannel.When 
onsidering the "to-be-
ontrolled" output z, a more 
areful analysis needsto be 
arried out. First of all, as said earlier, we must monitor the amplitude ofthe 
ontrol u sin
e we do not want to rea
h the saturation levels of the piezoele
tri
a
tuators. Therefore, one 
omponent of the z ve
tor will be ne
essarily the 
ontrol
u. Sin
e we also want to attenuate the stru
ture vibrations, we also need a variablethat 
an quantify this.In order to quantify the stru
ture's vibrations we have two types of measures at
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hapter � 103our disposal: the measures given by the piezoele
tri
 sensors and the measures givenby some mobile a

elerometers. Both have the advantage of having a wide and regularband pass. The se
ond measure is easier to use in the 
ontrol problem sin
e aftertwo su

essive integrations we 
an �nd dire
tly the position of the stru
ture. This
omes with a great drawba
k whi
h is the noise level. Even though both measuresare related to a 
harge ampli�er (see Se
tion 1.1 of Chapter 1), whi
h is intended toredu
e the noise level in the measurements, we noti
e that the measure given by thea

elerometers is more noisy sin
e they are more sensitive to the ele
tri
 environmental�eld. This sensitivity 
oupled with the two integrations leads to very noisy measuresat the end. This last issue lead us to use the data given by the piezoele
tri
 sensors.The whole robust synthesis, put under the shape of a standard H∞ problem, isdepi
ted in Figure 3.4.PSfrag repla
ements
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Figure 3.4: Standard H∞ problem3.4 Con
lusion of the 
hapterThis 
hapter details the theory behind the tests of the next 
hapter. First, a the-oreti
al basis for analyzing the experimental setup in terms of energy was given inthe beginning of this 
hapter. Then, some theoreti
al details 
on
erning the polepla
ement 
ontrol and the robust H∞ 
ontrol are also presented.Details about the 
omputation of the most energeti
 modes of the system willbe given in Se
tion 4.2 while the 
ontrollers will be implemented and tested in Se
-
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h �tions 4.4 and 4.5 of Chapter 4.



Chapter 4Experimental resultsIn this �nal 
hapter the theory depi
ted earlier is implemented on the experimentaldevi
e des
ribed in Chapter 1. This 
hapter will be 
onstru
ted as follows: we �rst
hoose a suitable amount of modes for the �nite dimensional approximation and se
-ond, for ea
h mode, we make a very pre
ise determination of its natural frequen
yand of the value of its damping. Using the theory des
ribed in Se
tion 3.2 of Chap-ter 3, we propose a pole pla
ement 
ontroller that will attenuate the plate vibrations.Then, using the framework of Se
tion 3.3, we 
ompute an H∞ robust 
ontroller that,besides attenuating the plate vibrations, makes the system robust to some externalperturbations. We will 
ompare the results of both methods in Se
tion 4.6 below.4.1 In�uen
e of the a
tuator dynami
sFirst of all we think that it is of great importan
e to test, wether or not the dynami
sof the a
tuators has an in�uen
e on the dynami
s of the model. As presented inSe
tion 1.3.3 of Chapter 1, the response time of the piezoele
tri
 pat
h is greater thanthe one of the voltage ampli�er. Moreover, the speed limit of the voltage ampli�er isgreater than the normal frequen
y at whi
h the system works (whi
h is, as it will beproven later in Se
tion 4.2, of a few Hertz). Based on these issues we infer that thea
tuator dynami
s will not in�uen
e at all the dynami
s of the system sin
e it has amu
h larger bandwidth than the frequen
ies we 
onsider.Before pro
eeding to further tests, this issue is veri�ed for numeri
al simulations.Therefore, we 
ompute our model for a great amount of modes and for a �xed tank�lling level of 0.9. We use 13 modes in this 
ase, the �rst 3 for the liquid sloshingand the �rst 10 for the plate bending. These modes 
over a natural frequen
y rangebetween 0Hz and 200Hz and their amplitude and natural frequen
y are identi
al to105
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Figure 4.1: Bode plot of the system with and without 
onsidering the a
tuator dy-nami
s, tank �ll level of 0.9

the ones retrieved experimentally (see Figure 4.2 for an experimental Bode plot).The Bode plots are given in Figure 4.1, for the 
ase when the a
tuator dynami
 is
onsidered or not. As it 
an be seen, the two Bode plots are exa
tly the same whi
hprove, as we expe
ted, that the dynami
 of the a
tuator does not in�uen
e the overalldynami
 of the system for this frequen
y range.Therefore, in the �nal system's model, the dynami
 of the a
tuator will be modeledonly by a unitary gain.Remark: As it was proven in Se
tion 2.2.3.1 of Chapter 2, the damping of theplate is 
omputed from the quality fa
tor Qk using equation (2.42). Sin
e the qualityfa
tor depends on the voltage applied to the stru
ture, the damping of ea
h modewill also depend on the voltage. Therefore, from now on, all the experimental testsare done using the same voltage of 2.5V amplitude at the input of the stru
ture.
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e of the suitable amount of modes � 1074.2 Choi
e of the suitable amount of modes
Before 
omputing di�erent 
ontrollers for our system and 
al
ulating the state-spa
erepresentation of the experimental set-up (see Se
tion 2.2.3 where the pro
edure isdetailed), we need to determine the number of plate and sloshing modes we are goingto 
onsider for this �nite dimensional approximation. The 
omputed 
ontroller willthen be simulated on a larger model. This is done in parti
ular in order to test theexisten
e or not of the spillover e�e
t.Several issues need to be kept in mind before �xing the number of modes.One �rst issue 
on
erns the frequen
y of the 
ontrol signals generated by the pilotof the airplane. These 
ommands are at low frequen
y (see [111℄, [129℄), independentlyon the �ight 
ontrol of the airplane being �y-by-wire (the ele
troni
 
ontrol signalsare transmitted by the pilot through wires to 
omputers whi
h determine how tomove ea
h a
tuator in order to have the desired response [4℄) or �y-by-
able (thepilot himself has a physi
al 
onne
tion to the �ight 
ontrol a
tuators whi
h give thedesired response to the airplane). Therefore, we should be aware of 
onsidering,in the model state-spa
e approximation, espe
ially low frequen
y modes sin
e onlythese mode will intera
t with the 
ontrol frequen
ies of the signals generated by thepilot (see [120℄ for an overview about the airplane modeling and �ight requirements).The high frequen
y plate and sloshing modes, that are not in the range of 
ontrolfrequen
ies, 
an be easily dealt with (even removed) using a low-pass �lter. Sin
ethey are not ex
ited by the 
ontrol frequen
ies, they are also prevented for getting toresonan
e.Moreover, we would like to 
onsider besides the inherent �exion modes, at leastthe �rst torsion mode of the plate, in order to see how the 
ontroller rea
ts to bothtypes of plate movements.In addition to all this, the main issue is that we must 
ontrol the most energeti
modes of the system. Using the energy approa
h detailed in Se
tion 3.1 of Chapter 3,we 
ompute the energeti
 
ontribution ratio of ea
h mode to the total energy ofthe system. The 
hoi
e of the modes will then be done by studying their energeti

ontribution.
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Figure 4.2: Experimental Bode plot for a tank �ll level of 0.9 in the frequen
y range
[0, 200]Hz. #1 is the �rst �exion mode of the plate, #2 is the �rst sloshing mode ofthe liquid, #3 and #4 are the se
ond and third sloshing mode of the liquid (they arealmost invisible due to their very small amplitude), #5 is the �rst torsion mode ofthe plate, #6 is the se
ond �exion mode of the plate, #7 is the third �exion mode ofthe plate, #8 is the forth �exion mode of the plate, #9 is the �fth �exion mode ofthe plate, #10 is the sixth �exion mode of the plate, #11 is the se
ond torsion modeof the plate, #12 is the seventh �exion mode of the plate, #13 is the eight �exionmode of the plateWe �rst start with a Bode plot of the experimental set-up in the 
ase where thetank �ll level is hs

2R
= 0.9 (see Se
tion 2.3.2). The plot is depi
ted in Figure 4.2 forfrequen
ies ranging from 0Hz to 200Hz. Based on this Bode plot we are able to
ompute the mode energy. The plot is obtained using a spe
trum analyzer. Givingthe input voltage and the range of frequen
ies, the spe
trum analyzer generates a
hirp signal, re
ords the output of the devi
e and generates the Bode plot. Theadvantage of employing the spe
trum analyzer is the speed and simpli
ity of themethod while the drawba
k is the �nite number of points that the spe
trum analyzer
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an re
ord. Therefore, a large frequen
y range implies a large distan
e between there
orded points. To over
ome this issue, the Bode plot from Figure 4.2 was done asa superposition of several Bode plots. Using this approa
h, as the frequen
y rangede
reases and the maximum number of re
orded points is 
onstant, the distan
ebetween two 
onse
utive re
orded points de
reases. Another advantage is that, sin
ewe have a small frequen
y range, ea
h mode (espe
ially the low frequen
y ones) passesthe settling state and is thus re
orded in the steady state.Remark: Although we are aware that the experimental Bode plot may be used to�nd dire
tly the state-spa
e representation of the system, this is not our purpose here.If this would have been the 
ase, we 
ould have modeled the experimental devi
e fromthe beginning using the �nite element method. As explained in the introdu
tion ofChapter 2, during the modeling phase we want to stay as 
lose as possible to thephysi
al meaning of the devi
e and we do not want to see the plate and the 
ylinderjust as a system with no physi
al interpretation. Using the system identi�
ation, or�nite element method, we would obtain a system in whi
h we 
an not di�erentiate theplate parameters from the liquid parameters. In this 
ase it would be impossible, forexample, to 
ontrol only one parameter of the plate (like for example the �rst �exionmode) or only one parameter of the liquid (the �rst sloshing mode for example).Mode Chara
teristi
 Natural freq. Energeti
 
ontribution rate % Total %
1st mode �exion 0.6238Hz 62.9542 62.9542
2nd mode sloshing 1.1556Hz 7.3177×10−7 ∼62.9542
3rd mode sloshing 2.1454Hz 0.0010 62.9552
4th mode sloshing 2.7929Hz 3.7632×10−4 62.9556
5rd mode torsion 5.9977Hz 0.0220 62.9776
6rd mode �exion 8.2508Hz 9.1247 72.1023
7rd mode �exion 14.2495Hz 10.0202 82.1225
8rd mode �exion 21.0321Hz 13.5014 95.6239
9rd mode �exion 46.2245Hz 1.6166
10rd mode �exion 58.0139Hz 2.3702
11rd mode torsion 86.7584Hz 0.3873
12rd mode �exion 132.6601Hz 0.0012
13rd mode �exion 199.9073Hz 0.0752Table 4.1: Modal energeti
 
ontribution rate of ea
h mode
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tion 2.3.2, in order to apply the energy approa
h method, it is
ompulsory for the stru
ture model to be in the diagonal form. Sin
e initially themodel is not diagonal due to tank/plate 
ouplings, we use a system transformationwhi
h will put the model into a diagonal form. The natural frequen
y of the modesalong with the results of the method are given in Table 4.1.As it 
an be seen from Table 4.1, the �rst 8 modes of the system, with frequen
iesup to 21Hz, 
ontain 95% of the total energy of the system. One should noti
e thatin this 
ase all the 
onstraints detailed earlier are respe
ted: the 
onsidered modesare the most energeti
 ones, at least one torsion mode of the plate is present and themode frequen
y is low enough so that it 
an interfere with the natural frequen
y ofthe airplane 
ontrols.Therefore, from now on, for all the 
ontroller 
omputations, we 
onsider M = 3modes for the liquid sloshing and N = 5 modes for the plate bending. The modalenergeti
 
ontribution is 
omputed for a �xed tank �ll level. Con
erning other tank�ll levels, the energeti
 
ontribution of the modes is similar, the only di�eren
e beingthat, as the �ll level de
reases, the in�uen
e of the �rst �exion mode of the platede
reases. In spite of this issue, we 
onsider that the �rst 8 modes still represent themain part of the energy of the total plate.4.3 Model adjustmentsBefore performing the tests on the experimental set-up, some model 
omputationsneed to be made. As presented, in Se
tion 2.4 of Chapter 2, we write the 
ompletemodel of the system: the re
tangular plate 
oupled with the tank �lled with liquidup to an arbitrary depth. This model, whi
h is 
omputed in the in�nite dimension,is approximated by the state-spa
e representation (2.134). We are re
alling here thisrepresentation:














Ẋ =

(

Ap Aθp

Apθ Aθ

)

X +

(

Bp

Bpθ

)

u

y =
(

Cp 0 )X, (4.1)
where the state-spa
e ve
tor X =

(

Xp

Xθ

) is a 
ombination of the state-spa
e ve
torof the plate Xp and of the tank with liquid Xθ.
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urate model of the devi
e, some analyti
al 
al
ulus 
orre-lated with measurements on the experimental setup need to be done. This takes threesteps: the �rst two steps 
an be seen as a preparation in order to implement the setof equations (4.1), while the third one 
onsists of a mat
hing between the analyti
almodel and the experimental set-up. They are detailed below:
• Step 1: As it 
an be seen from equation (2.134), the normal frequen
ies of theplate and of the liquid sloshing have to be 
al
ulated. First they are 
omputedanalyti
ally, using equation (2.36) for the plate and using the experimental
urves depi
ted in Figure 2.9 for the liquid sloshing, and then are 
omparedwith the values measured on the devi
e. The method is detailed below inSe
tion 4.3.1;
• Step 2: After the frequen
y 
omputation, the inherent damping 
orrespondingof ea
h mode also needs to be found. This is done by dire
t measures on thedevi
e. More details are given below in Se
tion 4.3.2;
• Step 3: On
e the model is 
omputed, we make a 
omparison for di�erent �ll-ing levels between the analyti
al model and the experimental setup. Sin
e wenoti
e a dis
repan
y between the analyti
al model and the data 
olle
ted byexperiments, a trial and error method is employed in order to diminish thisdis
repan
y. The method is implemented and the results are shown in Se
-tion 4.3.3.4.3.1 Computation of the natural frequen
yIt is important to establish the natural frequen
ies of ea
h mode with great a

ura
yin order to have a model as 
lose as possible to the experimental devi
e.4.3.1.1 Computation of plate natural frequen
iesAs detailed in Se
tion 2.2.1 of Chapter 2, the plate model is based on the model of twoorthogonal beams (see equation (2.32) for the approximation of plate deformation).The modal deformations of the beam give the modal deformation of ea
h mode of theplate by a simple multipli
ation operation.Beam natural frequen
y 
omputationWe �rst 
ompute the natural frequen
ies of the two beams sin
e they are needed inorder to 
ompute the modal displa
ements. They 
annot be measured experimentally,
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ally 
omputed for the 
ase of a 
lamped-free beam and of afree-free beam. In the 
ase of the 
lamped-free beam, the natural frequen
y of the ithmode ωL
i (in Hz) is 
omputed by repla
ing equation (2.11) into (2.15). For the free-free beam, the natural frequen
y of the jth mode, denoted respe
tively ωl

j, is againfound by solving equation (2.22) 
oupled with (2.23). The value of the frequen
iesfor both beams is detailed below:Clamped-free beamMode 1 Mode 2 Mode 3 Mode42.3244Hz 14.5679Hz 40.7920Hz 79.8557HzFree-free beamMode 1 Mode 2 Mode 3 Mode 40Hz 0Hz 1.0687kHz 2.9461kHzTable 4.2: Natural frequen
ies of the beams asso
iated to the plateFor ea
h beam, the �rst modal displa
ements (mode shapes) are drawn below inFigures 4.3 and 4.4. The lengths of the beam are taken from Table 1.1, Chapter 1,and represent the length L = 1.36m and the width l = 0.16m of the plate.
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Figure 4.4: First �ve modal displa
ements of the 
lamped-free beamIn the 
ase of the free-free beam we 
an noti
e (see Figure 4.3) the presen
e ofthe two rigid modes with natural frequen
y of 0Hz, as predi
ted in Se
tion 2.2.1 ofChapter 2. The deformation of the �rst two modes implies that we 
an move theposition of the beam without deforming the beam at all. We remind to the readerthat the 
al
ulus of all the modal displa
ements was detailed in Se
tion 2.2.1 andis given for the 
lamped-free beam by equation (2.13) and for the free-free beam byequation (2.20), 
oupled with (2.24) and (2.25) for the two rigid modes.We now 
ompute the natural frequen
y and mode shape for ea
h mode of theplate based on the beam theory. We detail below several methods that we usedto determine ea
h frequen
y. These methods rely either on 
al
ulus (analyti
al ornumeri
al) or on experimental measurements.Plate natural frequen
ies 
al
ulation - analyti
al methodThe analyti
al 
al
ulus of the plate natural frequen
ies is done using the methodologypresented in Se
tion 2.2.3.1 of Chapter 2. Therefore, the plate frequen
ies are dire
tlyfound by implementing the equation (2.36). Using the 
hara
teristi
s of the platedepi
ted in Chapter 1 (whi
h are presented in Table 1.1), the natural frequen
ies
an be 
omputed. After the 
al
ulus, the frequen
y of the modes and their modal
hara
teristi
s (type of mode) are given in Table 4.3.
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y Type
1st mode 2.301Hz 1st �exion
2nd mode 14.413Hz 2nd �exion
3rd mode 40.3583Hz 3rd �exion
4th mode 49.2027Hz 1st torsionTable 4.3: Natural frequen
ies of plate modes - analyti
al 
al
ulus

Here below, the modal displa
ements of the plate, are presented for the 
ase when a�exion movement and a torsion movement are observed. The order in whi
h the modesappear is a

ording to the plate natural frequen
y 
omputed earlier and detailed inTable 4.3. We re
all that the modal displa
ements of the plate are obtained just bymultiplying the modal displa
ements of the perpendi
ular beams, as demonstrated inSe
tion 2.2.3 and given by (2.32).
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 Figure 4.5: Plate �rst �exion mode at 2.301Hz, η1(y, z) = Y1(y)Z1(z)
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Figure 4.6: Plate se
ond �exion mode at 14.413Hz, η2(y, z) = Y2(y)Z1(z)
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Figure 4.9: Plate se
ond torsion mode, η8(y, z) = Y3(y)Z2(z) (not taken into a

ountduring the modeling phase)Sin
e there is an in�nity of modal displa
ements of the beam, we suggest a nu-meri
al method in order to 
he
k if the ones we 
hoose for expressing the modaldispla
ements of the plate are 
orre
t or not. Sin
e, as we stated in Se
tion 2.2.3 ofChapter 2, the Ritz basis of the plate is orthogonal, we suggest to e�e
tively 
he
kthis orthogonality between the modal displa
ements of the two beams. Therefore, forea
h plate mode, we 
ompute the s
alar produ
t of the 
orresponding beam defor-mation [42℄. In our 
ase, the s
alar produ
t is not exa
tly 0 but ranges from 10−4 to
10−17 depending on the modes. Based on these results, we 
on
lude that the modaldispla
ements of the two beams are well 
hosen and thus the modal displa
ements ofthe plate are well 
onstru
ted.One important thing to noti
e is that all the 
omputations done in the analyti
al
ase impose the plate to be homogeneous. Thus, we 
annot take into 
onsiderationsome stru
ture dis
repan
ies like the hole in the plate 
reated for the tank atta
hmentor the mass non homogeneity 
aused by the presen
e of a
tuators and sensors.Plate natural frequen
y 
al
ulation - numeri
al methodIn order to verify the analyti
al 
al
ulus of the plate natural frequen
ies (Table 4.3),we propose a 
he
k-up method using the numeri
al �nite elements analysis andANSYS 
© program. After starting the numeri
al routine, one 
an see a 
lose approx-imation between the natural frequen
ies found by the analyti
al 
al
ulus in Table 4.3and those found by the numeri
al 
al
ulus in Table 4.4, espe
ially for the �exionmodes.
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tuators Without piezo. a
tuators Type
1st mode 2.3992 Hz 2.4983 Hz 1st �exion
2nd mode 14.678 Hz 15.104 Hz 2nd �exion
3rd mode 37.326 Hz 38.073 Hz 1st torsion
4th mode 40.242 Hz 41.056 Hz 3rd �exionTable 4.4: Natural frequen
y of plate modes when the tank hole is taken into a

ount- numeri
al 
al
ulusMoreover, this numeri
al method allows us to 
onsider issues that were negle
tedearlier and that make the plate non homogeneous: the piezoele
tri
 a
tuator pat
hesor the 
ir
ular 
avity where the 
ylindri
al tank is atta
hed.Afterward, we plan to 
ondu
t some numeri
al simulations in order to measurethe in�uen
e of the negle
ted phenomena (a
tuators and tank presen
e) on the platenatural frequen
ies. The results 
learly demonstrate the predi
tion on the plate natu-ral frequen
ies: the simple introdu
tion of the piezoele
tri
 a
tuators (translated intoa small 
hange of plate mass and a 
hange in plate mass 
enter) shifts the naturalfrequen
ies and 
hanges the damping of the plate. This di�eren
e 
an not be provedon the experimental devi
e, sin
e the a
tuators and sensors are glued on the plate,neither 
an be taken into a

