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Résumé 

Le fleuve Yangtze (Changjiang en chinois) supporte une très riche biodiversité de 

poissons, avec environ 400 espèces au total. Assimilée à une barrière eco-fonctionnelle, la 

partie amont du Yangtze présente des conditions environnementales naturelles exceptionnelles, 

avec une hétérogeneité bien prononcée des habitats, un système de drainage bien développé, 

une abondance en ressources en eau and une biodiversité importante. Ainsi, on dénombre 286 

espèces de poissons dans la partie amont du Yangtze, dont 124 endémiques à cette région. 

Cependant, cette biodiversité est fortement menacée, notamment du fait de la surexploitation, 

de la pollution des eaux, des barrages hydroélectriques, des invasions biologiques et des 

modifications environnementales. Il est de ce fait impératif de mesurer les influences de ces 

changements environnementaux sur la ressource piscicole, de telle sorte à accélérer la mise en 

place de mesures de conservation. En conséquent, cette thèse avait pour objectif d’apporter des 

éléments visant à favoriser la conservation des espèces endémiques de poisons dans la partie 

amont du fleuve Yangtze.  

Dans la première partie de la thèse, l’objectif est d’illustrer les mécanismes de 

structuration des assemblages de poissons pour améliorer les connaissances des processus 

écologiques de la partie amont du fleuve Yangtze, i.e. déterminer les patrons spatiaux de 

distribution des poissons endémiques et les relations avec les variables environnementales 

(publications P1 & P2). Nous avons pu définir cinq assemblages de poissons endémiques dans 

le haut Yangtze caractérisés par des différences significatives au niveau de la richesse 

spécifique. Ces assemblages reflètent le gradient longitudinal de la distribution des espèces et 

de richesse avec une forte corrélation avec la topographie et la géomorphologie du fleuve 

Yangtze. Chaque assemblage est caractérisé par des espèces endémiques « indicatrices ». Le 

patron de distribution des poissons endémiques est significativement corrélé avec les facteurs 

environnementaux de l’utilisation du sol du bassin versant et des caractéristiques du fleuve. Des 

modèles mixtes utilisant simultanément des paramètres d’utilisation du sol et des 

caractéristiques du fleuve permettent d’assurer une meilleure prédiction de l’assemblage des 

poissons endémiques du Yangtze, comparés à des modèles utilisant séparément les 2 groupes 

de paramètres environnementaux. Enfin, nous suggérons trois points importants pour la 

conservation des espèces endémiques de poissons du haut Yangtze: sélection de plusieurs sites 

protégés de diverses espèces; maintient d’une partie courante naturelle pour chaque cours d’eau 

parmi les affluents; développement de mise en  réserve des affluents. 

Dans la deuxième partie de la thèse, afin d’obtenir une bonne connaissance d’une espèce 



de poisson endémique en danger (Gobiocypris rarus) et fournir des instructions pour la 

conservation des autres espèces du haut Yangtze, nous avons utilisé cette espèce comme 

exemple d’étude de conservation à l’aide de marqueurs microsatellites et morphologiques 

(publications P3, P4 et P5). L’habitat typique de G. rarus était caractérisé par une seule 

population stable qui présentait une taille effective relativement large et aucune évidence de 

structure cryptique au cours des dix dernières années. Les forces maintenant cette diversité 

génetique était principalement les fluctuations environnementales et les traits d’histoire de vie 

propres à G. rarus. A une échelle spatiale plus étendue, nous avons trouvé des patrons 

significatifs de différentiation entre plusieurs populations de G. rarus, d’un point de vue 

génétique mais aussi morphologique. Particulièrement, deux clusters génétiques reflétant la 

structure du réseau hydrographique ont été identifiés. L’étude comparée des patrons d’isolation 

par la distance nous a permis de conclure que G. rarus était capable de migrer de réseau en 

réseau davantage via les canaux d’irrigations que via l’embouchure des rivières. Nous avons 

également mis en évidence un dimorphisme sexuel cryptique (i.e. visible uniquement que 

quelque trait morphologique continu). Finalement, au vue de cette distribution discontinu (tant 

d’un point de vue génétique que morphologique) et étant donné les menaces écologiques 

attendu, nous conseillons que la plupart des populations étudiées soit préservées. Plus 

particulièrement, les populations T1, T2, Q2, M3 et D2 devraient être prioritaire d’un point de 

vue de la conservation, avec une gestion de l’habitat et de l’espèce particulièrement forte dans 

ces localités. 

Mots-clés: assemblage poisons endémiques, amont fleuve Yangtze, modélisation, variables 

environnementales, microsatellites, morphologie, Gobiocypris rarus. 



Abstract 

The Yangtze River, also called Changjiang, supports rich biodiversity, especially diverse 

fish fauna, i.e., about 400 fish species and subspecies. As an eco-functional barrier of the 

Yangtze River, the upper Yangtze River exhibits complicated natural environment, pronounced 

habitat heterogeneity, well-developed drainage system, abundant water resources and rich 

biodiversity. There were 286 fish species and subspecies distributing in the upper Yangtze 

River, among which 124 species were endemic. However, these fish resources are experiencing 

large threats: overexploitation, water pollution, hydropower projects, invasion by exotic species, 

and global environmental changes. It is imperative to evaluate the influences of the changes in 

environmental features on the fish resources and to accelerate the progress of conservation 

projects. Therefore, two parts of content have been studied in this thesis for the conservation of 

endemic fishes in the upper Yangtze River.  

Firstly, for the purpose of providing insight into mechanisms structuring fish assemblages 

and enhancing knowledge on ecological processes in the upper Yangtze River, spatial pattern 

of endemic fishes in the upper Yangtze River basin and their relationship with environmental 

features have been studied in P1 and P2 of this thesis. We identified five endemic fish 

assemblages in the upper Yangtze River basin. Not only species composition but also endemic 

species richness varied significantly among these five assemblages. They not only reflect the 

longitudinal gradient pattern but also are closely correlated with the topography and 

geomorphology of the Yangtze River. Each endemic fish assemblage has its specific indicator 

species. The endemic fish distribution patterns are significantly correlated with environmental 

factors such as land-cover features and river characteristics. The mixed models containing both 

land-cover features and river characteristics are more effective than any individual one in 

explaining complex endemic fish distribution patterns in the upper Yangtze River basin. Finally, 

we suggested that three key points for the conservation of endemic fishes in the upper Yangtze 

River basin should be paid more attention: selection of several protected sites aiming at various 

species; maintenance of at least one flowing reach in each river; developing the conservation of 

tributaries. 

Secondly, in order to obtain enough background of an endangered endemic fish 

(Gobiocypris rarus) and provide guidelines for other species conservation in the upper Yangtze 

River basin, the author used this Chinese rare minnow (G. rarus) as an example to do the 

studies of conservation biology using microsatellite markers and morphological traits in P3, P4 

and P5 of this thesis. The type locality of G. rarus held a single stable and healthy population 



with a relatively large Ne and no cryptic structure during nearly ten years. The forces 

maintaining their genetic diversity were mainly from environmental fluctuations and life 

history traits. In addition, there were significant differentiations among wild populations of G. 

rarus not only in genetic markers but also in morphometric traits. Two obvious genetic clusters 

were revealed among wild populations of G. rarus, reflecting out water system structure to 

some extent. An isolation-by-riparian-distance pattern was identified, indicating that G. rarus 

might migrate through some man-made channels of hydropower projects but not through the 

mouth of the Minjiang and Tuojiang Rivers to exchange genes. Sexual dimorphism existed in 

morphometric traits of G. rarus wild populations. Finally, in the view of discontinuous 

distribution, significant genetic and quantitative differentiation of wild populations, and large 

threats from human activities, all the studied populations should be protected. Especially, 

populations T1, T2, Q2, M3 and D2 should be in prior conservation, and a habitat and species 

management area should be established in its type locality (viz. population D2). 

Key words: endemic fish assemblage, upper Yangtze River, modeling, environmental 

variables, microsatellites, morphology, Gobiocypris rarus. 
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1. General Introduction 

1-1. Freshwater biodiversity 

Freshwaters make up only around 0.01% of the world’s water and approximately 

0.8% of the earth’s surface (Gleick 1996). It yet supports at least 100,000 species out 

of approximately 1.8 million, i.e., almost 6% of all described species (Hawksworth & 

Kalin-Arroyo 1995). Hence, although fresh water is quantitatively much smaller than 

salted marine water, it owns high biodiversity. For instance, Nelson (2006) recorded 

that about 11,952 fish species, or 43% of all fish species, belonging to 33 orders, live 

exclusively in freshwater lakes and rivers. However, freshwater ecosystems may well 

be the most endangered ecosystems in the world and the decline in freshwater 

biodiversity is far greater than in most affected terrestrial ecosystems (Sala et al. 

2000). 

The threats to global freshwater biodiversity are grouped under five interacting 

categories: overexploitation, water pollution, flow modification, destruction or 

degradation of habitat, and invasion by exotic species (Allan & Flecker 1993; Naiman 

et al. 1995; Naiman & Turner 2000; Jackson et al. 2001; Malmqvist & Rundle 2002; 

Rahel 2002; Postel & Richter 2003; Revenga et al. 2005; Dudgeon et al. 2006). 

Moreover, global environmental changes, such as nitrogen deposition, warming, and 

shifts in precipitation and runoff patterns, are superimposed upon these threats (Poff 

et al. 2002; Galloway et al. 2004). Overexploitation primarily affects vertebrates, 

mainly fishes, reptiles and some amphibians. Although considerable progresses in 

reducing water pollution from domestic and industrial point sources have been made, 

pollution threats still occur and are growing. Habitat degradation results from direct 

effects (e.g., excavation of river sand) and indirect impacts (e.g., forest clearance). 

Flow modifications are mainly from human need for flood protection or water storage. 

The interacting influences of these threats have resulted in population declines and 

range reduction of freshwater biodiversity worldwide. For example, according to the 

1996 IUCN Red List of Threatened Animals, 734 species of fish are classified as 

threatened, of which 84% are freshwater species (IUCN 1996). Moreover, Harrison & 

Stiassny (1999) reported that habitat alteration contributed to 54% of extinctions, 

overfishing contributed to 29%, and pollution contributed to 26%. Groombridge & 

Jenkins (2000) suggested reductions in numerous wetland and water margin 
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vertebrates (19 mammals, 92 birds, 72 reptiles and 44 fish species) from qualitative 

data. Chapin et al. (2000) revealed that current extinction rates of species are 

estimated to be 100-1,000 times greater than pre-human rates. Globally, about 10,000-

20,000 freshwater species already are extinct or imperiled due to human activities 

(Strayer 2006; IUCN 2007). 

Nevertheless, freshwater biodiversity conservation came as a distinct field only 

recently, after the emergence of conservation ecology as a distinct discipline in the 

1980s (Strayer & Dudgeon 2010). The main goal of biodiversity conservation is to 

minimize loss of irreplaceable biodiversity. The first step for conservation is to assess 

biodiversity and identify its most important components (organization levels). As a 

hierarchical concept, biodiversity is defined with three principal organization levels: 

genetic, species and ecosystem diversity. Genetic diversity is the variety of alleles and 

genotypes present in the group under study (population, species or group of species; 

Frankham et al. 2002). It is usually required for populations to evolve and adapt to 

environmental change. It has been measured for different traits, e.g., continuously 

varying (quantitative) characters, deleterious alleles, proteins, nuclear DNA loci, 

mitochondrial DNA (mtDNA), and whole chromosomes. Numerous methods are 

available for measuring genetic diversity at the genetic level, with microsatellites 

currently being the favored method. Species diversity is the number of species in an 

area and their relative abundance, involving species richness (the number of species 

present), species evenness (their relative abundances), species composition (the 

particular species present), non-additive effects (the interactions among species), and 

the spatio-temporal variation in these properties (Chapin et al. 2000). At the highest 

level, ecosystems are interacting systems of biotic and abiotic components (Glowka et 

al. 1994). Ecosystem diversity stresses the importance of protecting not only 

genotypes and species, but also the non-living features of the environment.  

1-2. Distribution of fishes in the upper Yangtze River 

1-2-1. The Yangtze River 

The Yangtze River, also called Changjiang, is the longest river in China and the 

third longest river in the world. The first two longest rivers in the world are the Nile 

River in Africa (about 6,670 km length and 2.87×106 km2 drainage area) and the 
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Amazon River in South America (about 6,436 km length and 6.915×106 km2 drainage 

area). The Yangtze River has a length of 6,380 km and drains an area of 1.8×106 km2 

(Hydrology Bureau of Changjiang Water Resources Committee 2003). It originates 

from the Peak of Geladandong Glacier in the Tanggula cordillera, Qinghai-Xizang 

Plateau, and flows eastward through 11 Chinese provinces into the East Sea of China. 

The river has more than 7,000 tributaries and 4,000 lakes (Zeng 1990; Hydrology 

Bureau of Changjiang Water Resources Committee 2003). It has abundant water 

resources with a mean annual discharge of 31,900 m3/s and a mean annual runoff of 

9.513×1011 m3. The Yangtze River spans three large topographic platforms of the 

Chinese mainland, exhibiting complicated geological structure and natural 

environments. Diverse geographical features are also presented in the Yangtze River 

basin, including plateaus, mountains, hillies and plains.  

The Yangtze River supports a rich biodiversity, especially concerning fish fauna, 

i.e., around 400 fish species and subspecies (Chen et al. 2002; Fu et al. 2003; Park et 

al. 2003; Yu et al. 2005; Cao 2008, 2009). These species make up around one-third of 

the total number of freshwater fishes of China. It represents the highest diversity in 

the Palearctic region (Nelson 1994; Matthews 1998). The fish species richness in the 

Yangtze River far exceeds that of any other river systems in China. For example, the 

Yellow River homes only around 141 species and subspecies of fishes, and the 

Helongjiang River around 128  (Ren 1994; Gao et al. 2004). Because of these 

characteristics, the World Wildlife Fund (WWF) had listed the Yangtze River basin in 

the Global Ecoregion 200 for priority conservation.  

The Yangtze River is usually divided into three parts: upstream (from its 

headwaters to Yichang City in Hubei Province), middle-stream (from Yichang City to 

Hukou City in Jiangxi Province), and downstream (from Hukou City to the river 

mouth). The upper Yangtze River has a length of 4,504 km and drains an area of 

1.0×106 km2; the middle-stream with 950 km of length and 6.8×105 km2 of drainage 

area; the downstream with 930 km of length and 1.2×105 km2 of drainage area 

(Hydrology Bureau of Changjiang Water Resources Committee 2003). 
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1-2-2. Fishes of the upper Yangtze River basin 

Exhibiting pronounced habitat heterogeneity, well-developed drainage system, 

abundant water resources, and rich biodiversity, the upper Yangtze River has been 

marked as an eco-functional barrier of the Yangtze River and a key area for 

ecological restoration (Dong 2003; Sun 2008). It crosses the first and second large 

topographic platforms of the Chinese mainland. There are large amount of wild 

animals and plants, e.g., accounting for 40% of the plant and wild vertebrate species 

of China. Hence, it is an important resource of biodiversity, i.e., possessing abundant 

ancient relic plants and high proportions of endemic species. Moreover, the Hengduan 

Mountains Region located in the upper Yangtze River basin has been identified as one 

of 25 global biodiversity hotspots as well as one of 200 worldwide conservation key 

areas (Myers et al. 2000; Sun 2008), showing high species diversity, many different 

communities and important ecosystem diversity. The upper Yangtze River basin is 

also abundant in land vegetation and forest resources, which is an important factor in 

the conservation of water resources. 

The main stream of the upper Yangtze River is further divided into three sections. 

The first section is the headwater section of the Yangtze River extending from the 

Tuotuo River to the Tongtian River. The second section is from Zhimenda City in 

Qinghai Province to Yibin City in Sichuan Province and is named the Jinsha River. 

The third section from Yibin City in Sichuan Province to Yichang City in Hubei 

Province is called “Chuanjiang”.  

Investigation and publications 

Since the nineteenth centuries, many Chinese and foreign researchers 

concentrated on the fishes of China, involving a lot of large water systems (e.g., the 

Yangtze River, the Lancang River, the Nujiang River, the Pearl River, the Yellow 

River). In order to make clear how many fish species exist, what is the difference 

between species, and where they live, large amount of field investigations has been 

conducted on the main stream of the upper Yangtze River and its tributaries, such as 

Wujiang River, Chishui River, Jialing River, Minjiang River, Tuojiang River, Yalong 

River, Dadu River, etc. (e.g., Department of Ichthyology 1976; Agricultural 

Regionalization Committee of Sichuan Province 1991; Wu & Wu 1992). Abundant 
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literatures have emerged from the results of these investigations, describing fish 

species characteristics and their distribution (e.g., Shi et al. 1984; Deng 1985; Ye & 

Fu 1987; Chen et al. 2002; Fu et al. 2003; Yu et al. 2005; Ding 2006). Additionally, 

several important monographs describing fish morphological traits and distribution 

have been completed and been used as references for the ichthyologists (e.g., 

Department of Ichthyology 1976; Chu & Chen 1989; Wu et al. 1989; Chu & Chen 

1990; Wu & Wu 1992; Ding 1994; Chen 1998b; Chu et al. 1999; Yue 2000). We will 

here overview some of these monographs. The Fishes of the Qinghai-Xizang Plateau 

has been published after a long-term (about 30 years) field investigation on the 

Qinghai-Xizang Plateau and its adjacent areas by numerous scholars (Wu & Wu 

1992). In total, the morphological traits, ecological features, geographical distribution, 

and economic values of 152 fish species and subspecies are described in this book, 

referring to several large water systems including the Yangtze River, the Yellow 

River, the Lancang River, and the Nujiang River. The Fishes of Yunnan refers to the 

Lancang River (upper reach of the Mekong River), the Nujiang River, the Pearl River, 

and the Yangtze River. It records 220 fish species and subspecies of Cyprinids (Chu 

& Chen 1989; Chu & Chen 1990). The Fishes of the Hengduan Mountains Region 

describes 237 fish species and subspecies in the upper Yangtze River basin, the 

Lancang River basin, the Nujiang River basin and the Yellow River basin (Chen 

1998a). The Fishes of Guizhou describes 202 fish species and subspecies, belonging 

to 98 genera, 20 families and 6 orders, and living in the Yangtze River basin and the 

Pearl River basin (Wu et al. 1989). The Fishes of Sichuan describes 241 fish species 

and subspecies in the Sichuan Province, belonging to 107 genera, 20 families and 9 

orders (Ding 1994). It mainly refers to the Jinsha River, the Yalong River, the Dadu 

River, the Minjiang River, the Tuojiang River, the Jialing River, the Wujiang River, 

and the Chishui River within the Yangtze River basin. The Fishes of the Yangtze 

River describes the classification and distribution of 206 fish species and subspecies 

in the Yangtze River basin (Department of Ichthyology 1976). Finally, Fauna Sinica 

(Osteichthyes): Cypriniformes II and III, and Fauna Sinica (Osteichthyes): 

Siluriformes, deal with the classification of fish species in China (Chen 1998b; Chu et 

al. 1999; Le 2000). They are the major references to determine the relative 

effectiveness for the classification of different fish species. These monographs are 

also important assets for Laboratory “Ecology and Conservation Biology of 

Freshwater Fishes” of the Institute of Hydrobiology in Hubei Province of China, 
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providing information to compile the fish distribution data of the upper Yangtze River 

basin. 

Fish distribution characteristics 

 Data on the fishes distribution were collected from many sources: Cao et al. 

(1998, unpublished), the monitoring data from the Ecological and Environmental 

Monitoring System of Three Gorges Reservoir collected since 1997, other research 

results conducted by the Lab. “Ecology and Conservation Biology of Freshwater 

Fishes” of the Institute of Hydrobiology in Hubei Province of China, and 

bibliographic data including the aforementioned monographs (Wu 1964; Wu 1977; 

Department of Ichthyology 1976; Institute of Zoology of Shanxi Province et al. 1987; 

Chu & Chen 1989; Wu et al. 1989; Chu & Chen 1990; Agricultural Regionalization 

Committee of Sichuan Province 1991; Wu & Wu 1992; Ding 1994; Chen 1998a; 

Chen 1998b; Chu et al. 1999; Le 2000) and investigation papers (Shi et al. 1984; 

Deng 1985; Ye & Fu 1987; Chen et al. 2002; Fu et al. 2003; Park et al. 2003; Yu et al. 

2005; Ding 2006). Additionally, the authors also appended species distribution 

records, supplemented with newly published species information, and aggregated 

them after filtering out controversial species. Here only the main references are listed. 

In total, there are 286 fish species and subspecies distributing in the upper Yangtze 

River basin. Their distributions in the main stream of the upper Yangtze River and its 

main tributaries (sub-basins) are listed in Table 1. Among them, 124 fish species are 

endemic to the upper Yangtze River basin. 



Structure of endemic fish assemblages and population differentiation of G. rarus in the upper Yangtze River basin 

 8 

Table 1. The distribution of fishes in several larger sub-basins of the upper Yangtze River.  

Scientific name Endemic HW JS CJ MJ TJ JL WJ Others 
Acipenser dabryanus Duméril Yes  + + + + + + + 
Acipenser sinensis Gray   + + + + + +  
Psephurus gladius (Martens)   + + + + + + + 
Anguilla japonica Temminck et Schlegel   + + + + + + + 
Zacco platypus (Temminck et Schlegel)   + + + + + + + 
Zacco chengdui Kimura Yes     +    
Opsariichthys bidens Günther   + + + + + + + 
Aphyocypris chinensis Günther   + + + + + + + 
Gobiocypris rarus Ye et Fu Yes    + +    
Mylopharyngodon piceus (Richardson)   + + + + + + + 
Luciobrama macrocephalus (Lácepède)   + + + + + + + 
Ctenopharyngodon idellus (Cuvier et Valenciennes)   + + + + + + + 
Phoxinus oxycephalus (Sauvage et Dabry)    + + + + + + 
Squaliobarbus curriculus (Richardson)   + + + + + + + 
Ochetobius elongatus (Kner)   + + + + + + + 
Elopichthys bambusa (Richardson)   + + + + + + + 
Pseudolaubuca sinensis Bleeker   + + + + + + + 
Pseudolaubuca engraulis (Nichols)   + + + + + + + 
Sinibrama macrops (Günther)   + + +  + + + 
Sinibrama taeniatus (Nichols) Yes  + + +  +  + 
Sinibrama longianalis Xie,Xie et Zhang Yes       +  
Ancherythroculter kurematsui (Kimura) Yes  + + + + + + + 
Ancherythroculter wangi (Tchang) Yes  + + + + +  + 
Ancherythroculter nigrocauda Yih et Woo Yes  + + + + +  + 
Anabarilius liui liui (Chang) Yes  +       
Anabarilius liui chenghaiensis He Yes  +       
Anabarilius liui yalongensis Li et Chen Yes  +       
Anabarilius qionghaiensis Chen Yes  +       
Anabarilius songmingensis Chen et Chu Yes  +       
Anabarilius xundianensis He Yes  +       
Anabarilius polylepis (Regan) Yes  +       
Anabarilius alburnops (Regan) Yes  +       
Anabarilius brevianalis Zhou et Cui Yes  +       
Hemiculterella sauvagei Warpachowski Yes  + + + + + + + 
Toxabramis swinhonis Günther    +      
Hemiculter leucisculus (Basilewsky)   + + + + + + + 
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Scientific name Endemic HW JS CJ MJ TJ JL WJ Others 
Hemiculter tchangi Fang Yes  + + + + + + + 
Hemiculter bleekeri Warpachowski   + + +  + + + 
Pseudohemiculter dispar (Peter)        +  
Pseudohemiculter kweichowensis (Tang) Yes       +  
Cultrichthys erythropterus (Basilewsky)   + + + + + + + 
Culter alburnus Basilewsky   + + + + + + + 
Culter mongolicus mongolicus (Basilewsky)   + + + + + + + 
Culter mongolicus qionghaiensis Ding Yes  +       
Culter mongolicus elongatus (He et Liu) Yes  +       
Culter oxycephalus Bleeker   + +   +  + 
Culter dabryi Bleeker    +  + + + + 
Culter oxycephaloides Kreyenberg et Pappenheim   + + + + + + + 
Parabramis pekinensis (Basilewsky)   + + + + + + + 
Megalobrama pellegrini (Tchang) Yes  + + + + + + + 
Megalobrama elongata Huang et Zhang Yes   +      
Xenocypris argentea Günther   + + + + + + + 
Xenocypris davidi Bleeker   + + + + + + + 
Xenocypris yunnanensis Nichols Yes  + + + + +   
Xenocypris fangi Tchang Yes  + + +  +  + 
Xenocypris microlepis Bleeker   + + + + + + + 
Distoechodon tumirostris Peter   + + + + + + + 
Pseudobrama simoni (Bleeker)   + + + + + + + 
Aristichthys nobilis (Richardson)   + + + + + + + 
Hypophthalmichthys molitrix (Cuvier et Valenciennes)   + + + + + + + 
Hemibarbus labeo (Pallas)   + + + + + + + 
Hemibarbus maculatus Bleeker   + + + + + + + 
Belligobio nummifer (Boulenger)   + + + + +   
Belligobio pengxianensis Lo, Yao et Chen Yes     +    
Pseudorasbora parva (Temminck et Schlegel)   + + + + + + + 
Sarcocheilichthys sinensis Bleeker   + + + + + + + 
Sarcocheilichthys nigripinnis (Günther)   + + + + + + + 
Sarcocheilichthys davidi (Sauvage) Yes    + +    
Gnathopogon herzensteini (Günther) Yes      + + + 
Gnathopogon imberbis (Sauvage et Dabry)   + + + + + + + 
Squalidus argentatus (Sauvage et Dabry)   + + + + + + + 
Squalidus nitens (Günther)        +  
Squalidus wolterstorffi (Regan)   + + + + + +  
Coreius heterodon (Bleeker)   + + + + + + + 
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Scientific name Endemic HW JS CJ MJ TJ JL WJ Others 
Coreius guichenoti  (Sauvage et Dabry) Yes  + + + + + + + 
Rhinogobio typus Bleeker   + + + + + + + 
Rhinogobio cylindricus Günther Yes  + + + + + + + 
Rhinogobio ventralis  (Sauvage et Dabry) Yes  + + + + + + + 
Platysmacheilus nudiventris Lo, Yao et Chen Yes  + + +  + + + 
Abbottina rivularis (Basilewsky)   + + + + + + + 
Abbottina obtusirostris Wu et Wang Yes  + + + + +  + 
Microphysogobio kiatingensis (Wu)   + + + + + + + 
Microphysogobio fukiensis (Nichols)    + + +  +  
Pseudogobio vaillanti (Sauvage)    +   +   
Saurogobio dumerili Bleeker    + +  +   
Saurogobio dabryi Bleeker   + + + + + + + 
Saurogobio gymnocheilus Lo, Yao et Chen    +   +   
Gobiobotia abbreviata Fang et Wang Yes  + + + +   + 
Gobiobotia (Gobiobotia) filifer (Garman)   + + + + + + + 
Gobiobotia meridionalis Chen et Tsao    +     + 
Xenophysogobio boulengeri Tchang Yes  + + + + + + + 
Xenophysogobio nudicorpa (Huang et Zhang) Yes  + + +     
Rhodeus sinensis Günther   + + + + + + + 
Rhodeus ocellatus (Kner)   + + + + + + + 
Rhodeus lighti (Wu)   + + + + + + + 
Acheilognathus macropterus (Bleeker)   + +  + +  + 
Acheilognathus elongatus (Regan) Yes  +       
Acheilognathus omeiensis (Shih et Tchang) Yes   + + + +   
Acheilognathus tonkinensis (Vaillant)        +  
Acheilognathus barbtus Nichols     + +    
Acheilognathus babatulus (Günther)    + + + +   
Acheilognathus hypselonotus (Bleeker)    +      
Acheilognathus gracilis Nichols   + + + + +  + 
Acheilognathus chankaensis (Dybowski)   + + + + +  + 
Paracheilognathus imberbis (Günther)    + +  +   
Barbodes polylepis Chen et Li Yes       +  
Linichthys laticeps Lin et Zhang        +  
Spinibarbus hollandi Oshima       +   
Spinibarbus sinensis (Bleeker)   + + + + + + + 
Percocypris pingi pingi (Tchang) Yes  + + +   + + 
Sinocyclocheilus multipunctatus (Pellgrin)        +  
Sinocyclocheilus grahami grahami (Regan) Yes  +       
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Scientific name Endemic HW JS CJ MJ TJ JL WJ Others 
Acrossocheilus monticolus (Günther) Yes  + + + + + + + 
Acrossocheilus yunnanensis (Regan)   + + +  + + + 
Scaphesthes macrolepis (Bleeker)    +   +  + 
Onychostoma sima (Sauvage et Dabry)   + + + + + + + 
Onychostoma angustistomata (Fang) Yes  + + + + + + + 
Onychostoma daduensis Ding Yes   + +     
Onychostoma brevis (Wu et Chen) Yes   +    +  
Onychostoma barbata (Lin)        +  
Onychostoma rara (Lin)        +  
Tor (Folifer) brevifilis brevifilis (Peters)   + + + + + + + 
Sinilabeo hummeli Zhang Yes    +  +  + 
Bangana rendahli (Kimura) Yes  + + + + + + + 
Rectoris luxiensis Wu et Yao        + + 
Semilabeo notabilis Peters   +       
Pseudogyrinocheilus procheilus (Sauvage et Dabry)   + + + +  + + 
Sinocrossocheilus guizhouensis Wu Yes       +  
Sinocrossocheilus labiata Su, Yang et Cui Yes        + 
Garra pingi pingi (Tchang)   + + + +  + + 
Discogobio yunnanensis (Regan)   +     + + 
Discogobio brachyphysallidos Huang   +       
Schizothorax (Schizothorax) wangchiachii (Fang) Yes  +  +   +  
Schizothorax (Schizothorax) dolichonema Herzenstein Yes + +       
Schizothorax (Schizothorax) sinensis Herzenstein Yes    +  + + + 
Schizothorax (Schizothorax) prenanti (Tchang) Yes  + + + + + + + 
Schizothorax (Schizothorax) chongi (Fang) Yes  + +   +   
Schizothorax (Schizothorax) grahami (Regan) Yes  +     + + 
Schizothorax (Schizothorax) cryptolepis Fu et Ye Yes    +     
Schizothorax (Racoma) heterochilus Ye et Fu Yes    +     
Schizothorax (Racoma) davidi (Sauvage)   + + + + + +  
Schizothorax (Racoma) kozlovi Nikolsky Yes  +     + + 
Schizothorax (Racoma) longibarbus (Fang) Yes    +     
Schizothorax (Racoma) parvus Tsao Yes  +       
Schizothorax (Racoma) yunnanensis weinigensis Chen Yes       +  
Schizothorax (Racoma) labrosus Wang, Zhang et Zhuang Yes  +       
Schizothorax (Racoma) ninglangensis Wang, Zhang et Zhuang Yes  +       
Schizothorax (Racoma) microstomus Huang Yes  +       
Schizothorax (Racoma) griseus Pellegrin       + +  
Ptychobarbus kaznakovi Nikolsky  + +       
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Scientific name Endemic HW JS CJ MJ TJ JL WJ Others 
Ptychobarbus chungtienensis chungtienensis (Tsao) Yes  +       
Ptychobarbus chungtienensis gezaensis (Huang et Chen) Yes  +       
Gymnodiptychus pachycheilus Herzenstein   +  +  +   
Gymnocypris potanini potanini Herzenstein Yes    +     
Gymnocypris potanini firmispinatus Wu et Wu   +       
Schizopygopsis malacanthus malacanthus Herzenstein Yes + +       
Schizopygopsis malacanthus baoxingensis Fu, Ding et Ye Yes    +     
Schizopygopsis malacanthus chengi (Fang) Yes  +  +     
Schizopygopsis kialingensis Tsao et Tun Yes      +   
Herzensteinia microcephalus (Herzenstein)  +        
Procypris rabaudi (Tchang) Yes  + + + + + + + 
Cyprinus (Mesocyprinus) micristius micristius Regan Yes  +       
Cyprinus (Cyprinus) carpio Linnaeus   + + + + + + + 
Cyprinus (Cyprinus) carpio chilia Wu et al   +       
Cyprinus (Cyprinus) qionghaiensdis Liu Yes  +       
Carassius auratus (Linnaeus)   + + + + + + + 
Myxocyprinus asiaticus (Bleeker)   + + + + + + + 
Yunnanilus pleurotaenia (Regan)   +       
Yunnanilus nigromaculatus (Regan) Yes  +       
Yunnanilus caohaiensis Ding Yes       +  
Yunnanilus longibulla Yang Yes  +       
Yunnanilus sichuanensis Ding Yes  +       
Paracobitis variegatus (Sauvage et Dabry)   + + + + + + + 
Paracobitis potanini (Günther) Yes  + + + + + + + 
Paracobitis wujiangensis Ding et Deng Yes   +    + + 
Schistura fasciolata (Nichols et Pope)   +       
Oreias dabryi dabryi Sauvage Yes  +  + + + + + 
Nemacheilus huapingensis Wu et Wu Yes  +       
Triplophysa (Triplophysa) robusta (Kessler)     +  +   
Triplophysa (Triplophysa) orientalis (Herzenstein)  + +  +  +   
Triplophysa (Triplophysa) tanggulaensis (Zhu) Yes +        
Triplophysa (Triplophysa) rotundiventris (Wu et Chen)  +        
Triplophysa (Triplophysa) stewarti (Hora)  +        
Triplophysa (Triplophysa) obscura Wang       +   
Triplophysa (Triplophysa) grahami (Regan) Yes  +  +     
Triplophysa (Triplophysa) xichangensis Zhu et Cao Yes  +       
Triplophysa (Triplophysa) venusta Zhu et Cao Yes  +       
Triplophysa (Triplophysa) daqiaoensis Ding Yes  +       
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Scientific name Endemic HW JS CJ MJ TJ JL WJ Others 
Triplophysa (Triplophysa) brevibarba Ding Yes  +       
Triplophysa (Triplophysa) dalaica (Kessler)       +   
Triplophysa (Triplophysa) xiqiensis Ding et Lai Yes    +     
Triplophysa (Triplophysa) polyfasciata Ding Yes    +     
Triplophysa (Triplophysa) pseudoscleroptera (Zhu et Wu)   +       
Triplophysa (Triplophysa) markehensis (Zhu et Wu) Yes  +  +     
Triplophysa (Triplophysa) angeli (Fang) Yes  +       
Triplophysa (Triplophysa) anterodorsalis (Zhu et Cao) Yes  +       
Triplophysa (Triplophysa) brevicauda (Herzenstein)   +  +  +   
Triplophysa (Triplophysa) bleekeri (Sauvage et Dabry)   + + + + + + + 
Triplophysa (Triplophysa) leptosoma (Herzenstein)  + +       
Triplophysa (Triplophysa) stoliczkae (Steindachner)   +  +  +   
Triplophysa (Triplophysa) crassilabris Ding     +     
Triplophysa (Triplophysa) stenura (Herzenstein)  + +  +     
Triplophysa (Triplophysa) yaopeizhii Xu, Zhang et Cai Yes  +       
Triplophysa (Triplophysa) ninglangensis Wu et Wu Yes  +       
Sphaerophysa dianchiensis Cao et Zhu Yes  +       
Botia superciliaris Günther   + + + + + + + 
Botia reevesae Chang Yes  + + + + +  + 
Parabotia fasciata Dabry   + + + + +  + 
Parabotia bimaculata Chen Yes  + + +  +  + 
Leptobotia elongata (Bleeker) Yes  + + + + + + + 
Leptobotia taeniops (Sauvage)   + + + + + + + 
Leptobotia pellegrini Fang   + +  + +  + 
Leptobotia microphthalma Fu et Ye Yes   + +     
Leptobotia rubrilabris (Dabry) Yes  + + + + + + + 
Cobitis sinensis Sauvage et Dabry   + +   +   
Cobitis rarus Chen       +   
Misgurnus anguillicaudatus (Cantor)   + + + + + + + 
Paramisgurnus dabryanus Sauvage   + + + + +   
Vanmanenia tetraloba (Mai)   +       
Paraprotomyzon mutlifasciatus Pellegrin et Fang    +      
Paraprotomyzon lungkowensis Xie, Yang et Gong Yes        + 
Beaufortia liui Chang Yes    + +    
Beaufortia szechuanensis (Fang) Yes  + + +   + + 
Lepturichthys fimbriata (Günther)   + + + + + + + 
Hemimyzon yaotanensis (Fang) Yes  + + + +    
Jinshaia abbreviata (Günther) Yes  + + + + +  + 
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Scientific name Endemic HW JS CJ MJ TJ JL WJ Others 
Jinshaia sinensis (Sauvage et Dabry) Yes  + + + + + + + 
Sinogastromyzon sichangensis Chang Yes  + + +   + + 
Sinogastromyzon szechuanensis szechuanensis Fang Yes  + + + + + + + 
Metahomaloptera omeiensis Chang   + + +  + + + 
Pelteobagrus fulvidraco (Richardson)   + + + + + + + 
Pelteobagrus eupogon (Boulenger)   + + + + +  + 
Pelteobagrus vachelli (Richardson)   + + + + + + + 
Pelteobagrus nitidus (Sauvage et Dabry)   + + + + + + + 
Leiocassis longirostris Günther   + + + + + + + 
Leiocassis crassilabris Günther   + + + + + + + 
Leiocassis longibarbus Cui Yes  +       
Pseudobagrus tenuis (Günther)    +      
Pseudobagrus ussuriensis (Dybowski)   + +   + + + 
Pseudobagrus medianalis (Regan) Yes  +       
Pseudobagrus truncatus (Regan)   + + + + + + + 
Pseudobagrus emarginatus (Regan)   + + + + + + + 
Pseudobagrus pratti (Günther)   + + + + + + + 
Pseudobagrus brevicaudatus (Wu)   + + +  + + + 
Pseudobagrus omeihensis (Nichols) Yes    +     
Mystus macropterus (Bleeker)   + + + + + + + 
Silurus asotus Linnaeus   + + + + + + + 
Silurus mento Regan Yes  +       
Silurus meridionalis Chen   + + + + + + + 
Liobagrus marginatus (Bleeker)   + + + + + + + 
Liobagrus kingi Tchang Yes  +       
Liobagrus nigricauda Regan   + + + + + + + 
Liobagrus marginatoides (Wu) Yes  + + + +    
Glyptothorax fokiensis (Rendahl)   + + + + + + + 
Glyptothorax sinensis (Regan)   + + + + + + + 
Euchiloglanis kishinouyei Kimura Yes  + + + + + +  
Euchiloglanis davidi (Sauvage) Yes  + + + + +  + 
Pareuchiloglanis sinensis (Hora et Silas) Yes  +  +  +   
Pareuchiloglanis anteanalis Fang, Xu et Cui Yes  +  +  +   
Pareuchiloglanis sichuanensis Ding, Fu et Ye Yes    +     
Pareuchiloglanis robusta Ding, Fu et Ye Yes    +     
Clarias fusus (Lácepède)   + +    +  
Protosalanx chinensis (Basilewsky)    +      
Salangichthys tangkahkeii (Wu)   + +     + 
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Scientific name Endemic HW JS CJ MJ TJ JL WJ Others 
Hemisalanx brachyrostralis (Fang)    +     + 
Hucho bleekeri Kimura     +     
Oryzias latipes (Temminck et Schlegel)   + + + + + + + 
Hyporamphus intermedius (Cantor)    +      
Monopterus albus (Zuiew)   + + + + + + + 
Siniperca chuatsi (Basilewsky)   + + + + + + + 
Siniperca kneri Garman   + + + + + + + 
Siniperca scherzeri Steindachner   + + + + + + + 
Siniperca undulata Fang et Chong        +  
Odontobutis obscurus (Temminck et Schlegel)    +      
Micropercops swinhonis (Günther)   + + + + + + + 
Mugilogobius myxodermus (Herre)       +   
Rhinogobius giurinus (Rutter)   + + + + + + + 
Rhinogobius brunneus (Temminck et Schlegel)       +   
Rhinogobius szechuanensis (Liu) Yes  + +   +   
Rhinogobius cliffordpopei (Nichols)   + + +  + +  
Rhinogobius chengtuensis (Chang) Yes    +    + 
Macropodus chinensis (Bloch)    +   +  + 
Macropodus opercularis (Linnaeus)   + + + + + + + 
Channa argus (Cantor)   + + + + + + + 
Channa  asiatica  (Linnaeus)        +  
Mastacembelus sinensis (Bleeker)    +      
 
Annotations: HW---the headwaters of the Yangtze River (including Tuotuo River and Tongtian River), JS---the Jinsha River basin (including Jinsha River, Yalong River, Anning River, 

Qionghai, Chenghai, Lugu Lake, Dianchi), CJ---Chuanjiang, MJ---the Minjiang River basin (including Minjiang River, Dadu River, Qingyi River), TJ---the Tuojiang River basin, JL---the 

Jialing River basin (including Jialing River, Fujiang River, Qujiang River), WJ---the Wujiang River basin (including Wujiang River, Caohai), Others---other tributaries (including Daning 

River, Xiangxi River). “+” means “present”. 
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The distribution of fishes in the upper Yangtze River basin has three 

characteristics: high species diversity, high proportion of endemic species, and 

multiple life history traits. 

