Université

de Toulouse TH ESE

En vue de lI'obtention du

DOCTORAT DE L'UNIVERSITE DE TOULOUSE

Délivré par I'Université Toulouse III - Paul Sabatier
Discipline ou spécialité : Informatique

Présentée et soutenue par Jaime Alberto Zaragoza Rios
Le 16 décembre 2009

Titre : Declarative Modeling Based on Knowledge

JURY

Veronique Gaildrat, Professeur UPS

Félix Francisco Ramos Corchado, Professeur Chercheur titulaire CINVESTAV 3A

Georges Miaoulis, Professeur Technological Educational Institute of Athens et Professeur associé a
I'Université de Limoges / Dept Mathématiques et Informatique, Rapporteur

Marco Antonio Ramos Corchado, Professeur Chercheur titulaire niveau F de Université de 1'état du
Mexique, Rapporteur

Jean-Luc Koning, Professeur Vice-Président Relations Internationales Institut Polytechnique de Grenoble
(Grenoble INP)

José Luis Leyva Montiel, Professeur Directeur du CINVESTAV campus Guadalajara

Luis Ernesto Lopez Mellado, Professeur Chercheur titulaire CINVESTAV 3B

Juan Manuel Ramirez Arredondo Professeur Chercheur titulaire CINVESTAV 3C

Ecole doctorale : MITT
Unité de recherche : IRIT
Directeurs de These : Veronique Gaildrat et Félix Francisco Ramos Corchado

CINVESTAV

Centro de Investigacion y de Estudios Avanzados del I.P.N.
Unidad Guadalajara

Declarative Modeling Based on Knowledge

DOCTOR IN SCIENCES THESIS IN ELECTRICAL ENGINEERING

PRESENTED BY:

M.C. Jaime Alberto Zaragoza Rios

TO OBTAIN THE DEGREE OF:

Doctor in Sciences

IN THE SPECIALTY OF:

Electrical Engineering

Guadalajara, Jalisco. Winter of 2010

CINVESTAV

Centro de Investigacion y de Estudios Avanzados del I.P.N.
Unidad Guadalajara

Declarative Modeling Based on Knowledge

DOCTOR IN SCIENCES THESIS IN ELECTRICAL ENGINEERING

PRESENTED BY:
M.C. Jaime Alberto Zaragoza Rios

TO OBTAIN THE DEGREE OF:
Doctor in Sciences

IN THE SPECIALTY OF:
Electrical Engineering

THESIS ADVISOR
Dr. Félix Francisco Ramos Corchado

THESIS CO-ADVISOR
Prof. Véronique Gaildrat

Guadalajara, Jalisco. January of 2010

Doctor in Sciences Thesis in Electrical Engineering

Presented by:
M.C. Jaime Alberto Zaragoza Rios

to obtain the degree of:

Doctor in Sciences

in the specialty of:

Electrical Engineering

Dr. Félix Francisco Ramos Corchado Prof. Véronique Gaildrat
hesis Advisor Thesis Co-Advisor
Dr. José Luis Leyva Montiel Dr. Luis Ernesto Lopes Mellado
Sinodal Sinodal
Dr. Juan Manuel Ramirez Prof. Jean-Luc Koning
Arredondo Sinodal
Sinodal
Dr. Marco Antonio Ramos Corchado Prof. George Miaoulis
inodal Sinodal

December 15, 2009

Acknowledgments

I would like to thank National Council on Science and Technology, CONACyT, for providing
PhD Scholarship number 1910965. This research is also partially supported by CoECyT-Jal
project No. 2008-05-97094.

I would also like to thank my thesis supervisors, Dr. Félix Francisco Ramos Corchando,
and Prof. Véronique Gaildrat, for their valuable guidance in the completion of this research.

Also special thanks to my co-workers from the Distributed Systems group at CINVES-
TAV, as well as the people from the VORTEX Lab at IRIT, in Toulouse, France.

Dedicated to my parents, Jaime Zaragoza Infante and Margarita Rios Gonzéles.

Resumen

La tecnologia moderna ha permitido la creacion y representacion de Mundos Virtuales y
criaturas con un alto nivel de detalle, tal que vistos en peliculas, a veces es dificil distinguir
cuales elementos son generados por computadora y cuales no. Asi mismo, los juegos de video
han alcanzado un nivel cercano al realismo fotografico.

Sin embargo, tal tecnologia esta en manos de habilidosos disenadores, artistas y progra-
madores, para los cuales toma de semanas a anos para obtener esos resultados.

Modelado Declarativo es un método que permite crear modelos especificando tan solo algu-
nas propiedades para los componentes del mismo. Aplicado a la cracién de Mundos Virtuales,
el modelado declarativo puede ser usado para construir el mundo virtual, estableciendo la
disposicién de los objetos, generando el contexto necesario para incluir animacién y diseno
de escena, asi como generar las salidas usadas por un sistema de visualizacién/animacion.

Este documento presenta una investigacion enfocada a explorar el uso del modelado
declarativo para crear Ambientes Virtuales, usando Fxplotacion del Conocimiento como
apoyo para el proceso y facilitar la transicion del modelo de datos a una arquitectura suby-
acente, que toma la tarea de animar y evolucionar la escena.

Summary

Modern technology has allowed the creation and presentation of Virtual Worlds and creatures
with such a high level of detail, that when used in films, sometimes is difficult to tell which
elements are computer-generated and which not. Also, videogames had reached a level close
to photographic realism.

However, such technology is in the hands of skillful designers, artists, and programmers,
for whom it takes from weeks to years to complete these results.

Declarative modeling is a method which allows to create models specifying just a few
properties for the model components. Applied to Virtual World creation, declarative mod-
eling can be used to construct the Virtual World, establishing the layout for the objects,
generating the necessary context to provide animation and scene design, and generating the
outputs used by a visualization/animation system.

This document presents a research devoted to explore the use of declarative modeling
for creating Virtual Environments, using Knowledge Ezploitation to support the process and
ease the transition from the data model to an underlaying architecture which takes the task
of animating and evolving the scene.

IT

Contents

1 Introduction

1.1 Introduction
1.2 The Problem
1.3 Description of Problem 0
1.4 Research Objectives
2 State of the Art
2.1 Technical Introduction
2.2 Declarative modelingo o
2.2.1 Description
2.2.2 Generation
223 Imsight
2.3 Knowledge Management L.
2.3.1 Ontolingua
2.3.2 Protégé
2.3.3 Web Ontology Language
234 WebOnto
2.4 Constraint Satisfaction Problems
2.4.1 Backtracking
2.4.2 Backmarking
2.4.3 Backjumping
2.4.4 Backjumping based on graphics

I1I

gt Ww NN -

~J

CONTENTS IAY

2.4.5 Forward Checkingo 22
2.5 Virtual Worlds 22
2.6 Related Works 23
2.6.1 WordsEye: Automatic text-to-scene conversion system 25

2.6.2 DEM?2ONS: High Level Isometric Declarative Modeler for 3D Graphic
Applications 25
2.6.3 Multiformes: Declarative Modeler as 3D sketch tool 26
2.6.4 CAPS: Constraint-based Automatic Placement System 26
2.6.5 ALICE 27
3 Proposal 28
3.1 Interaction Language: A Review of VEDEL 29
3.2 Parsing Methodology 31
3.3 Modeler’s Architecture 32
3.4 Creating the Model 34
3.4.1 Model Data Structure 34
3.4.2 Modeler procedure 35
3.4.3 Geometrical Validation0 L. 39
3.5 Generation of the Outputs 43
3.5.1 Model-View Controller 44
3.6 Modifying the Model 45
4 Research Outcome 46
4.1 Virtual Environment Editor Prototypes 47
4.1.1 GeDA-3D Virtual Environment Editor Prototype 49
4.1.2 DRAMA Project Module DRAMAScéne 53
5 Conclusion 56
5.1 Conclusions 57

5.1.1 Future Work 60

CONTENTS

A Published Works

Bibliography

62

176

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4

Project Overview.
Fields of research.
Interactive process of declarative modeling.
Characterization for an object L.
Ontology example.
Different levels of detail for avatars.
FL-System, City Engine and Instant Architecture
VEDEL examples.
Parsed Entry Structureo
Modeler Architecture
Model Structure.
Collision Tags
Characteristic points
Validation volume for equation 1.b
Special case: against
Special case: inside
Virtual Environment Editor GUI
Previous Prototypes: Battle of the Frogs
Previous Prototypes: Earlier version of GeDA-3D
Example 1: Top-Down view

LIST OF FIGURES VII

4.5 Example 1: General View Lo 50
4.6 Example 2: House environment L. 51
4.7 Example 2: House environment L L. 52
4.8 Example 3: Detail viewo 53
4.9 Example 3: Top-Down View 53
4.10 Examples of DRAMAScéne Concepts 55

5.1 GEDA-3D Architecture 60

Chapter 1

Introduction

Abstract

We present the objectives for this research, the motivation that leads us to perform research
in the field of declarative modeling, the goals to be fulfilled, and the problems that must be
solved in order to reach that objective. We also expose the results of our previous research.

1.1. INTRODUCTION 2

1.1 Introduction

There has always been the need to represent ideas, in order to transmit, preserve, and make
them available to others. Oral language was the first method to achieve these goals, followed
by painting, and then writing. Any of these methods is enough when the ideas represented
are easy to express. However, as these ideas become more and more complex, methods to
represent them also become more and more specialized.

Fortunately, these methods can be implemented as tools. However, the complexity of
tools useful to handle the representation of complex ideas needs a learning period, going
from simply understanding the way to hold the tool properly, such as pencils, to different
ways to achieve the desired results. Also, each tool can be composed of different materials,
and applied in a number of ways, on different elements.

These tools have evolved through time, reaching rich versions that are implemented
through computational systems, which allow a greater flexibility in their usage, even in
ways that are not possible in the physical world using manual tools. In these ways, modern
tools allow representing almost any kind of idea, from entertainment to education, and from
visual aid to formal training. In computer science, Virtual Reality (VR) is a discipline which
is useful for representing an actual or syntetic world, and can be perceived by the users in a
variety of forms: text, sound, visuals, or even sensations.

1.2 The Problem

However, creating Virtual Worlds (VW) is a complex task carried out by a complete staff
of modelers, programmers and artists. Completing a project can take from a few days to
years. Those projects can go from custom presentations for small-business clients to big
productions, like movies or video games. The tools needed to create these VW have different
degrees of complexity, which forces the users to pass throug training, taking from a few hours
to several weeks. In addition, some of these tools require specialized input hardware, that is
in some cases costly and difficult to use correctly.

A final user who desires to use a VR may feel intimidated by the cost of having a staff
to develop a complex application or discouraged by the learning step necessary to obtain
satisfactory results for simple applications. Also, developers must have a certain degree
of skill or talent to create results that approach the original idea. Thus, non-expert users
can find difficult to create the VWs they intent to use and may prefer to leave the task to
experienced creators or use other options. However, final users are the ones who really need
VR technology.

To ease the taks of creating a VW we propose designing a tool which will use the necessary

1.3. DESCRIPTION OF PROBLEM 3

procedures to create such VWs;, using as input only a set of properties for the world defined
by the user. The VW can later be extended to a Virtual Environment (VE), where the
entities included in the VW perform actions, display emotions, and are subject to changes
made by a set of rules established by the users.

To simplify the problem we divide the problem of using VR technology in several steps:
Creating the VW, specifying the scene, that is, the actions to take place in the VE, and
visualize them in the scene. We focus just on the first two of these subproblems.

The document is organized as follows:

e Chapter 1, Introduction, presents a general view of the research project, and intro-
duces the motivation, goals, and solutions proposed.

e Chapter 2, State of the Art, describes previous and current studies on Declarative
Modeling, geometric constraint solvers, and knowledge management, as well as some
literature on the subject.

e Chapter 3, Proposed Solution, states our approach in detail, the methods proposed
to solve the problem we are trying to solve, the research conducted to validate such ap-
proach, and the selection of the methods that better suit the objectives of our research.

e Chapter 4, Research Outcome, presents the outcome of this research, the prototypes
developed.

e Chapter 5, Conclusion, raises some future objectives to be solved in future researches.

1.3 Description of Problem

This paper proposes, formalizes and implements a method creating VWS, using simple user
inputs in the form of descriptions, with a formalization close to natural language, and ex-
ploiting knowledge to validate the statements of the input, with the objective of generating
a model of VW, and finally presents it to the users by means of a 3D viewer, an underlaying
architecture, or any desired platform.

For VW creation we understand the contruction of a simulated space, ruled by a set of
laws (friction, gravity, elasticity, etc.) where several animated and unanimated entities can
dwell and perform actions that may affect other entities and/or the environment.

Our approach uses Declarative Modeling (DM) to create a VW. This is a very powerful
technique, allowing the user to describe the scene to be designed in an intuitive manner,
by giving only some expected properties for the scenario, and letting the modeler find one
or several solutions, if any, that satisfy these properties [1]. Thus in our case, the VW is

1.3. DESCRIPTION OF PROBLEM 4

created using a natural language as a description provided by final the users. The difference
between our approach and those proposed in related researches is that we propose the use
of a Knowledge Database (KB) needed to validate the input and generate the output during
the process.

The DM process is usually formed by three phases [2]:

e Description. Defines the interaction language.

e (leneration. The modeler generates one or more models measured to the user’s descrip-
tion.

e [nsight. Users are presented with the models, then they can choose a solution.

Figure 1.1: Project Overview.

In our previous research we focused on the Description phase of the DM technique. We
defined a language centered in the creation of Virtual Scenarios (VS) and developed a tool
that can analyze the descriptions written in such language. To present a visual outcome of
the description, we used the rendering machine provided by the GeDA-3D [3] architecture,

1.4. RESEARCH OBJECTIVES >

which also hosts the tools for evolving the scene. In addition to the language, a KB was
constructed, and used in the parser to process the terms in the description, and generates
the appropriate outputs.

Our current research is focused on the two last steps of DM. This means first all the
possible properties are unique to the environment and to the entities that will dwell must
then be validated on its positioning. This will be conducted over the model generated in
the previous step, where a tentative positioning is conducted, although it is not validated.
The model can be processed using two tools: A Constraint Solution Problem (CSP) Solving
Algorithm or a Geometric Constraint Solver. The second option involves the construction of
a specialized tool or using a commercial product to solve possible model conflicts. The first
method implies defining and structuring a method to solve a CSP.

While the latter option involves using widely tested tools, the cost and the necessary
changes in the process where a great drawback. The former option allows better adaption of
tools to our project, because the KB will also contains constraint informations for validating
the spatial relationships between entities and the environment.

A lexical-syntactic parser, a model creator, an inference machine and an output generator
form the Virtual Environment Editor (VEE), our VW constructor tool. The model creator is
formed by a declarative modeler and a CSP solving algorithm, which validates the description
and generates the possible models, and allows the modification of the same.

Finally for the context constructor, we need to consider the rest of the GeDA-3D ar-
chitecture [3], which includes several modules on which the modeler depends, and that are
also dependent on the modeler. The VW created through the scene editor contains all the
information necessary for the architecture to make a correct representation of the VW.

1.4 Research Objectives

We consider several objectives to be reached during the development of this research. Some
of these objectives are oriented to develop new declarative methods for VW generation, while
others are focused on solving the problems for constructing our use case, which is a VEE
necessary to validate our proposal. We list the objectives for this research next:

e Defining a method for integrating knowledge exploitation into DM.
e Integrating the use of knowledege in a CSP solver algoritm.

e Establishing the necessary information to be included in a KB, in order to create a
model for a VW.

1.4. RESEARCH OBJECTIVES 6

e Designing the architecture for a VEE, based on DM, which can receive an input based
on a language specifically defined for VW description.

e Including in the VEE architecture the necessary means to access a KB.

e Adding methods in the VEE architecture to allow the generation of different types of
outputs, in such a way that those outputs can be added, modified or removed without
modifying the modeler itself.

e Implementing the proposed methods for DM and CSP solving into the architecture
designed for the VEE.

e Including into the design of the VEE the necessary means to allow the creation of VW
in a number of ways, from standard input text, to haptic input devices.

e Integrating the VEE with the rest of the GeDA-3D architecture.

The final result of this research is to propose a friendly, easy to use tool based on DM
for final, non-experienced users (Figure 1.1). Thus, it must be possible to use the solution
obtained through our method as an input of a 3D viewer, an underlying architecture, or any
desired platform.

Chapter 2

State of the Art

Abstract

In this chapter we expose the methodologies used in our research. First, we present in detail
the DM method. Next, we explore the different approaches for knowledge representation
and exploitation. Later, different methods for solving Constraint Satisfaction Problem are
presented. Finally, we take on some concepts for VR, and review current researches in the
area.

2.1. TECHNICAL INTRODUCTION 8

2.1 Technical Introduction

Before we begin detailing the methodology used and the implementation procedure employed
for creating the Virtual Modeler (VM), we need to explain some concepts for a better under-
standing of our project.

A User Interface (UI) is the aggregation of means employed by the users to interact
with a system. It provides the methods for input, allowing the manipulation of the system,
the output, or the presentation of the effects resulting of the users interaction.

The Backus-Naur Form, or BNP, is a formal way to describe formal languages. Consists
of a context free grammar to define the syntax of a programming language by using two sets
of rules: i.e., lexical rules and syntactic rules. The EBNF or Extended Backus-Naur Form
is a metasyntax notation used to express context-free grammar, an extension of the basic
Backus-Naur Form (BNF) metasyntax notation.

A Token is a block of text that can be categorized. This block of text can also be known as
a lexeme. Through categorization, a lexical analyzer processes lexemes and provides meaning
to them. This is known as tokenization. A token can have any kind of presentation, as long
as it is a useful part of the structured text.

An Application Programming Interface , or API, is a set of standardized requesta.
In essence, it provides the methods for accessing a program services. An API is formed
by routines, data structures, object classes and/or protocols provided by libraries and/or
operating system services.

A Model-View Controller, or MVC, is a paradigm where the user descripts a model of
the external world, and the visual feedback to the users is explicitly separated and handled by
three types of objects, each of them specialized for its task. The view manages the graphical
and/or textual output, the controller interprets the inputs from the user, commanding the
model and/or the view to change as appropriate. Finally, the model manages the behavior
and data of the application domain, responds to requests for information about its state
(usually from the view), and responds to instructions to change the state (usually from the
controller).

Inference is a particular property from KB. It is the action of extrapolating new infor-
mation from current knowledge, and is a useful characteristic for validating concepts and
properties, since the users can begin stating simple characteristics, which can be combined
to infer complex knowledge, extending the capabilities of the system which makes use of the
KB.

The modeler was coded in the Java language, given its multi-platform capabilities and
the need for using the Protégé OWL API, written in the same language. The Standard
Development Kit selected was the last one available, Java SE 6, and the coding was conducted

2.2. DECLARATIVE MODELING 9

under the Integrated Development Environment (IDE) Eclipse Ganymede.

The ontology was defined on the Protégé Framework. The version chosen was 3.2, since
later releases have compatibility issues with ontologies created by previous versions.

2.2 Declarative modeling

Declarative modeling focuses on what users want, instead of the method used to obtain the
result, or how to reach that solution. DM can be applied to a variety of problems, and
has been used in several fields such as work flow systems [4] or biosystems [5]. It can be
characterized as a multidisciplinary method, which involves several research fields, such as
virtual reality, knowledge management or artificial intelligence (figure 2.1).

Generation

*Operational Research
Al

Look up

-CAO
» *Virtual Reality

~ slmage Synthesis

Description

*Language
*Application Domain
*User Interfaces
*Databases

Figure 2.1: Fields of research.

Since our field of interest is the generation of VS using this method, we use the DM
definition from Dimetri Plemenos et al[l1]:

Definition 2.1 (Declarative Modeling). A very powerful technique, allowing to describe
the scenario to be designed in an intuitive manner, by only giving some expected properties
of the scene, and letting the modeler find solutions, if any, verifying these properties.

2.2. DECLARATIVE MODELING 10

Partial
Solutions

51

52

53

S‘x
Descriptions

D1 D2 D3 D4 04 03 02 01 Qutlook

G2

7
\{

Gl

Generation
Process

Figure 2.2: Interactive process of declarative modeling.

Following this definition, we aim to provide a system allowing users to create a VW data
model, which can then be used by an underlaying architecture to execute a simulation of a
scene. We can divide the DM process into three steps:

2.2.1 Description

During this step, the properties and relationships between entities are provided. There are
several interaction modalities, such as scripting, gestural or language interaction, as well
as multimodal options. We take the language interaction approach, since it is a direct
method, and less intimidating than gestural methods (either mouse or haptic inputs), since
people learns to express simple ideas from the moment they lern to write. Alos, if it is
handled properly, can be close to natural language, allowing an easy interaction between the
modeler and the user. An important part of the description step is the semantic knowledge
management, with the objective of avoid stating all the concepts explicitly by the user. Any
ambiguity must be solved, using the specificities given in the description to fill the gaps in the
model (such as placing books on a bookshelf, or orienting the audience in a theater toward
the scenario) and obtain the context for the VW. This step defines the interaction language
and UI, so the approach must be carefully selected and specified. We present our interaction
language and Ul in chapter 3.

2.2. DECLARATIVE MODELING 11

2.2.2 Generation

Generation is the search of a consistent solution, through the analysis and evaluation of the
properties stated. The properties are interpreted and solved according to a set of constraints
and are used for obtaining all possible values for the variables in the problem, and exploring
the solution space in order to find solutions matching with the user’s requests. These solutions
can be found by defining and solving a CSP. Several methods have been used to solve CSP,
such as search trees [6] or specific procedural approaches. We focus on constraint satisfaction,
where methods such Space-CSP [7], Numeric-CSP [8] or Metaheuristics (][9], [10]) have been
used. The efficiency of these methods depends on adequacy of the solving method, the
representation of constraints, the complexity of the search space, and the application domain.
To choose a method we consider four criteria: memory space, accuracy of the representation,
efficiency, and simplicity of implementation. We also consider that complete methods are
best suited to scenarios with few objects, while metaheuristic methods perform best with
numerous elements. Metaheuristics are not able to certify the optimality of the solutions
they find, while complete procedures have often proved incapable of finding solutions whose
quality is close to that obtained by the leading meta-heuristics particularly for real world
problems, which often attain notably high levels of complexity [9].

Objects must be characterized in order to be represented by the constraint set (figure
2.3). In this research, the representation of the objects must include its position, orientation
and size, as well as relative and spatial relationship with other objects. The search space
model can be represented in several ways:

e Explicit, storing all the possible values. However, the increasing amount of necessary
memory is evident.

e Semi-explicit, associating an explicit representation with every variable, but using a
projection method.

e Implicit, where the description contains the representation. Memory space is constant,
however, it requires a test of consistency.

The constraints can be determined by properties or contextual data, implying that the
properties must correspond to constraints. Constraints can also be represented in three
levels, depending on the complexity, number of variables, and generation approach: Implicit
(constraint is too complex), projective (using projection methods), and explicit (if constraint
is simple enough). The model is created using iterative methods, refining the solution and
satisfying the constraints at each interaction. First, the values for properties of the entities
are solved, then, these values are validated against the rest of the model. If any constraint is
violated or not satisfied, the model must be modified. Thus, the process repeats until finding
a solution or a stop condition is reached.

2.2. DECLARATIVE MODELING 12

L (xy2)

Dimensions
SX,5Y,52

Figure 2.3: Characterization for an object

Properties are used for three main tasks: defining the layout of the objects, partitioning
the space and build complex objects. We can also classify them in five sets:

e Basic, when they are used to set the exact object characteristics,

e Fuzzy, which allows partial, imprecise and negative descriptions,

General, mainly concerning morphological features, positions, numbering, and appear-
ance,

Specific, assigned to predefined shape models, and

Spatial, used to define the relative or absolute position of objects in the scenario.

2.3. KNOWLEDGE MANAGEMENT 13

2.2.3 Insight

This allows the users to view all or part of the produced results. It can work using two
methods: presenting to the users the solutions, or just presenting the most balanced solution.
In both cases the users can decide to modify the solution and adapt it, so it comes closer
to the mental image for the VW. There are several methods for the look up, such as freeze
or comment [6], classification of solutions [2], presentation tools [11], navigation tools [12] or
incremental refinement of the description [13].

It is important to consider two aspects in the design of a DM: first, the interpretation of
the properties, where we should consider the translation of the properties into the constraints
set. If this is not well defined, the result will be different from the users’ requests. A correct
interpretation must consider the normality of the context, this is, the normal usage for the
object, its intrinsic and deictic orientations, and the notion of a pivot element, which works
as an orientation beacon to all the objects in the scenario.

The second aspect is the look up step, where the selection of the “good” solutions must
be carefully directed. The modeler can generate all the solutions, but this would imply the
exploration of the whole solution space. It can select a set of representative solutions. Or it
can present only one, as long as all constraints are valid in the solution. Also, the modeler
should allow the users to modify interactively the solutions, adding new properties as the
objects are manipulated.

2.3 Knowledge Management

Knowledge Databases can be used in a variety of areas, from medicine [14] to genetics [15]],
and for diverse tasks such as determine non-redundant information system architectures,
support information management, enable shared understanding and communication between
different entities, or facilitate the inter-interoperability of diverse systems [16] [17].

As we stated in the previous section, an important part during the description step in
DM is the semantic management. In other words, how the translation between the properties
stated in the description of the modeler data structure is handled. There are many ways to
define an entity or a concept, from its physical appearance to the list of its attributes, elements
or parts. For example, a virtual human being can be semantically represented as a complete
unit, it can be described as the conjunction of several elements (head, torso, arms, legs), or
can be defined as a set of philosophical statements (self-aware, conscious, intelligent).

Many methods have been proposed to represent knowledge, such as logic, semantic net-
works or rules [18]. Those methods are used in formal representation such as ontology,
description logic or logic schemes, and in diverse applications such as expert systems or
workflow applications [19]. To agree with the concept of knowledge management, we take

2.3. KNOWLEDGE MANAGEMENT 14

the description from Alavi et all [19]:

Definition 2.2 (Knowledge). Knowledge is information contained in the mind of individ-
uals (which may or may not be new, unique, useful, or accurate) related to facts, procedures,
concepts, interpretations, ideas, observations, and judgments.

From theses concepts, we define the knowledge needed to define an entity as a collection
of data, organized in a way that can be related with each other, and that has been formatted
in a way that can be modified, corrected and eliminated as new information appears. This is
in an analogous way to a Data Base, where the information is stored with a specific method,
formated within a layout, and presented according to the users’ request. Since knowledge
can be casted by many representations, we represent knowledge as a KB, starting from the
analogy between knowledge for an entity and a Data Base.

A specific type of KB is called Ontology. From a philosophical point of view, ontology
is the explicit specification of a conceptualization: a simple and abstract view of the world
intended to be represented, with the objective to achieve some goal. For systems based on
knowledge, what “exists” is exactly what can be represented.

Definition 2.3 (Speech Universe). When the knowledge of a domain is represented in a
declarative formalism, the set of objects that can be represented is called Speech Universe.
The set of objects, and the relationships that can be described between them, is reflected in

the representation vocabulary used by a knowledge-based program to represent that knowl-
edge [20].

A basic ontology of the real world is the relation existing among all existing things,
classified according on how they exist. That is, the way in which something has reached the
reality and the way it actually exists [21].

The systems and services based on knowledge are expensive to build, test and maintain.
A software methodology based on formal specification of shared resources, re-usable compo-
nents and complementary services is required. The specifications of shared vocabularies have
an important place in the role of such methodology, because different applications require
different reasoning services, as well as special purpose language to support them.

Therefore, there are several challenges to overcome for the development of a knowledge-
based, shared and reusable software. As conventional applications, knowledge-based sys-
tems are based on heterogeneous hardware platforms, programming languages and network
protocols. However, knowledge based systems have certain special requirements for inter-
operability. Such systems operate and communicate using sentences in a formal language.
They make requests and send answers, taking “previous knowledge” as input. As agents in
an Al distributed system, they negotiate and interchange knowledge. Communication at the
knowledge level needs conventions at the three levels: representation language format, agents
communication protocol, and content specification of the shared knowledge [20].

2.3. KNOWLEDGE MANAGEMENT 15

Since our project deals with the creation of a scenario using only a description written
in a natural-like language, it is necessary to design the way to achieve a correct analysis of
the sentences, as well as to keep coherence in the scenario. An example of this could be the
sentence “The whale is in the living room”. If we are not talking about a toy, logically, a
whale cannot live a living room; it is too big and is a sea mammal. This can be derived from
the ontology and the sentence can be marked as invalid. If the sentence is changed to “The
toy whale is in the living room”, the analysis must result correct, since a toy shaped like a
whale can be in a living room. As before, this conclusion can be derived with the help of the
ontology.

The Ontology will help us to conduct the semantic analysis of the language, since this
analysis can be reasoned using the knowledge extracted from the ontology. In the previous
example, for the word “whale”, the ontology will return information that states that a whale
is a sea animal, a mammal, and that it is several meters long and is heavy. From there,
it can be reasoned that it is not correct for a whale to be placed in a living room. In the
second example, the properties for a toy allow it to exist in a living room, and in the shape
of a toy whale. Thus, we will use the ontology to exploit knowledge and assure the semantic
coherence of the sentences in the description used for generating the VW.

Many applications and standards have been developed to create, modify and access knowl-
edge in knowledge based-form. We present some of these works, completely oriented to
ontology building, in the following subsections:

2.3.1 Ontolingua

The system developed at the KSL of the Stanford University [22] consists of a server and a
representation language. The server provides an ontology repository, allowing the creation of
ontology and its modification. The ontologies in the repository can be joined or included in
a new ontology. To interact with the server the user can use any standard web browser. The
server was designed for allowing the cooperation in ontology creation, easy generation of new
ontologies by including (parts of) existing ontologies from a repository, and the possibility
of including primitives from an ontology frame. The ontologies stored in the server can be
converted to different formats to be used in other applications. This allows the use of the
Ontolingua server for creating a new ontology, export it, and then use it in CLIPS-based
application. It is also possible to import definitions from an ontology created on different
languages to the Ontolingua language. The Ontolingua server can be accessed by other
programs if they can use the ontologies stored in the Ontolingua representation language

[20].

2.3. KNOWLEDGE MANAGEMENT 16

2.3.2 Protégé

Protégé is a multi-platform package [23], designed to build domain model ontologies, and
has been developed by the Informatics Medic Section of Stanford. It is oriented towards
assisting software developers in the creation and support of explicit domain models, and
in incorporating those models directly in software code. The Protégé methodology allows
the system designer to develop software from modular components, including reusable work
frames helping to build domain models and independent problem solving methods that im-
plement procedural strategies to solve tasks [24]. The Protégé framework includes three main
sections: a. the Ontology Editor’, used to develop the domain ontology by expanding a hi-
erarchical structure and including classes, and concrete or abstract slots; b. Based on the
constructed ontology, Protégé is capable of generating a Knowledge Acquisition tool to input
ontology instances. The KA tool can be adapted to the users’ needs by using the “Layout”
editor; c. The last part of the program is the Layout interpreter, which reads the output of
the layout editor and shows the user an input screen with a few buttons. These buttons can
be used to create the instances for the classes and sub-classes. The whole tool is graphical,
which is friendly for non-experienced user.

2.3.3 Web Ontology Language

The Web Ontology Language is a semantic markup language designed for publishing and
sharing ontologies over the World Wide Web. It is a standard [25] that forms part of the
W3C Recommendations for the Semantic Web, and was developed by Deborah L. McGuin-
ness and Frank van Harmelen, as a vocabulary extension of RDF (the Resource Description
Framework) [26]. It is a language oriented to process information context for applications
that need more than just representing information for the users. It provides greater interop-
erability for web content than similar standards (XML, RDF or RDF-S), due to additional
vocabulary and formal semantics. It can be divided in three sub-languages, each more ex-
pressive than the previous one: OWL Lite, OWL DL, and OWL Full.

e OWL Lite supports primary needs for classification hierarchy and simple constraints.

e OWL DL provides maximum expressiveness, while retaining computational complete-
ness.

e OWL Full presents the syntactic freedom of RDF and the maximum expressiveness,

but does not provide computational guarantees.

OWL Lite uses only some of the OWL language features has more limitations than the
others sub-languages. It allows restrictions on the use of properties by instances of a class,

2.3. KNOWLEDGE MANAGEMENT 17

a limited form of cardinality restrictions, a limited intersection constructor, and the RDF
mechanism for data values.

OWL DL and OWL Full use the same vocabulary, but OWL DL presents some restrictions.
OWL DL requires type separation, i.e., a class can not be an individual or a property and
can not be applied to the language elements of OWL itself.

An ontology written with OWL consists of three sets: classes, properties, and individuals.
Each element in those classes can hold a superclass-subclass relationship. Classes define the
archetype for the concepts in the ontology, and contain a set of restrictions, which are the
constrains for the individuals, which are the instantiations of the classes.

The properties are related to the classes, and can be classified in two types: data type or
object, and both need a domain, the classes containing the property, and a range, that is, the
subset of values allowed for that property. Data type properties are basic level values, such
as strings, integer or boolean values. Object properties indicate the relationship between
classes, and contain the list of related individuals.

Finally, individuals are instantiations of the classes, and contain the actual values for the
specific element in the ontological domain.

In figure 2.4 we present an example of an ontology created with OWL, in a graphical
form.

2.3.4 WebOnto

WebOnto [27] is a platform completely accessible from the Internet. It was developed by
the Knowledge Media Institute at the Open University and designed to support creation,
navigation and collaborative edition of ontologies. In particular, WebOnto was designed to
provide an interface allowing direct manipulation and that presents ontological expression
using a powerful medium. WebOnto was designed to complement the ontology discussion
tool Tadzebao. Thus, it is mainly a graphic tool oriented to construct ontologies. The lan-
guage used to model the ontologies in WebOnto is OCLM (Operational Conceptual Modeling
Language), originally developed in the context of the VITAL project to provide modeling op-
erational capabilities to the work system VITAL [28]. This tool proposes a number of useful
characteristics, like saving structure diagrams, relationships views, classes, rules, and so on,
all of them individually. Other characteristics include cooperative working in ontologies by
drawing, and using broadcast and function reception.

2.4. CONSTRAINT SATISFACTION PROBLEMS 18

owi:Thing Woman
Man
Actor |
Dog
Object Dog_default
siZe
scale
position
col_tags
gen_tags
Environment con_tags
altribute
= GemanShepperd
HairColar
Viclousness
Keywords North
l—} Horth_default
property_type
attribute
cube_side
operation

Figure 2.4: Ontology example.
2.4 Constraint Satisfaction Problems

During the generation phase, verifying the location of the different objects in the scenario
is an important part of the model creation. The properties provided by the user for the
VW are transformed into a set of constraints, which must be verified and transformed to
assure the correct configuration of any solution. To solve any conflict between constraints,
we employ an algorithm capable of finding a configuration in the solution space for finding a
solution satisfying all constraints. An algorithm with those properties is known as Constraint
Satisfaction Problem (CSP), and is defined as follows [29]:

Definition 2.4 (CSP Definition). A tuple < X, D, C >, where:
X ={Xo...X,}, is the set of variables for the problem.
D is a domain for each variable X;.

C ={Cy...C,}, the constraints set, where each C; specifies a subset of X; and the acceptable

2.4. CONSTRAINT SATISFACTION PROBLEMS 19

values for that subset.

A variable X; is considered instanced when it has been assigned a value from its domain
D;. Those variables which have not been assigned with any value are called non instanced.
We also can refer to both variables as past variables and future variables, respectively. The
notation “X; = z;” means that the variable X; is assigned with the value ;. The act of the
instantiation is denoted by “X; « x,;”. The variables in a CPS are instantiated in a given

order, denoted by “X;7

A variable is in a dead-end state, if there is no value in its domain consistent with Xi_l.
There are two kinds of dead-ends: leave, if there are constraints that forbid each value in its
domain, and interior, if there are some values making the domain compatible with)?2-,1, but
the subtree with its root in the variable does not have a solution.

A problem state is the assignment of values to one or all of the variables, from the
domain value sets of each variable, {X; = v;, X; = v;...}. If an assignment does not violate
any restriction, is called consistent or legal. A solution to a CSP is a value assignment to all
variables in such a way that none of the constraints is violated. A problem which presents a
solution is considered satisfiable or consistent, otherwise is called unsatisfiable or inconsistent.

To solve a CSP, there can be used two approximations: search and deduction. Both are
based on the idea “divide and conquer”, that is, transforming a complex problem into a
simpler one. Search generally consists of selecting an action to develop, maybe with the aid
of an heuristic, which will take us to the closest state for the intended objective. Tracking
is an example of searching for CSP. The operation is applied to the value assignation of one
or more variables. If a variable can no longer be assigned in such a way that can keep the
consistency for the solution, it reaches a dead-end, and tracking is executed.

It is a good idea to visualize a CSP as a constraint graph, the nodes corresponding to the
problem variables and the arcs to restrictions. Dealing with a CSP allows to generalize the
successor function and goal test for adapting to any CSP, as well as to apply efficient and
generic heuristics to avoid including additional information or domain expertise. Also, the
graph structure can be used to simplify the solving process.

A CSP can be designed following an incremental formulation, as in standard search prob-
lems, starting with an empty assignment, this is, no variables assigned yet. A successor
function will assign values to variables as long as there are conflicts with previously assigned
variables. A test function is designed to find a complete variable assignment, and a constant
step cost.