ount by the analyti
 
al
ulus. In reverse, it 
an bestudied using the numeri
 method of 
al
ulus.The mode shapes of the �rst four modes, 
omputed using ANSYS 
©, are depi
tedin Figure 4.10.Moreover, we proved in [115℄ that the presen
e of the empty 
ylindri
al tankdiminishes even more the natural frequen
ies of the modes and in
reases the a
tionof the torsion modes.Plate natural frequen
y - experimental measurementsFinally, after the 
omputation of the natural frequen
ies using the analyti
al methodand after shortly 
omparing with the results from the numeri
al method, we measurethe values dire
tly on the experimental setup. As explained in Chapter 1, we 
anmeasure the natural frequen
ies of the plate only in the 
ase when the piezoele
tri
a
tuators/sensors and the hole for the 
ylinder atta
hment are present (see Figure 1.9and Figure 1.10 for an a
tuator/sensor view and Figure 1.4 for a plate view withoutthe 
ylindri
al tank). Consequently, the measured frequen
ies will be 
loser to theones from Table 4.4, for the 
ase when the a
tuators are 
onsidered, than to the
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Figure 4.10: First 4 modal displa
ements of the plateones from Table 4.3, 
omputed with the analyti
al method (sin
e, in the analyti
almethod, the plate is 
onsidered homogeneous).Let us des
ribe the pro
edure we followed to make the experimental measurements.We �rst restri
t ourselves on the frequen
y band of [0, 50]Hz sin
e it is the range wherethe �rst modes are 
on
entrated. Then, using a spe
trum analyzer, we identify thenatural frequen
ies of the modes. We �rst obtain a rough Bode plot with an estimationof the natural frequen
ies and then, based on this, we sear
h in the neighborhood ofthe estimated frequen
ies to obtain the real natural frequen
y of ea
h mode. Sin
e�nding the natural frequen
y of a mode is equivalent with �nding the frequen
yfor whi
h the mode is at resonan
e, we 
he
k on an os
illos
ope the amplitude ofthe output signal and when this amplitude is maximum then the exa
t value of thenatural frequen
y is rea
hed.In order to know the natural frequen
ies of the plate, we use a Bode plot of thesystem given by a spe
trum analyzer devi
e. It generates an input signal using thespe
i�
ations we impose: a sinusoidal 
hirp signal of 
onstant amplitude of 5V andwith a frequen
y varying between 0Hz and 50Hz. Con
erning the output signal,we have two types of sensors that 
an give us some information about the platedeformation: piezoele
tri
 sensors and a

elerometers. We know that in theory, the
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tuator Natural freq. 2 a
tuators
1st mode 2.37Hz 2.375Hz
2nd mode 14.41Hz 14.438Hz
3rd mode 39.18Hz 39.25Hz
4th mode 43.40Hz 43.875HzTable 4.5: Comparison between the natural frequen
ies in the 
ase where one or twoa
tuators are usedmeasures given by the piezoele
tri
 sensors are more a

urate than the ones given bythe a

elerometers whi
h are more in�uen
ed by the environmental inherent noise.This last issue is well presented in [115℄, thus, it will not be detailed here. Weonly repeat the 
on
lusion: the frequen
ies given by the piezoele
tri
 sensor are 
loserto the real natural frequen
ies and the Bode plot. Moreover the Bode plot obtainedwith a

elerometer sensors, is more noisy. Therefore, from now on we 
onsider forour measurements only the piezoele
tri
 sensors, the a

elerometers being only usedfor de
iding about the mode type (�exion or torsion) as detailed in [115℄ or below.We remind that our purpose is to attenuate the system vibrations but also to makethe system robust to external perturbations. One way for applying perturbations isto send a voltage to one of the piezoele
tri
 a
tuators. Sin
e applying the samevoltage to both a
tuators does not seem to 
hange the frequen
y of the modes norto a

entuate their in�uen
e (see Table 4.5 for a 
omparison of the frequen
ies and[115℄ for more details regarding this issue), we intend to use one of the a
tuators asan external exterior perturbations entry to the system.Consequently, from now on, we 
onsider the plate natural frequen
ies from Ta-ble 4.5, for the 
ase where only one a
tuator is used.Experimental determination of mode typeThe natural frequen
y of the �rst modes 
an be measured or 
omputed using thetheory des
ribed above. Besides this, the determination of the mode type is of greatimportan
e in order to be sure that at least one torsion mode of the plate is 
onsidered.This issue was also well detailed in our previous work [115℄, thus, only brief resultsare presented below.The mode 
hara
teristi
 
an be found using an easy method based on two a
-
elerometer sensors. The two a

elerometers are pla
ed on the free end of the plateon verti
al extremities. The analog signal delivered by the sensors is viewed on an os-
illos
ope when the plate vibrates. If the two signals are on phase then the vibration



120 Chapter 4 � Experimental results �has a �exion movement. At In the same time, if the two signals have a phase di�er-en
e of π (phase opposition) then we have a torsion movement of the plate. Usingthis intuitive method we are able to determine the 
hara
teristi
 of ea
h mode.After analyzing the a

elerometer signals, the results are brie�y presented here.One 
an found more details in [115℄.
• The 1st mode with a frequen
y around 2.37Hz is a �exion mode. The shape ofthe mode is the same as in Figure 4.5;
• The 2nd mode with a frequen
y around 14.4Hz is also a �exion mode and hisshape is the one from Figure 4.6;
• The 3rd mode has a predi
ted numeri
al frequen
y around 37 − 38Hz (see Ta-ble 4.4) or around 49Hz (see Table 4.3). Moreover, the mode shape is the onefrom Figure 4.8. We say on purpose, a "predi
ted" natural frequen
y sin
e itis invisible on the experimental set-up. A possible explanation of this mightbe the 
loseness between his natural frequen
y and the natural frequen
y ofthe �exion mode right next to him. Another reason might also be the plate
on�guration whi
h makes di�
ult the ex
itation of the torsion movement byjust one piezoele
tri
 a
tuator;
• The 4th mode with a natural frequen
y around 43.4Hz is also a �exion modeand his shape is the one from Figure 4.7.As a 
on
lusion, we 
an summarize in the following Table 4.6 the results 
on
erningthe natural frequen
ies of the plate:Mode Measured freq. Analyti
al freq. ANSYS freq. Mode type
1st mode 2.37Hz 2.301Hz 2.399Hz �exion
2nd mode 14.41Hz 14.413Hz 14.678Hz �exion
3rd mode 39.18Hz 49.202Hz 37.326Hz torsion/invisible
4th mode 43.40Hz 40.358Hz 40.242Hz �exionTable 4.6: Natural frequen
y and the mode des
ription for the �rst 4 plate modes4.3.1.2 Computation of the natural frequen
ies of sloshing modesCon
erning the natural frequen
ies of the sloshing waves, they are 
omputed usingthe methodology detailed in Se
tion 2.3.1 of Chapter 2 and given by Figure 2.9.
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e, as explained in Se
tion 2.3.2, there are no theoreti
al results for the longitu-dinal liquid sloshing of the 
ylindri
al horizontal tank, we made a tank approximationby keeping un
hanged the natural frequen
ies of the sloshing modes. After the "vir-tual" re
tangular tank is 
al
ulated, the natural sloshing frequen
ies 
an easily be
omputed using equation (2.88) from Se
tion 2.3.3.In order to approximate the 
ylindri
al tank we proposed three di�erent methods,ea
h method being well detailed before in Se
tion 2.3.2. In Table 4.7, we give the
omparison between the sloshing frequen
ies delivered by ea
h approximation methodand the natural sloshing frequen
ies 
omputed from the experimental 
urves (seeFigure 2.9).Mode 1st method 2nd method 3rd method Empiri
al 
urves [48℄
1st mode 0.7848 Hz 3.6175 Hz 0.7891 Hz 0.7869 Hz
2nd mode 2.0304 Hz 12.7347 Hz 1.9982 Hz 2.1177 Hz
3rd mode 2.7647 Hz 24.1601 Hz 2.7521 Hz 2.7907 HzTable 4.7: Comparison of the sloshing frequen
ies obtained from the experimental
urves and with di�erent approximation methods. Tank �ll level hs

2R
= 0.7. For othertank �ll levels, the results respe
t the same pattern.The method we suggest for tank approximation is the third method tested abovesin
e it gives sloshing frequen
ies 
lose to the experimental ones. Moreover, eventhough the sloshing frequen
ies obtained using the �rst method are 
loser to theexperimental ones, the implementation of this method is very tedious as explained inSe
tion 2.3.2.The exa
t measurement of the sloshing frequen
ies on the experimental set-upwas not done sin
e we did not �nd a suitable devi
e to do this. This is due to theimpossibility of studying the sloshing of the liquid in the tank alone, without any
onne
tion to the plate. Even though this measurement was done in the literature,(see [105℄ where sensors were 
onstru
ted for this spe
i�
 issue or [50, Chapter 42℄where the laser Doppler anemometry method is des
ribed for measuring �uid param-eters), our purpose here was not to measure expli
itly these values but to 
ontrol themotion of the plate and the sloshing. Moreover, we will 
onsider that the 
ontrollerwe 
ompute will be robust enough to take this issue into a

ount.Despite the impossibility to exa
tly measure the value of the frequen
y, using are
ording video 
amera, we still managed to see the shape of the liquid sloshing. We



122 Chapter 4 � Experimental results �observed that for the �rst three antisymmetri
 modes, the mode shape is exa
tly asthe one from Figure 2.14.4.3.1.3 Natural frequen
ies of the 
omplete system: plate and tankUntil here we 
omputed the plate natural frequen
ies and the liquid natural sloshingfrequen
ies separately. The liquid sloshing frequen
ies were 
omputed in order tovalidate the geometri
 approximation approa
h we are using, thus the validity of the
onsidered re
tangular tank. Con
erning the plate natural frequen
ies, they were�rst 
omputed in order to demonstrate their variation when the plate 
on�guration
hanges and se
ond in order to have a rough approximation of their values. The nextlogi
al step now is the study of the natural frequen
ies when the plate and the tankwith liquid are 
oupled. The last issue is of 
riti
al importan
e if we want a model
lose to the reality depi
ted in Figure 4.2.Our purpose in this study is to 
ontrol the system vibrations for di�erent tank�lling levels. Therefore, we 
onsider two di�erent tank �lling levels: in the �rst 
ase,the tank �lling is equal to 0.7, that is to say hs