(1) High species diversity 

The 286 fish species and subspecies belong to 121 genera, 23 families and 10 

orders (Table 2). Among them, Cypriniforme (226 species) is the most abundant order 

accounting for about 79% of the total species number, followed by Siluriforme (32 

species, 12%), other 8 orders (28 species, 9.8%). In the view of families, Cyprinidae 

(162 species) is the most abundant family accounting for 56.6% of 286 species, 

followed by Cobitidae (51 species, 17.8%), Bagridae (16 species, 5.6%), 

Homalopteridae (12 species, 4.2%), and other 19 families (45 species, 15.7%).  

Table 2. The species composition of fishes in the upper Yangtze River basin. 

Order Family Genus Species 
Acipenseridae 1 2 Acipenseriforme 
Polyodontidae 1 1 

Anguilliforme Anguillidae 1 1 
Cyprinidae 71 162 

Catostomidae 1 1 
Cobitidae 13 51 

Cypriniforme 

Homalopteridae 8 12 
Bagridae 4 16 
Siluridae 1 3 

Amblycipitidae 1 4 
Sisoridae 3 8 

Siluriforme 

Clariidae 1 1 
Osmeriforme Salangidae 3 3 
Salmoniforme Salmonidae 1 1 
Cyprinodontiforme Oryziatidae 1 1 
Beloniforme Hemiramphidae 1 1 
Synbranchiforme Synbranchidae 1 1 

Serranidae 1 4 
Eleotridae 2 2 
Gobiidae 2 6 

Belontiidae 1 2 
Channidae 1 2 

Perciforme 

Mastacembelus 1 1 
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Approximately 70% of the overall richness of the Yangtze River basin is 

concentrated in upstream areas, i.e. 286 species and subspecies. It includes some rare 

and protected species such as white sturgeon (Psephurus gladius (Martens)), Chinese 

sturgeon (Acipenser sinensis Gray), Hucho bleekeri Kimura and Myxocyprinus 

asiaticus (Bleeker). The upper Yangtze River basin is an important treasury of species 

resources of freshwater fishes of China, and also accounts for a substantial of world’s 

freshwater fish biodiversity (Table 3). As for other important freshwater systems of 

China, there are about 294 fish species and subspecies in the Pearl River basin (Cao 

1992), 141 in the Yellow River (Gao et al. 2004), and 128 in the Heilong River (Ren 

1994). By comparison, there are much less fish species in the Palearctic rivers of 

Europe, for instance, 58 species in Danube River; 52 in the Rhine River; 47 in the 

Rhône River; and 63 in the Volga River (Galat & Zweimüller 2001). 

Table 3. The information of several long and famous rivers in the world. 

River Length 
(km) 

Drainage area 
(104km2) 

Fish species 
number Source 

Nile River 6670 287 More than 800 Witte et al. 2009 
Amazon River 6436 691.5 2500 Wolfgan et al. 2007 
Yangtze River 6300 180 400 Cao 2009 

Mississippi River 6262 322 102 Galat & Zweimüller 2001 
Yellow River 5464 74.5 141 Gao et al. 2004 

Ob River 5410 297.5 More than 50 Internet 
Mekong-Lancang River 4900 81 Over 1300 Website of WWF 

Congo River 4640 368  At least 686 Website of WWF 

 

(2) High proportion of endemics 

There are 124 fish species endemic to the upper Yangtze River, approximately 

43.4% of all the fish species present. Endemic fishes are defined as those occurring in 

the main channel and tributaries of the upper Yangtze River and its affiliated waters, 

or populations occurring mainly in the upper Yangtze River. Endemic fish are usually 

deemed to be representative of local aquatic eco-environments for their high 

adaptation and dependence. This high proportion of endemic fish species exceeds any 

other area or water system in China. Globally, a similar phenomenon is only found in 

the Amazon River of South America and the Lake Victoria of Africa (Seehausen 2002; 

Abell et al. 2008). Another important characteristics are endemic genus, which means 

all the species in this genus only distribute in the upper Yangtze River basin. There 

are six endemic genera in the upper Yangtze River basin: Gobiocypris, 

Xenophysogobio, Herzensteinia, Sphaerophysa, Jinshaia and Metahomaloptera. 
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These endemic fish species and genera have important scientific, economic, and 

biodiversity values. 

The endemic fishes of the upper Yangtze River do not well distribute in each 

water system, some of which distribute in most locations while some others are only 

found in a single location. For instance, about 66 endemic species are found in the 

Jinsha River, accounting for 36.9% of the total species richness of that river (Table 4). 

About 32.5% of fish species in the Minjiang River are endemics. Besides, some small 

tributaries should also be paid attention for their specialty to endemic species. Some 

endemic species are only found in a single location and are therefore highly adapted 

to their local environment. These species are described as “local endemics”. For 

example, there are 24 endemic species and 3 local endemic species in the upstream of 

the Qingyi River, which is the type locality of 7 endemic species. There are 16 

endemic species and 4 local endemic species in the Anning River, which is the type 

locality of 6 endemic species.  

Table 4. The number of endemic and local endemic fish species in each river or lake 

of the upper Yangtze River basin. 

River or Lake Total species number Endemics Local endemic species 
Tuotuo River 7 2 1 

Tongtian River 6 2 0 
Jinsha River 179 66 10 

Chenghai 17 3 3 
Dianchi 26 13 8 

Yalong River 107 37 2 
Lugu Lake 7 3 3 

Anning River 61 18 4 
Qionghai 39 5 3 

Chuanjiang 168 46 1 
Minjiang River 157 51 1 

Dadu River 127 44 2 
Qingyi River 125 39 3 

Tuojiang River 133 37 2 
Chishui River 131 37 1 
Jialing River 157 40 1 
Fujiang River 116 28 0 
Qujiang River 102 19 0 
Wujiang River 142 36 4 

Caohai 9 2 2 
Daning River 73 13 0 
Xiangxi River 45 9 1 
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(3) Multiple life history traits 

In ecological studies, fish species sharing more or less the same niche are often 

grouped into guilds (functional groups) of species that exploit a resource (food or 

habitat) in a similar fashion (Bain et al. 1988; Aarts & Nienhuis 2003). Species can be 

grouped into guilds on the basis of many different life-history traits, e.g., habitat use, 

reproduction, and feeding. 

The fish show high adaptability to their habitat environment, while their 

morphological and ecological characteristics change correspondingly (Wu & Wu 

1992). For instance, Redeke (1941; in Aarts & Nienhuis 2003) revealed that there was 

five flow preference guilds of adult fishes in the Netherlands, such as rheophilic 

(some or all stages of life history are confined to flowing water), limnophilic (all 

stages of life history are confined to lentic waters with macrophytes), eurytopic (all 

stages of life history can occur in both lotic and lentic waters), anadromous (adults 

migrate upriver to spawn) and catadromous species (adults migrate to sea for 

spawning). As the species adaptive to lotic waters, some fishes of Homalopteridae 

and Sisoridae in the upper Yangtze River basin have specific body morphology, e.g., 

sucker structure to prevent from being washed away (Wu & Wu 1992). 

In the view of reproduction type, the fishes in the upper Yangtze River can be 

grouped into three types: drifting eggs, sticky eggs, and demersal eggs. Largemouth 

bronze gudgeon (Coreius guichenoti) is usually considered as representative of the 

fishes that produce drifting eggs. The embryos develop and hatch out in the wide river 

reaches, which are beneficial for dispersal and feeding. Some fish such as rock carp 

(Procypris rabaudi) usually lay sticky eggs on the water plants or pebbles. The fish 

such as Yangtze sturgeon (Acipenser dabryanus) usually lay demersal eggs into the 

gravel bank of upstream river sections. The spawning grounds of Yangtze sturgeon 

are located in the downstream of the Jinsha River (the upper part of the Yangtze 

River). With a high current velocity, the flow regime of spawning sites usually 

complicates embryos dispersal. In addition, gravel banks can protect eggs and 

embryos from being eaten by demersal fishes.  

There are different classification systems to group fish species into guilds 

according to their feeding ecology, such as Allen (1969; invertivores, piscivores, and 

herbivores), Van den Brink et al. (1996; parasitic, detritivorous, zoobenthivorous, 
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zooplanktivorous, piscivorous, and phytivorous), Berrebi dit Thomas et al. (1998; 

invertivores, omnivores, and piscivores), Goldstein & Simon (1999; herbivores, 

detritivores, planktivores, invertivores, and carnivores), Aarts & Nienhuis (2003; 

zoobenthivorous, piscivores, phytivorous, zooplanktivores, detritivores, parasitic, and 

periphytivorous).  

In the upper Yangtze River basin, the fishes can be grouped into 6 feeding types: 

benthivores, planktivores, piscivores, phytobenthivores, phytivorous and omnivores. 

The proportion of benthivores species is high, e.g., almost half of endemic fishes in 

the upper Yangtze River are benthivores. The benthivores species are mainly 

composed of most species from Cobitidae, Homalopteridae, Amblycipitidae, Bagridae, 

Sisoridae and Schizothorax, and some species such as Yangtze sturgeon (Acipenser 

dabryanus), Procypris rabaudi, Gymnodiptychus pachycheilus and Ptychonbarbus 

kaznakovi. Some small species from Yunnanilus, Anabarilius and Hemiculter are 

planktivores. Ancherythroculter, Percoypris pingi pingi and Silurus mento usually 

feed on other fishes, being called as piscivores species. Phytobenthivores species such 

as some species from Xenocypris, Onychostoma, Schizothorax and Schizopygopis 

mainly feed on periphytic algae for their specific mouth morphology. Phytivorous 

species such as Ctenopharyngodon idellus mainly feed on aquatic vascular plant. 

Omnivores species, such as Coreius guichenoti, Rhinogobio cylindricus Günther, and 

Rhinogobio ventralis Sauvage et Dabry, usually live in relatively large rivers, and 

feed on both animal diets (e.g., aquatic insects, shrimps, Limnoperna lacustris) and 

plant (e.g., algae, seed and residue of plants) diets. 

From the distribution, habitat use, reproduction type and feeding type of fishes in 

the upper Yangtze River basin, almost all the fishes are highly dependent to the flow 

waters and its littoral zone habitat of this ecosystem. 

Environmental Threats 

The fishes of the upper Yangtze River are experiencing some of the 

aforementioned threats to global freshwater biodiversity and therefore tend to 

decrease gradually (Dudgeon 2010). The main three issues are overexploitation, water 

pollution and hydropower projects. While the yearly catch of natural fishing in the 

Yangtze River basin used to reach up to 4.5×105 t in 1954, it has rapidly declined to 
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2×105 t during the 1980s, and in recent years, to 1×105 t mainly as a consequence of 

overfishing (Chen et al. 2002; Chen 2003). The Yangtze River basin is also 

experiencing severe pollution from domestic sewage and industrial wastewater, which 

causes further reduction in fishery resources. For example, industrial wastewater 

illegally discharged from a chemical plant directly resulted in the 481t loss of fishes 

in the upstream portion of Dadu River (Chen 2003). In order to search for energy, 

hydropower projects have been carried out worldwide. According to the data 

collected by the International Commission on Large Dams in 1950, there are 5268 

dams in the world, among which only 22 dams are built in China (Jia et al. 2005). 

Until 2005, there are more than 50000 dams higher than 15m in the world. While, 

there are around 22000 dams in China, accounting for 44% (Jia et al. 2005). In the 

upper Yangtze River, the largest one is the Three Gorges Dam (TGD) located in 

Hubei Province. Now completed but not yet operating, the Xiluodu Dam ranks second 

in size to the TGD and is located in the downstream portion of Jinsha River (Dudgeon 

2010). It belongs to a series of hydropower projects along the Jinsha River. These 

dams could block migration, fragment habitats, modify flow regime, and change 

water quality, which might cause sharply decreasing of fish resources. Aiming at 

reducing the threats and protecting fish resources in the upper Yangtze River basin, 

multiple effective conservation measures should be carried out, such as controlling 

catch, improving the protection of water resources, setting up natural reserves, 

artificial reproduction and release, construction of fishway, etc.  

1-3. Objectives of this thesis 

The upper Yangtze River basin is experiencing critical changes through multiple 

ecological threats, and that its once abundant fishery resource has now decreased 

sharply. It is thus imperative to evaluate the impact of the changes in ecosystem’s 

features on the observed fishery resource decline and to accelerate the progress of 

conservation projects. Therefore, for the purpose of providing insight into 

mechanisms structuring fish assemblages and enhancing knowledge on important 

ecological processes in the upper Yangtze River, the main objectives of this thesis are 

(1) to reveal the spatial pattern of all endemic fishes in the upper Yangtze River basin 

and (2) to relate the distribution of these endemic fish species with environmental 

features. These contributions form the first and second papers of the present thesis 
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(P1 and P2) and are envisioned to provide direction for future conservation and 

management efforts for both the fish and its habitat. Furthermore, in order to obtain 

enough background of an endangered endemic fish (Gobiocypris rarus) as well as to 

provide guidelines for other species conservation in the upper Yangtze River basin, 

the author focus on a Chinese rare minnow (G. rarus, Figure 1) as an example of 

conservation biological study using microsatellite markers and morphological traits 

(P3, P4 and P5). It aimed at assessing and describing the genetic structure and 

morphological differences of wild populations of G. rarus, providing the basis of how 

to define proper units for conservation. 

 

Figure 1. The endangered and endemic fish, Gobiocypris rarus, in the upper Yangtze 
River, used in the P3, P4 and P5 of this thesis. 

2. General Methodology 

2-1. Studied sites and data collection 

2-1-1. The Upper Yangtze River 

This thesis focuses on the upper Yangtze River basin, having a total length of 

4,504 km and a catchment area of 1.0×106 km2. It is around 2/3 of the total length of 

the Yangtze River.  

The studied sites in P1 and P2 were composed of 46 site units, referring to the 

main stream of the upper Yangtze River, 8 first-order tributaries (Yalong River, 

Minjiang River, Tuojiang River, Chishui River, Jialing River, Wujiang River, Daning 

River and Xiangxi River), 5 second-order or third-order tributaries (Anning River, 
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Dadu River, Qingyi River, Fujiang River and Qujiang River) and 5 lakes (Chenghai, 

Dianchi, Lugu Lake, Qionghai and Caohai) (Figure 2). 

P3 only concentrated on the type locality of an endangered and endemic fish 

(Gobiocypris rarus) in the upper Yangtze River. The type locality is located in 

Hanyuan County, Sichuan Province, China.  The sampling site is in the Liusha River 

floodplain, and belongs to the Dadu River Basin, a second-order tributary of the upper 

Yangtze River. It is the same site as population D2 drawn in the left small box of 

Figure 2. The habitats consisted of several small rivulets and many ditches across rice 

fields. 

P4 and P5 were studied on nine localities of G. rarus, mainly locating at the 

edge of the west and northwest area of the Sichuan Basin (Figure 2). They involved 

four river basins (the downstream of the Dadu River, the middle and downstream of 

the Qingyi River, the middle stream of the Minjiang River, and the upstream of the 

Tuojiang River), the second-order or third-order tributaries of the upper Yangtze 

River. 

 
Figure 2. Map showing the study area involved in this thesis. P1 and P2 cover the 
main channel, main tributaries and some lakes of the upper Yangtze River basin, 
which was drawn in the map. The sampling sites used in P3 and P4 are mapped in the 
left small box. 
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2-1-2. Data collection 

The long-term presence-absence distribution data of 124 endemic fishes on the 

upper Yangtze River were used in P1. These endemic fishes data were selected from 

the distribution data of all the fishes in the upper Yangtze River basin, which had 

been described and discussed in the “General Introduction” part of this thesis. The 

authors also used the proportion data of 18 land-cover classes (needleleaved 

evergreen forest－NEF, broadleaved evergreen forest－BEF, broadleaved deciduous 

forest－BDF, bush－B, sparse woods－SW, alpine and sub-alpine meadow－ASM, 

slope grassland－SG, plain grassland－PG, desert grassland－DG, city－C, river－R, 

lake－L, swamp－S, glacier－GL, bare rocks－BR, gravel－GR, farmland－F, 

alpine and sub-alpine plain grassland－ASG) for each site unit, extracting from the 

China Land Cover map through the Geographical Information System (GIS).  

P2 considered endemic fish assemblages and species richness as two response 

variables. Five endemic fish assemblages (Ia, Ib, IIa, IIb1, IIb2) were defined in P1, 

based on the presence-absence distribution data of 124 endemic fishes in the upper 

Yangtze River basin. The species richness per site unit was also calculated from this 

presence-absence endemic fish distribution data. Moreover, 24 environmental 

variables were recorded as predictor variables. These environmental variables 

included two parts: 18 land-cover features already used in P1 and 6 river 

characteristics (length, drainage area, altitude, slope, discharge and runoff) (Table 5). 

The river characteristics data for each site unit were mainly collected from the maps 

and bibliographies including monographs (Agricultural Regionalization Committee of 

Sichuan Province 1991; Ding 1994; Hydrology Bureau of Changjiang Water 

Resources Committee 2003) and investigation papers (Shan 1996; Hui et al. 2000; 

Huang 2003; Luo & Liu 2003; Fang et al. 2004; Tang et al. 2004; Guo 2005; Wang et 

al. 2005; Liu & Shen 2006; Zhou et al. 2006; Zhang et al. 2007). 

 

 

 



Structure of endemic fish assemblages and population differentiation of G. rarus in the upper Yangtze River basin 

 25 

Table 5. Twenty-four environmental variables used in P1 and P2. 

Type Abbreviation Variable Range 
NEF Needle-leaved Evergreen Forest (%) 0~72.4 
BEF Broadleaved Evergreen Forest (%) 0~61.7 
BDF Broadleaved Deciduous Forest (%) 0~18.8 

B Bush (%) 0~38.2 
SW Sparse Woods (%) 0~20.1 

ASM Alpine and Sub-alpine Meadow (%) 0~81.3 
SG Slope Grassland (%) 0~9.1 
PG Plain Grassland (%) 0~8.6 
DG Desert Grassland (%) 0~1.2 
C City (%) 0~4.5 
R River (%) 0~18.7 
L Lake (%) 0~14.7 
S Swamp (%) 0~0.4 

GL Glacier (%) 0~5.1 
BR Bare Rocks (%) 0~6.7 
GR Gravels (%) 0~0.2 
F Farmland (%) 0~97.1 

Land-cover type 

ASG Alpine and Sub-alpine Plain Grassland (%) 0~41.6 
Discharge Discharge (m3/s) 1.4~14200 Hydrologic 

Runoff Runoff (108m3) 0.45~4382 
Length Length (km) 9.4~1040 

DA Drainage Area (km2) 120~532200 
Altitude Altitude (m) 141~5145 

Topographic 

Slope Slope (‰) 0~34.7 

Samples in P3 were collected from rivulets and ditches of its type locality by 

nets in 1997 and 2006 (30 individuals for each year). After capture, the fish were 

placed into a water vat to keep them alive during transferring to our institute for 

laboratory rearing. Eleven polymorphic microsatellite markers were isolated from the 

microsatellite-enriched genomic library of G. rarus using the FIASCO (fast isolation 

by AFLP of sequences containing repeats) protocol (Zane et al. 2002) by the author 

and used to reveal temporal genetic variation of the topotype population of G. rarus. 

Samples in P4 and P5 were captured from nine localities by nets on April 2008 

(Table 6). After capture, the fish were placed into a water vat to keep them alive 

during transportation. Eight microsatellite markers used in P4 (Table 7) were 

screened and chosen from 15 potential microsatellite markers isolated in P3 and Liao 

et al. (2007). Morphological data in P5 were measured mainly from the images of 

thawed fish being acquired from a fixed distance with a good quality digital camera, 

except that DBE (distance between eyes) was manually measured by using a digital 

calliper with an accuracy of 0.01 mm. The morphological data being used to reveal 

the population structure included 28 morphometric traits (body depth-BD, head 
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length-HL, snout length-SnL, eye diameter-ED, distance between eyes-DBE, 

peduncle length-PL, peduncle height-PH, and 21 truss network distances) and 4 

meristic traits (pectoral fin rays-PFR, dorsal fin rays-DFR, ventral fin rays-VFR, 

anal fin rays-AFR). 

Table 6. Sample location information of Gobiocypris rarus in P4 and P5, including 
GPS coordinates, altitude and sample size. 

GPS locations 
Populations Attributes 

Latitude Longitude 
Altitude (m) Sample size 

T1 Tuojiang River 31°08′00.6″ 103°50′58.3″ 792 50 

T2 Tuojiang River 30°58′53.1″ 103°59′45.8″ 566 50 

M2 Minjiang River 30°58′46.3″ 103°50′02.9″ 627 35* 

M3 Minjiang River 30°26′09.1″ 103°19′29.6″ 513 50 

D1 Dadu River 29°20′18.6″ 102°40′21.7″ 764 31 

D2 Dadu River 29°28′37.3″ 102°37′35.4″ 939 50 

D3 Dadu River 29°34′10.1″ 103°40′18.0″ 412 50 

Q1 Qingyi River 29°59′12.6″ 103°04′10.7″ 545 50 

Q2 Qingyi River 29°40′56.0″ 103°34′33.3″ 387 50 
* Representing that only 30 samples in population M2 were used for morphological study (P5) 

Table 7. Characterization of 8 polymorphic microsatellite loci of Gobiocypris rarus 

used in P4. GenBank accession numbers, primer sequences, annealing temperatures 

(Tm), and resources are presented. 

Locus GenBank 
Accession no. Primers (5'-3') Tm (℃) Resource 

GR08 EF555327 F: AATCTCCAATCCCAATACTGTCTG 58 P3 
  R: CACACTAGCAATAATGCAAGTAAGC   

GR22 EF555331 F: AACCCAGTTTTGAGCAACCTG 59 P3 
  R: CTCTGTGACTTCCACCATACGC   

GR29 EF555333 F: TTCTAATCCTGATGCTTACGGAC 54 P3 
  R: ATTTGTCCATGCTTGCCTGT   

Gra02 DQ490141 F: GGTTCTGGGAGATTCTTTGGA 63 Liao et al. (2007) 
  R: GCGGTTCTCTTCAAATGAGC   

Gra04 DQ490143 F: TTGACCTCTCACCCTGCTTT 55 Liao et al. (2007) 
  R: CACGGCTTCTTTCTTCTTGC   

Gra16 DQ490148 F: GGTTAGGACCAGTGGCAAAA 50 Liao et al. (2007) 
  R: TTAATGCAGCTCCCCCTAGA   

Gra25 DQ490154 F: CTGGAGGGTCGGGACTTTAT 55 Liao et al. (2007) 
  R: GCAGCAGAACTGAACCCACT   

Gra30 DQ490157 F: TTAGCACACGCAAAGGAATG 55 Liao et al. (2007) 
  R: CAATGCATCTGTCACATCCTG   

	  

	  



Structure of endemic fish assemblages and population differentiation of G. rarus in the upper Yangtze River basin 

 27 

2-2. Modeling Methods 

Ecological communities are the expression of complex biological and abiotic 

processes on various scales of time and space. In order to analyze all these processes 

(i.e., to include and understand the relationships between community structure and 

abiotic factors) and to characterize their relationships using environmental parameters, 

their degree of importance, and their structuring, multiple modeling techniques 

including patterning and prediction models have been developed. Firstly, by using a 

non-supervised modeling technique, the fish species matrix was used to find patterns 

in community structure. Then, the environmental variables were used to predict these 

patterns as well as species diversity patterns, by using supervised modeling 

techniques such as classification and regression tree, and random forest (Figure 3). 

Therefore, in this thesis, self-organizing map (SOM), a non-supervised artificial 

neural network, was conducted to reveal the community pattern of endemic fishes in 

the upper Yangtze River basin by the presence-absence data of fish distribution (P1); 

then, two supervised predictive models such as classification and regression trees 

(CART) and random forest (RF) were used to predict the assemblages and species 

richness of endemic fishes in the upper Yangtze River basin using environmental 

variables including land-cover features and river characteristics (P2).  

 
Figure 3. The schematic figure showing the general modeling processes in the studies 

of P1 and P2 of this thesis. 
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2-2-1. Patterning model 

The goal of pattern recognition is the classification of objects into a number of 

categories or classes. It has been widely applied in fingerprint identification, signature 

authentication, text retrieval, and face and gesture recognition (Theodoridis & 

Koutroumbas 2006). In recent years, it has grown rapidly in the application of 

ecological and environmental sciences (Lek & Guégan 1999; Park et al. 2003; Kangur 

et al. 2007; Kruk et al. 2007). It includes two types of patterning: supervised 

patterning and unsupervised patterning.  

As an unsupervised artificial neural network, the self-organizing map (SOM) 

proposed by Kohonen in the early eighties (Kohonen 1982), is an effective and 

popular tool for clustering, visualization and abstraction of complex data in terms of a 

non-linear projection of multivariate data into lower dimensions (Kohonen 2001; Lek 

et al. 2005). There are also other conventional linear ordination methods being used to 

simplify the data, e.g., Polar Ordination (PO), Principal Components Analysis (PCA), 

Correspondence Analysis (CoA) (Hill & Gauch 1980; Beals 1984; Jongman et al. 

1995; Giraudel & Lek 2001). However, for all of them, the limitations are evident: 

strong distortions with non-linear species abundance relations, horseshoe effect due to 

unimodal species response curves in PCA, and arch effect, outliers, missing data and 

disjointed data matrix in CoA. The SOM, perfectly completing these classical 

techniques for exploring data and for achieving community ordination (Giraudel & 

Lek 2001), has been widely used for classification of communities as well as 

prediction of population and community dynamics (Céréghino et al. 2001; Park et al. 

2001, 2003, 2006; Kangur et al. 2007; Kruk et al. 2007). Therefore, the SOM was 

chosen as the patterning method in our study. 

In the P1 of this thesis, the SOM was applied to determine endemic fish 

assemblages along the river network of the upper Yangtze River basin, based on 

presence-absence data of fish distributions. This study considered sample sites as the 

patterning objects, and endemic fish species as the signatures. 

The SOM algorithm aims at plotting the sample units (SUs) on a map while 

preserving their neighborhood (Figure 4). The SOM consists of two (input and output) 

layers: an input layer receiving input values from the data matrix, and an output layer 
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being arranged in a two-dimensional grid for better visualization. The output units 

have different coefficient vectors associated with input data. The coefficient vector is 

referred to a weight vector (or connection intensity, Wij), which is modified during the 

learning process of the SOM and plays an important role in the propagation of the 

signal through the model. The learning process is continued until a stopping criterion 

is met, usually when weight vectors stabilize or when a number of iterations are 

completed. The vectors are carried out by a sequential regression process, which is 

usually iterated over the available samples (Kohonen 2001).  

 

Figure 4. Representation of the non-supervised artificial neural network (Kohonen 

self-organizing map), showing the input neurons and the output neurons organized on 

a rectangular two-dimensional grid. 

When using the SOM to do patterning, several questions should be paid attention. 

(1) Map Quality. It is usually measured with two evaluation criteria: resolution and 

topology preservation. Quantization error, the average distance between each data 

vector, is used to measuring map resolution (Kohonen 2001). Topographic error, the 

proportion of all data vectors, is used to measure topology preservation (Kiviluoto 

1996). (2) Map Size. The number of output neurons (map size) is important to 

properly render the extent of the variation of the data. If it is too small, it might not 

feature some important differences; if it is too big, neurons become sparsely 

connected with the input layer (Wilppu 1997). In most instances, the optimum map 

size can be estimated according to Vesanto (2000). The quantization and topographic 
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errors are also the important index for choosing optimum map size. (3) Clustering 

SOM Units. It is difficult to distinguish subsets from the trained SOM map because 

there is often no clear boundary between possible clusters. Two methods can be used 

to divide the trained SOM units into different subgroups. First, the unified distance 

matrix algorithm (U-matrix; Ultsch 1993) calculating distances between neighboring 

map units is applied. A k-means method was used as complementary method to 

confirm the U-matrix clustering (Jain & Dubes 1988). Second, a hierarchical cluster 

analysis with a Ward’s linkage method based on Euclidean distance measure in 

Matlab was applied (The Mathworks 2001). The Davies-Bouldin index (DBI; Davies 

& Bouldin 1979), a relative index of cluster validity, was also calculated in order to 

select the best patterning among partitions with different numbers of cluster. The 

smaller DBI, the better the clustering. 

2-2-2. Predicting model 

The analysis of species-environment interaction has always been a central issue 

in ecology. The quantification of this interaction represents the core of predictive 

modeling in ecology. Commonly, the models are generally based on various 

hypotheses as to how environmental factors control the distribution of species and 

communities. These models also gained importance as a tool to assess the impact of 

accelerated land use and other environmental change on the distribution of organisms, 

to test biogeographic hypotheses, or to set up conservation priorities (Margules & 

Austin 1994; Mourell & Ezcurra 1996; Guisan & Theurillat 2000). 

In recent years, considerable attention has been given to the development of 

modeling techniques for exploring data sets. They either overcome the parametric 

assumption or identify non-linear relationships among data, e.g., classification and 

regression trees (CART), random forest (RF), generalized linear models (GLM), 

generalized additive models (GAM), multivariate adaptive regression splines (MARS) 

(Breiman et al. 1984; Hastie & Tibshirani 1986; Rumelhart & McClelland 1986; 

Guisan & Zimmermann 2000; Breiman 2001). Among all the modeling techniques, 

CART and RF are both powerful tools for the analysis of complex ecological data for 

their accuracy, efficiency, and robustness over other traditional methods (Breiman et 

al. 1984; De'ath & Fabricius 2000; Breiman 2001; Razi & Athappilly 2005; Prasad et 
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al. 2006; Cutler et al. 2007; Peters et al. 2007; Perdiguero-Alonso et al. 2008). They 

were chosen for the predictive models of this thesis.  

In the P2 of this thesis, CART and RF, were used to predict the assemblages and 

species richness of endemic fishes in the upper Yangtze River basin by environmental 

variables. The capacity of these two modeling techniques was evaluated and the 

determinant environmental factors contributing to the models were identified.  

CART, known as recursive partitioning regression, has received more recent 

attention through Breiman et al. (1984). The response variable is usually either 

categorical (classification trees) or numeric (regression trees), and the explanatory 

variables can be categorical and/or numeric. The objective is to partition the response 

into homogeneous groups. It shows desirable properties including the ability to handle 

various types of response (numeric, categorical, censored, multivariate and 

dissimilarity matrices), independence to monotonic transformations of the predictors, 

and ability to deal with missing values with minimal loss of information. Because of 

the recursive-fitting algorithm used, CART models are especially useful for 

discovering alternative environmental settings that lead to the same response for many 

different data structures (Taverna et al. 2004). CART analysis consists of four basic 

steps: tree building, stopping the tree building process, tree “pruning” and optimal 

tree selection. 

RF, exhibiting performance on the level of boosting and support vector machines, 

is one of the most successful ensemble methods and an effective tool in prediction. 

RF has some common advantages with CART model. For instance, they are 

inherently non-parametric; making no distributional assumptions about the predictor 

or response variables; both of them have sophisticated approachs for dealing with 

missing values; they provide an easy way to interpret complex results involving 

interaction among predictors, graphically. However, random forest improves the 

performance of single-tree models by reducing variance and bias (Elith et al. 2008). A 

random forest usually consists of a compilation of classification or regression trees 

(e.g., 1000 trees in a single random forest) to produce more accurate classifications 

and regression models than single-tree models (e.g., CART) (Liaw & Wiener 2002). 

The trees are grown to maximum size without pruning and aggregation is by 

averaging the trees (Prasad et al. 2006). It selects only the best split among a random 
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subset of variables at each node, but not among the sequence of pruned trees. The 

Random Forest algorithm does not tend to over-fit, a very useful feature for prediction 

capacity of the new dataset. It also does not require guidance. 

2-3. Molecular methods 

The molecular techniques for studying genetic variation were first developed in 

the 1960s, i.e., allozyme electrophoresis (Lewontin & Hubby 1966). Diverse 

techniques such as mtDNA sequencing, RAPD, RFLP, AFLP, SSCP, SNP and 

microsatellites have been quickly developed along with the advent of the polymerase 

chain reaction (PCR) (Table 8). However, they have some shortcomings. For example, 

allozyme electrophoresis was previously the dominating technique for studies of 

genetic structure of populations, but its requirement for fresh tissue samples and many 

loci exhibiting tissue-specific expression limit its applications. However, 

microsatellites, or simple sequence repeats (SSRs), are a type of tandem repeated 

nuclear DNA sequences, which are abundantly distributed across genomes of 

eukaryotes and demonstrate high levels of allele polymorphism (Jarne & Lagoda 

1996). These are codominant markers of relatively small size, easily amplified with 

the polymerase chain reaction. These features of microsatellites, in compared with 

other methods, provide the foundation for their successful application in a wide range 

of fundamental and applied studies in various fields of biology and medicine, 

including forensics, molecular epidemiology, parasitology, population and 

conservation genetics, genetic mapping, and the genetics of complex traits 

(Chistiakov et al. 2006). It was chosen to reveal population genetic structure of 

Gobiocypris rarus in P3 and P4 of this thesis.  

 

 

 

 

 



Structure of endemic fish assemblages and population differentiation of G. rarus in the upper Yangtze River basin 

 33 

Table 8. Type of several molecular markers and their characteristics (From Liu & 

Cordes 2004). 

Marker type Acronym 

Requires 
prior 

molecular 
information 

Mode of 
inheritance Polymorphism  Major 

applications 

Allozyme Allozyme Yes Mendelian 
Codominant Low Linkage mapping 

Population studies 

Mitochondrial 
DNA mtDNA No Maternal 

inheritance  Maternal lineage 

Restriction 
fragment length 
polymorphism 

RFLP Yes Mendelian 
Codominant Low Linkage mapping 

Random amplified 
polymorphic DNA RAPD No Mendelian 

Dominant Intermediate 

Fingerprinting for 
population studies 

Hybrid 
identification 

Amplified 
fragment length 
polymorphism 

AFLP No Mendelian 
Dominant High Linkage mapping 

Population studies 

Single nucleotide 
polymorphism SNP Yes Mendelian 

Codominant High Linkage mapping 
Population studies 

Microsatellites SSR Yes Mendelian 
Codominant High 

Linkage mapping 
Population studies 
Paternity analysis 

Microsatellite DNA consist of a short sequence motif repeated a number of times. 

The sequence motif may consist of a single base (mononucleotide microsatellites), 

two bases (dinucleotide microsatellites), three bases (trinucleotide microsatellites), etc. 

In practice, most microsatellites employed in population genetic studies consist of di-, 

tri- and tetranucleotide repeats. There are different opinions about the mutation mode 

of microsatellites. But most of them thought that its mutation does not occur 

according to an infinite allele mutation model (IAM), where each mutation leads to a 

new, unique allele.  Instead, it was initially suggested that mutations at microsatellite 

loci follow a strict stepwise mutation model (SMM), involving insertion/deletion of a 

single repeat unit. However, later studies demonstrated that mutations involving 

several repeat units do also occur. The presently most favored mutation model is the 

two-phase model (TPM) by Dirienzo et al. (1994), where most mutations involve 

insertion/deletion of a single repeat unit, but a fraction of mutations involve several 

repeats. Even this model is unlikely to tell the whole story of microsatellite mutational 

processes (Jarne & Lagoda 1996; Goldstein & Pollock 1997; Estoup & Cornuet 1999). 
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Therefore, in most case it assumes a strict stepwise mutation model (SMM), but in 

some time it assumes a two-phase model (TPM). 

Microsatellite markers are mainly obtained from two methods: isolation from 

species itself and cross-species amplification. Although cross-species amplification 

has been conducted in some species, it generally provides a small subset of the 

available microsatellite markers of a species (Tong et al. 2002; Tong et al. 2005). 

There are many different methods to isolate microsatellite markers of species, in 

which FIASCO protocol (Fast Isolation by AFLP of Sequences Containing repeats) is 

the most popular one in recent years (Zane et al. 2002). It is a fast and effective 

method and has been applied in many species (Guo et al. 2005; Zhu et al. 2005; Liao 

et al. 2006; Liao et al. 2007). The protocol relies on the extremely efficient digestion-

ligation reaction of the amplified fragment length polymorphism procedure (AFLP; 

Vos et al. 1995). DNA is simultaneously digested with MseI and ligated to MseI 

AFLP adaptor. The digestion-ligation mixture is directly amplified with AFLP 

adaptor-specific primers (MseI-N). The number of cycles in the PCR amplification 

needs to be optimized because over-amplification was found to change the average 

size of amplified fragments. DNA is then hybridized with a biotinylated probe and 

selectively captured by streptavidin-coated beads. The beads-probe-DNA complex is 

separated by a magnetic field from the hybridization buffer. Nonspecific DNA is 

removed by three nonstringency washes and three stringency washes at room 

temperature. DNA is separated from the beads-probe complex by denaturation step 

and then amplified with MseI-N primers at optimum cycles. Enriched fragments were 

eventually ligated into vectors and transformed into competent cells. Clones with 

positive inserts were confirmed by PCR amplification using MseI-N primers and were 

then sequenced. Primers were designed for the sequences flanking the repeat regions. 

Because of their multi-allelic nature, codominant inheritance, small length, 

extensive genome coverage and relative abundance, microsatellites have been 

successfully applied in a wide variety of research fields and practical disciplines, e.g., 

genetic mapping, individual DNA identification and parentage assignment, phylogeny, 

population and conservation genetics, molecular epidemiology and pathology, 

quantitative trait loci mapping, marker-assisted selection (Powel et al. 1996; 
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Goldstein et al. 1999; Heath et al. 2001; Woram et al. 2004; Gum et al. 2005; Inami 

et al. 2005; Reid et al. 2005).  

3. Main Results 

3-1. Spatial pattern of endemic fishes and roles of environmental factors in the upper 

Yangtze River (P1 and P2) 

There were 124 endemic fish species distributed in 46 site units of the upper 

Yangtze River basin. Five endemic fish assemblages (Ia, Ib, IIa, IIb1 and IIb2) were 

identified in the upper Yangtze River basin based on the similarity of species 

composition (Figure 5). Not only species composition but also endemic species 

richness varied significantly among these five endemic fish assemblages. The 

endemic species richness for each site unit ranged from 2 to 56. Besides, drainage 

land-cover features were also significantly differentiated among these assemblages 

(Figure 6). These five assemblages were composed of 12, 9, 9, 11 and 5 site units, 

respectively. There were in total 43 indicator species in the upper Yangtze River in 

different hierarchical levels. The last hierarchical level for subdivision of five 

assemblages had various number of indicator species, such as no (0) indicator species 

in assemblages Ia and IIb2; 3, 9 and 27 in assemblages Ib, IIa and IIb1, respectively. 

The indicator species in assemblage Ib belonged to the fish fauna of the Qinghai-

Xizang Plateau (Euchiloglanis kishinouyei, Euchiloglanis davidi and Oreias dabryi 

dabryi), while the plateau and plain indicator species coexisted in assemblage IIa (e.g., 

Pareuchiloglanis sinensis, Pareuchiloglanis anteanalis, Percocypris pingi pingi, 

Onychostoma angustistomata), and almost all the indicator species in assemblage IIb1 

belonged to the river-plain fish fauna (e.g., Rhinogobio ventralis, Coreius guichenoti, 

Leptobotia elongate, Sinogastromyzon szechuanensis szechuanensis). 
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Figure 5. Assemblages’ pattern of endemic fishes in the upper Yangtze River basin. 
Different colors in the map show different endemic fish assemblages. The 
dendrogram in the right shows the similarity between the groups of endemic fish 
assemblages. 

 
Figure 6. The differences among endemic fish assemblages in the upper Yangtze 
River: by different land-cover features in discriminant analysis (the left graph); and 
by the differences of endemic species richness (the right boxplot). 

