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Introduction [en]

Polycyclic Aromatic Hydrocarbon (PAH) molecules have been proposed in the eighties
as an abundant and widespread constituent of the interstellar medium. Since then, PAHs
have been identified as key species in the chemistry and physics of photodissociation
regions (PDRs) associated to interstellar and circumstellar environments. In particular,
due to their size and chemical properties, PAHs trace the transition between small, gas-
phase hydrocarbons and very small carbonaceous dust particles. Furthermore, they have
a major impact in the thermal balance of UV-irradiated regions, significantly contribut-
ing to the heating of the gas by photo-electric effect.

Astronomical observations of PAHs have been historically performed in the infrared
(IR) domain: the IRAS and ISO space missions have unveiled information on the nature
and properties of interstellar PAHs. These studies are also possible from the ground but
they are restricted to a few atmospheric windows. Recently, the AKARI andSpitzer
space telescopes provided near- and mid-infrared observations with an unprecedented
sensitivity. This enabled to extend the study of PAHs to fainter and more distant objects.
Now, theHerschelspace mission has opened a new wavelength domain in the study
of PAHs and their related species by providing sensitive observations at high spectral
resolution in the far-IR and sub-millimeter domains.

Whereas PAHs and related very small dust particles are better observed in the IR,
many small gas-phase species are usually observed at (sub-)millimeter wavelengths.
The original approach presented in this thesis is to take benefit of both types of ob-
servations to study the evolution of the PAH population and its influence on the physics
and chemistry of interstellar and circumstellar environments.

This thesis is divided into four parts, organised as follows. The first part introduces
the astrophysical scenario (Chaps. 1 and 2) and describes in more details the open ques-
tions that will be addressed in this work (Chap. 3). The second part contains a brief
description of the astronomical instruments that have been used (Chap. 4), and describes
the mid-IR analysis procedure that we have developed to characterise the evolution of
the PAH population (Chap. 5). The third part analyses the evolution of PAHs and their
influence on the chemistry of the ISM. In particular, Chap. 6 describes the destruction of
very small dust particles by the local ultraviolet radiation field as a source of free PAHs.
Chapter 7 presents the search for a peculiar PAH, corannulene, at mm wavelengths and
discuss the results in terms of the destruction and formation processes of the smallest
PAH species in the envelopes of evolved carbon stars. Chapter 8 presents the combina-
tion of IR and millimeter observations to study the evolutionary link between very small
grains, PAHs and small hydrocarbons. The fourth part shows how the combination of
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Introduction [en]

the analysis of PAH emission with that of small gas-phase species in the millimeter do-
main can unveil the structure (Chap. 9), energetics and dynamics (Chap. 10) of PDRs,
with a special emphasis on the reflection nebula NGC 7023 NW. Finally, I summarise
the results and present the main perspectives of this work.
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Introduction [ f r]

Il a été proposé au cours des années 1980 que les molécules Polycycliques Aromatiques
Hydrogénées (PAH) sont une composante importante de la matière interstellaire. Depuis
lors, il a été établi que les PAH jouent un rôle majeur dans la physique et la chimie
des régions de photodissociation (PDR) associées aux environnements interstellaires et
circumstellaires. En particulier, de par leur taille et leurs propriétés chimiques, les PAH
se placent à la transition entre les petits hydrocarbures en phase gazeuse et les très petits
grains carbonés. De plus, ils prennent largement part au chauffage du gaz via l’effet
photoélectrique, contribuant ainsi significativement à l’équilibre thermique des régions
exposées au rayonnement ultraviolet.

L’observation astronomique des PAH a été essentiellement menée dans le domaine
infrarouge (IR) : les missions spatiales IRAS et ISO ont révélé des informations sur
la nature et les propriétés de ces PAH interstellaires. Depuis le sol, ces études se re-
streignent à quelques fenêtres atmosphériques. Récemment, les satellites AKARI et
Spitzeront réalisé des observations dans les domaines de l’IR proche et moyen avec
des sensibilités inédites, permettant l’étude d’objets moins lumineux et plus lointains.
Grâce à la mission spatialeHerschel, l’étude des PAH et des espèces qui leur sont liées
est désormais possible dans les domaines de l’IR lointain et du sub-millimétrique en
bénéficiant à la fois de sensibilité et de très haute résolution spatiale.

Alors que les PAH et les très petits grains de poussière qui leur sont liés sont plus
facilement observés dans le domaine IR, de nombreuses espèces du gaz peuvent être
observées dans le domaine (sub-)millimétrique. L’originalité de la démarche présen-
tée dans ce travail de thèse provient de l’utilisation conjointe de ces deux domaines
d’observation pour étudier l’évolution de la population de PAH et son influence sur la
physique et la chimie des milieux interstellaires et circumstellaires.

Les quatre parties de cette thèse s’articulent comme suit. La première partie in-
troduit le scénario astrophysique (Chaps. 1 et 2) et détaille les questions encore ouvertes
auxquelles ce travail apporte des éléments de réponse. La seconde partie présente briève-
ment les instruments d’observation astronomique qui ont été utilisés (Chap. 4) et décrit
la procédure d’analyse des données du domaine IR moyen que nous avons dévelop-
pée pour l’étude de l’évolution de la population de PAH. La troisième partie analyse
l’évolution des PAH et leur influence sur la chimie du milieu interstellaire. En parti-
culier, le Chap. 6 décrit la destruction des très petits grains de poussière par le champ
de rayonnement ultraviolet local, considérée comme source de PAH libres. Le Chap. 7
présente la recherche dans le domaine millimétrique d’un PAH particulier, le coran-
nulène, et discute le résultat en termes de processus de formation et de destruction des
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Introduction [fr]

plus petits PAH dans les enveloppes des étoiles carbonées évoluées. Le Chap. 8 présente
la combinaison des observations IR et millimétriques pour étudier les liens entre très
petits grains, PAH et petits hydrocarbures au sein d’un scénario d’évolution. La qua-
trième partie montre comment la combinaison de l’analyse de l’émission des PAH et
de celle des espèces du gaz dans le domaine (sub-)millimétrique peut dévoiler la struc-
ture (Chap. 9), le bilan énergétique, et la dynamique (Chap. 10) des PDR. Ces chapitres
s’intéressent plus particulièrment à l’étude de la nébuleuse par réflexion NGC 7023 NW.
Pour finir, je résume les résultats obtenus et présente les perspectives principales de ce
travail.
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The astrophysical context
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Chapter

1
The interstellar medium

1.1 The phases of the interstellar medium

When observed at large scales, the interstellar medium (ISM) of our Galaxy appears
very rarefied, with typical densities of 1 atom/cm3. However, variations in density of
several orders of magnitudes can be found, especially in the Galactic disk where most
of the mass of the ISM lies. When dealing with the different environments of the ISM, it
is evident that a precise taxonomy based on any single physical parameter is impossible,
since gradients can be very smooth, and that some environments may fall in more than
a single class. However, a general classification can be made, on the basis of density,
temperature and ionisation state of the different phases of the ISM (McKee and Ostriker,
1977). Table1.1 summarises a recent update of such classification, reporting typical
values for hydrogen density (nH) and gas temperature (T) for each medium. Hereafter,
nH represents the local density of hydrogen in all its forms.

Hot ionized medium

The Hot Ionised Medium (HIM), or coronal gas, accounts for a large fraction of the
volume of our Galaxy but only for a small part of its mass. Most of the coronal gas is
located in the halo of the Galaxy, where the local density is so low that UV radiation

15



1. The interstellar medium

Table 1.1: Typical physical conditions for the different phases of the ISM in the Milky Way.
Adapted fromTielens(2005).

Phase nH T Principal tracer
[cm−3] [K]

Hot Ionised Medium 10−4 − 10−2 ∼ 106 X-rays, UV
Warm Ionised Medium 10−1 − 103 ∼ 8000 Hα
Warm Neutral Medium ∼ 0.5 ∼ 8000 Hi emission
Cold Neutral Medium ∼ 50 ∼ 80 Hi absorption & C+ emission
Molecular medium > 200 ∼ 10 Optical, IR, radio

and shocks from supernovae can easily propagate through, heating the gas to the highest
temperature found in the ISM (T ∼ 106 K) and ionising most of it.

Warm ionized medium

Photons carrying energy greater than 13.6 eV (λ < 912 Å) ionise neutral hydrogen (Hi).
Eventually, with time scales that depend on the physical conditions of the region (the
electron densityne and T), the ionised hydrogen (Hii) recombines with free electrons.
In the Warm Ionised Medium (WIM), recombination is a slower process than ionisation,
and most of the gas is found in a ionised state. Photoionisation is also responsible for the
gas heating, since a fraction of the energy of the ionising photons is transferred to the
ejected electrons that heat the gas through collisions. The outcome is a typical gas tem-
perature of about 8000 K. These regions are traced by optical recombination transitions
(principally the Balmer series of hydrogen), although they present alsofree-boundcon-
tinuum associated to electron recombination andfree-freeradio continuum, due mainly
to the acceleration of electrons that interacts with protons without recombination.

Neutral atomic medium

In our Galaxy, hydrogen is found mainly in its neutral form. In fact, Hi is the major
constituent of the mass of the interstellar medium. It can be found in a warm phase
(WNM, Warm Neutral Medium) at temperatures similar to those of the WIM, or at
much colder temperatures (∼80 K) in the so-called Cold Neutral Medium (CNM). The
heating of these regions is mainly due to photo-electrons ejected from dust particles. The
principal tracer of these atomic regions is the 21 cm hyperfine transition of Hi, which is
observed in emission at warm temperatures, whereas colder regions are mainly studied
with absorption measurements.

Cold molecular medium

The Cold Molecular Medium (CMM) accounts for a large fraction (∼ 30 %) of the mass
of the ISM, but a very small part of its volume. Most of the mass of the CMM is found

16



1.2. The lifecycle of matter in the Galaxy

in gravitationally-bound molecular clouds in the Galactic plane, with local densities
that range from few 102 cm−3 to over 107 cm−3. Typical gas temperatures for this phase
range from few K to some tens of K. The densest molecular clouds are not in pressure
equilibrium with the neutral gas surrounding them but are rather collapsing cores that
will eventually give birth to stars.

1.2 The lifecycle of matter in the Galaxy

Figure 1.1: Scheme of the lifecycle of matter in our Galaxy.Source: Bill Saxton -
NRAO/AUI/NSF

Stars are formed when a dense part of a molecular cloud collapses due to self-gravity.
Such clumps are the densest and coldest environments of the interstellar medium: UV
radiation cannot penetrate the central cores of these regions, where molecules can form
(in grain mantles or by gas-phase chemistry) without being submitted to destruction by
the UV field. When a clump reaches the Jeans mass it forms aprotostar. At this stage,
the contraction of the protostar produces heat that may evaporate the grain mantles,
injecting molecules into the surrounding gas, but the core is not yet hot enough to ignite
the fusion of hydrogen and start its career as a star. During the collapse, the conservation
of angular momentum may lead to the formation of a rotating circumstellar disk, or
proto-planetary disk.

The initial mass of the collapsing core determines the following stages of stellar
evolution and its ultimate fate. Massive stars (M > 8M⊙) evolve so quickly that the
steps of their formation and evolution up to the main sequence phase are still unclear.

17



1. The interstellar medium

These stars will burst in supernovae at their later stage of evolution. The evolution
of lower massT-Tauri stars (M < 2M⊙), and intermediate massHerbig Ae-Be stars
(2 < M/M⊙ < 8) is somewhat better understood: they will evolve in main sequence stars
when the core contraction yields temperature sufficient to ignite the fusion of hydrogen.

During their main sequence, the intermediate mass stars may form a so calledH ii
regions. The bulk of the radiation of young O/B stars is emitted in the UV portion of
the spectrum, and the photons with energy higher than 13.6 eV ionise the hydrogen gas
that surrounds the star.

At the end of their main sequence, when the hydrogen reservoir has been exhausted,
these low- to intermediate-mass stars enter in the Asymptotic Giant Branch (AGB)
phase, in which the central core contracts until it reaches the temperature needed to
start the fusion of helium and, successively, carbon. While the core collapses, the outer
layers of the stars are blown away and cool down, giving birth to acircumstellar enve-
lope (CSE). In this phase, the photons from the central star may ionise and process the
material in the envelope.Planetary nebulae(PNe) are the final step in the evolution of
low- to intermediate-mass stars. This stage is reached when the reservoir of helium has
been exhausted and the central star becomes a white dwarf. These stars have completely
ejected their outer envelopes, which are ionised by the central source.

The remnants of the circumstellar envelopes that are ejected from the evolved stars
in the ISM merge continuously with the surrounding materials and formdiffuse clouds.
Being the product of dust and gas processing in evolved stars, the newly formed nebulae
are generally enriched in heavy elements and processed dust. Diffuse regions can be
observed (either in emission or in absorption) because the material that constitute them
is illuminated by other near-by stars. Eventually, these diffuse regions may evolve in
gravitationally bound dark clouds, starting the cycle of matter from where it began.

1.3 Photo-dissociation regions

In the ISM, as well as in many circumstellar environments, the far-UV photons (6< hν <
13.6 eV) drive the thermal balance, the physical processes and the chemical evolution.
Such UV photons are energetic enough to break typical molecular bonds, and therefore
UV-illuminated environments are generally called Photo-Dissociation Regions (PDRs).
Regions such as the inner edges of the envelopes in PNe, the illuminated edges of the
dark nebulae and reflection nebulae can be considered as PDRs.

Figure1.2shows the schematic view of a typical edge-on PDR which is formed by
the UV radiation from a nearby star impinging over the border of a molecular cloud. The
depth along a PDR is often measured in magnitudes of visual extinction (AV) at 5500 Å
caused by dust particles immersed in the gas. Typically, one magnitude ofAV corre-
sponds to a total hydrogen column density from the PDR surface of 1.8× 1021 H cm−2,
although depending on the environment. The different layers of a typical PDR can be
schematised as follows:

18



1.3. Photo-dissociation regions
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Figure 1.2: Schematic representation of an edge-on PDR, illuminated on the left by the UV
field from nearby hot star. TheAV values reported for the chemical transitions refer to a mild
UV-irradiated PDR, and depend on the irradiation conditions.Figure adapted fromDraine and
Bertoldi (2000).

• A region where atomic hydrogen is mostly neutral, and the far-UV photons yield
the ionisation of atomic carbon. This region is usually characterised by the emis-
sion of [Cii] and [Oi] fine structure lines and by the IR emission from very small
dust particles, in particular PAHs (Polycyclic Aromatic Hydrocarbons, see Chap.
2).

• At AV ∼ 0.1 − 0.2 the formation of H2 on grains starts to be an efficient process
compared to the photo-destruction of gas-phase H2. This produces a transition be-
tween atomic and molecular hydrogen. This region is characterised by the emis-
sion in the IR ro-vibrational emission of H2: the gas kinetic temperature can reach
hundreds of K due to photoelectric heating, enough to excite H2 to produce rota-
tional IR emission. At these depths, carbon is still observed mainly in its ionised
atomic form, and the IR emission of very small dust particles and the [Cii] and
[O i] lines is still observed.

• A transition between ionised and neutral carbon is observed atAV ∼ 1− 2. Most
of the atomic oxygen combines with carbon to form CO. H2 is still by far the most
abundant molecule, but being hard to observe at these depths due to the low gas
temperature, the main tracer of molecular gas at these depths is CO.

• Molecular oxygen is efficiently formed deeper in the PDR, atAV ∼ 8.

In stationary regime, the transition between each layer can be very smooth or ex-
tremely harsh, depending on the physical conditions of the PDR, in particular on the
illuminating radiation field and the local density. Typical densities of PDRs can vary
from ∼ 102 cm−3 to some 106 cm−3, whereas values for the illuminating radiation field
are usually in the range of 1< G0 < 106 in units of theHabing(1968) field. G0 is
defined as the average interstellar flux in the solar proximity between 6 and 13.6 eV, and
corresponds to 1.6× 10−3 erg cm−2 s−1.
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1. The interstellar medium

In the scheme of Fig.1.2are reported only the most abundant gas species and their
transitions along the PDR front. Of course, the UV field does not control the evolution
of these species only, but drives all the chemical networks in the PDR. It is also strongly
absorbed by the various dust populations leading to emission in the IR. Some of these
processes and the associated open issues will be developed in Chap.3.
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Chapter

2
Gas, dust, and in between:
Polycyclic Aromatic Hydrocarbons

Amongst the elements, hydrogen constitutes about 70.4% of themass of the ISM,
followed by helium (∼ 28.1%) and heavier elements (in particular C, O, N, S, Fe, Si,
Mg, Al, . . . ) which account for only about 1.5% of the mass. About 99% of the mass of
the ISM is locked in gas phase species. The rest is found in dust particles.

2.1 Gas

Atomic gas. Atomic lines are observed in many interstellar and circumstellar environ-
ments. The 21 cm line of atomic hydrogen is the main observational tool to study the
physical conditions in neutral atomic regions. Many atomic absorption lines are also
detected in the visible and UV part of the spectrum. In warm regions, atoms are mainly
detected by their forbidden fine structure transitions: the [Ci], [C ii], [O i], emission lines
in the far-IR are usually very intense in PDRs. Other fine structure lines may arise from
more ionised regions, either highly irradiated PDRs or Hii regions, such as the [Arii],
[Ar iii], [Ne ii], [S iv], [O iv] that are observed in the mid-IR (see, for instance, Fig.2.5).
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2. Gas, dust, and in between: Polycyclic Aromatic Hydrocarbons

Molecular gas. Molecular bonds can easily be broken by harsh UV photons. Therefore
molecules are found mainly in the outer layers of CSEs, the internal layers of PDRs and
disks, where the radiation is attenuated by dust and the molecules can survive to photo-
dissociation. Yet molecules are also present in the diffuse ISM.

The two most abundant molecules detected in the ISM are H2 and CO. Today, more
than 150 molecules (plus their isotopomers) have been identified in the ISM and CSEs,
from the simplest H2 to long chains as HC11N. The molecular richness of the ISM envi-
ronments depends on their conditions, some molecules being very specific to particular
ISM conditions. A list of the molecular species detected in space to date can be found
in the Appendices. There is also strong evidence for other large molecules such as
Polycyclic Aromatic Hydrocarbons (PAHs), although no single molecule has been un-
ambiguously identified in the ISM yet (cf. Sect.2.3). Still, very recently, the presence
of C60 and possibly C70 has been evidenced both in PDRs (Sellgrenet al., 2007, 2010)
and in one planetary nebula (Camiet al., 2010).

In molecular clouds the gas temperature can be very low (down to a few K), and
molecules are detected in the radio through their low-lying rotational transitions. In
some cases (mainly UV-pumped or collisional excitation in hot and dense environments
and shocks, and PDRs) the higher rotational or vibrational modes of the molecule can
be populated, and the corresponding ro-vibrational transitions are emitted in the (far-)IR
and sub-millimeter domain. H2 constitutes a very particular case, since it is a homonu-
clear molecule and does not have a permanent dipole moment. Therefore, the low-lying
energy levels are linked through quadrupole transitions with small transition probabili-
ties and relatively high excitation energies. H2 emission can therefore arise only if the
molecule is either UV-pumped or collisionally excited in hot environments like PDR
edges.

The pathways for the production of molecules are gas-phase reactions in complex
chemical networks and reactions on grain surfaces. However, the precise formation
networks for many interstellar molecules, from the simplest H2 to large PAHs, are not
yet completely understood.

2.2 Dust

Dust particles are spread through the whole ISM. Even though their abundance is scarce
(∼ 1% of the total mass of the ISM) they play a fundamental role in many processes
of the ISM. First, dust is responsible for theextinction and polarisation of the stellar
radiation. Most of the energy carried by the absorbed photons is re-emitted at longer
wavelengths bythermal emission. Also, small dust particles significantly contribute to
the thermal balance of the gas through photo-electric heating. Dust grains are important
in the formation of molecules, not only because they shield them from the UV radiation
field, but they can also act as catalysers for reactions on their surfaces. Finally, dust has
a major contribution in the depletion of heavy elements (Field, 1974).
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2.2. Dust

Figure 2.1: Left: Average dust extinction in the diffuse interstellar medium. Some of the
strongest DIBs are superimposed and labelled.Source: (Draine, 2009). Right: Calculated
extinction curves forRV values ranging from 2.1 to 5.5.Source: (Draine, 2003)

2.2.1 Extinction

Dust absorbs and scatters visible and UV radiation very efficiently and the combination
of these two effects is called extinction. The first panel in Fig.2.1shows the wavelength
dependence of the average extinction curve in the Galaxy (Draine, 2009). The most
evident feature is the UV bump at 2175 Å, superimposed to a quite smooth rise from the
IR to the UV. The overall shape of the extinction curve, including the slope of the UV-
rise varies in different lines of sight (Fitzpatrick and Massa, 1986, 1988) but the whole
family of extinction curves can be represented with a single parameter,RV (see Fig.2.1,
right). This is defined asRV = AV/E(B − V), whereAV is the measured extinction in
the visible, andE(B − V) is the color excess in the line of sight. Values ofRV have
been found to vary between 2.1 in the diffuse medium to 5.5 in denser molecular clouds
and icy environments, with an average value in the Galaxy ofRV = 3.1 (Cardelliet al.,
1989).

The wavelength dependence and spatial variation of the extinction curve are often
used as tracers of dust properties along the line of sight. The UV extinction bump was
first detected byStecher(1969). Bless and Savage(1972) attributed it to a multicompo-
nent interstellar dust. Now the majority of the authors agree that this strong feature is
due toπ→ π∗ excitation in aromatic carbons, including PAHs. In the IR, the extinction
curve has a quite smooth rise, with some superimposed features. The 9.7 and 18µm ab-
sorption features are attributed to the Si-O stretching and bending modes in amorphous
silicates (Kemperet al., 2005), whereas the 3.4µm absorption feature is associated to
C-H stretching mode of grains containing aliphatic hydrocarbons. The nature of the
latter is still controversial (Pendleton and Allamandola, 2002; Dartoiset al., 2004). Su-
perimposed to the smooth profile of the extinction curve there are more than 200 weak
unidentified absorption features observed from 4000 to 13200 Å, the so-calledDiffuse
Interstellar Bands (DIBs, for a review seeHerbig, 1995). Since their first detection by
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2. Gas, dust, and in between: Polycyclic Aromatic Hydrocarbons

Merrill (1934), not a single carrier of the DIBs has been firmly identified.

2.2.2 Thermal emission

Dust re-emits the energy it has absorbed from the UV photons as thermal emission in
the IR-mm domain. The characteristics of the thermal emission depends on the nature
and the size of the grains. Current models are able to fit reasonably well the spectral
energy distribution (SED) of many lines of sights (see, for instance,Draine and Li,
2007; Compiègneet al., 2010). Generally speaking, large grains have a high heating
capacity and the absorption of a single UV photon does not significantly change their
temperature (cf. Fig.2.3). Therefore, they radiate in the IR-mm as grey-bodies at an
equilibrium temperature, which is a few tens of K for a typical molecular cloud. This
thermal emission accounts for most of the emission atλ > 60µm. Smaller dust particles
(such as PAHs) also emit infrared photons after absorption of a single UV photon, but
being much smaller, they can be heated to very high temperatures upon absorption of a
single UV photon. The PAH molecule then cools down by slow IR emission into its IR-
active modes. In general, the molecule has the time to re-emit this excess energy through
various de-excitation pathways before absorbing another photon, except in regions with
quite high photon flux (G0 & 105). Figure2.2shows a modelled SED including different
different grain populations (see below). The emission process for PAHs will be further
described in Sect.2.3.