The simplest case of CSP implies discrete variables and finite domains, for example, the
Boolean CSP, formed by variables that can be either true or false. For a maximum domain
size of d in any CSP, the possible number of complete assignations is O(d"™), where n is the
number of variables, in the worst case. If the domain for the discrete variables being handled

2.4. CONSTRAINT SATISFACTION PROBLEMS 20

by the CSP is infinite, it is not possible to describe restrictions by enumeration of the possible
values combinations, but a restriction language can represent it. In the case of continuous
domains, the most common in the real world, we find that the most studied cases are linear
programming problems, which are solved in polynomial time.

The constraints can be unary, when the constrained values affect only one variable; binary,
when the constraint involves two variables; or higher order, implying three or more variables.
Constraints can also be absolute, meaning that the violation of any of them excludes a
potential solution. Some CSP include preference constraints, which indicate what kind of
solution is preferred. Several methods have been proposed to solve CSP; next, we present
some of them:

2.4.1 Backtracking

The simplest algorithm for solving CSP is backtracking [30]. This algorithm starts with an
empty set of consistently assigned variables, and tries to extend it by adding new variables
and values for them. If the inclusion of a new variable does not violate any constraint, the
process is repeated until all variables are included. If the newly added variable makes the
solution inconsistent, the last variable added is instantiated with a new value. If there are
no more possible values for that variable, it is removed from the set and the algorithm starts
the backtracking again.

An important element of the backtracking algorithm is the review of consistencies; which
is conducted frequently, and makes an important part of the algorithm’s work. The time
used to conduct this revision is in agreement to the representation of the constraints. Those
representations can be a list of the allowed tuples to maintain the constraints free and keep
only the incompatible tuples, making use of a Boolean values table, or executing a procedure.

2.4.2 Backmarking

This method reduces the cost of consistency checking while backtracking is conducted [29].
It requires that the consistency review be executed in the same order, as the variables were
instantiated. Proceeding in this way, the algorithm avoids previously tested and later rejected
combinations, increasing the efficiency. However, this approach is restricted to binary CPSs
and static variable ordering.

This method requires two additional tables, M;, used to register the first variable with
a failed consistency check X; = z,. If X; = x, is consistent with the previous variables,
M, , =i. L; records the first variable that has changed its value since M;, was assigned for
X, with any value v from its domain. If M;, < L;, the variable pointed by M,, has not
changed and X; = x, will fail when being checked against X,; ., therefore the consistency

v,2)

2.4. CONSTRAINT SATISFACTION PROBLEMS 21

check is not required and z, can be rejected. If M, > L;, X; = z, is consistent with all the
variables before X, and those consistency checks can be avoided.

2.4.3 Backjumping

This is proposed as a way for reducing the amount of trashing, which is the act of finding the
same dead-end several times [31]. This algorithm is capable of “jumping ” from a dead-end
to a previous variable that causes the dead-end with its current instantiation. A variable
causes a dead-end, if in conjunction with zero or more variables preceding it in the ordering
are instantiated in such way that a restriction will not allow the assignment of values to the
variable in conflict.

An array J;, © <1 < n is used to find variables that cause dead-ends. J; stores the last
variable test for consistency with some value from X;. If X; does not get into a dead-end,
then J; = i—1. If X; is inconsistent, then each value in D; was tested for consistency with the
past variables until an instantiation failed to pass test, J; contains the index of the variable
inconsistent for some value in D;. Is important that the consistency review of instantiated
variables be in the same order as the instantiation. If X; is in a dead-end, we can guarantee
that conducting the tracking between X, and X; ; will be unprofitable, since the cause
of the dead-end in X, is not marked. The partial instantiation XZ will cause that any value
for X, generates a dead-end on some restriction, so modifying the values after X;, will not
solve the dead-end.

2.4.4 Backjumping based on graphics

This method is another variation of backtracking. It jumps over variables as a response to a
dead-end [32]. Unlike backjumping, which only responds to leave dead-ends. Backjumping
based on graphics can respond to previous dead-ends. In order to accomplish this, it reviews
the set of parents P; for the dead-end variable X;, where a parent of X; is any variable
connected to X; through the constraint graph and precedes X; in the instantiation order.

If X, is a dead-end variable, the algorithm jumps to the last variable in the set of parents.
If X, is in a previous dead-end, the new set is formed by the union of the parent set of X;
and those from the dead-end variable found after X; in the search tree. The algorithm then
jumps to the last variable of the inducted set J;. The algorithm requires to update J; after
every unsuccessful inconsistency review, requiring up to O(n?) space and O(ec) time, where
¢ is the number of constraints and e is the maximum number of variables for each constraint.
The other disadvantage of using the parents is using less refined data of the causes of the
dead-end.

2.5. VIRTUAL WORLDS 22

2.4.5 Forward Checking

Forward Checking is a variation of backtracking, which acts by instantiating a variable and
removing any conflicting value in the domains of future variables. This algorithm rejects any
value that can lead to the removal of the last value in the domain of future variables. The
values are not removed permanently, but stored in the set D’, which contains the narrowed
domains. The action of removing values from D’ is called filtering [33].

The algorithm works filling D’ with all the compatible values from each domain for each
variable, and continues looking for at least one compatible value for D’ with future variables.

cur
It is not necessary to review previous variables, since D/, only contains compatible values
with Xeypr—1.

Most methods make decisions on how the variables have been instantiated, and then
modify values to continue searching for solutions. We know part of the solution space at the
beginning of the search, having access to information of possible positions, relations that can
be or not be changed, as well as ranges of correct values for the variables. Directed methods
such as backjumping based on graphics or forward checking suit our needs better, since the
inclusion of Metaheuristics based on knowledge can lead to quicker solution finding, dead-end
solving, and corrections in the search direction.

2.5 Virtual Worlds

One of the best definitions for VR we have found is “Virtual Reality is a way for humans
to visualize, manipulate and interact with computers with extremely complex data” [34].
Visualization means that the user can perceive the outputs generated by the computer. That
is to say, the actions achieved in the world represented inside the computer. The perception
can be visual, auditory, sensory or a combination of these. The world being represented can
be a CAD model, a scientific simulation, or the view of a database. Interaction means that
a world can evolve autonomously, either the objects inside the world or the properties of the
world itself. This interaction triggers the evolution (animation), through some process, of
either physic simulations or simple animation scripts [35].

In a VW we found entities that dwell inside it, which are named commonly avatars.
Avatars represent animated entities having complex behavior, for instance animals (persons
or other type), or other imaginary animated creatures. The avatars can perform a variety of
actions, according to the world they have been put in, as well as represent human emotions
([36],[37]) and perform varied behaviors [38]. Those avatars have different levels of complexity
and detail, depending on the overall representation of the world-taking place. We can take
as an example a person: in simple simulations, it is not needed great details of the body, for
instance the skin, the hair, the face details are represented by very simple models (Figure

2.6. RELATED WORKS 23

2.5). In contrast for movies, a virtual character must have a high level of detail (a detailed
face, modeling individual hairs). The level of detail comes at computational cost. Currently
several methods are used to provide better levels of representation in real time, such as ray
tracing or bump-mapping [39].

Figure 2.5: Different levels of detail for avatars.

Among some of the applications for VW we can find: the creation of VW for video
games, where the player can travel through different environmental settings, interact with
diverse characters and perform a set of actions. In movies, VW are used to re-create ancient
worlds, fantasy settings or impossible situations. VW are also used in applications such as
architecture [40] or city-planning [41][42], as well as for applications such as story telling [43],
as a support method in surgery and medical education [44] or as educative tools.

2.6 Related Works

Several works have exploited the methodology of DM. Before commencing the review of some
of them, it is necessary to state that since we are focusing on using DM to create VWs, all
the works presented in this document are also oriented towards the creation of virtual 3D
models. In these works one of the problems solved is validating the disposition of the objects
that conform the VW using diverse techniques, whereas other modelers focus on validating
other aspects of the model, such as congruency or efficiency (Repast Symphony System [45],

2.6. RELATED WORKS 24

Joseph System [46]). Of the two tasks, the most demanding in computing processing is
validating the correct positioning and orientation.

Some of the reviewed works focus on architectural or urban design, such as FL-System [40].
This system is focused on the generation of complex city models, parting from a specialized
grammar, and using a variant of the Lindenmayer System [47], called Functional L-System,
replacing the generation of terminal symbols by generic objects. It uses VRMLI7 to visualize
the models, and works generating individual buildings and then incrementally working the
rest of the city block, and later the entire city.

CityEngine [41] is a system capable of generating a complete city model, using small sets
of statistical and geographical data, contained in geographical maps (elevation, land, water
maps) and socio-statistical maps (population maps, zoning maps). It works creating a first
layer of roads, using L-Systems, and then creating city blocks. The final step is the generation
of geometry and visualization, using first a real time render, and then a raytracer.

Wonka et al. in [48] presents a method for automatic architecture modeling, uses a
spatial attribute design grammar, or split grammar as input for the user. The input is used
to create a 3D layout which is the base for the building in creation. The facade is created
next, splitting it into structural elements at the level of individual parts (windows, cornices,
etc.). The resulting model is shown to users through a real-time render.

]|!lj ﬁ;—i: 'rl- =

A {.-;;'|rl-p;h{;;ig
il EEEEEE

| EiERREEY

i
1 1 L
g

Figure 2.6: FL-System, City Engine and Instant Architecture

None of the previous presented works is oriented toward creating a model of a VW, but
just a 3D model of a description, composed in all the cases by a specific grammar, either raw
geographical data, architectural designs or three-dimensional design data. These projects
do not allow any kind of interaction with the environment, due to completely automated
model generation. In those works, once the VW is generated, it is not possible to interact it
beyond positioning the camera. If any modification is needed, it is mandatory to modify the
description in order to change the output of the system. Other works are oriented to create
VS, where different elements are positioned in the VW, and their properties can be modified.
In the next subsections we will review some of them.

2.6. RELATED WORKS 25

2.6.1 WordsEye: Automatic text-to-scene conversion system

Bob Coyne and Richard Asproad at the AT&T laboratories developed WordsEye [49]. This
system allows the generation of a 3D scenario from a description written on natural language,
for instance: “the bird is in the birdcage. The birdcage is on the chair”. The text is initially
marked and analyzed using part-of-speech taggers and statistical analyzers. The output
of this process is an analysis tree, which represents the structure of the sentence. Next,
a depictor (low level graphic representation) is assigned to each semantic element. Those
depictors are modified to match with the poses and actions described in the text, through
inverse kinematics. After that, the implicit and conflicted constraints of the depictors are
solved. Each depictor is then applied, while keeping its constraints, to incrementally build
the scene. The final step includes adding the background environment, the terrain plane, the
lights, and the camera. Then, the scene is rendered and presented to users. If the text includes
some abstractions or descriptions that does not contain physical properties or relations, the
system employs several techniques, like textualization, emblematization, characterization,
lateralization, or personification. This system accomplishes the text-to-scene conversion by
using statistical methods and constraints solvers, and also has a variety of techniques to
represent certain expressions. However, the scenes are presented in static form, and the user
has no interaction with the representation.

2.6.2 DEM?ONS: High Level Isometric Declarative Modeler for 3D Graphic
Applications

DEM?20NS_98 has been designed by Ghassan Kwaiter et all [50] offering to the users the
possibility to easily construct 3D scenarios in natural way and with a high level of abstraction.
Two parts constitute it: a multi-modal interface and, the 3D scene modeler. The multi-modal
interface allows the users to communicate with the system. It uses simultaneously several
combined methods provided by different input modules (data globes, speech recognition
systems, spaceball, mouse). The syntactic analysis and Dedicated Interface modules analyze
and control the low-level events to transform them in normalized events. DEM2?ONS uses
ORANOS as 3D scene modeler, a constraint solver designed with several characteristics
allowing the expansion of DM applications, like generality, breakup prevention and dynamic
constraint solving. The GUI (Graphic User Interface) is based upon the Open Inventor
Toolkit [51] and Motif library [52]. These two modules render the objects, and provide
support to present the menus and tabs. DEMZ2ONS allows the user to interact with the
objects in the scene. Also, it solves any constraint problem, but only allows static objects,
with no avatar support.

2.6. RELATED WORKS 26

2.6.3 Multiformes: Declarative Modeler as 3D sketch tool

William Ruchaud et al. presents Multiformes [53], a general purpose DM, specially designed
for 3D scenario sketches. As any DM, the work over the scenario with MultiFormes is
handled essentially through a description (the way the user inputs all of the scenario geometric
characteristics of the elements, and the relationships between them). The most important
feature in MultiFormes is the ability to automatically explore all the possible variations
in a scenario. Unlike most of the existent sketch systems, Multiformes does not present
only one interpretation of each imprecise property. Starting with a single description, the
designer can obtain several variations of the same scenario as a result. This can lead the
users to choose a variation not considered previously. A constraint solver supports this
process. The description of the scenario includes two sets: the geometric objects set presents
in the scenario, and the set of existent relationships between the geometric sets. To allow the
progressive refinement of the scenario, MultiFormes uses hierarchical approximations for the
scenario modeling. Following this approach, a scenario can be incrementally described at
different levels of detail. Thanks to its constraint solver, MultiFormes is capable of exploring
diverse variations of sketch, satisfying the same description.

The geometric restriction solver is the core of the system and is used to create a hier-
archically decomposed scenario. Even when this system obtains its solutions in incremental
ways, and is capable of solving the constraints requested by the user, the system requires
the list of actions needed to construct the scenario. This requirement makes the use of the
system restrictive.

2.6.4 CAPS: Constraint-based Automatic Placement System

Ken Xu, et al. presents CAPS [54], that is a positioning system based on restrictions. It
makes possible modeling big and complex scenarios, using a set of intuitive positioning re-
strictions that allow manipulation of several objects simultaneously. It also employs semantic
techniques for the positioning of the objects, using concepts such as fragility, usability or in-
teraction between the objects. The system uses pseudo-physics to assure that the positioning
is physically stable. CAPS uses input methods with high levels of freedom, such as Space Ball
or Data Glove. The positioning of the object is executed one at the time. Allows direct inter-
action with the objects, keeping the relationships between them by means of pseudo-physics
or grouping. These methods and the tools integrated into this system make it a design tool,
mainly oriented towards scenario visualization, with no capabilities for self-evolution.

2.6. RELATED WORKS 27

2.6.5 ALICE

This is a tool for describing the time-based and interactive behavior of 3D objects, developed
at the Carnegie Mellon University [55]. Described by its authors as “a 3D interactive, anima-
tion, programming environment for building VW, designed for novices”, provides a creation
environment where users can create, use, and animate 3D objects to generate animations.
The user selects an object from a 3D database and then arranges its position in the world.
After the object has been positioned, the user can select primitive methods, which send
messages to the object. These methods are arranged to form program sentences which are
interpreted by a Python Interpreter, which works as a scripting service. The system uses
Microsoft 3D Retained Mode (D3DRM) to render the scene. Users can add new content
and methods, since the system supports many 3D modeling formats. This project focuses
on educational /instructional areas, but still focusing on programming paradigms. The users
need to actively create the scenario, and specify the scene using a programming-like tool.
Also, the software does not make any context verification.

Chapter 3

Proposal

Abstract

This section is devoted to explain the approach taken to solve problems posed by the inclusion
of knowledge in DM. Also, a detailed explanation of the procedure and the methodology is
presented.

28

3.1. INTERACTION LANGUAGE: A REVIEW OF VEDEL 29

3.1 Interaction Language: A Review of VEDEL

To allow interaction between the modeler and the user, an interface that allows easy spec-
ification of the desired properties for the model intended is necessary. There are different
input methods, but we choose to let the user express himself in a natural-like language the
characteristics of the VW.

Our objective in defining a declarative method to describe a VW was to provide users a
structured, easy to follow method to compose the description of a scenario, in the form of a
declarative scripting language, which we called Virtual Environment Description Language,
or VEDEL [56] that is a tag language. A description in VEDEL is composed by three sections,
each of them devoted to describe one of the three possible types of elements in the VE: the
Environment, that is, the general settings for the scenario; Actors or avatars, which are
those entities capable of perform and react to actions, display emotions, represent behaviors,
and react to the changes in the environment and other entities; and Objects, entities that
can be subjected to actions, but cannot act on their own. Each section is delimited by section
tag, which starts with a keyword for each section (ENV, ACT, or OBJ) respectively enclosed
in brackets ([|). A slash (/) before the keyword makes the tag close a section.

The sections are composed by sentences, each of them formed by comma-separated state-
ments, and ended by a dot (“.”). The first statement must be a concept word, this is, a word
that explicitly defines the idea that will be represented, followed by a single-word proper
name for that entity, which must be unique for every entity (the environment does not need
a proper name), which can be of any length and can use special symbols. The rest of the
sentence is composed by the entity properties, which must begin with the property name,
followed by the values for that specific property. Numeric values must be enclosed in paren-
thesis, and it is possible to define specific ranges by enclosing the values in brackets ({ }), and
separated by commas. This last option is a technical feature of the lexical-syntactic parser,
and its use is not intended for final users.

The basic structure of a description composed in VEDEL follows the pattern:

3.1. INTERACTION LANGUAGE: A REVIEW OF VEDEL

““[ENV] >

Environment keyword, [environment settings],
““[/ENV]’’
¢ [ACTOR] "’

{ Actor Class, [Actor Identifier], [Actor Properties], “¢.’’ }
““[/ACTOR]’
< [OBJECT] >’

{ Object Class, [Object Identifier], [Object Properties], “¢.’’ }
““[/OBJECT]’

«cc

The revised formal Description Structure is defined as follows:

Description ::= environment, actors, objects;

environment ::= “[ENV]” environment sentence “[/ENV]”;
actors == “[ACT]” [{ actor sentence } | “[/ACT]";

objects ::= “[OBJ]” [{ object sentence } | “[/OBJ]”;
environment sentence ::= environment class, | environment properties |, dot;
actor sentence ::= entity class, [actor properties |, dot;

object sentence ::= entity class, [object properties |, dot;
properties ::= { separator, properties };

environment class ::= entity class;

entity class ::= class, [identifier |;

environment properties ::= { characteristic };

actor properties ::= { comma, characteristic | property | position };
object properties ::= { comma, characteristic | position };
characteristic ::= class, value;

position ::= class, [[number |, identifier |;

property ::= class, | value |;

class ::= word;

value ::= word | number | range;

identifier ::= letter — digit, [{ letter | digit | special symbol } [;
word ::= { letter };

number ::= “(” [minus |, { digit }, [dot { digit } | ¢)”;

letter — “A?? tO “Z?? | (Ca” tO (Cz”;
digit e “077 tO “977,
= :
special symbol ::= “@” | minus | “_7;
: “w ”

minus ;1= “-";
comma ::= “7;

Wy,
dot := “.”;

”,

range := “{” number | word | { comma, number | word } | “}”;

3.2. PARSING METHODOLOGY 31

[ENV] [ENV]

House, night, rain. Farm, day, hot.

[/ENV] [/ENV]

[ACTOR] [ACTOR]

Man Albert, old, sit FrontCouch, reading to- Man Albert, close BigTree.

dayNewspaper. Woman Beth, sit PicknickTable, talking Car-
Woman Beth, old, sit RockingChaur, knitting. rie.

[/ACTOR)] Carrie, sit PicknickTable, next Beth, talking
[OBJECT] Beth.

FrontCouch, left FirePlace. [/ACTOR]

Chair RockingChair. [OBJECT]

Paper todayNewspaper. Table PicknickTable.

[/0BJECT] [/0BJECT]

Figure 3.1: VEDEL examples.

A description can contain any number of sentences per section; the number of properties
allowed per sentence is only restricted to the number of properties associated with the entry
of the entity in the KB. The lexical-syntactic parsing method is presented in detail in the
next section.

3.2 Parsing Methodology

Descriptions given by the user are analyzed by a lexical-syntactic parser, which is a state
machine that searches for invalid characters, and verifies if descriptions are composed fol-
lowing the rules established by the language definition. It also formats the entry into a data
structure, which the model creator can use.

The first step is searching for tokens, individual words which are strings of characters
delimited by a space, a comma, a dot, or a carriage return. Then, the syntactic analyzer sets
the token to a data structure designed to allow easy exploration by the model creator (figure
3.2). This data structure is a hierarchical tree, with branches which start with entity class
and the unique name of the entity, if it founded. The leaves are filled with the properties
requested for that entity, starting whit the name of the property, and followed by the values
requested for that particular attribute. When a dot is found, the newly parsed sentence is
stored and the process continues in the next sentence. If the following token is a section tag,
the parser verifies tag parity, then proceeds the analysis of the next section or reports the
corresponding error state. The parser reports any error to the Error Manager, and discards
the faulty token, statement, sentence, or section. When the closing objects sections tags is

3.3. MODELER’S ARCHITECTURE 32

reached, or when the end of the description string is found, the parser ends its task, and
sends the parsed entry and the error report to the next module, where the modeling process
continues, the necessary actions are taken in order to complete the process, and the user is
informed with the errors found so far.

<Envircnment Class>

<Environment Property_1:=

I— =Property Value 1=

<Environment Property_2>

<Property Value 1>

<Property Value 2>

<Entiy Property_1>

<Property Value 1>

<Entity Property_2>

1

Figure 3.2: Parsed Entry Structure

<Property Value 2>

The parser has been designed, so individual sentences or even individual statements can
be sent for verification and conversion, allowing to modify the model previously constructed,
by adding, deleting, or changing the attributes for new or existing entities.

3.3 Modeler’s Architecture

The modeler is composed by five modules, as shown in figure 3.3. The Lexical-Syntactic
Module was explained in the previous section (3.2), while the rest of the modules is presented

3.3. MODELER’S ARCHITECTURE 33

in depth in the following sections. This section highlights the functioning of the modeler and
resumes briefly each module.

I'ﬁput:VEDEL <<description=> | | axjcal-Syntactic
Parser

<<parsed&npm>>

<<W Model Creator Wﬂution>>

Inference
Function <<final [solutions>>

CSP Algorithm

h 4

<<inferred |knowledge>>
Qutput
Generation
Knowledge
Base <<requested poutputs=>
k4
Qutputs

Figure 3.3: Modeler Architecture

Model Creator

The Model Creator receives the parsed entry to proceed with the generation of a model
satisfying the constraints stated in the description. It makes use of the inference module, and
formats the information obtained through it to generate the model. The modeler also creates
a list of entities in the environment and their dependencies, so the positioning process can use
this information in order to facilitate the task. It also does collision verification in order to
solve conflicts involving the geometry of the entities intersecting each other, and positioning
validation, to assure the position of the entity corresponds to description constraints.

Inference Module

The inference machine access the KB to gather the necessitated data contained within
it. It uses the OWL API to obtain specific knowledge, and formats the data so the modeler
can use the values during the model creation. It also validate the semantic values of the
constraints, as well as the overall composition of the description.

3.4. CREATING THE MODEL 34

CSP Algorithm

This module solves the conflicts that arise from the positioning of the elements in the sce-
nario. The CSP Algorithm verifies the model for detecting: collisions, incorrect positioning,
or invalid disposition of the elements, to correct any conflict found. It returns a valid model
to the Model Creator, or the list of unsolved conflicts.

Output generator

The requested outputs are generated by a Model-View Controller, which receives the
model created by the Model Creator to generate the outputs to be used by the underlaying
architecture. The templates are formated accordingly to the needs of the architecture or the
systems that the model will use.

3.4 Creating the Model

Once the description has been analyzed and the model creator received the output from the
lexical-syntactic parser, the actual creation of the model begins. This creation starts with
a default-valued initial model, which we called the zero-state model. This model is refined
progressively to finally obtain a model which contains all the values requested by the users
and also satisfies the constraints, explicit or implicitly, requested by the users.

3.4.1 Model Data Structure

The obtained model is basically a hierarchical structure. The top elements correspond to
the class of the entities, which are obtained from the KB. The leaves on the same level
correspond to the unique name, that is, the type of entity (environment, actor or object),
and its properties. The structure representing the environment model is presented in figure
3.4.

The classes defining the root branches in the model are Environment, Avatar and Actor.
The Environment contains the details for the setting of the scenario, as well as the laws that
will rule the entities in it. The information contained in the highest level correspond simply
to environment size and descriptor, all the rules and properties of the environment are stored
in the leaves of the sub-tree with root on the entry Environment. Awvatar corresponds to the
basic information regarding the entity, or the “default” entity, which can be viewed as the base
model for all the entities of the same type. Example: a “man” avatar contains information
about the conformation of a human, i.e., arms, head, legs, as well as the properties for the
entity, such as hair, skin color, stamina, mood, with all of them having specific values set in
the KB. Also, this class can be used to control the number of avatars of the same type, so
the modeler can set the individual names for those entities without a specific identifier. The

3.4. CREATING THE MODEL 35

_ Laws
Environment
Actions
Properties
- Name
- Values
Laws
Avatars _
Actions
Properties
Actor .
- Name Emotions
-Type
-1d
- Section
- Position _|4 Properties
- Orientation
- Dimensions
- Collision Tags
- Zone Tags
- Charac. Points

Figure 3.4: Model Structure.

elements of this class are used as a template; this means that all of the properties for new
entities are copied from the values stored in this branch. Finally, the last branch contains
the avatars instantiations, the Actor class instances, where details for each entity are stored.
Those details include properties such as size, scale, position, initial action or validation tags.
These values are stored as basic data types, since this branch is accessed by other modules
of the architecture.

3.4.2 Modeler procedure

The modeler explores the parsed entry, queering the inference machine for every term found,
with the exception of individual identifiers or numerical values. The information provided

3.4. CREATING THE MODEL 36

by the inference machine is processed and stored in the corresponding sections of the model,
keeping the linguistic terms for later references or validation procedures during the direct
modification of the model. The modeler also conducts the semantic validation using the KB,
dropping the values, terms or concepts found to be invalid or out of context.

Knowledge Exploitation

The Knowledge Base was define using the Protégé framework, on the OWL Language, and
holds four basic classes: Actors, Environment, Keywords and Objects. Each of these
classes contains all the entities that can be represented, either by the underlying architecture,
or by any external software. For each class there must be at least one individual, named as
the class, and followed by the “_.default” suffix. Individuals are the instantiations of the
classes, and contain all the data accessed by the inference module.

Each individual contains several mandatory properties such as size, position, entity de-
scriptor, concept ranges, and validation tags. The environment must at least contain proper-
ties for size, and descriptor (an embedded description that will represent the environment).
Actor and Objects must contain properties for size, initial position, collision tags, charac-
teristic points, and attributes. Actors also must contain the action to be performed by the
entity if not action is explicitly or implicitly stated. Actors without a default action are set
to idle at the beginning of the scene. Finally, Keywords must include value ranges, property
type, and operation type. The modeler to validate properties uses this information.

Knowledge bases can contain two properties types: Object and Data type. Object prop-
erties express relations among the elements in the KB. This type of property is used by the
modeler to extract information about the values allowed for each property, as well as for
formatting data for the model data structure. They are also used to determine the semantic
validity of statements made in description. Data type contains raw values that define con-
cepts. These values can be: character strings, numerical, date, or Boolean values, which are
stored at the end of the modeling process in the data structure. The Output Generator or
the underlying architecture accesses this information.

The inference machine starts queering the KB for a particular concept. If the information
exists, then it subtracts the information regarding the type of concept, and proceeds to
explore the values stored for that particular entry. If the values are found to be object
type, the inference process continues deeper, subtracting values for objects referenced, and
then exploring the values stored for each of these, until a raw data type value is found.
To exemplify this process, consider the following request: “Chair, color white.”. The
“color” property must be first a valid characteristic for the entity Chair, which is verified
when the inference function subtracts the values for the avatar. Then the inference machine
continues looking for possible values that can be assigned to the property of the entity. If

3.4. CREATING THE MODEL 37

any of the values correspond to the request made, the inference machine then proceeds to
obtain the value assigned to the concept, in this case, “white”. The inference machine then
subtracts the data type value named RGB stored in the individual “white”, and passes the
raw value stored as the character string “1 1 1” to the modeler, which uses it to create a
leave for the entity in the model.

Depending on the concept in process, the inference module conducts conversions between
data types. For example, the individual (instances of a class) for class “left”, a child of
class Keyword, contains the property range, which expresses the values to be used to set the
position of an entity. The value is stored as a character string in the KB, for instance, as
“{30,0,0}”. This value cannot be used directly by the modeler, which requires a float-type
array. Thus, the inference module conducts the conversion from string to array, and returns
it to the modeler.

Since all the modeling process is based on the exploitation of the KB, the data stored
can lead to unexpected or invalid values, from the users’ perspective expected results, so
management of information should be left to a system administrator or an experienced user.

Initial Model

The modeler starts with an empty model, which is updated as the parsed entry is evaluated.
The first element to be updated is the environment. The modeler requests the inference ma-
chine for the default values for the environment where the scenario must be constructed and
which are used to create a temporary leave. This leave is updated first with the instructions
set for the environment, and later with the user’s requests. When the environment has been
fully processed, it is assigned to the model.

The scenario can contain several zones, which have no visual representation, but are still
used for referencing specific areas in the environment as referents for absolute positioning.
These areas can be landmarks, specific delimitations inside the environment, walls, used to
define the limits for landmarks, and doors which indicate the zones that allow the entities
to pass from one zone to another. It is during the initial model generation where these
zones are established, thus gives the rest of the entities the referencing points for proposing
a positioning.

The procedure for the entities differs in one step. When the modeler finds an actor or
object type entity, a search for the corresponding avatar is conducted. If the avatar is already
stored in the model, the process to update the values for the properties is started, using a
copy of the avatar as template for the current entity. If the avatar is not found, the modeler
requests information for that specific entity type, and stores the corresponding avatar in the
model, creates a template copy, updates it with the user’s request, and adds the new actor
to the model.

3.4. CREATING THE MODEL 38

The next step is to gather information about the position of the entities in the scenario,
and the relations between them. The parsed entry is queried to subtract the entities, and
store them in a FIFO list. When a new element is added to the list, the relation with other
entities is explored, and the entities that hold a relation with the current one are checked.
This recursive process allows the modeler to set first those entities which have dependencies
on them, which we called pivots, and later add the elements that make reference to these
pivots.

Any error found during the creation of the model is reported to the Error Manager, which
stores the corresponding error data and provides the necessary actions needed to solve the
error state and continue. If the modeler is set to stop when finding an error, the process is
halted and the error presented to the user. Otherwise, the process continues, and the list of
errors is presented at the end of the modeling procedure.

Properties Values Assignment

As presented in section 3.4.2, an entry in the KB for any entity contains linguistic terms as
well as raw data type terms, and the relations with other elements in the KB. The conversion
works over the non-type terms to convert them to basic raw data values. This conversion is
made so that the final output can be read by the other modules in the architecture, adapted
to their own input languages, or to create output files readable by 3D render machines.

When the Inference Machine is processing and needs a property concept, the KB is queried
for the term, and the raw information is in turn processed. If any of these raw data items is
a linguistic term, it is processed, and the cycle continues until the low-level data types are
obtained.

The values stated for the properties in the description are first validated against the
restrictions set in the KB, then converted in the case of linguistic terms. Any inconsistency
found during this process is reported to the Error Manager, which decides if the property
can be removed or must be set to a default value.

Some of these data items, such as the “furniture” property in environment classes, or
previously generated VWs, could be VEDEL sentences or statements, which are processed
by the Lexical-Semantic parser, and the objects that form part of to the environment, or
some entities, are included. These items do not disrupt the generation process, since they
are processed after the parent entity is validated. In this way, it is not necessary to extend
the positioning list to include these new elements, since the parent acts the pivot.

The raw values obtained from linguistic terms are returned to the model creator, which
assigns them to the entity in creation, and then continues with the following property. Once
all properties have been validated, the modeler adds the entity to the model, and continues
with the model generation task if it is needed.

3.4. CREATING THE MODEL 39

3.4.3 Geometrical Validation

Once all data properties have been processed, the modeler continues with the process for
verifying the positioning of all elements. This is handled by a CSP algorithm, which uses the
collision and positioning tags to solve conflicts or invalid positions.

Each entity in the VE is represented as a set X; = {P;, O;, S;}, where P, = {x;,y;, z: }, O; =
{as, Bi,vi}, Si = {Sx;, Sy, Sz }VX; € X, corresponding to position, orientation and scale for
that entity.

Default position corresponds to the VE’s center, this is, {0,0,0}. Each entity starts with
a position corresponding to the VE center at the first modeling steps. If a specific position is
requested, the model creator sends a query the to Inference Function, which returns a vector
V ={z,y, z}, corresponding to the request. V can be either an absolute position, or a point

in relation with another entity or environment component. In that case, V is calculated as
Rot(V — (X (P) * X(S5)), X(O)), where Rot() is a rotation function on X (O).

The CSP used by the modeler is defined as follows:

e The set of variables X = {X;, Xs,... X, } composed by the entities in the scenario,
X; = {X;U{Co;, Ch;}}, where Co; = {Sp1, Spa, ..., Sp,} representing a set of collision
tags assigned to the entity, where VSp € Co;, Sp; = {Spz;, Spy;, Spz;, Spri}, and Ch; =
{Pey, Pey, ..., Pe,} corresponds to a set of characteristic points for the entity, where
VPe € Ch;, Pe; = {Pex;, Pey;, Pez;}.

e The domains for the variables are defined as follows D(P;) = [—o0, 00, D(0O;) = [0, 27],
D(S; = [0,00], D(Co;) = [—00,00] and D(Ch;) = [—00,0]VX; € X

e The constrains set is formed by the following equations:

(Il — I2)2 + (y1 - y2)2 + (21 - 22)2 - (7’1 + 7’2) S tl (1&)

() om
@)@ e

Thresholds 1, t2 and t3, where {t1, {9, t3} € R, are values set by the system administrator.
These values allow modifying the strictness for the constraints. Each collision tags set is
stored in the KB as a vector, which represents the position and radius for the sphere.

The second set of characteristic points is based on the geometry of the entity, selected
if they help to represent the contour of the entity, or correspond to a particular feature.
These points are used along equations 1.b and 1.c to verify positioning. Both collision and

3.4. CREATING THE MODEL 40

Figure 3.5: Collision Tags

characteristic points set are updated as the entity moves or rotates, using the Rot() function.
The radius of collision tags is also modified when the entity is scaled up or down.

The constraints are satisfied if:

1. Be (X, X;) € X, constraint 1.a is satisfied < C}(Spm, X;(Spn)) < t1,VSp € X (Co); ;.

2. Be X, an entity whose position was calculated as P(X;) = F(V, X;), constraint 1.b is
satisfied < Cy(Pe,, X;) < t2,VPe € X (Ch);.

3. Be X, an entity with a position calculated as P(X;) = F(V, X;) and P(X;)—P(X;) <1,
constraint 1.c is satisfied < C5(Ph, X;) < t3, where Ph C Ch,VPe € X(Ch);, and
0 <dn<1,dn € {dz,dy,dz}.

4. Be X; an entity with a position set as P(X;) = V, constraint l.c is satisfied <
Cs(Pey,, Env(S)) < t3,VPe € X(Ch);, where Env(S) is the environment or area mea-
sures.

A verification is taken previously to search for collisions: if the euclidean distance between
two entities is less or equal to the sum of the diagonal of a box formed by the dimensions of
each entity, collision verification is carried out. This can be defined as follows:

3.4. CREATING THE MODEL 41

Figure 3.6: Characteristic points

Be X;, X; € X, collision verification is executed if

V(P = X5(P))2 + (Xi(B) = X5(P))? <\ Xi(S0)2 + XilS)2 + /X5 (S0)2 + X (5,2
When a collision occurs, there exits two actions:

1. If one of the entities is a pivot, that is to say, it is set to an absolute position, such
as north, south or east, the other entity is moved using a vector which starts at the
center of the pivot entity and is directed towards the center of the target entity, and
with a magnitude equal to the outcome of equation 1.a.

2. If none of the entities is a pivot, either or both entities are moved using a vector which
starts at the center one of the entity and directed towards the center of the other entity,
and with a magnitude equal to half of the outcome of equation 1.a.

The second option necessitates carrying some verification before making any change in
the position of the entity. First, if both entities in collision make reference to the same entity,
an algorithm similar to the one used by the FL-Systems is employed to set the new position
for each entity, making use of equation 1.b to validate these new positions. If the entities are
unrelated, the one with the smaller volume is moved first, since smaller elements are more
likely to be set in valid positions.

In some special cases, the tags assigned to a concept correspond to areas on the entity,
for example, the over keyword (figure 3.8). When the system deals with those cases, the
system administrator can set the number or even the exact characteristic points that should

3.4. CREATING THE MODEL 42

Figure 3.7: Validation volume for equation 1.b

be inside that volume, so the position can be declared valid. The equation 1.c is used in
those cases.

When it is required that the entity be positioned inside another, or in a specific geographic
location, the volume generated by equation 1.c is used to match most or all of the space.
In these cases, the system administrator can also set the characteristic points that must be
contained for the position to be valid (figure 3.9).