2R
= 0.7 and in the se
ond 
ase it isequal to 0.9, (see Se
tion 2.3.2 for further details). Moreover, as from [114℄, for thisexperimental devi
e, the 
ases for whi
h the tank �ll level tends to 1 are the mostdi�
ult to 
ontrol.Using a spe
trum analyzer we �rst obtain a Bode plot for ea
h level. The twoplots are depi
ted in Figure 4.11 and in Figure 4.12 (Figure 4.12 being the same asFigure 4.2 for the [0 · · ·50]Hz band).
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Figure 4.11: Experimental Bode plot for the plate and a tank �ll level of 0.7
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Figure 4.12: Experimental Bode plot the plate and a tank �ll level of 0.9Then, using a frequen
y generator, we sear
h around ea
h peak value of the Bodeplot in order to �nd the exa
t natural frequen
ies of ea
h mode. The 
al
ulus is verytedious sin
e we want to �nd the most pre
ise values. The results are given below inTable 4.8 for the plate and liquid sloshing:Mode Des
ription Tank �ll level of 0.7 Tank �ll level of 0.9 Plate alone
1st mode 1st �exion 0.6249Hz 0.6237Hz 2.37Hz
2nd mode 2nd �exion 8.8777Hz 8.2509Hz 14.41Hz
3rd mode 1st torsion 6.3753Hz 5.9979Hz 39.18Hz
4th mode 3rd �exion 15.3755Hz 14.2498Hz 43.40Hz
5th mode 4th �exion 21.4996Hz 21.0321Hz 55Hz
6th mode 1st sloshing 1.2655Hz 1.4149Hz -
7th mode 2nd sloshing 1.9977Hz 2.1480Hz -
8th mode 3rd sloshing 2.7510Hz 2.7940Hz -Table 4.8: The measured natural frequen
ies for the 
omplete system (plate andliquid) when the tank is �lled up to some arbitrary depthsWhen 
omparing Table 4.8 for a tank �ll of 0.7, with the previous Table 4.7,where the sloshing frequen
ies are 
omputed for the free tank without any externalintera
tion, one 
an noti
e a slight shift of the frequen
ies. This is not be
ause ofsome errors in the 
omputation pro
ess. On the 
ontrary, this proves, as we expe
ted,
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ies of the liquid also 
hange when the 
oupling between thetank and the plate is 
onsidered.Moreover, sin
e we are doing a mass-pendulum approximation, we also need todetermine, for the 
oupled system, the parameters of the mass-pendulum systems asdetailed in Se
tion 2.3.4.2. These parameters are presented here for the two di�erenttank �lling levels:
P

P
P

P
P

P
P

P
P

P
P

Mode Pendulum Length Mass Hinge lo
ation Measured freq.
1st sloshing 0.1550m 2.4780kg 0.3659m 1.2655Hz
2nd sloshing 0.0622m 0.1961kg 0.0363m 1.9977Hz
3rd sloshing 0.0328m 0.0482kg 0.0165m 2.7510HzTable 4.9: Chara
teristi
s of the mass-pendulum systems for tank �ll level 0.7

P
P

P
P

P
P

P
P

P
P

P

Mode Pendulum Length Mass Hinge lo
ation Measured freq.
1st sloshing 0.1240m 2.7404kg 0.1777m 1.4149Hz
2nd sloshing 0.0538m 0.1483kg 0.0296m 2.1480Hz
3rd sloshing 0.0318m 0.0325kg 0.0354m 2.7940HzTable 4.10: Chara
teristi
s of the mass-pendulum systems for tank �ll level 0.9Two important things need to be noti
ed from Table 4.8. The �rst one is that,now, the torsion mode is visible on the experimental set-up, that is to say we founda 
on�guration that will �nally ex
ite the torsion mode. Moreover, 
omparing thefrequen
y values of the modes, the position of the torsion mode has 
hanged. It isnow right after the �rst �exion mode of the plate, that is to say the third peak ofFigures 4.11 and 4.12. The se
ond thing is that, due to the addition of liquid in thetank (the weight di�eren
e between the two tank �llings is 0.8671kg), the total massof the plate in
reases and the natural frequen
y of ea
h plate mode shift a lot towardszero. This shift is more prominent when more liquid is added in the tank, that is tosay for a �ll level of 0.9. 11The mass of the plate alone, without the tank, is 3.2313kg while the mass of the liquid, alone,when the tank �ll level is 0.7 equals 3.2371kg and the mass of the liquid when the tank �ll level is

0.9 equals 4.1042kg.



4.3 � Model adjustments � 1254.3.2 Computation of modal dampingThe modal damping is, along with the natural frequen
y, another important param-eter that need to be well 
al
ulated. Con
erning the 
omputing of the plate modaldamping, we used the approa
h detailed in Se
tion 2.2.3.1 of Chapter 2.As explained there, the damping of ea
h mode Qk is expressed using equation(2.38) detailed here:
Qk =

ωk

ωk2 − ωk1

,where ωk is the natural angular frequen
y of the mode. The angular frequen
ies ωk1and ωk2 are 
omputed in order to have the amplitude of the mode attenuated by 3dB.The plate natural frequen
ies are the ones from Table 4.8. After 
he
king on anos
illos
ope the amplitude of the resonan
e signal, we divide this amplitude by √
2(equal to 3dB attenuation) in order to �nd the two frequen
ies ωk1 and ωk2. Usingthe above equation we obtain the damping for the �rst �ve modes of the plate. Theresults are given in Table 4.11.Mode Natural freq. 0.7 Damping 0.7 Natural freq. 0.9 Damping 0.9

1st mode 0.6249Hz 0.0019 0.6237Hz 0.0020
2nd mode 6.3753Hz 0.0015 5.9979Hz 0.0015
3rd mode 8.8777Hz 0.0083 8.2509Hz 0.0083
4th mode 15.3755Hz 0.0039 14.2498Hz 0.0039
5th mode 21.4996Hz 0.0030 20.4675Hz 0.0030Table 4.11: Measurement of the damping of ea
h vibration modeThe measure of the liquid damping is di�
ult sin
e it has to be done by the biasof the plate. The measuring pro
edure is, in theory, the same as in the 
ase of theplate. Sin
e, at resonan
e, the amplitude of the sloshing is very di�
ult to analyzeon the os
illos
ope, we 
hoose the damping of the sloshing modes to be 
onstant,equal to 0.001 whi
h is the vis
ous 
oe�
ient of the water at normal temperature of

∼ 20◦C [76℄.4.3.3 Model mat
hing problemThe 
omplete system model, des
ribed by the equation set (2.134), was �rst vali-dated in [116℄ by a 
omparison of a time-response for a given initial deformationof the plate. However, in order to obtain a model whi
h provides a good mat
h of



126 Chapter 4 � Experimental results �the measured frequen
y response, some adjustments are required by 
onsidering theBode plots. These adjustments are done following a trial-and-error method (�rst thefrequen
ies are mat
hed and then is the damping). Other methods are possible for�exible stru
tures (see for example [119℄ and referen
es therein).This model mat
hing is ne
essary sin
e some me
hani
al elements are not wellknown and have not been taken into a

ount in the analyti
al modeling of the stru
-ture. These elements in
lude the 
ir
ular ring used to atta
h the tank on the plate(see Figure 1.1), the non-homogeneity of the plate and the weight of the tank.As a �rst step of the model mat
hing, the frequen
ies of the plate are adjusted.A se
ond step of the model mat
hing is the adding of a stati
 gain that 
orrespondsto the high frequen
y modes negle
ted during the model redu
tion stati
 
orre
tion[121℄. This allows to get a more realisti
 model at low frequen
ies. The 
omparisonof the Bode plots for e = 0.7 and e = 0.9 on Figures 4.13 and 4.14 shows that themodel, for e = 0.7 is quite a

urate with respe
t to the real data while there is somedis
repan
y in the amplitude of the �rst sloshing mode for e = 0.9.
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Figure 4.13: Frequen
y mat
hing for the tank �lling level e = 0.7 (numeri
al model -plain line and experimental set-up - dotted line)In the two �gures, the �rst peak 
orresponds to the �rst �exion mode of the plate(0.625Hz) and the se
ond peak to the �rst sloshing mode (1.2655Hz for e = 0.7 and
1.4149Hz for e = 0.9) in the tank. The next four peaks are respe
tively representing:the �rst torsional mode (the third peak) (6.38Hz) and the se
ond (8.75Hz), third
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ement 
ontroller � 127(14.45Hz) and forth (21.50Hz) �exion modes of the plate. The se
ond and thirdmodes of the liquid sloshing 
annot be identi�ed on the Bode plots due to their verysmall amplitude.
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Figure 4.14: Frequen
y mat
hing for the tank �lling level e = 0.9 (numeri
al model -plain line and experimental set-up -dotted line)Con
lusion: In this se
tion, we established an initial model of the stru
ture basedon 
omputation and measurements of all natural frequen
ies and damping. Then wedid a model mat
hing in order to ta
kle the mismat
h due to some negle
ted physi
alphenomena. In the following, we are 
onsidering the 
ontroller synthesis on these newmat
hed models.4.4 Pole pla
ement 
ontrollerThis se
tion aims at 
omputing a 
ontroller attenuating the plate vibrations. We areusing here a state feedba
k strategy 
oupled with a Luenberger full state observer,sin
e all the state-spa
e ve
tor of the system is unknown. Furthermore, based on thetheory detailed in Se
tion 3.2 of Chapter 3, we use a pole pla
ement method in orderto spe
ify the 
losed-loop poles and the observer poles. Furthermore, the 
ontrols
heme we are following is the one depi
ted in Figure 4.15, where the matri
es to bedetermined are K and G.
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PSfrag repla
ements u yẋ = Ax+Bu

y = Cx

˙̂x = Ax̂+Bu+G(y − Cx̂)

u = −Kx̂

Figure 4.15: Feedba
k 
ontrol law and observerFirst, we 
ompute the observability and 
ontrollability test matri
es in order tobe sure that all the system states are 
ontrollable and observable. On
e this is set, weimpose the dynami
 of the state feedba
k law and of the observer. The poles whi
hwill spe
ify the dynami
 of the 
losed-loop system are 
hosen by sele
ting the poles of
A−BK while the ones for the observer dynami
s are given by the poles of A−GC.When 
hoosing the poles one has to be very 
areful. In general the observer polesneed to be faster than the 
losed-loop poles, sin
e we want that the use of the ob-server does not de
rease too mu
h the performan
e with respe
t to the state feedba
k
ontroller. We observed in pra
ti
e that the fa
t of imposing very rapid poles forthe observer leads to a noise ampli�
ation, thus a possible ex
itation of the high fre-quen
y system modes. This fa
t is presented in [41℄. Consequently this will 
reate aspillover e�e
t (see Se
tion 3.3), sin
e the measurement noise is ampli�ed. The same
onsiderations are done for the 
losed-loop poles. Very fast 
losed-loop poles implythat: �rst, the voltage delivered by the 
ontroller might ex
eed the a
tuator limitsof ±100V , thus possibly destabilizing the 
losed-loop system; se
ond, the generatedvoltage might os
illate too fast in order to 
ontrol the system. Thus, if the os
illatingfrequen
y is very high, the noise will be ampli�ed, making the measurement impos-sible. One solution to this last issue is to sele
t slower 
losed-loop poles but this willunavoidably lead to slower 
losed-loop response. We see therefore that a middle pathneeds to be found between the response time and the noise ampli�
ation.By 
he
king the open-loop system poles we �nd 8 
omplex 
onjugate poles (3 forthe liquid sloshing and 5 for the plate), all of them having their real part negative.Thus the open-loop system is stable. The position of the open-loop poles 
an be seenin Figure 4.16, while their value is presented in Table 4.12 below.
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Figure 4.16: Pole/zero map of the open-loop system (× for the poles, ◦ for the zeros)Sin
e the pro
edure for the 
ontroller synthesis is identi
al for all the tank �llinglevels, details are given here only for the 
ase when the tank �ll level is 0.9. Let us�rst 
onsider the 
hoi
e of the pole pla
ement 
ontroller K from Figure 4.15.Open-loop poles Closed-loop poles-0.5093 ± 132.14i -0.5093 ± 132.14i-0.3447 ± 89.53i -0.3447 ± 89.53i-0.0803 ± 51.84i -0.0803 ± 51.84i-0.3146 ± 37.68i -0.3146 ± 37.68i-0.0175 ± 17.55i -0.0325 ± 17.55i-0.0135 ± 13.48i -0.0384 ± 13.48i-0.0059 ± 7.26i -0.0333 ± 7.26i-0.0074 ± 3.92i -0.0324 ± 3.92iTable 4.12: Closed-loop poles with the pole pla
ement 
ontroller, tank �ll level 0.9The 
hoi
e of the 
losed-loop poles is very di�
ult. The best solution is to 
hangeonly the real part of the dominant poles. In this 
ase, the best 
losed-loop poles are
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erning all the observer poles, their real part is three timesbigger than the real part of the 
losed-loop poles.The pole pla
ement 
ontroller is tested on the experimental set-up for a platedispla
ement of 10
m at the free end. The 
ontroller response in attenuating thevibrations is presented in Figure 4.17, while the voltage delivered by the 
ontroller tomake this attenuation is depi
ted in Figure 4.18.
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Figure 4.17: Experimental output of the of open-loop (dotted line) and 
losed-loop(plain line) systems using a pole pla
ement 
ontroller with a tank �ll level of 0.9