The Kruskal-Wallis test showed that the significantly differentiated factors 

among these assemblages were farmland (F), alpine and sub-alpine meadow (ASM), 

desert grassland (DG), alpine and sub-alpine plain grassland (ASG), bare rocks (BR), 

gravel (GR), altitude and slope. When using CART and RF models, river 

characteristics (58.7% and 67.4%) were more accurate than land-cover features (37% 

and 43.5%) in predicting the endemic fish assemblages of the upper Yangtze River, 
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indicating that river characteristics were more decisive than basin land-cover features 

in prediction. After combining two types of environmental data, the prediction 

accuracy went up to 60.9% and 71.7% for CART and RF models, respectively. The 

higher prediction success appeared in assemblages Ia, Ib and IIb1, varying from 

66.7% to 88.9%. The most important environmental variables in contributing to 

prediction were altitude, slope, discharge, farmland, and alpine and sub-alpine plain 

grassland (Figure 7).  

 

Figure 7. The flow chart shows the important environmental variables in contributing 

to predict endemic fish assemblages in the upper Yangtze River basin in CART model. 

Similar to the prediction of endemic fish assemblages, the combined 

environmental data could explain higher variance of endemic species richness (73% 

and 84% by CART and RF models, respectively). Adding river characteristics to 

land-cover predictive models could improve the prediction accuracy of endemic 

species richness in the upper Yangtze River basin. In addition, river characteristics 

such as altitude, drainage area, discharge and runoff were the major factors in 

determining endemic species richness in any model. Land-cover features such as 

farmland and slope grassland also played assistant roles in predictive models. 
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3-2. Population differentiation of an endangered endemic fish (Gobiocypris rarus) in 

the upper Yangtze River (P3, P4 and P5) 

 (1) Temporal genetic variation of its topotype population (P3) 

 Based on FIASCO protocol, 43 microsatellite loci of rare minnow Gobiocypris 

rarus were isolated and their corresponding primers were designed. Eighteen pairs of 

microsatellite primers were usable, among which eleven were polymorphic (GenBank 

accession nos. EF555325-EF555335) and seven were monomorphic (EF555336-

EF555342).  

All the eleven polymorphic microsatellite loci were then used to determine the 

level of genetic diversity in the topotype population of G. rarus. Samples in the type 

locality were collected in 1997 (HY1997) and 2006 (HY2006), respectively. The 

genetic diversity of G. rarus was measured by the allele number per locus (mean 

value: 5.36 alleles in HY1997, 5 alleles in HY2006), the effective allele number per 

locus (mean value: 3.24 in HY1997, 3.11 in HY2006), observed heterozygosity (mean 

value: 0.52 in HY1997, 0.42 in HY2006), and expected heterozygosity (mean value: 

0.62 in HY1997, 0.56 in HY2006). However, no significant changes in genetic 

diversity were shown between HY1997 and HY2006. There was only a little temporal 

variation in allelic frequencies of loci GR21 and GR22, e.g., two alleles exhibiting 

relatively high frequencies in HY1997 but disappearing in HY2006. In addition, 

according to the temporal fluctuation, the effective population size (Ne) of the 

topotype population was estimated as 645, with a 95% confidence interval of 237-

11,735. Its topotype population had not experienced bottleneck effects in nearly 10 

years. 

(2) Spatial genetic variation among its nine wild populations (P4) 

There were no significant differences in allelic richness and expected 

heterozygosity among locations, but significant differentiation of allelic frequency 

between pairs of populations was revealed. Significant pairwise FST values ranged 

from 0.013 (between populations M2 and M3) to 0.154 (between populations T1 and 

Q1), indicating low to moderate levels of population differentiation of G. rarus. Two 

distinct genetic clusters C1 and C2 were divided by STRUCTURE (Figure 8). They 
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consisted of four (populations T1, T2, Q2 and M2) and five (populations Q1, D1, D2, 

D3 and M3) populations, respectively. Most individuals of some populations (i.e., M2, 

M3, D1, D2, D3 and Q2) showed a shared genetic pattern, suggesting recent mixing 

between the two clusters (C1 and C2). It was confirmed by the patterns of allelic 

frequency in some loci such as GR08, GR29 and Gra30. Hierarchical AMOVA 

analysis didn’t detect significant levels of structure among four river basin groups or 

between two water system groups, but indeed detected significant differences between 

two genetic clusters C1 and C2.  

 

Figure 8. Assignment of individuals of G. rarus into two clusters (C1-Red color and 

C2-Green color) using STRUCTURE. Each bar represents a single individual sample 

and present in groups based on sampling location. 

A weak but significant relationship between genetic (FST/(1-FST)) and 

geographical distance (straight line distance, water course distance and riparian 

distance) was shown in the wild populations of G. rarus. With the highest correlation 

coefficient, the isolation by riparian distance model was indicated to be the best one 

(Figure 9). In addition, every mean estimated recent migration rates fell within the 

confidence intervals expected in cases of insufficient signal in the data (95% CI: 

4.53×10-10, 0.126), suggesting no significant recent migration among all the 

populations and that most populations were isolated from one another.  
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Figure 9. Isolation-by-distance pattern among G. rarus wild populations. The best 
correlation model between FST/(1-FST) and ln (riparian geographical distance, km) is 
shown. 

(3) Morphological variation among nine wild populations of G. rarus (P5) 

There were no significant differences between sexes or among populations in 

meristic characters. The ranges of meristic counts widely overlapped, and their modes 

were equal or close to each other among populations. 

After removing size effect, there were still statistical differences in 

morphometric characters between male and female samples. There were significant 

sexual differences in 18 of all the standardized morphometric traits, such as BD, DBE, 

PL, PH, D1_2, D4_3, D3_1, D2_3, D4_6, D5_3, D3_6, D4_5, D6_8, D7_5, D10_9, 

D9_7, D7_10 and D8_9. Thus males and females were separately analyzed in further 

analysis. With sex included as a fixed-effect factor, there were significant differences 

among populations over all morphometric measurements by MANOVA analysis. The 

random Monte Carlo permutation test of a discriminant analysis also showed that all 

the studied populations were significantly discriminated based on standardized 

morphometric traits (p < 0.001, Figure 10). Most of the morphometric traits in head 

size and vertical body shape from males or females (e.g., HL, PH, BD, D4_5, D8_7, 

D10_9, D6_7) played most important roles in discriminating different populations. 

The accuracy of reassignment of individuals into their original populations was 72.1% 

for males, 79.4% for females, and 75.3% for all samples. Pairwise quantitative 

divergence (QST) among populations over all morphometric traits varied from 0.039 

(between populations T2 and M2) to 0.188 (between populations T1 and D2). In 
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addition, there were no significant correlations between QST and the following 

variables: FST (r = 0.142, p = 0.231) and riparian geographic distance (r = 0.188, p = 

0.124). However, in general, the degree of differentiation in quantitative traits exceeds 

that in neutral molecular markers. 

 

Figure 10. The plots from discriminant analysis upon the standardized morphometric 
data of male (upper) and female (below) samples show wild population 
differentiations of G. rarus.  

4. General Discussion and Conclusion 

4-1. Geographic distribution patterns of endemic fish assemblages in the upper 

Yangtze River (P1) 

 Five endemic fish assemblages were presented in the upper Yangtze River 

basin, reflecting the longitudinal gradient pattern (i.e., gradual changes of 

species composition and species richness from upstream to downstream). 

Endemic species richness increases according to the longitudinal changes 

within the sub-basin from the source to the river mouth (Figure 11). The 

longitudinal gradient was closely related to the gradual increase in habitat 

diversity. There were two kinds of mechanisms (species replacement and 
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species addition) behind the shifts in longitudinal species composition (Huet 

1959; Sheldon 1968; Petry & Schulz 2006). Both of them marked the 

longitudinal distribution of endemic fish fauna in the upper Yangtze River 

basin. For instance, zonation with species replacement is expected in 

mountainous regions (e.g., assemblage Ib and IIa). As an additive pattern, an 

increase in habitat diversity enables species with various life-history strategies 

to co-exist, leading to maximum species richness of endemic fishes in 

assemblage IIb1.  

 
Figure 11. Endemic fish species richness of different reaches in each sub-

basin of the upper Yangtze River. 

 These endemic fish assemblages are closely related with the topography 

and geomorphology of the Yangtze River. The Yangtze River lies across the 

three large topographic platforms of the Chinese mainland (Hydrology Bureau 

of Changjiang Water Resources Committee 2003). Crossing the first and 

second platform, the upper Yangtze River has varied geologic structures and 

terrain. Assemblage Ia mainly corresponds to the first topographic platform 

located in the central part of the Qinghai-Xizang plateau, exhibiting wide 

valley and high altitude (above 3500 m). Less aquatic organisms and fish 

species are found in this assemblage because of its low water temperature and 

low food availability. Assemblages Ib and IIa correspond to the transitional 

section from the first topographic platform to the second one, presenting 

incised valleys, relative high altitude (about 2000-3500 m), steep slopes and 
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rapid flows. Fish species in this area are highly adapted to local environments, 

and are usually characterized by a strong-swimming body and sticky eggs. 

Assemblages IIb1 and IIb2 correspond to the second topographic platform, 

characterizing by broad rivers, low altitude, weak slopes, multiple river 

regimes (e.g., rapid and slow waters coexisting, shoals and deep pools 

coexisting). Many fish species live in this area for the high habitat 

heterogeneity.  

 Each endemic fish assemblage has its specific indicator species. Most 

endemic fish species in assemblage Ia are usually the species presenting 

stenochoric distribution in their local environments. No indicator species were 

identified in this assemblage. Locating in the Qinghai-Xizang and Yunnan-

Guizhou Plateaus, assemblage Ib exhibits the characteristics of Qinghai-

Xizang Plateau Fish Fauna (Wu & Tan 1991). There were three indicator 

species (Euchiloglanis kishinouyei, Euchiloglanis davidi and Oreias dabryi 

dabryi) in assemblage Ib. These glytosternoid fishes are considered to appear 

along with the uplifting of the Qinghai-Xizang Plateau (Wu & Tan 1991; 

Chen et al. 1996). The Qinghai-Xizang Plateau and the river-plain fish fauna 

coexisted in assemblage IIa, which was dominated by fishes adapted to low 

water temperature and rapid flows. There were nine indicator species in 

assemblage IIa. Among them, as one of the representatives of the Qinghai-

Xizang Plateau fish fauna, Schizothorax (Schizothorax) prenanti distributes 

widely in the rivers with lower altitude. Actually, schizothoracid fishes at 

different specialization levels adapt to different levels of altitude. The 

indicator species in assemblage IIb1 (27 endemic species) were the most 

abundant. Life history and habits of endemic fishes in this assemblage exhibit 

high multiplicity and diversity for its complex habitats. Some species (e.g., 

Rhinogobio ventralis, Procypris rabaudi, Coreius guichenoti, Leptobotia 

elongate) are dominant in the main channel of the upper Yangtze River, while 

some species (e.g., Ancherythroculter nigrocauda, Hemiculterella sauvagei) 

prefer its tributaries. Some species (Rhinogobio ventralis, Coreius guichenoti, 

Leptobotia elongate) spawn drifting eggs, while some species (Procypris 

rabaudi, Hemiculterella sauvagei, Ancherythroculter nigrocauda) lay sticky 

eggs. There were no significant indicator species in assemblage IIb2, locating 

at the edge of the Yunnan-Guizhou Plateau or east of the Sichuan Basin.  
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4-2. Effects of environmental factors on endemic fishes distribution pattern (P2) 

 The mixed models containing both river characteristics and land-cover 

features were more effective than any individual one in explaining 

complex endemic fishes distribution patterns in the upper Yangtze River 

basin. In general, the relative influence of environmental characteristics on 

species distribution, abundance and assemblage composition of aquatic 

organisms is highly complex and interrelated (Fitzpatrick et al. 2001). The 

structure and processes observed in local fish assemblages are not only 

determined by local mechanisms acting within assemblages, but also resulted 

from processes operating at larger spatial scales (Ferreira et al. 2007). 

Altitude, slope, discharge, runoff and farmland were revealed to be the most 

important factors in determining endemic fish assemblages of the upper 

Yangtze River basin. Altitude usually influences species occurrence through 

water temperature, while slope usually makes a major contribution to the 

erosive force acting on the substrate and bed scour in a given area. Variability 

in flows (e.g., discharge and runoff) could affect the structure of stream fish 

assemblages primarily through its effect on mortality and subsequent 

recruitment (Grossman et al. 1998). Land-cover features such as agricultural 

land and forest are considered to be the important determinants on the 

distribution of fish assemblages through indirect effects (Park et al. 2006; 

Gevrey et al. 2009). As agricultural land use increases, inputs of sediments, 

nutrients and pesticides also increase, leading to decline in habitat 

heterogeneity and water quality, and alteration of flow regimes, and then 

impacts on fish community and populations (Jowett et al. 1996; Allan 2004). 

Riparian forest was revealed to be associated with a decreased abundance of 

benthic fish species, being replaced by sediment-tolerant species (Jones et al. 

1999). Moreover, these environmental factors were also important to 

determine endemic species richness in the upper Yangtze River basin. The 

endemic species richness not only followed the general longitudinal pattern, 

but also varied with altitude. Generally the lowest levels of species richness 

tend to be found at high altitudes, and the highest levels at intermediate to low 

altitudes (Gaston & Blackburn 2000). In addition, species numbers usually 
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increase with drainage area at a declining rate (Endemic species richness = 

3.34*ln(drainage area)-9.61, r2 = 0.20, p < 0.05 ). 

 As an ensemble learning technique, RF model is proven to be better than 

CART model in terms of accuracy and efficiency in predicting endemic 

fish assemblages and species richness of the upper Yangtze River basin.  

4-3. Conservation implications for endemic fishes in the upper Yangtze River basin 

(P1 and P2) 

 Endemic fish resources in the upper Yangtze River are facing large 

human-induced threats, such as hydroelectric development, overfishing, 

increasing agricultural land use, deforestation and urbanization. For 

example, the largest hydropower project in the world named as “Three Gorges 

Dam” has been built in the upper Yangtze River, and has started to 

impounding since 2003. Several other large hydropower stations (e.g., 

Xiangjiaba, Xiluodu, Baihetan and Wudongde) are also being or will be 

constructed in the upper Yangtze River, which would affect the ecological 

function of the national nature reserve. Because the cascade hydropower 

stations has been built on some important tributaries of the upper Yangtze 

River such as the Minjiang River, droughts commonly happen in certain reach 

of these rivers during dry season. More cascade hydropower stations have 

been marked up in several tributaries of the upper Yangtze River, e.g., in the 

middle reach of the Jinsha River. All these hydropower projects may 

accumulatively influence the hydrological regime and water temperature of 

the main channel of the upper Yangtze River. Besides, the phenomenon of 

excess land use and severe soil erosion does exist in the upper Yangtze River 

basin, although the importantce of natural land-cover features now begins to 

be realized (Sun 2008). All these activities could hinder fish migration, 

destroy fish spawning and living habitats, and deplete fish resources (Sun 

2008).  

 Three key points for the conservation of endemic fishes in the upper 

Yangtze River basin are: selection of several sites to protect the maximum 

of diversity, maintenance of at least one flowing reach in each river, and 

developing a conservation strategy for tributaries. Establishment of natural 
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reserves is one effective approach for preserving endemic fish species (Cao 

2000). A national nature reserve for rare and endemic fishes in the upper 

Yangtze River Basin has been established since 2000, mainly locating in 

assemblage IIb1, but encompassing also a small area (the upstream of the 

Chishui River) of assemblage IIa. In 2005, the range of this reserve was 

regulated, and now includes 353.16 km of the main channel of the Yangtze 

River from Xiangjiaba to Masangxi, 90.1 km section of the downstream of the 

Minjiang River, the whole main stream of the Chishui River and branches in 

its riverhead, as well as the mouth of several rivers such as the Tuojiang River, 

the Yuexi River, the Nanguang River, the Changning River and the Yongning 

River (Figure 13). The establishment of that reserve is expected to help 

preserve three rare fish species (Psephurus gladius, Acipenser dabryanus and 

Myxocyprinus asiaticus) and dozens of endemic fish species inhabiting these 

water ecosystems. The Chishui River should be paid special attention: it is a 

unique complete river included within that reserve. Strengthening its 

protection by monitoring and maintaining its status is urgent. Park et al. (2003) 

suggested that three tributaries in the upper Yangtze River (the Chishui, 

Tuojiang and Minjiang Rivers) should be considered as potential suitable 

reserves for endemic species. However, rather than a single reserve, it is 

recommended that a network of conservation units (reserves) be set up to 

improve fish diversity in all its manifestations (Bonn & Gaston 2005). In P1, 

the Anning River, the upper reach of the Jinsha River and the Dadu River in 

assemblage Ib, exhibiting particular endemic fish species composition, were 

also suggested to be considered as potential natural reserves (Figure 13). The 

Anning River, a small tributary of the Yalong River, is an important habitat 

for four local endemic fish species (Yunnanilus sichuanensis, Triplophysa 

(Triplophysa) xichangensis, Triplophysa (Triplophysa) daqiaoensis, 

Triplophysa (Triplophysa) brevibarba) that are only found in this river. In the 

middle reach of the Jinsha River being a hotspot for assemblage IIa, it is thus 

necessary to keep certain reaches away from hydroelectric cascade 

development (Figure 12).  
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Figure 12. Maps showing the existed national nature reserve and other 

potential reserves for endemic fishes in the upper Yangtze River. 

4-4. Population differentiation of G. rarus (P3, P4 and P5) 

Rare minnow, Gobiocypris rarus Ye et Fu, is an endemic cyprinid fish in China 

(Chen 1998; Ye & Fu 1983). It is considered as an “endangered” species because of 

its narrow distribution and fluctuant habitats. It is now facing large threats mainly 

from anthropogenic disturbance, such as pollution from pesticides and sewage, 

channelized habitat, disordered water diversion, as well as hydropower project (Le & 

Chen 1998; Li et al. 2004; Wang et al. 1998; Wang & Xie 2004; Xiong et al. 2009).  

It is only distributed in the western part of China. It lives mainly in small water 

systems, such as paddyfields, ditches and loblollies, especially in weedy ditches with 

flowing water. Remnant populations were only found in the west region of Sichuan 

Province (Chen 1998; Ding 1994; Le & Chen 1998; Wang & Cao 1997). The type 

locality, where the topotype population inhabits, is located in Hanyuan County of 

Sichuan Province. Additionally, other remnant populations were discovered during a 

field investigation conducted by the author in April 2008. All known habitats of rare 

minnow are located dozens to hundreds of miles away from one another, exhibiting 

discontinuous distribution. 
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(1) Temporal genetic variation of the topotype population of G. rarus (P3) 

 P3 suggested that the type locality of G. rarus held a single stable and 

healthy population with a relatively large Ne and no cryptic structure. 

During the sampling period (1997-2006), temporal genetic variation was 

limited. The main fluctuations were not due to bottlenecks, but may result 

from inbreeding to some extent. However, inbreeding did not induce dramatic 

depression effects on the topotype population for its observed rate of loss of 

heterozygosity per generation (0.48%) is considerably lower than 1% (the 

limit for an acceptable level of inbreeding per generation; Franklin 1980; 

Frankel & Soulé 1981).  

 The forces maintaining genetic variation of the topotype population of G. 

rarus were mainly from environmental fluctuations and life history traits. 

Many studies revealed that both extrinsic factors (i.e., environmental factors) 

and intrinsic factors (i.e., biological factors) could mold genetic patterns 

(Mitton & Lewis 1989; Scribner et al. 1992; Østergaard et al. 2003; Barcia et 

al. 2005; Cena et al. 2006; Lee & Boulding 2007; Rahman et al. 2008). The 

habitats of G. rarus are easily influenced by seasonal environmental changes 

(drought, floods, rainstorms) and human activities. Besides, G. rarus has the 

characteristics such as high fecundity, continuous batch spawning and short 

life cycle. In such a case, some batches of offspring of G. rarus may be 

endangered when sudden environmental changes occur, yet other batches may 

survive and induce effective reproduction. Surviving individuals from 

different habitat patches mix together and relocate in the patches where the 

habitat change occurred, resulting in greater gene flow within the population. 

Thus, habitat fluctuation, relocation of survivors and rapid multiplication may 

be the main forces to maintain the relatively genetic stability of G. rarus.  

 Considering that the topotype population is facing increased habitat loss 

and disturbance from human activies, P3 suggests that a habitat and 

species management area should be established in its type locality. This 

habitat and species management area consists of the floodplain along the 

Liusha River from Qianyu village (29°30'8.1" N, 102°35'17.0" E, altitude 996 

m) to Fuchun village (29°28'37.3" N, 102°37'35.4" E, altitude 939 m). In this 

reserve area, all the habitat-threatening activities such as factory construction, 
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intensive land use, fertilizer and pesticide applications should be substantially 

reduced, and the dynamics and genetic variation of the topotype population 

should be monitored. 

(2) Genetic and morphogical differences among nine wild populations of G. rarus (P4 

and P5) 

 The genetic differentiation among wild populations of G. rarus are at low 

to moderate level. This genetic differentiation was mainly due to different 

allelic frequency distribution patterns of populations. For instance, some of 

them were mainly composed of the middle-sized alleles such as population 

Q1, but some had extensive allele distribution such as population T2. In 

addition, P4 revealed the genetic clustering structure (C1 and C2) of wild 

populations of G. rarus. This clustering structure reflects out the water 

system structure (e.g., four river basins and two alluvial plains) to some 

extent, but it was not exactly clustered just like the water system structure. It 

could be explained from the history of the river evolution that usually act as an 

important force in explaining the biogeography or distribution of many 

freshwater fish species. Several studies have shown that the Qingyi River was 

flowing northwards into the Minjiang River at Xinjin County (where Qionghai 

River (M3) joined) during the Middle Pleistocene Epoch, and then diverted 

southeastwards through Jiajiang County (Q2) into the Dadu River during the 

Late Pleistocene Epoch (Li et al. 2006; Li & Guo 2008; Yuan & Tao 2008). It 

is conceivable that population Q2 did not belong to the Qingyi River basin 

until about 2.5 to 1 million years ago, and that population M3 might belong to 

the Qingyi River basin around two million years ago.  

 G. rarus might migrate through some man-made channels of hydropower 

projects rather than through the mouth of the Minjiang and Tuojiang 

Rivers. At present, the remnant populations of G. rarus are in discontinuous 

distribution. Author revealed that an isolation-by-riparian-distance pattern 

might play a role in genetic structure of G. rarus populations. The riparian 

distance was calculated along the closest connected water system through the 

man-made channels (e.g., Renmin Channel, Puyang River, Qingbai River) 

between the Minjiang and Tuojiang Rivers. These man-made channels were 
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from the numerous water diversion projects built in the Minjiang River, such 

as Dujiangyan Irrigation Project. Besides, up to now, no G. rarus individuals 

have been sampled either in the mouth of the Minjiang River at Yibin City or 

in the mouth of the Tuojiang River at Luzhou City, where investigations on 

fish catches have been usually carried out intensively.  

 The phenomenon of sexual dimorphism indeed exists in morphometric 

traits of wild populations of G. rarus. It could be presented as: females 

usually have a larger and fatter body than males; the relative length of their 

pectoral fin and ventral fin are usually larger than males; most of 

morphometric traits (64%) show significant sexual differences. We also found 

that the measurements relating with landmark 3 (viz. the origin of ventral fin) 

in the truss network of G. rarus were the most important discriminant features 

for sexes (Figure 14). In a word, the thickness and width of the body shape of 

G. rarus were mainly responsible for its sexual dimorphism. Information 

about sexual dimorphism is essential for understanding the ecology, behavior 

and life history of a species, as well as for making morphological comparisons 

between populations (Kitano et al. 2007). Many fish species such as walleye 

(Stizostedion vitreum vitreum) and threespine stickleback (Gasterosteus 

aculeatus) have the phenomenon of sexual dimorphism (Henderson et al. 

2003; Kitano et al. 2007). 

 All the studied populations are significantly differentiated from one 

another over all the morphometric traits. Among them, fifteen traits 

(namely BD, HL, PH, D4_6, D4_5, D8_7, D6_7, D7_10, D4_3, D2_3, D6_5, 

D3_6, D6_8, D5_8 and D10_9) were the most important contribution 

variables to discriminate the populations. The truss measurements relating 

with landmark 6 (viz. the origin of dorsal fin) and 7 (viz. the posterior end of 

anal fin base) played important roles in discriminating the populations (Figure 

13). These measurements are closely correlated with traditional traits of body 

shape in G. rarus such as the position of dorsal fin, body depth, peduncle 

height, and the position of anal fin. Therefore, the morphological 

differentiation among populations of G. rarus is mainly reflected by the 

change of head morphology and vertical body shape. However, this 

quantitative divergence (QST) is not significantly correlated with riparian 

geographic distance and genetic differentiation (FST) by Mantel test. Some QST 
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values are larger than FST values, while other QST values are smaller than FST 

values. It may suggest a cooperative effect of environmental and genetic 

factors on their phenotypic discreteness.  

 
Figure 13. Ten landmarks were used to obtain the truss network of G. rarus. 

The stars show the most important landmarks in discriminating sexes and 

populations: red star (sexual dimorphism), blue star (population 

differentiation). 

 In the view of discontinuous distribution, significant genetic and 

quantitative differentiations among wild populations of G. rarus and large 

threats from human activities, all the nine studied populations should be 

protected. However, some populations such as M2, Q1, D1 and D3 are 

experiencing large environmental threats including pollution, channelized and 

drowned habitats, where conservation measures could not be carried out 

effectively. Therefore, in order to sustain long-term survival of this species, it 

is necessary to select representative and potential populations for protection. 

For example, in this thesis, populations characterized by relatively large 

population size, high genetic diversity, extensive allele distribution and 

favorable habitats, such as T1, T2, Q2, M3 and D2, should be in prior 

conservation (Figure 14).  



Structure of endemic fish assemblages and population differentiation of G. rarus in the upper Yangtze River basin 

 52 

 
Figure 14. The red symbols mark the populations that should be in prior 
conservation . 
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ABSTRACT

This study focused on characterizing the endemic fish assemblages in the upper Yangtze River Basin and identifying the relative
influences of catchment land-cover variables on observed fish patterns in order to suggest a conservation strategy. A model based on a
self-organizing map was applied to determine endemic fish assemblages along the river network, based on presence/absence data for
124 endemic species. Five fish assemblages (Ia, Ib, IIa, IIb1, IIb2) were described. These assemblages varied significantly in terms of
individual species patterns as well as species richness. Indicator species were identified for each class of community (0, 3, 9, 27, 0
species for cluster Ia, Ib, IIa, IIb1, IIb2, respectively). Structure of the endemic fish assemblages in the upper Yangtze River was highly
correlated with local topographic and geomorphic characteristics. Simultaneously, the catchment land cover features also reflected out
this endemic fish distribution structure. Among 18 land-cover types, alpine and sub-alpine meadow, together with farmland, were
revealed to be the most important factors both in discriminating the endemic fish assemblages and in correlating species distributions
by using discriminant analysis and co-inertia analysis. Finally, in order to preserve the rare and endemic fish in the upper Yangtze
River, reserve networks, rather than a single national nature reserve, should be established. Copyright# 2009 JohnWiley& Sons, Ltd.
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INTRODUCTION

Biodiversity conservation is an important global environ-
mental topic. Many species have been eliminated from areas
dominated by human influences, and extinctions are
occurring at an unnaturally rapid rate, estimated to be
100–1000 times greater than pre-human rates (Lawton and
May, 1995; Pimm et al., 1995). The widespread changes in
biodiversity alter ecosystem processes and change the
resilience of ecosystems (Chapin et al., 2000). Therefore,
the dramatic loss of biodiversity (Chapin et al., 2000; Abell,
2002; Saunders et al., 2002) implies conservation of natural
resources and biodiversity is a focus for managers. For this
purpose, minimizing the loss of biodiversity may act as a
conservative strategy for maintaining the global values of
ecosystem services.

Changes in species richness, relative abundances and
species composition at various spatio-temporal levels have
contributed to the loss of biodiversity in river systems
because of human various activities. In aquatic ecosystem
management, spatial characterization of riverine fish
communities is an important element. Fish assemblages

have been recognized as sensitive and reliable indicators of
aquatic ecosystem health (Ibarra et al., 2003; Rashleigh,
2004). In fish ecology, the structure of fish assemblages
depends on many interacting factors and can be quantified
by summarizing species richness, composition and feeding
guilds (Karr, 1981). Classification of sites (or areas) based
on fish species assemblages has been elaborated for many
lotic systems (Konan et al., 2006; Park et al., 2006; Kruk
et al., 2007; Lasne et al., 2007). Modelling the composition
of fish assemblages on the basis of biotic and abiotic
environmental descriptors is an important aspect of the
management of aquatic ecosystems.

Studies in the last decade have shown that variation in
catchment land cover plays an important role in the
distribution and movement of fish across different aquatic
ecosystems (Hanchet, 1990; Sutherland et al., 2002; Strayer
et al., 2003; Allan, 2004; Singkran and Meixler, 2008).
These may indirectly affect fish assemblage distributions by
altering fish habitats in terms of light intensity, organic
matter, nutrients or sediment load, and directly by the
interactions with other anthropogenic drivers (e.g. climate
change, invasive species, dams) (Sutherland et al., 2002;
Strayer et al., 2003). Quantifying and understanding how
fish assemblages respond to changes in catchment land cover
are important for managing the preservation and restoration
of aquatic ecosystems (Park et al., 2006).
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The Yangtze River is the third largest river in the world,
with a length of 6 380 km and drains an area of 1.8! 106

km2 (Hydrology Bureau of Changjiang Water Resources
Committee, 2003). It spans three large topographic plat-
forms of the Chinese mainland. From its origins at Peak
Geladandong in the Tanggula cordillera, Qinghai-Xizang
Plateau, it flows through 11 Chinese provinces receiving on
its way more than a hundred large or small tributaries. It
has abundant water resources with a mean annual
discharge of 31 900m3/s and a mean annual runoff of
9.513! 1011 m3. The upper Yangtze River, from its
headwaters to Yichang in Hubei Province, exhibits
pronounced habitat heterogeneity across its reaches as a
result of its meteorological, hydrological, physiographical
and geological differences (Dong, 2003). With its compli-
cated natural environment, well-developed drainage system,
abundant water resources and rich biodiversity, the upper
Yangtze River has been marked as an eco-functional barrier
of the Yangtze River and a key area for ecological restoration
(Sun, 2008).
The Hengduan Mountains Region located in the upper

Yangtze River Basin has been identified as one of 25 global
biodiversity hotspots (Myers et al., 2000; Sun, 2008). It is
rich in species resources and has a high species diversity,
abundant communities and general ecosystem diversity. The
Yangtze River supports about 350 freshwater fish species
(Chen et al., 2002; Fu et al., 2003; Park et al., 2003; Yu et al.,
2005), representing the highest diversity in the Palearctic
region (Nelson, 1994; Matthews, 1998). Approximately
80% of the species (including 124 endemic ones) occur in
the upper Yangtze River. In conjunction with abundant
biodiversity, the upper Yangtze River basin is also abundant
in land vegetation and forest resources, which is an
important factor in the conservation of water resources.
Currently, the upper Yangtze River Basin is experiencing

critical changes to its ecosystems through multiple
ecological threats (e.g. grassland degradation, serious soil
and water loss, glacier retreat and frozen ground shrinkage,
reduction of river run-off) (Sun, 2008). Combined with a
sharp decrease in forest coverage, the increased area and the
intensity of soil erosion are the most urgent issues in the
basin, and the natural ecology has been subjected to a
significant damage. For instance, the total area of soil
erosion in the upper Yangtze River has increased to
3.55! 105 km2, accounting for 62.6% of the whole basin
(EIADCAS and RIPYWR, 1995).
The upper Yangtze River is an essential base for water

power resources in China. More than 1000 hydropower
stations with installed capacities ranging from dozens of
kilowatts to 10 million kilowatts have been built or are under
construction, on almost all the trunk streams and tributaries.
Even more hydropower stations are planned to build (Sun,
2008). These hydroelectric developments may induce

universal, comprehensive and permanent eco-environmental
problems especially including adverse impacts to fish
resources. Thus, close attention should be paid on
harmonizing hydroelectric developments with fish resources
conservation. It is imperative to accelerate the progress of
conservation projects.
Close relationships between fish distributions and

different catchment land-covers have been shown in
different river systems in Europe and America (Sutherland
et al., 2002; Park et al., 2006; Singkran and Meixler, 2008).
As a part of aquatic ecosystem conservation in the upper
Yangtze River, evaluation of the influence of changes in
land-cover features on the fish distributions is required. In
the present study, the 124 endemic fishes in the upper
Yangtze River were selected for patterning. Endemic fish are
defined as those occurring in the main channel and
tributaries of the upper Yangtze River and its affiliated
waters, or populations occurring mainly in the upper
Yangtze River. Endemic fish are usually deemed to be
representative of local aquatic eco-environments for their
high adaptation and dependence.
The objectives of this study were to determine the patterns

in endemic fish assemblages and identify land-cover factors
related to their composition in the upper Yangtze River
Basin. The findings not only provide insight into mechan-
isms structuring fish assemblages but also enhance knowl-
edge on ecological processes in the upper Yangtze River. In
doing so, it will also help direct conservation and manage-
ment activities for both species and their habitats.

MATERIALS AND METHODS

Study area

The Upper Yangtze River has a total length of 4 500 km,
i.e. around 2/3 of the total length of the Yangtze River, and a
catchment area of 1.0! 106 km2. Its main stream is mainly
composed of three sections. The headwater section of the
Yangtze River extends from the Tuotuo River to the Tongtian
River. The second section is from Zhimenda in Qinghai
Province to Yibin in Sichuan Province and is named the
Jinsha River. The third section from Yibin in Sichuan
Province to Yichang in Hubei Province is called ‘Chuan-
jiang’. With numerous tributaries, the upper Yangtze River is
characterized by well-developed water systems. Among
them, six larger main tributaries (Yalong River, Minjiang
River, Tuojiang River, Chishui River, Jialing River and
Wujiang River), along with seven tributaries (Anning River,
Dadu River, Qingyi River, Fujiang River, Qujiang River,
Daning River and Xiangxi River) and five lakes (Chenghai,
Dianchi, Lugu Lake, Qionghai and Caohai) were included in
the present study (Figure 1).
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Data set

In this study, long-term presence-absence endemic fish
distribution data on the upper Yangtze River basin were
used. These data were mainly based on the fish distribution
data collected by Cao et al. (1998, unpublished), monitoring
data from the Ecological and Environmental Monitoring
System of Three Gorges Reservoir collected since 1997,
other research results conducted by the Lab. Ecology and
Conservation Biology of Freshwater Fishes in the Institute
of Hydrobiology, and bibliographic data including mono-
graphs (Wu et al., 1989; Wu and Wu, 1992; Ding, 1994;
Chen, 1998a; Chen, 1998b; Zheng and Dai, 1999; Yue,
2000) and investigation papers (Shi et al., 1984; Deng, 1985;
Ye and Fu, 1987; Chen et al., 2002; Fu et al., 2003; Park
et al., 2003; Yu et al., 2005; Ding, 2006). The authors
appended species distribution records, supplemented with
newly published species information, and aggregated them
after filtering out the controversial species.

The long-term fish distribution data set was used under the
assumption that fish assemblages did not significantly

change during the study period. The data set encompassed
46 sites and 124 species, with a site representing one river or
one reach of a river. Specific site details are given in Figure 1
and Table I. All the fish species used in the present study are
endemic to the upper Yangtze River. Despite the simplicity
of presence-absence data, they provide reliable information
for analyzing fish assemblage patterns (Ibarra et al., 2005;
Park et al., 2006).

The proportion (%) of different land cover types for
each site in the basin was extracted from the China Land
Cover map through the Geographical Information System
(GIS). The land cover map is based on a simple
classification system consisting of 24 land cover classes.
Only 18 classes were used in the study area: needleleaved
evergreen forest (NEF), broadleaved evergreen forest
(BEF), broadleaved deciduoud forest (BDF), bush (B),
sparse woods (SW), alpine and sub-alpine meadow
(ASM), slope grassland (SG), plain grassland (PG), desert
grassland (DG), city (C), river (R), lake (L), swamp (S),
glacier (GL), bare rocks (BR), gravel (GR), farmland (F),
alpine and sub-alpine plain grassland (ASG). The

Figure 1. Geographical distribution of sampling sites in the upper Yangtze River basin. Assemblage types (clusters) are indicated with different symbols. The
numbers (1–46) correspond to the middle point of each site, the detail information of which was listed in Table I
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remaining six land cover classes did not appear in any sites
of the upper Yangtze River Basin.

Statistical analysis

Spatial classification using self-organizing map. Self-
organizing map (SOM) is commonly used as an alternative
to traditional statistical methods because of the complexity

and the presumed nonlinearity of the data sets and inherent
correlations among variables. It is an unsupervised neural
network method that has been applied in various ecological
studies for community classification (Chon et al., 1996;
Park et al., 2001), water quality assessment (Walley et al.,
2000) and conservation strategies of endemic species (Park
et al., 2003). As an ordination method, the SOM arrange
sampling sites on the reduced dimensional maps. Sampling

Table I. Sampling sites information, including its correspondent number and attributes, in the upper Yangtze River

Number Sampling site Attribute

1 Tuotuo River Main stream
2 Tongtian River Main stream
3 The Upstream of Jinsha River Main stream
4 The Middle-stream of Jinsha River Main stream
5 The Downstream of Jinsha River Main stream
6 Chenghai Lake (in the middle-stream of Jinsha River)
7 Dianchi Lake (in the downstream of Jinsha River)
8 The Upstream of Yalong River First-order Tributary
9 The Middle-stream of Yalong River First-order Tributary
10 The Downstream of Yalong River First-order Tributary
11 Lugu Lake Lake (in the middle-stream of Yalong River)
12 The Upstream of Anning River Second-order Tributary
13 The Middle-stream of Anning River Second-order Tributary
14 The Downstream of Anning River Second-order Tributary
15 Qionghai Lake (in the middle-stream of Anning River)
16 Chuanjiang Main stream
17 The Upstream of Minjiang River First-order Tributary
18 The Middle-stream of Minjiang River First-order Tributary
19 The Downstream of Minjiang River First-order Tributary
20 The Upstream of Dadu River Second-order Tributary
21 The Middle-stream of Dadu River Second-order Tributary
22 The Downstream of Dadu River Second-order Tributary
23 The Upstream of Qingyi River Third-order Tributary
24 The Middle-stream of Qingyi River Third-order Tributary
25 The Downstream of Qingyi River Third-order Tributary
26 The Upstream of Tuojiang River First-order Tributary
27 The Middle-stream of Tuojiang River First-order Tributary
28 The Downstream of Tuojiang River First-order Tributary
29 The Upstream of Chishui River First-order Tributary
30 The Middle-stream of Chishui River First-order Tributary
31 The Downstream of Chishui River First-order Tributary
32 The Upstream of Jialing River First-order Tributary
33 The Middle-stream of Jialing River First-order Tributary
34 The Downstream of Jialing River First-order Tributary
35 The Upstream of Fujiang River Second-order Tributary
36 The Middle-stream of Fujiang River Second-order Tributary
37 The Downstream of Fujiang River Second-order Tributary
38 The Upstream of Qujiang River Second-order Tributary
39 The Middle-stream of Qujiang River Second-order Tributary
40 The Downstream of Qujiang River Second-order Tributary
41 The Upstream of Wujiang River First-order Tributary
42 The Middle-stream of Wujiang River First-order Tributary
43 The Downstream of Wujiang River First-order Tributary
44 Caohai Lake (in the upstream of Wujiang River)
45 Daning River First-order Tributary
46 Xiangxi River First-order Tributary
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sites with similar species composition and structure were
classified into the same neuron or into neighbouring
neurons.

In the present study, the endemic fish species distribution
patterns in the upper Yangtze River were described by SOM.
The sequential algorithm and the Euclidean distance
coefficient were used for training the SOM in the present
study. The number of nodes was determined as 5! (number
of samples)½ (Vesanto, 2000), and then based on the
minimum values of quantization and topographic errors, the
output layer of the SOM in the present study consists of 56
neurons (virtual units) arranged into a 8! 7 hexagonal
lattice to provide better visualization. According to the
similarity of the weight vectors of the neurons, a hierarchical
cluster analysis with a Ward’s linkage method can further
subdivide the cells of the map into different groups. The
definition of the group numbers is mainly based on the
degree of dissimilarity of each SOM cell in the hierarchical
clustering. The unified distance matrix (U-matrix; Ultsch,
1993) and Davies-Bouldin index (Davies and Bouldin,
1979) were also applied to reinforce the group definition. All
these analyses were done in the Matlab environment (The
Mathworks, 2001) using the SOM toolbox (Alhoniemi et al.,
2000).