Previous modifications on the entities that can represent poses are made, using a spe-
cialized module in the architecture. This module, called the Planning Module, part of the
research presented in [37]. This module uses self-conscious entities which modify the position
of their limbs in order to represent the desired pose. Sitting, running or holding is computed
by means of knowledge which describes the skeleton of the entity, and can be applied to any
entity that holds the same structure. This structure can be modified to represent the lack a
limb, allowing characteristics such as limping. Modifications are carried out through synergy
movements and using the KB to verify the new pose.

After all collisions have been solved, the CSP continues its work to verify if the new
position of the entities is valid. If it verified that the entities current position passed test
using constraint equations 1.b and 1.c. If true, the process ends and the user is informed.
Furthermore, the previous position of the entities is recorded, and the process continues.

3.5. GENERATION OF THE OUTPUTS 43

Figure 3.8: Special case: against

When the CSP falls in a dead end, the recorded positions are used to create a new state, and
continue the constraint solving process. If the dead end cannot be solved, previous model
values are used, moving the pivot entities if needed, and then verifying the new state. The
previous positions are also used to determine if the new positions computed are forming
a cluster, and then compute a new position far away from it, thus preventing falling into
local minima, where apparently there are no solutions, or local maxima, solutions with stiff
constraint values, which does not allow further modifications and lead to dead ends for other
entities. Other methods used to find solutions are: the total re-arrangement of the entities,
rotate an entity that is being referenced by other entity in conflict, or dropping some of the
entities.

If the CSP can not find a solution, an error state is raised, and the modeler can either
stop the process and present the error status to the user, or can drop the violating entities
(to eliminate the conflicts) and continue, presenting an error report at the end of the process.

3.5 Generation of the Outputs

When the Model Creator has finished constructing the model, the next step is to create the
output that will be sent to the underlying architecture. This step is carried out by a MVC
(Model-View Controller), which pre-process a series of templates, and then receives the model
to fill the templates with model values.

3.5. GENERATION OF THE OUTPUTS 44

Figure 3.9: Special case: inside

3.5.1 Model-View Controller

A Model-View Controllers allows easy translation from data structures to file or character
stream outputs. It was chosen to ease communication between the VEE and the rest of
the modules in the architecture. Each module requires a specific portion of the information
stored in the model, and each of the modules has its own input language. It would have

3.6. MODIFYING THE MODEL 45

been difficult if the modeler had created, generated and maintained these inputs by itself.
Instead, the MVC uses a serie of templates to create the outputs, using the KB to fill any
additional request. This method also allows to modify the type, quantity and destination of
each of these outputs.

3.6 Modifying the Model

Once the modeler has shown the users one or several of the possible solutions for the descrip-
tion, direct modifications over the scenario can be made. This is handled through specific
commands written in a syntax similar to VEDEL, but with a few modifications. The basic
structure of a modification commands is:

<command ><entity identifier ><arguments ...>
arguments ::= | <new position >| | [<modifier >

A command corresponds to either position (command M) or properties (command C). The
command is sent to the model, which then takes the necessary actions to ensure its execution.
If the modified model fails any of the construction validations, the model is returned to its
previous state, and the error is reported to the user.

To apply the modifications made to the model, an interface that directly modifies the
model was implemented. This is simply a VEDEL translator; the parser processes. The
translator receives the command that is translated into a VEDEL-compliant sentence. Then,
the parsed command is sent to the Model Creator module, which carries out the same verifi-
cations made for verifying the model during its creation. If the new model is tested as valid,
a new output is created and sent for processing.

Chapter 4

Research Outcome

Abstract

We present the results obtained from two different prototypes, as well as some observations
made during the research.

46

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 47

4.1 Virtual Environment Editor Prototypes

During the course of the research, the methodologies proposed where applied in the imple-
mentation of a VEE, based on DM. This VEE receives a description written on the VEDEL
specification and then proceeds to generate the model, presenting the output, if successful,
in a X3D-compliant viewer.

This prototype was developed in the Java language, using the OWL Protégé API and the
FreeMarker library, for access to KBs and using MVC methods. So far, our focus has been
on modeler functionality, rather than final-user interface. Therefore the GUI for the VEE is
still in early development, but is fully functional (figure 4.1).

The selected MVC was Freemaker [57], version 2.3.15, a “template engine”. This is a
tool that creates a text output based on templates, programmed in Java and with a Java
API. Although FreeMarker has some programming capabilities, it is not a fully programming
language, similar to PHP, but more a data display generator. This first study case uses
X3D-formated templates that generate an output that can be viewed using any VRML97 or
X3D compliant viewer.

Eiler Tools
- Enwironmenl Enl...
=
— Ij Virual Ersronment
|9BECT] .
|| oo
CenterTable Table, front Jaz. color black. cnstal transhucid green, —
: o= lable
Chadr jazChalr, color blue, left Jaz et el
. : & Jtha
hair One, left Table. facing Jaz cober graen
Chair Onve able. facing Jaz color gr o [Do
Chadr Two, laft Gnn, Facing JacChair, calar red
| T
Chanr Threse, rig Two, fac i
" gt Two, facing On o £ Three
|fORIECT] =
=
Compile VE Modilication ...

Resull

m Jaz narth [20)
Procass completed

Execute Commad

Figure 4.1: Virtual Environment Editor GUI

The KB used by this first prototype contains several entries for environments, actors,
objects and keywords, and is an extension of the KB used for the prototype presented in the
previous research ([56]), as presented in figure 4.2. This was a work based on the GeDA-3D
prototype developed by Gutierrez [58].

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 48

= [- [o | e | i

T mnpe Defwwmam |

Sepyhemn i Bty _

Figure 4.2: Previous Prototypes: Battle of the Frogs

én ‘ Ii

Figure 4.3: Previous Prototypes: Earlier version of GeDA-3D

This first use case was a prototype for the GeDA-3D kernel, which used an earlier version
of the modeler to model the initial state of the simulation, which also included the emotional
machine by Razo [36]. This earlier basic modeler allowed to initialize the actors values, as
well as setting it emotional behavior.

A second prototype was developed, in order to test the functionality of the earlier GeDA-
3D kernel, the VEE and the Render Module, a work by Matinez [59]. This prototype sent the
final output for both the kernel and the render module, which presented a limited amount of
entities, letting us prove also some of the expectations for the architecture (figure 4.3).

This earlier prototypes where the basis for the current efforts, from which we obtained
some models presented next.

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 49

4.1.1 GeDA-3D Virtual Environment Editor Prototype

Example 1:

[ENV]
room.
[/ENV]

[ACTOR]
ManSuit, left one, facing Table.
woman, right one, facing Table.
[/ACTOR]

[0OBJECT]
bookshelf, againts NorthWall.
CenterTable Table, color black, cristal translucid gray.
Sofa one, behind Table.
Sofa 2, left Table, facing Table.
Sofa tri, right Table, facing Table.
Chair One, behind (2) ManSuitO, color green, facing ManSuitO.
Chair Two, behind (0) womanO, color red, facing womanO.
Puff seat, front Table, color black.
[/0BJECT]

In this case, we can see that distance is expressed between parentesis ((2) and (0)), and
that both ManSuit and woman entities have an unique identifier automatically, ManSuit0 and
woman.

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 20

Figure 4.4: Example 1: Top-Down view

Figure 4.5: Example 1: General View

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES o1

Example 2:

[ENV]
house.
[/ENV]

[ACTOR]
ManSuit, anywhere Kitchen.

woman, anywhere Garden.
[/ACTOR]

[OBJECT]

CenterTable Table, color black, cristal translucid gray, front (50) bedO.
[/0BJECT]

Here, house was defined before hand, and its definition stored in the KB. The position
for the sink, refrigerator, table, chairs, and trees are set in the KB, as well as the specific
areas, such as Kitchen and Garden.

Figure 4.6: Example 2: House environment

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 52

Figure 4.7: Example 2: House environment

Example 3:

[ENV]
forest.
[/ENV]

[ACTOR]
Knight One, center.
Knight, near One.
Knight, near One.

Knight, near One.
[/ACTOR]

[OBJECT]

[/OBJECT]

In this last example forest contains the necessary indications to position the trees, and
is as well stored in the KB.

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 53

Figure 4.8: Example 3: Detail view

Figure 4.9: Example 3: Top-Down View

4.1.2 DRAMA Project Module DRAMA Sceéene

As part of the collaboration with the Institut de Recherche en Infomatique de Toulouse,
IRIT, we adapted part of the VEE to form part of the DRAMA Project [60].

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES 54

DRAMA is a multimodule project, consisting of DRAMATexte, the reader tool for in-
dexing theatrical texts, highlighting the most important elements for the director, and DRA-
MAScene, a set-in-scene visualization tool, which allows the theater company to work on a
possible view for the play.

Both modules work together in the following way: first, the system receives a theatrical
piece as input, and then analyzes it and tags all the characteristic elements, such as dialogues
or introductions. The user then can add new tags, which will help to make a structured
indexation for the non-explicit elements in the play, such as movement, mood or illumination.
The indexed text is then used to generate an entry for the DRAMAScene module, in which
a DM takes the task of creating a visual representation for the play, and later allowing the
user to modify the proposed visualization.

The DM is based on our own VEE, being the main difference the concepts stored in the
KB. For this project, strong emphasis was made on the context for the model. Context plays
an important role since depending on the type, epoch or style of the play, the model changes
significantly. For example, whereas a modern play involves the actors making direct eye
contact during dialogues, the style of older plays involve the actor addressing the audience
all the time. Technology available in the epoch for the play is also taken into account the,
as well as costumes and props.

In figure 4.10, we present some examples of models obtained through this variation of our
VEE.

4.1. VIRTUAL ENVIRONMENT EDITOR PROTOTYPES

AT T VT TR

Lllh’ iRl lir= il l‘llil.‘l'i TN TR VTR

"au;gl‘]ﬂuﬂ =

E!“hph‘rlﬂﬂ
i A

m\\‘;‘;c RS

L ‘f 1|11T|||‘nm‘illllulltrul[\Ff“,,E”m” e o ‘

|8 II|I"I|II LTLE T IIIJFIHJ]"'II

Figure 4.10: Examples of DRAMAScéne Concepts

95

Chapter 5

Conclusion

Abstract

The last section of this documents presents the conclusion draw form the work and makes a
comparison with other works. Finally, the future assets to be covered are presented.

26

5.1. CONCLUSIONS o7

5.1 Conclusions

Through the study of the available literature from related works, both on DM and in knowl-
edge management, we can point several features that distinguish our research from others.
First, most of the proposed input methods make use on specialized hardware, which can be
intimidating for the non-experienced user, whereas we propose a direct method, which is
also structured to aid in the composition of the scenario, supports both complex and simple
entries. Also, they are based on the use of the mouse, which is a useful tool in 2D environ-
ments, but requires certain learning step to be used on 3D environments. Two researches
propose using declarative methods: WordsEye and CAPS. WordsEyes relay on direct human
language, using complex parsing methods to obtain the semantic tree used to construct the
VW, leading to over-simplistic compositions in order to generate the desired output, although
making it more natural to users, the web nature of the system does not allow to extend the
existing object database, and even when several techniques are used to provide a visual rep-
resentation of unknown concepts, the system does not make any semantic verification for the
congruency of the scenario, so illogical or non-realistic situations can be created. Finally, the
static output does not allow for any further interaction, and the system does not provide a
method for further use of the model, that is, does not let the scenario develop into a scene,
and does not provide interaction between the user and the entities created.

CAPS uses a specialized constraint declaration to construct the scenario, which is not fully
presented in the literature, focusing only on the placement of objects, leaving their physical
characteristic completely out of any modification. Also, the system uses a direct interaction
method with the user: an object being placed highlights the possible surfaces that can be
occupied, making the modeling process mechanic and allowing for non-logical positions, if
that is the users’ desire. It uses direct tags for allowing the placement of objects in cases
such as “over” or “inside”, but restricted to Boolean tags, which makes the positioning of
new objects or incomplete entries difficult. Finally, the modeling process ends when all of
the objects have been placed, without providing any methods for interaction between objects
or with users.

Other projects, such as CityEngine or FL-System, are completely based on using spe-
cialized data or input methods, and provide static visualizations of the scenarios described
by the users’ input. Again, none of these researches deal with post-modeling tasks such as
entity interaction, environment development, or the user’s external input.

Our research not only focuses on the generation of a VW, that is, the positioning of
elements inside the VW, but it also provides grounds for modifying most of the aspects for
the scenario and the entities, either as characteristics visible through graphic representation,
as well as implicit properties that can modify the entity behavior during the simulation run,
in the form of a context associated with the model.

5.1. CONCLUSIONS o8

We do not only crate the visual representation for the users’ input. We also verify its con-
gruency, and adapt the non-explicit values, based on a semantic-base (our main contribution
of our proposal KB), to find conflicts, solve them, and only after this process has finished,
then proceed with the visualization and animation of the world envisioned in the users’ mind.
None of the researches reviewed during the first phases deal with internal representation for
the entities, or the rules of the worlds. The conjunction of these two parts, the visual output
and the implicit representation for both the world and the entities, can work to create the
simulation of a complex VW.

Our research showed, as in the figures presented in the previous sub-chapter, that a
knowledge-based modeler could successfully construct a model that represents a VW, begin-
ning with the description written on a near-natural language. This model can be integrated
into the KB to be used further in the construction of more complex worlds, which can be
assigned with new or complementary rules. Also, the rules dictating the construction and
evolution of the VW can be modified according to the users’ needs, by adjusting some val-
ues in the KB, or modifying the output-generation templates. This allows recreating almost
any possible environment, with the only restriction that the elements, setting, and rules for
that particular representation exist in both the KB and a 3D model database, and also, by
stating the necessary information in the KB, the modeler can retrieve and even generate the
necessary data to allow the evolution of the VE. In fact, that data must include the rules of
the world, the entity behaviors, the relationship among entities or the values for the entity
internal properties.

29

CONCLUSIONS

5.1.

21N}
N N N Iopuay (¢ SwR)SAG-T Jewrwern) dg, | -09)IypIy JuRISU[
soge SUIOISAG rjep [eoryders
A N N | W[polopudy | - POPUSIXH | -008 purR [RIIISIIRIS autsuy] A1)
poseg wa)SAG-T Ieuwt
HOpUaY /Tomal A\ N N L6-TINHA | 991 1X03U0)) | -trelr) pozifenodg Wo)SAG-T
A A A 0puoy d€ | Posed-19s() 10D 2mdes HOI'TV
sotsAyd
-opnesdq
‘sonbrutpa, Ieur
A A N Ppuy d€ SHURURG | el pozieadg SdVDO
qT+
AT Ups OV + (dSD)
SO AlA /N PUN ¢ | PATIRIRDO(syndut apdnmy SNOINAA
(spoyemt
IopuaI ordnmiy) ogendue| rein
I99Je OqISTA N N o8ewI O19R)S | OATIRIR[IS(] | -JRU Ul UOIdLIOSO(] OAGISPIOAA
poseq pased DAIN (dsD) uory
TOPUY /10MITA A A | mdino ordympy | eanerepsq | -duoseq THAIA HAA dE-VAPD
UOIYRSIARN] s[oQ7, SElIEhIN odAT,
JUOTIUOIIAUS] | SUINPH | SoYed1) odAT, yndinQ SUIPPOIN odA T, yndug 100lo1g

‘uosrreduwio)) saanjesaq jo9foag

5.1. CONCLUSIONS 60

5.1.1 Future Work

Several aspects must be explored in the interest of extending the reach of this research. For
instance, to extend, updating and upgrading the databases, both the KB and the 3D object
database must be a main objective for future researches, including a method for finding both
characteristic points and the collision tags.

The other important aspect is the fully integration of the VEE with the rest of the GeDA-
3D architecture, including updating the modeling process to support future movement and
perception sub-modules inside the agents in charge of providing environmental self-evolution,
as well as interacting with the parser module and agent community during the animation
process.Finally, several arrangements can be made to the GUI for the VEE, to provide the
user with a list of all the possible environments and entities available, as well as their must
representative properties.

it

Animated
¥ | AD-canvas
1

Congruency
COB . analyeer sslver

Adapive behavior

Figure 5.1: GEDA-3D Architecture

This task would help the research by:
e Allowing to design and create new use cases, giving the opportunity to verify novel
concepts and the reach of the module.

e Ease the resources needed to create the model, increasing the efficiency of the modeling
tool.

5.1. CONCLUSIONS 61

e Provide the necessary methods to explore VE self-evolution, and test the context-
generation capabilities.

e Cover all possible aspects of DM, providing support for unspecified request and regional
or local linguistic accidents.

e Present a refined GUI to final users, easing the interaction and providing end-user ori-
ented features such as VE saving, on-the-fly rendering, on-line interaction and sharing,
and end-user technical support.

Being part of the GeDA-3D project, this research is included as a module in the general
architecture. This module, named the Virtual Editor, also includes a Scene Editor and the
Context Descriptor. The module sends messages through the kernel during modeling time to
several other modules (Planing Module, Agents Module), and sends custom-formated outputs
to the rest of the architecture when the model has been approved by the user.

Appendix A

Published Works

Conferences

Jaime Zaragoza, Félix Ramos, Véronique Gaildrat, Generacion de Ambientes Virtuales Medi-
ante Modelado Declarativo Basado en conocimiento. Quinta Semana Nacional de Ingenieria
Electrénica (SENIE 2009). Centro Universitario de la Ciénega, Universidad de Guadalajara,
México.7-9 Octubre 2009.

Virtual World Creation and Visualization by Knowledge Based Modeling. Jaime Zaragoza,
Alma Veroénica Martinez, Félix Ramos, Mario Siller and Véronique Gaildrat. 5th Interna-
tional North American Conference on Intelligent Games and Simulation, August 26-28 2009.
Eurosis-ETI, Atlanta, GA, USA, pages 5-9. 2009.

Creation of Virtual Worlds through A Knowledge-Assisted Declarative Modeling. Jaime
Zaragoza, Félix Ramos and Véronique Gaildrat. 5th International North American Confer-
ence on Intelligent Games and Simulation, August 26-28 2009. Eurosis-ETI, Atlanta, GA,
USA, pages 20-24. 2009.

Jaime Zaragoza, Félix Ramos, Véronique Gaildrat. Modeling of Vir-tual Environments
Through Declarative Modeling Assisted by Knowledge, Workshop on Semantic User Descrip-
tions and their influence on 3D graphics and VR. VRLab, EPFL, Lausanne, Switzerland,
November 13, 2008.

J. A. Zaragoza Rios, H. R. Orozco and V. Gaildrat, Modelado Declarativo de Ambientes
Virtuales Basado en Explotacién del Conocimiento. Cuarta Semana Nacional de Ingenieria
Electrénica (SENIE 2008). Universidad Panamericana, Aguascalientes, México, 1-3 Octubre
2008.

H. R. Orozco Aguirre, J. A. Zaragoza Rios and D. Thalmann, Animation of Autonomous
Avatars over the GeDA-3D Agent Architecture. Fourth National Week of Electronic Engi-
neering (SENIE 2008). Panamerican University, Aguascalientes, Mexico, October 1-3, 2008.

62

APPENDIX A. PUBLISHED WORKS 63

Book Chapters

J. Zaragoza, F. Ramos, H. R. Orozco and V. Gaildrat, Creation of Virtual Environments
Through Knowledge-Aid Declarative Modeling. Frontiers in Artificial Intelligence and Ap-
plications (Advances in Technological Applications of Logical and Intelligent Systems). 10S
Press, Washington, DC, Volume 186, 144-132, 2009.

H. R. Orozco, F. Ramos, J. Zaragoza and D. Thalmann, Avatars Animation Using Rein-
forcement Learning in 3D Distributed Dynamic Virtual Environments. Frontiers in Artificial
Intelligence and Applications (Advances in Technological Applications of Logical and Intel-
ligent Systems). IOS Press, Washington, DC, Volume 186, 67-84, 2009.

Journals

J.O. Gutiérrez-Garcia, J.A. Zaragoza-Rios, F.F. Ramos-Corchado, J.-L.. Koning, M.A. Ramos-
Corchado, and M. Siller. “Integration of Agricultural Information Systems Assited by Knowl-
edge”. Currently submitted to International Journal of Control, Automation, and Systems.
- Selected as one of CTTA 09 Best Papers - acceptance recommended.

GENERACION DE AMBIENTES VIRTUALES MEDIANTE MODELADO DECLARATIVO BASADO EN
CONOCIMIENTO

Jaime Zaragoza, Félix Ramos, Véronique Gaildrat®

Grupo de Sistemas Distribuidos
Centro de Investigacion y de Estudios Avanzados del Politécnico Nacional, Unidad Guadalajara
Av. Cientifica 1145 , colonia el Bajio, Zapopan , 45015, Jalisco, México.
Tel. 3337773600, correo electrénico: {jzaragoz,framos} @gdl.cinvestav.mx
*VORTEX Groupe
Institut de Recherche in Informatique de Toulouse
Université Paul Sabatier, 118 Route de Narbonne, F-31062, Toulouse CEDEX 9, Francia
Tel. 33561556765, correo electrénico: veronique.gaildrat@irit.fr

RESUMEN

Crear mundos virtuales usando herramientas
dedicadas es una tarea que requiere de tiempo y
recursos en cantidades variadas. Aun los usuarios
experimentados pueden encontrar dificil el crear
representaciones virtuales para diversas
necesidades, por ejemplo, simulaciones del mundo
real, recreacion de mundos fantasticos o antiguos,
educacion, entre otros. A través del método del
modelado declarativo un usuario puede crear un
escenario virtual al expresar algunas propiedades
deseadas para el ambiente y las entidades en él.
Este articulo presenta una aproximacion novedosa
para el modelado declarativo. La principal
contribucidon es el uso de conocimiento previo
sobre el ambiente y las entidades para asistir el
proceso de la creacion y validaciéon del mundo
virtual creado de ésta forma. Este conocimiento
incluye la informacién necesaria para permitir la
evolucion del mundo.

Palabras clave: Modelado declarativo, realidad
virtual, explotacion del conocimiento.

I. INTRODUCCION

La Realidad Virtual se ha utilizado como método
para simular entidades en el mundo real, de
diferentes campos de la experiencia humana, como
medicina, construccidn, entretenimiento, y muchos
otros. Esta tecnologia permite recrear casi
cualquier tipo de escenario o mundo, y puede

representar casi cualquier tipo de escena o
situacion. Se ha propuesto diferentes métodos para
disefia y animar esos mundos virtuales.

Sin embargo, la mayoria de las veces esos mundos
son creados un equipo multidisciplinario completo,
compuesto por muchos artistas, modeladores e
ingenieros, siendo necesarias desde algunas
semanas hasta aflos para completar una
visualizacion exitosa del ambiente deseado. Esto
incluye el uso de herramientas especializadas, las
cuales necesitan entretenimiento especial y muchas
horas de practica para obtener un resultado de
apariencia profesional. La problematica de crear
mundo virtuales se puede descomponer en dos
partes: primero es la creacion del ambiente, el
segundo, describir la escena, es decir, como los
personajes deben de evolucionar en el ambiente.
En este trabajo tratamos con el primero de esos
subproblemas, al tiempo que se ha conducido
trabajo en el segundo subproblema [1].

Un método que permita la creacidon de escenarios
virtuales tanto simples como complejos es un tema
actual de investigacion. El Modelado Declarativo
s una aproximacion a éste objetivo.

En éste articulo entendemos Modelado Declarativo
como una metodologia que permite crear un
escenario virtual por medio de una descripcion,
escrita en un lenguaje lo mas cercano al natural,
donde se indica el tipo de ambiente, las entidades
que lo poblardn, y como estaran distribuidas esas
entidades. El Modelador Declarativo debe tomar

como entrada la descripcion, y encontrar al menos
una solucion que satisfaga los deseos del usuario.
La principal deferencia de nuestro trabajo con
otros es el uso de conocimiento sobre las
propiedades de los objetos y otras entidades para
auxiliar el proceso de validacion de las posibles
soluciones, y que el modelo resultante puede ser
utilizado para manejar la evolucién del escenario.
Este modelo puede ser enviado a cualquier
arquitectura subyacente para su visualizacién y
animacidn, ya que toda informacion necesaria es
provista con el modelo. La arquitectura también
puede conducir la simulacion del mundo virtual,
pues también se incluye en el modelo las reglas
para el ambiente y el comportamiento de las
entidades. Este trabajo es parte del proyecto
GeDA-3D [2], una arquitectura multi-agente
distribuida en 3D. El objetivo de GeDA-3D es
ofrecer una herramienta completa a cualquier
usuario con la necesidad de simular un
comportamiento dado.

II. TRABAJO RELACIONADO

WordsEyes [3], desarrollado en los laboratorios
AT&T por Bob Coyne y Richard Asproad, es el
trabajo mas cercano al nuestro. WordsEyes es un
convertidor automatico texto-a-escena, el cual
utiliza marcadores de parte del discurso vy
analizadores estadisticos para obtener una
descomposicion jerarquica de las oraciones
provistas por el usuario. El sistema utiliza
diferentes herramientas para asignar descriptores,
representaciones graficas de bajo nivel que
corresponden con cada concepto en la oracion, y
que proveen los caracteristicas fisicas a los
elementos en el escenario. Se utiliza cinematica
inversa para conseguir las poses de las entidades en
la escena, y se emplean algunos métodos para
resolver ciertas abstracciones, como textualizacion,
caracterizacion o personificacion. El sistema ésta
basada en el Internet, de manera que el usuario
solo tiene que entrar al sitio Web del proyecto,
escribir una descripcién corta, y enviarla para
obtener una vista estatica del escenario creado.

El proyecto DEM’ONS [4] es un sistema
multimodal compuesto por una interfaz modal y un
modelador en 3D. La interfaz modal usa diferentes

métodos de entrada, desde raton hasta dispositivos
hapticos, permitiendo al usuario crear el escenario
de una manera intuitiva. Los mddulos en cargo del
analisis sintactico y las interfaces dedicadas
manejan las entradas, las cuales se traducen en
eventos normalizados. El modelo resultante es
validado a través de ORANOS [5], un resolvedor
de restricciones diseflado para permitir
expansibilidad en aplicaciones de modelado
declarativo. El sistema se basa en una Interfaz
Gréfica de Usuario o GUI, escrita en el Open
Inventor Toolkit [6], y permite interacciones
simples, como modificar los elementos no
dindmicos presentados en el escenario.

CAPS [7] es un sistema basado en restricciones,
orientado a resolver la disposiciéon de objetos
dentro de un escenario. El sistema permite el
modelado de escenarios grandes y complejos,
usando una entrada consistente de restricciones
intuitivas de posicionamiento que pueden provenir
de distintos métodos de entrada, como texto escrito
o dispositivos hapticos. Puede manejar varios
objetos a la vez, usando seudo-fisicas para asegura
la estabilidad de la posicidén, y emplea conceptos
tales como fragilidad o interaccion para asegurar la
validez de la misma. Permite interacciones y esta
orientado hacia la manipulacién de escenarios,
pero no provee método alguno para la auto-
evolucion de la escena.

1II. MODELADO DECLARATIVO

El modelado declarativo define un proceso
recursivo necesario para crear una solucion a las
propiedades declaradas por el usuario. Aplicado a
la creacibn de un escenario, el modelado
declarativo es un proceso continuo en el cual
retroalimentacion proveniente de soluciones
previamente obtenidas es usada recursivamente,
hasta que el usuario esté satisfecho con la solucion
obtenida. El método esta compuesto por tres fases:
Descripcion, Generacion y Vista [8].

Reconocimientos:

Esta investigacion es parcialmente apoyada por el proyecto
CoECyT-Jal No. 2008-05-97094, mientras el autor J.A.
Zaragoza agradece el apoyo de lo beca CONACYT no.
190965.

En la fase de generacion, el sistema recibe la
descripcidn del usuario, escrita en un lenguaje de
definicion disefiado para la aplicacion de
modelado. Este lenguaje puede venir en una
variedad de formas, ya sea simples entradas de
texto a seflales provenientes de dispositivos
especializados o procesador del habla. El sistema
valida la sintaxis de la entrada, la analiza, y crea
una salida en un formato adecuado para el sistema,
y entonces transfiere la informacion obtenida al
siguiente paso. A continuacion se procede a crear
el modelo, normalmente iniciando con valores por
defecto para las entidades en el mismo, y
procediendo a asignar los valores para las
propiedades usando distintos métodos para
asegurar la consistencia de la semantica, la légica y
la posicion de las entidades. Uno de los métodos
mas comunes es resolver un Problema de
Satisfaccion de Restricciones o CSP.

Podemos definir un CSP como un conjunto de
variables X = {X; , X, . .. Xy}, un dominio D el
cual indica los valores posibles para variable en X,
y un conjunto de restricciones C = {Cy, C,, . .. Cy}
el cual especifica un subconjunto de variables y los
valores posibles para cada una de ellas.

Una vez que cada variable ha sido asignada con un
valor de su dominio, de tal forma que no se viola
ninguna restriccion, se ha alcanzado una solucion.
Para un CSP dado puede existir mas de una
solucion, de tal manera que se puede disefiar un
algoritmo CSP de tal manera que pueda localizar
varias soluciones [9].

El paso de modelado puede crear varios modelos y
entonces proceder a validarlos, o puede iniciar con
uno y entonces resolver cualquier conflicto hasta
que se alcance una solucion. Este proceso
involucra métodos de rastreo y avance,
permitiendo al sistema descubrir si ha alcanzado
un minimo o maximo local. En el primer caso,
pueden existir algunas restricciones que en
apariencia no pueden ser resueltas, pero al cambiar
algunas de las propiedades de las entidades se
puede llegar a un nuevo arreglo que las satisfaga
todas. En el segundo caso, todas las restricciones
se cumplen, pero la solucidn es rigida y no permite
ninguna modificacion sin romper alguna
restriccion

Pariial
Solutions

D1 D2 D3 D4 o4 03 O O1 Dutlook

17
\

Generatian
Process

Figura 1. Proceso del Modelado Declarativo.

Nuevamente, algunos cambios pueden llevar a un
nuevo conjunto de soluciones con valores mas
flexibles. Este paso puede incluir la participacion
del usuario, presentado las soluciones obtenidas y
permitiendo al usuario decidir si alguna cumple
con la imagen mental empleada para crear la
descripcion.

La fase de vista consiste en presentar al usuario las
soluciones obtenidas. El modelo puede entonces
ser modificado para acercarlo a la idea del usuario
al iniciar el proceso, pero siempre dentro de las
restricciones establecidas en el CSP. El usuario
puede rechazar algunas o todas las soluciones
encontradas, indicando asi al sistema cual espacio
de soluciones debe ser explorado para localizar
futuras soluciones.

1IV. UN MODELADOR DE AMBIENTES VIRTUALES
BASADO EN CONOCIMIENTO

Nuestra propuesta tiene una caracteristica
principal, la cual no estd completamente
considerada en otros trabajos. Ya que el usuario
expresa que es lo que debe ser posicionado en el
escenario virtual, el sistema posee las indicaciones
para las caracteristicas y posicion de cada
elemento, las cuales pueden aplicadas dentro de
ciertos rangos difusos. Por ejemplo, aun cuando la
posicion exacta de los elementos puede variar en la
perspectiva de cada usuario, existe la certeza si es
una referencia absoluta o relativa entre los
elementos: “derecha” serd siempre un area
especifica definida en relacion a una entidad en

referencia, sin importar su orientacion, tamafio o
entidad en referencia, y puede ser definida dentro
de una estructura que provee los parametros para
obtener esa area. Esa estructura de datos pude
presentarse en la forma de una base de datos. Sin
embargo, la informacién necesaria debe ser
provisto en combinacion de las relaciones entre los
conceptos en evaluacion, por lo cual una solucion
mejor adaptada son las bases de conocimiento. Ya
que una base de conocimientos no solo contiene la
informacion de los elementos en un dominio dado,
sino también las relaciones entre conceptos,
permite derivar nuevo conocimiento de la
informacién ya presente, expandiendo el alcance
de la base de conocimientos.

La accion de extrapolar nueva informacion de
conocimiento actual es llamada inferencia, y es
una caracteristica util para validar conceptos y
propiedades, ya que el usuario puede comenzar
expresando caracteristicas simples, las cuales
pueden ser combinadas para inferir conocimiento
complejo.

Con esta idea, diseflamos un modelador declarativo
que permite la creacion de mundos virtuales a
partir de una simple descripcidn en texto, usando la
explotacion de bases de conocimiento como base
para el proceso de modelado. El modelador estd
formado por cinco moédulos, como se muestra en la
figura 2.

V. ANALISIS LEXICO SEMANTICO

El Analizador Léxico-Sintactico recibe la
descripcion escrita en un lenguaje definido a la
medida, Illamado VEDEL o Lenguaje para
Descripcion de Ambientes Virtuales [10]. VEDEL
es parecido al lenguaje natural, completamente
orientado a conducir el proceso de descripcion.
Provee una ayuda natural a los usuarios con su
estructura para organizar las ideas al describir
mundos virtuales. También permite crear
escenarios de manera incremental, al afiadir o
modificar elementos especificos para extender la
descripciéon. Una descripcion en VEDEL se
compone de tres secciones, Ambiente, Actores y
Objetos, delimitados por etiquetas de seccion.
Cada una de esas secciones estd formada por

oraciones compuestas por declaraciones separadas
por comas. Cada declaracion corresponde a una
propiedad para le entidad que esta siendo descrita,
y puede ser declaradas en cualquier orden, con una
unica restriccidon, la primera declaracion debe
corresponder al tipo de entidad, incluyendo un
identificador opcional. Cada oracion debe terminar
con un punto (*.”).

Tnput: VEDEL | “dmermion | Lexical-Syntactic
Parser

Model Creator

Inference
; CSP Algorithm
Function rawr] Sr—
L.
i i k
T T—
Qutput
e, Generation
Enocwledge
Base wermgueted fatputus -
k.
QOutputs

Figura 2. Arquitectura del Modelador

Las razones para definir un lenguaje de interaccion
como un subconjunto del lenguaje natural son:
proveer un método estructurado simple y amigable
para escribir y formatear la descripcidn, asi como
evitar la necesidad de métodos logicos difusos y
analizadores estadisticos requeridos en el analisis y
validaciéon del lenguaje humano diario. La
estructura del lenguaje permite mantener un
balance en el nimero de restricciones, evitando
descripciones sobre o bajo-restringidas.

El analizador Léxico-Sintactico es basicamente
una maquina de estados que extrae elementos de la
descripcidn, y los utiliza para formar una estructura
de datos jerarquica que representa la informacion
expresada en la descripcion. La jerarquia esta
organizada con los tipos de entidad como las ramas
superiores 'y sus propiedades como hojas,
permitiendo una extraccion de los datos por el
modulo de analisis Léxico-Sintactico, el cual solo
verifica la composicion correcta de la descripcion
y busca caracteres no permitidos, dejando la
validacion semantica para el modulo de Creacion
del Modelo.

[ENV]
house, night.

[/ENV]

[ACTOR]

man Antony, big, old, bald, sit BigCouch.
woman Brittany, voung, near CenterTable.
dog Casper, sleep, front FirePlace.
[/ACTOR]

[OBJECT]

Couch BigCouch,
facing =ast.
CoffeTakle CenterTable,
LivingRoom.

[/OBJECT]

Figura 3. Ejemplo de VEDEL.

against westWall, big,

center

VI. CREACION DEL MODELO

El Creador del Modelo recibe la entrada analizada
por el Analizador Léxico-Semantico, y procede a
generar el modelo.

El modelador trabaja en pasos incrementales,
iniciando con un modelo basico instanciado con
valores por defecto para los elementos del
ambiente virtual, asignando posteriormente los
valores solicitados por el usuario.

La creacion del modelo termina cuando todas las
propiedades han sido instanciadas y éstas no violan
ninguna restriccion.

Primero, el modelador obtiene toda la informacion
sobre el ambiente. Cualquier peticion por
informacién es manejada a través del componente
Funcién de Inferencia, el cual accede directamente
a la base de conocimientos. La funciéon de
inferencia es un singleton, y es usado a través de
todo el proceso de obtencion de informacion,
formateando la informacién para la tarea de
modelado y validando las peticiones hechas en la
descripcion. La informacion reunida desde la base
de conocimientos sobre el ambiente es usada para
construir las reglas del mundo virtual y asignar
valores a sus propiedades. Si el ambiente posee
alguna construccion o elemento especial, el
modelador construye las entradas necesarias en el
modelo para satisfacer esas indicaciones. Zonas
especificas como paredes, puertas o dareas, o

elementos propios del ambiente (amueblado,
vegetacion) son generados de ésta manera. Las
zonas especificas corresponden a informacidn
implicita sobre el ambiente y no tienen una
representacion visual explicita, mientras que los
elementos propios del ambiente deben ser
instanciados, colocados y representados como
elementos individuales en el ambiente.

Una vez que el ambiente ha sido creado, el
modelador continia con las entidades que lo
poblaran. Cada una de esas entidades es creada
usando representaciones bdasicas instanciadas con
valores por defecto almacenados en la base de
conocimientos. Tales presentaciones son llamadas
Avatares. Cuando se le solicita que cree una
entidad en particular, primero verifica si el avatar
correspondiente existe. En caso contrario, se hace
la solicitud a la base de conocimientos para obtener
la informacidn de la entidad, y el avatar se afiade al
modelo. El avatar es entonces instanciado con los
valores de la entidad en proceso. Cada peticion es
validada primero a través del avatar, para verificar
si la propiedad es valida para la entidad.
Posteriormente, se verifica a través de la funcion
de inferencia si los valores asignados son correctos
o corresponden a la propiedad en proceso.
Cualquier conversion es conducida a través de la
base de conocimientos. Por ejemplo, si el usuario
solicita una silla coloreada en rojo, el modelador
primero verifica que “silla” posea la propiedad
“color”. Si la propiedad es validad, se procede a
verificar que si uno de los posibles valores para la
propiedad “color” de “silla” es “rojo”. Si todo
resulta positivo, la funcion de inferencia retorna la
informacién correspondiente al color “rojo” en el
formato RGB.