PAH

VSG

BG

Figure 2.2: The mean emission spectrum of the Small Magellanic Cloud fitted with the model
of Désertet al. (1990). Figure adapted fromBot et al.(2004)
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2.2. Dust

G0 = 1

Figure 2.3: The temperature fluctuations of interstellar grains of different sizes heated by the
average interstellar radiation field of our galaxy (G0 = 1). Big grains, with a high heating
capacity, maintain an equilibrium low temperature upon absorption of a UV photon, while the
smallest grains (such as PAHs) heat up to a high temperature and cool down before absorbing
another photon.τabs is the absorption rate of a UV photon for that particular size and in the
mean interstellar radiation field.Source:Draine(2003) .

2.2.3 ExtendedRed Emission

The Extended Red Emission (ERE) is a broad band (∼ 350 nm) emission in the visible-
UV part of the spectrum of several reflection nebulae and other interstellar objects. It
was first observed byCohenet al.(1975) in the Red Rectangle nebula, and the first attri-
bution of ERE to luminescence of PAH-like molecules was proposed byD’Hendecourt
et al. (1986). Recently,Witt et al. (2006) proposed PAH di-cations (PAH++) as possible
ERE carriers. This assignment was then revisited byBernéet al. (2008), who instead
proposed ionised PAH dimers ([PAH2]+) as possible carriers of ERE. Other candidates
for ERE were proposed as well (for a review, seeWitt et al., 2006) but none provides a
satisfactory explanation.

2.2.4 Grain size distributions

The wavelength dependence of the extinction curve provides a first important constraint
on the grain size distribution. The first model of the grain size distribution was proposed
by Mathiset al. (1977), in which the dust population was composed of spherical grains
of both graphite and silicates. This model (hereafter, the MRN model) was able to fit

25



2. Gas, dust, and in between: Polycyclic Aromatic Hydrocarbons

reasonably well the extinction curve in several lines of sightfrom the IR to the UV by
assuming a size distributionn(a) = K × a−3.5, wherea is the radius of a spherical grain
(comprised between 250 and 2500 Å) andK is a constant. Successively, the range of
the size distribution of the MRN model was extended (from 30 to 10000 Å) byDraine
and Lee(1984), where specific optical properties for the graphitic and silicate dust par-
ticles were included, in contrast with the simple spherical grains of MRN. However, the
smallest sizes are difficult to infer from the fit of the extinction curve, and such estimate
is better constrained using the emission features in the near- and mid-IR. PAHs were
first introduced in grain models byDésertet al. (1990). Very Small Grains (VSGs) are
a second class of mid-IR emitters that can contribute to the mid-IR emission if they are
small enough to be stochastically heated (Désertet al., 1990). The VSGs are generally
considered to be carbonaceous (Désertet al., 1986) butLi and Draine(2001b) concluded
that the presence of very small silicate grains is not excluded and can involve up to 10%
of interstellar Si.

2.3 Interstellar PAHs

Polycyclic Aromatic Hydrocarbons (PAHs) are a class of large molecules composed of
a skeleton of two or more aromatic carbon rings and hydrogen atoms at the periph-
ery. They have properties typical of both gas-phase and solid grains. They can be also
considered as an intermediary stage between the small hydrocarbons and very small car-
bonaceous grains. According toJoblinet al.(1992), PAHs contain up to 20% of the total
interstellar carbon, making them the more abundant interstellar molecules after CO and
H2. Assuming 3× 10−4 for the abundance of carbon yields to the abundance of carbon
locked in PAHs of 6× 10−5 for the diffuse medium (RV = 3.1, Joblin et al., 1992).
This abundance value is consistent with that determined by (Draine, 2003). The author
also showed that this varies in different environments reaching 4.2× 10−5 for RV = 5.5.
Figure2.4shows a number of examples of the PAH family.

2.3.1 TheAromatic Infrared Bands

The Aromatic Infrared Bands (AIBs) are a set of emission bands observed in the infrared
spectrum of a large number of interstellar objects. The most intense bands are located
at∼ 3.3, 6.2, 7.7, 8.6, 11.3 and 12.7µm. They are associated to C-C and C-H stretching
and bending transitions of PAHs (Léger and Puget, 1984; Allamandolaetal., 1985) that
are emitted during the IR cooling cascade that follows the absorption of a UV photon.
Figure2.5 shows these bands measured by the SWS spectrometer of ISO in theOrion
Bar and NGC 7027, and summarises the association of each of the observed features
with the corresponding PAH vibrational mode.
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2.3. Interstellar PAHs

Figure 2.4: Few examples of the PAH family. Upper row: naphtalene (C10H8), pyrene (C16H10),
tetracene (C18H12), chrysene (C18H12). Lower row: coronene (C24H12), circumbiphenyl
(C38H16), dicoronylene (C48H20). Figure adapted fromMalloci et al.(2004).

Figure 2.5: Observed mid-IR spectrum of the Orion Bar and NGC 7027, and the association of
the AIB features with the corresponding vibrational transition of PAHs. The sharp lines are due
to the ionised gas.Source:Peeterset al.(2004)

27
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Spectral variations of the AIBs

The relative intensities, positions and shapes of the mid-IR bands can show large varia-
tions in different environments of the ISM and CSM. In particular, the ISO andSpitzer
telescopes have unshed a wealth of details on such variations in different sources, or
even within the same source (see, for example,Peeterset al., 2002; Werneret al.,
2004b). These variations reflect differences in the chemical composition of the AIB
carriers and in the physical conditions to which they are exposed. Several authors have
studied the evolution of the AIB properties in different environments to solve the evolu-
tionary scheme of the carriers (see, for instance,Honyet al., 2001; Peeterset al., 2002;
Rapacioliet al., 2005; Bernéet al.,2007; Joblinet al., 2008).

The absolute intensities of the AIBs in different PDRs have been found to approx-
imately scale with the impinging UV radiation field (Boulangeret al., 1998). Such
correlation appears natural, since PAHs are very efficient at converting the UV photons
from stars into IR photons. The ionisation state of PAHs is also reflected in the relative
intensities of the bands. For instance, the ratio of the intensities of the 7.7 and 11.3µm
bands (I7.7/I11.3) is higher for ionised species, as showed by both quantum-chemical cal-
culations (DeFreeset al., 1993) and laboratory measurements (Szczepanski and Vala,
1993b,a).

2.3.2 Photo-physics of an interstellar PAH

In typical interstellar conditions, a PAH will spend most of the time in its fundamental
ground state. The probability of the absorption of a single photon of energyE is propor-
tional to the number of photons carrying energyE and to the absorption cross-section
σ(E) (for experimental and theoretical estimates ofσ(E), see Joblinet al., 1992; Mal-
loci et al.,2004). It has been shown (Joblinet al.,1992) thatσ(E) actually scales linearly
with the number of carbon atoms in the PAH. When a UV or visible non-dissociating
photon is absorbed, the molecule is brought into an excited electronic state.

In a molecule containing a large number of atoms, several vibrational levels associ-
ated to different electronic states lie at the same energy, in the limit of Heisenberg un-
certainty. Iso-energetic non-radiative transitions between these initial excited states and
the ground electronic excited state (or in some cases the first excited state, cf. Fig.2.6)
occur very fast. This process is calledinternal conversion (IC).

Even if the probability of a single non-radiative transition is very low, the density of
the vibrational states corresponding to a given energy can be so high (1050 eV−1 at 10 eV
for coronene, C24H12) that IC can occur at time scales of 10−12 − 10−8 s, faster than any
electronic radiative transition, which has time scales of about 10−7 s. The same process
can occur between electronic states of different multiplicity, with time scales slightly
slower: this process is known asintersystem crossing(ISC).

The number of vibrational states that are iso-energetic at a given energy is higher
in the low-lying electronic states: after IC, the molecule has a high probability to be
found in a vibrationally excited level of the electronic ground state. It can eventually
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2.3. Interstellar PAHs

be also found in the first excited states (S1 or T1 for neutral species). Processes like
fluorescence for theS1 state(with time scales of about 10−7 s), or phosphorescence for
theT1 state (with time scales of a few seconds) can happen resulting in the emission of
a visible photon.

IC, phosphorescence and fluorescence will bring the molecule to the electronic ground
state with a lot of vibrational energy, This vibrational energy will be redistributed amongst
the modes by a process called internal vibrational redistribution (IVR). From here, the
molecule de-excites by emitting IR photons, with a time scale of the order of 0.1 s, al-
though it can take more than several seconds to relax most of the energy. Figure2.6
gives an overview of these processes for a neutral PAH.

Figure 2.6: Scheme of the excitation and de-excitation mechanisms for a large isolated neutral
PAH absorbing a single UV photon.Adapted fromLi (2004)

2.3.3 Identification of PAHs

Today, the presence of PAHs in the ISM is well agreed upon. However, a firm identifi-
cation of a single species that belongs to the PAH family is still missing.

The AIBs are generally attributed to the PAH class, but unfortunately, they cannot
be used for the identification of any specific molecule because they are associated to
transitions common to many species. In order to provide a specific identification, one
needs to explore a different spectral domain, where the transitions are characteristic of
specific molecules.
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Visible and UV

The correspondence of DIBs with electronic transitions of PAHs constitutes a way to
proceed for the identification of interstellar PAHs (see, for instance,Salamaet al.,
1999). This task requires high quality observations and very demanding experiments
for each molecule (see, for example,Useli-Bacchittaet al., 2010). Recently,Iglesias-
Groth et al. (2008, 2010) proposed the identifications of two particular small PAHs,
respectively the naphthalene cation (C10H8

+) and the anthracene cation (C14H10
+), on

the basis of the correspondence of two observed DIBs along a single line of sight, with
a laboratory spectrum, but these assignements are still uncertain.

Far-IR modes

Another possibility to identify PAHs is to search for the far-IR modes of PAHs that are
characteristic of the deformation of the whole carbon skeleton of the molecule. Far-IR
bands tend to be emitted when the excitation energy of the molecule is relatively low,
therefore lifetime broadening should not hinder the detection of the fine structure of
these bands (Joblinet al., 2002; Mulaset al., 2006).

Unfortunately, most of the vibrational energy of a PAH is emitted in the mid-IR, and
therefore the far-IR bands are expected to be very weak.Joblinet al.(2002) showed that
only 0.2% of the total UV energy absorbed by a coronene, will be emitted in FIR band
emission. Therefore, the far-IR emission of specific PAHs is expected to be challenging
but could be possible with the high sensitivity of theHerschelSpace Observatory in
bright sources (Mulaset al., 2006). This is a subject in which results are expected in a
near future.

Radio

Most neutral, unsubstituted PAHs have a planar structure, and do not have a permanent
dipole moment. Therefore, they do not present a pure rotational spectrum, or a very
weak one. Some exceptions exist (Lovaset al., 2005; Thorwirth et al., 2007), one of
them being the molecule corannulene (C20H10), which has a bowl-shaped structure due
to the pentagonal ring in the center. This molecule has therefore a high permanent
dipole moment (2.07 Debye) and should show a rotational spectrum. The search for this
molecule in the millimeter domain will be presented in Chap.7.
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Chapter

3
PAHs in the physics and chemistry of
the ISM

3.1 Carbon chemistry

Carbon is an important component of both gas-phase species and dust components in
the ISM and CSM. The study of the processes that drive the carbon cycle in the ISM is
a key aspect to understand the physics and chemistry in the ISM. In this section we will
present our current knowledge on the formation and evolution of PAH-related molecules
in the ISM.

3.1.1 Formation and evolution of PAHs

Formation in AGB envelopes

It is generally agreed that the principal sites of formation of interstellar PAHs are the
envelopes of evolved carbon stars (for a review, seeKwok, 2004). The precise path-
ways that bring to the formation of PAHs are still uncertain, but the most likely scenario
involves the pyrolysis of smaller hydrocarbons (Frenklach and Feigelson,1989; Cher-
chneff et al.,1992), especially acetylene (C2H2). Cernicharoetal. (2001) detected small
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hydrocarbon species that are thought to be the precursors of PAHs (C4H2, C6H2 and ben-
zene, C6H6) in AFGL 618, an evolved carbon star with a large circumstellar envelope.
These detections gave further support to the hypothesis that PAHs (or their precursors)
should be present in the envelopes of evolved carbon stars. Bright AIB emission is ob-
served in proto-planetary Nebula (PPNe) and PNe. Even if PAHs are present in AGB
stars, the direct observation of AIBs could be hindered by the fact that either these stars
are too cool to trigger AIB emission, or/and that the opaque interior of the circumstellar
envelope may shield the AIB carriers present in the outer layers. Recently,Boersma
et al. (2006) detected PAH emission in one late AGB star, TU-Tau, in which the dust
is heated by a hot companion that provides the UV radiation. Successively,Sloanet al.
(2007) detected AIB emission in a carbon-rich AGB star, that presents also a circum-
stellar disk. The PDR in the disk is most likely the region where the AIBs originate.
Smolderset al. (2010) reported the detection of PAH emission in earlier AGB stars, in
which the circumstellar envelope is not yet opaque to radiation and the central star can
induce AIB emission from the surrounding envelope. These stars, however, are too cold
to produce a strong UV radiation field, so the AIB carriers must be excited through vis-
ible pumping (Li and Draine, 2002) which implies that they must be either cationic or
very large aromatic compounds, or aliphatic.Cherchneff (2006) showed that the pro-
duction of C2H2 by non-equilibrium chemistry is possible in the outer regions of such
stellar outflows, coherently with the global pyrolysis picture.

Formation by fragmentation of grains

A second production pathway of interstellar PAHs, complementary to the previous, is
the fragmentation of amorphous grains or Very Small Grains by shocks or UV irradiation
(Scott and Duley, 1996; Cesarskyet al., 2000). Very Small Grains (VSGs) are a sec-
ond class of mid-IR emitters that are stochastically heated as PAHs, and can contribute
to the mid-IR emission if they are small enough (Désertet al., 1990). The VSGs are
generally considered to be carbonaceous (Désertet al., 1986) butLi and Draine(2001b)
concluded that the presence of very small silicate grains is not excluded involving up to
10% of interstellar Si. Using blind source separation methods,Rapacioliet al. (2005)
and Bernéet al. (2007) extracted three independent spectra from the mid-IR emission
(cf. 3.1: two molecular PAH-type spectra attributed respectively to neutral (PAH0) and
ionised (PAH+) populations and one that consists in both continuum and broad band
emissions. The latter was attributed to the VSG population although they cannot be
strictly identified as the VSG population ofDésertet al. (1990). Their properties are
similar to the PAH grains modelled byLi and Draine(2001a) whose optical properties
are constructed by mixing PAH bands with graphite continuum. Interestingly,Rapacioli
et al. (2005) andBernéet al. (2007) showed that molecular PAHs are produced from
the photo-processing of the so-called VSG population. We therefore refer to the latter
asevaporating VSG (eVSGs).

Rapacioliet al. (2005) proposed PAH clusters as possible candidates for eVSGs,
and Rapacioliet al. (2006) studied the lifetime of these species in the NGC 7023 PDR.
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3.1. Carbon chemistry

The clusters they studied consisted of rather small stacks of neutral coronene molecules
(C24H12) and the authors found that these clusters are very efficiently evaporated by UV
radiation in PDRs. Larger clusters (e.g. made of larger units than C24H12 or containing
more than the maximum size of 13 units, seeRapacioliet al., 2006) may be more
stable to UV radiation, and theoretical studies on their stability in ISM conditions is an
on-going work at CESR (Montillaudetal., 2011).

0

0.1

0.2

λ (∝m)

  

0

0.05

0.1

0.15

0.2

λ (∝m)

 I ν (
A

.U
.)

 

6 7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

λ (µm)

  

VSGs

Neutrals

Cations

57.6 50.4 43.2 21:01:36.0 28.8 21.6 14.4

30.0

11:00.0

30.0

68:10:00.0

30.0

09:00.0

30.0

08:00.0

RA (2000)

D
ec

 (
20

00
)

Figure 3.1: The three principal components extracted inRapacioliet al. (2005), assigned to
Very Small Grains (VSGs), PAH cations (PAH+) and neutrals (PAH0). Their relative weights in
the reflection nebula NGC 7023 is shown in the right panel (VSG=red, PAH0 = green, PAH+ =
red). In the following, we will refer to the VSGs as evaporating VSGS (eVSGs). The evapo-
ration process is evidenced by the frontier between the VSGs and the PAHs on the right panel.
Image courtesy of O. Berné.

An evolutionary scheme between aliphatic and aromatic carbonaceous materials is
also suggested by observational evidence. Two broad features at 8 and 12µm are de-
tected in post-AGB stars and PPNe but not in late type PNe (Peeterset al., 2002). On
the other hand, AIB emission is detected in both PPNe and PNe, but not in the earlier
phases. The two broad features are generally attributed to materials containing both
aliphatic and aromatic hydrocarbons (Kwok, 2004). A systematic study of several PPNe
and PNe byJoblinet al. (2008) supports the scenario in which the carriers of the broad
features are destroyed in PNe, producing the AIB carriers. Furthermore, PPNe and PNe
show intense band emission at 3.4µm, which is attributed to aliphatic side groups in
PAHs (Joblin et al., 1996a) or super-hydrogenated PAHs (Bernsteinet al., 1996). In-
deed, several observations of spatially resolved PDRs (Geballeet al., 1989; Joblinet al.,
1996a; Sloanet al., 1997) show that the intensity ratio of the 3.4 and 3.3µm bands in-
creases in the more shielded regions. This has been interpreted as the photo-destruction
of the more fragile aliphatic bonds.
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3. PAHs in the physics and chemistry of the ISM

Ionisation of PAHs

There is compelling evidence for the presence of PAH cations in the ISM (Joblinet al.,
1996b; Sloanet al., 1999). The spectrum of ionised PAHs differs from that of neutrals in
particular by its band intensity ratio. It shows higher values of the 3.3, 11.3 and 12.7µm
over 7.7µm intensity ratio, whereas in ionised PAHs the opposite tendency is seen.

The studies ofRapacioliet al. (2005) andBernéet al. (2007) presented further evi-
dence for the presence of PAH cations in PDRs and opened the way to study the evolu-
tion of PAH-related populations in different environments using a simple set of template
spectra. This was applied to PNe (Joblin et al., 2008), proto-planetary disks (Berné
et al., 2009b) and Hii regions (Bernéet al.,2009a). Joblinet al. (2008) andBernéet al.
(2009a) showed that a fourth PAH population was needed to accurately fit the spectra of
PNe and PPNe, and Proto-Planetary disks. The spectral features of this fourth popula-
tion, together with the fact that its emission is important in highly irradiated sources, led
the authors to associate it to large ionised (cationic or anionic) PAHs. In these works,
the authors showed a correlation between the emission associated to the different popula-
tions and the physical characteristics of the source, evidencing the chemical evolution of
the carriers, in particular photo-ionisation and photo-dissociation of PAHs and eVSGs.

Dehydrogenation and photo-dissociation

Loss of hydrogen atoms by PAHs can also be very efficient in interstellar conditions.
This process has been modelled for diffuse ISM conditions byLe Pageet al.(2003), who
showed that larger PAHs are much more hydrogenated than smaller species. However,
large uncertainties remain in the description of the reactivity of PAH-related species
with H and H2 and their dissociation rates. The minimum size of PAHs that can be
found in their normal hydrogenated state was evaluated to be in the 25-50 C atom range,
depending on theG0/nH ratio.

PAHs can be dissociated by UV photons in the ISM. The loss of hydrogen atoms at
the periphery of the carbon skeleton can be in competition with the ejection of small hy-
drocarbons (mainly C2H2 and C4H2, Useli Bacchitta and Joblin, 2007; Useli Bacchitta,
2009) in the gas. This process can contribute to the production of small hydrocarbons in
PDRs.Fuenteet al. (2003), Teyssieret al. (2004) andPetyet al. (2005) indeed showed
that models fail to reproduce the high abundance of hydrocarbons (C2H, C4H, c-C3H2,
. . . ) that is observed in the outer layers of several PDRs.Petyet al. (2005) showed
a good spatial correlation of the emission in these hydrocarbon lines with that of the
AIBs for the Horsehead Nebula PDR (see Fig.3.2), supporting a scenario in which these
hydrocarbons are produced by destruction of the AIB carriers.

3.2 Energetics of PDRs

The thermal balance of the gas in PDRs results from the competition between heating
and cooling:
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Figure 3.2: The Horsehead Nebula observed with different tracers. The 7.7µm image tracing
PAH emission (ISOCAM data,Abergelet al., 2003) and the hydrocarbon emission (Plateau
deBure Interferometer data,Petyet al., 2005) are spatially coincident. For reference, the H2

2.1µm (Habartet al., 2005) and12CO emissions are displayed.Image adapted fromGerinet al.
(2009).

Photo-electric heating. The most important heating mechanism at the border of PDRs
is known to be photo-electric heating by (small) dust grains (Bakes and Tielens, 1994;
Weingartner and Draine, 2001). If the energy of the photon is higher than the ionisation
potential, the excess energy is released as kinetic energy of the ejected electron. The
photoelectric heating efficiency (ǫph) is a fundamental parameter that is defined as the
fraction of far-UV energy which is converted to gas heating. The photo-electric effi-
ciency depends on the physical properties of the grain, such as its size and ionisation
state. In positively charged grains, the electron must have enough energy to overcome
the ionisation potential and to pass the Coulomb barrier. Therefore, positively charged
grains contribute less to photoelectric heating. Furthermore, the efficiency of larger
grains is limited by the escape length of photo-electrons: half of the photo-electric heat-
ing is most likely due to grains of a few tens of Å. PAHs, in particular, are expected to
be a very important source of photo-electrons.

In PDRs,ǫph is often measured observationally as the ratio of the cooling energy
emitted in the [Cii] and [Oi] lines and the energy emitted in the far-IR continuum that
depends on the far-UV flux. An accurate measurement ofǫph requires also to take into
account other important cooling lines such as CO and H2. The value ofǫph has been
found to vary by about 2 orders of magnitude in different sources of the ISM. For in-
stance,Vastelet al.(2001) measured a very low heating efficiencyǫph = 1.4×10−4 cm−3

in the PDR of W59N, which is a highly-irradiated source that possibly contains a large
fraction of ionised dust particles. In a low-UV irradiated PDR, L1721,Habartet al.
(2001) foundǫph ∼ 0.03. This confirms that dust composition and charge play indeed a
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major role in the heating process. Understanding dust evolution in PDRs is a fundamen-
tal step in the description of the thermal balance of PDRs.