In order to assess the effectiveness of the hierarchical
clustering, the cophenetic correlation coefficient (Sneath
and Sokal, 1973) was calculated using R software (Ihaka and
Gentleman, 1996). The contributions of each input
component with respect to cluster structures were obtained
from weight vectors of the SOM and then visualized by box-
plot. The Kruskall-Wallis test was conducted to compare
differences of species richness among clusters in the R
software. After Kruskall-Wallis test, multiple comparison
tests were also conducted in the R software using ‘pgirmess’
package (Giraudoux, 2006).

Identification of indicator species for each assembla-
ge. The IndVal method was used to identify indicator
species, which were defined as the most characteristic
species of each group. This was found mostly in a single
group of the typology and present in the majority of the sites
belonging to that group, for summarizing the assemblage
patterns (Dufrêne and Legendre, 1997). Based on the fidelity
and the specificity of species for each cluster, INDVAL 2.0
was used to identify indicator species of different fish
assemblages in the upper Yangtze River. The formula is as
follows: IndValij¼Aij!Bij! 100, where Aij¼Nsitesij/
Nsitesi and Bij¼Nsitesij/Nsitesj. Here the formula of Aij is
only for presence-absence data. Only significant and greater
than 25 IndVal have been taken into account, in that it
implies that a characteristic species is present in at least 50%
of one site’s group and that its relative abundance in that
group reaches at least 50%. Dufrêne and Legendre (1997)
suggested that the level for which a species had its highest

IndVal value was considered as the best classification level
for that indicator species. However, lower IndVal values may
provide supplementary information on the species distri-
bution patterns in different hierarchical levels.

Correspondence between assemblages and land-cover
factors. Co-inertia analysis (CIA) and discriminant analysis
(DA) are multivariate methods, commonly applied to
identify the species-environment relationships and the
assemblage-environment relationships in ecological studies,
respectively (Thioulouse et al., 1997; Culhane et al., 2003).
In the present study, we introduced both the species
distribution data set and land-cover variables into CIA and
DA in the R software using the ‘ade4’ package (Thioulouse
et al., 1997). The logic of principal component analysis was
applied in both CIA and DAmethods because the land-cover
factors related to the distribution of species were supposed to
be limiting (Dolédec and Chessel, 1994). The DA was
conducted to determine which land-cover variables dis-
criminate between the clusters previously defined by the
SOM procedure. Standardized coefficients for each variable
in each discriminant function represent the contribution of
the respective variable to the discrimination between
clusters. A randomMonte Carlo test with 1000 permutations
was used to reveal the significance of land cover variables
among clusters. The Kruskall-Wallis test was then carried
out to reveal the difference of land cover variables among
clusters, and then multiple comparison tests were also
conducted in the R software using ‘pgirmess’ package. A
first step in the CIA consisted of conducting separate
analyses to interpret both the land-cover structure and the
species structure. Then the CIA was used to summarize the
relationships between species lists and land-cover variables,
in which a randomMonte Carlo test with 1000 permutations
was performed to reveal the significance of the co-structure
of this CIA. The RV-coefficient is calculated to measure the
overall similarity (Robert and Escoufier, 1976) and this has a
range 0 to 1, where a high RV-coefficient indicates a high
degree of co-structure.

RESULTS

Endemic fish assemblages in the upper Yangtze River

The composition of the endemic fish fauna in the present
study is shown in Table II. A total of 124 endemic fishes
belonging to 59 genera, 9 families and 4 orders were analyzed.
Among these, Cypriniforme (88% of species) were the most
abundant order, followed by Siluriforme (10%), Perciforme
(2%) and Acipenseriforme (1%). Cyprinidae (59.7%) were
the most abundant family, followed by Cobitidae (21.8%),
Homalopteridae (6.5%), Sisoridae (4.8%), Bagridae (2.4%),
Gobiidae (1.6%), Amblycipitidae (1.6%), Acipenseridae
(0.8%) and Siluridae (0.8%). The probability of species
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occurrence was highly variable (Table II). Only one
endemic fish species was very common (occurrence> 75%):
Paracobitis potanini. Ten other species were common
(occurrence between 50 and 75%): Hemiculter tchangi,
Xenophysogobio boulengeri, Acrossocheilus monticolus,
Bangana rendahli, Procypris rabaudi, Leptobotia elongate,
Jinshaia abbreviate, Sinogastromyzon szechuanensis sze-
chuanensis, Euchiloglanis kishinouyei and Euchiloglanis
davidi. The other 25 species were at a moderate common
level (occurrence between 25 and 50%). Eighty-
eight species were scarce (occurrence< 25%), and among
them, seventy species were very scarce (occurrence
< 10%).
The 46 sites were patterned on the SOMmap according to

the similarity of their species composition in the 56 output
cells (Figure 2a). Based on the fish composition similarity of
different cells, the clustering procedure identified two main
clusters I and II, which were each subdivided into two
smaller clusters named Ia and Ib on one side, IIa and IIb (IIb
was subdivided into two clusters IIb1 and IIb2 again) on the
other side. In all, five clusters were defined on the SOM.
They were composed of 12, 9, 9, 11 and 5 sites, respectively.
No further subdivisions were considered in the present study.
The cophenetic correlation coefficient indicated that the
hierarchical clustering of different cells was robust
(r¼ 0.72).
Box-plots of endemic species richness in each cluster

are shown in Figure 2b. The Kruskall-Wallis test revealed
that endemic species richness varied significantly among
clusters (p< 0.05). In the multiple comparison tests,
endemic species richness of cluster IIa differentiated
significantly from cluster Ia and Ib, while endemic species
richness of cluster IIb1 differentiated significantly from
cluster Ia and Ib (p< 0.05). Among 124 endemic fishes in
the upper Yangtze River, 42 species distributed in cluster
Ia, 62 in cluster Ib, 79 in cluster IIa, 56 in cluster IIb1 and
38 in cluster IIb2. There were 38 species only distributed
in cluster I but not cluster II, and another 35 species only
distributed in cluster II but not cluster I. Twelve species
were only present in cluster IIa, and six species only in
cluster IIb. In particular, two important patterns could be
traced: Firstly, one species (Xenophysogobio boulengeri)
was present in all the sites of cluster II, but absent in cluster
I; secondly, most species with a narrow distribution were
present in cluster I.
Fifty-five species contributed less than 5% to the cluster

structures and thesewere omitted whenmaking the box-plot.
Therefore, the left 69 species contributions were shown in
Figure 3. The most contributing species number increased
from cluster I to cluster II. Especially, cluster IIa and IIb1
were very rich in the most contributing species. The SOM
showed that the centres of the distributions of most species
were clearly associated with a single cluster.T
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Indicator species for each assemblage

There were 43 indicator species in the upper Yangtze
River with significant indicator values and IndVal> 25
(Figure 2c) in different hierarchical levels. The number of
species with significant indicator values varied among
clusters. It increased from cluster Ib, IIa and IIb1 (3, 9 and

27, respectively). There were no indicator species in both
cluster Ia and cluster IIb2. Most of the indicator species (28
out of a total 43 different species) had their highest IndVal at
the second classification level, and only four species
(Euchiloglanis kishinouyei, Euchiloglanis davidi, Paraco-
bitis potanini, Oreias dabryi dabryi) at the first level, three
species (Acipenser dabryanus, Ancherythroculter kuremat-

Figure 2. Endemic fish assemblages in the upper Yangtze River. (a) Distribution of the sampled sites on the SOM. Clusters of sites identified are indicated by
full black and bold lines. Each number represents each site indicated in Figure 1 and Table I. (b) Box-plot of the endemic fish species richness in each cluster,
- median, 25–75%, maximum, minimum,* outlier. (c) Indicator species of the clusters at the two levels. Indicator values (%) are given in parentheses, and bold

characters indicate the highest indicator value for a given species
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sui, Parabotia bimaculata) at the third level, and eight
species (Acheilognathus omeiensis, Pareuchiloglanis ante-
analis, Percocypris pingi pingi, Pareuchiloglanis sinensis,
Sarcocheilichthys davidi, Sinilabeo hummeli, Schizothorax
(Schizothorax) prenanti, Xenocypris yunnanensis) at the
fifth level. This suggests that the second dichotomy (cluster I
vs. cluster II) had a strong ecological significance.
The indicator species (Euchiloglanis kishinouyei, Euchi-

loglanis davidi and Oreias dabryi dabryi) in cluster Ib
belonged to the fish fauna of the Qinghai-Xizang Plateau,

which usually occur in the marginal zones of the plateau.
However, in cluster IIa and IIb1, the proportion of plain fish
fauna increased. Cluster IIa of sites was the transitional zone,
in which fish fauna from the plateau and the plain coexisted for
indicator species (i.e. Pareuchiloglanis sinensis, Pareuchilo-
glanis anteanalis, Percocypris pingi pingi, Onychostoma
angustistomata). In cluster IIb, the indicator species almost all
belonged to the river-plain fish fauna (i.e. Rhinogobio
ventralis, Coreius guichenoti, Leptobotia elongate, Sinogas-
tromyzon szechuanensis szechuanensis).

Figure 3. Box-plots showing the contributions of 69 selected endemic fish species to the cluster structures in the upper Yangtze River. The 55 remaining species
have very low contributions (less than 5%) to the SOM map. Each cluster name is listed below each plot. - median, 25–75%, maximum, minimum, * outlier

Copyright # 2009 John Wiley & Sons, Ltd. River. Res. Applic. (2009)

DOI: 10.1002/rra

Y. HE ET AL.



Relationships between species and land-cover factors

Across all 18 variables, both the Kruskall-Wallis test and
multiple comparison tests revealed that land-cover types
differentiated significantly not only among clusters, but also
between any two clusters. In detail, six (ASM, DG, BR, GR,
ASG, F) varied significantly among clusters, while F and
ASM in cluster IIb1 differentiated significantly from that
in cluster Ia and Ib (Table III). The percentage of F
increased significantly from cluster Ia to cluster IIb2
(p< 0.0001). On the other hand, the percentage of ASM,
PG, DG, BR, G and ASG, decreased significantly from
cluster Ia to cluster IIb2 (p< 0.05).

Themost influential factors, separating the five clusters Ia,
Ib, IIa, IIb1 and IIb2 (Figure 4), were identified by
discriminant function analysis and principal component
analysis. Four discriminant functions were generated, and
the random Monte Carlo permutation test showed that they
were highly significant (p< 0.001). These functions (F1, F2,
F3 and F4) accounted for 40, 31, 17 and 12% of the between-
clusters variability, respectively. F1 separated clusters Ia and
II (i.e. IIa, IIb1 and IIb2). It was mainly determined by the F
(cosine¼#0.68) and the ASM (cosine¼ 0.56), and
secondly by the DG, L, BR and GR (cosine¼ 0.42). F2
separated clusters Ib and II (i.e. IIa, IIb1 and IIb2). It was
mainly determined by the F (cosine¼#0.51) and secondly
by the ASM (cosine¼ 0.50).

The results of the CIA co-structure analysis between the
two datasets are shown in Figure 5. According to the

eigenvalue histogram, the first two axes accounted for 67 and
10% of the total variability, respectively, which presented a
good initial summary of the co-structure between the two
datasets. This eigenvalue diagram emphasized the high
importance of the first axis. Considering only the first co-
inertia axis, it is clear that three land-cover variables (ASM,
GL and F) are the most important features correlated with
the distribution of fish fauna. The concordance between
land-cover and fish species data matrices was highly
significant (Monte Carlo permutation test, p< 0.001),
although the overall similarity in the structure of the two
datasets was low resulting in a RV-coefficient of 0.32. Sites 1
(Tuotuo River) and 2 (Tongtian River) were very different
from the others in the co-structure ordination (Figure 5c) and
long lines at these two sites meant low relationships between
endemic fish fauna and land-cover variables.

DISCUSSION

Geographic distribution of endemic fish assemblages

According to similarities in the composition of endemic
fish, the sampling sites were classified into five clusters
through the SOM in the present study. These were
significantly differentiated from each other and reflected
the longitudinal gradient (i.e. upstream-downstream) in the
upper Yangtze River Basin. The richness of the endemic
species of each assemblage increases according to the
longitudinal changes within the basin from the source to the

Table III. Mean values ($SE, standard error) of the percentage (%) of eighteen land-cover variables for each cluster

Variables Clusters

Ia Ib IIa IIb1 IIb2

Needle-leaved evergreen forest 18.57($4.70) 26.37($4.46) 22.65($4.33) 17.26($3.10) 25.21($3.70)
Broad-leaved evergreen forest 12.21($5.08) 15.02($3.13) 16.74($4.68) 4.77($1.16) 13.10($4.90)
Broad-leaved deciduoud forest 1.01($0.47) 0.00($0.00) 2.08($1.43) 0.19($0.12) 0.00($0.00)
Bush 6.97($2.31) 3.13($1.10) 3.93($0.59) 3.41($1.07) 14.12($3.36)
Sparse woods 1.61($1.08) 3.17($1.59) 2.19($0.88) 0.32($0.18) 0.52($0.25)
Alpine and sub-alpine meadowabc 33.97($6.15) 32.82($5.35) 14.85($2.95) 0.53($0.24) 0.26($0.06)
Slope grassland 1.60($0.62) 1.00($0.60) 2.63($0.75) 0.05($0.03) 0.07($0.03)
Plain grassland 1.72($0.79) 1.60($0.46) 0.70($0.48) 0.07($0.04) 0.00($0.00)
Desert grasslanda 0.23($0.11) 0.03($0.02) 0.00($0.00) 0.00($0.00) 0.00($0.00)
City 0.10($0.07) 0.03($0.02) 0.00($0.00) 0.57($0.32) 0.00($0.00)
River 4.83($1.52) 1.22($0.34) 3.72($0.81) 2.63($0.44) 1.78($0.74)
Lake 2.87($1.14) 0.24($0.14) 0.70($0.35) 0.25($0.06) 0.34($0.14)
Swamp 0.00($0.00) 0.02($0.01) 0.04($0.03) 0.00($0.00) 0.00($0.00)
Glacier 0.30($0.18) 0.11($0.05) 0.61($0.38) 0.00($0.00) 0.00($0.00)
Bare rocksa 1.27($0.59) 0.21($0.07) 0.00($0.00) 0.00($0.00) 0.00($0.00)
Gravela 0.05($0.02) 0.01($0.00) 0.00($0.00) 0.00($0.00) 0.00($0.00)
Farmlandab 5.39($2.29) 12.72($4.81) 29.07($7.31) 69.95($4.06) 44.60($6.83)
Alpine and sub-alpine plain grassa 7.30($3.47) 2.31($0.90) 0.08($0.05) 0.01($0.00) 0.00($0.00)

ashowing the significant difference among clusters by using the Kruskall-Wallis tests (p< 0.05).
bshowing the significant difference between cluster IIb1 and Ia/Ib by the multiple comparison tests.
cshowing the significant difference between cluster IIb2 and Ib by the multiple comparison tests.
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river mouth. In addition, fish assemblages are also closely
correlated with the topography and geomorphology of the
Yangtze River. The Yangtze River lies across the three large
topographic platforms of the Chinese mainland and the
upper Yangtze River crosses the first and second platform.
Along with the typical monsoon climate, the upper Yangtze
River traverses the varied different geologic structures and
terrain, and is then divided into three topographic types
(Hydrology Bureau of Changjiang Water Resources
Committee, 2003). The headwaters of the Yangtze River,
including the Tuotuo River and the Tongtian River, flow
through the first topographic platform in the central part of
the Qinghai-Xizang plateau and are characterized by the
wide valley and the highest altitude (above 3500m). The
Hengduan Mountains Region on the marginal areas of
the Qinghai-Xizang Plateau, including the upper reaches of
the Jinsha River and its tributaries the Yalong River and the
Minjiang River, is the transitional section from the first
topographic platform to the second one. The rivers in this
region flow through incised valleys, with high-middle
altitude (from about 2000 to 3500m), steep slopes and rapid
flows. The Tiger-Leaping-Gorge of the Jinsha River is an
important boundary of the Qinghai-Xizang Plateau Fish
Fauna in the Yangtze River (Wu and Tan, 1991). Chuanjiang,
along with its tributaries the Tuojiang, Jialing, Chishui and
Wujiang Rivers, flows through the Sichuan Basin into the
second topographic platform and is characterized by broad
rivers and low altitude.
The five endemic fish assemblages in the upper Yangtze

River are closely related to the topographic characteristics.

Cluster Ia mainly corresponds to the first topographic
platform, cluster Ib and IIa correspond to the transitional
section from the first topographic platform to the second
one; cluster IIb1 and IIb2 correspond to the second
topographic platform.
Cluster Ia is mainly composed of the headwaters of the

Yangtze River and of several lakes. The headwaters of
Yangtze River are mainly covered by large areas of glacier,
frozen ground, alpine meadow and grassland. Because of the
high altitude, low temperature and poor nutrition, less
aquatic organisms and fish species are found in this area. The
lakes in this cluster are affiliated with the Yangtze River, and
characterized by high altitude, steep lakeshores and a small
water area, but high depth. Most fish species in the
headwaters of the Yangtze River or those in the lakes are
stenochoric, usually only one species occurs at one site.
Therefore, no indicator species were identified in this
cluster.
Cluster Ib is mainly composed of the upper parts of the

Jinsha River and the upstream of several tributaries located
in the Qinghai-Xizang and Yunnan-Guizhou Plateaus and
their marginal areas (Wu and Wu, 1992). This group is
characterized by high altitude, steep slopes and rapid waters.
Fish species are highly adapted to these kinds of
environments, and are biologically characterized by a
strong-swimming body and sticky eggs. Most of them are
Glyptosternoid, Schizothoracid and Triplophysa fishes,
which belong to Qinghai-Xizang Plateau Fish Fauna (Wu
and Tan, 1991). Only three indicator species were revealed
in this cluster, and Euchiloglanis davidi was deemed as the

Figure 4. DA. a) Axis 1 accounts for 40% and axis 2 for 31% of between-cluster variability, respectively. Each cluster is presented as ellipsoid with different
numbers in the centre (1, Cluster Ia; 2, Cluster Ib; 3, Cluster IIa; 4, Cluster IIb1; 5, Cluster IIb2). b) Circles showing the contribution of the land-cover variables

to F1 and F2. c) Histogram showing eigenvalues of the DA
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principal indicator species. It belongs to the Sisoridae, and
usually lives in the tributaries and mountain streams with
torrential flows and gravel riverbeds. These glyptosternoid
fishes adapt highly to the habitats of this cluster, which occur
along the uplifting of the Qinghai-Xizang Plateau (Wu and
Tan, 1991; Chen et al., 1996).

Cluster IIa includes mainly the lower parts of the Jinsha
River and the middle-stream and downstream of several
tributaries. With high-middle altitude and rapid flows, it is
mainly located at the edge of the Sichuan Basin. Compared
with other clusters in the present study, the richness of the
endemic fish species in cluster IIa is relatively high. Both the
Qinghai-Xizang Plateau and the river-plain fish fauna
coexisted in this cluster (Chen et al., 1986). Nine indicator
species were found in this cluster with the two principal
indicator species (Percocypris pingi pingi and Schizothorax
(Schizothorax) prenanti) being represented. Percocypris
pingi pingi belongs to the Barbinae, and is a kind of
coldwater and savage fish. Schizothoracid fish are the main
representatives of the Qinghai-Xizang Plateau fish fauna,
whose origin, evolution and distribution are related to the
uplifting of Qinghai-Xizang Plateau (Wu and Tan, 1991).
Schizothoracid fish at different specialization levels adapt to
different levels of altitude. Among them, Schizothorax
(Schizothorax) prenanti distributes widely in the rivers with
lower altitude; for instance, the downstream of the Jinsha
River, the upper and middle stream of the Minjiang River,

Chuanjiang and the downstream of the Wujiang River. It
mainly feeds on periphytic algae and usually lives in the
sault flexural reach of mountainous rivers (Wu and Tan,
1991). Overall, this cluster is characterized by the mingling
of two different fish faunas, and is dominated by fish
adaptive to low water temperatures and rapid flows.

Cluster Ib and IIa are transitional zones between the
plateau and basin, whereas cluster IIb1 goes directly into the
centre of the Sichuan Basin. Minjiang River, Tuojiang River,
Jialing River, Chishui River and other tributaries flow
through the Sichuan Basin and pour into the main channel in
this region (Hydrology Bureau of Changjiang Water
Resources Committee, 2003). This cluster is characterized
by complicated water systems, multiple river regimes (i.e.
rapid and slow waters coexisting, and shoals and deep pools
coexisting), weak slopes and low altitude, which exhibit the
high heterogeneous habitats of the fish. The richness of the
endemic species of cluster IIb1 varies from 24 to 46 and is
relatively high for the basin. The fishes in this cluster mainly
belong to the river-plain fish fauna, but scarcely distribute in
the edge of the Sichuan Basin and Qinghai-Xizang Plateau
(Chen et al., 1986). The indicator species in cluster IIb1 (27
species) are the most abundant, and the principal indicator
species are Rhinogobio ventralis, Procypris rabaudi,
Coreius guichenoti, Leptobotia elongate, Ancherythroculter
nigrocauda and Hemiculterella sauvagei. Because of the
complex habitats, fish life history and habits also reflect the

Figure 5. Results of Co-inertia analysis processed on the fish-environmental data matrices. a) Canonical weights of each species. b) Canonical weights of each
land-cover variable. c) Relationships between fish species distribution and land-cover variables at each site (the number in each pane is presented as each site
indicated in Figure 1 and Table I). Points and arrows represent the projected co-ordinates of each dataset, and these are joined by a line, where the length of the

line is proportional to the divergence between two datasets. d) Histogram of eigenvalues
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multiplicity and diversity. The first four species are
dominant species and represent major catches in the main
channel of the Yangtze River (Chuanjiang reach), whereas
the last two species prefer the tributaries of the upper
Yangtze River. Rhinogobio ventralis, Coreius guichenoti
and Leptobotia elongate spawn pelagic eggs, but Procypris
rabaudi, Hemiculterella sauvagei and Ancherythroculter
nigrocauda lay sticky eggs.
Only five sites were classified in cluster IIb2, including

three tributaries (the Daning, Wujiang and Qujiang Rivers)
of the upper Yangtze River. These are located at the edge of
the Yunnan-Guizhou Plateau or east of the Sichuan Basin,
which is far from the Qinghai-Xizang Plateau. Nevertheless,
there were no significant indicator species in this cluster,
which may be related to the different origins of these rivers.
In association with changes in longitude and altitude, the

endemic fish distribution in the upper Yangtze River was
represented by significantly different assemblages. Different
fish assemblages occurred in different river systems with
indicator species being highly adapted to specific habitats.
This complicated endemic fish assemblages’ distribution
was also highly correlated to the topographic and
geomorphic characteristics of the Qinghai-Xizang Plateau
and Sichuan Basin.

Land-cover impacts

Significant relationships between land-cover variables
and endemic fish assemblages were found in the upper
Yangtze River in this study. ASM, as well as F, played the
most important roles in discriminating different endemic fish
assemblages and in correlating species distributions. Other
studies also showed that agriculture land and forest may be
decisive for the distribution of fish assemblages (Pess et al.,
2002; Park et al., 2006). Moreover, the Kruskall-Wallis test
revealed that six land-cover variables differed significantly
between the clusters defined in the SOM. Among them,
ASM, ASG, DG, BR and GR were dominant in cluster I.
None of these were represented in cluster II. By comparison,
F mainly covered the cluster II and only covered about 10%
of cluster I, which indicated cluster II, especially cluster
IIb1, may be more influenced by human activities.
Each cluster had its unique land covers. Cluster Ia with

high altitude and plateau area was mainly covered by two
typical land cover types (ASM accounting for 45%, ASG
accounting for 27%). Cluster Ib was characterized by high
altitude and mountainous areas and corresponded to three
typical land cover types (ASM 49%, NEF 26% and BEF
11%). Cluster IIa, located at the edge of the Sichuan Basin,
was characterized by four land cover types (NEF 31%, ASM
21%, BEF 14% and F 10%). Cluster IIb1 in the centre
of Sichuan Basin was dominated by F (63%) and NEF
(18%). Cluster IIb2 was characterized by F (39%), NEF

(32%) and B (20%). Therefore, land covers in the upper
Yangtze River Basin had a distinct geographical distribution
pattern that was closely correlated to local climatic,
topographic and geomorphic characteristics (Roy et al.,
2003). Different endemic fish assemblage distributions were
also correlated to these geographical environments. Ende-
mic fish assemblage structure in the upper Yangtze River
basin was closely related to land cover features. An
understanding of these relationships will be helpful for
identifying the priority areas and species for restoration and
conservation.
Integrating multiple environmental factors may be more

powerful in explaining fish distribution patterns. Fitzpatrick
et al. (2001) concluded that the relative influence of
environmental characteristics on species distribution, abun-
dance and assemblage composition of aquatic organisms
was highly complex and interrelated. Singkran and Meixler
(2008) also revealed that mixed models containing both habitat
and land cover variables were more effective in explaining
complex fish distribution patterns. Therefore, integrating river
characteristics and catchment land-cover variables are required
to address the relative influence of environmental variables
on the fish distribution in the upper Yangtze River.

Implications for conservation

Endemic fish resources in the upper Yangtze River are
facing human-induced threats related to hydroelectric
development and overfishing. These activities hinder fish
migration, destroy fish spawning and living habitats, and
exhaust fish resources (Sun, 2008). Construction of natural
reserves is one effective approach to preserving endemic fish
resources (Cao, 2000). In the present study, cluster IIb1, with
abundant endemic species richness and indicator species and
complex topographic features (including multiple habitats),
was the most important area for endemic fish species
conservation. Park et al. (2003) also suggested that three
tributaries in the upper Yangtze River (the Chishui, Tuojiang
and Minjiang Rivers) should be considered as potential
suitable reserves for endemic species. A national nature
reserve for rare and endemic fishes in the upper Yangtze
River Basin has been established, mainly located in cluster
IIb1, but encompassing also a small area (the upstream of the
Chishui River) of cluster IIa. It includes 353.16 km of the
main channel of the Yangtze River from Xiangjiaba to
Masangxi, 90.1 km of the downstream of theMinjiang River,
the whole main stream of the Chishui River and branches in
its riverhead, the river-mouth of the Tuojiang River, the
Yuexi River, the Nanguang River, the Changning River and
the Yongning River. Because of the unique geology,
geomorphology, climate and natural eco-environment, the
reserve was expected to preserve three rare fishes
(Psephurus gladius, Acipenser dabryanus and Myxocypri-
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nus asiaticus) and dozens of endemic fishes inhabiting these
water areas. However, several large hydropower stations
(e.g. Xiangjiaba, Xiluodu, Baihetan and Wudongde) are
being or will be constructed in the upper Yangtze River, and
these may accumulatively influence the hydrological regime
and water temperature of its main channel. Therefore, it is
necessary to intensify research into monitoring and
mitigation measures, while strengthening the protection of
one whole river (the Chishui River) in the reserve.

A network of conservation units (reserves), rather than a
single reserve would improve biodiversity in all its
manifestations (Bonn and Gaston, 2005). Therefore, in
view of the different endemic fish assemblages (with
multiple habitats and different fish compositions) in the
upper Yangtze River, different reserves aimed at different
conservation objectives should be set up in order to preserve
fish diversity. Cluster Ia primarily consists of separate water
systems that mainly face threats from invasive species. It is
necessary to dispersedly conserve many stenochoric species.
Depending on the effects of hydroelectric stations and the
particular endemic fish species composition in cluster Ib,
more attention should be paid to the Anning River, the upper
reach of the Jinsha River and the Dadu River, which could be
preserved as potential natural reserves for endemic fish. For
instance, the Anning River, a small tributary of the Yalong
River, is an important habitat for four endemic fish species
(Yunnanilus sichuanensis, Triplophysa (Triplophysa)
xichangensis, Triplophysa (Triplophysa) daqiaoensis, Tri-
plophysa (Triplophysa) brevibarba) that are only found in
this river. Cluster IIa, having the highest number of endemic
fish species, is also an important hydroelectric development
area at present. Because of the effects of large hydroelectric
projects, it is difficult to initiate conservation of the main
channel of these rivers in cluster IIa, but conservation of the
tributaries should be considered. Especially for the middle
reach of the JinshaRiver, it is necessary to keep certain reaches
away from hydroelectric development. Cluster IIb2 has been
severely influenced by hydropower stations. For instance, the
Daning River is located in the reservoir of the Three Gorges;
the hydropower cascade development in the Wujiang River is
now almost finished. However, attention should be paid to
conserve the branches of the Wujiang River.

Three key points require more attention for the
conservation of endemic fishes in the upper Yangtze River.
First, selection of several protected sites aimed at different
species; second, maintenance of at least one flowing reach in
each river; third, develop the conservation of tributaries.
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Abstract 

The present work describes the ability of two modeling methods, Classification 

and Regression Tree (CART) and Random Forest (RF), to predict endemic fish 

assemblages and species richness in the upper Yangtze River, and then to identify the 

determinant environmental factors contributing to the models. The models included 

24 predictor variables and 2 response variables (fish assemblage and species richness) 

for a total of 46 site units. The predictive quality of the modeling approaches was 

judged with a leave-one-out validation procedure. There was an average success of 

60.9% and 71.7% to assign each site unit to the correct assemblage of fish, and 73% 

and 84% to explain the variance in species richness, by using CART and RF models, 

respectively. RF proved to be better than CART in terms of accuracy and efficiency in 

ecological applications. In any case, the mixed models including both land-cover and 

river characteristic variables were more powerful than either individual one in 

explaining the endemic fish distribution pattern in the upper Yangtze River. For 

instance, altitude, slope, length, discharge, runoff, farmland and alpine and sub-alpine 

meadow played important roles in driving the observed endemic fish assemblage 

structure, while farmland, slope grassland, discharge, runoff, altitude and drainage 

area in explaining the observed patterns of endemic species richness. Therefore, the 

various effects of human activity on natural aquatic ecosystems, in particular, the flow 

modification of the river and the land use changes may have a considerable effect on 

the endemic fish distribution patterns on a regional scale. 

Keywords: endemic fish, species richness pattern, environmental variables, Yangtze 

River, CART, RF



Introduction 

In recent years, an increasing number of studies in ecology, biogeography, and 

conservation biology have tried to build predictive models of species distribution 

aimed at a better protection and management of natural resources and ecosystems 

(Guisan and Thuiller, 2005). Predicting fish assemblages as well as species richness is 

not only relevant to the evaluation of environmental quality but also important as a 

framework for ecological studies on species interactions. Species composition models 

may support environmental management by simulating different environmental 

scenarios and pointing out the most critical factors that need changing or regulating 

(Lek et al., 2005). 

Fish assemblages are more effective in integrating the biological response to 

ecological processes than other biotic components, and are therefore one of the most 

sensitive and reliable indicators of the ecological status of streams and rivers (Fausch 

et al., 1990; Harris, 1995; Lek et al., 2005; Park et al., 2006). The upstream-

downstream gradient is probably the most well-known large-scale pattern in stream 

fish assemblages, and correspondingly the flow regime, temperature, food availability 

and substrate conditions of the river also vary from upstream to downstream areas 

(Rahel and Hubert, 1991; Belliard et al., 1997; Marchetti and Moyle, 2001; Grubbs et 

al., 2007). Any change in expected assemblages could indicate environmental changes 

in the area (Hughes et al., 1986), which can provide a useful framework for studying 

and managing streams in different sub-geographic areas of certain drainage basins 

(Céréghino et al., 2001; Oberdorff et al., 2001). 

To evaluate the changes of communities in space and/or time, diversity indices 

are commonly used (Hellawell, 1986; Karr, 1991; Legendre and Legendre, 1998; 

Oberdorff et al., 2002). Among them, species richness (SR) is an integrative 

descriptor of the animal community, because it is influenced by a large number of 

natural environmental factors as well as anthropogenic disturbances, including the 

geological history of the area, environmental stability, ecosystem productivity and 

heterogeneity (Lenat, 1988; Céréghino et al., 2003). For example, Hughes and 

Gammon (1987) reported that species richness could be as a function of stream order 

in North American rivers. Hugueny (1989) found that in West Africa, the species 

richness of a river was related to the surface area of its catchment and its discharge. 



Therefore, species richness is commonly used as an ecological indicator for 

ecosystem assessments.  

In recent years, considerable attention has been given to the development of 

modeling techniques for exploring data sets. These either overcome the parametric 

assumption or identify non-linear relationships between the data (Breiman et al., 1984; 

Hastie and Tibshirani, 1986; Rumelhart and McClelland, 1986; Breiman, 2001). 

Among all the modeling techniques, Classification and Regression Tree (CART), and 

Random Forest (RF) were chosen in the present study. CART, known as recursive 

partitioning regression, has received more recent attention through Breiman et al. 

(1984). RF, showing performance at the level of boosting and support vector 

machines, is one of the most successful ensemble methods and an effective tool in 

prediction. Recently, both of them have been successfully applied in many fields 

including ecology, bio-informatics, genetics and earth science (remote sensing) 

(Moisen and Frescino, 2002; Chen and Liu, 2005; Dolan and Parker, 2005; Pal, 2005; 

Barker et al., 2006; Cutler et al., 2007; De'ath, 2007; Peters et al., 2007; Elith et al., 

2008; Perdiguero-Alonso et al., 2008). 

The Yangtze River is the third largest river in the world, the upper reaches of 

which have been marked as an eco-functional barrier and a key area for ecological 

restoration (Sun, 2008). Because of its complicated natural environment giving high 

diversity of fish habitats, together with a well-developed drainage system and 

abundant water resources, the upper Yangtze River supports the richness of 

freshwater fish species in the palearctic zone (Nelson, 2006; Sun, 2008). However, 

the upper Yangtze River is also the area very impacted by the high density of the 

human population that exerts considerable pressure on the environment, e.g. intensive 

agricultural practices, excess hydroelectric development, developed industry, and 

abundant mineral resources (Chen, 2000; Tian, 2004; Sun, 2008).  

In a previous study, five endemic fish community assemblages across the upper 

Yangtze River network were defined by a self-organizing map (SOM) model (He et 

al., in press). They reflected not only the longitudinal gradient (i.e. upstream-

downstream), but also the topographic and geomorphologic characteristics of the 

Yangtze River. The endemic fish distribution pattern was also correlated with land 

cover features of the catchment area. However, several studies have shown that a 



mixed model containing both fish habitat and land cover variables may be more 

effective than any individual model in explaining some of the complex fish 

distribution patterns (Fitzpatrick et al., 2001; Singkran and Meixler, 2008). Therefore, 

in order to have a better understanding of endemic fish distribution pattern in the 

upper Yangtze River, both land-cover and characteristic river variables were 

integrated into the modeling in the present study. 

In this paper, the capacity of machine learning methods (i.e., CART and RF) to 

predict the assemblages types and species richness of endemic fish in the upper 

Yangtze River was examined by using 24 environmental variables. In addition, the 

present study also aimed to identify the importance of these predictive variables on 

the spatial distribution patterns of endemic fish in the models, with a view to their 

preservation in the upper Yangtze River. 

Material and Methods 

Study area 

The Upper Yangtze River from its headwaters to Yichang City in Hubei 

Province has a total length of 4 500 km, and a catchment area of 1.0×106 km2. Forty-

six site units were encompassed. A site unit here represents one lake or one river or 

even one reach of a river (Table 1), and the specific details are shown in He et al. (in 

press).  

Response variables 

In the present study, fish assemblages and species richness (SR) were considered 

as two response variables. According to the presence-absence distribution data of 124 

endemic fish in the upper Yangtze River basin, five assemblages (Ia, Ib, IIa, IIb1, IIb2) 

were defined by He et al. (in press). They were composed of 12, 9, 9, 11 and 5 sites, 

respectively. These assemblages varied significantly in terms of individual species 

patterns (Table 2, Table 3). The species richness per site unit was also calculated from 

the presence-absence distribution data of 124 endemic fish in the upper Yangtze River 

basin. Species richness was log (SR+1) transformed before being used in the model, 

as its distribution was far from the norm. 



Predictor variables 

At each site unit, 24 environmental variables were recorded as predictors. 

Predictor variables were extracted from several sources: firstly, 18 land-cover classes 

from the China Land Cover map through the Geographical Information System (GIS); 

secondly, 6 characteristic river variables including hydrologic data (discharge, runoff) 

and topographic data (length, drainage area, altitude, slope) from maps and 

bibliographies including monographs (Agricultural Regionalization Committee of 

Sichuan Province, 1991; Ding, 1994; Hydrology Bureau of Changjiang Water 

Resources Committee, 2003) and investigation papers (Shan, 1996; Hui et al., 2000; 

Huang, 2003; Luo and Liu, 2003; Fang et al., 2004; Tang et al., 2004; Guo, 2005; 

Wang et al., 2005; Liu and Shen, 2006; Zhou et al., 2006; Zhang et al., 2007). A list 

of the predictor variables and their descriptions is provided in Table 4. 

Table 1. Sampling site units information in the upper Yangtze River basin. 

Sampling site Abbreviation Sampling site Abbreviation 
Tuotuo River TT The Middle-stream of Qingyi River QYM 
Tongtian River TO The Downstream of Qingyi River QYD 
The Upstream of Jinsha River JSU The Upstream of Tuojiang River TJU 
The Middle-stream of Jinsha River JSM The Middle-stream of Tuojiang River TJM 
The Downstream of Jinsha River JSL The Downstream of Tuojiang River TJD 
Chenghai CH The Upstream of Chishui River CSU 
Dianchi DC The Middle-stream of Chishui River CSM 
The Upstream of Yalong River YLU The Downstream of Chishui River CSD 
The Middle-stream of Yalong River YLM The Upstream of Jialing River JLU 
The Downstream of Yalong River YLD The Middle-stream of Jialing River JLM 
Lugu Lake LG The Downstream of Jialing River JLD 
The Upstream of Anning River ANU The Upstream of Fujiang River FJU 
The Middle-stream of Anning River ANM The Middle-stream of Fujiang River FJM 
The Downstream of Anning River AND The Downstream of Fujiang River FJD 
Qionghai QH The Upstream of Qujiang River QJU 
Chuanjiang CJ The Middle-stream of Qujiang River QJM 
The Upstream of Minjiang River MJU The Downstream of Qujiang River QJD 
The Middle-stream of Minjiang River MJM The Upstream of Wujiang River WJU 
The Downstream of Minjiang River MJD The Middle-stream of Wujiang River WJM 
The Upstream of Dadu River DDU The Downstream of Wujiang River WJD 
The Middle-stream of Dadu River DDM Caohai CH 
The Downstream of Dadu River DDD Daning River DN 
The Upstream of Qingyi River QYU Xiangxi River XX 



Table 2. List of the indicator species of each community assemblage in the second dichotomy hierarchical level. 