POSICIONADO LAS ENTIDADES

Una vez que todas las entidades han sido creadas y
sus propiedades instanciadas con los valores
especificados en la descripcion, el modelador
procede a posicionar cada entidad en la posicion
correcta, de acuerdo a las declaraciones hechas en
la descripcion. Las entidades son colocadas
primero en una posicion por defecto, almacenada
en la base de conocimientos. El proceso para
obtener los pardmetros para posicionar la entidad

es similar al usado para obtener los valores de las
propiedades. La declaracion es validada
directamente a través de la funcién de inferencia, la
cual recibe la informacion correspondiente a la
posicién actual de la entidad, su tamafio y su
orientacidon, y, en el caso de posicionamiento
relativo, también se envia los valores de la entidad
en referencia. Los parametros correspondientes al
concepto son obtenidos de la base de
conocimientos y posteriormente instanciados con
los valores de la entidad o entidades. Esos nuevos
parametros son enviados al modelador, el cual los
asigna a las propiedades de la entidad. La entidad
en referencia puede ser cualquier entidad en el
ambiente, ya sea el ambiente mismo o una zona
especifica. Los parametros del concepto pueden ser
definidos con parametros difusos, de manera que el
proceso de modelado presente cierta aleatoriedad,
para permitir la generacion de diferentes modelos
durante el proceso.

Ya que cada entidad ha sido posicionada, el
modelador envia el estado actual del modelo al
componente CSP. Este componente verifica la
posicion de cada entidad, esto es, que no existan
colisiones entre las entidades y que la posicion de
cada una de ellas corresponda a las declaraciones
hechas en la descripcion. Para cumplir esas tareas,
cada entidad posee una seria de marcas de colision,
asi como marcas de puntos caracteristicos. Esas
maracas especializadas estan almacenadas en la
base de conocimientos, y son instanciadas cuando
la entidad es creada. Cuando el modelador cambia
la posicidn de la entidad, esas marcas también son
actualizadas.

Las marcas de colision estan definidas como una
seria de esferas que envuelven toda la geometria de
la entidad (figura 4), y son usadas como la
restriccion principal a ser satisfecha por el
algoritmo CSP. Para ejecutar la verificacion, el
sistema primero verifica si la distancia euclidiana
entre cualquier para de entidades es menor que la
diagonal mayor correspondiente a una caja
formada por las medidas de la entidad. Si esto es
verdadero, se evalua la ecuacidn de distancia entre
dos esferas para cada par posible de marcas de
colision entre las dos entidades. Esta ecuacion debe
ser satisfecha para cualquier par de marcas de
colision entre entidades en conflicto, C; = (x; , y1 ,

z1,11)yC=X2, V2, 22, 12), de manera que la
relacion siguiente se mantenga:

-+ -2 +@—zn) - —n)>=t

(1

Si cualquier par falla ésta evaluacion, esto es, el
resultado de la ecuacion (1) es menos que un rango
(t € M, 1 >t > 0) establecido por el administrador
del sistema, una colision ha sido detectada y el
modelo debe ser modificado. Para realizar los
cambios en la posicion de las entidades, primero se
realizan algunas verificaciones: si una de las
entidades es un “pivote” (esto es, estd asignada a
una posicion absoluta, como norte, sur, o este), el
tamafio de las entidades, y la relacion entre ellas.

Figura 4. Marcadores de colision.

Las entidades pivote son modificadas al final, y
solo si el modelo requiere de tales cambios para
obtener una solucion.

Enseguida, las relaciones entre elementos son
exploradas, ya que algunos de los conceptos de
posicionamiento requieren que dos entidades
entren en contacto, tales como “contra”, “dentro” o
“sobre”, de manera que en esos casos la colision
sera desechada y otras validaciones tendran lugar.
En otros casos, las entidades que hagan referencia
a otra seran movidas primero. Si la configuracion
del modelo no puede ser validada, la entidad en
referencia sera entonces movida. En otros casos,
ambas entidades hacen referencia a una tercera
entidad, en cuyo caso el algoritmo CSP hace uso
de una técnica similar a la usada en los Sistemas-L
[11] para posicionar ambas entidades en una nueva

locacion que cumpla con las declaraciones hechas
en la descripcion mientras se resuelven el
conflicto. Finalmente, el tamafio es considerado
para decir cual entidad debe ser movida primero.
Las entidades mas pequefias tienen mejor
probabilidad de ser colocadas en una posicion
valida que los elementos grandes, por lo cual el
sistema movera primero las entidades mas
pequetias en conflicto.

La verificacion de colisiones es ejecutada hasta
que no existen mas conflictos. Si el modelo actual
cae en un minimo local, o no se puede encontrar
una solucidén, el sistema restaura una solucidn
parcial previa que contenga menos conflictos y
procede a generar nuevas soluciones. Si la solucion
restaurada es el modelo inicial enviado por el
creador de modelo, el sistema verifica si todas las
entidades posibles han sido reasignadas, y reinicia
el proceso. Si ya no existen mas entidades a mover,
el sistema informa que no se puede encontrar una
solucion.

Para posicionar exitosamente una entidad, la
siguiente validacion debe ser satisfecha: al menos
uno de sus puntos caracteristicos debe estar dentro
del volumen de un elipsoide o un paraboloide
instanciadas con los parametros correspondientes a
la informacién de la entidad en referencia y a los
valores del concepto asociado. Esto es, para cada
entidad en el ambiente, al menos uno de sus puntos
caracteristicos C = (X, y, z) debe estar en la
superficie o dentro de un volumen de validacion

E = (dx, dy, dz), para elipsoides (3), o P = (p, q),
para una paraboloide (2), instanciadas con los
valores de la entidad en referencia. Podemos
representar esto como:

(fg) +(EE> — 2 <=0 @)
P q

F 2 yf z 2 . o
(E)+(£)+(—Z) 1<=10 (3)

Los pardmetros para ambas ecuaciones estan
almacenados en la base de conocimientos, como
parte del concepto de posicionamiento o como
parte de la entidad en referencia, en cuyo caso
también se pueden incluir la cantidad de puntos
caracteristicos que necesitan estar dentro del
volumen para validar la posicion, o incluso la lista

de puntos que deben ser evaluados. Las posiciones
relativas son validadas siempre a través de
volumenes de paraboloide, para los cuales los
parametros p y q corresponden al tamafio de la
entidad en referencia, y z es un valor definido por
el administrador del sistema.

Relaciones espaciales tales como “contra” o
“sobre” son verificados usando volimenes
elipsoidales, para los cuales unos de sus
parametros es menos a 1, y localizados sobre las
superficies de las entidades. Para posiciones que
requieren un volumen dentro de una entidad, o una
posicion en un 4area dada tal como zonas
especificas, el volumen elipsoidal es instanciado
con los valores de la entidad o la zona.

Figura 5. Puntos caracteristicos y volimenes de
posicionamiento

Si la validacion de la posicion de una entidad falla,
se calcula una nueva posicion. Antes de asignar
ésta nueva posicion, se revisa una lista de
posiciones previas para la entidad en evaluacion. Si
el vecindario de esas previas posiciones forma un
grupo compacto, entonces una nueva posicion
fuera de ese grupo es asignada, y la validacién en
conducida nuevamente. Si la nueva posicidon no es
valida, o no puede ser asignada fuera del grupo, el
sistema no puede encontrar una nueva posicion
para la entidad y regresa a un estado del modelo
previo. Al igual que con la verificacion de
colisiones, si el modelo previo es el estado inicial,
la descripcidn solicitada no puede ser resuelta.
Cada entidad en el modelo almacena la lista de
elementos con los cuales comparte alguna relacion.
De ésta manera, cada entidad puede seguir los
movimientos hechos al modelo, y modificar sus
propios parametros en consecuencia, por ejemplo,
si una entidad debe orientar en relacién a otra, y la
entidad en referencia es movida, la primera entidad
puede ajustar sus parametros de orientacion para
ajustarse a la nueva posicion establecida para la
entidad en referencia. Lo mismo aplica para
posiciones relativas. Ya que cada entidad ha
pasado ambas validaciones, el modelo es enviado
al componente final, el Generador de Salida.

GENERANDO LAS SALIDAS

El componente de Generacidon de Salida recibe el
modelo final. Este componente utiliza la
metodologia Controlador Vista-Modelo para
generar las estructuras de datos de salida y los
archivos necesarios para que la arquitectura
subyacente pueda representar las acciones
necesarias para crear la visualizacion del ambiente
virtual, y conducir el proceso que activard la
simulacién. Estas salidas utilizan plantillas que
reciben la informacidon del modelo, y a través del
MCYV son instanciadas con los valores obtenidos a
través del proceso de modelado. Este método
permite la facil modificacion de los pardmetros de
salida, de manera que los usuarios pueden agregar
o modificar la informaciéon enviada a la
arquitectura subyacente, que puede ser también un
visualizador 3D de cualquier tipo, en tanto las
plantillas mantengan los estandares utilizados para

la visualizacién en 3D. La cantidad de salidas
puede ser establecida en la base de conocimientos.

VII. TRABAJO PRESENTE

Actualmente contamos con un prototipo del
modelador en el lenguaje Java, esto con la
finalidad de proporcionarle caracteristicas multi-
plataforma. La base de conocimientos ha sido
definida usando el sistema Protégé y fue creada
utilizando el estandar OWL [12], seleccionada
debido a su expansibilidad sobre la Internet. A
continuaciéon se muestran algunos ejemplos
obtenidos usando la version madas reciente del
modelador, para cuya visualizacion se utiliza el
estandar X3D y un visualizador basado en X3D.

En el primer ejemplo, figura 6, “LivingRoom” es
un concepto almacenado en la base de
conocimientos que también establece el amueblado
del escenario y la posicion de cada elemento. El
segundo ejemplo, figura 7, muestra diferentes
modelos de casa obtenidos de una sola descripcion.
“House” establece el ambiente completo,
incluyendo la mayoria del amueblado y las areas
en referencias para colocar a los actores. El ultimo
ejemplo, figura 8, muestra el mecanismo de
resolucion de conflictos para varios objetos
colocados en la misma posicion relativa.

VIII. CONCLUSIONES

En este articulo hemos descrito nuestra novedosa
aproximacion para el modelado declarativo
utilizando bases de conocimiento para asistir en el
proceso de generacidon del modelo y vista. Hemos
probado nuestra propuesta por medio de un
prototipo aun en evolucion. Hasta ahora, hemos
creado diferentes escenarios con elementos
simples, generando incrementalmente entidades
complejas. También hemos probado la facilidad
para modificar los parametros y conceptos,
utilizando diferentes valores para el mismo
modelo, alcanzando modelos significativamente
diferentes a través de wvarias iteraciones del
modelo. Otros trabajos tratan con la metodologia
del modelado declarativo, pero a partir de la

[ENV]

LivingRoom.

[/ENV]

[ACTOR]

ManSuit John.
YoungWoman Sarah.
[/ACTOR]
[OBJECT]
[/OBJECT]

Figura 6. Ejemplo 1.

literatura disponible podemos afirmar que ninguno
estd orientado a crear mundos dinamicos y
controlados por el usuario.

Aun cuando sélo tuvimos acceso a uno de ellos,
WordsEye, es aparente que todos auxilian en el
proceso de crear mundos complejos, pero la
interaccion con el usuario es limitada a la creacion
del escenario, y cambiar la vista con que se
presentan los resultados. En el caso de WordsEye,
su naturaleza basada en red no permite Ia
modificacion directa de los modelos usados para la
representacion en 3D, y la vista y calidad de la
misa esta limitada por la capacidad del servidor del
sistema. En caso de DEM2ONS y CAPS, la
literatura de ambos apunta que los métodos de
entrada son muy especializados, y la salida estd
limitada a la wvisualizacion del modelo, sin
interaccion alguna. El modelador presentado en
este articulo permite crear, a través de una
descripcidon escrita en un lenguaje cercano al
natural, un escenario en 3D, asi como las
estructuras de datos necesarias la evolucion de una
escena en 3D.

[ENV]

house.

[/ENV]

[ACTOR]

Knight, anywhere Kitchen.
YoungWoman, anywhere Garden.
woman, anywhere Livingroom
[/ACTOR]

[OBJECT]

Chair, front woman0.

Puff, front bed0.

[/OBJECT]

Figura 7. Ejemplo 2.

La principal desventaja de esta investigacion es
que la base de conocimientos debe contener todos
los conceptos asi como la necesidad de una base de
objetos 3D. Sin embargo, una vez que ambos
aspectos han sido cumplidos, la creacion de
escenarios en 3D es posible para usuarios finales.
Con esto se alcanza el objetivo principal de ésta
investigaciéon. El trabajo futuro incluye una

herramienta

amigable para manejo del

conocimiento y extension de la base de objetos 3D,
asi como tratar con casos especificos que puedan
requerir de métodos de modelado especiales.

[ENV]
void.

[/ENV]

[ACTOR]

Knight, center.

[/ACTOR]

[OBJECT]

CenterTable Table, front Knight0.
Chair, left Table.

Chair, left Table, color red
Chair, left Table, color blue
Chair, left Table, color gray
Chair, left Table, color green
facing KnightO.

[/OBJECT]

Figura 8. Ejemplo 3.

IX. REFERENCIAS

[1]

[2]

[3]

F. Ramos, F. Zlniga, and H. 1. Piza, “4 3D-
space platform for distributed applications
management,” International Symposium
and School on Advanced Distributed
Systems 2002.Guadalajara, Jal., México,
Noviembre 2002.

P. Hugo, F. Zuniga, and F. Ramos, “A
platform to design and run dynamic virtual
environment,” International Conference on
Cyber Worlds, Tokio Japdén, pp. 18-20,
Noviembre 2004.

B. Coyne and R. Sproat, “Wordseye: An
automatic text-to-scene conversion system’,

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

en SIGGRAPH °’01: Proceedings of the
28th annual conference on Computer
graphics and interactive techniques. AT&T
Labs Research, 2001, pp. 487—496.

O. Le Roux, V. Gaildrat, and R. Caubet,
“Design of a new constraints solvers for 3D
declarative modeling” en International
Conference on Computer Graphics and
Artificial Intelligence (3IA), Limoges,
03/05/200-04/05/200, mayo 2000, pp. 75—
87.

G. Kwaiter, V. Gaildrat, and R. Caubet,
“DEM2 ONS: A high level declarative
modeler for 3D graphics applications,” en
Proceedings of the International Conference
on Imaging Science Systems and
Technology, CISST’97, 1997, pp. 149-154.
D. Wang, 1. Herman, and G. J. Reynolds,
“The open inventor toolkit and the PREMO
standard,” Amsterdam, Holanda, Rep. Tec,
1996.

K. Xu, “Constraint-based automatic
placement for scene composition,” en In
Graphics Interface, 2002, pp. 25-34.

V. Gaildrat, “Declarative modeling of
virtual environment, overview of issues and
applications,” en International Conference
on Computer Graphics and Artificial
Intelligence (3IA),Atenas, Grecia, vol. 10.
Laboratoire XLIM - Université de Limoges,
mayo 2007, pp. 5-15.

S. J. Russell and P. Norvig, Artificial
Intelligence: A Modern Approach. Pearson
Education, 2003.

J. A. Zaragoza Rios, “Representation and
exploitation of knowledge for the
description phase of declarative modeling”,
CINVESTAV-PNI, Unidad Guadalajara,
Guadalajara, México, Septiembre 2006.

P. Prusinkiewicz and A. Lindenmayer, The
algorithmic beauty of plants. Springer-
Verlag New York, Inc., 1990.

D. L. McGuinness and F. van Harmelen,
“OWL Web Ontology Language overview,”
World Wide Web Consortium, W3C
Recommendation, Febrero 2004,
http://www.w3.0org/TR/2004/REC-owl-
features-20040210/.

Creation of Virtual Worlds Through Knowledge-Assisted Declarative Modeling

Jaime Zaragoza, Félix Ramos, and Véronique Gaildrat
Centro de Investigacién y de Estudios Avanzados, Unidad Guadalajara, México
Institut de Recherche en Informatique de Toulouse, France
email: {jzaragoz, framos}@gdl.cinvestav.mx, veronique.gaildrat@irit.fr

KEYWORDS

Game Design, Game Engine Design, Game Environment
Creation, Knowledge Bases, Distributed Systems

ABSTRACT

Creating virtual worlds using dedicated tools is a time
and resource consuming task. FEven experienced user
may find difficult to create virtual representations for
different needs e.g. for simulations of real world, for
recreations of fantansy or ancient worlds, for teach-
ing, etc. Through the use of the declarative modeling
method an user can create a virtual scenario by simply
stating some of the properties for the environment and
for the entities. This paper presents a novel approach
for declarative modeling. Main contribution is to use
knowledge about entities conforming the environment to
assist the processes of creation and validation of the vir-
tual world created in this way. This knowledge includes
the necessary data to aleviate great part of the process-
ing needed to create the environment and the knowledge
needed to allow the evolution of the environment in a
dynamic scene. The main difference with other works is
that the virtual world created using our proposal allows
its evolution.

Introduction

Virtual Reality has been used as a method for simulating
entities in the real world in different fields of human ex-
pertise, such as medicine, construction, entertainment,
and many others. This technology allows to created
almost any kind of scenario or world, and it can per-
form almost any kind of scene or situation. Different
approaches have been proposed to design and animate
such virtual worlds. However, most of the time, these
worlds are created by a full multidisciplinary staff com-
posed by many artists, modelers and engineers, taking
from a few weeks to years to complete a successful vi-
sualization of the desired environment. Even more, the
team uses specialized tools, which need special training
and many practice hours to create an outcome of pro-
fessional quality. We think this is the main problem to
not use more broadly 3D as output interface of many
systems.

The full problem can be split in two subproblems. The

first subproblem lies in creating the environment; the
second is describing the scene, that is how characters
must evolve in the environment. In this work we deal
with the first one of these subproblems. Some work was
carried out in our team to deal with the second problem
(Ramos et al. 2002).

A method allowing the creation of virtual scenarios both
simple and complex is currently a topic of research.
Declarative Modeling is one approach to reach this ob-
jective. In this work Declarative Modeling must be un-
derstood as a methodology that allows creating a vir-
tual scenario by means of a declaration in a language
(desirably natural) of how we expect entities in the sce-
nario must be arranged. The Declarative Modeler sys-
tem must take as input this description and find at least
one solution satisfying the user needs.

The main differences between our approach and those
presented previously are: first, the use of knowledge
about properties of objects and other entities provided
by the user to help the validation process of possible so-
lutions proposed by the modeling system; second, that
the resulting model is useful to manage all kind of ani-
mations required by the evolution of a scene. The model
created in this way can be sent to any underlying archi-
tecture for its visualization and animation, since all the
necessary data is provided with the model. The archi-
tecture can also perform the simulation of any possible
virtual world, because the resulting model includes the
environment’s rules and possible entities behaviors.
This project is part of the GeDa-3D project (Hugo et al.
2004), a distributed multi-agent architecture for 3D.
GeDA-3D objective is to offer a complete tool to any
final user with the need to simulate some given situa-
tion. The content of this article is: section 2 presents re-
lated works; section 3 presents the Declarative Modeling
process; section 4 presents our approach to Declarative
Modeling; section 5 presents the state of this research;
section 6 presents our conclusions about objective and
results obtained.

Related Works

WordsEyes (Coyne and Sproat 2001), developed at the
AT&T Laboratories by Bob Coyne and Richard As-
proad, is the closest project to ours. WordsEyes is
an automatic text-to-scene converter, which works us-

ing part-of-the-speech markers and statistical analyzers
to obtain a hierarchical decomposition of the sentences
provided by the user. The system uses different tools
to assign the depictors, low-level graphical representa-
tions, to each concept in the sentence, and to provide
the physical characteristics to the elements in a scene.
Inverse kinematics are use to achieve poses for entities
in the scene, and some methods are employed to solve
certain abstractions, such as textualization, characteri-
zation or personification. The system is web-based, so
the user just has to enter to the project’s website, write
a short description, and summit it to obtain a static
visualization of the created scenario.

The project DEM?ONS (Le Roux et al. 2000) is mul-
timodal system composed by a modal interface and a
3D modeler. The modal interface uses different input
methods, from mouse to haptic devices, allowing the
user to create the scenario in an intuitive form. Modules
in charge of syntactic analysis and dedicated interfaces
handle the inputs, which translate them into normalized
events. The resulting model is validated with ORANOS
(Kwaiter et al. 1997), a constraint solver designed to
allow extensibility in declarative modeling applications.
The system is supported by a GUI, written with the
Open Inventor Toolkit (Wang et al. 1996), and allows
simple interactions, that is, the modification of the non-
dynamic elements presented in the scenario.

CAPS (Xu 2002) is a constraint-based system, oriented
to solve the placement of objects inside a scenario. The
system allows the modeling of big and complex scenar-
ios, using an input consisting of intuitive positioning
restrictions that can come from several input methods
e.g. writing text to haptic devices. It can handle sev-
eral objects at once, using pseudo-physics to assure the
stability of the position, and employing concepts such
as fragility or interaction to assure the validity of the
position. Allows interactions and is oriented towards
scenario manipulation, but don’t provide any method
for scene self-evolution.

Declarative Modeling

Declarative modeling defines a recursive process in or-
der to create a solution to the properties stated by the
user. Applied to the creation of a scenario, the declara-
tive modeling is a continuous process in which feedback
coming from previously obtained solutions is used re-
cursively, until the user is satisfied with the outcome
solution.

The method is composed by three steps: Description,
Generation and Look Up (Gaildrat 2007). In the gener-
ation phase, the system receives the user’s description,
written in a custom-tailored definition language for the
modeling application. This language can come in a va-
riety of forms, from simple text inputs to signal coming
from haptic hardware or speech processors. The system
validates the input’s syntax, parses it, creates a format-

Figure 1: Declarative Modeling Process.

ted output fitted for the system, and then transfers the
information obtained to the next step.

The system then continues to create the model, nor-
mally starting with default values for the entities in the
model, and then proceeds to assign the properties val-
ues using different methods to assure the consistency of
the semantic, the logic, and the positioning of the en-
tities. One of the most common methods is solving a
Constraint Satisfaction Problem or CSP.

We can define a Constraint Satisfaction Problem as a set
of variables X = {X1, Xo,...X,,}, a domain D which
indicates the possible values for each variable, and a
set of constraints C = {C1,Cs,...C,} which specifies
a subset of variables and the possible values for each of
these variables. When each variable has been assigned
with a value from its domain, such that no constraint is
violated, a solution has been found. For a given CSP,
several solutions can exist, so the CSP algorithm can be
designed so it can provide several solutions (Russell and
Norvig 2003).

The modeling step can create several models and then
proceed to validate them, or start with one and then
solve any conflict until a solution is reached. This pro-
cess involves backtracking and step forward methods al-
lowing the system to discover if a local minimum or max-
imum have been reach. In the first case, there can be
some restrictions that apparently can not be solve, but
changing some of the entities properties can lead to a
new arrangement that satisfy all of them. In the second
case, all the constraints are fulfilled, but the solution is
stiff and doesn’t allow any modification without brak-
ing some restriction. Again, some changes can lead to
a new set of solutions with more flexible settings. This
step may include the participation of the user, present-
ing the solutions obtained and then letting the user to
decide if they accomplish with the mental image used to
generate the description or not.

The out look step involves presenting the user with the
solution or solutions obtained. The model then can
be modified in order to make it closer to the idea the
user have in mind when the process started, but always
within the restrictions established in the constraints set.

Tnput: VEDEL — Lexical-Syniactc
Farer

___..--"""'“-'J Neodel Craator

inference
Function

3
Enowledge
Base

C5P algorithm

¥

Outpit
GEnErEtian
Dutputs |

Figure 2: Modeler Architecture.

The user can reject some or all solutions, thus indicating
the system which solution space should be explored to
find future solutions.

A Virtual Environment Modeler Based on
Knowledge Exploitation

Our proposal has a central feature, which is not fully
considered in other works. Since the user is expressing
what should be placed in the virtual scenario, the system
has the indications for the characteristics and position of
each element, which can be applied within certain fuzzy
thresholds. For example, even when the exact location
of the elements can vary in the perspective from user to
user, there is certainty when it is referred to absolute or
relative positioning between the elements: “right” will
be always an specific area defined in relation to an en-
tity in reference, not matter its orientation, size, or po-
sition, and can be defined within a data structure that
provides the parameters for obtaining such area. Such
data structure can come in the form of a database. How-
ever, the necessary information should be provided with
the inclusion of the relationships between the concepts
in evaluation, a more suitable solution is the knowledge
bases. Since a knowledge base not only contains the
information of the elements for any given domain, but
also the relationships between these concepts, it allows
to derive new knowledge from the data already present,
expanding the reach of the knowledge base. The action
of extrapolating new information from current knowl-
edge is called inference, and is a useful characteristic for
validating concepts and properties, since the user can
begin stating simple characteristics, which can be com-
bined to infer complex knowledge.

With this idea, we design a declarative modeler aimed
to allow the creation of virtual worlds from simple text
descriptions, using knowledge bases exploitation as the
base of the modeling process. The modeler is composed
by five modules, as presented in figure 2.

[ENV]
house, night.
[/ENV]

[ACTOR]
man Antony, big, old, bald, sit BigCouch.
woman Brittany, young, near CenterTable.

dog Casper, sleep, front FirePlace.
[/ACTOR]

[0BJECT]

Couch BigCouch, against westWall, big, facing
east.

CoffeTable CenterTable, center LivingRoom.
[/OBJECT]

Figure 3: VEDEL example.

Lexical-Syntactic Parsing

The Lexical-Syntactic Parser receives the descrip-
tion written in a custom-defined language called
VEDEL or Virtual Environment Description Language
(Zaragoza Rios 2006). VEDEL is like natural lan-
guage, completely oriented to lead the description pro-
cess. It provides a natural help to users with its struc-
ture to organize the ideas for describing virtual worlds.
VEDEL allows creating the scenarios incrementally, by
just adding objects or modification in specific sections
in order to extend the description. A description in
VEDEL is composed by three sections: Environment,
Actors and Objects, allowing of which are the main
components in the creation of the scenario. Each of
these sections is in turn formed by sentences composed
by comma-separated statements. Each statement corre-
sponds to a property for the entity being described, and
can be stated in any order, with the only limitation that
the first statement must be the type of entity, including
an optional identifier. Each sentence must end with a
dot (“. 7). Sections must be surrounded by section
marks, as show in figure 3. The reasons for defining an
interaction language as a subset of the natural language
are to provide a simple, user friendly structured method
to write and format the description, but also to avoid
the need of fuzzy logic methods and statistical parsers
needed for the analysis and validation of every-day hu-
man language. The language structure allows keeping
the model with balanced constraint amount, avoiding
over or under constrained descriptions.

The Lexical-Syntactic Parser is basically a state ma-
chine, which extracts tokens from the description, and
uses them to form a hierarchical data structure repre-
senting the information stated in the description. The
hierarchy is organized with entity types as the upper
branches, with the properties as their leaves, allowing

an easy and quick extraction of the data by the Lexical-
Syntactic Parsing module, which only verifies the correct
composition of the description, and searches for non-
valid characters, leaving the semantics validation for the
Model Creation module.

Model Creation

The Model Creator receives the parsed entry from the
Lexical-Syntactic Parser, and proceeds to create the
model. The modeler works in incremental steps, start-
ing with a basic model with default values assigned to
elements of the virtual environment, and assigning the
values requested by the user. The model creation fin-
ish when all the properties have been assign and these
properties do not violate any constraints.

First, the modeler obtains all the information about the
environment. Any request for information is handled
through the Inference Function component, which ac-
cesses directly to the knowledge base. The inference
function is a singleton, and is used through all of the
process of obtaining information, formatting the data
for the modeling tasks and validating the requests made
in the description.

The information gathered from the knowledge base
about the environment is used to construct the virtual
world’s rules and assign data type values to its proper-
ties. If the environment has any special constructions
or elements, the modeler creates the necessary entries
in the model to satisfy these indications. Landmarks
such as walls, doors or specific areas, or furniture in the
environment are all created this way. Landmarks cor-
respond to implicit information about the environment
and have not explicit visual representations, the second
sort, of descriptions corresponds to objects that must be
instantiated, placed, and represented as individual ele-
ments in the environment.

Once the environment has been set, the modeler contin-
ues with the entities that will dwell the scenario. Each
of these entities is created using basic representations in-
stantiated with default values from the knowledge base.
Such representations are called avatars. When the mod-
eler is request to create a given entity, it verifies that
the corresponding avatar exists. If not, the knowledge
base is queried for the information on the given entity,
and the avatar is added to the model. The avatar is
then instantiated with the values requested for the en-
tity in process. Each of the requests is validated first
through the avatar, to verify if the entity spots the prop-
erty requested. Then, the Inference Function is used to
validate that the values to be assigned are correct, or
correspond to the property in question. Any necessary
conversion is carried through the knowledge base. For
example, if the user request a chair colored red, the mod-
eler first verifies that “chair” has the property “color”.
If true, the Inference Function is queried to validate that
one of the possible values for the “color” property of

“chair” is “red”. If the response is positive, the Infer-
ence Function will return the data corresponding to the
color “red” in RBG format.

Positioning the Entities

Once all the entities have been created and its properties
instantiated with the values specified in the description,
the modeler proceeds to position all of them in the cor-
rect location, according to the description statements.
The entities are first placed using a default position
stored in the knowledge base. The process to obtain the
parameters to position the entity is similar to the used
to obtain property values. The statement is validated
directly through the Inference Function, which receives
the information corresponding to the entity’s current
position, size and orientation, and in the case of relative
positioning, the referenced entity’s values are also sent.
The parameters corresponding to the concept are ob-
tained from the knowledge base, and then instantiated
with the entity or entities’ values. These newly obtained
parameters are sent to the modeler, which assigns them
to the entity’s properties. The referenced entity can be
any other entity in the environment, the environment
itself, or a landmark. The concept parameters can be
defined with fuzzy parameters, so the modeling process
achieves certain randomness, to allow the generation of
different models through the process.

After every entity has been positioned, the modeler
sends the model’s current state to the CSP compo-
nent. This component validates the position of every
entity; that is, there are no collisions between the enti-
ties and that the position of each of them corresponds to
the statements in the description. To accomplish these
tasks, each entity has a series of collision tags, as well
as characteristic points marks. These specialized tags
are stored in the knowledge base, and are instantiated
when the entity is created. When the modeler changes
the entity’s position, these tags are also updated.

The collision tags are defined as a series of spheres that
wrap all of the entity’s geometry (figure 4), and are
used as the primary constraint to be satisfied by the
CSP Algorithm. To carry out the collision verification
process, the system first verifies if the Euclidean dis-
tance between any given pair of entities is smaller than
the longest diagonal corresponding to a box formed by
the entity’s measures. If true, the distance equation for
two spheres is evaluated for all the possible pairs of col-
lision tags between the two entities in conflict. This
must be satisfied for any pair of collision tags corre-
sponding to different entities, C; = (x1,¥1,21,71) and
Co = (22,Y2, 22,72), the following relationship must be
kept:

(x1—22)? + (1 —y2)? + (21 = 22)° = (11 —r2) >=1 (1)

If any pair fails this evaluation, that is, the result of the

Figure 4: Collision tags examples.

evaluation is less than a threshold (t € ®,1 >t > 0) set
by the system administrator, a collision is detected and
the model must be modified. To conduct the changes in
the positioning of the entities, previous to any change,
some considerations are verified: If one of the entities
is a “pivot” (this is, is fixed to an absolute position,
i.e. north, south, east), the size of the entities, and the
relationships between them. Pivot entities are moved
at the end, and only if the current model requires such
changes to obtain a solution. Next, the relationships
between elements is explored, since some of the possible
positioning concepts require that two elements come in
contact, such as “against”, “inside” or “over”, so in
these cases the collision will be dismissed and other val-
idations will take place. Otherwise, if one of the entities
in conflict makes reference to the other, this must be
moved first. If the model configuration cannot be vali-
dated, the referenced entity will be then moved. In other
cases, both entities make reference to a third entity, in
those cases the CSP Algorithm makes use of a technique
similar to one the used with L-Systems (Prusinkiewicz
and Lindenmayer 1990) to position both entities in a
new position that fulfills the statements from the de-
scription while solving the conflict. Finally the size is
considered to decide which entity should be moved first,
if there is not relation between the entities. Smaller en-
tities have a better chance to be moved into a valid po-
sition than big elements, therefore the system will move
first the smaller entities in conflict.

Collision verification conducted until no more conflicts
are found. If the current model falls into a local min-
imum, or cannot find a solution, the system restores a
partial previous solution in which less conflicts where
found; then proceeds to create new solutions. If the re-
stored solution is the initial model sent by the Model
Creator, the system verifies if any possible entity has
been repositioned, and restarts. If there are no more
entities to move, the system informs that cannot find a
solution.

Once it was verified that there are no collisions among
entities, positioning validation is carried over. This val-
idation uses the characteristic points marks, which indi-
cate the most prominent points in the entity’s geometry,

allowing quick verification without resorting to full ge-
ometry verification. Positioning validation is conducted
over all entities, in order to assure that the current po-
sition satisfy the description statements.

In order to successfully locate successfully an entity, the
following validation must be satisfied: at least one of its
characteristic points must be located inside the volume
of an ellipsoid or a paraboloid instantiated with the pa-
rameters corresponding to the referenced entity’s data
and the concept values. That is, for any given entity, at
least one of its characteristic point C' = (x,y, z) is in the
surface or inside a validation volume E = (dz, dy, dz),
for ellipsoids (3), or P = (p,q), for a paraboloid (2),
instantiated with the values from the referenced entity.
We can represent this as:

(“) + <y2> “2<=0 (2)
p q
T 2 y 2 5 2

)+ (@) (F) 10 o
The parameters for both equations are stored in the
knowledge base, either as part of the positioning con-
cept, or as information for the entity in reference, which
can also include the quantity of characteristic points
that need to be inside the volume to validate the po-
sition, or even the list of points that should be evalu-
ated. Relative positions are always validated through
paraboloid volumes, for which the parameters p and ¢
correspond to the referenced entity size values, and z is
a user-defined value, set by the system administrator.
Spatial relationships such as “against”, “inside” or
“over”, are validated using ellipsoidal volumes, for
which one of its parameters is less than 1, and located
over the surfaces of the entities. For positions that re-
quire a volume inside an entity, or a location in a given
area such as landmarks, the ellipsoidal volume is instan-
tiated with the entity or landmark values.
If the positioning validation for an entity fails, a new
position for this entity is calculated. Before the new
position is set, the system queries a list of previous po-
sitions for that particular entity. If the neighborhood
of these previous positions forms a cluster, then a new
position outside that cluster is set, and the validation is
carried again. If the new position is not valid, or can
not be set outside the cluster, the system can not find
a new position for the entity and return to a previous
model state. As with collision verification, if the previ-
ous model is the starting set, the description requested
cannot be solved.
Each entity in the model stores the list of elements with
which they share some relationship. In that way, each
entity can follow the movements made in the model, and
modify its own parameters by consequence, for example,
is an entity must be facing another, and the referenced
entity is moved, the first can adjust its orientation pa-

Figure 5: Characteristic points and positioning volumes
examples.

rameters to the new position set for the referenced en-
tity. The same applies for relative positions.

Once each entity has passed both validations, the model
is sent to the final component, the Output Generator.

Obtaining the Output

The Output Generation Component receives the model.
This component uses a Model-View Controller method
to generate the necessary output data structures and
files, so the underlying architecture can perform the ac-
tions necessary to create the visualization of the virtual
environment, and conduct the process that will activate
the simulation.

This output employs templates that receive the model
data structure, and through the MVC are instantiated
with the values obtained through the modeling process.
This method allows the easy modification of the output
parameters, so the users can add or modify the infor-
mation sent to the underlying architecture, which can
be also a 3D viewer of any kind, as long as the tem-
plates keep the standards used for the 3D visualization.
The amount of outputs and their types are set in the
knowledge base.

Current Work

Our fist example shows the output obtained through
the GeDA-3D architecture. This example show 4 char-
acters, which can run, hop, dance, and makes changes
to its expressions, all this through agents that control
each of these characters and their actions (figure 6).

[ENV]
room.
[/ENV]

[ACTOR]
MeninBlack Albert, center.
WomaninBlack Beatrice, right Albert.
MeninGreen Cecil, left Albert.
[/ACTOR]

[OBJECT]
Grasshopper Insectl, south.
[/0BJECT]

Figure 6: Previous Modeler Example

We have developed a prototype of the modeler in the
Java language, to allow multi-platform capabilities. The
knowledge base has been defined using the Protégé
framework, and was created using the OWL Standard
(McGuinness and van Harmelen 2004), selected due to
its extensibility over the internet. Next, we present some
examples obtained using the most recent build of the
modeler, for whose visualization we are currently using
the X3D standard and a X3D-compliant viewer.