It is important to noti
e that sin
e the voltage delivered by the 
ontroller ex
eedsthe maximum value of the voltage ampli�er ±100V , the real voltage delivered to theplate in the interval 0 . . . 30 se
onds is a
tually between −100V and +100V.
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Figure 4.18: Voltage delivered by the pole pla
ement 
ontroller during experiments,tank �ll level of 0.9
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Figure 4.19: Frequen
y response of the pole pla
ement 
ontroller, tank �ll level of 0.9
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y response of the system in 
losed-loop with the feedba
k 
ontrollerpreviously 
omputed is presented in Figure 4.19. We 
an noti
e that the �rst mode iswell attenuated and also the se
ond mode (the 1st sloshing mode). We expe
ted thisto happen sin
e the dominant poles, 
orresponding to the �rst mode of the plate andthe �rst sloshing mode, are the ones that were mostly diminished. The other polesthat were 
hanged are 
orresponding to the other sloshing modes but their e�e
t is notvisible on the Bode plot. This might be due to their very small energeti
 
ontribution(see Table 4.1 in Se
tion 4.2).It is also interesting to noti
e that the 2nd �exion mode also experien
es a smallattenuation, even though the 
orresponding poles have not been 
hanged. This mightbe an in�uen
e of the other poles that have been shifted.At the same time, we noti
e that the peaks 
orresponding to the torsion modeand to the other �exion modes have a larger amplitude. This means that testingthe 
ontroller for a high frequen
y input would not give the best results sin
e the
ontroller is not 
omputed to attenuate the large frequen
y values.Con
lusion: In this se
tion a pole pla
ement 
ontroller 
oupled with a full-stateobserver have been 
onstru
ted. The 
hoi
e of the 
losed-loop poles is very tri
ky.After 
hanging only the dominant poles, the 
omputed 
ontroller 
an be tested onthe experimental set-up. Temporal and frequen
y tests show that the 
ontroller ise�e
tive espe
ially in attenuating the �rst �exion mode of the plate. In the nextse
tion we will 
ompute a H∞ 
ontroller. Finally, in Se
tion 4.6 both 
ontrollers willbe 
ompared.
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ontroller � 1334.5 H∞ robust 
ontrollerIn this se
tion a robust 
ontroller is 
omputed and some experiments are performed.The 
ontroller is 
al
ulated using the theory detailed in Se
tion 3.3 of Chapter 3.In order to solve the robust 
ontrol problem we write our system in the standardform given by Figure 4.20 where the following notation is used:
• u - system input (the voltage delivered by the H∞ 
ontroller);
• y - measured system output (voltage delivered by the piezoele
tri
 sensor);
• w - the perturbation of the system;
• z - the 
ontrolled outputs of the system.

PSfrag repla
ements
w

u

z

y

P

KFigure 4.20: Standard H∞ problemWe want to minimize the in�uen
e of the perturbation, sta
ked in the ve
tor w,on the 
ontrolled outputs, gathered in the ve
tor z.During our tests we observed that 
are should be taken when 
hoosing the outputsto be 
ontrolled. In our 
ase, the 
ontrolled outputs sta
ked in the z ve
tor are theposition of the plate given by the piezoele
tri
 sensor and the 
ontrol generated bythe robust 
ontroller K. The amplitude of the 
ontrol is limited sin
e the piezoele
-tri
 a
tuators have a ±100V limitation in amplitude (their frequen
y limitation isnot taken into a

ount sin
e they respond mu
h faster than the system does). The



134 Chapter 4 � Experimental results �perturbation w will be a sinusoidal voltage sent to the se
ond piezoele
tri
 a
tuatorpat
h glued on the plate.We 
ompute the H∞ 
ontroller, with M = 3 modes of liquid sloshing and N = 5plate's modes (see Se
tion 4.2). The system is tested on the experimental set-updes
ribed in Chapter 1. The ability of the 
ontroller, under external perturbations,to suppress the system vibrations but also to eliminate the spillover e�e
t when itappears, will demonstrate the validity of the 
ontroller.Therefore, we followed two approa
hes in order to solve the robust 
ontrol problem.These approa
hes lead to two types of models:
• model without �lters. In this 
ase, using a gain, we balan
e the 
ontrol outputdelivered by the 
ontroller in order to have a maximum voltage of ±100V ;
• model with �lters (in parti
ular to suppress the spillover e�e
t).4.5.1 Synthesis of a H∞ 
ontroller without �ltersHere, the H∞ standard problem is applied to our problem. The 
omplete state-spa
erepresentation of the system and 
ontroller, is given by the equation set:











ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D12u(t)

y(t) = C2x(t) + D22u(t)

(4.2)where A ∈ R
16×16, B2 ∈ R

16×1, C2 ∈ R
1×16 and D22 ∈ R

1×1 (the feedforward matrixis di�erent from zero due to the model mat
hing of Se
tion 4.3.3). The system isperturbed by the mean of the matrix B1 ∈ R
16×1, similar in 
onstru
tion as the
ontrol matrix of the plate (see Proposition 2.2.2) ex
ept for the position of pat
h
orners.The to-be-
ontrolled output z is 
omposed of the plate position and the voltagedelivered by the H∞ 
ontroller. In order to assure that this voltage remains in theamplitude limits ±100V , we use a weighting under the shape of the matrix D12 ∈

R
17×1:

D12 =













0...
0

d12













.
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ontroller � 135Moreover, the matrix C1 ∈ R
17×16 has the shape:

C1 =

(

C2

0

)

.Other 
hoi
es for the to-be-
ontrolled output are of 
ourse still possible. Besidesthe plate position and the voltage delivered by the 
ontroller, we also made testswith the position of the �rst pendulum-mass system in the to-be-
ontrolled output.This was done in order to better 
ontrol the sloshing modes but, sin
e the resultsare not satisfa
tory they are not re
alled here. Preliminary tests are in progressby 
onsidering, in the to-be-
ontrolled output, the state-spa
e ve
tor of the modelinstead of y, see [43℄.Furthermore, for 
omputation we use the Matlab 
© Robust Control Toolbox,and the 
ontroller we obtain is �rst tested in numeri
al simulation and then on theexperimental setup.
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Figure 4.21: Temporal response for robust 
ontrollers using Robust Control Toolbox,without �lters; simulations on a system with the same amount of modes; tank �lllevel equal 0.9. Thin line is obtained with d12 = 0.1, plain line with d12 = 0.25 andbold line with d12 = 1First the value of d12 is equal to 1, in whi
h 
ase the 
ontroller needs to minimize
u as mu
h as possible. The 
ontroller is 
omputed and is numeri
ally simulated on a