Assemblage I Assemblage II 
Species Indicator Value Status Species Indicator Value Status 

Schizopygopsis malacanthus malacanthus Herzenstein 19.84 * Acipenser dabryanus Duméril 32.00 ** 
Triplophysa (Triplophysa) markehensis (Zhu et Wu) 14.29 * Sinibrama taeniatus (Nichols) 52.00 ** 

   Ancherythroculter kurematsui (Kimura) 72.00 ** 
   Ancherythroculter wangi (Tchang) 65.64 ** 
   Ancherythroculter nigrocauda Yih et Woo 72.00 ** 
   Hemiculterella sauvagei Warpachowski 80.00 ** 
   Hemiculter tchangi Fang 84.17 ** 
   Megalobrama pellegrini (Tchang) 65.64 ** 
   Xenocypris yunnanensis Nichols 36.36 ** 
   Xenocypris fangi Tchang 68.00 ** 
   Coreius guichenoti (Sauvage et Dabry) 56.89 ** 
   Rhinogobio cylindricus Günther 68.76 ** 
   Rhinogobio ventralis (Sauvage et Dabry) 68.00 ** 
   Platysmacheilus nudiventris Lo, Yao et Chen 52.27 ** 
   Abbottina obtusirostris Wu et Wang 60.84 ** 
   Gobiobotia abbreviata Fang et Wang 37.23 ** 
   Xenophysogobio boulengeri Tchang 100.00 ** 
   Xenophysogobio nudicorpa (Huang et Zhang) 24.00 ** 
   Acheilognathus omeiensis (Shih et Tchang) 44.31 ** 
   Percocypris pingi pingi (Tchang) 37.23 ** 
   Acrossocheilus monticolus (Günther) 73.50 ** 
   Onychostoma angustistomata (Fang) 84.00 ** 
   Bangana rendahli (Kimura) 85.33 ** 
   Procypris rabaudi (Tchang) 82.29 ** 
   Paracobitis potanini (Günther) 71.43 ** 
   Botia reevesae Chang 64.80 ** 
   Parabotia bimaculata Chen 40.33 ** 
   Leptobotia elongata (Bleeker) 86.21 ** 
   Leptobotia rubrilabris (Dabry) 72.00 ** 
   Beaufortia szechuanensis (Fang) 38.40 ** 
   Jinshaia abbreviata (Günther) 56.35 ** 
   Jinshaia sinensis (Sauvage et Dabry) 72.73 ** 
   Sinogastromyzon sichangensis Chang 46.12 ** 
   Sinogastromyzon szechuanensis szechuanensis Fang 85.33 ** 
   Liobagrus marginatoides (Wu) 34.57 ** 
   Schizothorax (Schizothorax) prenanti (Tchang) 36.00 * 
   Paracobitis wujiangensis Ding et Deng 16.00 * 
   Leptobotia microphthalma Fu et Ye 20.00 * 
   Beaufortia liui Chang 20.57 * 
   Hemimyzon yaotanensis (Fang) 16.00 * 
   Rhinogobius szechuanensis (Liu) 16.00 * 



Table 3. List of main indicator species of each community assemblage in fifth dichotomy hierarchical level. IV - indicator value; NONE – no indicator 

species in this assemblage; ** - the primary indicator species for each assemblage; * - the secondary indicator species for each assemblage. 

Assemblage I Assemblage II 
Assemblage Ia Assemblage Ib Assemblage IIa Assemblage IIb1 Assemblage IIb2 
Species IV Species IV Species IV Species IV Species IV 

NONE **Oreias dabryi dabryi Sauvage 45.8 **Sinibrama taeniatus (Nichols) 41.9 **Acipenser dabryanus Duméril 28.4 *Sinibrama longianalis 
Xie,Xie et Zhang 20.0 

  **Euchiloglanis kishinouyei 
Kimura 32.0 **Percocypris pingi pingi (Tchang) 54.7 **Ancherythroculter kurematsui 

(Kimura) 61.1 *Pseudohemiculter 
kweichowensis (Tang) 20.0 

  **Euchiloglanis davidi (Sauvage) 37.4 **Onychostoma angustistomata (Fang) 33.9 **Ancherythroculter wangi (Tchang) 50.0 *Sinocrossocheilus 
guizhouensis Wu 20.0 

  *Triplophysa (Triplophysa) 
markehensis (Zhu et Wu) 25.0 **Schizothorax (Schizothorax) prenanti 

(Tchang) 44.4 **Ancherythroculter nigrocauda Yih et 
Woo 61.1   

    **Botia reevesae Chang 45.0 **Hemiculterella sauvagei 
Warpachowski 55.0   

    **Beaufortia szechuanensis (Fang) 36.3 **Hemiculter tchangi Fang 47.8   
    **Sinogastromyzon sichangensis Chang 41.8 **Megalobrama pellegrini (Tchang) 33.5   
    **Pareuchiloglanis sinensis (Hora et Silas) 27.8 **Xenocypris yunnanensis Nichols 52.9   

    **Pareuchiloglanis anteanalis Fang, Xu et 
Cui 39.7 **Xenocypris fangi Tchang 34.2   

    *Schizothorax (Racoma) kozlovi Nikolsky 22.2 **Sarcocheilichthys davidi (Sauvage) 29.1   

    *Triplophysa (Triplophysa) anterodorsalis 
(Zhu et Cao) 22.2 **Coreius guichenoti (Sauvage et 

Dabry) 32.3   

    *Leiocassis longibarbus Cui 22.2 **Rhinogobio cylindricus Günther 43.3   

    *Liobagrus marginatoides (Wu) 28.6 **Rhinogobio ventralis (Sauvage et 
Dabry) 53.5   

      **Platysmacheilus nudiventris Lo, Yao 
et Chen 49.1   

      **Abbottina obtusirostris Wu et Wang 47.9   
      **Gobiobotia abbreviata Fang et Wang 34.3   
      **Xenophysogobio boulengeri Tchang 44.0   

      **Acheilognathus omeiensis (Shih et 
Tchang) 44.8   

      **Acrossocheilus monticolus (Günther) 45.8   
      **Sinilabeo hummeli Zhang 27.3   
      **Bangana rendahli (Kimura) 40.7   
      **Procypris rabaudi (Tchang) 39.3   
      **Parabotia bimaculata Chen 27.3   
      **Leptobotia elongata (Bleeker) 37.9   
      **Leptobotia rubrilabris (Dabry) 40.9   
      **Jinshaia abbreviata (Günther) 32.0   

      **Sinogastromyzon szechuanensis 
szechuanensis Fang 40.7   

      *Paracobitis potanini (Günther) 31.4   



Table 4. Twenty-four quantitative variables used to predict endemic fish assemblages 

and species richness in the upper Yangtze River. 

Type Abbreviation Variable Range 
NEF Needle-leaved Evergreen Forest (%) 0~72.4 
BEF Broadleaved Evergreen Forest (%) 0~61.7 
BDF Broadleaved Deciduous Forest (%) 0~18.8 

B Bush (%) 0~38.2 
SW Sparse Woods (%) 0~20.1 

ASM Alpine and Sub_alpine Meadow (%) 0~81.3 
SG Slope Grassland (%) 0~9.1 
PG Plain Grassland (%) 0~8.6 
DG Desert Grassland (%) 0~1.2 
C City (%) 0~4.5 
R River (%) 0~18.7 
L Lake (%) 0~14.7 
S Swamp (%) 0~0.4 

GL Glacier (%) 0~5.1 
BR Bare Rocks (%) 0~6.7 
GR Gravels (%) 0~0.2 
F Farmland (%) 0~97.1 

Land-cover type 

ASG Alpine and Sub-alpine Plain Grassland (%) 0~41.6 
Discharge Discharge (m3/s) 1.4~14200 Hydrologic 

Runoff Runoff (108m3) 0.45~4382 
Length Length (km) 9.4~1040 

DA Drainage Area (km2) 120~532200 
Altitude Altitude (m) 141~5145 

Topographic 

Slope Slope (‰) 0~34.7 
 

Modeling Techniques 

Two predictive models (CART and RF) were optimized from a set of 24 

environmental variables and aimed at predicting endemic fish assemblages and 

species richness. Given the small sampling data size, a cross-validation strategy 

testing (leave-one-out procedure) was used as a testing procedure for these two 

prediction methods. The leave-one-out (LOO) procedure, a method commonly used 

for cross-validation in the field of machine learning, consists of randomly removing 

from the training data one element, constructing the decision rule on the basis of the 

remaining training data and then testing on the removed element. All the removed 

elements made up the testing data set. The quality of the model is entirely based on 

the performance in the testing set. Before modeling, all the predictors were log (X+1) 

transformed to stabilize variances. All the modeling and analyses were done with the 

R software (Ihaka and Gentleman, 1996) using the tree package (Breiman et al., 1984) 

and “randomForest” package (Breiman, 2001). 



CART Model: A classification and regression tree is called a classification tree if the 

response variable is qualitative (e.g. fish assemblage) and a regression tree if the 

response variable is quantitative (e.g. species richness). CART analysis consists of 

four basic steps: tree building, stopping the tree building process, tree “pruning” and 

optimal tree selection. During tree building, the initial node on a tree is called the 

root. From the root, the model is fitted using binary recursive partitioning. This means 

the data are successively broken into left and right branches with the splitting rules 

defined by the predictor variable values. Splitting continues down to the terminal 

nodes where response values are all the same within a node or data are too sparse for 

additional splitting. At the terminal node, the predicted response is given that is the 

average or majority of the response values in that node for continuous or discrete 

variables, respectively.  

RF Model: It implements Breiman’s random forest algorithm in which prediction is 

obtained by aggregating classification or regression trees and choosing splits of the 

trees (Breiman, 2001). Each tree is constructed using a different bootstrap sample of 

the data, and each node is split using the best among a subset of predictors randomly 

chosen at that node (Liaw and Wiener, 2002). The Gini index (Breiman et al., 1984) is 

used as the splitting criterion. At every split one of the mtry variables (number of 

variables randomly selected at each node) is used to form the split and there is a 

resulting decrease in the Gini index. The sum of all decreases in the forest due to a 

given variable, normalized by the number of trees, forms the Gini measure (Breiman, 

2003). In our study the importance of the variables was also estimated by the Gini 

criterion, which may be more appropriate for a small sample size (Archer and Kimes, 

2008). The Gini importance measures can be interpreted as a variable’s degree of 

discriminability between the classes (Oh et al., 2003). The largest tree possible is 

grown and is not pruned. The root node of each tree in the forest contains a bootstrap 

sample from the original data as the training set. Observations in the original data set 

that do not occur in a bootstrap sample are called out-of-bag (OOB) observations.	  One 

can arrive at OOB predictions as follows: for a case in the original data, predict the 

outcome by plurality vote involving only those trees that did not contain the case in 

their corresponding bootstrap sample. By contrasting these OOB predictions with the 

training set outcomes, one can arrive at an estimate of the prediction error rate 

referred to as the OOB error rate.  



Results 

Prediction of endemic fish assemblages  

Among all environmental variables, six land-cover variables (alpine and sub-

alpine meadow, desert grassland, bare rocks, gravel, alpine and sub-alpine plain 

grassland, and farmland), two hydrologic variables (discharge and runoff), and two 

topographic variables (altitude and slope) varied significantly among the five 

assemblages when using the Kruskall-Wallis test (p<0.05). All other 14 variables 

were not significantly different among fish assemblages (p>0.05). 

By using all the 24 variables, the predicted assignment of each site unit to the 

correct assemblage had an average success of 60.9% and 71.7% from CART and RF 

models respectively, which meant it was possible to predict the assemblages by these 

environmental variables. When only river characteristics were considered, the 

prediction accuracy of CART and RF models was 58.7% and 67.4%, respectively. 

When only land cover features were considered, the prediction accuracy of CART and 

RF models decreased dramatically to 37% and 43.5%, respectively. These showed 

that river characteristics were more decisive than basin land-cover features in 

predicting the endemic fish assemblages of the upper Yangtze River. Overall, the RF 

model was more powerful than the CART model in the prediction accuracy of 

endemic fish assemblages. 

Considering all the data sets, the prediction success was relatively good for 

assemblages Ia, Ib, and IIb1 in either model (from 66.7% to 88.9%), but it was lower 

for assemblages IIa and IIb2 (from 20% to 55.6%, see detail in Table 5). Moreover, 

about 11% and 33% of the sites that had been classified in cluster IIb1 and Ib on the 

basis of environmental variables in reality hosted a type IIa assemblage. Similarly, 

about 20% and 60% of the sites predicted as belonging to cluster Ia and IIb1 hosted 

an assemblage of cluster IIb2. Thus, the assemblage IIb2 was more frequently 

observed than expected. 

The relative contributions of input variables in the model enabled the variables 

driving the assemblages of endemic fishes in the upper Yangtze River to be 

understood. In the CART model, altitude, slope, length and discharge are the 



dominant variables for discriminating five endemic fish assemblages. In the RF model, 

altitude and slope are the dominant variables, while runoff, discharge, farmland and 

alpine and sub-alpine plain grassland are of secondary importance (Figure 1).  

Table 5. Confusing matrix showing the leave-one-out cross validation of the 
RandomForest model and CART model by using 24 environmental variables (The 
values in parentheses are from CART model). The overall percentage of successful 
prediction is 71.7% and 60.9%, respectively. 

Observed/Predicted Ia Ib IIa IIb1 IIb2 Success (%) 
Ia 8 (6) 0 (0) 0 (0) 0 (0) 1 (1) 88.9 (66.7) 
Ib 1 (1) 10 (9) 3 (2) 0 (0) 0 (0) 83.8 (75.0) 
IIa 0 (2) 2 (3) 5 (4) 1 (2) 0 (1) 55.6 (44.4) 

IIb1 0 (0) 0 (0) 1 (0) 9 (8) 3 (2) 81.8 (72.7) 
IIb2 0 (0) 0 (0) 0 (3) 1 (1) 1 (1) 20.0 (20.0) 

 

 

Figure 1. Models predicting endemic fish assemblages in the upper Yangtze River by 
using CART (a) and RF (b) models, showing the relative contribution of 
environmental variables. The total prediction score of the CART and RF models was 
60.9% and 71.7%, respectively. 

 



Prediction of species richness  

The species richness for each site unit ranged from 2 to 56, which could be 

satisfactorily predicted through the CART and RF models by using a set of 24 

environmental variables (Figure 2). When land cover features and river characteristics 

were considered together, 73% and 84% of the variance in species richness could be 

explained by the CART and RF models, respectively (p<0.01). When only land cover 

features were considered, the variance decreased to 61% and 71% by the CART and 

RF models, respectively. When only river characteristics were considered, the 

variance explained by the CART model decreased dramatically to 47%, but the 

variance explained by the RF model (81%) was similar to that obtained from the 

combined data set. Obviously, adding river characteristic variables to the land cover 

predictive models could improve the accuracy of the species richness prediction. In 

any case, the RF model was better than the CART model at predicting endemic 

species richness when considering the accuracy. 

 

Figure 2. Scatter plot between observed and predicted endemic fish species richness 

(log transformed), by CART (a) and RF (b) models. 

As for the contribution of the input variables, river characteristics were the major 

factors in determining endemic species richness in all the predictive models. In the 

CART model, farmland, runoff, altitude, drainage area and slope grassland played the 

most important roles in predicting the endemic species richness (Figure 3a), while in 

the RF model, discharge, runoff, farmland and altitude were the main determinants 

(Figure 3b).   



 

Figure 3. Model predicting the endemic species richness in the upper Yangtze River 

by CART (a) and RF (b) models, showing the relative contribution of environmental 

variables. In RF (b) model, two different methods (%IncMSE and IncNodePurity) 

were used. 

Discussion 

Performance of modeling methods used 

Classification and regression trees (CART) and Random Forest (RF) are both 

powerful tools for the analysis of complex ecological data that are recognized for their 

accuracy, efficiency, and robustness over other traditional methods (Breiman et al., 

1984; De'ath and Fabricius, 2000; Breiman, 2001; Razi and Athappilly, 2005; Prasad 

et al., 2006; Cutler et al., 2007; Peters et al., 2007; Perdiguero-Alonso et al., 2008). 

Their structure is non-parametric, and they are able to handle non-linear relationships 

well (Breiman et al., 1984; Breiman, 2001). They make no distributional assumptions 

about the predictor or response variables, and even the relationship between them 

(Cutler et al., 2007). Both of them have sophisticated methods for dealing with 

missing values. For instance, they use surrogate values (e.g., the median of the non-

missing values in their column) to replace missing values in order to minimize the 

information loss. It is also easy to interpret complex results graphically involving 

interactions in these two models. 

In comparison to CART, RF as an ensemble learning technique is proven to be 

better in terms of accuracy and efficiency in ecological applications (Moisen and 



Frescino, 2002; Gislason et al., 2004). In the present study, RF was also shown to be 

more accurate than CART in not only fish assemblage reassignment but also in 

species richness prediction in the upper Yangtze River basin. A random forest usually 

consists of a compilation of classification or regression trees (e.g., 1000 trees in a 

single random forest) to produce more accurate classifications and regressions than 

single-tree models (i.e., CART) (Liaw and Wiener, 2002). The trees are grown to 

maximum size without pruning and aggregation is by averaging the trees (Prasad et 

al., 2006). It selects only the best split among a random subset of variables at each 

node, but not among the sequence of pruned trees. The Random Forest algorithm does 

not tend to over-fit, a very useful feature for the prediction capacity of the new dataset. 

It also does not require guidance. In conclusion, this averaging technique improves 

the performance of single-tree models by reducing variance (through model averaging) 

and bias (through forward stagewise fitting) (Elith et al., 2008).  

Determinants of endemic fish assemblages 

Different endemic fish assemblages in the upper Yangtze River basin exhibiting 

the topographic and geomorphic characteristics were highly adapted to specific 

environments. Assemblage Ia, with no indicator species, was mainly composed of 

stenochoric fish species (e.g., Anabarilius liui chenghaiensis, Anabarilius 

qionghaiensis, Schizothorax (Racoma) ninglangensis, Yunnanilus caohaiensis). 

Assemblage Ib, with three indicator species (Euchiloglanis kishinouyei, Euchiloglanis 

davidi and Oreias dabryi dabryi), was dominated by the Qinghai-Xizang plateau fish 

fauna. Assemblage IIa, the transitional zone, was characterized by the plateau and 

plain species (i.e., Percocypris pingi pingi, Schizothorax (Schizothorax) prenanti, 

Pareuchiloglanis sinensis). Assemblage IIb1 mainly consisted of plain fish fauna, for 

instance, Rhinogobio ventralis, Procypris rabaudi, Coreius guichenoti, Leptobotia 

elongate, Ancherythroculter nigrocauda and Hemiculterella sauvagei. There were no 

primary indicator species in assemblage IIb2, but three secondary indicator species 

(Table 3). Different species composition of different endemic fish assemblages in the 

upper Yangtze River reflected the longitudinal river gradient, which was closely 

related to the gradual increase in habitat diversity of fish. The mechanisms behind the 

shifts in species composition along the longitudinal gradient were mainly of two kinds: 

species replacement and species addition (Huet, 1959; Sheldon, 1968; Petry and 



Schulz, 2006). In the upper Yangtze River basin, both replacement and addition 

processes marked the longitudinal distribution of the endemic fish fauna. For instance, 

physicochemical conditions in the headwaters (i.e., assemblage Ia) are more stressful 

and fewer fish species adapt to survive in such conditions. Zonation with species 

replacement is expected in mountainous regions (i.e., assemblage Ib and IIa). 

Assemblage Ib was mainly composed of the Qinghai-Xizang Plateau fish fauna, while 

the plateau and plain fish fauna coexisted in assemblage IIa. As an additive pattern, an 

increase in the habitat diversity of fish enabled species with various life-history 

strategies to co-exist, leading to maximum species richness of endemic fish in 

assemblage IIb1. Assemblage IIb2 showed both species replacement and an additive 

pattern for it crossed the Sichuan basin and the special Yunnan-Guizhou plateau. 

The set of 24 environmental variables used in this study were relatively 

successful in predicting and explaining the endemic fish assemblages by using CART 

and RF models. Assemblage Ia, Ib, and IIb1 could be predicted accurately by both RF 

and CART models with relatively high accuracy (67%-89%). Assemblage IIa had a 

low percentage of successful prediction (only around 50%). This poor prediction was 

due to the presence of assemblages IIb1 and Ib when they were not expected. 

Assemblage IIa was a transitional zone between the plateau and basin, viz., both 

plateau and plain fish fauna coexisted in this assemblage. Assemblage Ib was located 

in the marginal area of the Qinghai-Xizang Plateau, while assemblage IIb1 was 

located in the centre of the Sichuan Basin. Assemblage IIb2 could not be accurately 

predicted by these environmental variables, since only one site can be predicted into 

the right assemblage. The main error was from assemblage IIb1, which might have 

resulted from the fact that assemblage IIb2 was close to assemblage IIb1. Moreover, 

the rivers in assemblage IIb2 were from different origins and therefore it may be 

difficult to predict. 

The structure and processes observed in local fish assemblages are not only 

determined by local mechanisms acting within assemblages, but also result from 

processes operating at larger spatial scales (Ferreira et al., 2007). In the present study, 

altitude, slope, length, discharge, runoff, alpine and sub-alpine meadow and farmland 

played important roles in driving the observed endemic fish assemblage structure in 

the upper Yangtze River. We can distinguish assemblage II from I by altitude, 



assemblage IIb1 from IIa and IIb2 by slope, and assemblage Ia from Ib by discharge. 

The upper Yangtze River spans from the Qinghai-Xizang Plateau (assemblage I) to 

the Sichuan Basin (assemblage II), viz., from high altitude to low altitude and from 

mountainous areas to hilly areas. It is known that altitude influences species 

occurrence through water temperature, thus indirectly governing the density of the 

fish population via growth and fecundity. Slope usually makes a major contribution to 

the erosive force acting on the substrate and bed scour in a given area. Variability in 

flows (i.e., discharge and runoff) could affect the structure of many stream fish 

assemblages primarily through the effect on mortality and subsequent recruitment 

(Grossman et al., 1998). Marchetti and Moyle (2001) strongly suggested that stream 

flow influenced fish assemblage composition in a regulated California stream, 

particularly at the middle and lower sites. However, hydroelectric projects being 

developed in almost all fish assemblages in the upper Yangtze River could modify the 

natural flow and thus change the structure of the fish assemblages. It means that 

endemic fish assemblages in the upper Yangtze River would be severely influenced 

by human activities. Therefore, it is essential to take effective measures to protect 

these precious endemic fish resources.  

The effects of land-cover on fish community structure have been widely 

investigated, and proven to be the important determinants (Park et al., 2006; Gevrey 

et al., 2009). The present study also showed the significant importance of alpine and 

sub-alpine meadow and farmland on distinguishing different endemic fish 

assemblages in the upper Yangtze River, which were influenced by human activities. 

Assemblage I had a high percentage cover of alpine and sub-alpine meadow (>30%), 

which became low in assemblage IIa (nearly 15%) and even lower in assemblage IIb 

(<1%). On the contrary, the highest percentage cover of farmland was located in 

assemblage IIb1 (70%), followed by assemblages IIa and IIb2 (30%-45%), and lowest 

in assemblage I (13% in assemblage Ib, 5% in assemblage Ia). Human activities on 

the landscape such as deforestation and agricultural land use are recognized as a 

principal threat to the ecological integrity of river ecosystems, especially on the biota 

(Strayer et al., 2003; Allan, 2004). For fish populations, the effects of land use are 

usually indirect. As agricultural land use (e.g., farmland) increases, inputs of 

sediments, nutrients and pesticides increase, resulting in a decline in the habitat 

heterogeneity of fish and water quality, and alteration of flow regimes, and then 



impacts on fish community and populations (Jowett et al., 1996; Allan, 2004). Jones 

et al. (1999) had shown that riparian forest was associated with a decreased 

abundance of benthic fish species, being replaced by sediment-tolerant species. Being 

confronted with large population pressures, human activities will certainly increase in 

the upper Yangtze River basin, including increasing agricultural land use, 

deforestation and urbanization. Although there is a realization of the importance of 

different land-covers and the beginning of projects to return farmland to forest, the 

phenomenon of excess land use and severe soil erosion still exists (Sun, 2008). 

Therefore, more and more efforts should be made to preserve endemic fish resources 

in the upper Yangtze River from now on. 

Patterns and determinants of endemic species richness 

Species richness patterns are important biodiversity indicators. In the present 

study, there was different endemic fish species richness in the upper Yangtze River in 

the different assemblages (Figure 4). It was high in assemblage II, but low in 

assemblage I. Assemblage II crossed from the marginal areas of the Qinghai-Xizang 

and Yunnan-Guizhou plateaus to the Sichuan basin, comprising complicated water 

systems and multiple river regimes. Assemblages IIa, IIb1 and IIb2, with high 

endemic fish species richness, were characterized by middle and low altitudes, 

relatively abundant discharge and runoff, and a large drainage area. Assemblage I was 

mainly located in the Qinghai-Xizang plateau. Assemblages Ia and Ib, with low 

endemic fish species richness, were at high altitude and with a small drainage area.  

Besides this assemblage pattern, the endemic fish species richness in the upper 

Yangtze River also exhibited a special pattern according to the river sub-basin (Figure 

4). For instance, the endemic fish species richness was highest in the middle and 

lower reaches of the Jinsha River (52 and 56 species, respectively), viz., 41.9% and 

45.2% of the total endemic species. Chuangjiang and the lower reach of the Minjiang 

River had the second highest endemic species richness (46 and 44 species, 

respectively). The lower reach of the Yalong River, the middle reach of the Minjiang 

River, the middle and lower reaches of the Dadu River and the Qingyi River, the 

lower reach of the Tuojiang River, the Chishui River, the Jialing River, the lower 

reach of the Wujiang River, and the middle reach of the Fujiang River, were 

following, with a richness from 20% to 28% of the total endemic species. Although 



other sub-basins had the lowest endemic fish species richness, local endemic fish 

resources were only found in these sub-basins. For instance, Anabarilius liui 

chenghaiensis was only distributed in Chenghai; Schizothorax (Racoma) 

ninglangensis only in Lugu Lake; Yunnanilus caohaiensis only in Caohai. The middle 

and lower reaches of the Jinsha River, Chuanjiang and the lower reach of the 

Minjiang River with high endemic fish species richness are experiencing severe 

impacts from large hydroelectric projects (e.g., Xiangjiaba, Three Gorges Dam, 

Zipingpu), as do other tributaries of the upper Yangtze River. Hydroelectric 

development may directly result in discontinuous river systems and unnatural flow 

patterns, e.g., sediment deposition, layered water temperature, and reduced flow reach, 

all of which are deadly to the survival of endemic fish in the upper Yangtze River 

(Jiang, 2008). In the case of these highly disturbed water systems (e.g., the Jinsha and 

Minjiang Rivers) with high endemic fish species richness, more effective protection 

measures should be taken to conserve the endemic fish resources. However, for those 

water systems that are scarcely disturbed (e.g., Chenghai, Lugu lake and Caohai), 

natural reserves should be set up to protect local endemic fish resources. 



 

Figure 4. Schematic representation of the river networks along the upper Yangtze 

River Basin according to the community assemblages and species richness. The main 

stream of the Yangtze River is along the arrow direction (horizontal axis), whereas 

the affluent are in the vertical position. The endemic fish assemblages are 

distinguished by different symbols and the endemic species richness pattern is in grey 

scale (dark----high richness). The letters show the abbreviation of each site unit (see 

Table 1). The former and latter number in brackets represents the local endemic 

species number and the total endemic species number of the upper Yangtze River 

Basin, respectively. 



Different explanatory variables in observed patterns of fish species richness 

operate at different scales. At the global scale, the drainage basin area, mean annual 

discharge and net primary production were considered to account for most of the 

variation in fish species richness in large river basins (Livingstone et al., 1982; 

Oberdorff et al., 1995). At the continental and regional scales, river surface area, 

basin discharge, and climate, as well as historical factors have been used to explain 

patterns in species richness (Livingstone et al., 1982; Eadie et al., 1986; Hugueny, 

1989; Oberdorff et al., 1997). At the local scale, species richness was correlated with 

elevation, stream gradient, stream order, drainage area, channel morphology, and 

hydrologic regimes (Beecher et al., 1988; Mandrak, 1995; Oberdorff et al., 1995). In 

the present study, farmland, slope grassland, discharge, runoff, altitude and drainage 

area played important roles in explaining the observed patterns of endemic species 

richness in the upper Yangtze River. 

Our results showed that endemic fish species richness of the upper Yangtze 

River basin followed the general longitudinal pattern of river fish distribution. Yet 

species richness also varies in the third spatial dimension, defined by altitude. 

Generally the lowest levels of species richness tend to be found at high altitudes, and 

the highest levels at mid to low altitudes (Gaston and Blackburn, 2000), which proved 

to be the case in the present study. A weak but significant positive relationship 

between drainage area (ln transformed) and endemic species richness was detected in 

the upper Yangtze River, which could be described by the following relationship: 

SR=3.34*ln(DA)-9.61, r2=0.20, p<0.05 (Figure 5). In fact, a positive relationship 

between the number of species found at a site and its area is one of the most robust 

and general patterns in ecology (Connor and McCoy, 1979). In general, species 

numbers increase with area at a declining rate. Besides, the heterogeneity of the fish 

habitat, such as discharge and runoff, also explained a significant amount of the 

variation in species richness in the upper Yangtze River. Discharge as a more direct 

measure of available habitat diversity of fish may implicitly integrate a third 

dimension in river size, i.e. the volume of available water for fish communities 

(Livingstone et al., 1982; Guégan et al., 1998). Guégan et al. (1998) revealed that 

increased river flows reflected more fish species richness because of greater 

heterogeneity of local fish habitats. Finally, endemic fish species richness was also 

closely related to two land cover types (farmland and slope grassland). Farmland is 



closely bound up with human activities. As it increases, inputs of pollutants and 

pesticides increase, resulting in a decline in the habitat heterogeneity of fish and water 

quality, and then a decrease in fish species richness (Allan, 2004). Assemblages IIa, 

IIb1 and IIb2 were covered by a high percentage of farmland, implying frequent 

human influences (i.e. land-use) on the endemic fish species richness in these 

assemblages. More attention should be paid to these assemblages and they should be 

taken into account for conservation planning. 

 

Figure 5. The relationship between drainage area (km2, ln transformed) and endemic 

fish species richness. Different assemblages are distinguished by different symbols 

listed in the figure.  

According to the patterns and explanations presented here, the various effects of 

human activity on natural aquatic ecosystems, in particular, the modification of the 

flow of a river (mainly due to widespread reservoir construction and use of water for 

agricultural practices), and the land use changes may have a considerable effect on 

fish species richness at a regional scale. 
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Abstract Gobiocypris rarus, an endemic cyprinid fish with high fecundity, lives

mainly in small water systems easily influenced by changes in natural surroundings.

This study used 11 polymorphic microsatellite primers to identify the temporal

variation of its topotype population. Moderate genetic diversity, inbreeding phe-

nomena, and limited temporal variation between 1997 and 2006 were revealed in

the topotype population. The main temporal fluctuations involved only the change

of allelic frequencies over two loci and allelic richness. The effective population

size was estimated to be 645. The authors argue that inbreeding did not induce

dramatic depression effects on the topotype population, and the forces to maintain

genetic diversity were mainly from environmental fluctuations and life history traits.

Considering that the topotype population is facing increased habitat loss, destruc-

tion, and disturbance due to human activities, the authors suggest that a habitat and

species management area be established in the type locality.

Keywords Gobiocypris rarus � Genetic diversity � Temporal variation �
Microsatellite

Introduction

Population genetics is concerned with the origin, amount, and distribution of genetic

variation in populations of organisms and the fate of this variation through space

and time (Templeton 2006). Empirical studies on spatial genetic variation are
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usually performed under the assumption that the observed genetic patterns remain

stable over time (Tessier and Bernatchez 1999). Genetic structure of natural

populations is not always stable over time, however. Recently, many scholars have

paid more attention to the temporal changes in population genetic structure and

discussed the cause of this variation (Østergaard et al. 2003; Barcia et al. 2005;

Florin and Höglund 2007; Lee and Boulding 2007; Martı́nez-Cruz et al. 2007).

Significant temporal variation was detected in small populations of gastropods,

shrimp, and fish. Multiple factors, including species’ biological properties and

natural or anthropogenic disturbances, can affect the temporal stability of allele

frequencies in natural populations. For instance, sudden weather changes,

hurricanes, and droughts might create unstable environments that could reduce a

species’ reproductive success. This demographic fluctuation can temporarily or

permanently reduce the population size and sometimes ends with the species’

extinction. Normal natural changes might increase migration levels to some extent,

which could help maintain the species’ genetic variation. Insignificant temporal

fluctuations were also revealed in some populations. This temporal stability can be

explained by the large population size (Nielsen et al. 1997; Tessier and Bernatchez

1999; Blanco et al. 2005). Consequently, performing genetic analyses of temporal

replicates to estimate the extent of the variation may be required to ensure the

reliability of estimates of population structure.

The rare minnow, Gobiocypris rarus Ye et Fu, is an endemic cyprinid fish in China

(Ye and Fu 1983; Chen 1998). It is attractive as an aquatic laboratory animal because

it is sensitive to chemicals, small (adult, 3–8 cm), eurythermal (0–35�C), and easily

reared in the laboratory; it produces a large number of eggs every several days and is a

continuous batch spawner; its embryonic development is of short duration (72 h at

26�C), and it has a short life cycle (about 4 months; Wang and Cao 1997; Wang 1992,

1996, 1999). In its natural habitat, the rare minnow is considered endangered (Le and

Chen 1998; Wang and Xie 2004; Xiong et al. 2007). The type locality is near the town

of Jiuxiang, Hanyuan County, Sichuan Province, in the middle Dadu River basin. The

fish also inhabits several counties along the lower Dadu River basin, the upper Tuo

River basin, and the middle Min River basin. According to published bibliographies

(Ding 1994; Wang and Cao 1997; Chen 1998; Le and Chen 1998) and our

investigations, the rare minnow lives mainly in small water systems, such as paddy

fields, ditches, and loblollies, especially in weedy ditches with flowing water. All

known habitats of the rare minnow are dozens to hundreds of miles from one another,

isolated or separated by large rivers. Thus, large rivers could be a prominent cause of

the species’ discontinuous distribution.

Various factors have led to the endangerment of G. rarus. The habitats of this fish

are easily influenced by environmental changes, such as drought, rainstorms, floods,

and local agricultural activities (Le and Chen 1998). Moreover, the rare minnow is

sensitive to chemicals. Lethal or sublethal effects were observed when the species

was exposed to low concentrations of heavy metals, industrial pollution, pesticides,

and domestic wastewater (Zhou et al. 1995; Wang et al. 1998; Wu et al. 2000; Lu

and Shen 2002; Li et al. 2004). As a result, rare minnow populations have declined

in recent years as anthropogenic disturbance of their habitats increased and pesticide

contamination became widespread. Except for the type locality, which the topotype
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population occupies, only small numbers of G. rarus are present at other sites.

Therefore, the topotype population is the key for the long-term survival of this

species.

In addition to the factors mentioned above, settlements in the reservoir area of the

Pubugou hydropower station, in the main stream of the Dadu River, seem to be

increasing the environmental pressures on the type locality. Thousands of people

have settled in the type locality since 2004. Their activities, which include factory

construction, land use modification, river regulation, and farmland water conser-

vancy, may directly or indirectly destroy the habitat. The purpose of the present

study is to assess the temporal stability of the genetic structure of a G. rarus wild

population from its type locality by analyzing 11 polymorphic microsatellite loci

over a 10-year period and to discuss the possible factors that might contribute to the

observed patterns.

Materials and Methods

Samples

The sampling site is in the Liusha River floodplain, where the type specimens were

collected from 1979 to 1981 (Ye and Fu 1983). The habitats consisted of several

small rivulets and many ditches across rice fields. The rivulets, originating from

springs, were typically 0.8–1 m wide, with stone banks. The ditches, which

connected the rivulets to the rice fields, were narrower, with either pebble or clay

banks. Some of the ditches were seasonal. The nearest distribution site to the type

locality was about 20 km away, in the mouth of the Liusha River.

In 1997 and 2006, hundreds of G. rarus were collected from rivulets and ditches

of the type locality and then transferred to our institute for laboratory use. Before

transportation, 30 individuals were randomly sampled (i.e., HY1997 and HY2006)

from the total catch of each year. In addition, a laboratory-reared family, consisting

of the parents and their offspring, was utilized to examine the inheritance of each

usable microsatellite marker. Muscle tissue was collected from each individual and

stored in 95% ethanol at -20�C until further analysis. Genomic DNA was then

extracted from the tissue, using a salt extraction protocol outlined by Aljanabi and

Martinez (1997).

Development of Microsatellite Loci

A microsatellite-enriched genomic library was constructed using the FIASCO (fast

isolation by AFLP of sequences containing repeats) protocol (Zane et al. 2002) with

some modifications. To further maximize the likelihood of polymorphism, DNA

from six wild individuals was pooled prior to library construction. Genomic DNA

extracted from fin clips, using a traditional phenol–chloroform protocol with RNase

treatment, was digested with MseI and ligated to the MseI AFLP adapter.

Five hundred nanograms of newly amplified DNA was mixed with 100 pmol of a

30-biotinylated oligonucleotide probe (GATA)n, in a total volume of 100 lL
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(4.29 SSC, 0.07% SDS) at 95�C for 15 min, then 56�C for 30 min. After several

nonstringency and stringency washes at room temperature, an additional high-

stringency wash was performed in 0.29 SSC, 0.1% SDS, at 45�C for 10 min to

discard the nonspecific DNA in the beads-probe-DNA complex. Enriched fragments

were eventually ligated into pGEM-T vectors (Promega) and transformed into

DH5a competent cells. Clones with positive inserts were confirmed by PCR

amplification using MseI-N primers and were then sequenced. Primers were

designed for the sequences flanking the repeat regions. Polymerase chain reaction

conditions were optimized for each primer set using five unrelated G. rarus wild

individuals.

Amplification of Microsatellite Loci

Polymerase chain reaction conditions for revealing the temporal genetic variation

were as follows. A 10 lL reaction volume contained 1.5 mM MgCl2, 2.5 mM

dNTP, 0.5 U Taq DNA polymerase, 1 lL 10 9 Taq polymerase buffer, 5 pmol

each of forward and reverse primer, and 20–50 ng genomic DNA template.

Amplification was performed in a TGradient AmpCycler (Biometra), programmed

for an initial denaturation of 5 min at 94�C followed by 35 cycles of 30 s at 94�C,

40 s at annealing temperature (Table 1), and 40 s at 72�C, with a final extension of

10 min at 72�C. The amplified products were separated on 10% standard

nondenaturing polyacrylamide gels stained with ethidium bromide. pBR322

DNA/MspI was used as a size marker for the microsatellite alleles.

Data Analysis

Genetic diversity was quantified in terms of heterozygosity, number of alleles per

locus, and allelic frequencies observed in the topotype population. Expected and

observed heterozygosities (He, Ho) were estimated with the program Arlequin

version 2.000 (Schneider et al. 2000). Allele frequency was computed using the

Genepop version 3.3 package (Raymond and Rousset 1995). Since rare alleles may

be generated by drift or variation in sample size, the effective number of alleles (Ae)

was calculated with the formula Ae = 1/
P

pi
2, where pi represents each allele

frequency (Frankham et al. 2002). Genepop was also used to estimate departures

from Hardy–Weinberg equilibrium at each locus and globally over all loci. This

involved the use of the Markov chain method (Guo and Thompson 1992), with

1,000 dememorization steps, 100 batches, and 1,000 iterations per batch, in order to

test the alternative hypotheses of deficiency or excess of heterozygotes. The

significance of genotypic linkage disequilibrium between pairs of loci was tested

with Fstat version 2.9.3 (Goudet 2001), based on 1,100 permutations. Fis per locus

and over all loci was calculated according to Weir and Cockerham (1984) and tested

for significance with the Fstat software. All multiple tests were corrected with the

sequential Bonferroni procedure (Rice 1989).

The expected frequency of null alleles (r; Brookfield 1996, Eq. 4) was used to

calculate the expected frequency of null homozygotes (r2). Expected counts were
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then compared with observed counts in the data set. If the observed counts were

lower than the expected, it was concluded that null alleles were not an influencing

factor. Micro-Checker (van Oosterhout et al. 2003) was then used to test for

stuttering and large allele dropout.

The Wahlund effect may occur if breeding subunits are present inside the studied

population. To test for this effect we used the maximum likelihood method in the

PartitionML program (Castric et al. 2002), which addresses the issues of detecting

hidden population structure and assigning individuals to their population of origin.

The chi-square test was used to assess the significance of the partition.

The degree of genetic differentiation between HY1997 and HY2006 was

evaluated by analysis of molecular variance (AMOVA, Excoffier et al. 1992) with

Arlequin version 2.000, and another Fst analog, h (Weir and Cockerham 1984),

with the Fstat software. The Fst analog (h) was tested for significance after

Bonferroni corrections, and its variances were determined by jackknifing over loci.

Differences in observed heterozygosity, expected heterozygosity, and number of

alleles per locus between two temporal samples were determined with a

nonparametric Wilcoxon signed-rank test. Fisher’s exact test was used to perform

pairwise comparison of allele frequencies at individual loci between HY1997 and

HY2006. To test whether bottlenecks (i.e., drastic reductions in the number of

effective breeders) had occurred in the topotype population during the sampling

period, we used the Bottleneck software (Cornuet and Luikart 1996).