[ENV]

LivingRoom.

[/ENV]

[ACTOR]

ManSuit John.
YoungWoman Sarah.
[/ACTOR]

[OBJECT]

[/OBJECT]

Figure 7: VEE Example 1.

In the first example, figure 7, “LivingRoom” is a con-
cept stored in the knowledge base that also sets the fur-
niture for the scenario and the position of each element.
The second example, figure 8, shows different models ob-
tained from a single description. “House” sets the whole
environment, including most of the furniture, and the
areas referenced to set the actors’ positions. The last
example, figure 9, shows the conflict-solving mechanism
for several objects placed in the same relative position.
The following examples where obtained using the cur-
rent modeler and its X3D output.

Conclusion

In this article we describe our novel approach for declar-
ative modeling using knowledge bases to assist the pro-
cesses of modeling generation. We have tested our pro-
posal by in a prototype. So far, we have created dif-
ferent scenarios with low generation times using several
objects some are presented in this article. Also we have
tested how easy is the modification of the parameters
and the concepts to try different values for the same
model, achieving significantly differences between solu-
tions obtained through different iterations of the mod-
eler. The result of this test proves the transparency in
the modeling process.

The second type of test we have achieved concern our
main difference with other similar works and is how
useful is our scenarios to represent the evolution of a
scene. To test this property of scenarios created using
our approach we use the GeDA-3D architecture devel-
oped in our laboratory and tested for evolution of a vir-
tual environment. This was carried using our kernel and

[ENV]

house.

[/ENV]

[ACTOR]

Knight, anywhere Kitchen.
YoungWoman, anywhere Garden.
woman, anywhere Livingroom
[/ACTOR]

[0BJECT]

Chair, front womanO.

Puff, front bedO.

[/0BJECT]

Figure 8: VEE Example 2.

distributed render, which allowed to evolved the scene
through the agent-based architecture. These agents fol-
low rules and constraints set by the user.

The main drawback of this research is that knowledge
bases must contain all concepts as well as a 3D object
database, however once this has been fulfilled the cre-
ation of 3D scenarios is available to final users. This
achieves the main objective of this research.

Future work includes a friendly tool for knowledge man-
agement and 3D object database extension, as well as
dealing with specific cases that may need special mod-
eling methods.

Acknowledgment

The authors would like to thank the Mexican Council
for Science and Technology, CONACyT, for providing
the PhD Scholarship number 1910965.

[ENV]

void.

[/ENV]

[ACTOR]

Knight, center.

[/ACTOR]

[0BJECT]

CenterTable Table, front KnightO.

Chair, left Table.

Chair, left Table, color red.

Chair, left Table, color blue.

Chair, left Table, color gray.

Chair, left Table, color green,
facing KnightO.

[/0OBJECT]

Figure 9: VEE Example 3.

REFERENCES

Coyne B. and Sproat R., 2001. WordsEye: An Au-
tomatic Text-to-Scene Conversion System. In SIG-
GRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive tech-
niques. AT&T Labs Research, 487—496.

Gaildrat V., 2007. Declarative Modelling of Virtual En-
vironment, Quverview of issues and applications. In
International Conference on Computer Graphics and
Artificial Intelligence (3IA), Athénes, Gréce. Labora-
toire XLIM - Université de Limoges, vol. 10, 5-15.

Hugo P.; Zuniga F.; and Ramos F., 2004. A Plat-
form to Design and Run Dynamic Virtual Environ-
ment. International Conference on Cyber Worlds,
Tokyo Japan, 18-20.

Kwaiter G.; Gaildrat V.; and Caubet R., 1997.
DEM? ONS: A High Level Declarative Modeler for 3D
Graphics Applications. In Proceedings of the Inter-

national Conference on Imaging Science Systems and
Technology, CISST’97. 149-154.

Le Roux O.; Gaildrat V.; and Caubet R., 2000. De-
sign of a mnew constraints solvers for 3D declarative
modeling. In International Conference on Computer
Graphics and Artificial Intelligence (3IA), Limoges,
03/05/200-04/05/200. 75-87.

McGuinness D.L. and van Harmelen F., 2004. OWL
Web Ontology Language Quverview. W3c rec-
ommendation, World Wide Web Consortium.
Http://www.w3.org/TR/2004/REC-owl-features-
20040210/.

Prusinkiewicz P. and Lindenmayer A., 1990. The algo-
rithmic beauty of plants. Springer-Verlag New York,
Inc.

Ramos F.; Zuniga F.; and Piza H.I., 2002. A 3D-
Space Platform for Distributed Applications Manage-
ment. International Symposium and School on Ad-
vanced Distributed Systems 2002 Guadalajara, Jal,
México.

Russell S.J. and Norvig P., 2003. Artificial Intelligence:
A Modern Approach. Pearson Education.

Wang D.; Herman I.; and Reynolds G.J., 1996. The open
inmwventor toolkint and the PREMO standard. Tech.
rep., Amsterdam, The Netherlands, The Netherlands.

Xu K., 2002. Constraint-based automatic placement for
scene composition. In In Graphics Interface. 25-34.

Zaragoza Rios J.A., 2006. Representation and FEz-
ploitation of Knowledge for the Description Phase in
Declarative Modeling of Virtual Environments. Mas-
ter’s thesis, Centro de Investigacién y de Estudio
Avanzados del Intituto Politécnico Nacional, Unidad
Guadalajara, Guadalajara, México.

VIRTUAL WORLD CREATION AND VISUALIZATION BY
KNOWLEDGE-BASED MODELING

Jaime Zaragoza, Alma Verénica Martinez,
Félix Ramos, Mario Siller and Véronique Gaildrat
Centro de Investigacién y de Estudios Avanzados, Unidad Guadalajara, México
Intitute de Recherche en Informatique de Toulouse, France
email: jzaragoz, vmartine, framos, msiller@gdl.cinvestav.mx, veronique.gaildrat@irit.fr

KEYWORDS
Design, Game Engine Design, Game Environment Cre-
ation, Knowledge Bases, Distributed Systems

ABSTRACT

Virtual worlds can be used in a variety of areas, from
entretainment to education, allowing to us see and inter-
act with all kind of real or fantastic creatures or environ-
ments. However, the construction of such worlds, and
its correct visualization, is a time and resource consum-
ing task, which also requires expertise in the modeling
and engineering of 3D models and render machines. In
this paper, we propose a method for the creating and vi-
sualization of virtual environments, useful for any kind
of simulations.

INTRODUCTION

Today’s computational technology allows creating rich,
complex, and detailed simulations of virtual environ-
ments. From fantasy settings to reconstructions of an-
cient cities, these virtual worlds can be used for severals
ends, from entertainment proposes, such as movies or
video games, to teaching, in the form of virtual trips or
training.

Creating these virtual worlds and allowing user interac-
tion with the entities dwelling inside these worlds is a
task which requires a multidisciplinary staff, from com-
puter engineers who design and create the software that
runs the simulations of the virtual environments, to
artists who design and create the individual elements
that appear in those environments. Along with the staff,
a variety of specialized tools are needed in order to cre-
ated, present, animated, and evolve the virtual environ-
ments. Some of which require several training hours to
be able of create professional result. In addition, the
whole process can take from several hours to years to
complete.

Some methods have been proposed to ease the task of
creating virtual worlds, one of them being declarative
modeling. This is a process which takes an input in
which the user expresses the elements to be modeled,
by giving some expected properties, and the system then

proceeds to find a solution to these properties. In this
context, the user could just describe the properties for
the virtual world, and then let the modeler find the ap-
propriate elements to be presented and their correspond-
ing behaviors. The model then can be sent to another
software system in order to be animated and presented
to the user.

RELATED WORKS

There have been some works in declarative modeling of
virtual worlds, but most of them focused on architec-
tural design. Some of these works includes:

e FL-System (Marvie et al. 2005), focused in the gen-
eration of complex city models, parting from a spe-
cialized grammar, and using a variant of the Lin-
denmayer System (Prusinkiewicz and Lindenmayer
1990), called Functional L-System, in which replace
the generation of terminal symbols by generic ob-
jects.

e CityEngine (Parish and Miiller 2001), which is ca-
pable of generating a complete city model, using
small set of statistical and geographical data, com-
posed by geographical maps (elevation, land, water
maps) and socio-statistical maps (population maps,
zoning maps).

e Wonka et al presented a method for automatic ar-
chitecture modeling that uses a spatial attribute
design grammar, or split grammar, as input for the
user. From this input, a 3D layout is generated
for the building, from where the facade is created,
split to structural elements, until the level of in-
dividual elements (windows, cornices, etc) (Wonka
et al. 2003).

However, some works dealt directly with the generation
of virtual environments, using a variety of inputs, from
everyday language to speciallized haptic hardware. The
first project is the WordsEye, a text-to-scene conversion
system, developed by Bob Coyne and Richard Asproad
at the AT&T laboratories. Allows any user to generate
a 3D scene, from a description written on natural lan-
guage, The system uses a part-of-speech tagger and a

statistical analyzer to parse the entyr, and then depic-
tors (low level graphic representation) to compose the
scene (Coyne and Sproat 2001). Some methods are used
to solve some concepts, such astextualization, emblema-
tization, characterization, lateralization or personifica-
tion.

The second project is DEM2ONS, a High Level Declar-
ative Modeler for 3D Graphic Applications, designed by
Ghassan Kwaiter, Véronique Gaildrat and René Caubet.
It allows the user to easily construct 3D scenes in natu-
ral way and with a high level of abstraction. Composed
by two parts: modal interface and 3D scene modeler
(Kwaiter et al. 1997), the modal interface user commu-
nications using several combined methods (data globes,
speech recognition system, spaceball, mouse). The syn-
tactic analysis and Dedicated Interface modules analyze
and control the low-level events to transform them in
normalized events. The 3D scene is modeled using ORA-
NOS, a constraint solver designed with several charac-
teristics that allows the expansion of declarative model-
ing applications, like generality, breakup prevention and
dynamic constraint solving.

The last work is called CAPS or Constraint-based Auto-
matic Placement System, developed by Ken Xu, Kame
Stewart and Eugene Fiume (Xu 2002). It makes possi-
ble the modeling of big and complex scenarios, using a
set of intuitive positioning restrictions that allow the
manipulation of several objects simultaneously, while
pseudo-physics are used to assure that the positioning is
physically stable. Uses input methods with high levels
of freedom, such as Space Ball or Data Glove. It also
employs semantic techniques for the positioning of the
objects, using concepts such as fragility, usability or in-
teraction between the objects. The object’s positioning
it conducted one at the time.

From the literalure available for each project, we found
that none of them allows the user to make futher modi-
fications beyond reorganizing the layout for the escene,
and none of these works include any method for self-
evolution or simultions over the 3D environment. Also,
the input language, except from WordsEye, uses spe-
cialized hardware or data, whereas WordsEyes doesn’t
allows to include new concepts, due to its web-based
nature.

Recently, several approaches have been presented for
supporting distributed rendering in cluster systems. In
(Gonzélez Morcillo et al. 2007) are described two archi-
tectures for distributed rendering optimization: Yafrid
(Yeah! A Free Render grID) and MagArRO (Multi
Agent AppRoach to Rendering Optimization). In (Zhu
et al. 2003) is presented an study about the research is-
sues (resource allocation, task partition and data man-
agement) in constructing a distributed rendering for
massive data sets on computational Grids. They also
presented an implementation of the Dynamic Pixel
Bucket Partition (DPBP) algorithm. This algorithm is
used for task allocation of distributed rendering appli-

cations on computational Grids and it shows that per-
formance of near real-time rendering can be reached.
The above revised work is not useful for us, because the
output of the rendering process is an image. If we will
use this result, it will be necessary to generate several
images per second to visualize the complete evolution
of the 3D scenarios. Another problem in these works
is that exists a server in charge of compose the final
image, if server fails, it would not be possible to gen-
erate the final image and the rendering process would
be incomplete. Finally, the features of each element in
the process are very specific, limiting its use to a small
group of users.

In 2003 Rangel, Aviles and Mould (Rangel-Kuoppa et al.
2003) proposed a 3D rendering system that distributes
rendering tasks across a multi-agent platform. The cen-
tral idea of this system is the rendering of 3D individual
objects in different computers. This task is solved us-
ing a mechanism based on pulling, where each remote
agent is associated with a buffer in which the rendered
image is stored. Thus, the agent that generates the 3D
visualization takes and merges the information from the
different buffers to produce a centralized visualization
of the whole 3D VE. Karonis et al. (Karonis Nicholas
et al. 2003) implemented a remote rendering system us-
ing a collaborative component and a high-resolution re-
mote rendering component. These two components are
connected and can either operate independently or as a
coupled pair. But this system is for near-real time view-
ing and later use, and the rendering task are distributed
inside one cluster only. However, the geometry data are
partitioned into cells to improve the low-resolution ren-
dering performance.

Strafler, Pascucci and Ma (Strasser et al. 2006) pre-
sented an interactive visualization system based on pro-
gressive refinement and distributed rendering. This sys-
tem is capable of interactively browsing large multi-
resolution datasets through the use of image caching.
Thus, progressive refinement is made possible with a
hierarchical multi-resolution representation of the vol-
ume data. A system for distributed rendering of large
and detailed virtual worlds was described in (Chaudhuri
et al. 2008). This system is a distributed client-server
implementation, where the processing of virtual world
is distributed among the available servers. This system
can be used for generating virtual worlds with fine detail
at planetary scales. The capacity of server limited the
amount of client in the system.

VIRTUAL ENVIRONMENT MODELING

Our approach in the creation of virtual environments
is through declarative modeling. This methodology is
formed by three steps: the first step, Description, in-
volve the user giving the setting, entities and properties
to be used to generate model, as well as certain restric-
tions to be solve or satisfied. In this step it is defined

the interaction language. For our project, we defined a
language oriented towards the compositions of descrip-
tions, which we called Virtual Environment Description
Language or VEDEL (Zaragoza Rios 2006). VEDEL al-
lows for an easy composition and edition of description,
focusing the user’s attention to the entities and their
properties, and providing a structured method for the
composition itself. An example can be seen on figure 1.

[ENV]

house.

[/ENV]

[ACTOR]

Man Dad, sit Couch, reading.

Woman Mom, sit Chair, writting.

Girl Daughter, near Couch, laying, drawing.
[/ACTOR]

[OBJECT]

Table, center.

Couch Couch, againts EastWall.

Chair Chair, front Table, facing Table.
[/OBJECT]

Figure 1: VEDEL Example

The second step in declarative modeling is Generation,
where the model or models are composed, validated and
then presented. This step involves any method which
can solve the assignation of the properties stated by the
user, as well as any kind of conflict that may appear
during the generation. This can be achieve with differ-
ent methods for solving constrained problems, being the
Constrain Satisfaction Problem solving the most well-
know. We focused on integrating knowledge exploita-
tion on the solution of CSPs, as well as into the whole
generation process, making this two tasks more easy and
transparent, as well as avoiding solving implicit mean-
ings for some concepts.

Finally, the Insight step allows the user to decide which
of the proposed solutions is the best, or to make modifi-
cations over the proposed layout, such that the solution
matches with the user’s ideal.

Using this methodology we designed a modeler, which
also implements the concept of knowledge exploitation,
in the form or a knowledge base, an ontology, which
helps in the model creation process by solving term am-
bigety and concept value transforming. The architecture
for this modeler is presented in figure 2.

VIRTUAL ENVIRONMENT EDITOR

The first part of our proposal corresponds to a Virtual
Environment Editor (VEE) module, which will take the
task of receiving a user’s input written in the VEDEL
definition, and the providing a solution for the user’s
statements. The input is received by a lexical-syntactic
parser, which transforms the VEDEL entry into a data
structure organized according to the syntax rules for

nput: VEDEL | =rdmerivtons] Lewical-Syntactic
Parser

paried §ogurts s
__’_‘_,.-.'"’-"' Wi Conaller h“‘\._
woncapt dalasl < yal dated vl ufion -
Inference]
e €SP Algorithm
Function il boalutions:
F 3
sirfeer e flradedge s a
Output
Generation
Knowledge
Base <& i gk
a

B —

Outputs

Figure 2: Virtual Environment Editor Architecture

VEDEL, with entity type as the upper branches, and
their properties as the lower leafs.

The parsed entry is used then by a model creator to gen-
erate the model. The process begins with a zero-state
model, which is a basic skeleton created with default
values for the environment and the entities, extracted
from the knowledge base by an inference function, which
makes all the access and queries to the knowledge base,
as well as making the necessary data type conversions
between the data obtained and the modeler’s needs.
The model creator then proceeds to retrieve the nec-
essary knowledge to update the model with the values
requested by the user for each of the entities’ proper-
ties. The modeler extracts each of the request from
the parsed entry and then uses the inference function
to obtain the properties attributes and values, and then
proceeds to validate the user’s demands. The converted
values are set to each of the entities in the model, with
the exception of position and orientation, and then the
model is sent to the CSP solving algorithm to set the
layout and solve any spatial conflict that may arise.
The CSP solving algorithm works in two steps: first, it
sets all the position values for each of the request made
in the description. If there are not any indication for the
position of a particular entity, it is set to the center of
the virtual environment. Other wise, the corresponding
values are calculated using the knowledge base to obtain
the ranges for the petition. The firsts entities to be set
are those set to an specific place in relation with the en-
vironment or any landmark (a specially delimited area
in the environment), such as south, north, or center.
These entities are called pivots, and are used to set the
rest of the entities’ positions. The model generator pro-
ceeds to update the remaining entities’ positions, using
the ranges from the knowledge base and the values from
the pivot entities to set the corresponding values to po-
sitions and orientations.

The next step is finding any possible conflict and then

solving it. This is conducted through the CSP, which is
defined as follows:

e The set of variables V = {X;, Xs,... X, }, where
X1, Xo,... X, € the set of entities in the environ-
ment, and X; = {P,0,S} corresponding to Posi-
tion, Orientation, and Scale VX; € V.

e The domains for each X; € V are D(X;(P)) =
Boo,]oo], D(X;(0)) = [0,27], and D(X;(S)) =

e The set of constraints is formed by the following
equations:

(21— 22)°+ (Y1 —92)> + (21— 22)° = (11 —72) >= 1
(1)

G)e(p)wemn
()@ (@) o

Equation 2 is used to solve collisions. The thresholds ¢1,
to and t3 are set in the knowledge base, so the strictness
of the verification can be modified. This validation is
carried using collision marks set for each entity. These
marks consists of spheres that cover all of the entity’s
volume, and are retrieved along with the properties for
the entity. The marks in an entity are tested against all
of the marks in the others entities, and if there are no
collision, this is, the result from equation 1 is bigger or
equal to threshold t;, for all the collision marks in all
the entities, the collision validation has been passed.

If there is any collision, the CSP finds a new position
for the conflicting entity or entities, and then proceeds
to verify the new position. This is carried out using
equations 2 and 3, in combination with a series of char-
acteristic points defined for the entity. As well as the
collision marks, the values for equation 2 are stored in
the knowledge base, and retrieve with the rest of the
entity’s properties. The test for a position in which an
entity makes reference to another is carried using the
characteristic points to evaluate the function. If at least
a number n (n = 1 by default) of characteristic points
passes the test, the result of equation 3 is less or equal
to threshold ¢5, the validation test has been passed and
the position is valid. Equation 3 is used for absolute po-
sitioning in landmarks or the environment itself, or in
specially cases such as over or inside, or against, this
is, where the entities touch each other or are contained
inside another. The validation is carried out the sames
as with equation 2. Any non-complying test leads to
a further modifications in the position for the entity or
entities.

The CSP can perform verifications for local minimums
or maximums, so finding a solution can be assure. It
also records the entity’s past positions, in order to lo-
cate clusters of invalid or conflicting positions, and find

another solution away from the cluster. Other conflict
solving procedures are the complete arrangement of the
entities in the environment or rotating conflicting or ref-
erenced elements.

If the positioning test are passed, the model is marked as
valid, and send to the final module in the modeler, the
output generator. This is a module which works over the
Model-View Controller outline, sending any valid model
obtained by the model creator, which is transform by
the MVC into a suitable output for the visualization
and animation process.

VIRTUAL ENVIRONMENT VISUALIZATION

This section describes the way for the creation and vi-
sualization of evolution the virtual environment. The
description used in the creation is received of the VEE,
this is interpreted to identify the entities by the virtual
environment (VE).

We considered human avatar who the most complex en-
tity because it can make different animation that include
all the part of the avatar. Almost all works used anima-
tions were created in a 3D editor, this limits the kind of
VE that is possible to use.

Our approach uses skeletal animation based in H-anim
(Group 2009) for the human avatar. The purpose is
to facilitate real-time management of each part of the
skeleton of the avatar.

We take the advantage of the use of the computational
grids and characteristics of the peer-to-peer architec-
tures by generating a real-time distributed visualization
of 3D VEs. Our architecture has the following compo-
nents:

e Public knowledge base (KB): Is a set of ontologies
based on OWL (Web Ontology Language). These
ontologies manage and offer information about the
VE components (3D scenarios, avatars and 3D ob-
jects).

e Coordinator nodes: These are special users that
manage the consistency of VE. These nodes are
grouped by areas of interest into the VEs.

e User nodes: They are external entities that can per-
form actions into the VEs.

With the use of different nodes avoids the dependence
on servers, in this manner, it is possible to get a correct
and complete evolution of VE in a most easy way, even
if there will be a disconnect node (user). Therefore,
a VE is organized by various coordinators, which are
responsible for a group of users. If the node dont have
all the required entities for the creation of VE, the node
can make a query to VEE, this way, the node knows the
location of the missing elements.

Figure 3 shows that our architecture is divided into dif-
ferent layers, in order to identify and reduce the depen-
dence of upper and lower layers. The local processing

layer is necessary to update the local interface and to
maintain a minimum consistency into the VE. That is
to say, when a user requests to execute an action, this is
evaluated to verify its consistency. For example, all af-
fected entities must exist and the actions must be valid
in the entity before to apply changes in the state of them.
This in order not to assume that the user’s actions are
100% reliable.

Lacal prosessing I---— — = Virwing fhe cslutisnsf VE - — — Local processing
—_—
Checking Checking
comslstency Comsislency
b — — — — VE Seuie -
VE Ly w | Usa

Smte | Adtion

S | Aen
| Updsting Distribution

Updiriing Dhsirsbasiion

+ . T — ! [TV—— +

| v saw

[—

Figure 3: Interaction between the user and the visual
port and modeling layered for a P2P communication
scheme

When a user wants to perform an action (animation) on
an avatar, it is automatically generated a request. This
request has the following elements: the required avatar,
the action to perform, and the time stamp that indicates
the order in which actions must be performed. For each
avatar is managed a queue of requests. In this queue
are added all actions the avatar must perform. In order
to ensure a correct execution order of the actions and a
correct sequence of the changes into the VE, these are
sorted based on their time stamp. Once the actions have
been ordered, these will be executed in a process based
on a dynamic time slot (TS). In this slot are placed all
action that can be executed in 60 milliseconds (see figure
4).

Figure 5 shows that by using a TS it is possible to man-
age properly the workload locally, allowing viewing in
real-time the required changes into the VE. The TS is
handled taking into account an increase in local time
that increases or decreases the amount of actions to be
executed in a process. In this way, each new state of
VE is given by the concurrent execution of processes.
Each process returns a result that is sent to the user.
This result tells the user if the actions were performed
correctly or if there was any anomaly or failure during
the execution of these.

oanl a:
Re—s{ Classdier - -
m o L
U |
I:l
Ay~ Classfer baac i P, TR - -
- Ondenng 1 + Embouing ——e
L
A+ Classfir e - - -
i ks = T
el Ordering | T30

Figure 4: Action classification for process executing into
the VE

a L] L] L]
A

a8
v L]
a t
1 i
a
r i
-

a o ®

a

) . L]]

12345678 9101112134156 17181920
TS, @ 18 | T8 | TS

Tima slamps (Ts)

Figure 5: Action selection based on a dynamic TS

In our implementation, the real-time visualization of
changes into the VE does not exceed 60 milliseconds, be-
cause the human eye perceives a continuous movement
when changes are made the transition from one image to
another at intervals of 60 milliseconds (Maiche Marini
2002). If these intervals are larger, the movement will
be slow and discontinuous.

The requests done by a user are notified to the other
users of the area of interest, so that they can take into
account these in a timely manner. The following sub-
section describes the communication between users.

DISTRIBUTION OF THE VIRTUAL ENVIRON-
MENT

One of the main challenges in a shared VE is to effi-
ciently send update messages in a correct way to pro-
vide scalability, minimized the delivery delay of mes-
sages, and to obtain a better reliability of VE. When
an update message is generated as a result of an change
of state of a virtual entity (avatar or 3D object). This
message contains the new action of the entity. In our
implementation, in order to carry out the distribution
of messages among users (nodes in the system), we take

into account the following aspects: the organization of
the nodes, the type of communication channel, and the
involved communication protocols (see figure 6). These
factors affect the delivery of packages, the delivery time
is very important to ensure a real-time visualization of
VE.

Nodes of system are grouped in a heterogeneous grid,
where there are divisions based on the area of interest
of each avatar. To identify to which area of interest
belongs each avatar, we consider two aspects: the vision
area of the avatars and the constraints of vision of VE.
The vision area is given by the range of vision of the
avatars, that is to say, characteristics and details of VE
that are visible for each avatar. Constraints of vision of
VE are given by the objects that restrict the range of
vision of the avatars.

When in the VE exist several user, is necessary check the
consistency among all involved users. To do this, consis-
tency messages are generated. These messages contain
a description of the area of interest to which the user
belongs. Consistency messages are distributed by the
layer distribution of updates. This layer also is respon-
sible for selecting a reliable means to deliver them to a
responsible coordinator of an area of interest. All the
coordinators assigned to an area of interest are in charge
of arrangements for setting the correct state of VE.
Some research are focused on the management of the
overload nodes (Ajaltouni et al. 2008), but these depend
of use of one server that is in charge of estimating and
balancing the load of nodes. In this paper, we present
a simple algorithm that not depends on a server or a
single node.

The use of areas of interest avoids sending and/or pro-
cessing messages, where the avatars can not perceive no-
torious changes or other avatars into the VE. In this way,
the areas of interest involved into the VE are formed
by nodes belonging to different networks using different
communication protocols (see figure 6). Thus, having
identified the areas of interest, it is necessary to choose
a coordinator node for each area of interest. This choice
is done taking into account the average distance between
all nodes, and also considering the available bandwidth.
This is to reduce the delay in message delivery and min-
imize loss of them. In a reliable connexion is possible to
know the TTL field. This field contains the number of
jumps needed for a packet reaches its destination. We
define the distance like the number of jumpers that a
packet has done.

Figure 6 also shows the calculation of the average dis-
tance between all nodes in an area of interest. Based on
this calculation, it is possible to choice the location of
the best coordinator in the area of interest. For example
in figure, node 3 has the shortest distance to all other
nodes, so it is taken as the coordinator node.

The new state of VE (see figure 7) is calculated by tak-
ing into account two major agreements: the first one
among all involved users in an area of interest and its

N
Fing '
3

i
Bug [31 1

st Arpa 1
> 3
B b

N

e

=]

Ittt Asma I
Irtirwnl Arma 3

It Arma 4

Figure 6: Involved areas of interest into the VE are
formed by nodes belonging to different networks using
different communication protocols. The election of a
coordinator in by area of interest

coordinator (new state of the area of interest) and the
second one among all involved coordinators in the VE
(final state of VE).

[[Crme rtae [

Cormtiry Unage of

Cormatersy brakage of _
B - S

T s e To ek r—g

To garersis o respores To geremets & regon

o Comite Sais of .. Cirvistent Sune of
[PR p——

Figure 7: Agreements among all involved nodes and co-
ordinators to choice the new state of VE

When a message is generated it is possible to know the
current time of source node. If the coordinator detects
different times, an agreement is made between nodes for
establish the correct time into the VE.

If a coordinator has a work overload, it is difficult to
process the real-time visualization of VE. To solve this
problem, a new coordinator is selected. In this way,
there may be more of a coordinator per area of inter-
est. These coordinators are selected according to the
distances they have to other nodes. This ensures that
each coordinator manages a balanced amount of users.
When a user logs off, it is checked whether there needs
to be more of a coordinator for the area of interest. In
a similar way, when one user changes to other area of
interest, it is verified whether there needs to choose a
new coordinator for the area of interest.

There are some approaches that reduce the number of
messages in the network (Rueda et al. 2007), but at least
one node is responsible for processing all the actions of

the group, resulting in a client-server architecture. Our
proposal uses only the coordinator node to verify the
consistency between users. If at any time the coordina-
tor is not available, the nodes in the area of interest are
capable to select a new coordinator among them.

CONCLUSIONS

From the available documentation from ralated works,
came to the conclusion that no current project offers
the posibility of create a virtual scenario that can also
be use to run a simulation, or to let the virtual world
to evolve by itself. We also propose a simple method
for input the desire settings, entities and properties to
be represented, without the need of special hardware,
but adaptable enough to be extended to another input
methods. Also, this method provides a structured for-
mat, allowing the user to focus in the content rather
than the format of the description. Finally, the system
is accesible enough to let the users add new content, as
well as to modify the constraints that will dictate the
direction of the search for solutions.

We design our modeler to be extensible enough, by using
the knowledge base, which allows to change significati-
bly the modeling process, as well as the results obtained.
The outputs are also fully modellable, thanks to the use
of the MVC methodology.

On the downside, there must be an experienced user,
which will provide the first entities and environments,
and the knowledge to process the request for such ele-
ments. Also, the visualization will depend on the un-
derlaying architecture and its rendering engine.

The graphical representation and evolution of the VE,
its based on a P2P architecture. The saturation in the
user is inherently avoided due to the P2P communica-
tion scheme, and management of overload on the coordi-
nator. Thus, a P2P scheme is a convenient architecture
to provide a better scalability for large scale VEs.

The animation of the virtual entities is not based on
pre-designed animations. When are used pre-designed
animations, it is very difficult to manipulate them in
diverse situations. By contrast, when micro-animations
(modifying the attributes of a join’s skeleton) are used
to compose macro-animations, it is possible a better ma-
nipulation of each entity of VE, giving a major realism
to the animations.

The nodes are grouping in different interest areas, this
minimize the amount of messages in network. The mes-
sages from VE are classified into subsets, a node receives
messages just one subset therefore reducing or avoiding
the overload in each node.

REFERENCES

Ajaltouni E.E.; Boukerche A.; and Zhang M., 2008. An
Efficient Dynamic Load Balancing Scheme for Dis-
tributed Simulations on a Grid Infrastructure. In DS-

RT ’08: Proceedings of the 2008 12th IEEE/ACM
International Symposium on Distributed Simulation
and Real-Time Applications. IEEE Computer Society,
Washington, DC, USA. ISBN 978-0-7695-3425-1, 61—
68. doi:http://dx.doi.org/10.1109/DS-RT.2008.38.

Chaudhuri S.; Horn D.; Hanrahan P.; and Koltun V.,
2008. Distributed Rendering of Virtual Worlds. In
Technical Report CSTR 2008-02. Computer Science
Department, Stanford University.

Coyne B. and Sproat R., 2001. WordsEye: An Au-
tomatic Text-to-Scene Conversion System. In SIG-
GRAPH °01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive tech-
niques. AT&T Labs Research, 487-496.

Gonzalez Morcillo C.; Weiss G.; Vallejo Fernandez D.;
Jiménez Linares L.; and Ferndndez Sorribes J.A.
2007. 3D Distributed Rendering and Optimization us-
ing Free Software. FLOSS International Conference.

Group H.A.W., 2009. H-Anim. http://www.h-anim.
org/.

Karonis Nicholas T.; Papka Michael E.; Binns J.; Bres-
nahan J.; Insley Joseph A.; Jones D.; and Link Joseph
M., 2003. High-Resolution Remote Rendering of Large
Datasets in a Collaborative Environment. Future
Gener Comput Syst, 19, no. 6, 909-917. ISSN 0167-
739X.

Kwaiter G.; Gaildrat V.; and Caubet R., 1997.
DEM?ONS: A High Level Declarative Modeler for 8D
Graphics Applications. In Proceedings of the Inter-
national Conference on Imaging Science Systems and
Technology, CISST’97. 149-154.

Maiche Marini A., 2002. Tiempo de reaccion al inicio
del moviemiento: Un Estudio sobre la Percepcion de
Velocidad. PhD perception, communication and time,
Department of Educational Psychology, Universidad
Autonoma de Barcelona, Barcelona.

Marvie J.E.; Perret J.; and Bouatouch K., 2005. The
FL-system: a functional L-system for procedural ge-
ometric modeling. The Visual Computer, 21, no. 5,
329-339.

Parish Y.I.LH. and Miiller P., 2001. Procedural modeling
of cities. In SIGGRAPH °01: Proceedings of the 28th
annual conference on Computer graphics and interac-

tive techniques. ACM, New York, NY, USA, 301-308.

Prusinkiewicz P. and Lindenmayer A., 1990. The algo-
rithmic beauty of plants. Springer-Verlag New York,
Inc.

Rangel-Kuoppa R.; Avilés-Cruz C.; and Mould D., 2003.
Distributed 3D Rendering System in a Multi-agent
Platform. In ENC ’03: Proceedings of the 4th Mezican

International Conference on Computer Science. IEEE
Computer Society, Washington, DC, USA. ISBN 0-
7695-1915-6, 168.

Rueda S.; Morillo P.; and Orduna J.M., 2007. A Peer-
To-Peer Platform for Simulating Distributed Virtual
Environments. In ICPADS ’07: Proceedings of the
18th International Conference on Parallel and Dis-
tributed Systems - Volume 2 (ICPADS’07). IEEE
Computer Society, Washington, DC, USA. ISBN 978-
1-4244-1889-3, 1-8.

Strasser J.; Pascucci V.; and Kwan-Liu M., 2006. Multi-
Layered Image Caching for Distributed Rendering of
Large Multiresolution Data. In A. Heirich; B. Raffin;
; and L.P. dos Santos (Eds.), In Proceedings of Euro-
graphics Symposium on Parallel Graphics and Visu-
alization. 171-177.

Wonka P.; Wimmer M.; Sillion F.; and Ribarsky W.,
2003. Instant Architecture. ACM Transactions on
Graphics, 22, no. 4, 669-677.

Xu K., 2002. Constraint-based automatic placement for
scene composition. In In Graphics Interface. 25-34.

Zaragoza Rios J.A., 2006. Representation and FEz-
ploitation of Knowledge for the Description Phase in
Declarative Modeling of Virtual Environments. Mas-
ter’s thesis, Centro de Investigacién y de Estudio
Avanzados del Intituto Politécnico Nacional, Unidad
Guadalajara, Guadalajara, México.

Zhu H.; Wang L.; Yun Chan K.; Cai W.; and See S.,
2003. A Distributed Rendering Environment for Mas-
sive Data on Computational Grids. In P2P ’03: Pro-
ceedings of the 3rd International Conference on Peer-
to-Peer Computing. IEEE Computer Society, Wash-
ington, DC, USA. ISBN 0-7695-2023-5, 176.

Modeling of Virtual Environments Through Declarative Modeling
Assisted by Knowledge

Jaime Zaragoza, Félix Ramos, Véronique Gaildrat

Abstract— The creation of dynamic virtual environments is
a task that usually involves several disciplines, from modeling
the desired visual representation for the virtual entities to the
generation of an architecture allowing handling those entities.
This paper focuses in the creation of the model for the virtual
environment, to be exploited and animated by any underlying
architecture through the use of knowledge. Our approach
simplifies the process of creating the environment by focusing
the user in the generation step and avoids heavy verification
steps by adding only previous logic verification for the context.

I. INTRODUCTION

The creation of dynamic virtual environments is a task
that usually involves several disciplines, from modeling the
desired visual representation for the virtual entities to the
generation of an architecture allowing handling those entities.
Those environments are used in the development of video
games, simulators and virtual reality tools, as well has been
used in movies [1]. Normally, experienced artists, techni-
cians and developers create them with specialized tools. The
declarative modeling is an alternative way for generating
such environments, or the models behind them. Declarative
modeling is a technique that has not been completely ex-
plored. In this article we use knowledge to represent not just
the concept but the semantic to help the declarative modeling
process, this approach has not been exploited before. With
both concepts, the aim is to make accessible for final users
the creation and animation of such environments. To reach
this goal, it is proposed the use of declarative modeling by
means of an easy-to-use tool that takes as input with the use
of description of the desired result in a near-natural language.
The knowledge bases containing the semantic are used for
speeding no only the modeling process.

This paper focuses in the creation of the model for the
virtual environment, to be exploited and animated by any
underlying architecture. The primary goal is the conception
and implementation of knowledge database to be used in
declarative modeling [3], the second objective is to develop
a tool that can be easily used by final users. The tool must
allow a basic description of the desired environment and
have the sufficient expressiveness for the creation of complex
worlds. Although this tool can be used independently, it is
considered part of the GeDA-3D project [4]. In this project
it must generate the necessary context modules so the virtual

I’d like to thank Dr. Félix Ramos from CINVESTAV at Guadalajara,
Meéxico (email: framos@gdl.cinvestav.mx) and Dr. Véronique Gaildrat from
IRIT at Toulouse, France (email:gaildrat@irit.fr).