Cooling. The gas in PDRs can be cooled by several processes. The most efficient
process in the outer edges of the PDR is the emission of collisionally excited far-IR
fine structure lines of the most abundant species: Ci, C ii, O i, Si with ratios that de-
pend on the physical properties of the region. Emission of [Oi] at 63 and 146µm is
expected to dominate the radiative cooling in highly-irradiated (G0 > 103) and high den-
sity (nH > 104 cm−3) regions, while [Cii] emission at 158µm dominates in regions with
lower density and radiation field. The ratio between the [Cii] and [Oi] cooling rates can
be used as a tool for determining the physical conditions (G0 andnH) of a PDR (Kauf-
man et al.,1999). At high temperature, emission of near- and mid-IR ro-vibrational lines
of H2 can also contribute to gas cooling. Emission in the lines of [Ci], CO and other
very abundant molecules can also play a significant role in the gas cooling at moderate
cloud depths.

PDR models need to solve the thermal balance of the gas, which requires a proper
description of the physics of the heating and cooling mechanisms. Even though these
processes are quite well understood, the quantitative description of the heating depends
on the properties of PAHs and dust grains. This can be achieved by a comparison of
models with observations. However, these observations are often very demanding, and
before theHerschelSpace Observatory, they were difficult. For instance, to constrain
the contribution of the PAH-related populations to the photo-electric heating of the gas,
one needs to disentangle the spatial structure of the AIBs, the [Cii] and [Oi] lines and
the far-IR continuum. This demands high spectral and spatial resolution observations in
the far-IR, thatHerschelis nowadays providing. Finally, to interpret the observations,
not only models are needed but also an (accurate) knowledge of the geometry of the
source being studied.

3.3 Objectives of this thesis

In this thesis, I will present how observations at different wavelengths can be combined
to get further insights into chemical and physical process involving very small dust par-
ticles in PDRs.

3.3.1 The evaporation of eVSGs

Previous observational and modeling works (Rapacioliet al., 2005; Bernéet al., 2007;
Compiègneet al., 2008) have shown that an evaporation process involving very small
dust particles is an important process in the evolution of carbonaceous species in the
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ISM. However a direct, observational link with the physical conditions (i.e. the intensity
and hardness of the radiation field and the local gas density) is still missing.

In this thesis, I will present the observational study of the evolution of the different
AIB carriers under UV irradiation in PDRs. In particular, I will quantify the evaporation
of the eVSGs as a function of the local physical conditions in the PDR. In Chap.5, I will
present the method I have developed to interpret the mid-IR emission of very small dust
particles in PDRs. In Chap.6, I will apply this method to a sample of PDRs presenting
very different physical conditions, and quantitatively interpret the results in terms of the
evaporation process involving eVSGs and PAHs and the carbon content in each of these
species.

In Chap. 8, I will show how this photo-destruction process may be relatedto the
chemistry of small gas-phase hydrocarbons in PDRs, by combining data at near-IR,
mid-IR and mm wavelengths. In particular, I will correlate the aliphatic-aromatic tran-
sitions observed in the near-IR with the results of the mid-IR analysis, and with the
interferometric observations at mm wavelengths.

3.3.2 Search for a specific PAH: corannulene

As already mentioned in Sect.2.3, the PAH hypothesis lacks the identification of a spe-
cific PAH molecule in the ISM. In Chap.7, I will present the first search at mm wave-
lengths for a specific PAH, corannulene (C20H10), in the nebula of the Red Rectangle,
that have led to a very strict upper limit to its abundance in this post-AGB environment.

Moreover, the formation mechanism of PAHs in the ISM is still subject of debate,
being related to chemical accretion of smaller species, or to the destruction of larger
particles (Sect.3.1.1). I will show how corannulene can be used as a probe of the small
PAH population, and discuss the influence of its non-detection on our current knowledge
of the formation process of small PAHs in post-AGB environments.

3.3.3 Physics and chemistry in a template PDR: NGC 7023

Numerical models of PDRs such as the Meudon code1 progress very rapidly, describing
more accurately the physical and chemical processes in PDRs. However, to compare
these models with observations an accurate description of the geometry of the source is
needed. In the last part of this thesis, I will show how a multi-wavelength approach can
be used to study the geometry of a specific source, NGC 7023. I will show how this
source is indeed a template object for future quantitative analysis with PDR models of
the heating and cooling mechanisms in PDRs.

1http://pdr.obspm.fr/PDRcode.html
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Chapter

4
Observing gas and dust particles in
the ISM

4.1 Infrared and sub-mm from space

The infrared spectra of PDRs contain a wealth of spectral features. For example, the
AIBs are observed in the mid-IR between 3.3 and 18µm, where fine structure gas lines
such as the forbidden [Neii] and [Ar iii] transitions as well as ro-vibrational H2 lines are
also observed. The dust extinction curve presents also two strong absorption features at
9.7 and 18µm produced by silicate grains (Li and Draine, 2001b) and a feature at 3.4µm
corresponding to aliphatic C-H stretching modes. The continuum emission in the IR and
sub-mm domains provides a unique tool to study the size, composition and temperature
of larger grains. Furthermore, the sub-mm domain is rich of molecular transitions from
warm and dense media. The far-IR domain contains the main PDR cooling lines, and
even possibly ro-vibrational transitions characteristic of specific PAH molecules.

Often some confusion arises on the sub-divisions of the infrared part of the electro-
magnetic spectrum. In this manuscript, the conventions reported in Table4.1 will be
used.
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Table 4.1: Subdivision of the IR and sub-mm spectral domains

Spectral domain (µm)

Near-IR 0.7 - 5
Mid-IR 5-40
Far-IR 40-200

Sub-mm 200-900

Only very small windows in the mid-IR domain can be observed from the ground
(see fig. 4.1). Except for these very small windows, the atmosphere is opaque to IR
radiation and observations from space are needed. TheKuiper Airborne Observatory
(KAO) consisted in a 91.5 cm telescope mounted on a dedicated aircraft and operating at
an altitude of about 14 km. At these altitudes, the opacity of the Earth’s atmosphere due
to water vapour is sensibly reduced, and KAO was able to perform observations in the IR
and sub-mm domain between 1 and 500µm. KAO operations started in 1975 and lasted
for 20 years. The first infrared space mission was theInfraRed Astronomical Satellite
(IRAS, Neugebaueretal., 1984) that was launched in 1984 and mapped more than 90%
of the sky in four different IR filters: 12, 25, 50 and 100µm. Since then, many progresses
have been made with the Infrared Space Observatory, theSpitzerSpace Telescope and
the AKARI telescope followed for the far-IR by theHerschelSpace Observatory.

Figure 4.1: Transmission of the Earth’s atmosphere along the electromagnetic spectrum.
Source: ESA/NASA
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4.1.1 Infrared Space Observatory

The Infrared Space Observatory(Kessler, 1999), better known as ISO, was launched in
November 1995 and its routine phase lasted for 28 months. After the all-sky photomet-
ric observations of IRAS, ISO provided the opportunity to perform specific on-demand
observations to assess different science topics (for some of the mission highlights, see
Salama, 2004). ISO observed the infrared sky between 2.5 and 240µm and was equipped
with a 60 cm telescope cooled by liquid helium to temperatures of 2-4 K. Some of the
detectors were directly coupled to the helium tank, and were cooled down to a tempera-
ture of about 2 K, ensuring a sensitivity thousands times better than IRAS. The angular
resolution of ISO was also much better than IRAS. All ISO data are public and can be
retrieved from theISO Data Archive1, in fully reprocessed and calibrated format. ISO
was equipped of the following instruments:

ISOCAM (Cesarskyet al., 1996) An infrared camera that covered the 2.5-17µm band,
either with several individual filters, or with a circular variable filter (CVF) pro-
viding spectro-imagery at a spectral resolution ofR ∼ 45. The long-wavelength
detector (4-17µm) had a much better performance than the short wavelength one.
The spatial resolution varied between 1.5 and 12′′ per pixel.

ISOPHOT (Lemkeet al., 1996) A photo-polarimeter with the task of mapping the sky
in several filters in the 2.5-240µm range. It could also be used as a Spectro-
photometer at medium spectral resolution (R∼ 90) in the 2.5-12µm range.

SWS (de Graauwet al., 1996) The Short-Wave Spectrometer could perform high reso-
lution spectroscopic observations covering the 2.4-45µm band at low (R∼ 1000−
2000) or high spectral resolution (R ∼ 3 × 104). The area of the aperture varied
between 14 and 40 arcsec2.

LWS (Clegget al., 1996) The Long-Wave Spectrometer provided for the first time high
sensitivity spectroscopic information in the far-IR (43-196.7µm). at low (R ∼
200) or high spectral resolution (R ∼ 104). The radius of the effective aperture of
LWS varied between 33 and 43′′.

4.1.2 Spitzer Space Telescope

TheSpitzer Space Telescope(or Spitzer) (Werneret al., 2004a) was developed by NASA
and launched on August 2003.Spitzer improved our knowledge of the infrared sky
thanks to its better sensitivity compared to ISO. The instruments were cooled down to
1.4 K, and the entire telescope was kept to about 40 K for routine observations.Spitzer
covered the 3-180µm range and was equipped with a 85 cm-diameter mirror. The angu-
lar resolution of all the instruments were diffraction limited at wavelengths higher than
5.5µm. Spitzerdisposed of the following instruments:

1http://www.iso.vilspa.esa.es
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IRAC (Fazioet al., 2004) The InfraRed Array Camera was a photometer covering si-
multaneously 4 filters in the near- and mid-IR at 3.6, 4.5, 5.8 and 8µm. Each
channel covered a field of view of 5.2′ × 5.2′ with a pixel size of∼ 1.5′′.

MIPS (Riekeet al., 2004) The Multiband Imaging Photometer for Spitzer (MIPS) could
image the sky with three filters at 24, 70 and 160µm, with an angular resolution
of 6′′, 18′′, and 40′′, respectively. MIPS could also be used in the spectral energy
density (SED) mode, where the whole 55-95µm range can be observed with a
spectral resolutionR∼ 15− 20.

IRS (Houck et al., 2004) The InfraRed Spectrograph was an imaging spectrometer,
covering the 5.5-38µm range. The instrument was split in four modules, two for
the low resolution observing mode (R ∼ 64 − 128) called short-low (SL) and
long-low (LL), and two for the high resolution (R ∼ 600), called short-high (SH)
and long-high (LH). The pixel size for the SL module is 1.8′′, which enabled to
sample the point spread function of IRS at these wavelengths (3.6′′), while for the
LL module it was 5.1′′.

Figure 4.2: From left to right, the ISO,Spitzer, AKARI and Herschelspace telescopes.
Sources: ESA, NASA, JAXA, and ESA

4.1.3 AKARI

AKARI ( Murakamiet al., 2007) (which meanslight in japanese) is an infrared satellite
developed by the Japan Aerospace Exploration Agency (JAXA) that was launched in
February 2006. Its main goal was to provide an all-sky map in several filters in the near-
, mid- and far-IR, with a much better sensitivity and angular resolution than IRAS. With
its 68.5 diameter mirror, AKARI mapped the 90% of the IR sky during its 15 months
lifetime. In August 2007, the liquid helium reservoir finished, and the mid- and far-
infrared observations ended. AKARI was equipped with the two following instruments:
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FIS (Kawadaet al., 2007) The Far-Infrared Surveyor, a photometer capable of imaging
the whole sky in four far-infrared bands at 65 and 90µm (pixel size of 27 arcsec2)
and at 140 and 160µm (pixel size of 44 arcsec2).

IRC (Onakaet al., 2007) The InfraRed Camera consists of three cameras covering the
1.8-26µm range in 9 bands with fields of view of approximately 10′′ ×10′′. The
near-IR (NIR) camera could also be used for slit spectro-imagery (2-5µm)

4.1.4 Herschel Space Observatory

The previous space missions were mostly concentrated in the near- and mid-IR part
of the electromagnetic spectrum, and provided only scarce information in the far-IR,
mainly consisting in photometric images at low angular resolution and average reso-
lution/sensitivity spectroscopy. TheHerschelSpace Observatory (Herschel, Pilbratt
et al., 2010) offers a new set of tools to observe the far-IR and sub-millimeter domains,
covering the 56-671µm spectral range with its three instruments. This observatory has
a 3.5 m diameter telescope, providing a high angular resolution at these wavelengths,
∼ 7′′ × (λobs/100µm), and its instruments are cooled down to 0.3 K to provide excellent
sensitivity. The observatory was launched on May 2009 and the operational phase will
last for about 3.5 years. The last open time call for proposal (OT-1) was closed on July
22th, 2010 and offered 6592 hours of observing time. The observatory disposes of the
following instruments:

HIFI (de Graauwet al., 2010) The Heterodyne Instrument for the Far Infrared (HIFI)
is constituted by 7 receivers tuneable in the ranges 480-1250 GHz (612-240µm,
bands 1-5) and 1440-1910 GHz (157-208µm, bands 6 and 7). The most impor-
tant characteristics of HIFI are its stunning spectral resolution (up toR ∼ 107)
and sensitivity. HIFI can be used in mapping or single pointing mode, with an-
gular resolution between 10′′ and 40′′ at 1910 and 480 GHz, respectively. HIFI
is equipped with double side band (DSB) receivers: for each polarisation, two
frequency ranges are simultaneously covered with a single observation, separated
by about 8 GHz. The band width of the receivers are 4 GHz for bands 1 to 5 and
2.4 GHz for bands 6 and 7. The whole bandwidth is processed by a Wide Band
Spectrometer (WBS,∆ν ∼ 1 MHz), and multiple High Resolution Spectrometers
(HRS) can be set for a single observation.

PACS (Poglitschet al., 2010) The Photodetector Array Camera and Spectrometer (PACS)
can be operated either as an imaging photometer or as an imaging spectrometer.
Its spectrometer receivers consist in two photoconductor arrays of 16× 25 pixels
and the photometer detectors are bolometer arrays. When used as a photometer,
PACS can simultaneously map a field of view of∼ 1.75′ × 3.5′ in two different
far-IR bands, either the 60-85µm or 85-125µm (the so-called blue channels) and
125-210µm (the red channel) with almost Nyquist sampling. When used as a
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spectrometer, the total field of view covered is 47′′ × 47′′ in a 5× 5 spatial pix-
els array sizing 9′′. The spectral resolution of this mode can be varied between
1000< R< 5000.

SPIRE (Griffin et al., 2010) The Spectral and Photometric Imaging Receiver (SPIRE)
is an imaging photometer and an imaging Fourier Transform Spectrometer (FTS)
operating between 194 and 671µm (447-1550 GHz). As a photometer, SPIRE si-
multaneously maps the sky at 250, 350 and 500µm, in a field of view of 4.8’×
4.8’. The spectrometer observing mode uses 37 detectors in the short wavelength
array and 19 in the long wavelength array, with a circular field of view of about
2.6’ diameter. The beam width of the short wavelength detectors is 33′′, whereas
for the long-wavelength detector is 51′′. The FTS mode covers in one single ob-
servation the whole spectral domain of SPIRE, with a spectral sampling between
1.2 GHz and 25 GHz.
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Figure 4.4: Left: The IRAM 30 m telescope in Pico Veleta.Right: The IRAM Plateau de Bure
interferometer.Sources: www.iram.fr

4.2 Radio astronomy in the millimeter domain

Figure4.1shows that the Earth’s atmosphere is almost transparent to millimeter wave-
lengths, except for a few bands. The exact limits and transmission in the observable
bands depend on the site and on the atmospheric conditions. Astronomical sources can
emit in the mm domain through several physical processes such as dust thermal emis-
sion, spectral line radiation and free-free emission. Since the first observation of the OH
molecule byDieter(1964), more than 125 molecules have been identified in the ISM by
radio astronomical observations.

4.2.1 IRAM 30m telescope

The IRAM 30m telescope is one of the largest and more sensitive single-dish millimeter
telescope, located on Pico Veleta (2850 m altitude) in the Sierra Nevada (Spain). The
telescope is equipped with a series of heterodyne receivers that are used to detect line
radiation in the 0.8-3 mm domain and 1.2 mm bolometers used for continuum mapping.
The telescope beam size varies from 9′′ at the highest frequencies to about 30′′ at 3mm.

EMIR consists of single pixel DSB receivers with 2× 4 GHz bandwidths in the two
polarisations. It substituted the old ABCD receivers in 2008. The system config-
uration is highly customisable, so that several spectral domains are accessible at
the same time. The receivers are connected with the high resolution VESPA spec-
trometer, and simultaneously with WILMA, the 2 MHz resolution spectrometers
that cover the full receiver bandwidth. The VESPA receivers are very versatile,
allowing a large number of bandwidth-spectral resolution configuration, and can
be set in the receiver upper side band (USB) or lower side band (LSB).

HERA This HEterodyne Receiver Array is a receiver system tuneable between 215 and
272 GHz, that consists in a 3x3 dual polarisation pixel array. The main purpose
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of this spectral line receiver is to image large maps of extended sources in on-
the-fly mode very efficently. The main beam size at these frequencies at the 30m
telescope is between 12′′ and 9′′.

MAMBO is a large field bolometer camera operating at 1.2 mm, with a beam size of
11′′. It is a very sensitive and efficient continuum receiver, and it is used to map
dust emission over large areas of the sky.

4.2.2 IRAM Plateau de Bure Interferometer

The Plateau de Bure Interferometer (PdBI) is located at 2550 m on the Plateau de Bure
in the French Alps. It consists of an array of six 15 m diameter antennas, which can
be positioned to have a maximum baseline length of 760 m (E-W direction) and 368 m
(N-S direction). Such large baselines permit to achieve an angular resolution down to
0.5′′ at 1 mm. Even in its most compact configuration (the D configuration) and at
3 mm, the angular resolution of the PdBI is 5′′, which is better than the best beam size
obtainable at 0.8 mm at the 30 m telescope. The interferometer has an instantaneous
field of view of ∼ 40′′ at 3 mm. Since the interferometer filters the shortest spatial
frequencies, the PdBI is often used in combination with the 30m telescope to retrieve
the total flux in extended sources. The receiver can be used either in single side band
(SSB) or DSB mode, and has a 4 GHz bandwidth. Up to 8 backends, both for spectral
line and continuum measurements, can be used at the same time.

4.3 One step in the future

Figure 4.5: The ALMA interferometer array and the JWST and SPICA telescopesSources:
NRAO/ AUI / NSF, NASA and JAXA

4.3.1 SOFIA

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the successor of the
KAO mission, and consists in a 2.5 m telescope onboard a Boeing 747. SOFIA will be a
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very versatile facility, equipped by several instruments covering most of the IR and sub-
mm range. Initially, it will be equipped with imaging instruments covering the near-IR
(1-5µm FLITECAM), mid-IR (5-40µm, FORCAST), and far-IR/sub-mm (40-400µm,
HAWC), and with spectrometers covering the whole observable range. SOFIA saw first
light in May 2010 providing imagery of the M 82 galaxy. First science operations are
scheduled to begin in 2011, and SOFIA will be fully operational in 2014.

4.3.2 ALMA

ALMA, the Atacama Large Millimeter/sub-millimeter Array, will be the largest mm and
sub-mm interferometer of the world, being constituted by more than 60 antennas, and
located in the District of San Pedro de Atacama (Chile), at an altitude of 5000 m. ALMA
will operate at wavelengths of 0.3 to 9.6 mm and will provide an unprecedented sensi-
tivity and angular resolution at these wavelengths. The antennas will have configurable
baselines ranging from 15 m to 18 km. Resolutions as fine as 0.005" will be achievable
at the highest frequencies. The call for early science with ALMA will be opened at the
beginning of 2011.

4.3.3 NOEMA

The NOEMA (Northern Extended Millimeter Array) project consists in a major upgrade
of the IRAM Plateau de Bure Interferometer, which will double the number of antennas
of the current array, improving drastically both the spatial resolution and resolution of
the PdBI. The spatial resolution available with the more extended configuration will be
of ∼ 0.1′′. NOEMA will be the largest interferometer operating at mm wavelengths in
the northern hemisphere, complementary to ALMA.

4.3.4 JWST

The James Webb Space Telescope (JWST) will be the largest infrared telescope ever
launched in space, with its 6.5 m diameter mirror. It will be mainly designed to work in
the near- to mid-IR part of the spectrum, even though it will have also some capabilities
in the visible part of the spectrum. The telescope is scheduled for launch in 2014, and
will provide the best angular resolution and sensitivity in these spectral domain. JWST
instruments will consist in a Near Infrared Camera (NIRCam), a Near Infrared Spec-
trograph (NIRSpec), the Mid-Infrared Instrument (MIRI) and the Fine Guidance Sensor
Tuneable Filter Camera (FGS-TFI).

4.3.5 SPICA

The Space Infra-Red Telescope for Cosmology and Astrophysics (SPICA) will be the
following infrared telescope and is planned to be launched in 2017. The telescope pri-
mary mirror of 3 m diameter will be cooled to 4.5 K, providing a high sensitivity in the
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far-IR range. The planned instruments to be placed onboard SPICA are SAFARI, a Eu-
ropean 30-200µm imaging spectrometer, an imaging coronograph and a high resolution
spectrometer for the mid- and far-IR.

4.4 Combination of spectro-imagery data

The IR, sub-mm and mm domains can be used to study the different physical and chemi-
cal processes found in PDRs. In the near- and mid-IR, the emission from PAHs and very
small dust particles, H2 and ionised atomic species reveal the warmer part of PDRs. The
far-IR and sub-mm domains can be used to study the emission from warm and dense gas
and dust such as the [Oi] and [Cii] cooling transitions. Finally, the mm domain is rich
in molecular transitions arising from the cooler interior of PDRs. To study the physical
and chemical processes involved in PDRs, observations in these different domains have
to be used. The combination of different instruments is often not straightforward, due to
differences in the characteristics of the instruments and data handling.

4.4.1 Spectral resolution

The spectral resolution of an instrument is defined asR = λ

∆λ
where∆λ is the smallest

difference in wavelengths between two features that can be distinguished, at a wave-
lengthλ. In the IR domain, the instruments onboard ISO andSpitzerenabled spectro-
imagery observations with R= 45 (ISOCAM-cvf), 80 (IRS-SL), and 600 (IRS-SH).
In the mm domain the heterodyne receivers enable much higher spectral resolution
(R & 107) that is adapted to distinguish velocity structures in the gas lines and there-
fore to perform kinematics studies. The HIFI instrument onboardHerschelextends this
capability to the sub-mm range.

4.4.2 Spatial resolution

The angular resolution of an ideal optical instrument depends on the observed wave-
lengthλ and on the telescope diameterD, and is given by the diffraction pattern:

sinθ = 1.22
λ

D
(4.1)

in which θ is the angular distance (in radiants) of two points that are resolved by the
instrument. The imaging capabilities of an instrument depend also on the optical design
of the instrument. Often, the optics are designed such that the pixel size samples the
point spread function of the instrument following the Nyquist criterium.