136 Chapter 4 � Experimental results �system of the same dimension. The results are shown in Figure 4.21 and 
orrespond toan initial 
ondition of the system when the liquid is motionless and the plate free endundergoes a 10
m displa
ement from the equilibrium position. The voltage deliveredby the 
ontroller is depi
ted in Figure 4.22. As it 
an be noti
ed the maximumvoltage delivered is ±12.75V whi
h is far away from the a
tuator saturation levelof ±100V. Therefore, we de
rease the value of the d12 
oe�
ient. In this 
ase, thevoltage delivered by the 
ontroller will in
rease but in the same time the response timeof the 
losed-loop system will de
rease. This yields: d12 = 0.25 and d12 = 0.1. Theresults of the response time, in open-loop and in 
losed-loop, are given in Figure 4.21while the voltage delivered by the respe
tive 
ontrollers are given in Figure 4.22.
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Figure 4.22: Voltage delivered by the robust 
ontrollers; tank �ll level equal 0.9 with
d12 = 0.1 (thin line), d12 = 0.25 (plain line) and d12 = 1 (bold line)The next step is to numeri
ally simulate these 
ontrollers on an augmented system.The main reason is to verify the presen
e or not of a spillover e�e
t. We therefore
onsider an augmented system, where one plate mode has been added to the previoussystem. The frequen
y responses are shown in Figure 4.23 for all the previously
onsidered 
ontrollers. We noti
e that all the 
ontrollers previously 
omputed a
tstrangely on the augmented system. Even though the high frequen
y modes areattenuated, the magnitude of the �rst modes (espe
ially the magnitude of the �rstsloshing mode) is in
reased. Moreover, to visualize the spillover e�e
t, the temporalresponse for the 
ase when d12 = 0.1 is shown in Figure 4.24. The initial 
ondition of
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ontroller � 137the plant is again equivalent to a free end's plate deformation of 10
m. The spilloverexisten
e 
an be easily noti
ed due to the signal divergen
e.
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Figure 4.23: Bode plot of the robust 
ontrollers simulated on an augmented system;tank �ll level equal 0.9. The thin line is for d12 = 0.1, plain line for d12 = 0.25 andbold line for d12 = 1
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Figure 4.24: Temporal response for robust 
ontrollers using Robust Control Toolbox,without �lters and with d12 = 0.1; tests on an augmented system; tank �ll level 0.9
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Figure 4.25: Pole/ zero map for the open-loop system augmented with one mode;tank �ll level equal 0.9The position of the poles and zeros, for the 
losed-loop system, 
an be seen inFigure 4.26. Some fast poles 
an be observed, mu
h larger than the open-loop ones(see Figure 4.25) and also larger than the ones we experien
e earlier for the polepla
ement problem (see Table 4.12).
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Figure 4.26: Pole/ zero map for the 
losed-loop system augmented with one modeand with the 
ontroller 
omputed with d12 = 0.1; tank �ll level equal 0.9
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Figure 4.27: Pole/zero map of the previously 
omputed 
ontroller, d12 = 0.1; tank �lllevel equal 0.9In spite of all these problems, we tested all the previously 
omputed 
ontrollerson the experimental setup. During all the tests we noti
e a sudden stop in thea
quisition pro
ess just after the 
ontroller introdu
tion. After analyzing the H∞
ontroller poles from Figure 4.27, we noti
e the poles with large real part. We thinkthat these poles are the 
ause for whi
h the experimental tests are not working.Di�erent manipulations are tried to over
ome this issue.A �rst idea is to eliminate the fast poles supposing a priori that they will notin�uen
e the system behavior in the steady state. Therefore, we eliminated thefast poles and we 
onsidered only their stati
 gain. Re
al
ulating the 
ontroller andtesting it in simulation, we obtain a 
losed-loop settling time identi
al to the open-loop settling time. From this we draw the 
on
lusion that the new 
ontroller is notworking and the fast pole have a great in�uen
e on the 
ontroller behavior.A se
ond solution that 
omes to our mind is to sele
t ourselves, in some way, thepoles of the 
omputed H∞ 
ontroller. This is done by setting some allowan
e zonesfor the 
ontroller poles. We 
an therefore des
ribe these zones using linear matrixinequalities (LMI) (see [39℄ or [38℄). Our purpose is to 
ompute this region so thatthe 
losed-loop poles are on the left-hand side of the 
omplex plane and have theirreal part (in modulus) as big as possible. At the same time, we do not want to keepvery fast poles sin
e they might not be implemented on the experimental setup. Theregion needs to be found by making a 
ompromise between these 
onstraints.Unfortunately, we did not �nd the suitable region. We found either regions wherethe poles are still very fast, thus unimplementable, or regions where the poles are
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losed-loop settling time is identi
al to the open-loop one.We thus �nally dedu
e that this method is not implementable on the real system.One 
an think of a further study 
onsisting in using an a
quisition set-up that 
anhandle a bigger sampling frequen
y. In this way, a 
lari�
ation may be obtained.4.5.2 Synthesis of a H∞ 
ontroller with �ltersThe robust 
ontrol of a system with �lters gave us the best results on the experimentaldevi
e and will be detailed below. These tests were already brie�y presented in [117℄and [118℄ and more details are given in this se
tion.The 
hoi
e of the �lters is a di�
ult problem and will have an impa
t on the
ontroller behavior. Later on, we propose a 
hoi
e of the �lters and then we 
omputethe 
ontroller using these �lters.In order to take the disturban
es into a

ount, the low-pass �lter H1(s) is in
ludedin the design s
heme. As explained in Se
tion 3.3, it models the range of frequen
ieswhere all the modes of the �nite dimensional system are 
onsidered (between 0Hzand 21Hz, see Se
tion 4.2). This perturbation, indu
ed by a frequen
y generatordevi
e, is applied to the piezoele
tri
 a
tuator that is not used in the 
ontrol law.The perturbation will be a sour
e of vibrations of the �uid-stru
ture system andis modeled by a low-pass �lter of order 1 with a bandwidth of 50Hz. The �lter,pla
ed before the piezoele
tri
 a
tuator used as a disturban
e a
tuator has thereforea transfer fun
tion given by
H1(s) =

100π

s + 100π
.The residual modes divergen
e des
ribing the spillover phenomenon is a 
ommonproblem when working with a trun
ation of an in�nite-dimensional model (see Se
-tion 3.3). In order to avoid this undesirable e�e
t, a high-pass �lter H2(s) of transferfun
tion:

H2(s) =
(1 + s

2π27
)3

(1 + s
2π160

)3is added on the 
ontrolled output. This allows to get a 60 dB attenuation above the
ut-o� frequen
y of 27Hz where the 
ut-o� frequen
y is slightly greater than thefrequen
y of the last 
onsidered mode in the 
ontroller synthesis. The H∞ 
ontrolleris designed and is �rst tested through simulations and on the experimental set-upafterwards for the two di�erent levels of tank �lling (denoted 0.7 and 0.9). Themodel used for simulations is again a system of larger dimension, in order to test theexisten
e of the spillover e�e
t.
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ontroller is 
al
ulated using the following standard H∞ problem given in Fig-ure 4.28:PSfrag repla
ements
u

z1

z2

z

y

w

u
y

H1(s)

H2(s)

K(s)

System

Figure 4.28: Standard H∞ problem with �lters4.5.2.1 Matlab 
© Robust Control Toolbox 
ontrollerThe �rst attempt to solve this problem is by using the Matlab 
© Robust ControlToolbox whi
h allows the 
omputation of only full order 
ontrollers. Tries are madeand due to memory over�ow, full order 
ontrollers 
annot be 
omputed for the systemwith Xp ∈ R
10 and Xθ ∈ R

6 and both �lters. This would lead to a full order 
ontrollerof dimension 20.One solution to solve this problem would be to redu
e the number of modes inthe model. After su

essive tries, we 
an �nd a 
on�guration for whi
h a 
ontroller
an be 
omputed but it 
ontains only the �rst plate mode and the �rst liquid modeand no spillover �lter. Instead of the �lter, a gain is used in order to keep the 
ontrolvoltage in the desired limits. Therefore, in this se
tion only, we 
onsider one mode ofthe plate and one mode of the liquid: Xp ∈ R
2 and Xθ ∈ R

2.The results of the 
ontroller implementation are tested for only one tank �ll levelof 0.7. The results are given in Figure 4.29.We 
an see that even though the 
ontroller attenuates well the �rst mode, we
an not use this te
hnique sin
e it does not allow us to 
onsider a greater number ofmodes or the roll-o� �lter in order to prevent spillover. For this simulation only, the
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Figure 4.29: Experimental Bode plot of the open-loop system (plain line) and of the
losed-loop system (bold line) 
omputed with the Robust 
ontroller from Matlab for2 modes and a �xed tank �lling of 0.7

Simulink s
hema in Figure 4.28 used for the 
al
ulus of the 
ontroller has the H2(s)�lter repla
ed by a gain suitably tuned. The roll-o� �lter is ne
essary to suppressthe spillover phenomenon, thus maintaining the overall stability of the system. Whenperforming numeri
al simulations, we experien
ed problems due to the non-desirablespillover (see Figure 4.24). We 
on
lude that we 
annot eliminate the roll-o� �lterfrom our 
ontroller synthesis.Moreover, when using the Robust Control Toolbox, we sele
t ourselves a suitableweighting fun
tion on the 
ontrolled output u so that the voltage delivered by the
ontroller stays in the range ±100V , in this way the a
tuators do not saturate andthe system stability is preserved. On the other hand, the Robust Control Toolbox
annot dire
tly ta
kle the problem of simultaneous 
ontrol for di�erent �lling levelsin the tip-tank.For all these reasons we de
ided to 
onsider synthesis algorithms of redu
ed-order
ontrollers and ta
kling also the simultaneous H∞ 
ontrol problem.
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ontroller
We will use here the HIFOO pa
kage for the 
ontroller 
omputation. The algorithmis based on non-smooth optimization issued from [60℄ and [35℄ and it 
omputes fullorder 
ontrollers but also redu
ed order 
ontrollers that are less demanding in termsof memory.Before 
onsidering all the plate and liquid sloshing modes, we experiment theHIFOO 
ontroller on the previous system in order to 
ompare it with the full order(se
ond order in this 
ase) Matlab 
© Robust Control Toolbox. Therefore, for thissimulation only, the HIFOO 
ontroller is 
omputed for a system with only one modeof the plate and one mode of the liquid: Xp ∈ R

2 and Xθ ∈ R
2. Sin
e HIFOO allowsus to spe
ify the order of the 
ontroller, in this 
ase the resultant 
ontroller will be a�rst order. The 
omparison is given in Figure 4.30. We noti
e that, both 
ontrollersattenuate the �rst �exion mode with around 4dB (∼ 7dB for HIFOO) but not the�rst sloshing mode, whi
h they a
tually amplify. Moreover, the HIFOO 
ontrollerampli�es also the torsion mode and the frequen
y mode at 50Hz, modes that havenot been 
onsidered in the 
ontroller synthesis.One very important thing to noti
e is that, while in
reasing the number of 
onsid-ered modes, HIFOO always �nds a suitable 
ontroller, in the presen
e of both �ltersfrom Figure 4.28 and by keeping the voltage delivered by the 
ontroller in the allowedrange.Some experiments are also performed for a tank �ll level of 0.9 in the same 
on-�guration (1 mode for the plate and 1 for liquid sloshing). The results are given inFigure 4.31. Sin
e the 
ontroller was built with only the �rst two modes, we noti
ethat only these modes are attenuated, the �rst mode attenuation being of almost

13 dB. A slight attenuation is also noti
ed for the se
ond and third �exion modes(2.3 dB and 1 dB respe
tively) even though those modes were not taken into a

ountfor the 
ontroller design. We also noti
e an ampli�
ation of the torsion mode (0.5 dB)and of the forth and �fth �exion mode (1 dB and 1.7 dB respe
tively) 
omparing tothe open-loop 
ase.
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Figure 4.30: Experimental Bode plot of the open-loop system (thin line) and of the
losed-loop system using a HIFOO 
ontroller and a Robust 
ontroller 
omputed withMatlab (2 modes and a �xed tank �lling of 0.7)
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Figure 4.31: Experimental Bode plots of the open-loop system (thin line) and the
losed-loop system (bold line) with a HIFOO 
ontroller 
omputed for 2 modes and a�xed tank �lling of 0.9

Analyzing the �gures presented earlier, two 
on
lusions 
an be drawn. The �rstis that HIFOO algorithm needs to be 
hosen instead of the usual Robust Toolboxfrom Matlab due to the reasons detailed before. Se
ond, a larger number of modesde�nitely needs to be 
onsidered during the 
ontroller 
omputation even in the 
asewhen HIFOO is used, in order to avoid mode ampli�
ation.From this se
tion on, 
ontrollers are 
omputed using the suitable amount of modesneeded for the system (N = 5, M = 3), in agreement with the theory in Se
tion 3.1of Chapter 3 and implemented in Table 4.1.We 
onsidered one spe
i�
 
ontroller for ea
h tank �lling level. In order to 
hoosethe suitable order of these HIFOO 
ontrollers, H∞ 
ontrollers of di�erent orders for a�xed tank �lling of 0.7 are 
omputed using the standardH∞ problem from Figure 4.28.The analyti
 
omputations show that 
ontrollers of order 1 and 4, have almost thesame H∞ norm γ: γ = 4.24 for a 1st order and γ = 4.28 for a 4th order.Consequently, a 4th order 
ontroller and a 1st order 
ontroller for the same tank�lling e = 0.7 are tested on the plant. The idea is to see if greater order 
ontrollersare really more e�
ient than a very simple �rst-order 
ontroller.
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Figure 4.32: Comparison between a 1st and a 4th order HIFOO 
ontroller; experimen-tal results for a �xed tank �lling e = 0.7 and 
omparison to the open-loop system(thin line)
The experimental results are plotted in Figure 4.32. The Bode plots show the
losed-loop attenuation in the 
ase of a 1st order and 4th order 
ontroller 
omputedusing HIFOO. One 
an noti
e a slightly better attenuation for the �rst sloshing modein 
ase of the 4th order 
ontroller and a better attenuation (almost 4 dB) for the �rst�exion mode in the 
ase of the 1st order 
ontroller.Consequently, we infer that the 
omplexity of a 4th order 
ontroller is not justi�ed.Therefore, from now on, only �rst-order 
ontrollers will be 
omputed with HIFOO.