The effective population size (Ne) is an important parameter of conservation

biology because it determines the potential for genetic drift in populations. Genetic

drift influences the rate of loss of genetic diversity, the rate of fixation of deleterious

alleles, and the efficiency of natural selection at maintaining beneficial alleles

(Berthier et al. 2002). We used the traditional moment estimator of Waples (1989,

Eqs. 8, 11) to obtain a temporal estimation of Ne in the G. rarus topotype

population, based on the temporal allele frequencies. A key assumption of this

technique is that systematic forces (selection, mutation, and migration) are

unimportant, relative to genetic drift, in changing allele frequencies. Here we

assumed that sample collection occurred according to plan 2 (Nei and Tajima 1981;

Waples 1989) and that effective population size was stable during the sampling

period. Confidence intervals (95%) for Ne were calculated using equation 16 in

Waples (1989). The number of generations between sampling periods was

calculated, using two generations per year as a basis (Wang 1992), even though

overlapping generations of G. rarus may exist.

Results

Microsatellite Isolation

Of all isolated microsatellites, 45.7% had tetranucleotide repeats, which were

mainly GATA, AGAT, and ATCT motifs. Many of them presented abundant

repeats, such as 13, 28, and 38 times. According to the flanking regions of these

microsatellite loci, 43 pairs of microsatellite primers were designed. Eighteen usable
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microsatellite loci, of which 11 were polymorphic (GenBank accession nos.

EF555325-EF555335) and seven monomorphic (EF555336-EF555342), were

obtained by constructing the microsatellite-enriched genomic library. When the

inheritance of each usable marker within a family was examined, all alleles

observed in both parents were found to segregate in a codominant Mendelian

fashion among the offspring. Among the 18 usable microsatellite loci, six loci

presented tetranucleotide repeats. The polymorphic primer information and

GenBank accession numbers are listed in Table 1.

Measures of Genetic Diversity

Eleven polymorphic microsatellite loci were used to determine the level of genetic

diversity within the G. rarus topotype population. The number of alleles per locus

ranged from 2 to 12, and the sizes ranged from 86 to 465 bp (Table 1). Overall 61

alleles were obtained, 59 in HY1997 and 55 in HY2006 (mean number of alleles,

5.36 and 5.00, respectively; Table 2). Genetic diversity was also evaluated by the

number of effective alleles for each locus (Table 2). The number of effective alleles

was lower than the number of observed alleles for all loci except three (GR03,

GR09, and GR25).

Sequential Bonferroni correction revealed no significant linkage disequilibrium

between any of the locus pairs. Significant departures from Hardy–Weinberg

equilibrium were detected, however, in the two temporal samples after the

Table 2 Genetic variation of microsatellites in two temporal samples, HY1997 and HY2006, of

Gobiocypris rarus

Locus HY1997 HY2006

A Ae Ho He Fis (W&C) A Ae Ho He Fis (W&C)

GR03 2 1.43 0.23 0.33 0.237 2 1.83 0.30 0.46 0.356

GR07 4 3.38 0.70 0.72 0.023 4 2.64 0.27* 0.66 0.582

GR08 5 4.31 0.73 0.79 0.062 5 3.93 0.83 0.76 -0.101

GR09 2 1.99 0.23* 0.54 0.545 3 2.12 0.23* 0.56 0.571

GR16 5 1.93 0.50 0.51 -0.019 4 1.37 0.27 0.30 0.021

GR21 4 1.46 0.13* 0.35 0.590 2 1.10 0.10 0.13 -0.036

GR22 3 2.42 0.60* 0.61 -0.006 2 1.60 0.30 0.38 0.216

GR25 2 2.00 0.40 0.51 0.216 2 1.99 0.27* 0.54 0.477

GR29 12 5.47 0.83 0.84 -0.003 12 6.67 0.73 0.86 0.154

GR38 12 8.37 0.83 0.90 0.071 12 8.70 0.87 0.91 0.038

GR39 8 2.84 0.53 0.67 0.194 7 2.29 0.40 0.59 0.305

Mean 5.36 3.24 0.52 0.62 0.135 5.00 3.11 0.42 0.56 0.240

Note: HY1997 represents the samples (30 individuals) collected from the type locality in 1997; HY2006

represents the samples (30 individuals) collected from the type locality in 2006. A, number of alleles; Ae,

number of effective alleles; Fis (W&C), estimator of F-statistics following Weir and Cockerham 1984;

Ho, observed heterozygosity; He, expected heterozygosity

* Significant deviation from Hardy–Weinberg equilibrium
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sequential Bonferroni correction. Three loci deviated from Hardy–Weinberg

equilibrium in each temporal sample (Table 2). These loci showed a significant

deficiency of heterozygotes, with the exception of locus GR22 in HY1997.

Heterozygote deficiency was also indicated by the Fis values. Across loci, the Fis

values were 0.135 for HY1997 and 0.240 for HY2006 and showed borderline

significance.

The range of observed heterozygosity was 0.13–0.83 (mean, 0.52) in HY1997

and 0.10–0.87 (mean, 0.42) in HY2006 (Table 2). The range of expected

heterozygosity was 0.33–0.90 (mean, 0.62) in HY1997 and 0.13–0.91 (mean,

0.56) in HY2006 (Table 2).

Following Brookfield’s equation, the expected number of null homozygotes was

greater than the actual number observed in 9 of the 11 loci, allowing us to reject the

possibility of nulls. For loci GR07 and GR09, null alleles could not be rejected.

Using Micro-Checker, no stuttering or large allele dropout was found for any of the

loci. None of the partition log-likelihood values deviated significantly from the null

distribution of a homogeneous population by chi-square test, which therefore argued

against a Wahlund effect.

Temporal Genetic Variation

No genetic diversity estimates, including observed heterozygosity, expected heter-

ozygosity, and number of alleles per locus, showed any significant changes between

HY1997 and HY2006 (Wilcoxon: P [ 0.05). F-statistics also revealed no differences

between the two temporal samples (Fst = 0.01117, P [ 0.05; h = 0.008 ± 0.006,

P [ 0.05). Similarly, no significant differences were observed in pairwise compar-

isons of allele frequency distributions over most loci between the two temporal

samples (Fisher’s exact test: P [ 0.05), with the exception of loci GR21 and GR22

(P \ 0.05). These exceptions may be induced by two alleles (145 in locus GR21 and

180 in GR22), which exhibited relatively high frequencies in HY1997 but disappeared

in HY2006. In addition, four other alleles with low frequencies in HY1997 (153 in

locus GR16, 139 in locus GR21, and 453 and 465 in locus GR39) were not detected in

HY2006. Two new alleles with low frequencies (180 in locus GR09 and 285 in locus

GR39) were detected in HY2006, underlining the temporal fluctuation. No significant

heterozygosity excess was revealed during the sampling period at mutation-drift

equilibrium (P [ 0.05), which indicated that the G. rarus topotype population had not

experienced bottleneck effects in nearly 10 years. Based on the temporal fluctuations

of the 11 microsatellite loci, Ne for the topotype population was 645, with a 95%

confidence interval of 237–11,735.

Discussion

Diversity Within the Topotype Population

Our study revealed relatively high levels of intrapopulation diversity in the G. rarus
topotype population. The results resembled those reported by Liao et al. (2007) and
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Shao et al. (2009), in which the He of the G. rarus topotype population was 0.65 in

1997 and 0.57 in 2006, though different sample individuals and different

microsatellite primers were used.

In comparison with other cyprinid fishes in the Yangtze River, G. rarus had an

expected heterozygosity similar to that of Ctenopharyngodon idellus (He = 0.48–

0.65; Liao et al. 2005) and Coreius heterodon (He = 0.51; Liao et al. 2006), but a

little higher than that of Aristichthys nobilis (He = 0.42–0.45; Geng et al. 2006) and

lower than that of Coreius guichenoti (He = 0.73; Xu et al. 2007). Dewoody and

Avise (2000) summarized the genetic variation of 13 species with 75 microsatellites

and found that the average heterozygosity per freshwater fish species across loci was

0.54 ± 0.25. Consequently, the level of genetic diversity in the G. rarus topotype

population was moderate.

In the present study, heterozygote deficiency was found in several loci, and

relatively high global Fis values for each sample tended to indicate the existence of

heterozygote deficits within the topotype population. This result was similar to that

of Liao et al. (2007), which also found a relatively high Fis value in G. rarus.

Generally, heterozygote deficits may be linked to multiple causes: genotyping

artifacts, the Wahlund effect, nonrandom mating, and natural selection (Castric

et al. 2002; Morand et al. 2002). In our study, genotyping artifacts may be excluded

because of the following findings: (1) null alleles were not a factor in most loci; (2)

no stuttering or large allele dropout was found; and (3) reamplification tests of some

loci did not decrease the number of observed homozygotes. The Wahlund effect

may be another important cause of the heterozygote deficiency (Johnson and Black

1984; Castric et al. 2002; Morand et al. 2002), but no significant hidden population

structure was detected in the G. rarus topotype population, which argues against the

Wahlund effect as a systematic explanation for the observed deficiency. After

genotyping artifacts and the Wahlund effect were ruled out, inbreeding appeared to

be the major source of the observed deficits. As mentioned earlier, G. rarus lives in

groups in small water systems such as paddy fields, rivulets, ditches, and loblollies

(Ye and Fu 1983; Wang 1992). In such habitats (for instance, in a ditch), large

numbers of offspring reproduced by a few parents may compose the main part of the

small stock, and therefore inbreeding occurs more frequently than random mating

within the stock. Natural selection, which usually acts on long-term evolutionary

processes, was also considered as a possible cause of heterozygote deficiency. In

this study, however, it is difficult to confirm whether natural selection played an

important role throughout the sampling period.

Maintenance of Genetic Variation

The forces maintaining genetic variation among natural populations are still poorly

understood and are the subject of much debate. Many studies widely supported a

role for environmental variability in the maintenance of genetic variation, since

unstable environments tended to select life history traits that could increase the

intrinsic rates of population growth and genetic variation (Mitton and Lewis 1989).

For example, this role has been supported by a study of mosquitofish. Heterozy-

gosities were higher in this species when populations originated from fluctuating
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reservoirs rather than stable ones in Hawaii, suggesting that environmental

fluctuations played an important role in genetic variation (Scribner et al. 1992).

Other studies have also concluded that extrinsic factors (i.e., unstable environmental

conditions) might promote changes in the genetic structure of natural populations of

some species (Garant et al. 2000; Roark et al. 2001; Østergaard et al. 2003; Barcia

et al. 2005; Huang et al. 2005; Cena et al. 2006). Besides environmental factors,

biological factors such as genetic drift and natural selection could also mold genetic

patterns (Alam and Islam 2005; Barcia et al. 2005; Crispo et al. 2006; Mäkinen et al.

2006; Gutiérrez-Rodrı́guez et al. 2007; Lee and Boulding 2007; Rahman et al.

2008). Genetic drift is most important in small populations, while natural selection

is more effective in larger populations and could be enhanced by unstable

environments (Frankham et al. 2002).

Our data suggested that the type locality of G. rarus held a single population with

a relatively large Ne and no cryptic structure. During the sampling period, temporal

genetic variation was limited. The main fluctuations were expressed via changes of

allelic frequencies over two loci, a loss of six alleles, and the appearance of two new

alleles. The topotype population had not experienced a bottleneck effect, so genetic

fluctuations in our study were not due to bottlenecks. At the same time, inbreeding

not only was considered to be the main cause of the observed heterozygote deficits

but also may have been responsible for the change in allelic richness and even the

change in allelic frequencies over some loci. Nevertheless, genetic diversity and

allelic frequencies over most loci did not vary significantly during the sampling

period. Thus, the topotype population might maintain its genetic stability in the near

future.

The effective population size, living habit preferences, and habitat properties of

G. rarus seem to be taken into account as possible causes of genetic variation and its

maintenance, although this is difficult to test with the present data. The effective

size of the topotype population was estimated to be 645. When an effective

population size is larger than 500, it can be preserved to sustain long-term

evolutionary potential; thus inbreeding and genetic drift may have limited influence

on the decline of genetic diversity (Frankham et al. 2002). The observed rate of loss

of heterozygosity in the G. rarus topotype population was 9.7% within 20

generations, or about a 0.48% reduction for each generation. This rate is

considerably lower than 1%, the rate that is often regarded as the limit for an

acceptable level of inbreeding per generation (Franklin 1980; Frankel and Soulé

1981), indicating that natural selection is expected to offset inbreeding depression.

Consequently, inbreeding did not induce dramatic depression effects on the

topotype population, although it actually existed in each temporal sample.

The habitats of G. rarus fluctuate and are easily influenced by seasonal

environmental changes (drought, floods, rainstorms) and human activities. If the

habitat variation is not tremendous, the population magnitude effect could be

recruited rapidly due to the species’ short life cycle (mature at about 4 months old)

and high fecundity. The rare minnow is a continuous batch spawner. During a long

breeding season, a mature female can lay hundreds of eggs in intervals of several

days (Wang 1992). In such a case, some batches of offspring may be endangered

when sudden environmental changes occur, yet other batches may survive and
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induce effective reproduction. This mechanism is beneficial for maintaining a large

Ne. Simultaneously, surviving individuals from different habitat patches mix

together and relocate in the patches where the habitat change occurred, resulting in

greater gene flow within the population. Therefore, habitat fluctuation, relocation of

survivors, and rapid multiplication may be the main natural and biological forces

that maintain the stability of G. rarus gene frequencies, even though inbreeding

exists in stocks within the topotype population.

In conclusion, the G. rarus topotype population was healthy and stable,

exhibiting moderate genetic diversity, limited temporal variation, relatively large

effective population size, and no subpopulation structure. Under the habitat

conditions and anthropogenic disturbances in the past years, the topotype population

tended to maintain long-term evolutionary potential. The present study indicates

that inbreeding may exist in some small fishes like G. rarus, which live in small

water systems within a narrow habitat. Species that live in fluctuant habitat usually

have high fecundity. Extrinsic factors (i.e., environmental changes) and life history

traits are thus the main forces that maintain genetic diversity. To some extent,

habitat fluctuation is beneficial for maintaining genetic diversity if the fluctuation

does not cause a dramatic change in demography.

Conservation Implications

It is helpful for us to propose conservation measures for the G. rarus topotype

population after understanding the status of its genetic structure and the ecological

mechanism behind diversity maintenance. The type locality has suffered greater

anthropogenic disturbances in recent years, and their effects did not tend to

diminish. Along with the aggravation of habitat destruction and disturbance in the

type locality, population size or the number of effective breeders may decline.

Considering the wide 95% confidence interval range and the estimation error of Ne,

the actual effective population size may be lower than the estimated size. If the

effective population size drops to a certain level, such as 500 or fewer, the

population would become demographically unstable. Meanwhile, bottleneck effects,

genetic drift, and even inbreeding would eventually reduce genetic diversity, further

threatening population viability.

We suggest the establishment of a habitat and species management area consisting

of the floodplain along the Liusha River from Qianyu village (29�3008.100 N,

102�35017.000 E, altitude 996 m) to Fuchun village (29�28037.300 N, 102�37035.400 E,

939 m). In this reserve area, habitat destruction should be intensely reduced, including

avoidance of factory construction, management of fertilizer and pesticide applica-

tions, restriction of land use, and so on. Meanwhile, G. rarus population dynamics and

genetic structure should be monitored to help with the management of the topotype

population and its type locality.
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Mäkinen HS, Cano JM, Merilä J (2006) Genetic relationships among marine and freshwater populations

of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Mol

Ecol 15:1519–1534

Martı́nez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal

genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486

Mitton JB, Lewis WM Jr (1989) Relationships between genetic variability and life-history features of

bony fishes. Evolution 43:1712–1723

Morand M-E, Brachet S, Rossignol P, Dufour J, Frascaria-Lacoste N (2002) A generalized heterozygote

deficiency assessed with microsatellites in French common ash populations. Mol Ecol 11:377–385

Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640

Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of

Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Mol Ecol 6:487–

492

Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic

composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol

Ecol 12:3123–3135

Rahman S, Zakaria-Ismail M, Tang PY, Muniandy S (2008) Microsatellite analysis of wild and captive

populations of Asian arowana (Scleropages formosus) in Peninsular Malaysia. J Biol Sci 8(3):517–

525

Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and

ecumenicism. J Hered 86:248–249

Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225

Roark SA, Andrews JF, Guttman SI (2001) Population genetic structure of the Western mosquitofish,

Gambusia affinis, in a highly channelized portion of the San Antonio River in San Antonio, TX.

Ecotoxicology 10:223–227

Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data

analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

Scribner KT, Wooten MC, Smith MH, Kennedy PK, Rhodes OE Jr (1992) Variation in life history and

genetic traits of Hawaiian mosquitofish populations. J Evol Biol 5:267–288

Shao Y, Wang JW, He YF, Cao WX, Tong JG (2009) The application of microsatellite markers on

genetic quality control of an inbred strain of Gobiocypris rarus. Acta Hydrobiol Sin 33(4):649–655

(in Chinese)

Templeton AR (2006) Population genetics and microevolutionary theory. John Wiley & Sons, Hoboken,

NJ

324 Biochem Genet (2010) 48:312–325

123



Tessier N, Bernatchez L (1999) Stability of population structure and genetic diversity across generations

assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo
salar L.). Mol Ecol 8:169–179

van Oosterhout C, Hutchinson B, Wills D, Shipley P (2003) Micro-Checker, microsatellite data checking

software. http://www.microchecker.hull.ac.uk/

Wang JW (1992) Reproductive biology of Gobiocypris rarus. Acta Hydrobiol Sin 16(2):165–174 (in

Chinese)

Wang JW (1996) Studies on critical temperature of Gobiocypris rarus. Sichuan Zool 15(4):153–155 (in

Chinese)

Wang JW (1999) Spawning performance and development of oocytes in Gobiocypris rarus. Acta

Hydrobiol Sin 23(2):161–166 (in Chinese)

Wang JW, Cao WX (1997) Gobiocypris rarus and fishes as laboratory animals. Trans Chinese Ichthyol

Soc 6:144–152 (in Chinese)

Wang S, Xie Y (eds) (2004) China species red list: red list, vol 1. Higher Education Press, Beijing, p 154

(in Chinese)

Wang ZH, Yin YW, Xu ZN, Zhou J, Zhang Q, Zhang DP (1998) Acute and subchronic toxicity of

pyrethroid insecticides to Gobiocypris rarus. Chinese Appl Environ Biol 4(4):379–382 (in Chinese)

Waples RS (1989) A generalized approach for estimating effective population size from temporal

changes in allele frequency. Genetics 121:379–391

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution

38:1358–1370

Wu GQ, Sun XB, Chen JP, Xu LH, Wu ZB (2000) Acute toxicity of domestic detergents on fishes. Acta

Hydrobiol Sin 24(4):396–398 (in Chinese)

Xiong DM, Xie CX, Xia L (2007) Threatened fishes of the world: Gobiocypris rarus Ye and Fu, 1983

(Cyprinidae). Environ Biol Fish. doi:10.1007/s10641-007-9284-8

Xu SY, Zhang Y, Wang DQ, Li ZH, Chen DQ (2007) Genetic diversity in largemouth bronze gudgeon

(Coreius guichenoti Sauvage et Dabry) from Yibin section of Yangtze River based on sequence of

microsatellite DNA. Freshw Fish 37(3):76–79 (in Chinese)

Ye MR, Fu TY (1983) Description of a new genus and species of Danioninae from China (Cypriniformes:

Cyprinidae). Acta Zootaxon Sin 8(4):434–437 (in Chinese)

Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–

16

Zhou YX, Cheng SP, Hu W (1995) The Gobiocypris rarus seven-day subchronic toxicity test. Acta Sci

Circum 15(3):375–380 (in Chinese)

Biochem Genet (2010) 48:312–325 325

123

http://www.microchecker.hull.ac.uk/
http://dx.doi.org/10.1007/s10641-007-9284-8


 

 

 

 

 

P4 

Genetic structure of an endangered endemic fish (Gobiocypris rarus) in the upper 

Yangtze River 

He Y., Wang J., Blanchet S. & Lek S. (2010) 

Journal of Fish Biology 

(Submitted) 



Genetic structure of an endangered endemic fish (Gobiocypris rarus) 

in the upper Yangtze River 

Yongfeng He1, 2, Jianwei Wang1, *, Simon Blanchet2, 3, Sovan Lek2 

1 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, 

China; 2 Université de Toulouse, Lab. Evolution & Diversité Biologique, UMR 5174, 

CNRS – 118, route de Narbonne – 31062 Toulouse, Cedex 4, France; 3 Station 

d’Ecologie Expérimental du CNRS à Moulis, Lab. USR 2936, 09 100 Moulis, France 

(*Corresponding author: Phone: +86-27-68780033; Fax number: +86-27-68780065; 

E-mail: wangjw@ihb.ac.cn; Address: Institute of Hydrobiology, Chinese Academy of 

Sciences, 7# Donghu South Road, Wuhan, Hubei 430072, China) 



ABSTRACT 

The goal of this study was to examine the genetic diversity and structure of wild 

populations of rare minnow (Gobiocypris rarus) in the Sichuan Basin (the upper 

Yangtze River, China). Individuals from nine sites were sampled and genotyped at 

eight microsatellite markers. There were no significant differences between sites 

concerning the allelic richness and expected heterozygosity, while highly significant 

differences in allelic frequencies were found. Our results further suggested significant 

levels of site differentiation (FST: 0.0130-0.1537). Specifically, two distinct genetic 

clusters (C1 and C2) were highlighted using the STRUCTURE software. The analysis 

of the frequency distribution of alleles between clusters revealed a possible 

introgression from one cluster (C1) into the other (C2). In addition, we found a weak 

but significant isolation-by-distance pattern that was best explained by riparian 

distance through man-made channels rather than by water course distance and straight 

line distance. Although no significant recent migration event was found between the 

two clusters, our result suggested that fish might use man-made channels for 

migration. Therefore, this study highlights the need to consider the genetic 

specificities of G. rarus for protecting and sustaining long-term survival of this 

species. 

Key words: genetic differentiation, gene flow, Gobiocypris rarus, conservation 

implications



INTRODUCTION 

The topic of how genetic diversity is spatially structured, either within or 

between populations, has focused the attention of many studies (Kraaijeveld-Smit et 

al., 2005; Bergl & Vigilant, 2007; Björklund et al., 2007; Zamudio & Wieczorek, 

2007; Zayed & Packer, 2007; Aspi et al., 2009; Devillard et al., 2009). This 

information is crucial for understanding the evolutionary history and population 

dynamics of species. In addition, understanding the genetic structure of threatened 

species in degraded or fragmented habitats is a key point for their effective 

conservation (Frankham et al., 2002). For instance, the accurate identification of 

populations with the greatest allelic variation and hence evolutionary potential 

provide basic knowledge for suggesting the priority areas to be protected (Moritz, 

1994; Frankham et al., 2002).  

Genetic differentiation among populations is a key component of genetic 

diversity. In order to determine overall population structure, it is necessary to know 

the level of both intra- and inter- population variation, to understand the underlying 

processes driving this variation (Frankham et al., 2002). Genetic markers and their 

analytical approaches available for inferring population structure have become highly 

developed in recent decades (Ciofi & Bruford, 1999; Paetkau et al., 1999; Aspi et al., 

2006; Devillard et al., 2009). Among all molecular markers, microsatellites in the 

nuclear genome have been widely applied because they usually provide the most 

comprehensive description of the effects of subdivision upon the genetic variation of 

populations and have the potential to estimate contemporary migrations (Selkoe & 

Toonen, 2006). In microsatellite data analysis, although a conventional approach such 

as Wright’s F-statistics has been commonly used (Wright, 1978), individual-based 

Bayesian approaches have recently developed as a complementary approach due to 

their greater precision (Stow et al., 2001; Manel et al., 2003; Beaumont & Rannala, 

2004; Pearse & Crandall, 2004; Zamudio & Wieczorek, 2007; Aspi et al., 2009). In 

addition, instead of direct methods such as capture-mark-recapture (CMR), indirect 

methods have been employed and applied extensively to estimate recent migration 

and gene flow from molecular marker data by overcoming the limitation of study 

areas and samplings (Koenig et al., 1996; Pritchard et al., 2000; Wilson & Rannala, 



2003; Piry et al., 2004; Zamudio & Wieczorek, 2007; Aspi et al., 2009; Schlosser et 

al., 2009).  

The genetic structuring of populations may be due to a variety of factors, e.g., 

environmental barriers, historical processes, life histories (mating systems) and 

geographical isolation (Gerlach & Musolf, 2000; Johnson, 2000; Björklund et al., 

2007). These factors are usually related to evolutionary processes, i.e., gene flow, 

genetic drift, selection and to a lesser extent mutation (Frankham et al., 2002). The 

relationships between dispersal, gene flow and population genetic structure have been 

the subject of many studies during recent decades (Slatkin, 1985; Bohonak, 1999; 

Stow et al., 2001; Kraaijeveld-Smit et al., 2005; Zamudio & Wieczorek, 2007; Aspi 

et al., 2009; Floyd et al., 2009). Especially in the management of endangered species, 

one of the most important issues is inferring individual movements between 

populations, and predicting their consequences on population genetic structures and 

evolutionary potential (Crandall et al., 2000; Fraser & Bernatchez, 2001; Frankham et 

al., 2002; Schlosser et al., 2009). Therefore, populations in different habitat fragments 

may be totally isolated, partially isolated, effectively a single population, or a meta-

population, depending on the extent of gene flow (Frankham et al., 2002). 

Rare minnow, Gobiocypris rarus Ye et Fu, is an endemic cyprinid fish in China 

(Chen, 1998; Ye & Fu, 1983). It has been used as an aquatic laboratory animal and 

extensively applied in toxicology, fish pathology, developmental biology and genetics 

(Wang, 1992; Wang et al., 1994; Wang, 1996; Wang & Cao, 1997; Wang, 1999; Jia 

et al., 2002; Zhong et al., 2005; Pei et al., 2008; Su et al., 2008). Meanwhile, rare 

minnow is considered as an “endangered” species, mainly resulting from 

anthropogenic disturbance, for instance, pollution from pesticides and sewage, and 

water conservancy for farmland including channelized habitat and disordered water 

diversion (Le & Chen, 1998; Wang et al., 1998; Li et al., 2004; Wang & Xie, 2004; 

Xiong et al., 2009).  

G. rarus lives mainly in small water systems, such as paddyfields and ditches. 

Remnant populations were only identified in the west region of Sichuan Province of 

China (Ding, 1994; Wang & Cao, 1997; Chen, 1998; Le & Chen, 1998). Specifically, 

important remnant populations were discovered during a field investigation conducted 

by some of the authors (Y He and J Wang) on a relatively large scale in April 2008. 



All known habitats of rare minnow are located dozens to hundreds of miles away 

from one another, exhibiting discontinuous distribution. 

In this study, our primary objective was to assess and describe the genetic 

structure of wild populations of G. rarus on a relatively large spatial scale. To do this, 

we used eight microsatellite markers for quantifying genetic diversity (allelic 

richness, heterozygosity) of G. rarus originating from remnant populations located in 

the Sichuan Basin. In addition, we used a variety of tools (Isolation-by-distance, 

BAYESASS) to estimate gene flow and recent migration events within these 

populations. 

MATERIAL AND METHODS 

SAMPLING LOCATION, TISSUE COLLECTION AND DNA EXTRACTION 

Rare minnow were sampled from nine localities containing enough samples to be 

used in genetic populations’ studies. They were mainly located at the edge of the west 

and northwest area of the Sichuan Basin (Fig. 1). Four river basins (the downstream 

of the Dadu River, the middle and downstream of the Qingyi River, the middle stream 

of the Minjiang River, the upstream of the Tuojiang River) were involved in these 

locations (Fig. 1). All the rivers concerned are tributaries of the upper Yangtze River. 

They were sampled from the 12th to the 30th April 2008. 

We used nets to sample a total of 416 individuals, i.e., 30-50 individuals per site 

(Table I). After capture, the fish were placed into a water vat to keep them alive 

during transportation. To obtain genetic material, a piece of fin was removed and 

stored in 95% ethanol at -20 ºC until further analysis. 



 
Fig. 1 Map of the sampling locations for G. rarus. The dotted line means that 
channels are invisible on the present scale. Three man-made channels (Renmin 
Channel, Puyang River, Qingbai River) are shown by arrows 

Table I. Sample location information, including GPS coordinates, altitude and sample 
size. 

GPS locations Populations Attributes Latitude Longitude 
Altitude 

(m) 
Sample 

size 
T1 Tuojiang River 31°08′00.6″ 103°50′58.3″ 792 50 
T2 Tuojiang River 30°58′53.1″ 103°59′45.8″ 566 50 
M2 Minjiang River 30°58′46.3″ 103°50′02.9″ 627 35 
M3 Minjiang River 30°26′09.1″ 103°19′29.6″ 513 50 
D1 Dadu River 29°20′18.6″ 102°40′21.7″ 764 31 
D2 Dadu River 29°28′37.3″ 102°37′35.4″ 939 50 
D3 Dadu River 29°34′10.1″ 103°40′18.0″ 412 50 
Q1 Qingyi River 29°59′12.6″ 103°04′10.7″ 545 50 
Q2 Qingyi River 29°40′56.0″ 103°34′33.3″ 387 50 

 



MICROSATELLITE ANALYSES 

Genomic DNA of each sample was extracted using a salt extraction protocol 

outlined by Aljanabi & Martinez (1997). Microsatellite primers were developed as 

described in Liao et al. (2007) and He & Wang (2010). We screened 15 potential 

microsatellite primer pairs and found 8 polymorphic loci (GR08, GR22, GR29, 

Gra02, Gra04, Gra16, Gra25, and Gra30) to be with distinct bands. These eight 

primers were chosen in the present study. The polymerase chain reaction was carried 

out according to the procedure as the author described in He & Wang (2010). The 

annealing temperature for each primer was described in He & Wang (2010) and Liao 

et al. (2007). 

GENETIC VARIATION WITHIN POPULATIONS 

Observed and expected heterozygosities for each microsatellite locus and each 

population were calculated using MSA 4.05 (Dieringer & Schlotterer, 2003). Allelic 

richness, number of alleles, departures from the Hardy-Weinberg equilibrium, and 

genotypic linkage disequilibrium were calculated using FSTAT v.2.9.3 (Goudet, 

2001). Allelic richness was the number of alleles independent of the sample size. 

Significance levels were adjusted for multiple comparisons using the standard 

Bonferroni procedure (Rice, 1989). The difference of allelic richness and expected 

heterozygosity among populations were estimated using the Kruskall-Wallis test. 

Multiple comparison tests between populations were done using the pgirmess library 

of the R software (Ihaka & Gentleman, 1996). Allelic frequencies and their 

differences among populations were calculated and evaluated by Fisher’s exact test 

using Genepop v. 4.0 (Raymond & Rousset, 1995). 

GENETIC STRUCTURE AMONG POPULATIONS 

Four complementary approaches were used to measure the population genetic 

structure of G. rarus.  

Firstly, FST between pairs of population were calculated using MSA (Dieringer 

& Schlotterer, 2003). The statistical significance of pairwise FST was tested by 10000 

permutations and the significant level was also adjusted by the Bonferroni procedure 



(α = 0.0014). We also estimated G’ST, a standardized measure of global genetic 

differentiation that is independent of the amount of genetic variation observed at the 

examined loci, to facilitate comparisons with other studies (Hedrick, 2005). G’ST was 

estimated using MSA and its significance was estimated using 10000 permutations.  

Secondly, as an alternative to traditional FST methods, the Bayesian clustering 

method in STRUCTURE ver. 2 (Pritchard et al., 2000; Falush et al., 2003) was used 

to measure the population structure of microsatellite variation. Without regard to 

sampling locations, this program assigns genotypes to a number of genetic clusters 

(K), so as to minimize deviations from linkage and the Hardy-Weinberg equilibrium 

within clusters. Using the admixture model and correlated allele frequency 

parameters, ten replicates of each run from K = 1 to K = 9 were performed. Each 

replicate was run for 20,000 Markov chain Monte Carlo (MCMC) generations with an 

initial burn-in of 20,000 generations. This was used to estimate the posterior 

probabilities L(K). Commonly, the K with the highest likelihood is considered as the 

optimal number of genetic clusters. Alternatively, rather than using L(K), (Evanno et 

al., 2005) recently proposed a new criteria ∆K, a measure of the second order rate of 

change in the likelihood of K, to select the most likely number of clusters K. The 

modal value of the distribution ∆K was found to be more similar to the real K number 

of populations in the simulation study of (Evanno et al., 2005). As recommended by 

these researchers, we used the height of this modal value as the signal for the 

uppermost hierarchical level of genetic structure in the data set. STRUCTURE also 

calculated the fractional membership of each individual in each cluster (q) (Pritchard 

et al., 2000). We arbitrarily differentiated two types of populations: (1) populations 

that have a q higher than 75% for a given cluster were considered to be strongly 

attached with one cluster and (2) populations that have no q higher than 75% were 

considered as shared membership between clusters. 

Thirdly, a hierarchical analysis of molecular variance (AMOVA) (Excoffier et 

al., 1992), as implemented in ARLEQUIN 2.000 (Schneider et al., 2000), attempts to 

partition the total variance in gene frequencies into components due to the following 

sources of structure: among groups, among populations within groups and within 

populations. In order to probe the relationship between genetic differentiation and 

water systems, here we used three different group divisions: 1) According to different 



river basins, four groups were divided: Group M (M2, M3) belongs to the Minjiang 

River; Group T (T1, T2) belongs to the Tuojiang River; Group Q (Q1, Q2) belongs to 

the Qingyi River; Group D (D1, D2 and D3) belongs to the Dadu River (Fig. 1); 2) 

According to the structure of the water systems, these four river basin groups are 

divided into two groups: Group MT (M2, M3, T1 and T2) belonging to the Minjiang 

and Tuojiang Rivers, Group QD (Q1, Q2, D1, D2 and D3) belonging to the Qingyi 

and Dadu Rivers (Fig. 1); 3) We planned a comparison accounting for the groups 

defined according to the outputs of the STRUCTURE software described above. 

Finally, a phylogenetic (Neighbor-Joining) tree was built to visualize grouping 

patterns among populations in the software POPULATIONS version 1.2.30 

(Langella, 1999) by using the Nei’s genetic distance (Nei et al., 1983; Takezaki & 

Nei, 2008) and 10,000 bootstraps on individuals. This phylogenetic tree was 

displayed using TreeView (Page, 1996). 

GENE FLOW AND MIGRATION RATE AMONG POPULATIONS 

We investigated gene flow among populations using two approaches. Firstly, we 

measured the relationship between the genetic distance and the geographical distance 

among populations. The genetic distance measure (Slatkin, 1985) was regressed on 

the geographical distance (ln km), by calculating Pearson correlation coefficients (r) 

and using a Mantel (1967) permutation procedure (10,000 permutations) to establish 

95% confidence intervals for r. This test was performed using the vegan library 

(Oksanen et al., 2008) of the R software (Ihaka & Gentleman, 1996). Here, three 

different geographical distance measurements were used: straight line distance (SLD), 

water course distance (WCD) and riparian distance (RD). SLD was calculated 

through the online distance calculator between each two GPS coordinates, while 

WCD was calculated along the river networks in the Google Earth version 5.0. RD 

was calculated along the closest connected water system (e.g. through man-made 

channels between the Minjiang and Tuojiang Rivers, Fig. 1) in the Google Earth 

version 5.0. Finally, to differentiate between the multiple regression models, Akaike 

Information Criterion (AIC; Burnham & Anderson, 2002) was calculated through glm 

function (Dobson, 1990) in the R software. Then ∆i (∆i = AICi - AICmin) was used to 

rescale AIC, where AICmin is the minimum of different AICi values. This 

transformation forces the best model to have ∆i = 0. Secondly, the migration rates 



between populations within the past few generations were estimated using 

BAYESASS 1.3 (Wilson & Rannala, 2003). Contrary to indirect estimators of long-

term gene flow, this non-equilibrium approach does not assume Hardy-Weinberg 

equilibrium within populations. This model uses a Markov chain Monte Carlo 

technique to estimate the proportion of immigrants into a population and their 

confidence intervals (CI). BAYESASS also estimates the mean migration rate (and 

CI) for data with insufficient information for estimating migration (Wilson & 

Rannala, 2003), to serve as a control or comparison for values estimated from 

empirical data. This study performed a total of 3×106 iterations (discarding the first 

106 iterations as burn-in) and a sampling frequency of 2000. Various delta values for 

migration rate (m), allele frequencies (P), and inbreeding values (F) were compared. 

A realistic output (when the accepted numbers of proposed changes are between 40% 

and 60%) was obtained with m=0.15, P=0.15 and F=0.15.  

RESULTS 

GENETIC DIVERSITY 

After adjusting for multiple comparisons, no significant linkage disequilibrium 

was found in any pairs of loci, while significant departures from Hardy-Weinberg 

equilibrium were found for several loci in some populations (Table II). However, 

those loci did no show consistent deviations across all populations. Therefore, we 

assumed that processes causing this non-equilibrium were specific to those 

populations, and continued to include those loci in subsequent analyses. The number 

of alleles detected at a locus ranged from four (locus GR22, Gra04 and Gra25) to 18 

(locus GR29), averaging 7.9 over all loci. A total of 63 microsatellite alleles were 

observed among all geographic locations for rare minnow across eight loci, ranging 

from a maximum of 61 alleles in T2 to a minimum of 41 alleles in Q1. Allelic 

richness across all loci varied from 4.8 (Q1) to 7.3 (T2). The observed heterozygosity 

ranged from 0.485 to 0.675, with a mean of 0.593 across all loci and populations. The 

expected heterozygosity ranged between 0.678 and 0.782, with a mean of 0.730 over 

all loci and populations (Table II).  

 



Table II. Genetic diversity of each wild population of G. rarus was revealed by eight 
microsatellite loci, including average allele numbers per locus (A), average allelic 
richness (AR), average observed heterozygosity (HO), average expected 
heterozygosity (HE), inbreeding coefficients (FIS) and loci with significant departures 
from Hardy-Weinberg (HW) proportions. The standard error is given in parentheses. 

Populations A AR HO HE FIS HW 
disequilibrium 

T1 6.50 (1.57) 6.13 (1.43) 0.573 (0.094) 0.685 (0.076) 0.166 GR22/Gra16/Gra25 
T2 7.63 (1.64) 7.30 (1.53) 0.564 (0.026) 0.761 (0.035) 0.260 GR29/Gra02/Gra04 
M2 7.00 (1.36) 6.83 (1.29) 0.625 (0.054) 0.764 (0.036) 0.185 — 
M3 6.63 (0.84) 6.45 (0.82) 0.649 (0.037) 0.781 (0.027) 0.170 — 
D1 5.50 (0.95) 5.47 (0.93) 0.536 (0.058) 0.681 (0.041) 0.215 — 
D2 6.00 (0.89) 5.74 (0.83) 0.604 (0.068) 0.730 (0.031) 0.174 Gra16 
D3 6.63 (1.22) 6.44 (1.17) 0.625 (0.054) 0.724 (0.043) 0.138 — 
Q1 5.13 (0.40) 4.79 (0.31) 0.485 (0.056) 0.676 (0.024) 0.285 GR22/GR29/Gra04 
Q2 7.00 (1.55) 6.74 (1.45) 0.675 (0.052) 0.756 (0.035) 0.108 — 

 

POPULATION STRUCTURE 

There were no significant differences in allelic richness and expected 

heterozygosity among and between locations (P > 0.05). However, Fisher’s exact test 

revealed that there was significant allelic frequency differentiation among pairs of 

populations after Bonferroni correction (P < 0.001). Significant structure existed 

among G. rarus populations based on FST estimates (Table III). Pairwise FST values 

ranged from 0.013 to 0.154 among all nine geographic populations, with an average 

FST = 0.061 (Table III). These values represented low to moderate levels of 

population differentiation. An overall randomization test of population differentiation 

was significant for each pair of populations after Bonferroni correction. The largest 

genetic differentiation was between T1 and Q1 (FST = 0.154), indicating that they 

were quite isolated populations. The standardized global genetic differentiation 

measure G’ST = 0.26 (p < 0.001) also indicated significant levels of genetic 

differentiation among nine wild populations of G. rarus.  

 

 

 



Table III. Matrix of pairwise FST (below diagonal) and riparian geographical distance 
(km, above diagonal) between populations of G. rarus is listed.  