IR spectro-imagery

To perform spectroscopy in the IR, one needs to observe from space, since only few
windows are available from the ground due to the atmospheric opacity (cf Sect.4.1).
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The telescope size for a space telescope is limited due to technical reasons. The IRC
(AKARI), IRS (Spitzer) and ISOCAM (ISO) instruments provided spectral mapping
observing modes in the near- and mid-IR that are limited to few arcseconds in spatial
resolution. In particular, the circular variable filter observing mode of ISOCAM allowed
spectro-imagery observations with 6′′ resolution in the mid-IR (5.5-15)µm. The spatial
resolution in this domain was then improved by the SL module of IRS, which provided
a similar spectral coverage with a higher (3.6′′) spatial resolution, which was sampled
following the Nyquist criterion.

The millimeter domain

Observing in the millimeter domain using ground-based facilities is easier since the at-
mosphere is less opaque over wider frequency ranges. The IRAM 30m telescope has
an angular resolution (or beam size) comprised between 9′′ (at 1 mm,∼ 300 GHz) and
30′′ (at 3 mm,∼ 100 GHz). At these frequencies, to achieve spatial resolutions compa-
rable to that of IRS and IRC in the infrared, larger collecting surfaces as given by an
interferometer are needed. The Plateau de Bure interferometer allows a spatial resolu-
tion of few arcsecs (∼ 5′′) at 3 mm with its most compact configurations (with baseline
lengths between 24 and 229 m). However, observing with an interferometer presents
some difficulties: a) the instantaneous field of view is quite small (∼ 40′′ in diameter)
and mosaicing needs to be performed for extended regions, b) the large scale informa-
tions are filtered and the interferometric data needs to be combined with single-dish
data; finally c) the data reduction is more complex and time-demanding compared to
mm single-dish or IR observations.

Far-IR and sub-mm with Herschel

Herschelprovided a step forward in far-IR and sub-mm observations, in terms of sen-
sitivity, spectral and angular resolution. The HIFI, PACS and SPIRE instruments cover
the 120-600µm wavelength range. The large diameter of the telescope, 3.5 m, allows to
achieve angular resolutions of 5′′ (PACS, at short wavelengths), 9′′ (HIFI for the [Cii]
line at 158µm) and 45′′ (HIFI, at the longest wavelengths). At sub-mm wavelengths,
the spatial resolution obtained withHerschelis still larger than few arcsec, but the far-
IR sky can finally be spatially resolved and more easily compared with the mid-IR and
mm data. ALMA will allow to observe part of the sub-mm domain at higher spatial
resolution. A sub-mm interferometer in space has still to come.
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Chapter

5
Decomposing the mid-IR spectra of
PDRs

5.1 Fit of the AIB s with band template spectra

Different methods have been proposed to study the variations in the mid-IR spectrum
of PDRs. In general, they consist in the fit of each band with an analytical function
consisting of either a Lorentzian, a Gaussian or a Voigt profile. In particular, PAHFIT
(Smithet al., 2007) fits at the same time the individual AIBs and the principal gas lines
superimposed to a continuum and after correction for the extinction in the silicate band
at 9.7µm. Tools such as PAHFIT have been used to retrieve the variations in intensities,
widths and central positions of the bands and correlate them with the characteristics of
the environment (see, for example,Gallianoet al., 2008).

Rapacioliet al. (2005) andBernéet al. (2007) proposed a different approach which
consists in the fit of the general shape of the whole mid-IR spectrum with few, physically
consistent template spectra extracted using blind source separation methods. InJoblin
et al. (2008) andBernéet al. (2009a), the authors constructed a set of synthetic band
spectra based on these template spectra by fitting the most intense AIB features at 6.2,
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5. Decomposing the mid-IR spectra of PDRs

7.7, 8.6, 11.3 and 12.7µm with Lorentzian profiles. A combination of these synthetic
spectra is then used to fit the observed AIB spectrum of different sources, in particular
of objects in different evolutionary stages such as planetary nebulae (Joblinet al., 2008)
and proto-planetary disks (Bernéet al., 2009a). In order to fit the spectra of more highly
irradiated environments, they had to introduce a fourth PAH-related component, which
they attributed to large, ionised PAHs (PAHx). The relative intensities of the different
mid-IR components are found to correlate with physical quantities such as the spec-
tral type of the central illuminating star for proto-planetary disks (Bernéet al., 2009a),
and the ionisation parameters for the compact HII region Monoceros R2 (Bernéet al.,
2009b).

5.1.1 The fitting model

We present here a fitting procedure that can be applied directly to the observed mid-IR
(5.5-14µm) spectrum of an AIB source, which is an update of the method ofJoblinet al.
(2008). It consists of a linear combination of the four template bandspectra, gas lines,
a linear continuum, and three smaller Lorentzian features (see below). Finally, a simple
extinction correction is applied to take into account the absorption of silicate grains at
9.7µm.
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Figure 5.1: Template spectra used to fit the mid-IR spectrum of PDRs
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5.1. Fit of the AIBs with band template spectra

6.2 7.7 8.6

Pos. FWHM Int. Pos. FWHM Int. Pos. FWHM Int.

PAH0 6.22 0.17 0.75 7.64 0.60 1.0 8.55 0.45 0.57
PAH+ 6.28 0.20 0.65 7.64 0.55 1.0 8.55 0.40 0.45
PAHx 6.28 0.20 0.65 7.90 0.55 1.0 8.65 0.40 0.45
eVSG 6.23 0.30 0.64 7.88 1.10 1.0 - - -

11.3 12.7

Pos. FWHM Int. Pos. FWHM Int.
PAH0 11.25 0.3 1.60 12.70 0.4 0.54
PAH+ 11.20 0.5 0.38 12.70 0.5 0.22
PAHx 11.20 0.5 0.38 12.70 0.5 0.22
eVSG 11.37 0.5 0.32 12.60† 1.7625† 0.3636†

† Parameters for a Gaussian profile

Table 5.1: The parameters for the band profiles used to build the template spectra. If not
otherwise indicated, the profiles are Lorentzian. Adapted fromJoblinet al. (2008)

PAHs and evaporating VSGs

The basis of our fitting procedure is the template spectra that are reported inJoblinet al.
(2008) and assigned to PAH cations (PAH+), neutrals (PAH0), large ionised PAHx and
eVSGs. These template spectra are presented in Fig.5.1, where they have been nor-
malised to their integrated flux between 5.5 and 14µm. The parameters of the synthetic
spectra are reported in Table5.1. The eVSG spectrum has been continuum subtracted
asin Joblinet al. (2008). In the present work, it has been slightly improved to better fit
the observed spectra by adding a plateau in the 12-14µm range, which was originally
present in the eVSG spectrum ofBernéet al. (2007) (Fig. 6.1).

The continuum

The four template spectra are combined with a linear continuum, representing the linear
rise of eVSGs in the 5-14µm domain (see Fig.6.1). In highly-irradiated objects, larger
grains at thermal equilibrium can also contribute to the mid-IR continuum (Compiègne
et al., 2008). In such cases, the continuum is not linear anymore and a bi-linear slope is
more representative of the total continuum.

Gas lines

Gas lines are fitted assuming Gaussian profiles with a fixed central wavelength and a
FWHM given by the average spectral resolution R of the instrument (R= 45 for ISO-
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5. Decomposing the mid-IR spectra of PDRs

CAM, and R= 80 for IRS). Table5.2 reports the adopted central wavelengths and line
widths for the fitting procedure.

The H2 S(3) line is well distinguished from the PAH features. The H2 S(6) and
H2 S(4) lines at 6.1 and 8.0µm are strongly blended with the broad PAH features in
ISOCAM/IRS low resolution spectra, and their intensity cannot be retrieved, or it is
subject to large uncertainties. The H2 S(2) and the [Neii] lines can significantly con-
tribute to the shape of the 12µm complex, and their intensity can be more accurately
estimated.

Line Wavelength FWHMIRS FWHMIS OCAM

[µm] [µm] [µm]

H2 S(7) 5.511 0.069 0.122
H2 S(6) 6.109 0.076 0.136
H2 S(5) 6.909 0.086 0.153
[Ar ii ] 6.985 0.087 0.155
H2 S(4) 8.026 0.100 0.178
[Ar iii ] 8.991 0.112 0.200
H2 S(3) 9.665 0.121 0.214
[S iv ] 10.511 0.131 0.234

H2 S(2) 12.278 0.1153 0.273
[Neii ] 12.813 0.160 0.285

Table 5.2: Parameters for the gas lines used in the fitting procedure

Smaller features

Using all the above components, we found that three additional features are present at
6.7, 12.0 and 13.5µm in most objects. These are likely PAH-like features and we added
three Lorentzians at 6.7, 11.55 and 13.5µm with a FWHM of 0.2, 0.4 and 0.25µm,
respectively. These are small features and their introduction does not change the results
significantly.

Optical depth effect

Finally, our model takes into account extinction effects assuming that the emitting and
absorbing materials in the considered column of material are fully mixed (see, for in-
stanceDisneyet al., 1989; Smithet al.,2007).

The optical depth at each wavelength is calculated using the relation:

τλ = Cext(λ) × NH (5.1)
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whereCext(λ) is the extinction cross-section per H nucleon, calculated byWeingartner
and Draine(2001) for RV = 5.5. The hydrogen column density NH is left as a free
parameter in the fit.

The column density calculated with this method provides another diagnostic com-
pared to other column density estimates that use mm observations. By using the AIB
emission to calculate the extinction, such estimate concerns the gas associated to the
PDR, i.e. only the slab of material that is emitting in the AIBs. On the contrary, the use
of CO isotopes and continuum observations provide information on the whole molecu-
lar cloud, which may have a larger depth than its illuminated side (the PDR) where AIB
emission arises.

Summary of the model

In summary, the model can be written as:

Imodel(λ) =
(

IAIB + Igas+ ILorentzians+ Icontinuum

) 1− e−τλ

τλ
(5.2)

whereIAIB represents the band template spectra of PAH0,+,x and eVSGs,Igas consists in
all the mid-IR H2 and ionised gas lines,ILorentziansin the features at 6.7, 11.5 and 13.5µm
andIcontinuum is the (bi-)linear continuum.

The quantity|Imodel(λ) − Iobs(λ)| is minimised using the IDL procedurempfit(Mark-
wardt, 2009), which uses a Levenberg-Marquardt non-linear square fittingalgorithm.
The number of free parameters can be modified according to the observed spectrum.
For instance, ionised lines are not necessary in many mild UV-excited PDRs. Also,
when sources different than PDRs are fitted (such as proto-planetary disks and PNe),
broader features at 8 and 12µm have to be included in the fit. In this work, however, we
are interested in PDR spectra, and such features do not need to be taken into account.

5.2 Some examples

5.2.1 The prototypePDR: NGC 7023 NW

Single spectra analysis

As a first example, we analyze the fit results for three different regions in NGC 7023 NW
at increasing distance from the star (respectively 35, 48 and 56′′ along the cut shown in
Fig. 6.2). The fitted spectra and the results are reported in Fig.5.2. The three spectra
show spectral variations in terms of band intensity ratios and continuum emission.

• Region (1) is located in the cavity between the star and the PDR front, at a distance
of 35′′ from the star. The spectrum shows a high (I7.7/I11.3), suggesting that band
emission is dominated by ionised PAHs, which is consistent with the fit results.
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Figure 5.2: Example of the fit in three different regions of NGC 7023 NW observed by IRS at
an average spectral resolutionR ∼ 80. For each spectrum, we report the relative weights of the
integrated intensities of each PAH population and eVSGs and the estimated column densities
(expressed in magnitudes of visual extinction).

• Region (2) is on the PDR border, at the interface of the diffuse region and the
molecular cloud, at a distance of 48′′. The (I7.7/I11.3), ratio is lower, indicating an
higher abundance of PAH0 compared to region (1).

• Region (3) is further inside the cloud, at a distance of 56′′. Here, the relative
weight of PAH+ is negligible, and eVSGs are predominant, as expected in a region
more protected from the UV radiation.

5.2.2 Spectral mapping: M 82

A direct application of this analysis tool is to determine the spatial distribution of the fit
components in sources observed in spectro-imagery in the mid-IR. This yields maps of
the integrated intensity for each of the components. In the next chapter, we will present
the results of this procedure for several galactic PDRs. As a first example, we applied our
fitting procedure to theSpitzerIRS spectral cubes of the M 82 galaxy.Engelbrachtetal.
(2006) showed that PAH emission is detected towards the galactic plane as well as in an
outflow perpendicular to it, andBeirãoet al. (2008) studied the spectral AIB variations
in these environments. Our procedure allows to disentangle the relative contribution
of the PAH0/+/x and eVSG to the total AIB emission, as well as the intensity of the
[Ar ii] line and the column density for all the spatial pixels in the IRS observations.
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Figure 5.3: Decomposition of theSpitzerIRS spectral cube for M82. The relative contribution
of the four principal components to the mid-IR (5.5-14µm) flux four PAH-related components
are shown , as well as the intensity of the [Arii] intensity and the column densities.

The relative contributions of the different populations to the AIB flux are displayed in
Fig.5.3. PAH+ and PAHx dominate the emission towards the galactic plane, where star
formation is taking place and the UV field is stronger compared to the outflow, whereas
PAH0 dominate the emission in the latter. eVSGs dominate the emission in the north-
eastern end of the galactic plane and the column density peaks in several distinct regions
towards the nucleus. Such variations can be used to obtain new insights into the physical
conditions and the geometry of the source.

5.3 Caveats

5.3.1 IRSspectral resolution

The PAH template spectra were obtained from ISOCAM spectro-imagery data, at a spec-
tral resolution that is lower than that could be achieved by the Spitzer IRS instrument.
Repeating the signal processing analysis ofBernéet al. (2007) to the IRS data of NGC
7023 NW we found that the PAH bands have comparable widths but with additional
sub-structure. The higher-resolution data show also small variation in the integrated in-
tensities and the peak positions of the bands. In particular, the 6.28µm band of PAH+

is shifted to 6.23µm. The major difference in band intensities concerns the 8.6µm band
which is fainter in the new PAH0 spectra and stronger in the new PAH+ spectra. The
principal cause for these discrepancies is most likely related to the impurity of the ex-
tracted spectra, that may consist in a combination of more than one single population.
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Figure 5.4: New synthetic spectra of PAH cations and neutrals fitted from the results of Blind
Signal Separation on the IRS cube of NGC 7023 (black). Their convolution to R=45 (blue) are
compared with the templates ofJoblinet al. (2008, red) used in the fitting procedure.

The use of higher resolution spectra would therefore add some complexity and is not
necessary for this work dedicated to eVSGs. Therefore, we used as templates the lower
resolution spectra ofJoblin et al. (2008), with the additional plateau in the 12-14µm
range.

5.3.2 Uncertainties in column density

We tested the effect of using different values ofRV for the extinction curve and found a
difference of about 20% in the estimated hydrogen column density but no effect on the
weights of the band templates when usingRV = 3.1 instead ofRV = 5.5.

Uncertainties by up to a factor 2 in the column densities are due to the fact that the
correction of the extinction and the fit by a bi-linear continuum are degenerated. This is
a systematic effect, and when the procedure is applied to a spectral cube, it is applied to
all spatial pixels. This can result in a systematic overestimate of the column densities,
but the derived spatial structure is still reasonable. A study of the parameter space is
presented in AppendixA.
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Chapter

6
Evolution of PAH-related species in
PDRs

Whereas it is clear that the evolution of the eVSGs into PAHs is related to the in-
tensity of the UV field, a quantitative description of this process is still missing. In this
chapter, we will study the relative contributions to the mid-IR emission of PAHs and
eVSGs in a wide range of excitation conditions using the procedure described in the
previous chapter. From the results of the fit, we derive the fraction of carbonfC locked
in eVSGs and compare it to the intensity of the local radiation field.

6.1 Data sample

We selected a set of PDRs spanning a wide range of irradiation conditions. Some of
these PDRs (Table6.1) were chosen on the basis of proximity and simplicity of their
geometry to study spatial variations of the mid-IR properties and physical conditions.
We used observations obtained with the Short-Low (SL) module of the Infrared Spec-
trograph (IRS) onboard Spitzer (Werneret al., 2004a) in spectral mapping mode. Data
reduction was performed with the CUBISM software (Smithet al.,2007) and consisted
in cube assembling, calibration, correction for flux of extended source and bad pixel
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6. Evolution of PAH-related species in PDRs

removal. Three PDRs (NGC 7023 East and South,rho-Ophiuchus filament) were not
observed with the IRS-SL instrument. For these objects, we used ISOCAM data avail-
able in the ISO data archive as highly-processed data products (Boulangeret al., 2005).

6.2 Evaporating VSGs and reconstruction of their
mid-IR emission

eVSGs do not only emit in bands, but also in continuum. In the observed spectra, the
slope of the (bi-)linear continuum can vary significantly in different PDRs, due to vari-
ation of the excitation conditions that impact the relative contribution of grain popula-
tions to the mid-IR emission. In order to estimate the continuum emission of eVSGs,
we used the following approach based on the eVSG spectrum retrieved in Ced 201 by
Bernéet al. (2007). Ced 201 is a mild-UV excited object and large grains are not ex-
pected to contribute to the mid-IR emission. We modelled this spectrum up to 14µm
using a distribution of 100 grey bodies having temperatures ranging between Tmin and
Tmax. The emissivity was taken to be proportional toλ−α, with α = 0.85, following the
measurements performed on carbonaceous grains byMennellaet al. (1995). We found
Tmin ∼ 110 K and Tmax ∼ 260 K, which is consistent with previous estimates byRa-
pacioli et al. (2005). Using the same approach as described inRapacioliet al. (2005),
we estimated that these temperatures correspond to eVSG sizes between 500 and 2500
carbon atoms approximately. Comparing the total integrated intensity in the bands vs
continuum for eVSGs we obtainedIbands

eVSG/I
continuum
eVSG = 0.5.

The integrated mid-IR intensityI0 emitted by very small dust particles can be ex-
pressed after correction for extinction as:

I0 = IAIB + I continuum
eVSG = IPAH + Ibands

eVSG+ I continuum
eVSG = IPAH + 3× Ibands

eVSG (6.1)

In the following, the intensity in eVSG bands (Ibands
eVSG) is obtained as a result of the fitting

procedure, and the total intensity in the eVSG continuum can be estimated using the
ratio Ibands

eVSG/I
continuum
eVSG = 0.5 as determined above.

As will be shown in Sect.6.4.2, the ratioIeVSG/I0 can be used to quantify the fraction
of carbon atomsfC locked in eVSGs compared to all carbon atoms contained in mid-IR
emitters.
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Figure 6.1: The VSG spectrum of Ced 201 (black line) extracted by signal processing al-
gorithms byBernéet al. (2007) and the synthetic eVSG spectrum that has been obtained by
combining the band spectrum of Fig.5.1 with a continuum. The latter is calculated by fitting
the continuum in the 5.5-14µm with a distribution of grey bodies with temperatures between
Tmin ∼ 110 and Tmax∼ 260 K (blue line).
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Object Star
Distance Spectral Kurucz Radius∗ df ront G0(df ront) nH

∗∗

(pc)(a) Type Spectrum∗ (K) (R⊙) (′′) Habings (cm−3)

NGC 7023 NW
HD 200775 430 B3Ve — B5(b,c,d) 2× 15000(e) 10

42 2600 2× 104 ( f )

NGC 7023 S 55 1500 1.4× 104 ( f )

NGC 7023 E 155 250 1.4× 104 ( f )

NGC 2023 N
HD 37903 470 B1.5Vg 24000 6

164 400 2× 104 (h)

NGC 2023 S 67 4000 2× 104 (h)

ρ-Oph filament HD 147889 118 B2III — B2V 22000 5 610 520 4× 104 (l)

∗ Derived from spectral type.
∗∗ Total hydrogen density inside the molecular cloud derived from molecular observations.

Table 6.1: Input parameters for the modelling of the selected PDRs in which the PAH+, PAH0, eVSG transition is spatially resolved and a simple
geometrical model can be applied.
(a)van den Anckeretal. (1997) — (b) Racine(1968) — (c) Finkenzeller(1985) — (d) Witt et al. (2006) — (e)Alecianet al. (2008) — (f) Gerin
et al. (1998) — (g) Diplas and Savage(1994) — (h) Fuenteet al. (1995) — (l) Habartet al. (2003)
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6.3. The physical conditions in the PDRs

6.3 The physical conditions in the PDRs

The procedure presented above provides the total IR intensity emitted by each of the
very small dust populations, PAHs and eVSGs. In order to study the variations of the
eVSG abundance with the local radiation field, we need to quantify the relations between
the mid-IR intensity, the abundance of the carriers and the radiation field.

For all the PDRs in Table6.1, we assume an edge-on geometry and use a simple
geometrical model to estimate the intensity of the radiation field at the PDR front. We
then describe the profile of the radiation field intensity using PDR modelling along a
star-PDR cut (see Fig.6.9). For the PDRs selected in Table6.2, such geometrical model
is not appropriate and a mean value of the radiation field is taken from the literature.

6.3.1 Emissivity ofAIB carriers

The power absorbed by the AIB carriers can be expressed as:

Pabs=

∫ λmax

91.2nm

(

nC
PAHσ

C
PAH(λ) + nC

eVSGσ
C
eVSG(λ)

)

F(λ)dλ (6.2)

whereF(λ) is the radiation field flux,nC
X is the number of C atoms per unit volume

contained in grain type X (X=PAH, eVSG), andσC
X(λ) represents the PAH or eVSG

absorption cross-section per carbon atom. Since ionized PAHs and large neutral PAHs
can absorb significantly in the visible (Salamaet al.,1996), we assumeλmax = 1000nm.

The absorbed energy is mainly reemitted in the mid-IR. Using the energy balance,
the emitted powerPem equals the absorbed powerPabs. It is convenient to writePem as
proportional to the radiation field characterised by its value in Habing unitG0 (1 Habing
= 1.6×10−3 erg cm−2 s−1 between 91.2 and 240 nm,Habing, 1968). Thus we define the
mean emission power of the AIB carriers per H atom and per Habing, or local emissivity,
ǫAIB so that:

Pem= ǫAIB × nH ×G0 (6.3)

whereǫAIB includes both the bands and the continuum emissions. Its valuea priori de-
pends on the hardness of the radiation field and the distribution of carbon atoms between
PAHs and eVSGs.

If we assume thatσC
PAH = σ

C
eVSG= σ

C, then conservation of energy implies that for
the emission powers per carbon atom, one can writeǫCPAH = ǫ

C
eVSG= ǫ

C
AIB. Then,ǫAIB can

be expressed as a function of the carbon contained in the AIB carriers:

ǫAIB =

(

nC
PAH

nH
+

nC
eVSG

nH

)

× ǫCAIB =
nC

AIB

nH
× ǫCAIB (6.4)

wherenC
X represents the number of C atoms per unit volume contained in PAHs or

eVSGs.
Rapacioliet al. (2005) have shown that PAHs are produced by photo-destruction

of eVSGs. We can consider, in first approximation, that all carbon contained in these
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eVSGs is transferred into PAHs. Therefore,ǫAIB can be considered as independent of
the relative abundance of PAHs and eVSGs:

ǫAIB =
nC

AIB

nH
×

1
G0
×

∫ 1000nm

91.2nm
σC(λ)F(λ)dλ. (6.5)

In order to estimate the variation ofǫAIB with the hardness of the radiation field we
have calculatedǫAIB with the appropriate Kurucz spectra for the PDRs of Table6.1. Our
calculations show that, for the studied objects,ǫAIB marginally depends on the hardness
of the radiation field.