4.5.2.3 First order HIFOO 
ontrollerWe 
ompute a �rst order HIFOO 
ontroller for ea
h tank �ll level: e = 0.7 and
e = 0.9. Experimental results are given in Figures 4.33 and 4.34 for ea
h 
ase.
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Figure 4.34: Experimental Bode plots for the open-loop system (plain line) and ofthe 
losed-loop system (bold line) using HIFOO 
ontroller - e = 0.7
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Figure 4.33: Experimental Bode plots for the open-loop system (plain line) and ofthe 
losed-loop system (bold line) using HIFOO 
ontroller - e = 0.9It may be observed that the �rst peak is well attenuated for the di�erent 
onsideredtank �llings. An attenuation of 14 dB is measured when e = 0.9 and of 11.7 dB
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erning the �rst torsion mode (3rd peak on the Bode plots) theattenuation is very small for e = 0.7 and quite good for e = 0.9 (1.5 dB). For higherorder modes, one 
an see that the 
ontroller for e = 0.9 is also quite e�
ient.
Moreover, the HIFOO 
ontroller 
omputed earlier, is tested on the experimentalsetup in the 
ase of a plate displa
ement of 10
m on the free end. The temporalresponse of the 
ontroller is given in Figure 4.35 and the voltage delivered in Fig-ure 4.36. As it 
an be seen, the voltage delivered is mu
h lower than the a
tuatorlimits.
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Figure 4.35: Experimental output of the 
losed-loop 
ontroller using HIFOO 
on-troller (bold line) and of the open-loop (dotted line); plate deformation of 10
m,
e = 0.9
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Figure 4.36: Voltage delivered by the HIFOO 
ontroller; plate deformation of 10
m,
e = 0.9
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Figure 4.37: Experimental Bode plot, 
omparison between the open-loop (plain line)and the 
losed-loop system with HIFOO 
omputed 
onsidering 2 or 8 modes of thesystem; �xed tank �lling of 0.9It is also very interesting to 
ompare this HIFOO 
ontroller with the one 
om-puted when only 1 plate mode and 1 sloshing mode are 
onsidered. This is donein Figure 4.37 for the 
ase of 0.9 tank �ll level. As one 
an see, the results of the
ontrollers are similar on the �rst two modes, as we expe
ted. On the 
ontrary, forall the other modes, we noti
e a better attenuation for the HIFOO 
ontroller 
om-puted with the 8 modes. Moreover, in this 
ase, the torsion and last �exion modes,
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h were ampli�ed by the HIFOO 
ontroller 
omputed with only 2 modes, are nowslightly attenuated.A 
on
lusion of this part is that the �rst �exion mode, whi
h is the most importantin terms of plate displa
ement from its equilibrium position as well as in terms ofmodal energeti
 
ontribution (see Table 4.1), is well attenuated for all the 
ases (2and 8 modes 
onsidered for the 
ontroller 
omputation). Moreover, 
onsidering alarger amount of modes in the 
ontroller synthesis is not only done to mat
h sometheoreti
al 
riteria (energeti
 
ontribution of modes, presen
e of a torsion mode) buta
tually shows better results in the implementation on the experimental set-up.4.5.2.4 Simultaneous redu
ed-order HIFOO 
ontrollerIn pra
ti
e the liquid in the plane tanks is varying during �ight. Therefore, one
ontroller must be valid for di�erent �llings.As a �rst step we test the 1st order 
ontroller previously 
al
ulated for the tank
90% �lled on a tank 70% �lled. The idea behind this is to see if the 
ontroller isrobust enough 
on
erning su
h a model 
hange. One 
an noti
e from Figure 4.38that the 
ontroller in
reases the amplitude of the �rst vibration mode of the plateand does not attenuate the other modes.
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Figure 4.38: HIFOO 
ontroller 
al
ulated for the tank �ll level 0.9 and tested on thetank �ll 0.7Consequently it is normal to 
onsider a simultaneous 1st order robust 
ontroller
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omputed for di�erent levels. This simultaneous analysis is possible using the HIFOOpa
kage under Matlab 
©.In this 
ase, we also 
onsider also another �lling level of the tank: tank half fullfor whi
h e = 0.5. Therefore, the simultaneous 
ontroller is 
omputed for three �lllevels (e = 0.5, e = 0.7 and e = 0.9). The results are given in Figures 4.39, 4.40and 4.41. Ea
h �gure shows the experimental Bode plot of the open-loop devi
e andthe experimental Bode plot of the 
losed-loop using the same simultaneous HIFOO
ontroller.
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Figure 4.39: Experimental Bode plot of the open-loop system (dotted line) and of the
losed-loop system (bold line) using simultaneous HIFOO 
ontroller - e = 0.9
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Figure 4.40: Experimental Bode plot of the open-loop system (dotted line) and of the
losed-loop system (bold line) using simultaneous HIFOO 
ontroller - e = 0.7
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Figure 4.41: Experimental Bode plot of the open-loop system (dotted line) and of the
losed-loop system (bold line) using simultaneous HIFOO 
ontroller - e = 0.5
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ontrol methods � 153One 
an observe that the �rst mode is very well attenuated for e = 0.9 (10dB)and e = 0.7 (5.7dB) and only a few for e = 0.5 (1.5dB). Regarding the torsionmode and higher order modes, they are also well attenuated espe
ially for e = 0.9.Unfortunately, they are not at all attenuated for e = 0.5. This issue is normal sin
e thesimultaneous 
ontroller will 
reate a mean level of attenuation for all the 
onsidered
ases.4.6 Comparison of the 
ontrol methodsThis se
tion aims at 
omparing the two 
ontrol methods: pole pla
ement feedba
k
ontroller and H∞ 
ontroller. Two 
on�gurations are analyzed: a response to aninitial plate deformation and the Bode frequen
y response.

Figure 4.42: Temporal evolution of the experimental output for the 
losed-loop sys-tems with pole pla
ement 
ontroller (plain line) and HIFOO 
ontroller (bold line);plate free end deformation of 10
m, e = 0.9First of all, let us 
onsider the 
ase of the plate free end deformation of 10
m. Inthis 
ase the Figures 4.17 and 4.35 are 
ompared in Figure 4.42. As it 
an 
learly beseen, the pole pla
ement 
ontroller attenuates the plate os
illations mu
h better thanthe HIFOO 
ontroller does. This is normal, sin
e the test 
on�guration advantagesthe pole pla
ement 
ontroller. For this 
ontroller, the dominant poles, whi
h are
orresponding to the �rst vibration and sloshing modes, were the one mostly 
hanged(see Table 4.12). Also, the robust 
ontroller is set to minimize the in�uen
e of theperturbations on the voltage generated by the 
ontroller. Thus, the voltage generatedto 
ontrol the plate movements, is minimized for the HIFOO 
ase while for the pole
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ement 
ase is left free. This is 
learly seen when 
omparing the voltage deliveredby both 
ontrollers: ∼ 500V (see Figure 4.18) for the pole pla
ement 
ontroller andonly ∼ 15V (see Figure 4.36) for the HIFOO 
ontroller.Now, let us 
onsider the Bode plots of the 
losed-loop systems. In this 
ase,Figures 4.19 and 4.33 are 
ompared on Figure 4.43. It 
an be easily seen that eventhough the pole pla
ement 
ontroller attenuates more the �rst �exion mode, as weexpe
ted, the HIFOO 
ontroller attenuates more the other high frequen
y modes andeven attenuates the modes that were ampli�ed by the former 
ontroller.
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Figure 4.43: Experimental Bode plots for the 
losed-loop system with pole pla
ement
ontroller (plain line) and HIFOO 
ontroller (bold line); frequen
y response, e = 0.9Until now we 
an not give a de
isive response about the best 
ontroller. Thisdepends on the type of problem to be solved. If one knows that the stru
ture willvibrate most of the time along the �rst �exion mode, then the pole pla
ement 
on-troller is the best 
hoi
e. On the other hand, if we 
onsider that the frequen
y rangein whi
h the plate vibrates is large, we will prefer the HIFOO 
ontroller.However, probably the most important issue also needs to be kept in mind. Thisis the size of the 
ontroller. A
tually, until now we 
ompared a full order 
ontrollerof order 20 with a single order 
ontroller of order 1. When the 
omputation time andpower are limited this issue is 
ru
ial and 
an be de
isive in 
onsidering the HIFOO
ontroller.Con
lusion: In this se
tion a 
ontroller robust to external perturbations has been
omputed and tested on the experimental set-up. We employed the Matlab 
© Ro-bust Control Toolbox and the HIFOO library. Due to memory over�ow, the full order
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ontrollers 
omputed using Robust Control Toolbox 
an not be implemented. There-fore, a �rst order order 
ontroller using HIFOO library is 
omputed and implemented.Finally, again using HIFOO, a unique �rst order 
ontroller that 
an take into a

ountdi�erent �ll levels of the tank is 
omputed and tested for di�erent �ll levels e = 0.5,
e = 0.7 and e = 0.9. Experiments show a good attenuation espe
ially of the mostenergeti
 mode of the stru
ture.4.7 Con
lusion of the 
hapterIn this 
hapter, tests on the experimental devi
e are 
ondu
ted. After proving thatthe in�uen
e of a
tuator dynami
s on the system behavior is null for the frequen
yband we 
onsider, the number of modes for the state-spa
e approximation have beendetermined. In this 
ase we used the method of modal energeti
 