Populations T1 T2 M2 M3 D1 D2 D3 Q1 Q2 
T1 0.0000 138.41 163.12 332.43 605.27 624.45 398.56 504.7 416.30 
T2 0.0656** 0.0000 62.90 239.16 531.18 512.00 305.29 411.43 323.03 
M2 0.0580** 0.0205** 0.0000 181.05 453.89 473.07 247.18 353.31 264.91 
M3 0.0881** 0.0404** 0.0130* 0.0000 425.64 444.82 218.93 325.07 236.67 
D1 0.0872** 0.0652** 0.0614** 0.0678** 0.0000 19.18 217.29 323.42 235.02 
D2 0.0752** 0.0564** 0.0465** 0.0344** 0.0249* 0.0000 236.47 342.60 254.20 
D3 0.1214** 0.0576** 0.0471** 0.0433** 0.0688** 0.0495** 0.0000 116.71 28.31 
Q1 0.1537** 0.0753** 0.0650** 0.0575** 0.0462** 0.0722** 0.0559** 0.0000 88.40 
Q2 0.0971** 0.0351** 0.0268** 0.0272** 0.0778** 0.0465** 0.0394** 0.0809** 0.0000 

** represents p<0.01, * represents p<0.05 

Examination of L(K) values from the STRUCTURE for successive K values 

showed a maximum likelihood value at K = 6, the steepest increase and lowest 

standard deviation between K = 1 and K = 2 (Fig. 2). Calculation of ∆K (Evanno et 

al., 2005) produced a modal value of the statistic at K = 2 (Fig. 2). While for the value 

of ∆K, there was a second mode at K = 6. Evanno et al. (2005) revealed that the 

height of the modal values of ∆K indicated the strength of the population subdivision 

signal, suggesting deep subdivision at K = 2, and less pronounced differentiation at K 

= 6 in the present study. In addition, K = 2 appeared to be the most optimal 

subdivision for its high cluster membership q values. The subdivision K = 2 suggested 

that the uppermost level of hierarchical genetic structure has two distinct clusters C1 

and C2 (see Fig. 3). Most individuals of M2, M3, D1-D3 and Q2 showed a shared 

genetic pattern while most individuals of T1 and Q1 exhibited dominance of an 

alternate pattern. Each of the 9 geographic populations was assigned to one cluster 

based on their proportion of membership to both clusters, the right one of which was 

that with the highest probability of membership. Clusters C1 and C2 consisted of 4 

(T1, T2, Q2 and M2) and 5 (Q1, D1, D2, D3 and M3) geographic populations, 

respectively. Four of the 9 geographic populations were strongly assigned to one 

cluster (2/4 for C1, 2/5 for C2, threshold = 75%). The remaining five populations 

shared the membership between clusters and had a q value lower than 70%. All 

populations had a proportion of membership in one cluster of at least 60%.  



 

Fig.2 Different K values obtained by STRUCTURE. (a) Mean (±SD) of L(K) over 10 

STRUCTURE runs for successive K values on the overall data set. (b) ∆ K as 

calculated by Evanno et al. (2005): the modal value (here for K = 2) shows the 

uppermost level of genetic structure 

 

Fig. 3 Assignment of individuals of G. rarus using STRUCTURE based on sample 

locations and K = 2. Colors correspond to each cluster. Each bar represents a single 

individual sample and present in groups based on sampling location 

Such a last result suggests recent mixing between the two clusters (C1 and C2) 

described above. Accordingly, a comparison of allelic frequencies between the two 

clusters revealed significant differences across all the loci (Fig. 4). Indeed, some loci 

(GR08, GR29 and Gra30) showed marked difference, with each cluster being 

characterized by specific patterns of allelic frequency and a tendency of changing 

allelic frequency between the two clusters (Fig. 4). For example, some large alleles 

with low frequencies in loci GR08 and Gra30 disappeared gradually from C1 to C2, 

and middle-sized alleles with high frequencies in locus GR29 gradually dominated in 

C2 (Fig. 4). 



 

Fig. 4 Schematic illustration of relative allelic frequency of three out of eight loci (a--

GR08, b--GR29, c--Gra30) in nine wild populations that showed the highest 

difference between two STRUCTURE clusters (C1 in white circles and C2 in grey 

circles). The populations were ordered from the maximun to minimum of the q values 

(assigned to C1) 

Without group information in the data set, hierarchical AMOVA analysis 

detected significant levels of structure among all the sites. Specifically, 6.3% of the 

variation was from the variation among the sites (FST = 0.063). With group 

information included in the data set, hierarchical AMOVA analysis did not detect 

significant levels of structure not only among four river basin groups but also between 



two water system groups (P > 0.05, Table IV). However, a significant difference 

between two STRUCTURE clusters was detected (P < 0.05, Table IV). 

Table IV. Hierarchical analysis of molecular variance (AMOVA) in the wild 
populations of G. rarus. Three different group divisions were used: four river basin 
groups, two water system groups, and two STRUCTURE clusters. 

Source of variation d.f. Variance 
components Percent variation Fixation index 

(F) 
Four river basin groups     
Among groups 3 0.031 0.98 0.010 
Among populations within groups 5 0.170 5.45 0.055** 
Within populations 813 2.920 93.58 0.064** 
     
Two water system groups     
Among groups 1 0.040 1.28 0.013 
Among populations within groups 7 0.173 5.53 0.056** 
Within populations 813 2.920 93.19 0.068** 
     
Two STRUCTURE clusters     
Among groups 1 0.049 1.55 0.016* 
Among populations within groups 7 0.168 5.37 0.055** 
Within populations 813 2.920 93.08 0.069** 
**Significant at p<0.001, *Significant at p<0.05. 

According to the phylogenetic tree built by using Neighbor-Joining (NJ) 

methods, two populations (T1 and Q1) with the largest distance were identified (Fig. 

5). This topology also indicated a grouping in accordance with the geographical 

location of the populations in a degree.  

 
Fig. 5 A phylogenetic (Neighbor-Joining) tree based on Nei’s genetic distance (Da, 
1983) of 9 wild populations of G. rarus. The numbers above the lines are the 
proportion of similar replicates supporting each node based on 10000 bootstrap 
simulations. 



GENE FLOW 

Results from the Mantel test showed a weak but significant relationship between 

FST/(1-FST) and geographical distance (P < 0.05; Table V), indicating the existence of 

a geographical isolation among the wild populations of G. rarus. The highest 

correlation coefficient was obtained between FST/(1-FST) and riparian distance, which 

is shown in Fig. 6. This model also gave the lowest AIC value (Table V), and all the 

∆i values were large than 2, indicating that this model was the best for supporting the 

data. 

Based on estimates from BAYESASS, there were no instances of significant 

immigration rates among all the sample locations, because all the mean estimated 

migration rates fell within the confidence intervals expected in cases of insufficient 

signal in the data (95% CI: 4.53×10-10, 0.126; Table VI). Furthermore, recent 

immigration rates among the majority of sampled locations were quite low (m < 0.01) 

with a high proportion of individuals derived from their own population (> 0.90), 

suggesting that most areas are isolated from each other, at least with respect to first- 

and second-generation immigrants. However, we detected one relatively high 

proportion of immigrants (m = 0.112) from M3 into M2, which was close to the upper 

level of expected values (m = 0.126).  

Table V. Information about the regression of genetic differentiation, measured as 
FST/(1-FST), on the log of the geographical distance between population pairs. Three 
different kinds of geographical distance measurement (straight line distance-SLD; 
water course distance-WCD; riparian distance-RD) were used in the present study. r - 
correlation coefficient; p - significant value; AIC – Akaike’s Information Criterion. 

FST/(1-FST) Geographic distance r p AIC 
SLD 0.3365 0.0015 85.90478 
WCD 0.3215 0.0306 108.0814 
RD 0.4188 0.0012 82.54997 



 
Fig. 6 Isolation by distance among G. rarus wild populations. The best correlation 

model between FST/(1-FST) and ln (riparian geographical distance, km) is shown 

 



Table VI. Bayesian estimates of recent migration rates among wild populations of G. rarus using the program BAYESASS. Values shown are 
the mean migration rate into each population and their respective 95% confidence intervals in parentheses. Values along the diagonal (in bold) 
are the proportion of individuals derived from the source population for each generation. 

Migration into 
Populations 

T1 T2 M2 M3 D1 D2 D3 Q1 Q2 

Migration from T1 0.991 
(0.967-1.000) 

0.015 
(0.000-0.058) 

0.011 
(0.000-0.055) 

0.003 
(0.000-0.022) 

0.005 
(0.000-0.032) 

0.005 
(0.000-0.028) 

0.009 
(0.000-0.038) 

0.001 
(0.000-0.009) 

0.002 
(0.000-0.014) 

 T2 0.001 
(0.000-0.009) 

0.934 
(0.852-0.992) 

0.013 
(0.000-0.059) 

0.003 
(0.000-0.022) 

0.005 
(0.000-0.032) 

0.003 
(0.000-0.022) 

0.019 
(0.000-0.064) 

0.001 
(0.000-0.007) 

0.013 
(0.000-0.057) 

 M2 0.001 
(0.000-0.009) 

0.009 
(0.000-0.051) 

0.783 
(0.700-0.879) 

0.003 
(0.000-0.021) 

0.005 
(0.000-0.032) 

0.004 
(0.000-0.023) 

0.008 
(0.000-0.038) 

0.001 
(0.000-0.008) 

0.004 
(0.000-0.025) 

 M3 0.001 
(0.000-0.009) 

0.004 
(0.000-0.026) 

0.112 
(0.024-0.210) 

0.965 
(0.891-0.999) 

0.005 
(0.000-0.029) 

0.005 
(0.000-0.033) 

0.041 
(0.001-0.111) 

0.001 
(0.000-0.008) 

0.004 
(0.000-0.024) 

 D1 0.001 
(0.000-0.010) 

0.007 
(0.000-0.043) 

0.006 
(0.000-0.035) 

0.004 
(0.000-0.027) 

0.850 
(0.709-0.984) 

0.010 
(0.000-0.065) 

0.029 
(0.000-0.099) 

0.001 
(0.000-0.010) 

0.006 
(0.000-0.043) 

 D2 0.001 
(0.000-0.008) 

0.007 
(0.000-0.030) 

0.016 
(0.000-0.062) 

0.004 
(0.000-0.031) 

0.075 
(0.000-0.213) 

0.959 
(0.877-0.999) 

0.048 
(0.000-0.158) 

0.001 
(0.000-0.010) 

0.010 
(0.000-0.047) 

 D3 0.001 
(0.000-0.009) 

0.007 
(0.000-0.032) 

0.012 
(0.000-0.060) 

0.004 
(0.000-0.027) 

0.007 
(0.000-0.038) 

0.003 
(0.000-0.024) 

0.801 
(0.714-0.898) 

0.001 
(0.000-0.010) 

0.006 
(0.000-0.036) 

 Q1 0.001 
(0.000-0.009) 

0.005 
(0.000-0.031) 

0.030 
(0.000-0.085) 

0.004 
(0.000-0.032) 

0.041 
(0.000-0.117) 

0.008 
(0.000-0.046) 

0.037 
(0.000-0.105) 

0.991 
(0.970-1.000) 

0.004 
(0.000-0.023) 

 Q2 0.001 
(0.000-0.009) 

0.013 
(0.000-0.058) 

0.016 
(0.000-0.069) 

0.008 
(0.000-0.060) 

0.006 
(0.000-0.032) 

0.002 
(0.000-0.017) 

0.010 
(0.000-0.048) 

0.001 
(0.000-0.008) 

0.950 
(0.876-0.994) 



DISCUSSION 

GENETIC DIFFERENTIATION AMONG POPULATIONS 

Our analyses revealed significant genetic differentiation among wild populations 

of G. rarus, as we detected significant pairwise FST comparisons. According to the 

interpretation of FST in Balloux & Lugon-Moulin (2002), the genetic differentiation of 

wild populations of G. rarus were at the low to moderate level. Among them, fifteen 

comparisons were considered as a low level of differentiation, twenty as moderate 

level, and only one (between populations T1 and Q1, FST = 0.1537) as considerable 

differentiation. Specifically, the genetic differentiation between T1 and any other 

populations were in the moderate range. A similar phoenomenon was found in 

population Q1. Actually, a low level of genetic differentiation does not mean a 

negligible differentiation (Wright, 1978; Charlesworth, 1998; Nagylaki, 1998; 

Hedrick, 1999; Balloux & Lugon-Moulin, 2002), which was confirmed in the present 

study. The genetic differentiation of G. rarus was mainly due to significant allelic 

frequency differences among populations. Different populations of G. rarus exhibited 

different allelic frequency distribution patterns over different loci. Some of them were 

mainly composed of the middle-sized alleles such as population Q1, but some had 

extensive allele distribution such as population T2 (Fig. 4). In addition, no significant 

recent migration rate between any two populations was revealed by BAYESASS, 

indicating very limited recent gene flow among G. rarus populations. According to 

Hutchison & Templeton (1999), a weak but significant isolation-by-distance pattern, 

as seen in the present study, also showed that there was a regional equilibrium 

between genetic drift and gene flow, indicating that these two mechanisms drive the 

genetic structure of G. rarus. 

GENETIC CLUSTERS 

Except for significant population differentiation, the present study revealed the 

genetic clustering structure of wild populations of G. rarus. STRUCTURE revealed 

two obvious genetic clusters (C1 and C2) that were significantly different by 

AMOVA analyses. The phylogenetic tree also indicated a grouping in accordance 

with the geographical locations. Although different clusters were obtained from 

different methods, overall the clustering structure was similar.  



This clustering structure may be highly correlated with the structure of the water 

systems. All the sampling sites in the present study were located in the western area 

of the Sichuan Basin and its margins, either in the Chengdu Plain or its neighboring 

area. From the point of view of the water system structure, all the sampling sites were 

from four river basins (Minjiang River, Tuojiang River, Qingyi River, Dadu River). 

While from the point of view of the formation of the Chengdu Plain, they were from 

two alluvial plains (Qian & Tang, 1997). One was from the Minjiang and Tuojiang 

Rivers (MT), and another was from the Qingyi and Dadu Rivers (QD). Actually, 

AMOVA analyses revealed that there were no significant differences among these 

four river basin groups or the two alluvial plain groups (Table IV). Compared with the 

component of the two alluvial plain groups, STRUCTURE clusters were similar but 

with a little difference, i.e., Q2 was clustered into MT and M3 into QD by 

STRUCTURE. Actually, the analysis of the frequency distribution of alleles revealed 

a possible introgression from one cluster (C1) into the other (C2). 

Since there were no detectable recent migrations, this clustering structure could 

be explained from the histories of the river evolution that usually act as an important 

force in the biogeography or distribution of many freshwater fish species. Yuan & 

Tao (2008) showed that the drainage evolution of the Qingyi River consisted mainly 

of four stages. During the Middle Pleistocene Epoch, the Qingyi River flowed 

northwards into the Minjiang River at Xinjin County, where Qionglai River (M3) 

joined. However, along with the arrival of the Late Pleistocene Epoch, the Qingyi 

River went southeastwards through Jiajiang County (Q2) into the Dadu River at 

Leshan City (Li et al., 2006; Li & Guo, 2008; Yuan & Tao, 2008). It was deduced 

that Q2 did not belong to the Qingyi River basin until about 2.5 to 1 million years 

ago, and M3 might have belonged to the Qingyi River basin around two million years 

ago. Therefore, the population genetic structure pattern of G. rarus could be highly 

correlated with the structure of the water systems and its history.  

ISOLATION BY DISTANCE 

Understanding dispersal and its effects on genetic structure is essential to many 

fields of research including population genetics, population ecology and conservation 

biology (Kraaijeveld-Smit et al., 2005; Bergl & Vigilant, 2007; Björklund et al., 

2007; Aspi et al., 2009; Schlosser et al., 2009). In view of the present distribution and 



differentiation of G. rarus, we can surmise that rare minnow was widely dispersed 

along with the evolution of the Minjiang and Tuojiang Rivers in history. The 

floodplain and the complicate water networks of the Sichuan Basin have been the 

distribution site and the migration path. However, due to the construction of 

hydropower projects, a large number of rare minnow habitats were lost so that the 

remnant populations are in discontinuous distribution at present. Dispersal might have 

happened to some extent through the man-made channels of hydropower projects, 

which would be consistent with limited gene flow among populations revealed in the 

present study. 

In the present study, three different geographical distances were used to reveal 

the isolation-by-distance (IBD) pattern. The best fitted regression model was between 

FST and the riparian distance, since it had the lowest AIC value. However, it is 

generally important to know which model is the second best. The simple rules used in 

assessing the relative merits of the models were: models having ∆i ≤ 2 have 

substantial support; those in which 4 ≤ ∆i ≤ 7 have considerably less support, and 

models having ∆i > 10 have essentially no support (Burnham & Anderson, 2004). All 

the ∆i values in the present study were greater than 2, indicating models from straight 

line distance and water course distance have less support and even essentially no 

support. Therefore, we hypothesized that isolation-by-distance played a role in 

genetic structure of G. rarus because a slightly significant positive relationship 

between FST and the riparian geographical distance was detected (Fig. 6).  

As we described in the Material and Methods, the riparian distance (RD) was 

calculated along the closest connected water system through the man-made channels 

between the Minjiang and Tuojiang Rivers, but not through the mouth of these two 

rivers (e.g. WCD). To some extent, it reflected the most likely dispersal route of G. 

rarus through these complicate man-made channels. This could be true because no 

rare minnow were sampled either in the mouth of the Minjiang River at Yibin City or 

in the mouth of the Tuojiang River at Luzhou City up until now, where high 

intensities of investigations into fish catches were usually carried out.  

These man-made channels were from the numerous water diversion projects 

built in the Minjiang River. The upper Minjiang River is abundant in water resources, 

but accompanied with frequent flooding (Liu et al., 2006). These projects were built 



to prevent floods, and for irrigation and municipal water use. Among them, the most 

famous one is the Dujiangyan Irrigation Project located in Dujiangyan City that was 

built in the main stream of the Minjiang River around 2 300 years ago. To date, it is 

the only existing and oldest large project in the world characterized by water 

diversion without dams. It has been acting as the most important diversion and 

irrigation system for agriculture in the Chengdu Plain, irrigating over 5 300 km2 of 

land in that region. In fact, these water diversion projects constitute a complicated 

water network in the Chengdu Plain, while some of them (e.g., Renmin Channel, 

Puyang River, Qingbai River, Fig. 1) connect the Minjiang River with the Tuojiang 

River. G. rarus might migrate through these connective channels to exchange genes. 

CONSERVATION IMPLICATION 

Rare minnow generally have a spotted distribution. The geographic distance 

between populations studied here are quite large, usually dozens to hundreds of 

kilometers away from each other. There could be much less probability of rare 

minnow individuals migrating from site to site, which was confirmed by the limited 

recent gene flow detected in the present study. In addition, the present Chengdu Plain 

region is not suitable for G. rarus to survive due to human activities, including 

channelization, water diversion and pollution. Rare minnow only survive in narrow 

areas with fewer anthropogenic disturbances, especially at the edge of the Chengdu 

Plain. 

Since all the sampling sites in the present study were significantly differentiated 

from each other, there should be protection measures for all the nine populations of G. 

rarus. However, some populations (e.g., M2, Q1, D1 and D3) in both clusters C1 and 

C2 are experiencing major environmental threats, where conservation measures could 

not be carried out effectively.  

Considering these present conditions, it is necessary to select representative and 

potential populations in each STRUCTURE cluster to protect, to sustain long-term 

survival of the species. The populations characterized by large population size, high 

genetic diversity, extensive allele distribution and favorable habitats, such as T1, T2 

and Q2 in cluster C1, M3 and D2 in cluster C2, should be in prior conservation. In 

comparison with the total allele number (=63) over all eight loci, population T2 in 



cluster C1 has 61 alleles, thus only lacking two of the alleles. These two alleles could 

be found in low frequencies in populations T1 and Q2, respectively. All these three 

populations also showed relatively high genetic diversity and large population size, 

and thus they were selected as populations of high priority for the conservation of 

cluster C1. However, they have been more or less influenced by human activities in 

recent years. For instance, the habitat originating from the spring had been suitable for 

population T2 to survive in the 19th century. However, the population size was found 

to be decreasing in recent years by the authors’ field investigation in 2006 and 2008, 

which may be mainly due to human activities, such as increasing pesticide pollution. 

Moreover, populations M3 and D2 were selected as the representatives of cluster C2 

because of their relatively high genetic diversity and large population size. These two 

populations covered most of the studied alleles, i.e., 56 alleles distributed. They are 

also facing major threats, such as hydropower construction. For instance, the Pubugou 

hydroelectric station, some dozens of kilometers away from the topotype population 

D2 of G. rarus, had been built in the main stream of the Dadu River. Its reservoir 

settlements include building factories, altering land use, river regulation and farmland 

water conservancy, are deteriorating the ecological environment of population D2. 

Fortunately, as the topotype population of G. rarus, D2 has a large population size, 

relatively high genetic diversity, and suitable habitats. He & Wang (2010) also 

revealed that the topotype population of G. rarus was healthy and stable, and 

suggested that a reserve area be set up to help the management of its type locality. 

Consequently, it is urgent to carry on useful and effective protection measures for 

these prior populations to avoid further deterioration of habitats and to sustain the 

wild species resources of G. rarus. 

Determining the conservation units (e.g., evolutionarily significant units, ESUs) 

for an endangered species is controversial but widely applied in many studies (Moritz, 

1994; Parker et al., 1999; Hedrick et al., 2001; Holycross & Douglas, 2007; 

Krabbenhoft et al., 2008; Morgan et al., 2008). Different definitions of ESUs have 

varied from author to author. Based on genetic criteria, Moritz (1994) defined ESUs 

as being reciprocally monophyletic for mitochondrial DNA (mtDNA) alleles and 

show significant divergence of allele frequencies at nuclear loci. Waples (1991) 

provided a more general definition “An ESU is a population (or group of populations) 

that (1) is substantially reproductively isolated from other conspecific populations, 



and (2) represents an important component in the evolutionary legacy of the species”. 

Based on whatever criterion, it is difficult to determine ESUs in the present study, 

although significant differentiations of allele frequencies at microsatellite loci were 

revealed between pairs of populations. Further studies, such as mtDNA analyses and 

morphological studies, should be carried out in the future in order to make clearer the 

population structure of G. rarus. 

ACKNOWLEDGEMENT 

The authors are most grateful to F. Wang for his technical assistance. We also 

thank Dr. E. Quéméré and Prof. O. Langella for their kind help in using the software 

STRUCTURE and POPULATIONS. This research was supported by funds from the 

National Natural Science Foundation of China (NSFC, 30670292), the Chinese 

Academy of Sciences (CZBZX-1), the Ministry of Environmental Protection of China 

(2009ZX07527-005) and the French embassy by providing PhD grants for the co-

supervision of the PhD research. 

REFERENCE 

Aljanabi, S.M. & Martinez, I. (1997). Universal and rapid salt-extraction of high 
quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25, 4692-
4693. 

Aspi, J., Roininen, E., Kiiskila, J., Ruokonen, M., Kojola, I., Bljudnik, L., Danilov, P., 
Heikkinen, S. & Pulliainen, E. (2009). Genetic structure of the northwestern Russian 
wolf populations and gene flow between Russia and Finland. Conservation Genetics 
10, 815-826. 

Aspi, J., Roininen, E., Ruokonen, M., Kojola, I. & Vila, C. (2006). Genetic diversity, 
population structure, effective population size and demographic history of the Finnish 
wolf population. Molecular Ecology 15, 1561-1576. 

Balloux, F. & Lugon-Moulin, N. (2002). The estimation of population differentiation 
with microsatellite markers. Molecular Ecology 11, 155-165. 

Beaumont, M.A. & Rannala, B. (2004). The Bayesian revolution in genetics. Nature 
Reviews Genetics 5, 251-261. 

Bergl, R.A. & Vigilant, L. (2007). Genetic analysis reveals population structure and 
recent migration within the highly fragmented range of the Cross River gorilla 
(Gorilla gorilla diehli). Molecular Ecology 16, 501-516. 



Björklund, M., Aho, T. & Larsson, L.C. (2007). Genetic differentiation in pikeperch 
(Sander lucioperca): the relative importance of gene flow, drift and common history. 
Journal of Fish Biology 71, 264-278. 

Bohonak, A.J. (1999). Dispersal, gene flow, and population structure. Quarterly 
Review of Biology 74, 21-45. 

Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference: 
a practical information-theoretic approach. 2nd ed. New York: Springer. 

Burnham, K.P. & Anderson, D.R. (2004). Multimodel inference - understanding AIC 
and BIC in model selection. Sociological Methods & Research 33, 261-304. 

Charlesworth, B. (1998). Measures of divergence between populations and the effect 
of forces that reduce variability. Molecular Biology and Evolution 15, 538-543. 

Chen, Y.Y. (1998). Fauna Sinica, Osteichthyes, Cypriniformes II. Beijing: Science 
Press. pp. 51-52. (in Chinese) 

Ciofi, C. & Bruford, M.W. (1999). Genetic structure and gene flow among Komodo 
dragon populations inferred by microsatellite loci analysis. Molecular Ecology 8, 
S17-S30. 

Crandall, K.A., Bininda-Emonds, O.R.P., Mace, G.M. & Wayne, R.K. (2000). 
Considering evolutionary processes in conservation biology. Trends in Ecology & 
Evolution 15, 290-295. 

Devillard, S., Jombart, T. & Pontier, D. (2009). Revealing cryptic genetic structuring 
in an urban population of stray cats (Felis silvestris catus). Mammalian Biology 74, 
59-71. 

Dieringer, D. & Schlotterer, C. (2003). Microsatellite analyser (MSA): a platform 
independent analysis tool for large microsatellite data sets. Molecular Ecology Notes 
3, 167-169. 

Ding, R.H. (1994). The Fishes of Sichuan, China. Chengdu: Sichuan Science and 
Technology Press. (in Chinese) 

Dobson, A.J. (1990). An introduction to generalized linear models. London: Chapman 
and Hall. 

Evanno, G., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of 
individuals using the software STRUCTURE: a simulation study. Molecular Ecology 
14, 2611-2620. 

Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992). Analysis of molecular variance 
inferred from metric distances among DNA haplotypes - application to human 
mitochondrial-DNA restriction data. Genetics 131, 479-491. 



Falush, D., Stephens, M. & Pritchard, J.K. (2003). Inference of population structure 
using multilocus genotype data: Linked loci and correlated allele frequencies. 
Genetics 164, 1567-1587. 

Floyd, C.H., Flores-Martínez, J.J., Herrera-M, L.G., Mejía, O. & May, B. (2009). 
Conserving the endangered Mexican fishing bat (Myotis vivesi): genetic variation 
indicates extensive gene flow among islands in the Gulf of California. Conservation 
Genetics doi: 10.1007/s10592-009-9902-4. 

Frankham, R., Ballou, J.D. & Briscoe, D.A. (2002). Introduction to Conservation 
Genetics. New York: Cambridge University Press. 

Fraser, D.J. & Bernatchez, L. (2001). Adaptive evolutionary conservation: towards a 
unified concept for defining conservation units. Molecular Ecology 10, 2741-2752. 

Gerlach, G. & Musolf, K. (2000). Fragmentation of landscape as a cause for genetic 
subdivision in bank voles. Conservation Biology 14, 1066-1074. 

Goudet, J. (2001). FSTAT, a program to estimate and test gene diversities and 
fixation indices (version 2.9.3). Available from 
http://www.unil.ch/izea/softwares/fstat.html. 

He, Y.F. & Wang, J.W. (2010). Temporal variation in genetic structure of the Chinese 
rare minnow (Gobiocypris rarus) in its type locality revealed by microsatellite 
markers. Biochemical Genetics 48, 312-325. 

Hedrick, P.W. (1999). Perspective: Highly variable loci and their interpretation in 
evolution and conservation. Evolution 53, 313-318. 

Hedrick, P.W. (2005). A standardized genetic differentiation measure. Evolution 59, 
1633-1638. 

Hedrick, P.W., Parker, K.M. & Lee, R.N. (2001). Using microsatellite and MHC 
variation to identify species, ESUs, and MUs in the endangered Sonoran topminnow. 
Molecular Ecology 10, 1399-1412. 

Holycross, A.T. & Douglas, M.E. (2007). Geographic isolation, genetic divergence, 
and ecological non-exchangeability define ESUs in a threatened sky-island 
rattlesnake. Biological Conservation 134, 142-154. 

Hutchison, D.W. & Templeton, A.R. (1999). Correlation of pairwise genetic and 
geographic distance measures: Inferring the relative influences of gene flow and drift 
on the distribution of genetic variability. Evolution 53, 1898-1914. 

Ihaka, R. & Gentlemen, R. (1996). R: a language for data analysis and graphics. 
Journal of Computational and Graphical Statistics 5, 299-314. 

Jia, F.J., Wang, J.W. & Wu, Q.J. (2002). Gynogenetic rare minnow (Gobiocypris 
rarus) induced by heterogeneous sperms. Acta Hydrobiologica Sinica 26(3), 246-252. 
(in Chinese) 



Johnson, M.S. (2000). Measuring and interpreting genetic structure to minimize the 
genetic risks of translocations. Aquaculture Research 31, 133-143. 

Koenig, W.D., VanVuren, D. & Hooge, P.N. (1996). Detectability, philopatry, and the 
distribution of dispersal distances in vertebrates. Trends in Ecology & Evolution 11, 
514-517. 

Kraaijeveld-Smit, F.J.L., Beebee, T.J.C., Griffiths, R.A., Moore, R.D. & Schley, L. 
(2005). Low gene flow but high genetic diversity in the threatened Mallorcan midwife 
toad Alytes muletensis. Molecular Ecology 14, 3307-3315. 

Krabbenhoft, T.J., Rohde, F.C., Leibman, A.N. & Quattro, J.M. (2008). Concordant 
mitochondrial and nuclear DNA partitions define evolutionarily significant units in 
the imperiled pinewoods darter, Etheostoma mariae (Pisces: Percidae). Copeia 4, 
909-915. 

Langella, O. (1999). Populations version 1.2.30. Distributed by the author, CNRS 
UPR9034, France. 

Le, P.Q. & Chen, Y.Y. (1998). China Red Data Book of Endangered Animals: Pisces. 
Beijing: Science Press. pp. 170-172. (in Chinese) 

Li, L., Ma, T.W. & Wu, Z.B. (2004). Toxic effect of domestic sewage on rare 
minnow (Gobiocypris rarus). Acta Hydrobiologica Sinica 28(1), 40-44. (in Chinese) 

Li, Y., Li, B., Steffen, D., Densmore, A.L., Richardson, N.J., Zhou, R.J., Ellis, M.A. 
& Zhang, Y. (2006). Provenance analysis and drainage evolution in Late Cenozoic 
Chengdu Basin on eastern margin of Tibetan Plateau. Acta Sedimentologica Sinica 
24(3), 309-320. (in Chinese) 

Li, Y.Z. & Guo, B. (2008). Cenozonic tectonics of Chengdu Plain, Sichuan, China. 
Journal of Chengdu University of Technology (Science & Technology Edition) 35(4), 
371-376. (in Chinese) 

Liao, X.L., Wang, D., Yu, X.M., Li, W.T., Cheng, L., Wang, J.W. & Tong, J.G. 
(2007). Characterization of novel microsatellite loci in rare minnow (Gobiocypris 
rarus) and amplification in closely related species in Gobioninae. Conservation 
Genetics 8, 1003-1007. 

Liu, X.L., Su, C.J., Xu, Y. & Zhang, J.Y. (2006). Water resource problem and 
sustainable utilization in the upper reaches of Minjiang River. Research of Soil and 
Water Conservation 13(3), 189-191. (in Chinese) 

Manel, S., Schwartz, M.K., Luikart, G. & Taberlet, P. (2003). Landscape genetics: 
combining landscape ecology and population genetics. Trends in Ecology & 
Evolution 18, 189-197. 

Mantel, N. (1967). The detection of disease clustering and a generalized regression 
approach. Cancer Research 27, 209-220. 



Morgan, M.J., Hunter, D., Pietsch, R., Osborne, W. & Keogh, J.S. (2008). 
Assessment of genetic diversity in the critically endangered Australian corroboree 
frogs, Pseudophryne corroboree and Pseudophryne pengilleyi, identifies four 
evolutionarily significant units for conservation. Molecular Ecology 17, 3448-3463. 

Moritz, C. (1994). Defining evolutionarily-significant-units for conservation. Trends 
in Ecology & Evolution 9, 373-375. 

Nagylaki, T. (1998). Fixation indices in subdivided populations. Genetics 148, 1325-
1332. 

Nei, M., Tajima, F. & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees 
from molecular data. Journal of Molecular Evolution 19, 153-170. 

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson, G.L., Solymos, P., 
Stevens, M.H.H. & Wagner, H. (2008). Vegan: Community Ecology Package. R 
package version 1.15-0. http://cran.r-project.org/, http://vegan.r-forge.r-project.org/. 

Paetkau, D., Amstrup, S.C., Born, E.W., Calvert, W., Derocher, A.E., Garner, G.W., 
Messier, F., Stirling, I., Taylor, M.K., Wiig, O. & Strobeck, C. (1999). Genetic 
structure of the world's polar bear populations. Molecular Ecology 8, 1571-1584. 

Page, R.D.M. (1996). TreeView: An application to display phylogenetic trees on 
personal computers. Computer Applications in the Biosciences 12, 357-358. 

Parker, K.M., Sheffer, R.J. & Hedrick, P.W. (1999). Molecular variation and 
evolutionarily significant units in the endangered Gila topminnow. Conservation 
Biology 13, 108-116. 

Pearse, D.E. & Crandall, K.A. (2004). Beyond FST: Analysis of population genetic 
data for conservation. Conservation Genetics 5, 585-602. 

Pei, D.S., Sun, Y.H. & Zhu, Z.Y. (2008). Construction of cytoplasmic molecular 
markers distinguishing Danio rerio from Gobiocypris rarus at high identity domains 
based on MP-PCR strategy and Sybr Green I detection. Molecular Biology Reports 
35(1), 45-50. 

Piry, S., Alapetite, A., Cornuet, J.M., Paetkau, D., Baudouin, L. & Estoup, A. (2004). 
GENECLASS2: A software for genetic assignment and first-generation migrant 
detection. Journal of Heredity 95, 536-539. 

Pritchard, J.K., Stephens, M. & Donnelly, P. (2000). Inference of population structure 
using multilocus genotype data. Genetics 155, 945-959. 

Qian, H. & Tang, R.C. (1997). On the formation and evolution of the Chengdu Plain. 
Earthquake Research in Sichuan 3, 1-7. (in Chinese) 

Raymond, M. & Rousset, F. (1995). GENEPOP (Version-1.2) - Population genetics 
software for exact tests and ecumenicism. Journal of Heredity 86, 248-249. 



Rice, W.R. (1989). Analyzing tables of statistical tests. Evolution 43, 223-225. 

Ridenhour, B.J. & Brodie, E.D. (2007). Patterns of genetic differentiation in 
Thamnophis and Taricha from the Pacific Northwest. Journal of Biogeography 34, 
724-735. 

Schlosser, J.A., Dubach, J.M., Garner, T.W.J., Araya, B., Bernal, M., Simeone, A., 
Smith, K.A. & Wallace, R.S. (2009). Evidence for gene flow differs from observed 
dispersal patterns in the Humboldt penguin, Spheniscus humboldti. Conservation 
Genetics 10, 839-849. 

Schneider, S., Roessli, D. & Excoffier, L. (2000). Arlequin ver.2.000: A software for 
population genetics data analysis. Genetics and Biometry Laboratory, University of 
Geneva, Switzerland. 

Selkoe, K.A. & Toonen, R.J. (2006). Microsatellites for ecologists: a practical guide 
to using and evaluating microsatellite markers. Ecology Letters 9, 615-629. 

Slatkin, M. (1985). Gene flow in natural populations. Annual Review of Ecology and 
Systematics 16, 393-430. 

Stow, A.J., Sunnucks, P., Briscoe, D.A. & Gardner, M.G. (2001). The impact of 
habitat fragmentation on dispersal of Cunningham's skink (Egernia cunninghami): 
evidence from allelic and genotypic analyses of microsatellites. Molecular Ecology 
10, 867-878. 

Su, J.G., Zhu, Z.Y. & Wang, Y.P. (2008). Molecular cloning, characterization and 
expression analysis of the PKZ gene in rare minnow Gobiocypris rarus. Fish and 
Shellfish Immunology 25(1-2), 106-113. 

Takezaki, N. & Nei, M. (2008). Empirical tests of the reliability of phylogenetic trees 
constructed with microsatellite DNA. Genetics 178, 385-392. 

Wang, J.W. (1992). Reproductive biology of Gobiocypris rarus. Acta Hydrobiologica 
Sinica 16(2), 165-174. (in Chinese) 

Wang, J.W. (1996). Studies on critical temperature of Gobiocypris rarus. Sichuan 
Journal of Zoology 15(4), 153-155. (in Chinese) 

Wang, J.W. (1999). Spawning performance and development of oocytes in 
Gobiocypris rarus. Acta Hydrobiologica Sinica 23(2), 161-166. (in Chinese) 

Wang, J.W. & Cao W.X. (1997). Gobiocypris rarus and fishes as laboratory animals. 
Transaction of the Chinese Ichthyological Society 6, 144-152. (in Chinese) 

Wang, S. & Xie, Y. (eds) (2004). China species red list, vol. 1. Red List. Beijing: 
Higher Education Press. pp. 154. (in Chinese) 



Wang, T.H., Liu, P.L., Chen, H.X., Liu, H.Q., Yi, Y.L. & Guo, W. (1994). 
Preliminary study on the susceptibility of Gobiocypris rarus to Hemorrhagic Virus of 
Grass Carp (GCHV). Acta Hydrobiologica Sinica 18(2), 144-149. (in Chinese) 

Wang, Z.H., Yin, Y.W., Xu, Z.N., Zhou, J., Zhang, Q. & Zhang, D.P. (1998). Acute 
and subchronic toxicity of pyrethroid insecticides to Gobiocypris rarus. Chinese 
Journal of Applied and Environmental Biology 4(4), 379-382. (in Chinese) 

Waples, R.S. (1991). Pacific Salmon, Oncorhynchus spp. and the definition of species 
under the endangered species act. Marine Fisheries Review 53, 11-22. 

Wilson, G.A. & Rannala, B. (2003). Bayesian inference of recent migration rates 
using multilocus genotypes. Genetics 163, 1177-1191. 

Wright, S. (1978). Evolution and the Genetics of Population, Variability Within and 
Among Natural Populations. Chicago: The University of Chicago Press. 

Xiong, D.M., Xie, C.X. & Xia, L. (2009). Threatened fishes of the world: 
Gobiocypris rarus Ye and Fu, 1983 (Cyprinidae). Environmental Biology of Fishes 
86, 107-108. 

Ye, M.R. & Fu, T.Y. (1983). Description of a new genus and species of Danioninae 
from China (Cypriniformes: Cyprinidae). Acta Zootaxon Sinica 8(4), 434-437. (in 
Chinese) 

Yuan, J.J. & Tao, X.F. (2008). The features of gravel bed and drainage evolution in 
the Qingyi River valley in the Mingshan-Danling Region, Sichuan. Acta Geologica 
Sinica 28(1), 6-12. (in Chinese) 

Zamudio, K.R. & Wieczorek, A.M. (2007). Fine-scale spatial genetic structure and 
dispersal among spotted salamander (Ambystoma maculatum) breeding populations. 
Molecular Ecology 16, 257-274. 

Zayed, A. & Packer, L. (2007). The population genetics of a solitary oligolectic sweat 
bee, Lasioglossum (Sphecodogastra) oenotherae (Hymenoptera : Halictidae). 
Heredity 99, 397-405. 

Zhong, X.P., Xu, Y., Liang, Y., Liao, T. & Wang, J.W. (2005). The Chinese rare 
minnow (Gobiocypris rarus) as an in vivo model for endocrine disruption in 
freshwater teleosts: a full life-cycle test with diethylstilbestrol. Aquatic Toxicology 71, 
85-95. 



 

 

 

 

 

P5 

Morphological variation among wild populations of Chinese rare minnow 

(Gobiocypris rarus) in four river basins 

He Y., Li R., Wang J., Blanchet S. & Lek S. (2010) 

In preparation 



Morphological variation among wild populations of Chinese rare minnow 

(Gobiocypris rarus) in four river basins 

Yongfeng HE1, 2, Rui LI, Jianwei WANG1, *, Simon BLANCHET2, 3, Sovan LEK2 

 1 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, 

China; 2 Université Paul Sabatier, Lab. Evolution & Diversité Biologique, UMR 5174, 

CNRS – 118, route de Narbonne – 31062 Toulouse, Cedex, France; 3 Station 

d’Ecologie Expérimental du CNRS à Moulis, Lab. USR 2936, 09 100 Moulis, France 

(*Corresponding author: Phone: +86-27-68780033; Fax number: +86-27-68780065; 

E-mail: wangjw@ihb.ac.cn; Address: Institute of Hydrobiology, Chinese Academy of 

Sciences, 7# Donghu South Road, Wuhan, Hubei 430072, China) 



Abstract 

The morphological variation of wild populations of Gobiocypris rarus was 

studied based on morphometric and meristic analyses of samples collected in the 

Dadu River basin, Qingyi River basin, Minjiang River basin and Tuojiang River basin. 