To avoid deriving the absorption cross sectionσC from a specific PAH, we computed
ǫAIB for a variety of PAHs of different sizes and charges from the on-line database of
Malloci et al. (2007) 1. The results scatter within 10%. Assuming a value ofnC

AIB/nH =

4.2 × 10−5 (Draine, 2003, for RV = 5.5) we obtainǫAIB ∼ 5 × 10−32 W H−1 Habing−1,
consistent with previous estimates byHabartet al. (2001) andHabartet al. (2003).

6.3.2 Estimation of the impinging radiation field

To estimate the value of the impinging radiation field at the PDR front we used stellar
spectra fromKurucz (1993) and applied a dilution factor based on the projected dis-
tance to the PDR front. In the case of NGC 2023 an extinction of AV = 1.1 mag has
been applied, reflecting the presence of absorbing dust around HD 37903 (Compiègne
etal., 2008). The calculated values of the radiation field are given in Habing units. They
are consistent with previous estimates reported inBurtonet al. (1998) andHabartet al.
(2003) for NGC 2023 andρ-Oph, respectively. The estimate of the radiation field in-
tensity at the PDR front in NGC 7023 NW is more uncertain. (Chokshiet al., 1988)
estimated aG0 ∼ 2.4 × 103 through far-IR observations and modelling, but values as
high asG0 ∼ 104 have been proposed to explain the observed H2 ortho-to-para ratio
(Fuenteet al., 1999) towards this PDR. This latter value is in agreement with the value
determined by assuming typical stellar properties for the corresponding spectral type of
the illuminating binary star (Alecianet al., 2008) and geometrical dilution to the PDR
front. However, extinction between the star surface and the PDR may attenuate the radi-
ation field, yielding a lower value at the PDR front. In this work, an extinction correction
of AV = 1.5 was derived from the IUE spectrum measured on the star and was applied
on the corresponding Kurucz spectra. Assuming that the same extinction factor apply
between the star and the PDR leads to an estimate for the NW PDR ofG0 ∼ 2.6× 103

Habing, which is consistent with the value of (Chokshiet al., 1988). All the parameters
used to model the radiation field intensity are reported in Table6.1.

6.3.3 Constraints on density and radiation field profile

The local radiation field inside the PDR depends on the impinging radiation field at the
PDR surface and on the gas density profile that determines its attenuation. According to

1http://astrochemistry.ca.astro.it/database/
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Eq. (6.3), the local mid-IR emissivity at each position is related to the same two physical
parametersnH andG0. The total intensity can be obtained by integrating along the line
of sight for each positionzon the sky:

I0(z) =
1
4π

∫ L

0
G0(r) × nH(r) × ǫAIB dl = K(z) × ǫAIB = K(z) ×

nC
AIB

nH
ǫCAIB (6.6)

wherer is the distance from the star andL is the thickness of the PDR perpendicular to
the plane of the sky. We assume a spherical shell model as inHabartet al. (2003, their
figure 6), in which the cloud is divided in successive layers of increasing density. The
density gradient follows a power lawnH ∝ rα up to a maximum density determined by
molecular observations (see references in table6.1). Due to its attenuation by dust, the
radiation field evolves as:

G0(r) = G f ront
0 × e−σUV

∫ r
0 nH (r)dr (6.7)

in whichσUV is the dust extinction cross-section at 1000 Å (1.5×10−21 cm2 H−1, Wein-
gartner and Draine, 2001).

We used Eq. (6.6) to fit the spatial profiles of the corrected AIB emission derived as
in Eq. (6.1). The free parameters of the fit are the density gradient (determined by the
value ofα), the position of the cutoff of the gradient, and the cloud physical length. This
yields the density and radiation field profiles along each of the cuts. The parameters used
for each of the selected PDRs are summarised in Table6.1, and the modelled profiles
are reported in Fig.6.9.

6.4 Results

6.4.1 Mid-IR decomposition of PDRs

We applied the fitting procedure to all observed pixels in the PDRs listed in Table6.1.
This yields maps of the integrated intensity for each of the components included in the
fit. As an example, Fig.6.2 shows the obtained spatial decomposition for NGC 7023
NW. The spatial distributions of the PAH and eVSG components are coherent with the
results ofRapacioliet al.(2005) andBernéet al. (2007), but as shown in Fig.6.2, more
information is retrieved with our approach such as the spatial distribution of gas lines
and an estimate of the column density of the considered column of material.
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Figure 6.2: Results of the mid-IR decomposition for the NGC 7023 NW PDR, showing the integrated mid-IR intensity in the observed spectrum
and in each of the template populations. The column densityAV is also shown, as well as the flux in the H2 S(3) line. For reference, contours (in
steps of 3× 10−5 W m2 sr−1) of the total AIB flux in the 5.5-14µm range are displayed. Similar plots for the other PDRs of Table 1 can be found
in the appendix. The intensity scales are in units of 10−5 W m2 sr−1, while the column density is expressed in magnitude of visual extinction.
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6.4. Results

Figure 6.3 shows fits of the mid-IR spectrum for different objects, and the main
results of the decomposition. The spectra show large variations in the relative intensi-
ties of the bands, reflecting variations of the local physical conditions. The fit results
show indeed large variations in the relative weights of eVSG and PAH emissions. The
PAHx emission is significant (> 5%) only in highly-irradiated sources, coherently with
the fact that these species are likely large ionised PAHs that can better resist in harsher
environments and can reach there higher temperatures. The derived value of the col-
umn densities is high in the high-density filaments of NGC 7023 NW and NGC 2023 S
(Fuenteet al., 1996; Joblinet al., 2010; Fuenteet al., 1995).
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Figure 6.3: Mid-IR spectra (solid lines) and their fit (blue) for the PDRs listed in Table6.2. For
each spectrum, we report the resulting contributions for each of the PAH and eVSG populations
to the mid-IR flux, the extinction along the line of sight andfC, the fraction of carbon atoms
locked in eVSGs relative to the total carbon in the AIB carriers.

6.4.2 Evolution of fC along the PDRs

Equation (6.6) shows that, at each positionz, the total IR emission due to PAHs and
eVSGs is proportional toǫCAIB. A similar equation can be written for eVSGs only, using
ǫCeVSG:

IeVSG(z) = K(z) ×
nC

eVSG

nH
ǫCeVSG (6.8)

Combining Eqs.6.6 and6.8, and sinceǫCAIB = ǫ
C
eVSG, we can calculate for eachz in

the cut:

fC(z) =
IeVSG(z)

I (z)
=

nC
eVSG

nC
AIB

(6.9)
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Figure 6.4: The fraction of carbon atoms locked in eVSGs relative to the total carbon in the
AIB carriers as a function of the intensity of the local radiation field. Several points refer to
each of the objects in Table 1, for which we determined the spatial variation offC and of the
radiation field.

which represents the fraction of carbon atoms locked in eVSGs compared to all carbon
atoms in the AIB carriers. The fit of the mid-IR spectra for PDRs is reliable in mild UV-
irradiation conditions (50. G0 . 5× 104). At milder UV field intensities,fC seems to
stabilise at values of∼ 0.9, but in these regimes the mid-IR fits are less reliable because
the AIB emission is fainter and sometimes barely detected. The extrapolation of the
G0 − fC relation to more intense UV fields is also difficult, since in these environments,
the photo-processing of the eVSG and PAH populations is extreme leading in particular
to the difficulty to observe the fragile eVSG species

6.4.3 Determination of the impinging radiation field from the eVSG
abundances.

The lower panels in Fig.6.9 show the profiles offC for each PDR in the sample. The
procedure explained in Sect.6.3.3fails to reproduce the AIB profiles in the deepest parts
of the PDRs, most likely because the presence of high density filaments (Fuenteet al.,
1995, 1996) is not taken into account in the density profiles. We concentrate our analysis
around the AIB peak, where the eVSG emission is a considerable part of the total AIB
emission.

Figure6.4 shows the values offC obtained for all the PDRs in our sample (Tables
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6.5. Conclusion

6.1and6.2) as a function of the radiation field intensityG0. For the resolved PDRs, the
value ofG0 was derived at each position as explained in Sect.6.3.3. For the unresolved
PDRs, we applied the fitting procedure to the mean spectrum at a position for which
a reliable estimate of the radiation field is found in the literature. Figure6.4 shows a
clear decrease of the fraction of carbon in eVSGs with the increase of the radiation field
intensity. This trend can be fitted by the expression:

fC = (−0.21± 0.01) log10(G0) + (1.29± 0.03) (6.10)

This relation can be inverted to estimate the radiation field intensity from the fit of
the mid-IR spectrum, the value offC being a direct output of the fitting procedure.

To test the applicability of our method on unresolved objects, we applied the fitting
procedure to the averaged spectra of larger fields of view (up to 1 arcmin) in our template
object, NGC 7023 NW and derived a value forfC. This value can be compared with the
average value< fC > that can be calculated from the values obtained on all individual
pixels contained in the same region. The agreement between the two values is very good
for regions close to the eVSG peak. For regions close to the PDR front, the value of
< fC > is higher by less than 0.05. This yields an overestimate of the mean radiation
field by less than 40 %. Although this error is not directly transposable to other PDRs, it
shows that the method can be used to derive an effective UV radiation field in unresolved
objects with an uncertainty of a factor∼ 2.

As an example, we applied our fitting procedure to the IRS spectra of the nucleus and
outflow of M82. The fit results are reported in Fig.6.5. The derived column densities are
high, especially in the nucleus region. The values offC derived from the mid-IR fit yield
a radiation field ofG0 = 5+5

−3 × 103 for the nucleus andG0 = 3+3
−2 × 103 for the outflow.

Previous studies based on chemical modelling of the nucleus of M82 byFuenteet al.
(2008) have predicted aG0 ∼ 1×104, whereas previous modelling of far-IR observations
(Colbertet al., 1999; Kaufmanet al., 1999) report lower values (102.8 . G0 . 103.5).
This is in reasonable agreement with our estimates.

6.5 Conclusion

In this chapter, we present an updated method to analyse the mid-IR spectra of PDRs
with the use of a physically consistent set of template spectra. We have shown that such
decomposition can be used as a tool to determine the fraction of C atoms in eVSGs.
By combining the results with PDR modelling, we determined a relation between the
relative carbon content in eVSGs compared to all AIB carriers and the UV radiation
field intensity. This relation constitutes a useful tool to determine the mean UV radiation
field in objects in which the eVSG population is quite abundant. The whole code will be
made publicly available to the community as an IDL package, together with the template
spectra used in this work. This procedure combined with the high spatial resolution and
sensitivity of the forthcoming JWST mission will allow to determine the spatial variation
of the UV radiation field in galaxies and distant objects.
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Figure 6.5: Mid-IR spectra (black line) of the nucleus and the outflow of M82 and their fits.
The results of the fit suggest that the radiation field in the nucleus is slightly higher, as well as
the column densities of the AIB emitters.

Object
Position Aperture f ∗C G∗∗0 Ref.

(α2000, δ2000)

Horsehead (05:40:53; -02:28:00) 9′′ × 7′′ 0.85 100 Habartet al. (2005)
Ced 201 (22:13:25; 70:15:03) 22′′ × 22′′ 0.84 300 Young Owlet al. (2002)

IC 63 (00:59:01; 60:53:19) 30′′ × 40′′ 0.72 1100 Gerinet al. (2003)
Parsamyan 18 S (06:59:41; -07:46:45) 9′′ × 8′′ 0.48 3500 Ryderet al. (1998)
Parsamyan 18 N (06:59:41; -07:46:12) 4′′ × 8′′ 0.41 5000 Ryderet al. (1998)

Orion Bar (05:35:21; -05:25:15) 4′′ × 6′′ 0.25 4× 104 Tauberet al. (1994)
∗ This work
∗∗ Literature

Table 6.2: Fraction of carbon atoms in eVSGs and corresponding radiation fields for the PDRs
used in this work. The correlation of these quantities is shown in fig.6.4
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Figure 6.6: As Fig.6.2, for NGC 2023 N and NGC 2023 S.
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Figure 6.9: Upper panels:for each PDR cut, the density and radiation field profiles as a func-
tion of the distance from the star.Central panels: Blue, yellow and red represent the contribution
of PAH+, PAH0 and eVSGs, as extracted from the fit. Solid black lines represent the corrected
mid-IR emission profile after the continuum correction explained in6.2. The dotted lines rep-
resent the fit obtained with the geometrical model described in Sect.6.3.3Lower panels: the
variation in the fraction of carbon atoms locked in eVSGs relative to the total carbon in all the
AIB carriers.
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Chapter

7
Search for corannulene in the Red
Rectangle 1

7.1 Introduction

In the last 25 years, many efforts have been made towards the identification of a sin-
gle PAH species. The Aromatic Infrared Bands in the mid-IR are not characteristic of
individual species, and therefore cannot be used to identify specific PAHs. This is not
the case of the ro-vibrational emission bands that arise in the far-IR at the end of the
cooling cascade. These are associated to the whole carbon skeleton of the molecule,
and are specific for each species (Mulaset al., 2006). However, the far-IR and sub-mm
domains cannot be easily observed from the ground, and a search for PAH bands in
these domains is planned withHerschel. On the other hand, the pure rotational transi-
tions of these molecules fall in the millimeter domain, and are readily accessible with
ground-based radio telescopes.

Most common neutral PAHs present a very low (or zero) permanent dipole moment.
Since the intensity of the rotational spectrum scales with the square of the dipole mo-
ment, the rotational emission for most PAHs is expected to be very weak. However,

1The work contained in this chapter has been published inPilleri et al. (2009)
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7. Search for corannulene in the Red Rectangle

Figure 7.1: Structure of the corannulene molecule (C20H10). The central pentagonal carbon
ring determines the bowl-shaped structure of the molecule, with a permanent dipole moment of
2.07 D along the symmetry axis.

Lovaset al. (2005) proposed the corannulene (C20H10) molecule as a good PAH candi-
date for radio identification since it has a large dipole moment (2.07 D, see Fig.7.1).
A first search for the low-J rotational transitions of corannulene in the molecular cloud
TMC-1 was performed byThaddeus(2006). However, since PAHs are expected to be
free molecules only at the UV-irradiated surface of molecular clouds (Boulangeret al.,
1990; Rapacioliet al., 2005; Bernéet al., 2007), the search for higher J rotational lines
is more suited for an astronomical PAH (Rouanet al., 1992).

There are several motivations for the search for corannulene in space. First, its de-
tection would provide the first firm evidence for the presence of PAHs in space. Due
to its curved structure, it is also representative of the transition between planar PAHs
and fullerenes. The prototype fullerene molecule, C60, has been proposed in its cationic
form (C+60) to account for at least two DIBs in the near-IR (Foing and Ehrenfreund,1994;
Galazutdinovet al., 2000), and has been observed in the reflection nebulae NGC 7023
and NGC 2023 bySellgrenet al. (2007, 2010) and in the proto-planetary nebula Tc-1
by Cami et al. (2010).

7.2 A search for corannulene in the Red Rectangle

7.2.1 Spectroscopy in the laboratory

Corannulene is a symmetric-top PAH with a bowl shaped structure (see Fig.7.1).
Whereas an ideal rigid rotor has a relatively simple rotational spectrum, centrifugal dis-
tortion can modify the separation of the energy levels and yield a complex rotational
spectrum, composed by a large number of weaker lines. The search for corannulene in
the mm domain requires a precise knowledge of the frequencies at which the rotational
lines are expected to arise. This motivates experimental studies to quantify the rotational
spectrum (rotational constants, stiffness of the molecule, . . . ).

These experimental studies have been performed by D. Herberth and T. Giesen at
the Experimental Spectroscopy Group at the University of Cologne. They have detected
a high J (J= 112← 111) rotational line of corannulene at 114.18 GHz (see Fig.7.2) de-
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7.2. A search for corannulene in the Red Rectangle

Figure 7.2: The line detection at 114.18 GHz measured in the laboratory with the OROTRON
jet spectrometer, assigned to the J= 112← 111 transition of corannulene.

termining the rotational constants and evidencing that no centrifugal splitting is detected
up to this transition. The stiffness of the molecule, and the high polarity of the molecule
make corannulene an excellent candidate for astronomical detection in the mm domain.

7.2.2 Observations

The Red Rectangle

Using the rotational constants determined from the experiments, the frequencies of all
the rotational transitions can be calculated assuming no centrifugal splitting. For the
observations, the Red Rectangle (RR) nebula was chosen since it is the brightest source
in the AIBs in the sky.

The Red Rectangle (RR) is a biconical C-rich nebula which surrounds a post-AGB
binary system composed of the primary star HD 44179 (spectral type A0) and its lu-
minous giant companion. It has been observed in the mid-IR with the SWS instrument
onboard ISO and with the IRS instrument onboardSpitzer. The dimensions on the plane
of the sky of the infrared bipolar nebula at 11.3µm are about 10" x 15" (Waterset al.,
1998, see Fig. 7.3). A warm, high density disk (nH > 3 × 104 cm−3, 30 K < T <
400 K) traced by CO emission (Bujarrabalet al., 2005) surrounds the binary star with a
thickness of roughly 3" along the symmetry axis.

Observations at the IRAM 30m telescope

We obtained 22 hours of observing time at the the IRAM 30m telescope in Pico Veleta.
I was involved in the observations in February 2008. The observational parameters are
reported in Table7.1for each of the observed frequency range. Weather conditions were
acceptable for most of the time. The observed frequency ranges cover several high-J
transitions of C20H10 at 1, 2 and 3 mm. Since the PAH emission pattern of this source is
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7. Search for corannulene in the Red Rectangle

Figure 7.3: Spatial distribution of the dust component (N-band) and PAHs (continuum-
subtracted 11.3µm band) of the Red Rectangle. The figure shows that the PAH emission arises
from a region of about 10′′ ×15′′. Source:Waterset al.(1998)

rather compact (the 11.3µm intensity decreases by a factor of 10 in 20′′), the wobbling
secondary observing mode is appropriate using a separation of±100" in azimuth. This
observing mode ensures stable and flat baselines and is well adapted to compact sources
such as the Red Rectangle.

Pointing was made on the central binary star HD 44179 (α2000: 06:19:58.216,δ2000:
-10:38:14:691). Mars and Orion (α2000: 05:35:14.5,δ2000: -05:22:30.00) were used as
reference sources for calibration and pointing. Pointing was accurate within 3" during
all observations.

The flexibility of the four receivers and of the VESPA correlator allowed to cover
several frequency ranges within one configuration, with a spectral resolution of 40 kHz
and a total band pass of at least 40 MHz. We also used the 1 MHz resolution filterbanks
to obtain broadband spectra (250 MHz) with lower spectral resolution. During all ob-
servations, one of the backends was dedicated to the13CO (1-0), (2-1), or12CO(2-1)
transition, to check whether the telescope was pointed on source, and to monitor the
calibration accuracy. The observed12CO intensity and line width are in good agreement
with previous observations of the Red Rectangle with the IRAM 30 m telescope reported
by Juraet al.(1995). The summary of the12CO and13CO observations is given in Table
7.2.
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7.2. A search for corannulene in the Red Rectangle

Data reduction and results

To improve the quality of the observed spectra, we manually cut isolated spikes at 4σ

level and discarded observations with anomalous system temperature or with a high sky
opacity. Different observations of the same transitions were averaged, and the antenna
temperature was scaled with the telescope main beam efficiency ηmb by the relation
Tmb = T∗A/ηmb, whereηmb = Fe f f/Be f f. The expected flux derived from the synthetic
spectrum and the 3σ detection limit corrected for beam dilution for the corannulene
observations are reported in Table7.1. The rms level was calculated after smoothing the
spectra to the velocity resolution of 0.4 km s−1. We show in Fig.7.4the observed spectra
in the regions where the 135→ 134 and 86→ 85 transitions of C20H10 are expected,
and the12CO and13CO observations. We did not detect any corannulene line at any
frequency. The best rms level for corannulene has been obtained for the transitions J+1
→ J= 135→ 134, 84→ 83 and 86→ 85.
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Transition Frequency Beam sizeBe f f Tsys σmb Bandwidth F3σ Fmodel

(J+1→ J) (GHz) (") (K) (mK) (MHz) (10−25 W cm−2) (10−21 W cm−2)

84→ 83 85.643 29 0.78 117 10 80 1.4 5.7
86→ 85 87.682 28 0.77 107 12 80 1.7 6.2
108→ 107 110.104 22 0.75 170 14 80 1.6 13
111→ 110 113.316 22 0.74 276 21 120 2.3 14
135→ 134 137.615 17 0.70 219 8 80 0.9 19
215→ 214 219.059 11 0.55 346 45 80 5.4 5.3
216→ 215 220.076 11 0.54 328 20 80 2.4 5.2
223→ 222 227.197 11 0.53 269 23 80 2.9 4.0
226→ 225 230.248 11 0.52 389 30 80 3.8 3.7
238→ 237 242.450 10 0.50 525 22 80 2.8 2.3
257→ 256 261.763 8 0.46 546 39 40 5.4 0.9

Table 7.1: Summary of the observations towards the RR in different frequency ranges, corresponding to the expected rotational transitions of
corannulene. On average, the 3 mm observations have a lower rms, but suffer more from beam dilution effects compared to the 1 mm observations.

Transition Frequency Beam sizeBe f f Tsys Area Bandwidth
(J+1→ J) (GHz) (") (K) (K km s−1) (MHz)
12CO (2→ 1) 230.538 10 0.52 486 6.8 40
13CO (1→ 0) 110.201 22 0.75 159 0.3 40
13CO (2→ 1) 220.398 11 0.55 339 1.7 40

Table 7.2: Summary of12CO and13CO observations towards the Red Rectangle.
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7.3 An upper limit to the abundance of Corannulene

7.3.1 Modelling

The interpretation of the observational upper limits of the line intensities in terms of
abundances of corannulene needs an a-priori knowledge of the intensity of its rotational
spectrum in the Red Rectangle environment. This requires detailed modelling of the
photo-physical processes that drive to the emission of rotational lines (cf. Sect.2.3.2).
The modelling was performed by the Astro-CHemistry group of the University of Cagliari
(Italy) by G. Mulas and G. Malloci, using a well-established theoretical model (Mulas,
1998; Mulas et al., 2006). The model needs as input the UV-visible absorption cross-
section, the vibrational modes and their Einstein A coefficients, the rotational constants
and the dipole moment of the molecules, which are obtained either by laboratory mea-
surements (cf. Sect.7.2.1) or by state-of-the-art quantum chemical calculations (Mal-
loci et al., 2004). The modelling was performed for a single corannulene molecule in
the specific radiation field of the Red Rectangle.

7.3.2 Comparison of observations and modelling

To calculate an upper limit to the abundance of corannulene in the source, we assumed a
3σ detection limit and a gaussian profile with a FWHM of 1 km s−1. Before comparing
the observed rms to the model, we have to take into account the effect of beam dilution.
As a first approximation, we assume that PAH emission is distributed homogeneously in
a 10′′ × 15′′ area as observed for AIB emission (Waterset al., 1998).