I’d like to thank the Consejo Nacional de Ciencia y Técnologia, from
Meéxico, for the support with scholarship No. 190965

world and the entities that dwell inside it can evolve in accord
to the rules established by both the user and the semantic
stored in the knowledge base.

II. RELATED WORKS

There exist several works that deal with generation of
virtual models and environments, using information coming
from varied sources. Some of these works are focused in
declarative modeling of scenarios, others, completely focused
on architectural building, and some other toward generation
of virtual worlds, or simply as sketching or designing tools.

Among the tools designed for architectural development
we can highlight two: System FL, by Jean-Eudes Marvie et
al [5], a work base on Lindenmayer Systems, but completely
focused on generating complex models of cities. The input
for this system is defined in a specialized grammar, and can
generated city models of variable complexity. It is complete
based on a variant of System-L, and uses VRML97 as model
output visualization. CityEngine [6]by Yoav I H Parish y
Pascal Miiller, is a project that focuses in full city modeling,
using statistical data and geographic information as input.
It also bases its design mechanism on a System-L, using a
specialized grammar to accomplish the modeling.

However our interest, is in those works focused on virtual
scenario creation, among those we found more representa-
tive:

WordsEye: an automatic text-to-scene conversion system,
developed by Bob Coyne and Richard Asprod in the AT&T
laboratories allows the user to create a 3D scenario, from a
description written in a natural language. Uses text marking
and part-of-the-speech and statical analyzers. The graphic
representation, if generated from descriptors (low level
graphic specifications) assigned to each semantic element,
modified to match the postures and positions describe in the
text, through inverse kinematics [7]. Uses some techniques
such as textualization, emblematization, characterization, lit-
eralization o personification in those cases where there are
no descriptors defined. DEM2ONS, a high level declarative
modeler for 3D graphic applications designed by Ghassan
Kwaiter, Veronique Gaildrat and Ren Caubet. Allows to
construct 3D scenes in a natural way and with a high level
of abstraction. It is composed by two parts: Modal interface
and 3D scenario modeler [8]. The modal interface allows the
communication with the system, by using several input meth-
ods simultaneously (data glove, speech recognition systems,
spaceball, mouse). The scenario modeler uses ORANOS, a
constraint solver with several characteristics that allows to
expand the range of applications in declarative modeling: The

objects are modeled and rendered by the Inventor Tool Kit:
This systems allows the interaction with the objects in the
scenario and solves any constraint problem, but only allows
statics objects, with no support for avatars. Multiformes is
an all purpose declarative modeler specially designed for
3D scenario sketching, presented by William Ruchaud and
Demitri Plemenos. The work in a scenario with is handled
through its description, in other words, the way in which
the designer inputs all the characteristics of the geometric
elements in a scenario and the relationships between them
[9]. The most important characteristic of Multiformes is its
ability to automatically explore all the possible variations in
one scenario, since it does not oblige to one interpretation
of each imprecise property. The description of a scenario
includes two set: the set of geometrical elements that are
present in that scenario, and the set of relationships between
the geometrical objects. Thanks to its constraints solver, Mul-
tiformes is capable of explore several variations of a sketch
that satisfy the same description. This constraint solver
obtains the solutions in a incremental way, and is capable
of solving the restrictions requested by the user, but the user
must tell the system how to construct the scenario. CAPS is
a positioning system base in restrictions [10], developed by
Ken Xu, Kame Stewart and Eugene Fiume. It makes possible
the modeling of big and complex scenarios, using a set of
intuitive positioning restrictions that allow the manipulation
of several objects simultaneously, while pseudo-physics are
used to assure that the positioning is physically stable. Uses
input methods with high levels of freedom, such as Space
Ball or Data Glove. It also employs semantical techniques
for the positioning of the objects, using concepts such as
fragility, usability or interaction between the objects. The
object’s positioning it conducted one at the time. Allows
direct interaction with the objects, keeping the relationships
between them by means of pseudo-physics or grouping: The
methods and tools integrated in this system make it a design
tool, mainly oriented toward scenario visualization, with no
capabilities for self-evolution.

III. THE GEDA-3D PROJECT

The architecture GeDA-3D [4] is a powerful platform
for the creation, design and execution of 3D dynamic vir-
tual environments. GeDA-3D provides a platform useful to
integrate and manage distributed applications and facilities
to manage the communication among software agents and
mobility services used to share other services. Figure 1 shows
the architecture of the platform GeDA-3D, this platform has
been grouped in four main modules: Virtual-Environments
Editor (VEE), Rendering, GeDA-3D and Agents Community
(AC). The VEE includes the scene descriptor, interpreter,
congruency analyzer and constraint solver. The VEE provides
an interface between the platform and the user, specifies the
physical laws that governing an environment, and describes
a virtual scene taking place in such environment. Rendering
addresses all the issues related to 3D graphics, it allows the
design of virtual objects and displaying of the scene. The AC
is composed by the agents that are in charge of ruling virtual

objects behavior. The scene gives to an agent a detailed
description about what we want an agent does instead of
how we want it does. Furthermore, this scene might involve
a set of goals to a single agent, and will not be necessary
that these goals must to be reached in a sequential way. Is
not necessary to give a set of actions to perform by the
avatar, only is necessary give a set of goals in a sequence of
primitive actions before reaching them. So, we need agents
able to add shared skills into their global behavior. Therefore,
behaviors of agents are needed [11].

A user is enabled to construct a scene using a high level
language similar to human language, user is not meant to
provide the sequence of actions that the avatar must perform
instead the user must only specifies the goals that should be
achieved by the avatar. Therefore, two similar specifications
might produce different simulations.

IV. VIRTUAL EDITOR

The main objective of this research is the inclusion of
knowledge (semantic) in the declarative modeling process,
with the final objective of creating a virtual editor. This
allows the user to simply state what should be include in the
virtual environment, the characteristics of the environment
itself and the entities inside, as well as positioning and goals
for each of those entities. This approach will make while
making easy the inclusion and modification of new entities
and concepts of specific syntetic worlds and motivate clearly
the re-use.

The input of this modeler is a description written in a
natural-like language called VEDEL or Virtual Environment
Definition Language, defined in [12]. A description written in
VEDEL consist in three paragraphs delimited by section tags.
Each paragraphs corresponds to the environment, the general
setting for the environment, the actors, those entities capable
of perform actions, and objects, the entities that cannot
perform actions. Each paragraph is formed by sentences,
at least one in the case of the environment, which in turn
are formed by statements separated by commas, and ended
with a dot (figure 1). The first statement must be the entity
type, followed by an optional individual identifier in the
case of actors and objects. The rest of the sentence must
state the characteristics for that particular entity, beginning
with the property name, and followed by the values for that
property. Numerical values are expressed in parenthesis, and
each value must be separated by a space.

[EMV]
Room, big.

[/ENV]

[AcTOR]
Man anteny, tall, hair dark, old.
[/acToR]

[OBIECT]
Table, left antony, small.
[/oBIECT]

Fig. 1. A description written in VEDEL

The description written in VEDEL is sent to the virtual
editor, which then parses and validates it, and the proceed to
generated the model, which can be used to generated a 3D
view, or to created an input for the underlaying architecture.

A. Declarative Modeling Aided by Knowledge

The virtual modeler is formed by three modules: a lexical-
semantic parser, a modeler based in the declarative process,
and an inference function. The lexical-semantic parser is a
state-machine, which verifies the entry description for invalid
statements and characters, and creates a list of the statements
made in the input. The user can set the behavior of this parser
to pass every erroneous entry or to stop all the process. If
the first case, the model will be crated using only the correct
statements, and the list of errors found will be presented
to the user at the end. In the latter case, the user will be
presented with the only with the error that make the process
stop.

The list of valid statement is used by the modeler to
start the generation of the virtual environment. This list is
used to generate the instances of entities needed for creating
the environment, through the exploitation of the knowledge
stored in the Knowledge base. Initially, an instance is created,
by instantiating the subject, environment and entities, with
values set as default in the knowledge base. Then, these
properties are set to values established by the user. A process
of validation is conducted to avoid duplicated identifiers, and
if the modeler finds this case, it can stop the process or
continue without the conflicting entity, as stated before. The
validation is achieved using the knowledge base that is also
used to establish convention between values, from statements
to data structures or data type values. As established before,
the modeler can be set to stop the process if errors are found,
or to continue discarding invalid statements. Positioning is
left to the ending step, so all the entities are created before
starting with the geometric validation processes.

First a dependency search is made for those entities whose
positions depend on other entities. Those entities which are
not related to anything but the environment itself, by means
of specific position statements such as “north”, “south” or
“center”, are positioned first, and the rest of the entities
follows. The modeler also can follow the behaviors of
the parser, either leaving aside invalid request or unknown
concepts, or stopping the process, and presenting the user a
list of errors or the error that take the process to a halt.

We define three basic types for positioning: absolute,
relative and close used in our system. Absolute positioning
is executed in relation with the environment, either the
whole virtual world, or a room, a specific section of the
world delimited in the environment section of the input. An
absolute position request is formed by a single statement,
or the position statement followed by the individual name
given to the room, with an optional numeric argument for
distance in the cases of cardinal directions, in relation with
the center, either from the environment or the room. Relative
positioning is conducted using two entities, a pivot and a

third argument indicating the distance to be place between
the entities is optional. Since this kind of positioning can
lead to inconsistencies, such as self-referencing or impossi-
ble positioning, basic logic verification is conducted, using
statements stored in the knowledge base. Relative positioning
can also be carried out between a room and an entity. Finally,
Close Positioning involves two objects standing one close or
even one against the other. We make this differentiation since
the method we used to prevent collisions and intersecting
entities, explained later, could prevent this request. These
requests can also have a second parameter, indicating a
specific position to place the entities. As in the relative
position, basic logic verification is carried out.

To make the transition from the VEDEL statements to the
data required for computing and validating the model, the
modeler uses the inference function for translating each one
of them. The inference function manages all the access to
the knowledge base, and subtracts the corresponding infor-
mation values and structures to be used by the modeler. The
organization of the knowledge base is an important aspect to
efficient this work, since every data extraction conducts the
inference machine from general to abstract concepts and it?s
semantics. Data values are stored as vectors, and converted to
data structures through parsing functions. This was defined
having in mind an easy method for knowledge storage and
quick data access, since having a standard vector formatting
allows quick conversions, and due to the knowledge tool do
not respect the data input order, thus, is forced the use of
artificial ordering methods.

The ontology is organized as follows: four main classes,
containing the subclasses for all the entities, laws, actions
and properties that can be represented by the underlying
architecture. Those four classes are: Environment, Actor,
Object, and Keywords. The user can add new properties
to the knowledge base once the architecture or the visual
port can represent more complex characteristics, like real
hair, transparency, realistic clothes, or can represent new
actions. Each class contains the individual entities, which
in turn must contain at least one element (one instantiation
of the class) named as the class, and ended with the suffix
“_default”. This element contains the specific information for
the entity, as well as the relationships with others entities or
with keywords. Additional classes for laws and actions can
be used, but must include the relationships with the entities
to be considered into the modeling.

Once all entities have been place accordingly to the
request made in the description, the modeler proceeds to
verify the consistency of the model in two steps: first, a
collision test is carried over on every element in the model,
to assure that no entity is in a conflicting space with another.
The second step consist in validating the position each entity
adopts, since the first step makes the necessary changes to
the position of the elements as collision conflicts are found.
The functions carrying out this two steps are presented next:

target. Both elements must be either an object or actor. A (l.a) (z1 — 22)% + (y1 — y2)? + (21 — 22)% — (11 +72) =0

2 2
(1.b) <5> +<g> —2:=0
g 2 ! 2 2
(Lo () +(%) H(2) —1=0

To carry out the consistency tests, two types of tags are
defined: collision tags and characteristic tags. The first take
the form of spheres that are placed so they cover most or all
of the entity (figure 2). Several tags are used to assure that
all of the entity is covered, even when they cover additional
space to the entity’s geometry. The collision verification is
carried out on every object and to all the other objects, but
only once by pair, using sphere collision function 1.a. Once
a pair of entities is set, the collision test if carried over all the
pairs of collision tags for both entities, again, only once. If a
collision is detected, the parameter of the collision function
is stored, but if and only if is bigger than the last stored
value, which starts at zero.

Fig. 2.

Example of collision tags.

When all the collision tags have been verified, two meth-
ods are executed for solving conflicts: if the objects are not
related, both are moved using a repulsion vector, which have
an r parameter equal to the half of the result of equation
l.a, and a 6 parameter equal to the supplementary angle to
the arc formed by a line draw between the center of the
two conflicting spheres and the x axis. If the entities are
related, the reference entity is set as a pivot, and only the
referencing entity is move, with parameters r equal to the
result of equation 1.a, sphere-to-sphere collision test, and 6
obtained as previously mentioned.

If is the case that both entities are related to a third one, we
follow a method similar to the L-Systems [5]. In this case,
we move both elements in a complementary angle to a line
that bisects the consistency function l.c and r parameter,
defined as previously mentioned. In this case, consistency
test are carried over, as explained later in this article, and
if the function fails, the non-compliant entity is moved

straight in the bisecting line, with a r value equal to the
other entity’s corresponding dimension. The following step
is positioning verification. This is carried out on every entity
whose position is relative to another, using the characteristic
tags and function 1.c a paraboloid (figure 3). If any of the
characteristic tags is inside the paraboloid instantiated with
the pivot entity’s values, the position is set as valid and the
verification continue with other entity. On the other hand, if
verification fails, the entity is moved to the point it previously
was, and a new position is computed from there, using a
vector normal to the pivots referenced size. Each entity keeps
a list of positions it has previously been put, which is used
to find local minimums. In this case, we perform an “step”
in the positioning function, and if this new position is non
valid, an error condition is arise.Finally, close positions are
handle with a method similar to positioning verification. For
this requests, we use equation 1.b, an ellipsoid (figure 3),
which is instantiated with values stored in the knowledge
base. Those values are set in function of the position and
the entity’s geometry, so we have ellipsoids that cover all of
the space inside the entity, if needed, or a thin ellipsoid that
works as layers for positioning another entity in a “close”
or “over” position. In this case, the characteristic points of
the referring entity are test, and the number and place of the
characteristic that must be inside the positioning tag or tags
varies depending on the entity and the request (figure 3).

Fig. 3.

Example of positioning tag.

The process is repeated until none conflict is found, or
the verification methods found a local minimum. In the later
case, the conflicting entity can be removed from the model,
and the procedure stated again, or the process can be stopped
and a list of errors presented to the user.

V. RESULTS

The resulting model resulting from the process described
previously can be sent to any formatting function, whose
output can then be used by the underlying architecture, since
all the necessary information to start the newly created virtual
environment is at hand and presented in format allowing
quick and simple access to any data. Also, the output can
be visualized with any 3D modeling format file, since the
position variables are also at hand, and the model can con-
tains all the information needed to created complex renders,

Fig. 4. Example of close positioning

from the position of the camera, to the type and positions of
light, as well as the physical properties of each entity.Hay que
meter referencias a ests herramientasThe current version was
coded in the Java language, using the latest SDK, the Protege
API for knowledge base access, and the Freemaker Model-
View Controller API for output generation. The output is a
X3D-compliant file, which can be visualized in any X3D
o VRML viewer, such as Flux Viewer or Octaga Viewer.
The entities’ geometry files are stored as templates, used
by the Freemarker MVC to generated the final composition
file, using the model generated by the modeler as input. The
resulting output is an X3D file, which can be visualized with
any 3D viewer that supports the standard.Next are presented
some examples of the output generated by the modeler, as
well as their corresponding generation input description.

VI. RESULTS

The resulting model after the process described in the
previous section can be sent to any formating function, whose
output can then be used by the underlying architecture, since
all the necessary information to start the newly created virtual
environment is at hand and presented in format that allows
quick and simple access to any data. Also, the output can be
visualized as any 3D modeling format file, since the position
variables are also at hand, and the model can contains all
the information needed to created complex renders, from the
position of the camera, to the type and positions of light, as
well as the physical properties of each entity.

The current build was coded in the Java language, using
the latest SDK, the Protege API for knowledge base access,
and the Freemaker Model-View Controller API for output
generation. The output is a X3D-compliant file, which can be
visualized in any X3D o VRML viewer, such as Flux Viewer
or Octaga Viewer. The entities’ geometry files are stored
as templates, used by the Freemarker MVC to generated
the final composition file, using the model generated by the

modeler as input. The resulting output is X3D file, that can
be visualized with any 3D viewer that supports the standard.
We present next some examples of the output generated by
the modeler, as well as their corresponding generation input
description.
Description 1.

[ENV]
void.
[/ENV]

[ACTOR]
Knight Jaz,
[/ACTOR]

center.

[OBJECT]
CenterTable Table, front Jaz,
color black, cristal translucid green.

Chair JazChair, color blue, left Jaz.

Chair One, left Table, facing Jaz,

color green.

Chair Two, left One, facing JazChair,

color red.

Chair Three, right Two, facing One.
[/OBJECT]

Fig. 5.

Example 1.

Description 2.

[ENV]
Theater.
[/ENV]

[ACTOR]
Knight Antony, center.
YoungWoman Bertha, left Antony.
YoungWoman Caroline, right Antony.
Knight Donald, right Caroline.
Knight Ernest, left Bertha.
[/ACTOR]

[OBJECT]
[/OBJECT]
Description 3.

[ENV]

~

8 o o o e s e B el e B

Fig. 6. Example 2.

Forest.
[/ENV]

[ACTOR]
Knight Antony,
YoungWoman Bertha,
[/ACTOR]

front HouseO.
left Antony.

[OBJECT]
House.
Table 1, color black,
front Jaz,
cristal translucid green.
[/OBJECT]

Fig. 7.

Example 3.

VII. CONCLUSIONS

Through the use of knowledge we can extend the possi-
bilities of the modeler, thus creating a declarative modeling
process that focused completely on the generation step,
avoiding all verification steps, and adding only previous
logic verification for the context, which then establish the
intrinsic properties for the entities that are to be placed in
the model.This verification using logic is also aided by the
knowledge base, and can adapted to any possible scenario
or situation, by adjusting the values stored in the knowl-
edge base, therefore creating a straight-forward, transparent
process for the user. The modeler also benefits from this
transparency, since the constraint functions are few and easy

to solve, and since they were selected having in mind enclos-
ing most of any possible entity. Special cases can be solved
by statements made directly on the knowledge base entry,
or simply by adjusting the default values for positioning
concepts.Future work includes a pre-processor for logical
consistency verification, based on the environmental laws and
properties of the scenario requested, and also aided by the
knowledge base. Also, the modeler will have access to an
array of concept-specific constraint for validation, such as
material resistance or composition. This feature will allow
modifying the constraints for any concept.

REFERENCES

[1] J. Monzani, A. Caicedo, and D. Thalmann, “Integrating behavioral an-
imation techniques,” in EG 2001 Proceedings. Blackwell Publishing,
2001, vol. 20(3), pp. 309-318.

[2] D. Plemenos, G. Miaoulis, and N. Vassilas, “Machine learning for a
general purpose declarative scene modeller,” in International Confer-
ence GraphiCon’2002, Nizhny Novgorod (Russia), September 15-21,
2002.

[3] J. Zaragoza, F. Ramos, R. Orozco, and V. Gaildrat, “Creation of
virtual environments through knowledge-aid declarative modeling,” in
Congress of Logic Applied to Technology (LAPTEC 2007), UNISANTA
- Santa Cecilia University, Santos, Brasil. 10S Press, Nov. 2007, pp.
1-8.

[4] F. Ramos, F. Ztniga, and H. Piza, “A 3D-space platform for
distributed applications management,” International Symposium and
School on Advanced Distributed Systems 2002 Guadalajara, Jal.,
Meéxico., November 2002.

[5] J.-E. Marvie, J. Perret, and K. Bouatouch, “The fl-system: a functional
I-system for procedural geometric modeling,” The Visual Computer,
pp- 329 — 339, Jun. 2005.

[6] Y. I. H. Parish and P. Miiller, “Procedural modeling of cities,”
in SIGGRAPH ’01: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. New York, NY, USA:
ACM, 2001, pp. 301-308.

[7] B. Coyne and R. Sproat, “Wordseye: An automatic text-to-scene
conversion system,” in SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques.
AT&T Labs Research, 2001, pp. 487-496.

[8] V. Gaildrat, “Declarative modelling of virtual environment, overview
of issues and applications,” in International Conference on Computer
Graphics and Artificial Intelligence (314), Athénes, Gréce, vol. 10.
Laboratoire XLIM - Université de Limoges, may 2007, pp. 5-15.

[9] G. Kwaiter, V. Gaildrat, and R. Caubet, “DemZons: A high level
declarative modeler for 3d graphics applications,” in Proceedings of the
International Conference on Imaging Science Systems and Technology,
CISST’97, 1997, pp. 149-154

[10] K. Xu, “Constraint-based automatic placement for scene composition,”
in In Graphics Interface, 2002, pp. 25-34.

[11] F. Zniga, “Agent convenable behavior in dynamic virtual environ-
ments,” Ph.D. dissertation, CINVESTAV GDL, Mxico, 2007.

[12] J. A. Zaragoza Rios, “Representation and exploitation of knowledge
for the description phase in declarative modeling of virtual envi-
ronments,” Master’s thesis, Centro de Investigacion y de Estudio
Avanzados del IPN, Unidad Guadalajara, 2006.

MobpeLapo DecLarATIVO DE AMBIENTES VIRTUALES BAsADO EN EXPLOTACION DEL

CoNoOCIMIENTO.

Jaime Alberto Zaragoza Rios', Hector Rafael Orozco Gutierrez’,
Veronique Gaildrat?

Centro de Investigacion y de Estudios Avanzados del Politécnico Nacional'
Unidad Guadalajara, Institute de Recherche en Informatique de Toulouse®

RESUMEN

El modelado de escenarios virtuales, su animacion
y la interaccion con tales modelos son un tema
complicado para el usuario no experto. En el
presente articulo proponemos una metodologia que
permite al usuario no experto generar e interactuar
con tales modelos, mediante el uso del modelado
declarativo y la incursion de la explotacion de
bases conocimiento en ésta metodologia,
especificamente, para la resolucion de conflictos de
caracter geométrico..

Palabras clave: Modelado declarativo, ambientes
virtuales, bases de conocimiento, mundos virtuales,
animacion por computadora.

I INTRODUCCION

La creacion y animacion de ambientes
tridimensionales complejos es una tarea
complicada y que requiere de conocimientos y
herramientas de complejidad notoria. Los mundos
presentados en video juegos y peliculas toman
normalmente varios meses de trabajo y requieren
de un personal capacitado para el manejo de las
herramientas, asi como el talento necesario para la
creacion de los mundos y personajes.

Nuestro objetivo es el estudio de una metodologia
que permita la creacion de una herramienta de facil
aprendizaje y uso, que permita al usuario comun la
creacion, modificacion y animacion de ambientes
virtuales complejos, a través de una visualizacidén
tridimensional y por medio de diversas interfaces.
Con el fin de proveer al usuario con un método
sencillo y transparente para la generacién del
ambiente, se presenta un modelador declarativo,
basado en una base de conocimientos, la cual

contiene toda la informaciéon necesaria para la
creacion y validacion del modelo solicitado por el
usuario. El modelado declarativo es una técnica
que permite al usuario la descripcion de un
escenario, disefiandolo de manera intuitiva, al dar
solo algunas propiedades esperadas y dejando al
sistema de cémputo encontrar una solucidn, si
existe alguna, que satisfaga tales restricciones [1].
Siendo la base para la creacion de tales mundos
virtuales una base de conocimientos, ésta también
contiene la informacion necesaria para la
validacién semantica, logica y geométrica de las
restricciones presentadas por el usuario.

La base para la validacion geométrica, el tema
principal de este articulo, es el uso de algoritmos
para la solucién de problemas de satisfaccion de
restricciones, o CSP, los cuales nos permiten
encontrar conflictos tanto de posicionamiento
como colisiones.

Este trabajo forma parte del proyecto GeDA-3D
[2] una plataforma genérica distribuida para la
creacion y manipulacion de mundos virtuales en un
ambiente en 3D. También conforma el modelador
declarativo del proyecto DRAMA, en desarrollo en
el Institute de Recherche en Informatique de
Toulouse (IRIT), en Toulouse, Francia.

. II'TrRABAJOS EN MODELADO DECLARATIVO

Existen diversos trabajos enfocados en el
modelado declarativo, algunos enfocados
completamente en aspectos arquitectonicos, otros
dirigidos a la generacidn de escenarios virtuales, y
otros como herramientas de esbozo o disefio.

Entre las herramientas dedicas al desarrollo
arquitectonico podemos destacar las siguientes: El
sistema FL, por Jean-Eudes Marvie y otros [3], un

trabajo basado en Sistemas Lindenmayer, pero
enfocado completamente en la generacion de
modelos complejos de ciudades. La entrada al
sistema esta definido en una gramatica
especializada, y puede generar modelos de ciudad
de complejidad variable. El sistema se basa
completamente en una variante de un Sistema-L,
utilizando VRML97 para generar la visualizacion
del modelo. CityEngine [4], por Yoav I H Parish y

Pascal Miiller, es wun proyecto enfocado
completamente al modelado de ciudades
completas, recibiendo como entrada datos

estadisticos e informacién geografica. También
basa su mecanismo de disefio en un Sistema-L,
utilizando una gramadtica especializada para este
fin. Sin embargo, nuestro punto de interés son
aquellos trabajos enfocados en la creacion de
escenarios virtuales, donde destacan los siguientes
trabajos:

WordsEye, un sistema automatico de conversion
texto-a-escena, desarrollado por Bob Coyne y
Richard Asproad en los laboratorios AT&T.
Permite al usuario generar un escenario en 3D, a
partir de una descripcién en un lenguaje natural.
Utiliza marcado de texto y analizadores de parte
del discurso y estadistico. La representacion
grafica se genera a partir de representadores
(especificacion grafica de bajo nivel) asignado a
cada elemento semantico, modificados para
coincidir con las poses y acciones descritas en el
texto, por medio de cinética inversa. [5]. Utiliza
algunas técnicas, como textualizacion,
emblematizacidn, caracterizacion, literalizacion o
personificacion en casos donde no existe un
representador propiamente establecido.

DEM?0ONS, un modelador declarativo de alto nivel
para aplicaciones de graficos en 3D disefiado por
Ghassan Kwaiter, Véronique Gaildrat y René
Caubet. Permite al usuario construir escenas en 3D
de manera natural, con un alto nivel de abstraccion.
Esta compuesto de dos partes: Interfaz modal y
modelador de escenario en 3D [6]. La interfaz
modal permite la comunicarse con el sistema,
usando simultdneamente multiples métodos de
entrada (guantes de datos, sistema de
reconocimiento del habla, spaceball, raton).El

modelador de escenario utiliza ORANOS, un
resolvedor de restricciones con varias
caracteristicas que le permiten expandir el rango de
aplicaciones de modelado declarativo. Los objetos
son modelados y representados por el Conjunto de
Herramientas Inventor, que provee la Interfaz de
Usuario Grafica. Este sistema resuelve cualquier
problema de restriccion, pero solo permite objetos
estaticos, sin soporte para avatares.

Multiformes es un modelador declarativo de
proposito general especialmente desarrollado para
esbozar escenas en 3D, presentado por William
Ruchaud y Dimitri Plemenos. El trabajo en un
escenario con MultiFormes es manejado
esencialmente a través de su descripcion, esto es, la
forma en que el disefiador introduce todas las
caracteristicas de los elementos geométricos de un
escenario y las relaciones entre ellos [7]. La
caracteristica mas importante de Multiformes es su
habilidad para explorar automaticamente todas las
posibles variaciones en de un escenario, pues no
fuerza una sola interpretacion de cada propiedad
imprecisa. La descripcion de un escenario incluye
dos conjuntos: el conjunto de objetos geométricos
presentes en ese escenario y el conjunto de
relaciones existentes entre los objetos geométricos.
Gracias a su resolvedor de restricciones,
Multiformes es capaz de explorar diversas
variaciones de un esbozo, satisfaciendo la misma
descripcidn, siendo el resolvedor de restricciones
geométricas el corazén del sistema. Este sistema
obtiene sus soluciones de manera incremental, y es
capaz de resolver las restricciones solicitadas por el
usuario, pero éste debe de indicar al sistema como
se debe de construir el escenario.

CAPS es un sistema de posicionamiento
automatico basado en restricciones [8],
desarrollado por Ken Xu, James Stewart y Eugene
Fiume. Hace posible el modelado de escenarios
grandes y complejos, utilizando un conjunto de
restricciones de posicionamiento intuitivas que
permiten la manipulacién de multiples objetos
simultaneamente, mientras se utilizan seudo-fisicas
para asegurar que el posicionamiento sea
fisicamente estable. Utiliza métodos de entrada con
alto nivel de grado de libertad, como el SpaceBall

o el DataGlove. También emplea técnicas
semanticas para el posicionamiento de los objetos,
utilizando conceptos como fragilidad, utilidad o
interaccion con otros objetos. La disposicion de los
objetos se hace uno a la vez. Permite también la
interaccién directa con los objetos, manteniendo
las relaciones entre ellos, por medio de seduo-
fisicas o agrupamientos. Los métodos 'y
herramientas integrados a este sistema lo hacen una
herramienta de disefio, orientado principalmente a
la visualizacién de un escenario, sin la posibilidad
de que éste evolucione por su cuenta.

IIIGENERIC DISTRIBUITED ARCHITECTURE 3D

GeDA-3D [2] es un proyecto actualmente en
desarrollo, y del cual se desprende la investigacion
presentada en este articulo. GeDA-3D es una
plataforma para crear, disefiar y ejecutar escenas
dindmicas virtuales en 3D en una infraestructura
distribuida, basada en el paradigma de agentes
moviles y estd formada por varios modulos: Editor
de Ambientes Virtuales (VEE), Visualizacion,
Nucleo de GeDA-3D, Comunidad de Agente (AC)
y Descriptor del Contexto, todos representados en
la Figura 1. Los componentes principales de
GeDA-3D son el control de escena y el control de
agentes.

EL VEE incluye el descriptor de escenarios,
analizador de congruencia, resolvedor de
restricciones 'y editor de escena. Provee una
interfaz entre la plataforma y el usuario, especifica
las leyes fisicas que gobiernan un ambiente y
describe la escena virtual que se lleva a cabo en tal
ambiente.

La visualizacion se encarga de todo los detalles
relacionados a los graficos en 3D, principalmente,
representar la evolucion en 3D de la escena.

La comunidad de agentes (AC) representa los
agentes encargados de dominar el comportamiento
de los objetos virtuales y los avatares.

La descripcion de escena proporciona a un agente
una detallada descripcion acerca de los objetivos
que el usuario desea que haga, mas no la manera en
que deben ser conseguidos.

Una escena puede incluir un conjunto de objetivos
para un solo agente, sin que sea necesario que tales
objetivos sean alcanzados de una manera
secuencial [9].

damiaes s e mapiy
R -
i A b
Snpiarr] Beimated

srases | 30 Carrvas
g
i

Hredeer wen T
et

R
s, | Comeni Pluig-in

dr i ey R

ety Conlr

ey [r—
Girrsbed

Sancher lmn...u

Wi Vi s pags o ¢
e e S 0 e Y e
Efacter | Semace Wector | Sensor
i i Agara |

il e B Pt Rdepiatng Botaor

Figura 1. Arquitectura del proyecto GeDA-3D.

IVMODELADOR DECLARATIVO PARA AMBIENTES VIRTUALES

La creacion del modelo que representa el ambiente
virtual solicitado por el usuario es llevada a cabo
por un modelador declarativo, parte del Editor
Virtual, recibiendo como entrada una descripcion
escrita en un lenguaje definido explicitamente con
el fin de proporcionar al usuario un método
sencillo, estructurado y con expresividad suficiente
para indicar los elementos a incluir en el escenario
asi como las propiedades tanto del ambiente como
de los elementos que existiran dentro de este. A
este lenguaje lo hemos llamado VEDEL, Lenguaje
para Descripcion de Ambientes Virtuales (Virtual
Environments Description Language) [10,11].

En wuna descripcion en VEDEL se pueden
identificar 3 secciones o parrafos, delimitados por
etiquetas de seccion, como se muestra en la figura
2. Cada seccidon cosiste de varias oraciones, las
cuales estan formadas por declaraciones separadas
por comas, y deben estar finalizadas por un punto.
La declaracion inicial debe ser el tipo de entidad a
representar (ambiente, actor u objeto), seguido de
manera opcional de un identificador unico, en el
caso de actores u objetos. El resto de las
declaraciones corresponden a las propiedades
deseadas para la entidad y los valores a ser
asignados a estas. Tales propiedades pueden incluir
posicionamiento, tamafio, propiedades fisicas
(color, forma, transparencia) o internas (energia,
estado emocional). Cada concepto expresado en la
descripciéon es verificado en la Dbase de
conocimientos, con la excepcion del identificador

individual, de manera que aquellos conceptos no
incluidos dentro de la misma serdn omitidos o
presentados como errores al usuario, segun el
método de funcionamiento del modelador.

[ENV]
Desert, cloudy, night.
[/ENV]

[ACTOR]
Knight Arthur, tall, wherever.

YoungWoman Betty, left Arthur.
[JACTOR]

[OBJECT]
House, center.

Chair, front house, color red, facing House.
[/OBJECT]

Figura 2. Ejemplo de descripcion escrita en
VEDEL.

La descripcion es enviada a un analizador
sintactico, el cual analiza y clasifica la entrada para
el modelador. El analizador es una maquina de
estados, que busca errores de tipo Iéxico y
sintactico, los sefiala y resuelve, ademas envia una
estructura de datos organizada de manera
jerarquica al modelador. El modelador utiliza esta
estructura para generar el modelo del ambiente
virtual, utilizando ademas una Dbase de
conocimientos para realizar la verificacion
semantica de los conceptos solicitados por el
usuario. El modelador extrac la informacion
necesaria de la base de conocimientos para su
correcta representacion en el modelo, primero
obteniendo las propiedades internas y visuales de
cada entidad, y posteriormente con las propiedades
geométricas: tamafio, posicidon y orientacion.

Para este proyecto, la base de conocimientos esta
formada por 4 clases base: Environment, que
incluye todos la ambientes base, Actors, donde se
almacena la informacién pertinente a los actores,
Objects, que incluye los datos para las entidades
tipo objeto, y Keywords, que son todas aquellas
palabras que indican propiedades de cualquier
elemento del escenario. Asi mismo, se establecen
diversas propiedades de tipo objeto y dato, desde
relaciones “Contrario A” hasta conceptos como

“Color” o “Tamaino”. Estas propiedades se
asignan con los valores por defecto para la entidad
o concepto en al menos un individuo por cada
clase. Este individuo debe llevar el nombre de la
clase y terminar con el sufijo “ default”. Si se
desea establecer varios individuos, esto es, varios
conceptos cuyo morfologia bésica sea similar,
dentro de una misma clase, estos pueden llevar el
nombre propio de la entidad o concepto, pero
siempre terminados con el sufijo “ default”.
El caso del medio ambiente solicitado, el
conocimiento almacenado en la ontologia es
utilizado para establecer el contexto que la
arquitectura subyacente utilizara para desarrollar la
escena, incluyendo las leyes que gobernaran sobre
el ambiente y las entidades, y las instrucciones que
permitiran a los agentes el desarrollo de las
entidades que tengan asignadas, tales como las
acciones que pueden ejecutar o sufrir, los
parametros que regirdn su evolucion, o las
emociones que puedan representar.
Para las entidades, la informacion es extraida de
los diversos individuos, y las propiedades internas
y externas son interpretadas de acuerdo al
conocimiento almacenado en la ontologia, esto es,
conceptos como “color”, ‘“cabello”, “energia” o
“tristeza” son transformados en valores numéricos
o estructuras de datos interpretables para el resto
de la arquitectura, a través de una funcién de
inferencia que revisa la base de conocimientos para
validar, convertir y, de ser necesario, inferir la
informacién necesaria de otros apartados dentro de
la misma base.
Una vez que completada la primera fase, el
modelador prosigue con el posicionamiento de las
entidades dentro del escenario, siempre guiandose
por las solicitudes hechas por el usuario. Esta fase
es auxiliada por un algoritmo CSP [12], el cual se
encarga de verificar y validar que la posicion
asignada a una entidad sea valida con respecto a la
descripcidon y a la propiedades intrinsecas de la
entidad y las entidades a su alrededor.
Nuestro CSP esta formado por la tupla siguiente:
e Un conjunto finito V de x de variables, en
nuestro caso, las entidades del escenario.
e Un conjunto D de valores posibles para
cada variable en V, como se muestra en la
figura 3.

e Un conjunto C de restricciones, el cual esta
compuesto por las ecuaciones listadas en la
figura 3., ecuaciones (1.a) a (1.c).