There were no significant meristic differences between sexes and among populations. 

However, there were significant morphometric differences not only between sexes but 

also among populations. In discriminant function analysis, the first four discriminant 

functions explained 70.4% and 73.4% of the between-population morphometric 

variation for males and females, respectively. Fifteen of all the morphometric traits 

showed the most important contribution to discriminate populations, mainly reflecting 

the differences of head morphology and vertical body shape. By using all the 

morphometric traits, the overall random assignments of individuals into their original 

population were 72.1% and 79.4% for males and females, respectively. In addition, 

the degree of differentiation in quantitative traits (QST) exceeds that in neutral 

molecular markers (FST). However, no significant correlations between QST and FST 

or riparian geographic distance were revealed. It may suggest a cooperative effect of 

environmental and genetic factors on phenotypic discreteness. 

Keywords: Gobiocypris rarus, population differentiation, morphology, quantitative 

divergence 



Introduction 

Studies of the population structure of threatened fishes are of theoretical interest 

to evolutionary biologists and of practical value to fishery managers. Quantitative 

variations of morphological and genetic characters have been extensively used to 

describe the population structure in many fish species, and been of greatest concern in 

conservation biology (Murta 2000; Frankham 2002; Silva 2003; Leinonen et al. 2006; 

Turan et al. 2006; Clabaut et al. 2007). 

Morphological variation in fishes may provide a good record of short-term 

population structuring. It is often environmentally induced for aquatic environments 

can exhibit great spatial or temporal variability in both abiotic and biotic habitat 

parameters (Lowe-McConnell 1987; Thompson 1991; Kinsey et al. 1994; Langerhans 

et al. 2003; Langerhans et al. 2007). While stable differences in shape between groups 

of fish may reveal different growth, mortality or reproductive rates that are relevant 

for the definition of stocks (Cadrin 2000). 

Morphometrics and meristics are the two types of morphological characters, 

providing useful results for identifying fish stocks and describing their spatial 

distributions (Ihssen et al. 1981). Morphometric characters describing aspects of body 

shape are continuous, while meristic characters fixed in embryos or larvae are discrete, 

serially repeated and countable. Traditionally morphometric data are measurements of 

lengths, depths and widths. They are primarily longitudinal and focused on the head 

and tail. Such a data set contains relatively little information about shape because 

many of the measurements overlap or run in similar directions (Maderbacher et al., 

2008). Thus, as an alternative, Strauss & Bookstein (1982) proposed a box-truss 

network between landmarks as a more comprehensive representation of form. Several 

researchers have compared the performance of traditional measurements to box-truss 

distances of finfish, and found that truss data resulted in more accurate classification 

of individuals (Strauss & Bookstein 1982; Winans 1987; Schweigert 1990; Roby et al. 

1991). Comparison to traditional measurements, these landmark-based techniques 

pose no restriction on the directions of variation and localization of shape changes, 

and are very effective in capturing meaningful information about the shapes of 

organisms (Cavalcanti et al. 1999; Clabaut et al. 2007). When combined with 

multivariate statistical procedures, they offer the most powerful tool for testing and 



graphically displaying differences in shape (Loy et al. 1993; Rohlf & Marcus 1993; 

Rohlf et al. 1996). 

Rare minnow, Gobiocypris rarus Ye et Fu, is an endemic cyprinid fish in China 

(Ye & Fu 1983; Chen 1998). It is considered as an “endangered” species for its 

narrow distribution and few large remnant populations (Le & Chen 1998; Wang et al. 

1998; Li et al. 2004; Wang & Xie 2004; Xiong et al. 2007). It is only distributed in 

the western part of Sichuan Province, China (Ding 1994; Wang & Cao 1997; Chen 

1998; Le & Chen 1998). All known habitats of rare minnow are located dozens to 

hundreds of miles away from one another, exhibiting discontinuous distribution. 

Meanwhile, it has been used as an aquatic laboratory animal and extensively applied 

in toxicology, fish pathology, developmental biology and genetics (Wang 1992; 

Wang et al. 1994; Wang 1996; Wang & Cao 1997; Wang 1999; Jia et al. 2002; Zhong 

et al. 2005; Pei et al. 2008; Su et al. 2008).  

There is currently few knowledge of rare minnow morphological structure 

among wild populations except for Shao et al. (2007), in which morphological 

differences between wild populations and inbred strains resulting from both genetic 

differences and environmental factors were revealed. This study aims to investigate 

the morphological population structure of G. rarus based on morphometric characters 

using traditional and truss network system and meristic characters in four river basins 

in the upper Yangtze River. Furthermore, the comparison of the degree of quantitative 

differentiation measured by the QST index against the neutral expectation set by allelic 

divergence in microsatellite markers (FST) in order to assess the relative roles of 

genetic drift and natural selection for the observed population differentiation in body 

shape. 

Materials and methods 

Sample collection 

G. rarus were collected by nets in 2008 from nine sites, locating in Sichuan 

Province, China (Table 1, Figure 1). Following the capture, samples were placed into 

water vat to keep their life during transportation. And then they were anesthetized by 



MS222 in order to do weighting and measuring. Sample size varied between 30 and 

50, where (Reist 1985) recommended at least 25 samples for morphological analysis. 

Table 1. Sampling details of Gobiocypris rarus used in this study. 

Sampling sites Abbr. Location Sample size Sex (M/F) MSL 
Haiwozi T1 the Tuojiang River basin 50 27/23 44.40(6.36) 
Penzhou City T2 the Tuojiang River basin 50 17/33 34.81(6.10) 
Lichun Town M2 the Minjiang River basin 30 18/12 38.00(6.71) 
Qionglai City M3 the Minjiang River basin 50 17/33 38.40(3.76) 
Yaan City Q1 the Qingyi River basin 50 23/27 37.15(5.75) 
Jiajiang County Q2 the Qingyi River basin 50 40/10 31.65(5.26) 
Liusha River mouth D1 the Dadu River basin 31 23/8 37.17(6.35) 
Jiuxiang Town D2 the Dadu River basin 50 16/34 34.21(4.56) 
Leshan City D3 the Dadu River basin 50 25/25 41.50(4.68) 
Abbr. = Abbreviation. MSL represents mean standard length (mm) of each site. Standard deviations of 
MSL are given in parentheses. 

 
Figure 1. Map showing the sampling sites of G. rarus in the upper Yangtze River 
basin. 



Morphometrics 

All measurements were taken on the left side of fish and were made by the same 

person in order to minimize artificial error. Traditional measurements and the truss 

network system were used to describe the shape of fish body, based on the methods of 

Strauss & Bookstein (1982) and Bookstein et al. (1985). Traditional data, such as 

standard length (SL), body depth (BD), head length (HL), snout length (SnL), eye 

diameter (ED), distance between eyes (DBE), peduncle length (PL) and peduncle 

height (PH) were recorded as shown in Figure 2A. In truss network analysis, 10 

landmarks determining 21 distances were produced and measured as illustrated in 

Figure 2B. The truss data were expressed as D1-2, D2-4, D4-3, and so on. For 

example, D1-2 means the distance between landmarks 1 and 2. The images of thawed 

fish were acquired from a fixed distance with a good quality digital camera. DBE was 

manually measured by using a digital calliper with an accuracy of 0.01 mm, and other 

measurements were analyzed using TpsDig 2.04 (Rohlf 2005).  

Meristics 

Meristic characters were examined using the number of: pectoral fin rays (PFR), 

dorsal fin rays (DFR), ventral fin rays (VFR), and anal fin rays (AFR) under a 

binocular stereomicroscope. 



 
Figure 2. (A) Traditional morphometric measurements on Gobiocypris rarus, DBE 
was not shown. (B) Ten landmarks used to construct the truss network of G. rarus: 1, 
ectoral fin insertion; 2, anteriormost tip of snout; 3, pelvic fin insertion; 4, posterior 
point of the neurocranium; 5, anal fin origin; 6, dorsal fin origin; 7, posterior end of 
anal fin base; 8, posterior end of dorsal fin base; 9, ventral origin of caudal fin; 10, 
dorsal origin of caudal fin.  

Multivariate analysis 

Morphometric and meristic characters were used separately in multivariate 

analyses since these variables are different both statistically (the former are 

continuous while the later are discrete) and biologically (the latter are fixed early in 

development, while the former are more susceptible to the environment) (Ihssen et al. 

1981).  

Transformation of absolute measurements to size-independent shape variables 

was the first step of the analyses. In the present study, no significant correlations were 

observed between meristic characters and standard length of samples, indicating 



meristic characters were independent of fish size and the original meristic data were 

not transformed. Difference of the meristic data between male and female samples 

was revealed by non-parametric Kruskal-Wallis test. To identify whether there were 

any statistically significant differences in meristic characters among populations, the 

non-parametric Kruskal-Wallis test was also performed. After Kruskall-Wallis test, 

multiple comparison tests between populations were conducted using ‘pgirmess’ 

package in the R software (Giraudoux 2006). 

However, significant correlations were observed between morphometric 

characters and standard length of samples. Therefore, in order to eliminate any 

variation resulting from allometric growth, all morphometric measurements were 

standardized according to Reist (1985). The formula is Madj = log M - b (log Ls - log 

Lo), where Madj is the size adjusted measurement, M the original morphometric 

measurement, Ls the overall mean of standard length for all fish from all samples and 

Lo the standard length of fish. The parameter b was estimated for each character from 

the observed data as the slope of the regression of log M on log Lo, using all 

specimens. Correlation coefficients between transformed variables and standard 

length were calculated to check if the data transformation was effective in removing 

the effect of size in the data. The standardized truss measurements showed no 

significant correlation with standard length, which indicated the size effect had been 

successfully removed with the allometric transformation. 

Following size-correction, the differences in morphometric variables between 

male and female samples were determined using multivariate analysis of variance 

(MANOVA). If there were significant sex differences, male and female samples 

should be analyzed separately. To identify whether there were any statistically 

significant differences among populations, both MANOVA and analysis of variance 

(ANOVA) were performed with sex included as a fixed-effect factor. Afterwards, 

discriminant analysis (DA) was conducted to determine which morphometric 

variables discriminate among populations. Standardized coefficients for each variable 

in each discriminant function represent the contribution of the respective variable to 

the discrimination among populations. A random Monte Carlo test with 1000 

permutations was used to reveal the significance of morphometric variables among 

populations. A holdout procedure (i.e., 2/3 of the data as the training set and the 



remaining 1/3 as the test set) was performed to test the ability of the model to 

discriminate between populations, so that the proportion of individuals correctly re-

allocated was obtained.  

Cluster analysis was performed on the mean values of standardized 

morphometric data from nine populations using Euclidean distance method and 

average clustering algorithm. All statistical analyses were performed using the R 

software (Ihaka & Gentleman 1996).  

Correlating morphology and genetics 

The genetic divergence in neutral markers measured by FST values was obtained 

from eight microsatellite markers in our previously paper (He et al. unpublished). The 

sample size used in microsatellite analyses was similar with the present study, except 

for a little difference from populations M2 and D1 (Table 1; He et al. unpublished). 

The riparian geographical distance (RD), being proved to be best correlated with FST 

in our previously paper (He et al. unpublished), was calculated along the closest 

connected water system in the Google Earth 5.0. 

A dimensionless measure of differentiation for quantitative traits, analogous to 

Wright’s (1951) FST, can be defined as QST = σ b
2/(σb

2＋2σw
2) (Spitze 1993; Storz 

2002). The partitioning of phenotypic variance within and between populations of G. 

rarus was assessed using a two-way ANOVA with sex included as a fixed-effects 

factor. A within-population variance (σw
2) was estimated by equating observed 

within-population mean squares (MSwithin) to their expectations. The added variance 

component attributable to differences between populations (σb
2) was estimated as σb

2 

= (MSbetween-MSwithin)/n0, where MSbetween is an unbiased estimate of the between-

population variance and n0 is the average sample size (Sokal & Rohlf 1995). For each 

comparison, the average sample size n0 was calculated as 

n0 = 1/(α-1)*(
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where α = number of populations compared and n = number of individuals in the ith 

population sample. CIs for QST were estimated by 1000 bootstrap replicates. 



To test whether levels of quantitative divergence, genetic divergence and riparian 

geographic distance were correlated, we calculated and tested the correlations 

between pairwise QST, FST and riparian geographic distance with a simple Mantel test 

module (Mantel 1967). Then the partial Mantel test was used to test correlations 

between pairwise QST and FST after control for riparian geographic distance. All these 

analyses were conducted using library vegan in the R software. 

Results 

Meristics 

No significant sex dimorphism was revealed in meristics characters. The non-

parametric Kruskal-Wallis test showed no significant differences among populations 

for all meristic characters. The ranges of all meristic counts widely overlapped, and 

the modes of meristic characters were equal or close to each other among populations 

of G. rarus.  

Morphometrics 

After size-adjustment calculations, no significant correlation coefficients 

between transformed variables and standard length were revealed, indicating that the 

size effect had been successfully removed with the allometric transformation. 

Therefore, none of the variables was discarded from the following analysis. 

Statistical differences between males and females for morphometric variables 

were revealed (p < 0.001). There were significant sexual differences in 18 of all 28 

morphometric traits, such as BD, DBE, PL, PH, D1_2, D4_3, D3_1, D2_3, D4_6, 

D5_3, D3_6, D4_5, D6_8, D7_5, D10_9, D9_7, D7_10 and D8_9. Therefore, males 

and females were separately analyzed in further analysis. With sex included as a 

fixed-effects factor, MANOVA showed that morphological differences among 

populations were significant over all morphometric measurements, while ANOVA 

revealed that 20 of all 28 morphometric measurements were significantly different 

among populations (Table 2). 



Table 2. Results (F value and p value) from ANOVA, degree of divergence in 
quantitative traits among populations (QST) for each size-corrected morphometric 
character. 

Variables F value p value QST Variables F value p value QST 
HL 204.715 0.000 0.609 D2_4 15.245 0.000 0.098 

DBE 128.650 0.000 0.496 D8_9 14.450 0.000 0.092 
D7_10 97.442 0.000 0.424 D3_6 8.884 0.003 0.058 

SnL 72.780 0.000 0.353 D4_6 6.156 0.014 0.037 
D10_9 46.614 0.000 0.255 D6_5 6.074 0.014 0.036 

PL 45.510 0.000 0.252 D4_5 3.956 0.047 0.022 
ED 44.365 0.000 0.250 D7_5 3.141 0.077 0.016 

D9_7 42.778 0.000 0.242 D4_3 2.879 0.091 0.014 
D3_1 41.834 0.000 0.236 D2_3 2.521 0.113 0.011 
D1_2 39.577 0.000 0.227 PH 2.284 0.132 0.008 
D1_4 39.480 0.000 0.228 D8_7 1.627 0.203 0.005 

D8_10 23.799 0.000 0.148 D6_7 1.178 0.279 0.001 
D6_8 21.218 0.000 0.134 D5_8 0.726 0.395 -0.003 
D5_3 20.386 0.000 0.130 BD 0.594 0.442 -0.004 

 

In discriminant function analysis, eight discriminant functions (DFs) were 

generated, and the random Monte Carlo permutation test showed that all the studied 

populations were significantly discriminated (p < 0.001). The first four functions of 

the discriminant analysis totally explained 70.4% of variance in all the morphometric 

traits of G. rarus male samples, while explaining 73.4% of variance for female 

samples. High allometric shape contributions to the first four functions were observed 

mainly from nine morphometric traits of males (HL, D7_10, BD, PH, D4_5, D4_6, 

D6_7, D6_8 and D8_7), and thirteen traits of females (HL, BD, PH, D6_5, D3_6, 

D8_7, D5_8, D6_7, D10_9, D2_3, D7_10, D4_3, D4_6 and D4_5), implying that 

these characters are the most important in the description of population characteristics. 

Figure 3 and Figure 4 showed the morphometric traits of males and females 

contributing to the first two discriminant functions. 



 
Figure 3. The plots from DA upon the standardized morphometric data of male 
samples. (a) Axis 1 and 2 account for 22% and 19% of between-population variability, 
respectively. Each population is presented as ellipsoid with different numbers in the 
centre; (b) Histogram showing eigenvalues of the DA; (c) Contribution of 
morphometric characters to the first and second discriminant functions.  

 
Figure 4. The plots from DA upon the standardized morphometric data of female 
samples. (a) Axis 1 and 2 account for 23% and 20% of between-population variability, 
respectively. Each population is presented as ellipsoid with different numbers in the 
centre; (b) Histogram showing eigenvalues of the DA; (c) Contribution of 
morphometric characters to the first and second discriminant functions. 

 



When separating male and female samples, the overall random assignment of 

individuals into their original population were 72.1% for males and 79.4% for females 

by hold-out procedure (results not shown). When male and female samples were 

pooled, the overall proportion of correct classification was similar (75.3%, Table 3). 

The proportion of correctly classified the Q2 samples to their original group were 

highest (100%). In contrary, the lowest correct classification was found in populations 

D1 and M2, 56.2% and 60%, respectively.  

Table 3. Percentage of individuals classified correctly into their original population 
for the morphometric characters by using hold-out procedure. 

Population T1 T2 M2 M3 D1 D2 D3 Q1 Q2 
T1 0.65 0.05 0.10 0.00 0.06 0.00 0.00 0.07 0.00 
T2 0.06 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
M2 0.06 0.10 0.60 0.07 0.00 0.00 0.00 0.00 0.00 
M3 0.06 0.00 0.00 0.80 0.06 0.00 0.12 0.00 0.00 
D1 0.00 0.00 0.10 0.13 0.56 0.00 0.00 0.00 0.00 
D2 0.00 0.00 0.20 0.00 0.06 0.87 0.00 0.27 0.00 
D3 0.00 0.00 0.00 0.00 0.13 0.00 0.76 0.00 0.00 
Q1 0.06 0.00 0.00 0.00 0.06 0.13 0.00 0.67 0.00 
Q2 0.12 0.00 0.00 0.00 0.06 0.00 0.12 0.00 1.00 
 

The clustering results were presented as dendrograms in Figure 5. The nine 

populations formed three groups based on male or female samples. For male samples, 

the first group consisted of population T2, the second comprised populations M2, M3 

and D1, and the left five populations (T1, Q1, Q2, D2, D3) were comprised of the 

third group  (Figure 5A). Whereas for female samples, the first group consisted of 

populations T2 and M3, the second comprised populations T1 and Q2, and the left 

five populations (M2, D1, D2, D3, Q1) were comprised of the third group (Figure 5B). 

 



 

Figure 5. Dendrograms of the clustering analysis based on Euclidean distance for 
morphometric data among nine populations of G. rarus: (A) Male samples, (B) 
Female samples. 

Comparison of genetic and morphological divergence 

Quantitative divergence (QST) for each morphometric trait varied from -0.004 for 

BD to 0.609 for HL, with a mean value of 0.156 (Table 2). Pairwise mean QST 

comparison of populations over all morphometric traits varied from 0.039 (between 

populations T2 and M2) to 0.188 (between populations T1 and D2) (Table 4). 

A comparison of FST and mean QST values across the studies revealed that in 

most cases, the value of the QST index exceeded that of the FST index, and only in nine 

cases, QST < FST. Hence, in general, the degree of differentiation in quantitative traits 

exceeds that in neutral molecular markers (Wilcoxon signed-rank: z = 4.038, p < 

0.001). 

Pairwise Mantel tests revealed no significant correlations between QST and the 

following variables: FST (r = 0.142, p = 0.231) and riparian geographic distance (r = 

0.188, p = 0.124). Results of partial Mantel tests were almost identical when QST was 

considered as dependent matrix, FST and riparian geographic distance as independent 

matrices (r = 0.069, p = 0.378). 

 

 

 



Table 4. Pairwise QST values of wild populations of G. rarus, using all size-corrected 
morphometric variables 

Population T1 T2 M2 M3 D1 D2 D3 Q1 Q2 
T1          
T2 0.099         
M2 0.074 0.039        
M3 0.083 0.078 0.053       
D1 0.061 0.077 0.046 0.041      
D2 0.188 0.149 0.109 0.160 0.111     
D3 0.119 0.147 0.108 0.117 0.053 0.080    
Q1 0.139 0.159 0.114 0.133 0.111 0.047 0.056   
Q2 0.076 0.119 0.091 0.101 0.092 0.133 0.102 0.126  

Discussion 

Sexual dimorphism 

Information about sexual dimorphism is essential for understanding the ecology, 

behavior and life history of a species, as well as for making morphological 

comparisons between populations (Kitano et al. 2007). Sexual dimorphism is the 

difference in morphology between male and female members of the same species, 

including differences in size, coloration, or body structure between the sexes. Roff 

(1983) had proposed that males are usually smaller than females in fish because the 

males eat less to avoid predation. Some fish species such as walleye (Stizostedion 

vitreum vitreum) and threespine stickleback (Gasterosteus aculeatus) confirmed this 

kind of phenomenon (Henderson et al. 2003; Kitano et al. 2007). Actually, there are 

indeed some differences in the body shape of mature individuals of G. rarus, which 

were visible by eyes. For example, females usually have plump abdomen and 

relatively large body size, while males are usually slender and smaller than females. 

This phenomenon has been described in Wang (1992). He pointed out that the 

differences of the relative length of pectoral fin and ventral fin were one of the most 

important traits to discriminate males from females of G. rarus. That is, the distance 

between the end of pectoral fin rays and the origin of ventral fin in female samples are 

about the distance of three to five scales, longer than that in male samples (one to two 

scales distance); the distance between the end of ventral fin rays and the cloacal 

aperture are about the distance of one to three scales, longer than that in male samples 

(about half of scale distance, and sometimes the end of ventral fin rays could reach 

the cloacal aperture). 



 The present study revealed that the phenomenon of sexual dimorphism indeed 

existed in G. rarus for there were significant sexual differences in about 64% of 

morphometric traits. The differences of these morphometric traits such as DBE 

(distance between eyes), BD (body depth), PH (peduncle height) and D5_3 were in 

accordance with Wang (1992). From the distribution of these morphometric variables, 

it was found that the measurements relating with landmark 3 in the truss network of G. 

rarus were the most important discriminant features for sexes because all the 

distances from this landmark such as D2_3, D3_1, D4_3, D3_6 and D5_3 were 

significantly differentiated between males and females. In a word, it reflected out the 

thickness and width of the body shape of G. rarus were mainly responsible for its 

sexual dimorphism. 

Population differentiation 

All the studied populations were significantly differentiated from each other over 

all the morphometric traits. However, they are not completely different from each 

other. For instance, some of them such as populations T1, Q1 and D2 overlapped each 

other and showed a certain degree of isolation from other populations. This could be 

confirmed by the clustering results. Among them, fifteen traits such as BD, HL, PH, 

D4_6, D4_5, D8_7, D6_7, D7_10, D4_3, D2_3, D6_5, D3_6, D6_8, D5_8 and 

D10_9 were the most important contribution variables to discriminate different 

populations. It can be seen that the truss measurements relating with the landmark 6 

and 7 play important roles in discriminating the populations. These measurements are 

closely correlated with traditional traits of body shape in G. rarus: the landmark 6 

mainly correlates with the changes of body depth and the origin of dorsal fin; the 

landmark 7 mainly correlates with peduncle length, peduncle height, and the position 

of anal fin. Actually, these traditional traits such as head length (HL), body depth (BD) 

and peduncle height (PH) were revealed to be most important contribution variables 

in discriminating different populations. In a word, the morphometric differentiation 

among wild populations of G. rarus is mainly reflected by the change of head 

morphology and vertical body shape. 

However, population differentiations are related not only with morphological 

traits but also with neutral genetic markers. Comparison between neutral genetic 

differentiation amongst populations (FST) and quantitative variation (QST) are 



increasingly being used in many studies (Merilä & Crnokrak 2001; Leinonen et al. 

2006; Johansson et al. 2007; Chapuis et al. 2008; Jensen et al. 2008). There are 

usually three possible interpretations for these comparison: QST > FST, directional 

natural selection must be involved to achieve the differentiation; QST = FST, the 

observed quantitative differentiation could be obtained by genetic drift alone; QST < 

FST, the observed degree of differentiation is actually expected on the basis of 

selection favoring the same phenotype in different populations (Merilä & Crnokrak 

2001). Actually, these possible explanations of such comparison rest on many 

assumptions; otherwise, they are problematic (Pujol et al. 2008). For instance, the 

critical premise is that local environments differ enough to allow selection acting on 

additive genetic variation to drive phenotypic divergence of populations. Therefore, 

Pujol et al. (2008) concluded that it should be caution to interpret the QST-FST 

comparison results in the wild populations.  

In the present study, the detected non-significant correlation between the riparian 

geographical distance and the quantitative divergence (QST) for morphometric data of 

G. rarus may indicate that geographic distance is not a limiting factor for migration 

between populations. In addition, there was no significant correlation between QST 

and FST, which may suggest a cooperative effect of environmental and genetic factors 

on phenotypic discreteness. The value of the QST index exceeded the FST index 

between some populations, but they were smaller than the FST index between other 

populations. To a certain degree, it reflected out environmental factors may play 

important bidirectional roles on the degree of phenotypic divergence between G. 

rarus populations. Just like the discussion in He & Wang (2010), if environmental 

changes are not tremendous, the population magnitude effect could be recruited 

rapidly due to the species’ short life cycle and high fecundity. That is, appropriate 

environmental changes could be beneficial for exchanges between populations and 

may reduce the degree of phenotypic divergence, and vice versa. In general, many 

scholars revealed that fishes demonstrating greater variance in morphological traits 

than other vertebrates were more susceptible to environmental factors (Allendorf 

1988; Thompson 1991; Turan et al. 2006; Langerhans et al. 2007). Environmental 

influences on traits can arise via genetically based responses to selection as well as 

potentially nonadaptive effects of environment on phenotype (Pigliucci 2001; DeWitt 

& Scheiner 2004; Langerhans et al. 2007). The relationship between environment and 



phenotype is complex for the interplay of direct and indirect effects on traits, which is 

consistent with the present study.  

Acknowledgement 

The authors are grateful to DE Gu for his technical assistance in measuring. This 

research was supported by funds from the National Natural Science Foundation of 

China (NSFC, 30670292), the technological fundamental conditions platform 

program by China Hubei Provincial Science and Technology Department, the Chinese 

Academy of Sciences (CZBZX-1), and the Ministry of Environmental Protection of 

China (2009ZX07527-005). 

Reference 

Allendorf FW (1988) Conservation biology of fishes. Conserv Biol 2: 145-148. 

Bookstein FL, Chernoff B, Elder R, Humphries J, Smith G, Strauss R (1985) 
Morphometrics in evolutionary biology. Special Publication 15. The Academy of 
Natural Sciences of Philadelphia pp. 277. 

Cadrin SX (2000) Advances in morphometric analysis of fish stock structure. Rev 
Fish Biol Fish 10: 91-112. 

Cavalcanti MJ, Monteiro LR, Lopes PRD (1999) Landmark-based morphometric 
analysis in selected species of serranid fishes (Perciformes: Teleostei). Zoological 
Studies 38(3): 287-294. 

Chapuis E, Martin G, Goudet J (2008) Effects of selection and drift on G matrix 
evolution in a heterogeneous environment: a multivariate QST-FST test with the 
freshwater snail Galba truncatula. Genetics 180: 2151-2161. 

Chen YY (1998) Fauna Sinica, Osteichthyes, Cypriniformes II. Science Press, Beijing, 
China, pp. 51-52. (in Chinese) 

Clabaut C, Bunje PME, Salzburger W, Meyer A (2007) Geometric morphometric 
analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish 
radiations. Evolution 61(3): 560-578. 

DeWitt TJ, Scheiner SM (2004) Phenotypic Plasticity. Functional and Conceptual 
Approaches. Oxford University Press, New York. 

Ding RH (1994) The Fishes of Sichuan, China. Sichuan Publishing House of Science 
and Technology, Chengdu. (in Chinese) 



Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. 
Cambridge University Press, New York. 

Giraudoux P (2006) Pgirmess: data analysis in ecology. R package version 1.3.8 
http://perso.orange.fr/giraudoux/. 

He YF, Wang JW (2010) Temporal variation in genetic structure of the Chinese rare 
minnow (Gobiocypris rarus) in its type locality revealed by microsatellite markers. 
Biochem Genet 48: 312-325. 

He YF, Wang JW, Blanchet S, Lek S. Genetic structure of an endangered endemic 
fish (Gobiocypris rarus) in the upper Yangtze River. Unpublished. 

Henderson BA, Collins N, Morgan GE, Vaillancourt A (2003) Sexual size 
dimorphism of walleye (Stizostedion vitreum vitreum). Can J Fish Aquat Sci 60: 
1345-1352. 

Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. Journal of 
Computational and Graphical Statistics 299-314. 

Ihssen PE, Booke HE, Casselman JM, McGlade JM, Payne NR, Utter FM (1981) 
Stock identification: materials and methods. Canadian Journal of Fisheries and 
Aquatic Sciences 38: 1838-1855. 

Jensen LF, Hansen MM, Pertoldi C, Holdensgaard G, Mensberg KLD, Loeschcke V 
(2008) Local adaptation in brown trout early life-history traits: implications for 
climate change adaptability. Proceedings of the Royal Society B 
doi:10.1098/rspb.2008.0870. 

Jia FJ, Wang JW, Wu QJ (2002) Gynogenetic rare minnow (Gobiocypris rarus) 
induced by heterogeneous sperms. Acta Hydrobiol Sin 26(3): 246-252. (in Chinese) 

Johansson M, Primmer CR, Merilä J (2007) Does habitat fragmentation reduce fitness 
and adaptability? A case study of the common frog (Rana temporaria). Molecular 
Ecology 16: 2693-2700. 

Kinsey ST, Orsoy T, Bert TM, Mahmoudi BB (1994) Population structure of the 
Spanish sardine Sardinella aurita: natural morphological variation in a genetically 
homogeneous population. Marine Biology 118: 309-317. 

Kitano J, Mori S, Peichel CL (2007) Sexual dimorphism in the external morphology 
of the threespine stickleback (Gasterosteus aculeatus). Copeia 2: 336-349. 

Langerhans RB, Chapman LJ, Dewitt TJ (2007) Complex phenotype-environment 
associations revealed in an East African cyprinid. Journal of Evolutionary Biology 
20(3): 1171-1181. 

Langerhans RB, Layman CA, Langerhans AK, Dewitt TJ (2003) Habitat-associated 
morphological divergence in two Neotropical fish species. Biological Journal of the 
Linnean Society 80(4): 689-698. 



Le PQ, Chen YY (1998) China Red Data Book of Endangered Animals: Pisces, pp. 
170-172. Science Press, Beijing. (in Chinese) 

Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body 
shape and neutral genetic divergence in marine and lake populations of threespine 
sticklebacks. Journal of Evolutionary Biology 19(6): 1803-1812. 

Li L, Ma TW, Wu ZB (2004) Toxic effect of domestic sewage on rare minnow 
(Gobiocypris rarus). Acta Hydrobiol Sin 28(1): 40-44 (in Chinese) 

Lowe-McConnell RH (1987) Ecological studies in tropical fish communities. London: 
Cambridge University Press. 

Loy A, Corti M, Marcus LF (1993) Landmark data: size and shape analysis in 
systematics. A case study on Old World Talpidae (Mammalia, Insectivora). In LF 
Marcus, E Bello, A García-Valdecasas, eds. Contributions to morphometrics. Madrid: 
Museo Nacional de Ciencias Naturales, pp. 213-240. 

Maderbacher M, Bauer C, Herler J, Postl L, Makasa L, Sturmbauer C (2008) 
Assessment of traditional versus geometric morphometrics for discriminating 
populations of the Tropheus moorii species complex (Teleostei: Cichlidae), a Lake 
Tanganyika model for allopatric speciation. J Zool Syst Evol Res 46(2): 153-161. 

Mantel N (1967) The detection of disease clustering and a generalized regression 
approach. Cancer Res 27: 209-220. 

Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and 
quantitative traits. J Evol Biol 14: 892-903. 

Murta AG (2000) Morphological variation of horse mackerel (Trachurus trachurus) 
in the Iberian and North Africa Atlantic: implications for stock identification. ICES J 
Mar Sci 57: 1240-1248. 

Pei DS, Sun YH, Zhu ZY (2008) Construction of cytoplasmic molecular markers 
distinguishing Danio rerio from Gobiocypris rarus at high identity domains based on 
MP-PCR strategy and Sybr Green I detection. Mol Biol Rep 35(1): 45-50. 

Pigliucci M (2001) Phenotypic Plasticity. Beyond Nature and Nature. Johns Hopkins 
University Press, Baltimore, MD. 

Pujol B, Wilson J, Ross RIC, Pannell JR (2008) Are QST-FST comparisons for natural 
populations meaningful? Molecular Ecology 17: 4782-4785. 

Reist JD (1985) An empirical evaluation of several univariate methods that adjust for 
size variation in morphometric data. Canadian Journal of Zoology 63: 1429-1439. 

Roby D, Lambert JD, Sevigny JM (1991) Morphometric and electrophoretic 
approaches to discrimination of capelin (Mallotus villosus) populations in the estuary 
and Gulf of Saint Lawrence. Can J Fish Aquat Sci 48: 2040-2050. 



Roff D (1983) An allocation model of growth and reproduction in fish. Can J Fish 
Aquat Sci 40: 1395-1404. 

Rohlf FJ (2005) tpsDig, digitize landmarks and outlines, version 2.04. Department of 
Ecology and Evolution, State Univesity of New York at Stony Brook. 

Rohlf FJ, Loy A, Corti M (1996) Morphometric analysis of Old World Talpidae 
(Mammalia, Insectivora) using partial-warp scores. Syst Biol 45: 344-362. 

Rohlf FL, Marcus LF (1993) A revolution in morphometrics. Trends in Ecology and 
Evolution 8: 129-132. 

Schweigert J (1990) Comparison of morphometric and meristic data against truss 
networks for describing Pacific herring stocks. Am. Fish. Soc. Symp. 7, 47–62. 

Shao Y, Wang JW, Qiao Y, He YF, Cao WX (2007) Morphological variability 
between wild populations and inbred stocks of a Chinese Minnow, Gobiocypris rarus. 
Zoological Science 24: 1094-1102. 

Silva A (2003) Morphometric variation among sardine (Sardina pilchardus) 
populations from the northeastern Atlantic and the western Mediterranean. ICES J 
Mar Sci 60: 1352-1360. 

Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman, New York. 

Spitze K (1993) Population structure in Daphhnia obtusa: quantitative genetic and 
allozymic variation. Genetics 135: 367-374. 

Storz JF (2002) Contrasting patterns of divergence in quantitative traits and neutral 
DNA markers: analysis of clinal variation. Molecular Ecology 11: 2537-2551. 

Strauss RE, Bookstein FL (1982) The truss: body form reconstructions in 
morphometrics. Systematic Zoology 113-135. 

Su JG, Zhu ZY, Wang YP (2008) Molecular cloning, characterization and expression 
analysis of the PKZ gene in rare minnow Gobiocypris rarus. Fish Shellfish Immun 
25(1-2): 106-113. 

Thompson JD (1991) Phenotypic plasticity as a component of evolutionary change. 
Trends Ecol Evol 6: 246-249. 

Turan C, Oral M, Öztürk B, Düzgünes E (2006) Morphometric and meristic variation 
between stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and 
northeastern Mediterranean Seas. Fisheries Research 79: 139-147. 

Wang JW (1992) Reproductive biology of Gobiocypris rarus. Acta Hydrobiol Sin 
16(2): 165-174. (in Chinese) 

Wang JW (1996) Studies on critical temperature of Gobiocypris rarus. Sichuan Zool 
15(4): 153-155. (in Chinese) 



Wang JW (1999) Spawning performance and development of oocytes in Gobiocypris 
rarus. Acta Hydrobiol Sin 23(2): 161-166. (in Chinese) 

Wang JW, Cao WX (1997) Gobiocypris rarus and fishes as laboratory animals. Trans 
Chinese Ichthyol Soc 6: 144-152. (in Chinese) 

Wang S, Xie Y (eds) (2004) China species red list, vol. 1. Red List. Higher Education 
Press, Beijing, pp. 154. (in Chinese) 

Wang TH, Liu PL, Chen HX, Liu HQ, Yi YL, Guo W (1994) Preliminary study on 
the susceptibility of Gobiocypris rarus to Hemorrhagic Virus of Grass Carp (GCHV). 
Acta Hydrobiol Sin 18(2): 144-149. (in Chinese) 

Wang ZH, Yin YW, Xu ZN, Zhou J, Zhang Q, Zhang DP (1998) Acute and 
subchronic toxicity of pyrethroid insecticides to Gobiocypris rarus. Chinese Appl 
Environ Biol 4(4): 379-382. (in Chinese) 

Winans GA (1987) Using morphometric and meristic characters for identifying stocks 
of fish. In: Kumpf HE, Vaught RN, Grimes CB, Johnson AG and Nakamura EL eds. 
Proceedings of the Stock Identification Workshop. NOAA Tech. Mem. NMFS-SEFC 
199: 135-146. 

Wright S (1951) The genetical structure of populations. Annals of Eugenics 15: 323-
354. 

Xiong DM, Xie CX, Xia L (2007) Threatened fishes of the world: Gobiocypris rarus 
Ye and Fu, 1983 (Cyprinidae). Environ Biol Fish doi: 10.1007/s10641-007-9284-8. 

Ye MR, Fu TY (1983) Description of a new genus and species of Danioninae from 
China (Cypriniformes: Cyprinidae). Acta Zootaxon Sin 8(4): 434-437. (in Chinese) 

Zhong XP, Xu Y, Liang Y, Liao T, Wang JW (2005) The Chinese rare minnow 
(Gobiocypris rarus) as an in vivo model for endocrine disruption in freshwater 
teleosts: a full life-cycle test with diethylstilbestrol. Aquat Toxicol 71: 85-95. 


	Résumé
	Part 1: Synthesis
	1. General Introduction
	1-1. Freshwater biodiversity
	1-2. Distribution of fishes in the upper Yangtze R
	1-2-1. The Yangtze River
	1-2-2. Fishes of the upper Yangtze River basin

	1-3. Objectives of this thesis

	2. General Methodology
	2-1. Studied sites and data collection
	2-2. Modeling Methods
	2-2-1. Patterning model
	2-2-2. Predicting model

	2-3. Molecular methods

	3. Main Results
	3-1. Spatial pattern of endemic fishes and roles of environmental factors in the upper Yangtze River (P1 and P2)
	3-2. Population differentiation of an endangered endemic fish (Gobiocypris rarus) in the upper Yangtze River (P3, P4 and P5)

	4. General Discussion and Conclusion
	4-1. Geographic distribution patterns of endemic fish assemblages in the upper Yangtze River (P1)
	4-2. Effects of environmental factors on endemic fishes distribution pattern (P2)
	4-3. Conservation implications for endemic fishes in the upper Yangtze River basin (P1 and P2)
	4-4. Population differentiation of G. rarus (P3, P4 and P5)

	References

	Part 2: Publications
	P1 Structure of endemic fish assemblages in the upper Yangtze River Basin He Y., Wang J., Lek S., Cao W. & Lek-Ang S. (2009) River Research and Applications, doi: 10.1002/rra.1339(In press)
	P2 Predicting assemblages and species richness of endemic fish in the upper Yangtze RiverHe Y., Wang J., Lek-Ang S. & Lek S. (2010) Science of the Total Environment (Accepted)
	P3 Temporal variation in genetic structure of the Chinese rare minnow (Gobiocypris rarus) in its type locality revealed by microsatellite markers He Y. & Wang J. (2010) Biochemical Genetics, 48: 312-325.
	P4Genetic structure of an endangered endemic fish (Gobiocypris rarus) in the upperYangtze River He Y., Wang J., Blanchet S. & Lek S. (2010) Journal of Fish Biology (Submitted)
	P5 Morphological variation among wild populations of Chinese rare minnow (Gobiocypris rarus) in four river basins He Y., Li R., Wang J., Blanchet S. & Lek S. (2010) In preparation