The best noise levels are reached, on average, with the 3 mm observations, but the 1
and 2 mm observations suffer less from beam dilution. To compute a reliable upper limit
to the abundance of corannulene, we chose the 135→ 134 transition at 2 mm, which
is not only the transition with the lowest rms, but also the best compromise between
the loss of flux due to beam dilution and expected intensity derived from the synthetic
spectrum.

The ratio between observations and theoretical predictions can be turned into an
upper limit for the fraction of AIB flux due to corannulene, which corresponds to the
fractional abundance of carbon locked up into corannulene relative to the total abun-
dance of carbon in PAHs. For this, we have scaled the mid-IR part of the synthetic
spectrum to the total AIB intensity measured in the Red Rectangle. This led to an inte-
grated flux ofFmodel= 1.9×10−20 W cm−2 in the 135→ 134 line. We compare this value
with the area of the 3σgaussian for the same transition, corrected for beam dilution:
F3σ = 9.0× 10−26 Wcm−2.

Comparing this upper limit with the results from modelling, we derive a value of
1.0×10−5 as our best limit for the fraction of carbon in C20H10 relative to the total carbon
in all PAHs. Assuming that∼ 20% of total carbon atoms are locked in PAHs (Joblin
et al., 1992), this turns into a value of 2.0 × 10−6 of total carbon in corannulene. This
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7. Search for corannulene in the Red Rectangle

Figure 7.4: Observations of the expected frequency range for the 135→ 134 transition at
137 GHz, the 86→ 85 transition at 88 GHz of C20H10, the 12CO(1-0) and13CO(1-0),(2-1)
transitions. Horizontal red lines indicate the 1σ, 2σ and 3σ levels.
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Figure 7.5: Size distributions of PAHs according toDésertet al. (1990) andDraine and Lazar-
ian (1998), normalised to a carbon abundance in PAHs of 6× 10−5 relative to hydrogen (Joblin
etal., 1992; Draine and Lazarian, 1998). The two upper limits reported refer to the observations
of corannulene in the RR (this work) and of C42H18 in the diffuse interstellar medium (Kokkin
et al., 2008). The discrepancy between models and observations supports the underabundance
of small PAHs in space.

result is much more stringent than the limit derived byThaddeus(2006) for corannulene
in TMC-1, 1× 10−5.

7.4 Conclusions

Experimental studies (Lafleur et al., 1993) indicate that corannulene is not a peculiar
PAH and is indeed observed as a sizable fraction of small PAHs produced by pyrolysis
of hydrocarbons that is commonly considered to be the formation mechanism of PAHs
in C–rich outflows (Frenklach and Feigelson,1989; Cherchneff et al., 1992; Cernicharo
et al., 2001). Corannulene can be considered as a good tracer of the small PAH popula-
tion. Using the experimental results ofLafleuret al.(1993), it is possible to translate the
upper limit of corannulene in an upper limit of the C atoms contained in small PAHs.
This yields to an upper limit of∼2% for the mass fraction of small PAHs containing less
than 50 C atoms with respect to the total mass in PAHs. Current models for interstellar
PAHs use a size distribution with about 20% of the mass in small PAHs (Draine and
Lazarian, 1998, cf. Fig. 7.5). There is therefore a difference of one order of magnitude
between the observations and the models.

This discrepancy can be interpreted in terms of the photo-destruction and produc-
tion processes of small PAHs in the environment of the Red Rectangle. The photo-
dissociation rate of corannulene in the Red Rectangle was calculated using a Monte-
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Carlo model and experimental results from the PIRENEA setup (Joblin et al., in prepa-
ration). Comparing this dissociation rate with the recombination rate with hydrogen
atoms, we determined that corannulene is expected to survive in its neutral hydrogenated
form in the Red Rectangle. Therefore, the observed underabundance of small PAHs is
most likely related to the production mechanism of small PAHs in C-rich outflows.
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Chapter

8
Production of small hydrocarbons in
PDRs

8.1 Introduction

In PDRs, very small dust particles such as PAHs and eVSGs are processed by the UV
radiation. In Chap.6, we have analysed the photo-destruction process of eVSGs in PDRs
that gives birth to free PAHs. Here we will discuss another possible product of this
process, that is the production of small gas-phase hydrocarbons.

Hydrocarbon abundances in PDRs

As already introduced in Chap.3, observational studies on PDRs have revealed that gas-
phase chemical models provide too low values of the abundance of small hydrocarbons
compared to that observed in several PDRs: NGC 7023 (Fuenteet al., 2003), the Orion
Bar (Fuenteet al.,2003), IC63Teyssieret al.(2004) and the Horsehead nebula (Teyssier
et al., 2004; Petyet al., 2005). Several reasons may be invoked to explain this discrep-
ancy:
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8. Production of small hydrocarbons in PDRs

• the photo-dissociation rates for hydrocarbons used in the models may not be ac-
curate,

• the chemical models may lack important gas-phase reactions in the formation of
the small hydrocarbons,

• the models are biased by not taking into account non gas-phase pathways of small
hydrocarbons production such as the photo-destruction of larger species such as
the AIB carriers.

Recently, high spatial resolution observations and detailed modelling of the Horse-
head Nebula (Petyet al., 2005) have shown that the latter mechanism is very promis-
ing to explain the discrepancy between observations and models. The authors showed a
very good spatial correspondence between the AIB and the small hydrocarbon emission.
However, since both PAHs and eVSGs contribute to the AIBs, it is not possible to con-
clude whether the destruction of one or the other population is the source of enhanced
hydrocarbon abundance in the external layers of PDRs. In the Horsehead nebula, there
is a strong density gradient (Habartet al., 2005) and no spatial transition between the
PAH/eVSG populations can be observed at the resolution of the Infrared Spectrograph
(IRS) onboard Spitzer. In the north-west PDR of NGC 7023, the transition between the
different AIB carriers is very well resolved by IRS (see Fig.6.2): PAH+ are mostly lo-
cated in the low density medium (the so calledcavity), PAH0 at the PDR interface, and
eVSGs further inside the molecular cloud. The transitions between the different popula-
tions are observed at typical scales of a few arcseconds. Observations at the IRAM 30m
telescope towards NGC 7023 (Fosséet al., 2000; Fuenteet al.,2003) reported detections
of several hydrocarbon species such as c-C3H2 and C2H towards both the PDR peak and
the molecular cloud. The authors showed that chemical modeling predicts much lower
abundance (by one order of magnitudes) for these molecules towards the PDR peak, but
the large beam (12′′ − 27′′) at the observed frequencies did not allow a detailed spatial
study. Observations of these species at high angular resolution are therefore essential to
constrain the contribution of the fragmentation of PAHs and eVSGs to the hydrocarbon
abundance in this prototype object.

The aliphatic-aromatic evolution in PDRs

The loss of aliphatic side-groups attached to very small carbonaceous grains or PAHs
is a possible production pathway for small hydrocarbons in PDRs. Whereas pure aro-
matic compounds havesp2 hybridisation, aliphatics are linked throughsp1 bonds. Such
bonds are less stable against photo-dissociation than aromatic bonds, and upon absorp-
tion of UV photons they are therefore expected to be the first to break (Joblin et al.,
1996a). The observation and analysis of the aliphatic/aromatic evolution in the mid-IR
is difficult since the bands associated with these transitions overlap and their contribu-
tion cannot be easily disentangled. Nevertheless, the combination of laboratory studies
and observations suggests that complexes containing both aliphatic and aromatic groups
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Figure 8.1: The north-west PDR of NGC 7023 observed in the H2 2.1µm emission (colorscale,
Lemaireet al., 1996) and the C2H emission observed at the PDBI with contours of 0.25 K km s−1

(A. Fuente, private communication)

are evolving in PDRs (Sloanet al., 2007) and circumstellar disks (Acke et al., 2010).
The near-IR domain offers the opportunity to study the aliphatic/aromatic evolution be-
cause aliphatic complexes have an intense vibrational mode at 3.4µm, which can be well
distinguished from the 3.3µm aromatic band. Indeed, previous observations of PDRs
(Geballeet al., 1989; Joblinet al., 1996a; Sloanet al., 1997) show a spatial variation of
the 3.4/3.3µm band ratio, this ratio decreasing with longer exposure to UV photons.

This chapter presents the results and preliminary analysis of the high-angular reso-
lution observations of different hydrocarbon lines in NGC 7023 NW. The data will be
complemented by recent AKARI near-IR observation of the same source, that will en-
able to set up the study of the aliphatic/aromatic transition as given by the 3.4µm band.
The results of these observations will be also discussed in relation with the mid-IR de-
composition presented in Chap.5.

8.2 Interferometric observations

NGC 7023 NW was observed with the Plateau de Bure Interferometer (PDBI) in the C2H
(1 → 0) transition at 87.316 GHz, with a beam size of∼ 5′′ (A. Fuente, priv. comm.).
The observed C2H emission peaks just behind the H2 emission at 2.1µm (Lemaireet al.,
1996) that traces the high density filaments at the PDR edge (see Fig.8.1).

Using the PDBI, we observed the north-west PDR of NGC 7023 at the frequencies of
several hydrocarbon lines, i.e. c-C3H2, C3H, and C4H. The corresponding frequencies
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are reported in Table8.1. The observations were performed in the CD configuration1,
leading to an angular resolution of∼ 3.5′′. The on-source time was about 10 hours with
very good weather conditions. The observations consist in a 5-field mosaic with full
Nyquist sampling covering the whole filamentary region where C2H emission arises.
The fields of view of the all the fields superposed towards the filaments in correspon-
dence with the C2H emission to maximise the signal-to-noise ratio in this region. The
data were reduced using standard GILDAS2 tasks (Pety, 2005).

Molecule Frequency (GHz) Elow (cm−1) Quantum Numbers
c-C3H 85.272 7.5035 (31,2, 5/2, 3)→ (31,3, 5/2, 2)
c-C3H2 85.338 1.6332 21,2→ 10,1

C4H 85.634 11.4234 (9,19/2)→ (8,17/2)
C4H 85.672 11.4346 (9,17/2)→ (8,15/2)

c-C3H 85.695 7.4888 (31,2, 7/2, 3)→ (31,3, 7/2, 3)

Table 8.1: Transition frequencies, lower state energies and quantum numbers for the interfero-
metric observations.

The interferometric observations filter the large scale emission and they need to be
combined with short-spacings information to retrieve the total flux of these lines. The
short-spacings observations were performed at the IRAM 30m telescope in the on-the-
fly observing mode, covering a 250′′ × 200′′ area centered on the filaments, for a total
on-source time of about 6 hours. Both sidebands of the EMIR receivers were used: the
LSB was used to observe the same lines as those observed at the PDBI, whereas the USB
enabled to map the CS (2-1) transition at 91 GHz. The OFF reference position was cho-
sen in the western lobe of the cavity (∆α = −144′′,∆δ = −47′′ offsets from HD 200775).
Observations of13CO (1→0) and C18O (1→0) at the 30m telescope (J. Pety, priv. comm.)
show a localised emission at blue-shifted velocities (vlsr ∼ −1 km s−1) at the chosen OFF
position. This emission caused a contamination in the final subtracted ON-OFF spectra
of c-C3H2 at these velocities, which was corrected off-line using specific GILDAS tasks.
Typicalvlsr for these sources are in the 0-4 km s−1 range (see, for example,Fuenteet al.,
1996; Gerinet al., 1998), and therefore the contamination from the OFF to the main line
profile is negligible.

In figure8.2we show the channel maps of the observed c-C3H2 emission at 85.338 GHz
and the comparison with the H2 emission at 2.1µm of Lemaireet al. (1996). Similarly
to C2H, the c-C3H2 emission arises mainly towards two regions: the infrared filaments
and the northern bulk of the molecular cloud. Towards the filaments, the line peaks at
vlsr = 2.4 km s−1, which is the same central velocity as C2H, and the blue-shifted ve-
locities (1.8 . vlsr . 2.4 km s−1) are mostly localised in this region. The red-shifted

1The C and D configurations are the two most compact configurations at the PDBI, with baseline
lengths from 24m to 229m

2http://www.iram.fr/IRAMFR/GILDAS/
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8.3. AKARI observations

Figure 8.2: Channel maps for the c-C3H2 observations (contours) in NGC 7023 NW. The H2

2.1µm emission ofLemaireet al. (1996) is displayed in colour scale to evidence the high-
density filaments at the PDR border. The hydrocarbon emission atvlsr . 2.4 km s−1 peaks
just behind the hot infrared filaments. The more redshifted velocities (vlsr & 2.4 km s−1) are
associated to the bulk of the molecular cloud.

velocities (vlsr & 2.4 km s−1) are mostly localised towards the bulk of the molecular
cloud. The signal-to-noise ratio of the C4H (85.634 and 85.672 GHz) transitions is low,
which increases the complexity of the deconvolution process. In any case, the C4H ob-
servations present very localised and faint detections. The C3H radical was not detected
down to a rms level of 100 mK. Figure8.3 compares the spatial patterns of the emis-
sion in the C2H and c-C3H2 lines and the mid-IR decomposition presented in Chap.5,
showing that the hydrocarbon emission peaks toward the eVSG/PAH0 transition region.
Possible interpretations for this spatial coincidence will be addressed in Sect.8.4.

8.3 AKARI observations

During the AKARI warm phase, we observed NGC 7023 NW using the IRC camera in
spectroscopic mode. These observations were performed in the context of the NESID
(Nature and Evolution of Small Interstellar Dust, P.I: F.Boulanger) project. The obser-
vations consisted in 20 stripes of length∼ 50′′ and a pixel size of 3′′. For each spatial
pixel, the instrument provides spectroscopy in the 2.5-5µm range, with a spacing of
∼ 0.01µm between channels (90. R . 160). The calibration and data reduction for
each of the stripes were performed by the Japanese team led by T. Onaka. The stripes
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Figure 8.3: The NW PDR of NGC 7023 decomposed in PAH+ (blue), PAH0 (green) and eVSGs
(red). Contours are c-C3H2 (steps of 0.25 K km s−1, left) and C2H (steps of 0.25 K km s−1, right).

were then combined in a mosaic using themontagesoftware3. The field of view of the
final mosaic is displayed in Fig.8.4. Unfortunately, the orientation of the slit could not
bespecified by the observer, which results in a non-optimised coverage of the PDR.
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Figure 8.4: AKARI-IRC spectra at five different position in NGC 7023 NW. The positions of
the extracted spectra are indicated as grey shadows on the IRAC 8µm map. Contours trace the
complete field of view of the observations. Position 5 is the closest to the star, in the cavity, and
does not present any emission at 3.4µm nor the plateau at 3.5µm. Position 3 is located towards
the PDR edge, and present very lowI3.4/I3.3. The spectra extracted towards positions 1, 2 and
4, which are located deeper in the PDR, present a higherI3.4/I3.3 ratio, indicating that some
photo-processing is taking place in the more exposed regions of the PDR.

3http://montage.ipac.caltech.edu
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Figure 8.5: First results from the analysis of the AKARI-IRC spectral cubes: the color maps
show the variation of theI3.4/I3.3 ratio extracted from the near-IR fit. Contours represent the
C2H and c-C3H2 emission detected at the PDBI. They are given by steps of 0.25 K km s−1.

Figure8.4shows some examples of AKARI-IRC spectra towards different positions
in NGC 7023 NW. In general, the AKARI spectra of NGC 7023 NW show intense 3.3
and 3.4µm band emission, a plateau in the 3.3-3.5µm range, and a continuum that spans
the whole wavelength range. To extract the intensity of each component separately, we
fitted the spectrum in each pixel of the spectral cube with a set of Lorentzians centered
at 3.29 and 3.4µm to represent the main bands, a broader Gaussian centered at 3.5µm
representing the underlying broad feature and a linear continuum. The band FWHMs are
∼ 0.03µm for the Lorentzian bands and∼ 0.1µm for the 3.5µm Gaussian broad band,
although these widths may vary at different positions and are set as free parameters in
the fit. From the results of the fit, it is clear that the ratio of the 3.4 and 3.3µm band
integrated intensities (hereafterI3.4/I3.3) varies with position. In particular, Figs.8.4and
8.5show thatI3.4/I3.3 increases with distance from the illuminating star HD 200775. The
near-IR continuum presents large variations, exhibiting a steep increase around 3.3µm.
Figure8.5shows the comparison between theI3.4/I3.3 ratio (color scale) and the hydro-
carbon emission emission observed at the PDBI (contours as in Fig.8.3).

8.4 Discussion

On the basis of the observations presented here, we can delineate a general evolution
scheme:

1. The emission of the small hydrocarbons such as c-C3H2 and C2H is more intense
towards the IR filaments (Figs.8.1 and8.2). In particular, Fig.8.6shows that the
spatial patterns of the emissions of these two hydrocarbon lines are tightly corre-
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Figure 8.6: Pixel-to-pixel correlation of the integrated intensities of C2H and c-C3H2 in the
filamentary region of NGC 7023. The maps have been reprojected to the same grid, with a pixel
size of 5′′.

lated, as already observed in the Horsehead Nebula, whereas they are predicted
to arise at different cloud depths. There are several mechanisms that can con-
tribute to this effect: excitation conditions such as high densities and temperature
(Fuenteet al., 1996), geometrical issues leading to high column densities (Field
et al., 1994), or indeed an enhanced abundance of these molecules. These three
possibilities need to be assessed within a complete modelling of the chemistry and
physics of the region. The study of the molecular filaments with high-resolution
HCO+ observations have shown that geometrical issues have only a minor impact
in this region (Fuenteet al., 1996), and therefore the general scenario seems in
favour of a combination of favourable excitation effects and an enhanced abun-
dance of hydrocarbons in this region (Fuenteet al., 2003).

2. The emission of small hydrocarbons peaks at the transition between eVSGs and
PAHs (Fig8.3), where eVSGs are destroyed to produce free PAHs (Chap.6). This
is coherent with a scenario in which eVSGs are destroyed by the UV field and
small hydrocarbons are produced in the same process. This may happen by direct
loss of CnHm molecules from eVSGs or/and in a two-step process consisting in the
production of gas-phase PAHs that can then release their aliphatic sides. It is also
possible that hydrocarbons are released from the destruction of PAHs themselves,
a process that should affect primarily small PAHs. Laboratory results (Useli Bac-
chitta and Joblin, 2007; Useli Bacchitta, 2009) show that for small PAHs under
UV conditions, the direct loss of small hydrocarbons such as C2H2 or C4H2 is a
possible fragmentation pathway. These species can then further evolve by gas-
phase chemistry.
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3. Whatever the origin of the 3.4µm band in super-hydrogenated PAHs or in aliphatic
sidegroups attached to PAHs, the spatial evolution of this band is coherent with
the photo-processing of PAHs at the PDR front.

4. Interestingly, the peak of hydrocarbon emission in NGC 7023 NW coincides with
the region where the Extended Red Emission (ERE) is observed (Fig.8.7). ERE
has been tentatively attributed to some PAH dimers that are expected to be pro-
duced during the photo-destruction of eVSGs (Berné et al., 2008). A similar
spatial pattern for the ERE is derived in NGC 2023 S, as shown in figure8.7.
However, this PDR has not been observed yet at high angular resolution in hy-
drocarbon lines. If, as suggested byBernéet al. (2008), the carriers of ERE are
ionised PAH dimers, the spatial correspondence between the emission of ERE and
small hydrocarbons may be due to the fact that all these species are produced in
the same photo-destruction process of eVSGs.

To summarise, these observational results are coherent with a scenario that involves
the photo-destruction of eVSGs by UV photons, producing a mixture of PAHs, ERE car-
riers and small hydrocarbons. However, the composition of eVSGs is still unclear. The
observations presented here are coherent with eVSGs being a mixture of PAH clusters
of various sizes, aliphatic groups and/or super-hydrogenated PAHs. A detailed anal-
ysis using PDR models, quantum-chemical calculations and experiments is needed to
progress on the nature of these species. A model that quantitatively describes the photo-
destruction of PAHs and eVSGs is needed to constrain the destruction processes, and is
currently under development at CESR. Experiments on the photo-destruction of eVSGs
are also in progress at CESR using the PIRENEA setup (Simon and Joblin, 2009), but
face the difficulty of finding a reasonable composition for these interstellar species.
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Figure 8.7: The NW PDR of NGC 7023 (left) and the South PDR of NGC 2023 (right) de-
composed in PAH+ (blue), PAH0 (green) and eVSGs (red). The extended red emission (ERE)
(Bernéet al., 2008) is displayed in contours.
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Figure 8.8: A cut along the star-PDR axis in NGC 7023 NW (left) and NGC 2023 S (right)
illustrating the spatial variation of the different emission features. The extended red emission
(ERE) peaks at the transition region between eVSGs and PAHs, indicated by the yellow stripe.
The C2H and c-C3H2 emissions in NGC 7023 NW are also found in the same region, suggesting
that the photo-destruction of eVSGs may be the source of both the ERE carriers and small
hydrocarbons.
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Part IV

PAHs and gas in the physics of the
photo-dissociation region NGC 7023
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Chapter

9
On the morphology of NGC 7023

9.1 Introduction

NGC 7023, also called the Iris Nebula, is a reflection nebula in the Cepheus constellation
illuminated by the B2-5Ve star HD 200775 [RA(2000)= 21h01m36.9s ; Dec(2000)=
+68◦09′47.8′′]. It has been shaped by the star formation process leading to the formation
of a cavity. NGC 7023 has been widely studied at many wavelengths. Recently, it has
been mapped by the instruments PACS and SPIRE ofHerschelto study the emission of
large cold grains (Abergelet al.,2010).

Previous molecular observations have shown that this region hosts structures at dif-
ferent gas densities:nH ∼ 100 cm−3 in the cavity,∼ 104 cm−3 in the PDRs that are
located north-west (NW), south (S) and east, and 105 − 106 cm−3 in dense filaments and
clumps that are observed in the mm (Fuenteet al., 1996; Gerinet al., 1998, and refer-
ences therein) and near-IR (Lemaireet al., 1996; Martini et al., 1997). In this chapter,
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9. On the morphology of NGC 7023

Figure 9.1: The reflection nebula NGC 7023 observed with the CFHT

.

we combine IR, sub-mm, and mm observations on the gas and dust components to bet-
ter characterise the regions towards the north-west and south PDRs associated with the
central star.

9.2 [C ii] and AIB emission: insights from Herschel

The 158µm [C ii] and 63µm [O i] lines are the major coolants of the gas at the surface of
PDRs (Hollenbach and Tielens,1999). In these regions, photoelectric effect dominates
the heating, while H2 formation provides a minor contribution. Since the smallest dust
particles (PAHs and eVSGs) contribute to a large fraction to this process (Bakes and
Tielens, 1994; Habartet al., 2001), and these particles emit in the mid-IR most of the
energy they absorb in the UV, we expect that the mid-IR and [Cii] emissions arise in
the same regions. We used the decomposition presented in Chap.5 to disentangle the
PAH+/0 and eVSG components in theSpitzerIRS (for the star-NW cut) and ISOCAM
(S-NW cut) spectral cubes. A comparative study of the [Cii] emission and AIB emission
can provide further insights into the origin of the [Cii] emission and the morphology of
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9.2. [Cii] and AIB emission: insights from Herschel

the gas associated with the PDR. The modelling of the [Cii] emission and its connection
with the energetics of the PDR is presented in the next chapter.
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Figure 9.2: The NW and S PDRs of NGC 7023 observed bySpitzer-IRAC at 8µm (red) and 3.6
µm (green). The white circle represents the HIFI beam at 535 GHz (41′′) towards the H2 peak
. The dotted lines show the cuts that are studied in the [Cii] emission line at 158µm, whereas
white crosses indicate the specific positions reported in Fig.9.3and Table9.1. The star position
is shown with a black cross.