Por tanto, una solucion valida a una descripcion
cualquiera es una asignacion de valores de los
dominios de D a las variables en V, tales que
ninguna restriccion en el dominio C sea violada
[13].
Las ecuaciones seleccionadas para validar
posicionamiento y resolver conflictos espaciales y
colisiones fueron seleccionadas debido a que
pueden ser resultas en lapso corto, y que sus
parametros permiten moldear el volumen que
representan a la forma de las entidades, de manera
que al utilizar varios volimenes se cubra toda la
entidad, sin que esto impacte en la complejidad
computacional o la velocidad de calculo en el
proceso.
Cada entidad y concepto tiene asignada una o
varias funciones en su entrada en la base de
conocimientos, llamadas etiquetas, las cuales son
instanciadas con los valores asignados a la entidad,
y posteriormente validados contra el resto de las
entidades. Adicionalmente, se asigna una serie de
etiquetas para indicar los puntos caracteristicos de
la entidad, mismas que son utilizados para validar
la posicion de un entidad con respecto a otra
(Figura 4).

Conjunte V = {xy, ..., r.} doe varinbles doade o

1 i {ur'.-!'.‘..";:l Ltal cpue

o P = {r gy)} (posicidn de la entidad).
® 0} {'il.-”._. l’.'-! orientaciin de la entidad).

& 5 [< :- {oseala oo la onticlad).
Conjunta [para el conjunta V' tal que

o [HP)- W
s (M} 0, 27], % & O

s S =13

Conjunte © de westricciones, formmle por las siguicates luneiones:

o (&) + (&) + @)1

Figura 3. Definicion del CSP para el modelador.

La descripcion ya analizada es revisada para
encontrar dependencias entre las entidades, y a

partir de éste analisis, se genera una lista que el
modelador utiliza para asignar los valores iniciales
a cada entidad, haciendo uso de la funcidén de
inferencia para obtener los valores y funciones
asignados a cada concepto. Aqui se definen las
entidades pivote, es decir, aquellas cuyo posicion
no depende de otras.

El modelo es revisado para verificar que no existan
colisiones entre las entidades. Si estas ocurren, se
procede a la modificacion de los valores de las
entidades en conflicto. Una vez realizados los
cambios en el posicionamiento, se procede con la
verificacion de las restricciones, de tal forma que
las nuevas posiciones se validen, o se computen
nuevas posiciones si la entidad entra en un
conflicto de posicionamiento. El proceso se repite
hasta encontrar una solucion que satisface las
restricciones, o un punto cerrado, esto es, una
solucidén que no cumple las restricciones y que no
puede ser modificado para cumplirlas. En el caso
de un punto cerrado, se procede a lo modificacion
de los valores de la entidades que fungen como
pivotes. Si el proceso no encuentra solucion alguna
después de estas modificaciones, se procede con un
informe de error al usuario, o se excluyen las
entidades en conflicto, segun la metodologia
seleccionada para el modelado.

El modelo final es enviado a una funciéon que se
encarga de generar las salidas necesarias para que
la arquitectura pueda comenzar con la
representacion del escenario, incluyendo Ia
representacion visual y el contexto para el nucleo y
los agentes. Esta funcion utiliza un método
Controlador Vista-Modelo, de forma que la salida
pueda ser modifica sin necesidad de modificar el
codigo de la aplicacion.

VCoNCLUSIONES Y RESULTADOS

El prototipo mas reciente de nuestro modelador ha
sido modificado para cumplir con los
requerimientos de integraciéon con el proyecto
DRAMA [14], actualmente en desarrollo en el
IRIT, como una colaboracion con el equipo de
Sistemas Distribuidos del CINVESTAV,
Guadalajara. Fue codificado en lenguaje Java,
utilizando el mas reciente SDK, version 6, asi

como la API del proyecto Protégé, la cual permite
el acceso a la base de conocimientos. Finalmente,
el Modelo Vista-Controlador es manejado por la
clase FreeMarker, lo cual permite modificar la
apariencia de las entidades sin acceder al codigo
fuente de la aplicacion.

Figura 4. Ejemplos de etiquetas de colision y de
puntos caracteristicos.

La figuras 5, 6 y 7 muestran algunos ejemplos de
los escenarios obtenidos a través del modelador,
utilizando estandar 3XD para la visualizacién en
3D. La cantidad de ambientes posibles se puede
expandir al ingresar nuevos conceptos a la base de
conocimientos, asignando también los modelos que
representaran tales conceptos en el caso de
entidades fisicas. Los conceptos intrinsecos o
abstractos son manejados por la arquitectura
subyacente, siendo necesario que ésta pueda
representarlos para que tomen efecto dentro del
ambiente virtual.

A la fecha de redaccion del presente articulo, resta
conducir la integracion del modelador tanto con el
proyecto DRAMA como con el resto de Ia
arquitectura GeDA-3D. Asi mismo, es necesario el
disefio de un verificador de congruencia semantica
completo, que permita encontrar inconsistencias
dentro del contexto de la descripcion. Finalmente,
se trabaja en la generacion del contexto, encargado
de indicar a la arquitectura las reglas que deben
regir sobre el ambiente virtual, las propiedades y
acciones permitidas dentro del mismo, y las

acciones a llevar a cabo para cada suceso posible
dentro del contexto del ambiente, en concordancia
con los requerimientos del usuario .

Figura 5. Composicion simple.

Figura 6. Ejemplo de ambiente “Teatro”.

Figura 7. Composicion simple en ambiente
“Bosque”.

. VIREFERENCIAS

[1]

[8]

Demitri Plemenos, Georges Miaoulis, and
Nikos Vassilas. Machine learning for a
general purpose declarative scene modeller.
In International Conference GraphiCon
2002, Nizhny Novgorod (Russia),
September 15-21, 2002.

Felix Ramos, Fabiel Zuiiga, and Hugo L
Piza. A 3D-space platform for distributed

applications management, International
Symposium and School on Advanced
Distributed Systems 2002. Guadalajara,

Jal., México, November 2002.

Marvie, Jean-Eudes and Perret, Julien and
Bouatouch Kadi. The FL-system: a
functional L-system for procedural
geometric modeling, The Visual Computer
5-21, pages 329 -339, june 2005.

Parish, Y. 1. and Miiller, P. 2001.
Procedural modeling of cities. In
Proceedings of the 28th Annual Conference
on Computer Graphics and interactive
Techniques SIGGRAPH '01. ACM, New
York, NY, 301-308.

Bob Coyne and Richard Sproat. Wordseye:
An automatic text-to-scene conversion
system. In SIGGRAPH ’01: Proceedings of
the 28th annual conference on Computer
graphics and interactive techniques, pages
487-496. AT&T Labs Research, 2001.

G. Kwaiter, V. Gaildrat, and R. Caubet.
Dem2ons: A high level declarative modeler
for 3D graphics applications. In
Proceedings of the International Conference
on Imaging Science Systems and
Technology, CISST’97, pages 149-154,
1997.

William Ruchaud and Dimitri Plemeno.
Multiformes: A declarative modeller as a
3D scene sketching tool. In /CCVG, 2002.

Ken Xu and James Stewart and Eugene
Fiume .Constraint-Based Automatic
Placement for Scene Composition, Proc.

[9]

[10]

[11]

[12]

[13]

[14]

Graphics Interface, May 2002, Calgary,
Alberta

Fabiel Zuniga. Agent Convenable Behavior
fiin Dynamic Virtual Environments. PhD
thesis, CINVESTAV GDL, México, 2007.

Jaime Alberto Zaragoza Rios.
Representation and exploitation of
knowledge for the description phase in
declarative modeling of virtual
environments. Master’s thesis, Centro de
Investigaci’on y de Estudio Avanzados del
IPN, Unidad Guadalajara, 2006.

Jaime Zaragoza, Félix Ramos, Héctor
Rafael Orozco, Véronique Gaildrat.
Creation of Virtual Environments Through
Knowledge-Aid Declarative Modeling.
Dans Congress of Logic Applied to
Technology (LAPTEC 2007), UNISANTA
- Santa Cecilia University, Santos, Brésil,
21/11/2007-23/11/2007, 10S Press, p. 1-8,
novembre 2007.

Daniel Hunter Frost. Algorithms and
heuristics for constraint satisfaction
problems. PhD thesis, University of

California, 1997. Chair-Rina Dechter.

Stuart J. Russell and Peter Norvig.Artificial
Intelligence: A Modern Approach. Pearson
Education, 2003.

Andriamarozakaniaina T, Pouget M,
Zaragoza R, Gaildrat V. DRAMAtexte :
indexation et base de connaissances.
Premier colloque international sur la
notation informatique du personnage. 16-
17 mai 2008. A paraitre.

ANivMATION oF AutoNomous AVATARS OVER THE GEDA-3D AGENT ARCHITECTURE

Orozco Aguirre Héctor Rafael?, Zaragoza Rios Jaime Alberto® and Thalmann Daniel®.

*Centro de Investigacion y de Estudios Avanzados del I.P.N.
Unidad Guadalajara
Av. Cientifica 1145, Col. El Bajio 45010 Zapopan, Jal., México
E-mail: {horozco, jzaragoz}@gdl.cinvestav.mx
*Ecole Polytechnique Fédérale de Lausanne
EPFL IC ISIM VRLAB Station 14 CH-1015 Lausanne, Switzerland
E-mail: daniel.thalmann@efpl.ch

ABSTRACT

All interactive applications, such as computer
games, video games and collaborative virtual
environments, are in need of believable virtual
entities. But actually, the behavior of the avatars or
virtual creatures (VC) in current applications and
systems is still very artificial. This work is focused
on the definition of the minimum conscience of the
avatars, within the GeDA-3D Agent Architecture
using Conscious and Affective Personified
Emotional (CAPE) Agents. The conscience and
cognitive processes of the avatars allow them to
solve the animation and behavior problems in a
more natural way. The minimum conscience gives
the avatars knowledge of how their structure is
formed and of their environment. Thus, the avatars
can learn movements and compute motion
planning activities for acquiring basic skills. We
use the CAPE Agents to control the behavior of the
avatars in 3D virtual environments and we apply
cognitive processes involving emotional
information for animating the avatars. These
processes include mainly: appraising and
expressing emotions and regulating emotion in the
self and others, and using emotions in adaptive
ways.

Keywords: Avatar, conscience, GeDA-3D,
knowledge base, agent, behavioral animation.

1 INTRODUCTION

In the last years the graphical representation and
animation of VC has been focused on the use and

manipulation of predetermined animated forms and
sequences. Nevertheless, in order to have
autonomous avatars or VC, it is necessary to
consider them as 3D semantic entities, with well-
defined characteristics and functionalities. In order
to make virtual environments more realistic, the
avatars should exhibit a complex and believable
behavior. A lot of studies about emotions exist and
there are several models of emotion proposed in
the literature. However, most of designed
computational models of emotion only represent
specific situations and respond in predetermined
way to them. Nowadays, an important trend in the
development of 3D dynamic virtual environments
is to integrate proper characteristics of human
being, such as personality, moods and emotions,
into virtual characters or avatars with the aim of
making them more believable and conceivable.
Avatars need a convenient emotion model in order
to synthesize emotions and express them. The
emotion model should enable the avatars to
distinguish and manage emotions in the same way
that human beings do.

The human mind has been studied for many
philosophers for a long time. The human
consciousness is considered one of the most
interesting topics in the philosophy. This topic is
called philosophy of mind. An important aspect of
human consciousness is the self-knowledge or self-
awareness, defined as the ability to perceive and
reason about oneself. This aspect is highly
developed in the human being in comparison with
other animals and it is considered very important

for making agents with an intelligent behavior. A
human being unaware of his or her personal
characteristics, abilities and skills does not know
that he or she can do and cannot do and he or she
will have difficulties for interacting with others in
a natural way. The conscience in general is defined
as the knowledge that the human being has of itself
and of its environment. In this work, we define the
conscience of an avatar as the notion that it has of
its sensations, thoughts and feelings in a given
moment in its environment. That is to say, the
avatar conscience is the understanding of its
environment and its self-knowledge. In other
words, it is the notion that it has of its sensations,
thoughts and feelings in the determined
environment. Therefore, the self-knowledge makes
the avatars have self-conscious and an internal
representation of themselves. We use CAPE agents
to develop the ability of avatar to perceive and
reason about itself on the basis of the following:
consciousness (involve thoughts, sensations,
perceptions, personality, moods and emotions),
stimuli and sensorial entrances (relevant events),
introspection (ability of avatar to reason about of
its perceptions and any conscious mental event),
awareness (ability of avatar to be conscious and
comprises perceptions and cognitive reactions to
events, it does not necessarily imply
understanding), self-consciousness (awareness and
understanding of avatar, it gives the avatar the
knowledge that it exists as an virtual entity
separate from other avatars and virtual objects),
and qualia (subjective properties of the perceptions
and sensations of avatar).

In this work we use a knowledge base for
animating avatars. We propose an ontology to
provide the semantic definition and awareness of
the internal structure of avatar (skeleton), its
behavior (personality, emotions and moods) and its
learned skills. In fact, the avatar uses the
knowledge base first as a part of its conscience and
second to implement a set of algorithms that
constitute its cognitive knowledge. Therefore, an
avatar as a human being needs to have conscience
to keep equilibrium or achieve successfully
complex activities. We argue that consciousness is
very important and plays a crucial role in making

emotional agents with human abilities and skills.
Thus, the avatars can have awareness of how its
skeleton is formed (considering its mobility and
physical restrictions) and also of the rules that
govern its environment. At this moment, we are
working at the design of autonomous avatars able
to act in 3D virtual environments, maintaining the
idea that an avatar is an animated virtual creature,
whose motions do not need to be defined
previously. But the generation of dynamic
autonomous movements with high degree of
realism is too complicated. However, it is possible
to make models of interactions between avatars
and their environment in applications of computer
animation and simulation [1]. For example, the
virtual humans can be used as virtual presenters,
virtual guides, virtual actors or virtual teachers.
Thus, the behavior of the virtual creatures such as
virtual humans can be controlled using conscious
emotional agents to show how humans behave in
various situations.

Our main objective is not modeling the complexity
of human being's behavior, but simulating
conscious emotional agents with a personality and
dynamic emotional behavior. Thus, the decision
making and action selection of the CAPE Agents
must be regulated and controlled not only by
external stimuli, but also by their personality,
emotions and moods. In the next section we will
give an overview of related work. The third and
fourth sections are dedicated to the proposal of this
work. In the last section we will present the
conclusions obtained from this work.

. I REeLATED WORK

An avatar (autonomous virtual creature) or virtual
character is a virtual entity that lives and interacts
in a 3D virtual environment. Avatars are entities
composed by well defined features and
functionalities. Articulated models are very used
for modeling avatars. The animation of such
models is often based on motion capture or
procedurally generated motions. Despite the
availability of such techniques, the manual design
of postures and motions is still widespread,
because it is possible to have a total control over
the results. However, it is a laborious task because

of the high number of degrees of freedom present
in the models. In this section we will summarize
the most important related topics and we give our
opinion about them.

Motion Planning Algorithms

Motion planning has multiples applications. In
Robotics is dedicated to endow robots of
intelligence (autonomy) so they can plan theirs
owns movements. The problem of planning
consists in finding a path for the robot since an
initial point to a goal point without colliding with
the obstacles in the environment [2]. In Artificial
Intelligence (AI) the term planning takes a more
interesting meaning. In this area the problems of
planning are modeled with continuous spaces [3].
The problem of planning seems more natural and
consists in defining a finite set of actions that can
be applied to a discrete set of states and construct a
solution by giving the appropriate sequence of
actions. In [4] was presented a motion planner for
computing animations for virtual mannequins
cooperating to move bulky objects in cluttered
environments. In this work were considered two
kinds of mannequins: human figures and mobile
robot manipulators.

Inverse Kinematics Algorithms

The kinematics algorithms are widely used for the
animation of avatars. These algorithms use
information like the position of joints angles and
limbs lengths. In order to animate the avatars,
structures hierarchical are formed by using a
parent-child system similar to a tree. Each limb of
the structure is a child node in the tree whose
parent node provides a reference system from
which it is describe. The parents are themselves
child nodes of limbs above in the hierarchy and
this recursive relationship continues up to a root
node and the other end of the tree are leaf nodes
which are children that have not descendants.

Reinforcement Learning Algorithms

In [5] two well-known reinforcement learning
algorithms are presented. These algorithms are
used for exploration, learning and visiting a virtual

environment. A different approach for animating
humanoids is proposed in [6]. However, this
approach has many restrictions in the used models.
In this work our approach is different, because we
use reinforcement learning as a cognitive process
that allows the avatar to learn new skills within a
certain context. Our approach is very distinct
because it works with conscience that is not just
knowledge but cognitive processes, which allow us
to animate avatars in a most natural way.

Motion Capture and Skeleton-Based Motion
Planning

In recent years the films have been successful
exploding the technologies of motion capture and
virtual actors. Motion capture is the process of
capturing the live motion from a person or animal
in order to animate an avatar or virtual character
[7]. Motion capture provides an impressive ability
to replicate gestures, synthetic reproduction of
large and complicated movements, behavior
analysis, among others. At the moment, the motion
capture systems allow the collection of information
for illustrating, studying and analyzing the
characteristics of body limbs and joints during
various motions, such as walking, running, etc.
However, though impressive in the ability to
replicate movement, the motion capture process is
far away from perfect. Despite the longer time
required to visualize the captured motion, the
optical motion capture it is often preferred to
magnetic technology. The avatars animation design
generates libraries of postures and motion
sequences using a motion capture system and later
combined the obtained data with standard editing
tools. In the real-time motion generation, the
generation of avatars motions in real-time is based
on the combination of pre-recorded sequences or
dynamic motion capture allows avoiding the
recording stage.

Role of the Emotions in Emotional Agents

Through the time, several models have been
proposed in a broad range of scientific areas to
describe the functioning of the human mind.
Emotions in special have received increasing

attention and interest in several fields related to Al
mainly in Human-Computer Interaction (HCI) and
Human-Robot Interaction (HRI), where emotional
receptivity (perceiving and interpreting of facial
expressions) and emotional expressivity
(expressing emotions) are crucial and play an
important role. Multi-Agent Systems (MAS) cover
problems related to the autonomy, the cooperation
and coordination between agents as well as the
interaction of believable agents in virtual
environments. In MAS, individual agents are
assumed to be autonomous. That is to say, they
should have the capability to deliberate and decide
which actions to take or which tasks to perform in
order to reach their goals. Several emotional
architectures of agents have been proposed. The
researchers have been particularly interested in
designing models in order to make realistic and
improve believability of the agents, which are
applied in artificial situations, such as simulations
in virtual environments.

Emotional agents are used to simulate the human
being's reasoning by means of the influence and
effect of emotions. We argue that it is necessary to
add human characteristics, such as personality,
mood and emotion, in order to design much more
conceivable and believable agents. In [8] is
described an architecture based on the Emotional-
Belief-Desire-Intention (EBDI) agents by using
emotional updating functions into four
components: Emotion, Belief, Desire and
Intention. This architecture demonstrated that
EBDI agents have better performance than rational
agents, because they have more flexibility and
ability to be adaptable and survive in dynamic
environments. Main roles of the emotions in agents
are: action selection, motivation, adaptation, social
regulation, goal management, attention focus,
strategic processing and self-model.

Emotion and Personality Models Applied to
Agents

The OCC model [9] is considered as a standard
model for emotion synthesis and as the best model
of categorization of emotions. The OCC model
explains the human emotions and tries to predict
under which situations which emotions can be

experimented. Emotions are divided into the
following groups: reactions to events, actions and
objects. This model specified 22 emotion
categories based on positive or negative reactions.
Thus, the consequences of an event can please or
displease the agent (pleased/displeased), the agent
can accept or reject actions (approve/disapprove),
and the characteristics of an object can attract or
not the attention of agent (like/dislike). The OCC
model was developed to understand the emotions
instead of simulating them.

The model FLAME (Fuzzy Logic Adaptive Model
of Emotions) was created to produce emotions and
simulate the emotional intelligence process [10].
This model uses fuzzy rules to explore the
capability of fuzzy logic for modeling emotional
processes, and capturing the fuzzy and complex
nature of emotions. Nonetheless, it is very
important to consider the personality for
determining the consistency of emotional reactions
over time.

The OCEAN model or Five Factor Model [11] is a
purely descriptive model of personality, it groups

personality traits of human being in five
dimensions: Openness, Conscientiousness,
Extraversion, Agreeableness and Neuroticism.

Although this model is widely accepted, it has
many criticisms, because it does not indicate how
exactly the personality is affected by obtained
stimuli and experienced situations.

Masuch, Hartman and Schuster [12] presented a
different model represented by seven personality

dimensions: Suspicion, Curiosity, Sociability,
Aggression, Helpfulness, Vividness and
Conscientiousness. These seven personality

dimensions are closely related to specific aspects
of more general dimensions of the OCEAN model.
Due to the direct correspondence between
emotions and facial expressions, many researchers
prefer to employ the Ekman's six basic emotions
(joy, fear, sadness, dislike, anger and surprise) for
facial expression classification [13] and the
OCEAN model or the OCC model in combination
with the OCEAN model.

. I GeEDA-3D: AN ARCHITECTURE FOR
DeveLorinG CAPE AGENTS

In this work we present an extension of the GeDA -
3D Agent Architecture [14, 15]. This architecture
provides a platform useful for integrating and
managing distributed applications, and it offers
facilities to manage the communication between
intelligent emotional agents. Figure 1 shows the
GeDA-3D Agent Architecture. This architecture
has been grouped in different modules: Virtual
environments editor (VEE), rendering, GeDA-3D
Kernel, agents community (AC) and context
descriptor (CD). The striped rectangle encloses the
main components of GeDA-3D: scene control,
agent control and scene editor. The VEE includes
the scene descriptor, interpreter, congruency
analyzer and constraint solver.

The VEE provides an interface between the
GeDA-3D platform and the user; it specifies the
physical laws that govern an environment and it
describes a virtual scene taking place in such
environment. Rendering addresses all the issues
related to 3D graphics representation in a visual
medium like the screen or the monitor; it allows
the design of virtual objects and displaying of the
scene. The EAC is composed by the agents that are
in charge of ruling virtual objects behavior. The
scene gives to the agents a detailed description
about what we want them to do instead of how we
want them to do it. Furthermore, this scene might
involve a set of goals for a single agent, and it is
not necessary that these goals are reached in a
sequential way. It is also not necessary to give the
avatar a set of actions to perform; we only need to
determine a set of goals in a sequence of primitive
actions. So, we need agents able to add shared
skills into their global behavior. The user is
enabled to construct the scene using a high level
language similar to human language. The user does
not provide the sequence of actions that the avatar
must perform; he only specifies the goals that
should be achieved by the avatars. That is, the
agents behavior is in charge of trying to reach the
goals specified in the scene description. The reason
of creating this kind of scenes is to visualize a
behaviors-based simulation, in other words, the
user specifies what the agents must do, instead of

how they have to do it. Therefore, two similar

specifications might produce different simulations.
Avatars needed; defaultdisplay:

states of a character; pre- and

post-conditions for interactions

Context displas”| Animated
Descriptor avatars |30 Canvas

Scene

, A
Descriptor
Language Renderer-specific
attension; primitives
» semantic rules
Destription
ofthe c"”";’" COM-commands
current spacilc >
see origntation Updates | Scene 4 Rendelrer
constaints stites; | Control [Plugein
perfor M Collsion events;
inféractions
Natural ¢ aalrs gomety parsers
laws Geometric
y CO-commands

- Avatars
| Congruency | | Constraint sl Description

"l Analizer Solver sies | Action

OBl Geometric of the | Succession
U commands I Bl-commands world
Congruent
COB-commands

Interpreter

Performs lexical,
sintactical and
semantic
analysis

Agents Control j=

holds Agents

w)nnecled

Message from i:
Succassion of actions to perform

Sender |Receiver

A
Message from j;
current local state of the world

Effector | Sensor

Effector | Sensor

Agent i . Agentj

Adaptative Behavior Adaptative Behavior

Figure 1. GeDA-3D Agent Architecture

Autonomous Avatars Animation over GeDA-3D

In order to animate avatars it is necessary to use
dynamic planning and learning algorithms to
compute motions. Avatars should be conscious of
their internal structure (skeleton) and know how to
combine simple or primitive movements to make
complex activities or motions, which allow them to
learn several skills and abilities. Figure 2 shows all
the necessary elements and considerations to take
into account, to animate articulated virtual
creatures over the GeDA-3D Agent Architecture.
In addition, it is necessary to use sensors in order
to obtain stimuli, events and influences of the
environment that can alter the behavior and motion
of avatars, according to their personality, emotions
and moods. For example, if an avatar is happy or

angry, its facial expression indicates its emotion,
and its movements and behavior are changed;
when it is sad its movements are slower than when
it is happy.

| Virtual Environment |

Perceptions

Sensors

Sensorial
entrances and
stimuli

Primitive

Skeleton

Definition Motions

Dynamic
planning
algorithms

Y

Conscience,
Emotional Intelligence and
Cognitive Processes

A

Goals
specifiction

Leaming
algorithms

Figure 2. Necessary elements to animate avatars
using CAPE Agents

In the scheme shown in figure 3 the posture and
the motions of avatar are coordinated. The posture
control is performed by references that indicate the
direction and the required degree of stability of the
avatar body. The sensorial entrances produce
readjustments in the position of avatar and
contribute to the modification of its corporal
scheme. When the avatar makes a motion, advance
adjustment of posture is produced (pro-action).
The brain of the avatar contains an internal model
of its corporal segments, relative sizes, their
relations and positions. Therefore, the corporal
scheme of avatar is the source of its corporal
perception. Thus, the avatar adopts a posture and a
facial expression that reflect its emotions and
moods. The corporal scheme of avatar is a
representation of its skeleton and its possible
actions. This scheme is defined using: semantic
and lexical information on the parts of the body

and the skeleton of avatar, visual-spatial
representations of the avatar body and the objects
of its environment (for instance, the nose is
situated in the middle of the face, the ears one to
each side of the head, the mouth under the nose,
the eyes above the nose and one to each side of the
face), and corporal references and composition of
the motions on the basis of the corporal perception
of avatar and its influences.

1
Rofarences | Desciion | [Subliy |
Multi-senserial
entrances ! Posture
Fiior Corpoal schirme | control
Tt {avatar brain] [ratro-action|
Ear .
Couporsl panception Avatar prometry
Geavitational recepinrs (skeleton)
Moticn control

HIT

LT B T

Figure 3. Control and coordination of the posture
and motion of avatar

Figures 4 and 5 present the proposed modules of
learning and dynamic planning for the GeDA-3D
Agent Architecture. The personality, emotions and
moods are related to learning and dynamic motion
planning of avatar. The avatar should explore its
body to know its structure and to learn a set of
primitive motions, the basis for generating

complex motions. In addition, the avatar receives a
set of goals and plans, and a series of motions
necessary to fulfil them.

| Virtual Environment |

p amsmrany |

| Expioring anvd FnowTeaps of |:
E Fhrafelon EI

| Toarming basts mabons |:
e
Tamarating and learing | ||
compler motions (panmingd | | :

facial axprassicad HI

i - i
] | Tearning sk, poatures and | ||

Figure 4. Learning module

The avatar explores its body to know its structure
and to learn a set of primitive motions, the basis
for generating complex motions. In addition, the
avatar receives a set of goals and plans, and a
series of motions necessary to fulfil them.

| Interpreter || Virtual Environment |

L3
Goals
spacifiction

Agent

Figure 5. Dynamic motion planning module.

In this work we propose the use of synergies to
support the idea that the avatar cannot control all
the degrees of freedom of its skeleton. For this
reason a set of simple or primitive motions is
selected (natural motions) to generate complex
motions. Therefore, synergies are the base of the

motions of avatars and can be manipulated by
means of learning and dynamic planning
algorithms.

. Iv. AN OnTOLOGY FOR CAPE AGENTS

In this work we propose an ontology to define the
internal structure of avatar (skeleton), its behavior
(personality, emotions and moods) and its learned
skills. The main objective is the exploitation and
use of the information and knowledge offered by
the ontology in order to create autonomous
animations of avatars. This ontology provides the
definition of the internal structure of avatar, its
behavior and its skills, and it permits share
semantic information of avatar among CAPE
Agents in 3D dynamic virtual environments. Thus,
the proposed ontology is used as basis for
applications of motion planning and motion
learning of avatars. This ontology offers a formal
description of CAPE Agents. Figure 6 shows the
relationships between the main classes of the
proposed ontology. An avatar is defined using a
morphology description (qualitative description)
that defines its skeleton (geometry of avatar) and
the anthropometry description (quantitative
description) that offers information about its age,
gender, weight and height. In addition, as a part of
its behavior, an avatar has a personality, emotions
and moods.

Avatar

haslD int hasAnthropometryDescription

hasMorpholagyDescription hashame g
hesDescipen| g (AnthropometryDescription)
MorphologyDescription [m

hasGender fint

hasPersonalty hasSkills*

hasSkeleton

hasHeight ~ hasWeight
hasEmationalStale hasMoodState
M Measurement
Persanality m hasDescription String
hasUnitOfMeasurement [Siring

hasValue float

(EmotionalState) (* MoodState)

Figure 6. Semantic definition of avatar

The internal skeleton of an avatar (see figure 7) is
formed by several parts, bones and joints in
specific (skeleton parts). Each joint has a name and
can have joints parents and/or joints children.

There are motion constraints defined for each joint
and a set of simple motions that define the alphabet
of basic movements (micro-animation) that will be
used to generate complex motions by means of
combination (macro-animation) between them.
Also each bone can be united to one or more joints,
and each joint has its position in the skeleton of
avatar. Each bone of avatar has its measures that
can be expressed in a predetermined unit of
measurement, for example, in centimeters or
decimeters.

foinedBongs
noAl*

beginAt

hasBones" Skeleton s oints"

IhasDescription Sting

isComposedOfSkeletonParts”

SkeletonPart

L |

Bone asBones”

‘hasName Siring

| I—helongsToSkeletonParts‘ hasChiId!eﬂ
hasMeasures

* elongs ToSkelstonParts*

(JointConstraints M—hasMotionConslrainls

hasBasicMotions*

hasJoints'—b(Joint

fashame (Sing

‘ Lh:s;a‘renls‘

as30Position

Measurement

BasicMotion _3DPosition

float
float
2 (foat

hashame
hasDescription ~ [Sting
onTheMationAxis [3ting
fas\Value float

=

=3

Figure 7. Skeleton definition of avatar

The emotional state of avatar is shown in figure 8.
The emotional state is a set of emotions with an
emotional history. A set of facial expressions and a
set of postures associated with them correspond to
every emotion of avatar. The facial expressions are
produced with the help of facial markers (similar to
joints). Body markers provide each posture with its
own set of animation sequences. Emotions can be
positive or negative, active or passive, but they

always are of short duration. If an avatar is sad, it
is able to adopt a facial expression and posture that
show its emotional state.

P arenty”

L

Figure 8. Emotional state of avatar

In the same way, the mood state of avatar is a set
of moods with a mood history. Moods can also be
positive or negative and active or passive, but also
neutral. The personality of avatar is defined with
the help of personality traits that can be positive or
negative and active or passive. Personality traits
can determine the behavior of avatar under the
influence of certain events and stimuli. Finally,
each skill that avatar learns is defined using a set of
animation sequences. These sequences imply
skeleton parts of avatar in motion and a set of
corresponding facial expressions associated with
them.

V CAaSE STUDIES

Battle: This is a small example that shows a battle
between two agents in a 2D environment (see
figure 9). They are represented graphically as
frogs. In this battle one frog fights against the other
throwing bullets and trying to hit its rival. Both
frog agents have the same kind of behavior. The
behavior is based on basic actions like move to the

left or right and shoot. The mixture of these three
simple actions defines the decision making.

Farw Harnad Ix#

IF | ol | Ema

lFI'NI_?I

[Frea_1]

Figure 9. Frogs battle in 2D

Persecution: This case study was implemented
using a virtual 3D environment which runs over
the GeDA-3D Agent Architecture. Two kinds of
agents are used, one is offensive and the other is
defensive. The offensive agent persecutes the
defensive one. The defensive agent tries to avoid
the offensive agent's persecution, evading it when
it is near and fleeing when it is closer. Both are
emotional agents (see figure 10). Three different
emotions have been defined for these agents:
anger, joy and fear. The avatars modify their facial
expressions and postures showing the emotion
predominant in their emotional state. The
implemented case studies were made using the
PEM model [16] for updating the emotional and
mood states of the avatars.

Figure 10. An offensive avatar that persecutes a
defensive avatar

. VI CONCLUSIONS

In order to provide the avatars with a minimum
conscience it is necessary to give them the capacity
to understand their emotions. To understand a
concept means to be able to express emotions. In
this work, we have presented a methodology to
determine how the agents must express their
emotions. For each emotion we have defined two
types of representation: a cognitive representation
and a somatic representation. The cognitive
representation determines the causes of the
emotion. The interpretation of perceived events is
based on the cognitive representation of the
emotions, determined by the stimuli perceived and
by the personality traits of avatar. Thus, emotion is
triggered by particular interpretation of an event or
stimulus that corresponds to the cognitive
representation of the cause of a certain emotion.
We have defined the emotional mental state as the
cognitive representation of its inductive cause. The
somatic representation determines how the avatars
express their emotions. These representations
allow to identify the mental states correspondent to
each emotional state, and to determine the intensity
of the emotions taking into account the influence
of the avatar’s personality.

In this work we presented an extension of the
GeDA-3D Agent Architecture, and we have
showed how the CAPE Agents must express their
emotions using a knowledge base. The emotional
agents' behavior and their interactions are
influenced by their emotions and moods. Thus, the
intelligence, the conscience and the cognitive
processes help the avatars to take most accurate
decisions in a more natural way. These decisions
keep the agents' emotional status balanced and
keep them alive in the environment. Sensorial
entrances and influences the avatars receive from
their environment alter their behavior and motion
and also affect their emotions and mood. The
GeDA-3D Agent Architecture owns the features
defined in MAS theory, but it offers some extra
features specific to the problem. This architecture
contributes, for example, to the topics of goal-
specification, skill based behaviors, collective
knowledge bases, posture descriptors and facial
animation descriptors.

[1]

[2]

[4]

[7]

. VI REFERENCES

H. Schmidl and M. Lin. Geometry-Driven
Physical Interaction Between Avatars and
Virtual Environments. Computer Animation
and Virtual Worlds, Vol. 15, non. 3-4, pp.
229-236, 2004.

F. Schwarzer, M. Saha and J. Latombe.
Adaptive Dynamic Collision Checking for
Single and Multiple Articulated Robots in
Complex Environments. IEEE Transactions
On Robotics, Vol. 21, no. 3, pp. 338-353,
June 2005.

S. M. LaValle. Planning Algorithms,
Cambridge University Press, 2006.

C. Esteves, G. Arechavaleta and J. P.
Motion Planning for ~ Human-Robot
Interaction in Manipulation Task. 1EEE
International Conference on Mechatronics
and Automation, Vol. 4, pp. 1766- 1771
Laumond, 2005.

T. CondeW. Tambellini and D. Thalmann,
Behavioral Animation of Autonomous
Virtual Agents Helped by Reinforcement
Learning. Lecture Notes in Computer
Science, vol. 272, pp. 175-180, Springer-
Verlag: Berlin, 2003.

J. Peters, S. Vijayakumar, and S. Schaal,
Reinforcement Learning for Humanoid
Robotics. International Conference on
Humanoid Robots, pp. 1-20, Karlsruhe,
Germany, September 2003.

L. Herda, P. Fua and D. Thalmann.
Skeleton-Based Motion Capture for Robust
Reconstruction of Human Motion.
Computer Animation, pp- 77-83,
Philadelphia, PA, USA, 2000.

D. Pereira, E. Oliveira, N. Moreira and L.
Sarmento. Towards an Architecture for
Emotional BDI Agents. Proceedings of 12th
Portuguese Conference on Artificial
Intelligence, pp. 4047, 2005.

A. Ortony, G. L. Clore and A. Collins. The
Cognitive Structure of Emotions. New
York: Cambridge Universty Press, 1988.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. S. El-Nasr, J. Yen and T. R. loerger.
FLAME - Fuzzy Logic Adaptive Model of
Emotions. Autonomous Agents and Muti-
Agent Systems, Vol 3, no. 3, pp. 219-257,
2000.

R. McCrae and O. John. An Introduction to
the Five-Factor Model and its Application.
Journal of Personality, vol. 60, no. 2, pp.
175-215, 1992.

M. Masuch, K. Hartman and G. Schuster.
Emotional Agents for Interactive
Environments. Proceedings of the Fourth
International Conference on Creating,
Connecting and Collaborating through
Computing, pp. 96-102, 2006.

P. Ekman. Moods, Emotions, and Traits,
the Nature of Emotion: Fundamental
Questions. New York: Oxford University
Press, 1994.

F. Zuiiga, F. F. Ramos and 1. Piza. GeDA4-
3D Agent Architecture. Proceedings of the
11th International Conference on Parallel
and Distributed Systems, Fukuoka, Japan,
pp- 201-205, 2005.

H. I. Piza, F. Zudiga and F. F. Ramos. 4
Platform to Design and Run Dynamic
Virtual Environments. Proceedings of the

2004 International Conference on
Cyberworlds, pp. 78-85, 2004.

A. Egges, S. Kshirsagar, and N. Magnenat-
Thalmann. Generic Personality — and
Emotion Simulation for Conversational
Agents. Computer Animation and
VirtualWorlds, Vol. 15, pp. 1-13, 2004.