ontribution fromChapter 3 along with some te
hni
al aeronauti
al aspe
ts. Then, we 
omputed thenatural frequen
ies of the plate and the sloshing frequen
ies of the liquid. For thiswe �rst used the analyti
 method, whi
h was veri�ed by a numeri
al method, andthen we dire
tly measured the frequen
ies. The damping is then measured and the
omplete model is determined.Afterward, we pro
eeded to the 
ontrol of the stru
ture. We �rst realized a polepla
ement 
ontrol, that proves to be very e�e
tive for the 
ase when the plate isdeformed along the �rst �exion mode. Moreover, sin
e the frequen
y response of thepole pla
ement is not suitable for high frequen
ies, we 
omputed a robust 
ontroller.Sin
e the Matlab 
© Robust Control Toolbox fails to do this, the HIFOO algorithmis employed. Using HIFOO, we 
omputed �rst order 
ontrollers that showed theire�e
tiveness during experiments. Moreover, using HIFOO we were also able to makesimultaneous 
ontrol for three di�erent tank �ll levels, an impossible thing to do withthe Robust Control Toolbox from Matlab 
© .
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lusion
Contribution of the manus
riptThe devi
e we are working on was des
ribed in Chapter 1 and pi
tured in Figure 1.1.It is 
omposed of a re
tangular plate 
onne
ted to a 
ylindri
al tank �lled with liquidup to an arbitrary level. Moreover, as it was already said, it was built to have, in lowfrequen
y domain, the same behavior as a real plane wing with liquid.Therefore, we started the manus
ript by presenting this experimental devi
e alongwith the a
quisition 
hain that 
onne
ts it to the 
omputer, the purpose of this workbeing to 
ontrol the plate vibrations when they o

ur. Moreover, sin
e the 
ontrol ofthe devi
e is done through piezoele
tri
 a
tuators and sensors, the �rst 
hapter endswith a short presentation of the piezoele
tri
 phenomenon.We 
omputed in Chapter 2 an analyti
al model of the devi
e. The 
hapter isdivided in three distin
tive parts: the �rst part 
ontains the model of the re
tangularplate and the se
ond details the model of the tank with liquid. In order to 
ompletethe model of the devi
e, the third part studies the mutual intera
tion between thevibrations of the plate and the sloshing of the liquid in the tank.On the one hand, we 
onsidered the plate model in Se
tion 2.2. For sake ofsimpli
ity, we started from the PDE model of a beam, whi
h represents the platetransposition in a 1-dimensional spa
e. Using the Ritz method, we determined, forea
h mode of the beam, the expression of its natural frequen
y and asso
iate defor-mation. We then 
onsidered the PDE model of a re
tangular "
lamped-free-free-free"plate (2.27). We 
omputed the deformation of the plate based on the deformationsof two theoreti
al perpendi
ular beams. Sin
e, as it was proved later in Se
tion 4.2of Chapter 4, the �rst modes of the plate are the most energeti
 ones, we made anapproximation of the PDE plate model by 
onsidering only the �rst modes. Basedon this, we 
onstru
ted the dynami
 matrix, 
onsidering that all the vibration modesare de
oupled even in the presen
e of damping. Then, studying the behavior of the157
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lusionpiezoele
tri
 a
tuator, we 
omputed the 
ontrol matrix. We �nally obtain the outputmatrix from the behavior of the piezoele
tri
 sensor.On the other hand, we studied the modeling of the sloshing of the liquid in thetank. Sin
e there are no analyti
al results for horizontal 
ylindri
al tank, we madea geometri
 approximation in Se
tion 2.3. Therefore, we 
onstru
ted a "virtual"re
tangular tank for whi
h the sloshing frequen
ies of the liquid are exa
tly the sameas the one of the 
ylindri
al tank. Then, we 
omputed the PDE model of the liquidin the re
tangular tank (see equations (2.67) and (2.68)). In order to develop a �nitedimensional approximation, we made an analogy with a mass-pendulum me
hani
alsystem. Therefore, 
onsidering one mass-pendulum system for ea
h liquid mode, theparameters of the me
hani
al systems were 
omputed to develop the same for
e andmoment of for
e as the liquid does. On
e the parameters of the mass-pendulumsystems were set, the 
omputation of the 
orresponding dynami
, 
ontrol and outputmatri
es was straightforward from the pendulum equation.We �nally studied in Se
tion 2.4 the in�uen
e of the plate vibration on the liquidsloshing and vi
e-versa. The plate senses the liquid sloshing as an external momentthat bends the plate along with the piezoele
tri
 a
tuators. At the same time, theliquid senses the plate in�uen
e as an external a

eleration that ampli�es the sloshinge�e
t. Therefore, we �rst 
oupled both PDE models and se
ond we detailed the �nitedimensional approximation 
oupling. The 
omplete model of the experimental devi
e,under the shape of a state-spa
e representation, was �nally given by equation (2.134).Chapter 3 has mainly a theoreti
al interest. We proposed �rst in Se
tion 3.1 amethod that allows to 
ompute the �nite dimensional approximation by studyingthe energeti
 
ontribution of ea
h mode of the stru
ture. Then, we detailed in Se
-tion 3.2 the theory of pole pla
ement 
ontroller 
oupled with a full state observer.Sin
e we were planning to implement 
ontrollers robust to external perturbations, wealso brie�y presented the robust H∞ framework in Se
tion 3.3.Tests on the experimental devi
e are illustrated and analyzed in Chapter 4. After
he
king the in�uen
e of the a
tuator dynami
 on the plate vibrations in Se
tion 4.1,we applied the energeti
 method detailed in the previous 
hapter to determine in Se
-tion 4.2 the number of modes for the �nite dimensional approximation of the PDEmodel. Then, an analyti
 
al
ulus, 
oupled with some numeri
al veri�
ations andexperimental measurements, is done in order to 
ompute the natural frequen
ies anddamping of ea
h system mode. Moreover, we also proved by experimental measure-
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lusion 159ments that the presen
e of the extra weight of the tank �lled with liquid de
reasesthe plate natural vibration frequen
ies while the plate presen
e de
reases the sloshingfrequen
ies when 
onne
ted. Sin
e we observed minor di�eren
es between the fre-quen
y response of the 
omputed model and the experimental set-up, we performeda model mat
hing in order to diminish these mismat
hes.In Se
tion 4.4, we 
omputed and tested the pole pla
ement 
ontroller. Tests on theexperimental devi
e show a good attenuation of the plate vibrations when the plateis initially deformed along the �rst vibration mode. This 
an be easily explained,sin
e the 
losed-loop poles 
orresponding to the �rst vibration modes are the onesthat 
hanged their position. However, on the Bode plot, we noti
e an ampli�
ationof some high frequen
y modes, a sign that the 
ontroller response in high frequen
ieswill not be as good as in low frequen
ies.Furthermore, in Se
tion 4.5, we 
omputed a 
ontroller robust to external pertur-bations and whi
h attenuates a higher range of frequen
ies. Two distin
t 
ases were
onsidered. First, no �lters were used to simulate the perturbations or to 
ounter thespill-over e�e
t that may o

ur. The 
ontroller was 
omputed using the Matlab 
© Ro-bust Control Toolbox. Simulations on a system with the same amount of modesshowed a good attenuation of the plate vibrations while tests on an augmented sys-tem showed that the system diverges. This is due to the spill-over e�e
t and thus thepresen
e of the �lter on the system input u is ne
essary. Moreover, tests on the ex-perimental devi
e 
ould not be performed, probably due to the 
ontroller poles whi
hwere too fast. Therefore, in the se
ond set of tests, �lters were used. The �rst surprisewas to noti
e that Matlab 
© Robust Control Toolbox fails to 
ompute a 
ontrollerwhen the �lters plus a large amount of system modes are 
onsidered. An alternativehad to be found and the HIFOO algorithm was 
onsidered. In 
ontrast with RobustControl Toolbox whi
h 
omputes only full order 
ontrollers, HIFOO 
omputes alsoredu
ed order ones. Using HIFOO, we 
omputed 1st order 
ontrollers for two di�er-ent tank �ll levels: 0.9 and 0.7. Experimental Bode plots showed a good attenuationespe
ially for the �rst vibration modes. Tests for a plate deformation along the �rstvibration mode showed also good results. Finally, using again HIFOO, we ta
kledthe problem of simultaneous 
ontrol of the system for di�erent �lling levels. We 
om-puted a 1st order 
ontroller that simultaneously attenuates the vibrations for threetank �ll levels: 0.9, 0.7 and 0.5. Here also, attenuation is obtained, espe
ially for the�rst vibration mode.Finally, Se
tion 4.6 
ontains the 
omparison of the di�erent 
ontrol methods weemployed. As expe
ted, pole pla
ement 
ontroller showed a better result when the
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lusionplate is deformed along the �rst vibration mode while HIFOO 
ontroller showed bet-ter results when a large frequen
y spe
trum is 
onsidered. Finally, based on the
ontroller size (full order pole pla
ement 
ontroller versus the 1st order HIFOO 
on-troller) the HIFOO 
ontroller was 
onsidered the most suitable.
Perspe
tives and Open questionsThere are still many points that may be 
onsidered. Some of them 
on
ern the model
onstru
tion while others 
on
ern the vibration 
ontrol or the perturbation design.Let us detail some of them here below.As stated in the introdu
tion of Chapter 2, there are two di�erent approa
hesfor the 
omputation of the model: analyti
al (the approa
h we followed in thismanus
ript) and numeri
al. One of the main reasons for whi
h we 
hoose the an-alyti
al approa
h was the possibility to model the sloshing of the liquid. However, wefound that some re
ent toolboxes from a FEM software 
an also solve this. Therefore,this issue 
ould also be exploited in order to 
ompare a numeri
al model using thisapproa
h with the analyti
al one obtained here. Con
erning the analyti
al model,some model improvements 
ould be worked on if we 
onsider the nonlinear dynami
sof the a
tuators and sensors. In parti
ular, it is well known that piezoele
tri
 a
tua-tors and sensors have a limited deformation [94℄ or [131℄.Con
erning the 
ontrol of vibrations, there are issues that require further atten-tion. For example the 
hoi
e of weighting fun
tions for the robust H∞ 
ontrol. Weknow, from the literature [145, Chapter 6.3℄, that the 
hoi
e of the weighting fun
tionsis extremely important for the results we obtain. The 
hoi
e of the to-be-
ontrolledoutputs 
ould also be addressed di�erently. Tests are in progress using the systemstate X in the 
ontrolled outputs [43℄ instead of the measured output y as we did.Preliminary results show a better attenuation (than the one we experien
ed with HI-FOO) when a large spe
tral frequen
y is 
onsidered but a smaller attenuation, forthe �rst mode, than the one we observed with the pole pla
ement 
ontroller. An-other interesting issue should be to study the interest of a mixed synthesis H2/H∞.Moreover, methods that better 
ontrol the liquid sloshing or the twisting modes ofthe plate 
ould also be of great interest.
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lusion 161Con
erning the perturbations, until now we used a random 
hirp of 
onstantamplitude. A more sophisti
ated perturbation, that uses a vibrating devi
e 
onne
tedto the 
lamped side of the plate, 
ould be 
onsidered. Besides, a more sophisti
ateddevi
e that ex
ites more the torsion of the plate or the sloshing modes may be used.In any 
ase, paths for further resear
h on this devi
e are numerous, some of them(probably the most interesting ones!) are still to be dis
overed ...
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