HIFI observations and data reduction

The HerschelHIFI observations of NGC 7023 presented here were observed as part
of the Guarantee Time Key Programme "Warm and dense interstellar medium" (WADI,
P.I.: V. Ossenkompf). They consist in the on-the-fly (OTF) mapping of the [Cii] 1901 GHz
(158µm) emission line using the band 7b receiver tuned in USB. The line was observed
by both the wide band and the high resolution spectrometers. Two cuts were performed:
a cut from the star to the NW PDR (hereafter star-NW cut) and a south-north cut (here-
after S-NW cut) covering the S PDR, the cavity and the NW PDR (∆α = −47′′,−85 <
∆δ < +60′′ relative to the star position, see fig.9.2). The pixel size after re-gridding is
6.5′′ and the telescope beam size at this frequency is 11′′. These observations include
an OFF reference position in the western lobe of the cavity (∆α = −144′′,∆δ = −47′′).
Data were reduced with HIPE 3.0 (Ott, 2010) on level-2 data produced with the stan-
dard pipeline. The [Cii] WBS spectra required defringing, which was performed with
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9. On the morphology of NGC 7023

Table 9.1: Summary of the HIFI data

Transition νline Position Beam vlsr FWHM † T∗A Area
[GHz] size [ ′′] [km s−1 ] [km s−1 ] [K] [ K km s −1]

HCO+ (6−5) 535.062 H2 peak 41 2.3± 0.3 1.4± 0.3 0.22 0.33± 0.07
13CO (5−4) 550.926 H2 peak 41 2.2± 0.3 1.2± 0.3 5.12 6.5± 1.5
13CO (8−7) 881.272 H2 peak 24 2.2± 0.2 0.9± 0.2 4.15 4.0± 0.8
C18O (5−4) 548.831 H2 peak 41 2.1± 0.3 0.9± 0.3 1.12 1.1± 0.4
[C ii ] 1900.537 H2 peak 11 2.7± 0.1 3.4± 0.2 23.6 85.6± 5.0
[C ii ] 1900.537 S-NW cut-N 11 2.5± 0.1 2.4± 0.2 17.9 45.8± 3.8
[C ii ] 1900.537 S-NW cut-Cav 11 4.0± 0.1 2.2± 0.2 6.89 16.2± 1.4
[C ii ] 1900.537 S-NW cut-S 11 2.5± 0.1 2.4± 0.2 13.3 34.0± 2.8
† For [C ii], we report the FWHM of the Gaussian profile of equivalent area and peak intensity.
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Figure 9.3: Examples of Cii emission profiles at the H2 peak and at the three positions shown
by crosses on Fig.9.2: north (∆α = −47′′, ∆δ = +45′′), cavity (∆α = −47′′, ∆δ = −20′′ ), and
south (∆α = −47′′, ∆δ = −80′′ ), with offsets relative to the star position. Vertical dotted line
indicates vlsr = 2.2 km s−1.

standard HIPE tasks. The best data quality was produced with the subtraction of two
sinusoidal fringes. To verify the biases introduced by the fringe removal, we compared
the defringed WBS and HRS profiles (smoothed at the same spectral resolution), which
showed good agreement both in profile and absolute intensity, except for the weakest
lines (T∗a . 4 K). Figure9.3 shows some examples of the [Cii] emission extracted at
different positions along the S-NW cut and the H2 peak. The typical noise level is∼ 1 K
in Tmb after smoothing the data to a 0.7 km s−1 spectral resolution.

112



9.2. [Cii] and AIB emission: insights from Herschel

10
-5

10
-4

4 10
-7

10
-6

0 10 20 30 40 50 60 70

I A
IB
 (
W
 m

-2
 s
r-1

) I(C
+) (W

 m
-2 s

r
-1)

(a) star-NW cut

d
star

(arcsec)

[CII] 158 µm 

10
-5

10
-4

10
-7

10
-6

-80 -60 -40 -20 0 20 40 60

I A
IB
 (
W
 m

-2
 s
r-1

)

I(C
+) (W

 m
-2 s

r
-1)

(b) S-NW cut

∆δ (")

[CII] 158 µm 

Figure 9.4: Comparison between the [Cii] 158µm line flux (solid line) measured with HIFI
at a beam size of 11′′ and the aromatic IR band (AIB) flux (5.5-14µm) along the star-NW (a)
and S-NW (b) cuts. The error bars for [Cii] are computed at one-sigma level. The AIB flux is
determined with a fit of the mid-IR spectra using the three PAH-related populations shown in
Fig.10.1; filled diamonds areSpitzer data (1.8′′ pix−1), and open diamonds are ISOCAM data
(6′′ pix−1).

Comparison with the AIB emission

Figure9.4 displays the AIB flux, IAIB, obtained by summing the fluxes of the PAH0,
PAH+, and eVSG components that were derived from the fitting procedure presented
in Chap.5. It shows that the AIB intensity correlates well with the [Cii] line intensity,
strongly supporting that both emissions arise from the same regions. The fit of the mid-
IR emission provides two independent tracers of the total gas column density N(H) along
the line of sight as explained below.

1. Owing to the excitation mechanism, the AIB intensity can be considered to be
proportional to the exciting UV flux,G0, and the column density of the emitting
material. Assuming thatNC

AIB/N(H) stays constant at the PDR surface, IAIB can
therefore be used as a tracer ofN(H) if G0 is known.

2. If the column densityN(H) is high enough, the effect of extinction by silicates
can be seen on the AIB spectrum. We derived the column density of gas asso-
ciated with the PDR by applying directly to the mid-IR spectral cubes the fitting
procedure explained in Chap.5 that includes the extinction.
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9. On the morphology of NGC 7023

Method 2 is precise for column densities higher thanN(H) ∼ 1022 cm−2. Method 1
can probe lower column densities but suffers from two limitations. The AIB emission
needs to be corrected for the variation in the UV field G0 to retrieve the value of N(H).
This was done assuming that G0 scales as the inverse squared distance to the illuminating
star HD 200775 and a value of G0 = 2600 at 42′′ from this star, as derived in Chap.6.
We used the projected distance as an estimate of the true distance. This introduces an
error that can be especially strong at positions close to the star in the plane of the sky.
Figure9.4shows that the AIB emission stays almost constant atd < 16′′ in the star-NW
cut, therefore we used this value as the minimum effective distance of the NW PDR
to the star. Method 1 also needs to be calibrated since the local emissivity of the AIB
carriers is not known precisely. Our approach was therefore to derive a calibration factor
using the values obtained by method 2 at a distance of∼ 42′′ on the star-NW cut. The
same calibration factor was used for all positions along the two cuts. A finer approach
would consist in the description of these regions with a geometrical model, similarly to
what has been done in Chap.6 for the interior of the PDR.

Figure9.5shows that the column densities that were derived on the two cuts correlate
quite well with the [Cii] line intensity.
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Figure 9.5: Comparison between the [Cii] 158µm line flux (solid line) measured with HIFI at a
beam size of 11′′ and the column density N(H) along the star-NW (a) and S-NW (b) cuts. N(H)
was derived from both the AIB flux (diamonds) and the mid-IR dust extinction (open circles);
filled diamonds and open circles areSpitzerdata (1.8′′ pix−1), and open diamonds are ISOCAM
data (6′′ pix−1).

A higher density filament is clearly observed around position 50′′ on the star-NW
cut. Attenuation of the mid-IR emission is observed here over a physical size of few
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9.3. HCO+ emission and the high-density filaments

arcsecs, that is small compared to the full size of the filament (∼ 9.5′′ at half maximum
obtained in extinction with method 2, cf. Sec.9.3).

Finally, it is interesting to note that the S-NW cut, that has been observed in [Cii],
is going through a denser or more extended structure. It corresponds indeed to a clump
that is well observed in CS (see section9.4).

9.3 HCO+ emission and the high-density filaments

Figure 9.6: 13CO, C18O, and HCO+ high-J transitions observed with HIFI toward the H2

peak.The vertical dotted line indicates vlsr = 2.2 km s−1.

Interferometric observations obtained at the Plateau de Bure Interferometer (PdBI)
in HCO+ (Fuenteet al., 1996) and other tracers with high dipole moments such as CS,
HCN, and CN show the presence of high-density filaments in NGC 7023 NW, with hy-
drogen densities ofnH ∼ 105−106 cm−3. However, the observations at mm wavelengths
can probe only low-J transitions of these molecules. The high-J emission lines, that arise
from gas at high temperature and density, are accessible withHerschel and can be used
to further constrain the physical parameters towards these filaments. Here, we compare
the HCO+ (6→5) emission observed with HIFI and lower J transitions from previous
ground-based observations.

HCO+ was observed with HIFI at the H2 peak position (see Fig.9.2) towards the
NW PDR in bands 1a and 3b. We used the frequency-switch observing mode, with a
frequency throw of∼ 0.9 MHz. In band 1a, the frequency ranges covered by the WBS
were [535-539] GHz (LSB) and [547-551] GHz (USB). In band 3b, covered ranges
were [879-883] GHz (LSB) and [891-895] GHz (USB). The observed position (∆α =

−25′′, ∆δ = +38′′, called H2 peak) corresponds to the peak intensity of the H2 ro-
vibrational emission associated to the near-IR filaments (Lemaireet al., 1996). The OFF
positions was the same that has been used for [Cii] observations. Manual steps in the
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9. On the morphology of NGC 7023

data reduction were performed in HIPE 3.0, and consisted in thestitching of sub-bands,
baseline removal, and correction for main beam efficiency (ηmb= 0.71).

Fuenteet al. (1996) have shown that the thickness of the high density filaments as
traced by the HCO+ 1→0 line observed at the PdBI is about 6′′. Assuming that the
(6→5) line arises from the same region, we estimate a dilution factor of 5.4 in the HIFI
beam of 41′′. Fuenteet al. (1993) reported the observations of HCO+ (3→2) with the
IRAM 30m telescope towards a close-by position. The beam of the 30m telescope at this
frequencies (8′′) is comparable to the thickness of the filaments, so that dilution effects
should be negligible.

Using RADEX (van der Taketal., 2007), we reproduced the brightness temperature
of the interferometric HCO+ (1→0), single dish (3→2) andHerschel (6→5) transitions.
The observed brightness temperatures can be reproduced within 20% assuming a column
density of N(HCO+) = 3.5 × 1013 cm−2, a kinetic temperature of 95 K and a density of
nH = 2 × 105 cm−3. Considering the uncertainty on dilution factors, calibration and
pointing accuracy, this level of accuracy is very good.

Assuming that high-J lines of13CO and C18O arise from the same region, we can
estimate a dilution factor in HIFI beam of 5.4 and 1.5 for the (5→4) and (8→7) lines,
respectively. The observed brightness temperatures for these CO isotopes are also con-
sistent with the estimates of density and temperature obtained from HCO+ data at the
same level of uncertainty as for the HCO+ estimates.

9.4 The clump

One of the results of the fitting procedure described in Chap.5 is the column density of
the gas associated with the PDR. Figure9.7shows the effect of the extinction correction
in the fit of the AIB spectrum extracted towards the clump position. Assuming a distance
of 430 pc, the angular extend of the clump (FWHM∼ 14′′) translate into a physical
length of 8× 1016 cm (0.025 pc) for the width at half maximum. Using the column
density ofN(H) = 7.2×1022 cm−2 derived at the peak (see also fig.9.5) we can estimate
a density in the clump ofn(H2) = 4.5× 105 cm−3.

The NW PDR of NGC 7023 was observed in April-November 1997 with the IRAM
5-element array at Plateau de Bure (France) in its CD configuration (A. Fuente, private
communication). The observations consist in a 5-field mosaic covering an almost cir-
cular region of∼ 100′′ in diameter. Receivers were tuned double side band to observe
at the same time the CS(2→1) transition at 97.98 GHz (with a beam FWHM of∼ 3′′)
and the CS(5→4) transition at 244.935 GHz (FWHM∼ 1.5′′). The CS lines peak at a
vlsr ∼ 2.4 km s−1, with a second peak at∼ 1.8 km s−1.

Figure9.8 shows the correlation of the column density derived with the mid-IR fit
and the integrated intensity of CS emission in the 1.8 − 2.8 km s−1 range. This spatial
correlation is striking: CS (2→ 1) emission arises from the same region where the IR
emission is absorbed, further supporting the evidence of a high density region (hereafter
the clump) associated with the PDR.
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9.4. The clump

Figure 9.7: Fit of the mid-IR emission spectrum from the clump position without the extinction
correction (left) and with the fully mixed correction (right).
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Figure 9.8: Comparison between the integrated CS (2→ 1) emission (colour scale) and the
extinction AV derived from the mid-IR fit (black contours, steps of 5 mag). White contours
represent the tentative CS (5→4) detection (levels from 1 to 5 km s−1 in steps of 1 km s−1.)

This result provides strong evidence that the clump is placed in front of the PDR,
producing a shadow in the AIB emission. To illustrate this effect, we show in figure
9.9 three stripes along the star-PDR axis. For each of the stripes,we report a profile
of the IRAC 8µm and CS (2→1) emission and the hydrogen column density obtained
with the mid-IR fit. In stripe (1), which is passing through the clump, the 8µm emission
profile decrease abruptly and present a hole in correspondence with the maximum of CS
emission andAV. In stripe (2) such decrease has a smoother profile. Stripe (3), which
does not present CS emission or mid-IR absorption, shows a very smooth decrease in
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quite smooth. Strip 2 is an intermediate case.
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Figure 9.10: AKARI-IRC near-IR spectrum towards the clump position, showing the absorp-
tion of CO2 ices.

Finally,Fig.9.10shows the AKARI-IRC spectrum between 2.5-5µm extracted at the
clump position. This spectrum presents several interesting features, apart from the 3.3
and 3.4 µm complex. In particular, broad absorption bands are present at 4.27 and
3.04µm, which correspond respectively to the CO stretching mode in CO2 ices and to
the OH stretching mode in H2O ices (Gerakineset al., 1995). The CO2 ice presents
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9.4. The clump

another feature in the mid-IR, but it has a lower absorption strength and is blended with
PAH features, which make it difficult to observe in PDR spectra. Using the laboratory
absorption coefficients ofGerakineset al. (1995) and the column density derived from
the mid-IR fit, we can estimate an abundance compared to H of∼ 5× 10−6 for CO2 and
∼ 4× 10−6 for H2O. The abundance of CO2 relative to H2O is much lower (∼ 10− 20%)
in star-forming regions and dark molecular clouds (Gerakineset al., 1999; Nummelin
etal., 2001; Berginet al., 2005). However, this ratio is highly variable and the abundance
of solid CO2 has been measured to be∼ 45 compared to H2O in the Large Magellanic
Cloud (Shimonishiet al., 2008). Interestingly,Herschelobservations in the WADI key
program have revealed that in PDRs the abundance of gas-phase H2O is usually less than
that predicted by models. These observations show that there is still more work to do to
characterise the gas-grain interactions.
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Chapter

10
The energetics and dynamics of NGC
7023

10.1 Very small dust particles, [C ii] emission and the
cooling of PDRs

The contribution of small dust particles to the photo-electric heating of PDRs depends
on the size and charge state of the grain. Current models use empirical grain size dis-
tributions that enable to predict the contribution of PAHs and VSGs to the gas heating.
These models need to be compared with observations. As mentioned in Chap.3, one
way to proceed is to measure the photo-electric efficiency, defined as the ratio between
the energies emitted in the main PDR cooling lines and in the far-IR continuum. At the
edges of PDRs, the main cooling lines are the [Cii] and [Oi] lines. The recentHerschel
mission is now providing observations of these lines at high spatial and spectral resolu-
tion. The comparison of these lines with PAH observations allows a quantitative study
on the role of PAHs in the thermal balance of PDRs. At this time, only [Cii] observa-
tions has been performed towards NGC 7023, while PACS observations of the [Oi] lines
are still pending. Nevertheless, a preliminary comparison between [Cii] emission and
the different PAH populations can be performed.
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10. The energetics and dynamics of NGC 7023

[C ii] modelling

The critical density for the [Cii] 158µm line is ncrit=2500 cm−3 for collisions with H
and the line emissivity depends mainly on temperature forn > ncrit . We selected a few
positions on the HIFI S-NW [Cii] cut, three points on the NW PDR and two on the
South PDR (cf. Table10.1). The values ofG0 were determined as explained in Chap.9,
and we assumed a constant average density with two different values:nH = 2×104 cm−3

that is characteristic of the molecular cloud (Gerinet al., 1998) andnH = 7× 103 cm−3

that was derived byRapacioliet al. (2006) in their study of PAH-related species.
We used the 1D Meudon PDR code (Le Petitet al., 2006) to compute the gas tem-

peratureT at the cloud surface for all the selected positions (cf. Table10.1). Assuming
a two-level system, the values ofT can be used to calculate the C+ level populationsn1

andn0:

n1

n0
=

g1

g0
exp

(

−
E01

kT

) 1

1+ A10
γ10nH

(10.1)

whereg1/g0 = 2 is the ratio of the statistical weights of the two levels involved,E01 is
the energy separation between the two levels,k is the Boltzmann constant,A10 = 2.29×
10−6 s−1 is the Einstein coefficient for spontaneous emission andγ10 = 8.86×10−10 cm−3

s−1 is the collisional coefficient for C+ with H.
Line intensities are then derived by integrating along the line-of-sight (perpendicular

to model results) and by assuming uniform excitation conditions. The thickness of the
observed regions can lead to optical depthsτ ∼1, which implies that radiative transfer
effects must be taken into account. If we assume constant excitation conditions and gas
properties along the line of sight, thenτ can be computed analytically:

τ =

(

g1

g0
n0 − n1

)

c2

8π∆νD ν
2
0

A10
NH

nH
(10.2)

where∆νD is the Doppler width of the line andν0 = 1900.5369 GHz is the central
frequency of the line and we use the results of the previous chapter for the column
densityNH. Onceτ is known, we can compute also the intensity of the line using

I =
2hν3

c2

1− exp(−τ)
g1

g0

n0
n1
− 1

∆νD. (10.3)

We calculated the expected line intensity for five positions along the S-NW cut for
bothnH = 7× 103 cm−3 andnH = 2× 104 cm−3. The results are reported in Table10.1.

The agreement between calculated and observed flux values is very good when using
nH = 7×103cm−3. In the NW PDR, the ratio is 1.0 for NW3 (16) and NW2 (12), and 1.4
for NW1 (-3). For the S PDR, a value of 2.3 is derived for the two positions, suggesting
that systematic effects are causing the deviation between observed and calculated values
of the [Cii] flux. There are several parameters that are not precise in our model but
looking at Table10.1, it seems the local [Cii] emissivity is mainly affected by the local
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density and not by the value of G0. For N(H), we assumed the same regions emit in PAHs
and [Cii], in agreement with the profiles shown in Fig.9.4. Another source of error is
the use of a temperature calculated at the surface rather than in the region emitting [Cii]
emission. There is also an error for N(H) due to our method (cf. Chap.5), but this error
is expected to be the same for both PDRs. Dividing N(H) by a factor of two leads to
lower values of the ratio of the calculated over the observed [Cii] flux: 0.7-0.8 for the
NW PDR and 1.6-1.7 for the S PDR.

One step further in the model would consist in studying the effect of the grain charge
on the photoelectric efficiency (Bakes and Tielens, 1994). The relative abundances of
PAH+, PAH0, and evaporating VSGs vary significantly over the nebula (Fig.10.1). Re-
gions in the cavity appear mainly populated by PAH+ (cf. NW1 (-3) in Table10.1).
Since the ionisation potential of PAH+ is much higher than that of PAH0 (∼10 eV com-
pared to∼6 eV; Malloci et al. 2007), PAH+ should contribute less to the photoelectric
heating than PAH0, leading to a decrease in the heating rate, hence in the gas cooling. In
its current version, the PDR code uses classical grains with an MRN distribution (Mathis
et al., 1977) and absorption and scattering cross-sections fromLaor and Draine(1993).
We have used grains of sizes from 15 Å to 3000 Å with a dust-to-gas mass ratio of 1%.
As a result, the ionisation parameterγ that quantifies the grain charge (cf. Table10.1)
does not reflect well the variations of the PAH charge observed in Fig.10.1. An up-
graded version, in which the PDR code is coupled to the code DUSTEM (Compiègne
et al., 2010), is under development (Gonzalez et al, in preparation) and will allow the
inclusion of PAHs and a description of their charge variation. NGC 7023 is clearly a
template region that could be used for these studies.
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Table 10.1:Summary of the PDR modelling of the [Cii] emission for 5 points along the HIFI S-NW cut (∆α = −47′′)

Pos. (∆δ) dpro j UV field T PAH+/PAH0 Ionisation N(H) [C ii ] local [C ii ] flux
(a) (b) (c) parameter (γ) (b) (d) emissivity(b) HIFI Model (b)

( ′′) ( ′′) (G0) (K) (103 G0 K1/2 cm3) (1021 cm−2) (10−21W m−3) (10−7W m−2 sr−1)
NW3 (16) 50 1873 337/ 333 1.9 11.0/ 29.5 10.5 4.4/ 1.4 8.0 11.0/ 8.0
NW2 (12) 48 1975 342/ 333 2.7 11.7/ 31.1 8.1 4.4/ 1.4 6.9 9.5/ 7.1
NW1 (-3) 47 2100 348/ 333 9.6 12.6/ 33.0 3.9 4.4/ 1.4 3.3 5.6/ 4.6

S1 (-63) 79 747 248/ 320 1.7 3.8/ 11.8 8.7 4.2/ 1.4 3.1 8.3/ 7.2
S2 (-73) 87 607 230/ 312 0.96 3.0/ 9.5 14.0 4.1/ 1.4 3.7 9.6/ 8.4

(a) Calculated using a projected distance and G0=2600 at 42′′ from the star.
(b) From the PDR model usingnH = 2× 104/ 7× 103 cm−3, respectively.
(c) Given as the ratio of the mid-IR intensities shown in Fig.10.1.
(d) Derived from the analysis of the mid-IR emission spectra.
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Figure 10.1: S-NW cut in [Cii] emission measured with HIFI at a beam size of 11′′ (dot-
dashed line) and distribution of the emission from the different very small dust populations,
PAH+ (blue), PAH0 (green) and evaporating VSGs (red); filled diamonds areSpitzerdata (1.8′′

pix−1) and open diamonds are ISOCAM data (6′′ pix−1).

10.2 Perspective in the study of PDR dynamics

Figure9.6 shows the13CO 5−4, 13CO 8−7, C18O 5−4, and HCO+ 6−5 lines observed
by HIFI towards the H2 peak. All the lines have a central velocity of about 2.2 km s−1,
comparable to previous ground-based observations in several molecular lines (Fuente
et al., 1993). Figure9.3 shows the [Cii] line profiles at the H2 peak and at different
positions along the S-NW cut. The line is much broader than molecular lines and its
profile shows a complex multi-component structure. Its emission peaks at intermediate
velocities (vlsr ∼1.8-2.8 km s−1) towards the PDRs, but there is also a contribution from
higher velocity components (vlsr ∼4 km s−1), which dominate the emission in the cavity.

The position-velocity diagrams (Fig.10.2) for the [Cii] line at the very high spectral
resolution of HIFI provides evidence for an evaporating flow of gas atvlsr = 4 km s−1

(or ∼ 1.8 km s−1 relative to the quiescent gas velocity). This line appears then as a very
good tracer of physical conditions in evaporating flows associated with dense molecular
structures in PDRs. The interpretation of the gas kinematics in NGC 7023 is difficult.
Even though the position velocity diagrams support the evaporating scenario, there can
be other explanations. The gas at 4 km s−1 observed in the cavity could be also due to
the expansion of the cavity, as hinted by the velocity structure detected in Hi emission
in the cavity (Fuenteet al., 1998), and/or a shock associated with the photodissociation
front. The comparative study of the [Cii] line profile in the different sources observed
in the WADI consortium will provide further insights on this issue. The analysis of the
CO band profiles can also constrain the physics of these processes.
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Figure 10.2: In the main image, the North and South PDRs of NGC 7023 and the illuminating
star HD 200775: in red, the PAH emission observed with the Spitzer IRAC 8µm filter, and in
green the vibrationally excited H2 emission tracing the filaments (fromLemaireet al., 1996).
The white dotted lines represent the two C+ stripes observed with HIFI, for which we report also
the position-velocity maps. On the upper right, the C+ and13CO (1→0) spectra at four positions
on the vertical cut (green labels). Finally, the white circle represent the H2 peak position, for
which we show the C+ and13CO (8→7) spectra observed with HIFI and13CO (1→0) observed
with the IRAM 30m telescope.
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Conclusions [en]

In this thesis, I presented a multi-wavelength observationalstudy of the evolution of
PAH molecules and its impact in the chemical and physical processes in PDRs. The
originality of the approach consists in combining studies on PAHs and smaller gas-
phase species gathered from observations in the IR obtained with the ISO,Spitzerand
AKARI satellites, and in the (sub-)mm domain obtained with the IRAM ground-based
telescopes and theHerschelspace observatory.

Main results

To study the evolution of PAH-related species in PDRs, we have developed a procedure
that analyses the mid-IR emission in the Aromatic Infrared Bands (AIBs). This tool
has been applied to a set of PDRs to trace the evolution from evaporating Very Small
Grains (eVSGs) to free PAHs. We determined that the abundance of carbon locked in
eVSGs compared to all carbon in the AIB carriers is related to the intensity of the local
radiation field. This reflects an evolutionary scenario in which eVSGs are destroyed
by the UV field giving birth to free PAHs. New millimeter observations on gas-phase
species obtained at the IRAM 30 m telescope and the Plateau de Bure Interferometer
have been compared with the IR observations to test a scenario in which small gas-phase
hydrocarbons are produced by the photo-destruction of eVSGs.

We performed for the first time a search of a specific PAH, corannulene, in the mil-
limeter wavelength domain. This search was not successful in identifying this specific
PAH, but the derived upper limit has allowed to constrain the abundance of small PAHs
in the Red Rectangle. The analysis of this result has shown that the formation process
of PAHs in the envelopes of carbon rich-stars does not lead to large amount of small
species, calling for an efficient growth mechanism.

Finally, we presented a comparative study of IR, sub-mm and millimeter observa-
tions to examine two PDRs in the reflection nebula NGC 7023. In particular, we show
how the combination of [Cii] line observations with the mid-IR PAH observations and
millimeter data is a promising approach to study the geometry, energetics and dynamics
of PDRs.

Perspectives

The work presented in this thesis has provided new insights into the role of PAHs in
the chemical and physical processes of PDRs. Still, there are a number of open ques-
tions to be addressed. The evaporation of eVSGs into free PAHs and small hydrocar-
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bons needs to be modelled in details to complete the photo-chemical scenario that has
been proposed. A complete modelling of the geometry and chemistry of the studied re-
gions is needed to understand to which extent the photo-processing of PAHs or eVSGs
can contribute to the energetics and to the chemistry of PDRs. This faces the diffi-
culties that neither PAHs nor eVSGs are associated yet with precise entities and this
complicates the confrontation of astronomical data with laboratory measurements and
quantum-mechanical calculations that are needed to address this problem. We can surely
expect that the interpretation of the forthcomingHerschelobservations will bring fur-
ther constraints on the contribution of PAHs in the physics, chemistry and dynamics of
gas-phase species in PDRs.

The identification of a specific PAH molecule is still an open issue of the PAH hy-
pothesis. The instruments onboardHerschelprovide now a great opportunity to search
for the ro-vibrational transitions of specific PAHs in the sub-mm domain. As in the case
of the search for corannulene in the Red Rectangle, the analysis of the Herschel obser-
vations with PAH emission models (Mulaset al., 2006) will enable to place upper limits
on the overall abundance of individual PAHs. We might also be able to identify some of
them giving rise to detectable bands.

Finally, there are a number of observing facilities that will open new perspectives
in these domains. In particular, the JCMT space observatory will be launched in 2014,
and will provide spectro-imagery observations in the IR at sub-arcsecond scales. At
about the same time, the ALMA interferometer will be fully operational, providing ob-
servations at comparable spatial resolution in the sub-mm and millimeter domains. The
SPICA space mission, with in particular the European SAFARI instrument, will open the
far-IR range again in 2020. The combination of multi-wavelength observations with an
unprecedented sensitivity and spatial resolution will be the leading approach to study the
role of PAHs and their related species in the chemistry and physics of PDRs in sources
that are currently unresolved, such as proto-planetary disks and redshifted galaxies.
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Dans cette thèse, j’ai présenté une étude observationnelle multi-longueur d’onde de
l’évolution des PAH et de leur impact sur les processus physiques et chimiques dans
les PDR. L’originalité de mon approche réside en la combinaison de l’étude des PAH
et de petites espèces atomiques et moléculaires en phase gazeuse. Elle repose sur les
observations dans le domaine infrarouge des satellites ISO,Spitzeret AKARI, et dans le
domaine (sub-)millimétrique des radiotélescopes de l’IRAM et de l’observatoire spatial
Herschel.

Principaux résultats

Afin d’étudier l’évolution des PAH et espèces dérivées dans les PDR, nous avons développé
une procédure permettant d’analyser les bandes infrarouges aromatiques (AIB), dans le
domaine infrarouge moyen. Cet outil a été appliqué à un ensemble de PDR pour son-
der les liens d’évolution entre les très petits grains en cours d’évaporation (eVSG) et les
PAH libres. Nous avons déterminé que l’abondance du carbone dans les eVSG rapportée
à l’abondance du carbone dans l’ensemble des espèces responsables des AIB est liée à
l’intensité du champ de rayonnement. Ce résultat conforte un scénario d’évolution selon
lequel la destruction des eVSG par le champ de rayonnement UV génère des PAH li-
bres. De nouvelles observations millimétriques de petites espèces moléculaires réalisées
au télescope de 30 m de l’IRAM et à l’interféromètre du Plateau de Bure ont été com-
parées aux observations IR afin de tester un scénario dans lequel de petits hydrocarbures
sont produits par la photodissociation des eVSG.

Nous avons réalisé la première recherche d’un PAH spécifique, le corannulène, dans
le domaine millimétrique. Ce PAH n’ayant pas été identifié, nous en avons néanmoins
déduit une limite supérieure à son abondance ce qui a permis de mettre en évidence
que les processus de formation des PAH dans les enveloppes des étoiles carbonées con-
duisent à de faibles quantités de petits PAH, ce qui implique un mécanisme de croissance
efficace.

Pour finir, nous présentons une étude comparative des observations IR, sub-milli-
métriques et millimétriques pour étudier deux PDR associées à la nébuleuse par réflex-
ion NGC 7023. En particulier, nous montrons comment la combinaison des observa-
tions de la raie [Cii] avec celle de l’émission des PAHs dans l’infrarouge moyen et du
domaine millimétrique est une approche prometteuse pour l’étude de la géométrie, du
bilan énergétique et de la dynamique des PDR.
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Perspectives

Le travail présenté dans cette thèse fournit un nouvel éclairage sur le rôle des PAH dans
les processus physiques et chimiques au sein des PDR. Il reste néanmoins un certain
nombre de questions ouvertes. L’évaporation des eVSG en PAH libres et en petits hydro-
carbures doit être modélisée en détails pour compléter le scenario photo-chimique pro-
posé. Une modélisation complète de la géométrie et de la chimie des régions étudiées est
nécessaire pour comprendre comment l’évolution photo-chimique des PAH et des eVSG
influe sur le bilan énergétique et la chimie des PDR. Une difficulté majeure provient de
ce que ni les PAH ni les eVSG ne sont pour le moment associés à des entités chimiques
précises, ce qui complique la comparaison des données astronomiques aux mesures en
laboratoire. Des expériences de laboratoire et des calculs de mécanique quantique sont
nécessaires pour traiter ce problème. On doit s’attendre à ce que l’interprétation des ob-
servationsHerschelà venir apporte de nouvelles contraintes sur la contribution des PAH
à la physique, la chimie et la dynamique des espèces en phase gazeuse dans les PDR.

L’identification d’un PAH spécifique reste un enjeu majeur pour l’hypothèse PAH.
Les instruments à bord du satelliteHerschelfournissent une belle opportunité de chercher
les transitions ro-vibrationnelles de PAH spécifiques dans le domaine submillimétrique.
Comme dans le cas de la recherche du corannulène dans le Rectangle Rouge, l’analyse
des observations d’Herschelà l’aide d’un modèle d’émission (Mulaset al., 2006) per-
mettra de donner des limites supérieures aux abondances de PAH individuels. Nous
pourrions également être à même d’identifier certaines espèces émettant des bandes dé-
tectables.

Finalement, les futurs instruments d’observation vont ouvrir des nouvelles perspec-
tives dans ces domaines. En particulier, le télescope spatial JWST devrait être lancé en
2014, et fournir des observations de spectro-imagerie dans le domaine infrarouge à des
résolutions meilleures que la seconde d’arc. A peu près au même moment, l’interféromètre
ALMA sera pleinement opérationnel et fournira des données aux mêmes résolutions
spatiales dans les domaines millimétriques et sub-millimétriques. La mission spatiale
SPICA, et en particulier son instrument européen SAFARI, observera de nouveau le
domaine de l’infrarouge lointain à partir de 2020. La combinaison d’observations multi-
longueur d’onde avec une sensibilité et une résolution spatiale sans précédent constituera
la principale méthode d’étude du rôle des PAH et des espèces associées dans la chimie
et la physique des PDR pour des sources actuellement non résolues, comme les disques
protoplanétaires et les galaxies à grand redshift.
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A
Study of the parameter space

The results of the fitting procedure presented in Chap.5 are consistent with an evolu-
tionary scenario in which the AIB carriers are processed by the UV radiation field. The
relative weights of the band templates have been related to the physical conditions and
evolutionary stage of different environments, such as PNe (Joblin et al., 2008), proto-
planetary disks (Bernéet al., 2009a), compact Hii regions (Bernéet al., 2009b) and
spatially resolved PDRs (Rapacioliet al., 2005; Bernéet al., 2007, and Chap.6). The
consistency of the results with this scenario strongly suggests that, within its uncertain-
ties, the methodology is reliable.

It is interesting to study the reliability of the fit results from a mathematical point of
view to understand if the fit results are unique or if there is a degeneracy in the parameter
space. Our fitting procedure is based on a maximum of 20 free parameters:

• 4 for the weights of the band template spectra: eVSG, PAH0, PAH+ and PAHx

• 5 for the intensities of the H2 rotational lines

• 2 (3) to define the (two-slope) continuum

• 1 for the column density

• 4 for the intensities of the ionised gas lines

• 3 for the intensities of the Lorentzian features at 6.9, 11.9 and 12.5µm

In many cases, only a set of these parameters are used. In particular, in mild UV-
excited PDRs that do not have an associated Hii region the ionised gas lines are not
observed and the continuum can be well represented with a single slope, reducing to 15
the number of free parameters.

The minimisation algorithmmpfitused by the procedure is very efficient to find the
absolute minimum in the parameter space if the local minima are not very deep. Our tests
show that the choice of the initial values for the 4 template weights does not influence
the relative weights of the band templates of the fits, nor does the inclusion of the gas and
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Lorentzian features in the fit. The estimate of the column density is subject, however, to
larger uncertainties as discussed below.

The effect of the gas lines and Lorentzian features

We studied the effect of the gas and Lorentzian features on the results of the global fit.
We performed the fit of several SL spectra, and compared the results obtained masking
the Lorentzian features and the gas lines. FigureA.1 shows an example of the effect of
masking the wavelengths corresponding to the gas lines and Lorentzian features. The
relative intensities of each of the 4 band templates do not vary significantly, nor do the
continuum shape and the value of the column density. In all the considered spectra, we
found that masking the gas lines introduces a dispersion of less than 3% in the weights
of the template spectra. The continuum and the estimate of the column density can
however present larger variations, up to∼ 30%, in the tests we have performed.
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Figure A.1: The effect of masking the gas and Lorentzian features in the fit of region (2) of
NGC 7023 NW (see Fig.5.2). The results of the fits are almost unchanged.

The effect of column density

To study the quality of the fit and the dispersion of the results as a function of the value
of the column density, we applied the fitting procedure to several PDR spectra by fixing
the AV parameter to given values. We then compared the results to that obtained with
a freeAV parameter. FigureA.2 shows some examples of the results obtained for very
different values ofAV, as well as the variation of theχ2 as a function ofAV.

This analysis shows that good quality fits can be obtained for several values ofAV,
and thatmpfitovercome the local minima in this parameter space. The relative weights
of the AIB populations are slightly influenced by these variations, as long as the quality
of the fit is acceptable. In the majority of cases, values ofAV that differ by less than a
factor 2 yield variations in the weights of the band templates by less than 10%.
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Figure A.2: Examples of the fit results towards position 2 of Fig.5.2. The first panel shows the results of the fit with theAV parameter free.
The fit obtained with different values ofAV are displayed in the second and third panel. They show variations of the relative weights of the band
templates up to 10% for differences inAV by a factor of 2. The variation of theχ2 with AV is shown in panel 4.
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Molecules detected in space

Species Mass Species Mass Species Mass Species Mass
H2 2 CF+ 31 SiO 44 NaCl 58
H3
+ 3 CH3NH2 31 HCS+ 45 CH3CONH2 59

CH+ 13 H3CO+ 31 HOCO+ 45 HNCS 59
CH 13 HNO 31 NH2CHO 45 C5 60
CH2 14 CH3OH 32 PN 45 CH2OHCHO 60
CH3 15 SiH4 32 AlF 46 CH3COOH 60
NH 15 HS 33 C2H5OH 46 HCOOCH3 60
CH4 16 HS+ 33 CH3OCH3 46 OCS 60
NH2 16 H2S 34 H2CS 46 SiS 60
NH3 17 H2S+ 34 HCOOH 46 C5H 61
OH 17 C3 36 NS 46 AlCl 62
OH+ 17 HCl 36 CH3SH 48 HOCH2CH2OH 62
H2O 18 c-C3H 37 SO 48 HC4N 63
H2O+ 18 l-C3H 37 SO+ 48 CH3C4H 64
NH4

+ 18 c-C3H2 38 C4H 49 S2 64
H3O+ 19 H2CCC 38 C4H− 49 SiC3 64
HF 20 HCCN 39 NaCN 49 SO2 64
C2 24 C2O 40 C3N 50 CH2CCHCN 65
C2H 25 CH2CN 40 H2CCCC 50 CH3C3N 65
C2H2 26 CH3CCH 40 HCCCCH 50 C3S 68
CN 26 SiC 40 MgCN 50 FeO 72
CN+ 26 CH3CN 41 MgNC 50 C6H 73
HCN 27 CH3NC 41 HC3N 51 C6H− 73
HNC 27 H2CCO 42 HCCNC 51 C5N 74
C2H4 28 NH2CN 42 HNCCC 51 C6H2 74
CO 28 SiN 42 c-SiC2 52 HCCCCCCH 74
CO+ 28 OCN− 42 C3O 52 HC5N 75
H2CN 28 CH3CHCH2 42 H2C3N+ 52 KCl 75
HCNH+ 28 CP 43 AlNC 53 SiC4 76
N2
+ 28 HNCO 43 CH2CHCN 53 C6H6 78

CH2NH 29 HOCN 43 c-H2C3O 54 C7H 85
HCO 29 HCNO 43 HC2CHO 54 CH3C6H 88
HCO+ 29 HNCO− 43 SiCN 54 C8H 97
HN2

+ 29 c-C2H4O 44 SiNC 54 C8H− 97
HOC+ 29 CH3CHO 44 CH3CH2CN 55 HC7N 99
SiH 29 CO2 44 C2S 56 HC9N 123
CH3CH3 30 CO2

+ 44 C3H4O 56 HC11N 147
H2CO 30 CS 44 CH3CH2CHO 58 - -
NO 30 N2O 44 CH3COCH3 58 - -
Adapted fromhttp://www.astrochemistry.net
The list comprehends molecules that have been detected in the ISM, considering different environments.
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List of acronyms

AGB Asymptotic Giant Branch
AI B Aromatic Infrared Bands
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Abstract

Polycyclic Aromatic Hydrocarbons (PAHs) are a major constituent of interstellar matter,
containing about 20% of the total carbon in our Galaxy. PAHs are known to play a major
role in the chemistry and the physics of photo-dissociation regions (PDRs). In these
environments, the evolution of PAHs is driven by the UV field and it has been proposed
to be linked to that of very small dust particles and small molecular hydrocarbons. In
this work, we provide further insights into these evolutionary scenarios by combining
the analysis of infrared (IR) data from ISO,Spitzerand AKARI space telescopes with
new observations in the far-IR and sub-mm domains obtained withHerschelas well as
in the millimeter domain using the IRAM ground-based telescopes.

We have developed a new analysis method for the mid-IR spectro-imagery obser-
vations that allows to study the photo-processing of evaporating Very Small Grains
(eVSGs) in PDRs. This procedure provides an estimate of the fraction of carbon locked
in eVSGs compared to all atoms in the AIB carriers. This quantity is found to be re-
lated to the UV radiation field and can therefore be used as a tracer of its intensity in
both resolved and unresolved sources. The obtained results are also consistent with a
scenario in which eVSGs are destroyed by the UV field, giving birth to free PAHs. The
results of the mid-IR analysis are compared with near-IR and millimeter observations,
showing that the destruction process of eVSGs may be a source of production of small
hydrocarbons. An accurate modelling of hydrocarbon chemistry in PDRs is needed to
quantitatively test this scenario.

We used the IRAM 30 m telescope to search for the specific rotational signatures
of an individual PAH, corannulene, in the millimeter spectrum of the Red Rectangle
nebula. The comparison of the derived upper limit for detection with models allows to
constrain the maximum abundance of small PAHs in this source. This provides evidence
that these small species are under-abundant in the envelopes of evolved carbon stars and
constrains the formation mechanisms of PAHs in these environments.

The results of the mid-IR analysis are combined with observations of several gas
species in the far-IR and sub-millimeter withHerscheland in the millimeter with IRAM
to study the geometry, energetics, and dynamics of the PDRs in the reflection nebula
NGC 7023. Further progresses on this topics await for moreHerscheldata but also for
the forthcoming JWST and SPICA space missions and the ALMA interferometer.
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Les molécules Polycycliques Aromatiques Hydrogénées (PAH) sont un constituant ma-
jeur de la matière interstellaire, contenant environ 20% de la totalité du carbone dans
notre galaxie. Les PAH jouent un rôle majeur dans la physique et la chimie des régions
de photo-dissociation (PDR). Dans ces environnements, l’évolution des PAH est pilotée
par le champ de rayonnement ultraviolet (UV) et il a été proposé qu’elle soit liée à celle
des très petites particules de poussière et aux petits hydrocarbures. Dans ce travail, nous
proposons un nouvel éclairage sur ces scénarios d’évolution en combinant les analyses
des données infrarouges (IR) des télescopes spatiaux ISO,Spitzeret AKARI, à de nou-
velles observations dans les domaines de l’IR lointain et du sub-millimétrique obtenues
par le satelliteHerschelainsi que dans le domaine millimétrique grâce aux télescopes
au sol de l’IRAM.

Nous avons développé une nouvelle méthode d’analyse des observations de spectro-
imagerie de l’IR moyen qui permet d’étudier l’évolution des très petits grains en cours
d’évaporation (eVSG) dans les PDR. Cette procédure fournit une estimation de la frac-
tion de carbone contenu dans les eVSG par rapport au total du carbone contenu dans les
espèces responsables de l’émission des Bandes Infrarouges Aromatiques (AIB). Cette
quantité s’avère être reliée au champ de rayonnement UV et peut ainsi être utilisée
comme sonde de l’intensité de ce rayonnement dans des sources résolues ou non spa-
tialement. Les résultats obtenus sont également cohérents avec un scénario dans lequel
la destruction des eVSG par le champ UV donne naissance à des PAH libres. Les ré-
sultats de l’analyse dans l’IR moyen sont comparés aux observations des domaines du
proche IR et du millimétrique, montrant que les processus de destruction des eVSG pour-
raient être une source de petits hydrocarbures. Une modélisation précise de la chimie
des hydrocarbures dans les PDR s’avère nécessaire pour quantifier ce scénario.

Nous avons utilisé le télescope de 30 m de l’IRAM pour chercher la signature rota-
tionnelle spécifique d’un PAH individuel, le corannulène, dans le spectre millimétrique
de la nébuleuse du Rectangle Rouge. En comparant à des modèles la limite supérieure
d’abondance déduite de la non détection de ce PAH, nous avons pu contraindre l’abondance
maximale des PAH de petite taille dans cette source. Ceci indique que ces espèces sont
sous-abondantes dans les enveloppes des étoiles carbonées évoluées, et contraint les mé-
canismes de formation des PAH dans ces environnements.

Les résultats de l’analyse dans l’infrarouge moyen sont combinés aux observations
de plusieurs constituants du gaz dans l’IR lointain et le submillimétrique grâce au satel-
lite Herschelet dans le millimétrique avec les instruments de l’IRAM afin d’étudier
la géométrie, le bilan énergétique et la dynamique des PDR associées à la nébuleuse
par réflexion NGC 7023. Ce sujet devrait continuer à progresser dans les années à venir
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grâce à de nouvelles donnéesHerschel, mais aussi l’arrivée de futures missions spatiales
JWST et SPICA et de l’interféromètre ALMA.
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