Creation of Virtual Environments Through
Knowledge-Aid Declarative Modeling

Jaime ZARAGOZA®, Félix RAMOS?, Héctor Rafael OROZCO® and Véronique
GAILDRAT®

“Centro de Investigacion y de Estudios Avanzados del I.P.N.
Unidad Guadalajara
Av. Cientifica 1145, Col. El Bajio, 45010 Zapopan, Jal., México

Email: jzaragoz, framos, horozco@gdl.cinvestav.mx

YUniversité Paul Sabatier

IRIT-CNRS UMR,
Toulouse Cedex 9, France
Email: gaildrat@irit.fr

Abstract. This article deals with the problem of Declarative Modeling of scenarios
in 3D. The innovation presented in this work consists in the use of a knowledge
base to aid the parsing of the declarative language. The example described in this
paper shows that this strategy reduces the complexity of semantic analysis, which
is rather time- and resource-consuming. The results of our work confirm that this
contribution is useful mainly when the proposed language constructions have high
complexity.

Keywords. Declarative Modeling, Virtual Environment, Declarative 3D editor,
Animated Virtual Creatures, Virtual Agents.

Introduction

The use of computer graphics and technologies in fields such as computer games, film-
making, training or even education has increased in the last years. The creation of
virtual environments that represent real situations, fantasy worlds or lost places can be
achieved with the help of several tools, from basic 3D modelers, like Flux Studio [1] or
SketchUP [2], to complete suites for creating 3D worlds, such as 3D Max Studio [3] or
Maya [4]. Creating complex and detailed worlds like those of films and video games
with these tools requires experience [5]. However, frequently those who design
scenarios are not experts; they don't have the experience of those who model the
scenarios in 3D.

Our aim is to provide final users with a descriptive language which allows them to
set a scenario and a scene and leaves the work of their creation for the computer. This

approach makes the VR available for final users of different areas, for those who create
scenarios of plays, games or simulations of film scenes, for instance.

If the user could just describe the scenarios and/or scenes intended to be created
and let the computer generate the environment, that is, the virtual scenario and the
elements necessary for animating the scene, the creation of virtual environments could
be at the reach of any user. So, even the non-expert users could find in the VR a
valuable tool for completing their tasks. The objective of the GeDA-3D project is to
facilitate the creation, development and management of virtual environments by both
expert and non-expert users. The main objective of this article is to expose the method
for generating virtual scenarios by means of the declarative modeling technique,
supported by the knowledge base specialized in semantic analysis and geometric
conflict solving. We adopt the definition from [6] for:

Definition 1: Declarative modeling is “a technique that allows the description of a
scenario to be designed in an intuitive manner, by only giving some expected
properties of the scenario and letting the software modeler find solutions, if any, which
satisfy the restrictions”. This process usually is divided in three phases [7]: Description
(defines the interaction language); Scene generation (the result of one or more scenes
the modeler generates, that match with the description introduced by the user); Insight
(corresponds to results presented to the user; if more than one result is found, the user
must choose the solution).

The bases for the creation of the virtual scenario are centered in the declarative
modeling method, which is supported by constraint satisfaction problem (CSP) solving
techniques. These techniques solve any conflict between the geometry of the model's
entities. This procedure is also supported by the knowledge base, which contains all the
necessary information to both satisfy the user's request, and validate the solutions
obtained by the method.

The following parts of this chapter contain the description of the related works, the
description of GeDA-3D architecture (the GeDA-3D is a complete project that includes
the present work as one of its parts), our proposal to declarative modeling with the use
of ontology, our conclusions and future work.

1. Related Works

The creation of virtual worlds and their representation in 3D can be a difficult task,
especially for the users with lack of experience in the field of 3D modeling. The reason
is that the tools necessary for modeling are often difficult to manage, and even
experienced users require some time to create stunning results, such as those seen in
video games or movies.

There are several works focused on declarative modeling. Some of them are
oriented to architectonic aspects, others to virtual scenarios generation, sketching or
design. Among the tools focused on architectonic development we can highlight the
following ones:

The FL-System by Jean-Eudes Marvie et al. [8] specializes in the generation of
complex city models. The system’s input is defined in a specialized grammar and can
generate city models of variable complexity. It is completely based on a System-L
variant and uses VRML97 for the visualization of the models.

CityEngine [9], by Yoav I. H. Parish and Pascal Miieller, is a project focused on
the modeling of full cities, with an entry composed by statistical data and geographic
information. It also bases its design method on the System-L, using a specialized
grammar.

However, our interest goes to the works focused on the creation of virtual
scenarios, such as:

1.1.WordsEye: Automatic text-to-scene conversion system

Bob Coyne and Richard Asproad have presented WordsEye [10] developed at the
AT&T laboratories, a system which allows any user to generate a 3D scene on the basis
of description written in human language, for instance: “The bird is in the bird cage.
The bird cage is on the chair”. The text is initially marked and analyzed using a part-of-
speech tagger and a statistical analyzer. The output of this process is the analysis tree
that represents the structure of the sentence. Next, a depictor (low level graphic
representation) is assigned to each semantic element. These depictors are modified to
match with the poses and actions described in the text by means of the inverse
kinematics. After that, the depictors’ implicit and conflicted constraints are solved.
Each depictor then is applied keeping its constraints, to incrementally build the scene,
the background environment, the terrain plane. The lights are added and the camera is
positioned to finally represent the scene. In the case the text includes some abstraction
or description that does not contain physical properties or relations, other techniques
can be used, such as: textualization, emblematization, characterization, lateralization or
personification. This system accomplishes the text-to-scene conversion by using
statistical methods and constraints solvers, and also has a variety of techniques to
represent certain expressions. However, the scenes are presented in static form, and the
user has no interaction with the representation.

1.2.DEM’ONS: High Level Declarative Modeler for 3D Graphic Applications

DEM?ONS has been designed by Ghassan Kwaiter, Véronique Gaildrat and René
Caubet to offer the user the possibility to construct easily the 3D scenes in a natural
way and with high level of abstraction. It is composed of two parts: modal interface
and 3D scene modeler [11]. The modal interface of DEM?ONS allows the user to
communicate with the system, using simultaneously several combined methods
provided by different input modules (data globes, speech recognition system, spaceball
and mouse). The syntactic analysis and dedicated interface modules evaluate and
control the low-level events to transform them into normalized events. For the 3D
scene modeler ORANOS is used. It is a constraint solver designed with several
characteristics that allows the expansion of declarative modeling applications, such as:
generality, breakup prevention and dynamic constraint solving. Finally, the objects are
modeled and rendered by the Inventor Tool Set, which provides the GUI (Graphic User
Interface), as well as the menus and tabs. This system solves any constraint problem,
but only allows the creation of static objects, with no avatar support and no interaction
between the user and the environment, not to mention modifications in the scenario's
description.

1.3. Multiformes: Declarative Modeler as 3D sketch tool

William Ruchaud and Dimitri Plemenos have presented Multiformes [12], a general
purpose declarative modeler, specially designed for sketching 3D scenarios. As it is by
any other declarative modeler, the input of MultiFormes contains description of the
scenario to create (geometric elements’ characteristics and the relationships between
them). The most important feature of MultiFormes is its ability to explore
automatically all the possible variations of the scenario description. This means that
Multiformes presents several variations of the same scenario. This can lead the user to
choose a variation not considered initially. In Multiformes, a scenario’s description
includes two sets: the set of geometric objects present in the scenario, and the set of
relationships existent between these geometric objects. To allow the progressive
refinement of the scenario, MultiFormes uses hierarchical approximations for the
scenario modeling. This approach allows describing the scenario incrementally to
obtain more or less detailed descriptions. The geometric restriction solver is the core of
the system and it allows exploring different variations of a sketch. Even when this
system obtains its solutions in incremental ways and is capable of solving the
constraints requested, the user must tell the system how to construct the scenario using
complex mathematical sets, as opposed to our declarative creation, where the user
formulates simple states in a natural-like language only describing what should be
created.

1.4.CAPS: Constraint-Based Automatic Placement System

CAPS is a positioning system based on restrictions [13], developed by Ken Xu, Kame
Stewart and Eugene Fiume. It models big and complex scenarios using a set of intuitive
positioning restrictions, which allows to manage several objects simultaneously.
Pseudo-physic is used to assure stable positioning. The system also employs semantic
techniques to position objects, using concepts such as fragility, usability or interaction
between the objects. Finally, it allows using input methods with high levels of freedom,
such as Space Ball or Data Glove. The objects can only be positioned one by one. The
direct interaction with the objects is possible while maintaining the relationships
between them by means of pseudo-physics or grouping. The CAPS system is oriented
towards scenario visualization, with no possibilities for self-evolution.

None of the previously described systems allows evolution of the entities or
environments created by the user. All these works rely on specialized data input
methods, either specialized hardware or input language, with the sole exception of
WordEyes. Its output is a static view of the scenario created by means of natural
language, but in spite of it, its representation abilities are limited, that is to say, it is not
possible just to describe goals. Representing unknown concepts can lead specialized
techniques to bizarre interpretations.

1.5.Knowledge Base Creation Tools

There are several ontology creation tools, which vary in standards and languages. Some
of them are:

1.5.1.0ntolingua [14].

Developed at the KSL of the Stanford University, consists of the server and the
representation language. The server provides ontology with repository, allowing its
creation and modification. Ontologies in the repository can be joined or included in a
new ontology. Interaction with the server is conducted by the use of any standard web
browser. The server is designed to allow cooperation in ontology creation, that is to
say, easy creation of new ontologies by including (parts of) existing ontologies from
the repository and the primitives from the ontology frame. Ontologies stored on the
server can be converted into different formats and it is possible to transfer definitions
from the ontologies in different languages into the Ontolingua language. The
Ontolingua server can be accessed by other programs that know how to use the
ontology store in the representation language [15].

1.5.2.WebOnto [16].

Completely accessible from the internet, it was developed by the Knowledge Media
Institute of the Open University and Design to support creation, navigation and
collaborative edition of ontologies. WebOnto was designed to provide a graphic
interface; it allows direct manipulation and complements the ontology discussion tool
Tadzebao. This tool uses the language OCLM (Operational Conceptual Modeling
Language), originally developed for the VITAL project [17], to model ontologies. The
tool offers a number of useful characteristics, such as saving structure diagrams,
relationships view, classes, rules, etc. Other characteristics include cooperative work on
ontologies, also broadcast and function reception.

1.5.3.Protégé [18].

Protégé was designed to build domain model ontologies. Developed by the Informatics
Medic Section of Stanford, it assists software developers in the creation and support of
explicit domain models and incorporation of such models directly into the software
code. The methodology allows the system constructors to develop software from
modular components to domain models and independent problem solving methods,
which implement procedural strategies to accomplish tasks [19]. It is formed of three
main sections: ontology editor (allows to develop the domain ontology by expanding
the hierarchical structure, including classes and concrete or abstract slots); K4 tool (can
be adjusted to the user’s needs by means of the “Layout” editor), and Layout
interpreter (reads the output of the layout editor and shows the user the input-screen
that is necessary to construct the examples of classes and sub-classes). The whole tool
is graphic and beginner users oriented.

2. GeDA-3D Agent Architecture

GeDA-3D [20] is a final user oriented platform, which was developed for creating,
designing and executing 3D dynamic virtual environments in a distributed manner. The
platform offers facilities for managing the communication between software agents and
mobility services. GeDA-3D Agents Architecture allows to reuse behaviors necessary
to configure agents, which participate in the environments generated by the virtual

environments declarative editor [20, 21]. Such agent architecture contains the
following main features:

o Skeleton animation engine: This engine provides a completely autonomous
animation of virtual creatures. It consists of a set of algorithms, which allow
the skeleton to animate autonomously its members, producing more realistic
animations, when the avatar achieves its objectives.

e Goals specification: The agent is able to receive a goal specification that
contains a detailed definition of the way the goals of the agent must be
reached. The global behavior of the agent is goal-oriented; the agent tries to
accomplish completely its specification.

e Skills-Based Behaviors: The agent can conform its global behavior by adding
the necessary skills. It means that such skills are shared and implemented as
mobile services registered in GeDA-3D.

e Agent personality and emotion simulation: Agent personality and emotion
simulation make difference in behaviors of agents endowed with the same set
of skills and primitive actions. Thus, the agents are entities in constant change,
because their behavior is affected by their emotions.

Figure 1 presents the architecture of the platform GeDA-3D. The modules that
constitute it are: Virtual-Environment Editor (VEE), Rendering, GeDA-3D kernel,
Agents Community (AC) and Context Descriptor (CD). The striped rectangle encloses
the main components of GeDA-3D: scene-control and agents-control.

Aratars needed. delaut gy

it O i b im ol mg_\
ikl SRR M Al L
Garriax B Aiiimaled

DIBBEFABESE — wvalas | A0 Canvas
Sceno Workd
Dascrigr 3

fanguags I_ | [Rr———
e L Erisitives
STATTE S
" - O | .
o] - .
AR
sarrast arnuren e Grans [= R
veome consirsics st [e H Pluig-n
. e R r—
Matural b L rviers pamviny R
[[—

1 L
¥ 3 =] N
§ Compruancy Conatraing Recal Descripl Im
Intageater ¥ Analizer Sidvar el [FHARE

L2110 of by | tmecannisn
T F o | F| e || o

Cangruant e
Patares lnaisal Conl. T
ST A o |
By LK J
anadpnie =
Agants Controd
poin | foents
| | 2andar |Rocai
1
e Mernags fram i
AL A S B I Siaric ek b o e B e
Effector | Sengor Effector | Sensar
Augeid | mrm Agont j
Adapiative Behavior Adaptative Bahavior

Figure 1. GeDA-3D Agent Architecture

The VEE includes the scene descriptor, interpreter, congruency analyzer, constraint
solver, and scene editor. In fact, the VEE provides the interface between the platform

and the user. It specifies the physical laws that govern the environment and describes a
virtual scene taking place in this environment. The Rendering module addresses all the
issues related to 3D graphics; it provides the design of virtual objects and the scene
display. The AC is composed by the agents that are in charge of ruling virtual objects
behavior.

The scene description provides an agent with detailed information about what task
the user wants it to accomplish instead of how this task must be accomplished.
Furthermore, the scene might involve a set of goals for a single agent, and it is not
necessary that these goals are reached in a sequential way. The user doesn’t need to
establish the sequence of actions the agent must perform, it is enough to set goals and
provide the agent with the set of primitive actions. The agents are able to add shared
skills into their global behavior. So, the user describes a scene with the help of a high
level language similar to human language. He or she specifies the goals to reach, that is
to say, what the agent must do, not the way it must do it. It is important to highlight
that one specification can produce different simulations.

3. Proposal

As described previously, the aim of our research is to provide the non-experienced final
users with a simple and reliable tool to generate 3D worlds on the basis of description
written in a human-like language. This article describes the Virtual Environment Editor
of the GeDA-3D project. It receives the characteristics of the desired environment as
input and validates all the instructions for the most accurate representation of the
virtual world. The model includes the environment's context, the agents' instructions
and the 3D view render modeling data. The novel approach uses the Knowledge Base
[22] to obtain the information necessary to verify first the validity of the environment
description, and later the validity of the model in the methodology process. Once this
first step has been finished, the ontology is applied to obtain information required for
visualizing the environment created in 3D and validating the actions computed by
agents, taking in charge the behavior of avatars.

The main concern of this research is to assign the right meaning to each concept of
the description introduced as input by the user. Human language is very ambiguous, so
the parse of it is time and resource consuming. To avoid this hard work and make the
writing of descriptions easy, we have defined a language completely oriented to
scenario descriptions. We have called this language Virtual Environment Description
Language or VEDEL.

3.1.Virtual Environment Description Language (VEDEL)

VEDEL is a declarative scripting language in terms described in [23, 24]: A declarative
language encourages focusing more on the problem than on the algorithms of its
solution. In order to achieve this objective, it provides tools with high level of
abstraction. A scripting language, also known as a glue language, assumes that there
already exists a collection of components, written in other languages. It is not intended
for creating applications from scratch. In our approach, this means that the user
specifies what objects should be included in the scenario and describes their location,
but he or she does not specify how the scenario must be constructed. It is also assumed

that the required components are defined somewhere else, in our case in the object and
avatar database. The definition of VEDEL using the EBNF (Extended Backus Normal
Form) is:

Alphabet:

i={[A-Z|a—2],[0-9],..}

Grammar:

Description := <environment> <actor> <object>
<environment> := [ENV] <sentence> [/ENV]
<actor> := [ACTOR] <sentence>* [ACTOR]
<object> := [OBJECT] <sentence>* [/OBJECT)]
<sentence> := <class>(<,> <property>) *. >
<class> := <entity> (<identifier>)\

<property> := <propid> (<value>+)

Vocabulary:

<class> := <word>

<entity> := <word>, <entity> € Ontology's Classes
<identifier> := <word>

<propid> := <word>, <propid> € Ontology's Classes
<value> := <word> | <number> | <identifier>
<modifier> := <word>

<identifier >:=([A—Z|a—z]| [0 —9])+

<word >=[A—-Z|a—z]+

<number >:=[0—-9]+ (. [0 —9]+)

The language is supposed to guide the user through the construction and edition of
the description, separating the text into three paragraphs: Environment, Actors and
Objects. Each paragraph is composed of sentences, at least one for the Environment
paragraph, and any number for the Actors and Objects paragraphs. The sentences are
composed of comma-separated statements, the first statement always being the entity's
class, that is, a concept included in the Knowledge Base and an optional unique
identifier. The rest of the sentences correspond to the features characteristic for a
particular entity. Each sentence must end with a dot “.”.

In the Environment section the user defines the context, the general setting of the
scenario. The Actors section contains all the avatars, that is, entities with an
autonomous behavior, which interact with other entities and the environment. It is
important to notice that the Knowledge Base is the base for assigning behaviors to
avatars. For instance, even when the entity “dog” is defined as an actor (autonomous
entity), but the Knowledge Base does not define any features of its behavior (walk,
bark, etc.), the actor will be managed as an inanimate object.

The description is validated through the lexical and semantic parser. This parser is
basically a state machine, which prevents the entry for non-valid characters and bad
formatted statements. If the parser finds some error in the description, the statement or
the whole sentence is not taken in account for the modeling process, and an error
message is produced to notify the user. The parser works with the following rule: given
any description X, written under the VEDEL definition G = {z, N, P, S} for the

language L, X is a VEDEL compliant description, if and only if X € L(G) and L =; X.

|ENV] //Environment section.

desert, night, cloudy

[fevery sentence must end with a dot .7,
[/ENV|
[ACTOR] // Actor section,

Knight Arthur, centre, facing wesl

YoungWoman Betty, front Arthur, facing south

Class names must be defined in ontology.
[/ACTOR]
[{Object section,

[ndividual names can be any long. but only
/! alphanumeric characters.

/Table individual name will be automatically
/fassigned as Table(.

/The number of property values varies, accordantly
/fto the knowledge in ontology

Figure 2. Example of a description written in VEDEL

The parsed VEDEL entry is formatted as a hierarchical structure, so the modeler
can access any sentence at any moment, usually making a single pass from the top
entry (the environment) to the bottom entry. Each entry is in its turn formed of the class
entry (the optional identifier, which is automatically generated in the incremental way,
if the user doesn't explicitly establish one) and the properties of entries. We have
decided to use the Protégé system due to its open API, written in Java, and also due to
its simple, yet rich GUI, which allows quick creation, modification and maintaining of
the Knowledge Base, easy to integrate into our project.

Once we have parsed the entry written in VEDEL, we need to establish the
meaning for each concept introduced by the user. To accomplish this task, we rely on
the Knowledge Base. This Knowledge Base stores all the information relevant for the
concepts to be represented, from physical properties, such as size, weight or color, to
internal properties, such as energy, emotions or stamina. The parsed VEDEL entry is
revised by the inference function, which makes use of the ontology to validate the
entities and their properties, as well as to validate the congruency in the scenario. This
function also performs in the parsed entry the operations necessary to transform values
from the string entry to primitive data form. The Knowledge Base consists of the
following components:

A finite set C of classes.

A finite set P of properties.

A finite set D= (C P) of class-properties assignments.
Ifx e Candy € Cissuchthat y € x, y is a subclass of x.
Ifx e Pand y € Pis such thaty € x, y is a subclass of x.

e Given a certain D(x), D(x) 2 D(y), for all y subclass of x.

e An Object property is such that O = (C ¢ C), where ¢ is the functional
relationship (Functional, Inverse Functional, Transitive or Symmetric).

e A DataType property is such that V' = {values }, where {values} is a finite set
of any typeset values.

e An Individual is the instantiation of the class x, in such form that every p in
P(x) is assigned with a specific set (empty or otherwise).

In our project, C = {Environment, Actor, Object, Keywords}, and the following
subsets of properties are obligatory for each subclass of C elements:

e Forall x € Environment, Q, = {size, attributes}, Q,(x) E D(x).

e For all x € Actor, Objects, Q, = Qe U {geozones, geotags, property_type},

Qu(x) € D(x).
e Forall x € Keywords, Qr= Q, U {attributes}, Oi(x) € D(x).

The ontology has been described with respect for naming conventions. However,
in addition any class must have at least one individual named as the class and the
“ default” suffix at the end. This is the most basic representation for the class. Figure 3
shows the main structure of the ontology, the properties currently added and the
individuals view. Any additional class will only be used by the output generation
function, but the relationships between the subclasses and the rest of the ontology will
be respected by the environment. For instance, Figure 3 shows additional classes
“laws”, “actions” and “collisions”. While these classes are not required directly by the
final user by means of calling their members, the modeler will take into account any
relationship between the main four classes and these additional classes. This means that
the object property “AllowedOn” will be used to validate the actions that can be
performed in a given environment not at the modeler's level, but as an explicit rule
written for the context and the underlying architecture, since only the actions linked to
the environment can be assigned to the architecture.

The process of validating any expression found in the description is carried out by
the inference function. This function accesses the Knowledge Base, searching for the
individual that matches the pattern “<expression> default". We can call it the
definition individual. This individual can be the obligatory class definition or some
other individual. If there is no definition individual for the expression, an error
condition will arise, and the statement or the sentence will be excluded from the rest of
the modeling process. If the definition individual is found, the inference function
precedes to gather all the information stored in the Knowledge Base for that
expression, according to the parameter it has received. In the case of entities
definitions, it subtracts all the basic information, such as size, specialized tags and the
properties specified in the atfribute property. For the entity's properties, the inference
function searches for the corresponding definition individual and gathers the data
according to the values stored in the property type property. This differentiation is
made since there are cases, when the object can be a standalone entity or part of
another, bigger entity. Also, the same concept can be used for different requests, i.e.,

the concept “north” can be used to either place an entity in a specific position, or to
indicate the orientation of the entity. The rules for the inference function are:

vr £ l:n'l A l'.'_.'n'.'ll'n:' Iy Vy el = Ply) Flz) vV Fuly) T
If Ple) = Py =r.yecCrndr, el

HP(g)l=c=ygeCAllre DAz, el)VEEV)

The gathered information is formatted as the basic entry for the model data
structure, which is a hierarchical structure with the entity entries as the top levels and
the properties for each one of the entities as leaves, as depicted in Figure 4. Each entry
is instantiated with the basic definition: the feature values for successful representation
of the entity in the model, according to the knowledge stored in the Knowledge Base.
These basic entries are then modified with the help of values obtained from the parsed
entry description, once they have passed the inference process, have been validated and
transformed to the format suitable for the underlying architecture.

3.2.Knowledge in algorithms for constraint satisfaction problems

In [25], Hunter defines the Constraint Satisfaction Problems as follows: a CSP is a
tuple composed by a finite set of variables N, a set of possible values D for the
variables in N and a set of constraints C. For each variable N;, there is a domain D;, so
that to each variable can only be assigned values from its own domain. A restriction is
a subset of the variables in N and the possible values that can be assigned them from D.
Constraints are named according to number of variables they control. A solution to a
CSP is an assignment of values form the set of domains D to each variable in the set N,
in such way that none of the constraints is violated. Each problem that presents solution
is considered satisfied or consistent; otherwise it is called non-satisfied or inconsistent.

To solve a CSP, two approximations can be used: search and deduction. The
search generally consists in selecting an action to develop, maybe with the aid of a
heuristic, which will lead to the desired objective. Tracking is an example of search for
CSP; this operation is applied to value assignation for one or more variables. If no
value able to keep the consistency of the solution can be assigned to the variable (the
dead-end is reached), the tracking is executed.

There are several methods and heuristics for solving CSPs, among them
backtracking [26], backmarking [27], backjumping [28], backjumping based on
graphics [29] and forward checking [30].

[Classes | [Propenies 1
rl;“_bclb-le“' [[«bjects F«DaraTypes
JCrpircmant IsContraryTo Size
pesert g | [Jsameas propeny_type
r—]mm“ hastransparency descriptor
Fieearm P haseolos calor
Actar
%ﬁl{mqht
T IvoungWeman [mghigaare]
—E'}_|Ohju1 [J¥night
T Ichaie ™ Jknight defaule
—1 JCenterTable name String = “Knsght_default”
{IHouse ™ Jsize saring = "20,10,22
—Eﬁxmnr\ds CollisionTags String = =1,1,19°2,2.00,..°
™ IFrom = -
e South_default
{J50uth ’)
LIHI":IDC‘”.‘I’ ype Integer = 3
- Crisaal range:String = 0,0, 30°
_ﬁ{f::::m ™ Jsouth facing
T Juaws

Figure 3. The ontology used by the Virtual Editor

The parsed entry obtained from the description and validated through the inference
function is sent to the modeling function, which generates the first model that is called
zero-state model. At this stage, all geometrical values are set to default: either to zero
or to the entity's default values and the corresponding request is stored in the model for
quick access and verification. Objects whose position is not specified are placed in the
center of the scenario (geometrical origin) and the specific positions are respected. For
those entities whose position is established in relation to others, a previous evaluation
is conducted in order to position first the entities referenced. Any specified position is
assigned, even if there are possible conflicts with other elements, the environment, the
rules of the environment or the properties of the entity.

With the objects in their initial positions and postures, the model is sent to the
logical and geometrical congruency analyzer. First it is verified, if no properties are
violated with the current requests (objects with postures that cannot be represented,
objects positioned over entities that cannot support them, etc.), and then the geometry
of the scenario is verified for spatial conflicts. The validation of the current model
state, as well as the modifications made to obtain a valid model state that satisfy the
user request, is achieved by means of the Constraint Satisfaction Problem (CPS)
solving algorithm, whose parameters are detailed as follows:

A st Vo= {xy, , T } of varinbles where r = { P00, 5} such as
& P = dr oy, 2} is the ontity's position in the environment,
w (0= @, f, 0} = the entity's orientation.
s 5= {5, .HJ,..‘-',] is the ontity's sige, including the scale.
A domain £ for the ser Voaueh as
o Py o
s DO = [0,27].¥F € O
 NE) =0
A st © of constradnts, formeesd by the pext luetions:

(La) (zy = 2P + (g =P+ (51— 2P = (r +re)=0

{1.b) (;)z | (:)J : 22 =0
we) () () + (2) 1=

Before validating the request, information for each spatial property is obtained
from the Knowledge Base in the form of vectors that indicate positioning, either
absolute or relative, the maximum distance to which the objects can be separated from
each other still fulfilling the requests, and orientation, relative or absolute.

| sRonts

i Fnr-ﬂ.1 | | Knight | [CenterTable]
Type = Erwirunmem] |—| ActorMame = "John”] | ActorHame = "CenterTableﬂ'|
[Properties] |—| Type = Actor] | Type = Oiject |

}_‘ Mlmmkllnwpd] . 1 Praperties] Prospeerties |
L | Pasition = '{tmer'l CenterCrystal |

|
: Color = "green”

Color = "black™ |

Figure 4. Data structure obtained from a Description

Once position and orientation have been set for each entity, the geometrical
analyzer verifies that no collision occurs between objects. This is achieved with the
help of several collision tags also stored in the Knowledge Base for each entity. These
tags are extracted, instantiated with the entity's parameters, and then compared with the
others entities' tags. This is our first constraint, since there must be no collision

between tags to declare the model valid. The only exceptions to this rule are the
indications for close proximity between the entities (zero distance or distance against
request). The tags are modeled as spheres that cover all or most of the entity's geometry
(see figure 5). The equation for verifying the collision between two spheres is simple
and quick to solve (see equation 1.a in the CSP parameters definition).

While collision consistency is being conducted, other tests are also conducted to
secure position consistency. Each positional statement (left, right, front, behind) has a
valid position volume assigned, where the objects that hold a spatial relationship to the
entity must be put, once this volume has been instantiated. The test function is a
quadratic equation, represented in the model as a parabolic (see equation 1.b in the CSP
parameters definition). This representation was chosen, because it is relatively easy to
solve, allows the verification of spaces nearly of the same size as the classic collision
boxes and can be shaped to the entity's measures. If the entity being positioned does not
pass the consistency test, that is, none of its characteristic points (figure 6) is inside the
consistency function, a new position is computed, and the collision and positioning
revision is executed again. In the specific case where two entities have the same
relation to a third one, a new position is computed and the characteristic points tested
for each entity. When it is not possible to find a new position that meets both
constraints, a model error is generated and the user is informed about it.

Figure 5. Collision tags examples

For special positioning request there is a third type of consistency function, the
ellipsoid (see equation 1.c in the CSP parameters definition). These special positions
are the inside, over, under, and against concepts. The reason for the choice of this type
of equations is the capacity to shape the volume in different sizes: the volume that
covers all or the majority of the space inside or as part of the entity, or a smaller
volume set in the corresponding area of the target entity. The same heuristics are
applied to the other position request. World boundaries are validated through this
function. For the entities in the Actors section, requests are sent to the animation
module, which sets the position of each articulation in the entity to obtain the desired
posture. This information is used to provide the corresponding collision tags and
characteristic points, which in turn allow the modeler to verify consistency for the
postures and actions the actor will be performing. If several solutions are found for the
current request, the user can choose the one that fits better the requests. Normally, a
well constrained problem would find a finite number of solutions, but in the case of
under-constrained problems, it could be an infinite number of solutions. In these cases,

the modeler can show only a predefined number of solutions, or can show in iterative
form all the possible solutions, until the user chooses one.

Figure 6. Characteristic points for different entities

The final step in the modeling process is the generation of the necessary outputs in
order to allow the created environment to be visualized and modified. These outputs
are generated using the MVC or Model View Controller. This method provides any
desired modifications in the outputs that will be generated without modifying the code
for the modeler, and allows the users to customize the outputs and integrate the
modeler in multiple applications.

Figure 7. Conflict solving example

4. Results

Until now the parser for the VEDEL language has been implemented and it was
functionally working. The necessary links with the GeDa-3D architecture were
established in order to obtain a visual representation of the descriptions written in this
language.

4.1.The VEDEL Parser and Modeler

The parser was created in Java language to reach multiplatform capabilities and
compatibility with the rest of the GeDA-3D architecture, using the JDK 1.5.0 07-b03
[31]. Our parser is basically a state machine: each section of the description
corresponds to a state, as well as each sentence and each property. If the state generates

an error output, the process is stopped and an error condition arises. Each word is
considered to be a token and validated by the inference machine, with the exception of
numbers, particular identifiers and closing/opening constructions. The inference
machine and the modeler described in the previous section are used to validate
semantically the parsed description, and then the data structure that represents the
model is obtained. Finally, the outputs are generated using the MVC (Model View
Controller) function. The templates are formatted, so they can be filled with the data
stored in the data structure, and the formatted output of each entry in the model forms
the complete output.

4.2.The GeDA-3D prototypes

To obtain a visual output of the description written in VEDEL, the prototype of the
GeDA-3D architecture was created. The prototype has a kernel [32], a render working
upon the AVE (Animation of Virtual Creatures) project [33], and our parser. This
prototype works as follows: the kernel received the outputs generated by the parser
(one output for the kernel and one in LIA-3D, Language of Interface for Animations in
3D presented in [33], for the parser). Then it generates the necessary agents, and the
AVE output is sent to the render module, where the scenario is composed, rendered and
presented to the final user. Next, we present some examples obtained by the X3D [34]
based output (figures 8 to 10) and their corresponding descriptions.

Description 1.
[ENV]
Jforest.
[/ENV]

[ACTOR]
Knight A, center.
Knight B, left A.
Knight C, right A.
Knight D, behind B.
Knight E, behind C.
[/ACTOR]

[OBJECT]
House, behind (80) A.
[/OBJECT]

Description 2.
[ENV]
theater.
[/ENV]

[ACTOR]
Knight A, center.
Knight B, left A.
Knight C, right A.
YoungWoman D, behind B, facing A.
YoungWoman E, behind C, facing A.
[/ACTOR]

Figure 9. Result obtained for description 2

[OBJECT]
[/OBJECT]

Description 3.
[ENV]

void.
[/ENV]

[ACTOR]
[/ACTOR]

[OBJECT]
Chair, color blue.
Chair, color red.
Chair, color green.
[/OBJECT]

Figure 10. Result obtained for description 3

5. Conclusions

Our contribution to the research topic described in this article concerns declarative
modeling for creation of scenarios. This problem is important, because the design of
virtual scenarios is time- and labor-consuming even for expert users who have
appropriate tools at their disposal. In this article we contribute mainly to the use of
knowledge databases to support and accelerate the semantic analysis of sentences that
compose the declarative form of a scenario. More specifically, our proposal uses a
Knowledge Base in the three phases that constitute the declarative modeling. During
the Description phase the Knowledge Base helps to get semantic elements necessary
for verifying the description, that is, the input to the system. For the Model Creation
the modeler will use the Knowledge Database to obtain the information necessary for
the model creation. To accomplish this task the modeler uses a restriction satisfaction
algorithm supported by the Knowledge Base. Finally, the user applies the Knowledge
Base in the Vista phase to obtain information about the requirements which could not
be satisfied, in case there wasn’t found any solution, or select one of the possible
solutions.

The approach we have proposed shows two very important advantages: The first
one concern the fact that the solution obtained in this way can be used in systems able
to evolve a scene, as the GeDA-3D project described in this article. The second one
concerns the possibility of expanding the available environments and entities just by
increasing the knowledge database, leading the declarative editor towards a generic,
open architecture.

Some of the results obtained include: a structured method for creating and editing
descriptions with the use of tools that validate the inputs, such as lexical and semantic
analyzers; the implementation of prototypes useful for visualizing the generated
scenario on the basis of the respective description. These results are important because
they validate our proposal. This validation proves the possibility for creating more
types of scenarios, just increasing the knowledge database with the corresponding
information.

Our future work includes the development of more robust CPS algorithms
supported by the Knowledge Base, that not only consider the physical properties of the

entities, but also the context properties and the semantic properties; a semantic
validation function, which verifies, if every entity inserted in the environment is
capable or allowed to exist in such environment, and, in some cases, provides the
necessary changes in the entity's properties, so it can get a valid element; and finally,
the complete integration with the GeDA-3D architecture.

References

[1] K. Victor. Flux Studio Web 3D Authoring Tool. http://wiki.mediamachines.com/index.php/Flux_Studio,
2007.

[2] Last Software. Google Sketchup. http://sketchup.google.com/, 2008.

[3] Autodesk. 3DS MAX 9 Tutorials. http://usa.autodesk.com/adskservlet/item?site]lD=123112&id=8177537,
2007.

[4] Autodesk. Autodesk Maya Help.
http://www.autodesk.com/us/maya/docs/Maya85/wwhelp/wwhimpl/js/html/wwhelp.htm, 2007.

[5]J. S. Monzani, A. Caicedo and D. Thalmann. Integrating Behavioral Animation Techniques. In EG 2001
Proceedings, volume 20(3), pages 309-318. Blackwell Publishing, 2001.

[6] D. Plemenos, G. Miaoulis and N. Vassilas. Machine Learning for a General Purpose Declarative Scene
Modeller. In International Conference GraphiCon’2002, Nizhny Novgorod (Russia), September 15-21,
2002.

[7] V. Gaildrat. Declarative Modelling of Virtual Environment, Overview of Issues and Applications. In
International Conference on Computer Graphics and Artificial Intelligence (31A), Athenes, Grece,
volume 10, pages 5—-15. Laboratoire XLIM - Université de Limoges, may 2007.

[8] J.-E. Marvie, J. Perret and K. Bouatouch. The FL-System: A Functional L-System for Procedural
Geometric Modeling. The Visual Computer, pages 329 — 339, June 2005.

[9] Y. L. H. Parish and P. Miieller. Procedural Modeling of Cities. In SIGGRAPH ’01: Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques, pages 301-308, New
York, NY, USA, 2001. ACM Press.

[10] B. Coyne and R. Sproat. Wordseye: An Automatic Text-To-Scene Conversion System. In SIGGRAPH
’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques,
pages 487-496. AT&T Labs Research, 2001.

[11] G. Kwaiter, V. Gaildrat and R. Caubet. Dem2ons: A High Level Declarative Modeler for 3D Graphics
Applications. In Proceedings of the International Conference on Imaging Science Systems and
Technology, CISST 97, pages 149-154, 1997.

[12] W. Ruchaud and D. Plemeno. Multiformes: A Declarative Modeller as a 3D Scene Sketching Tool. In
ICCVG, 2002.

[13] K. Xu, A. J. Stewart and E. Fiume. Constraint-Based Automatic Placement for Scene Composition. In
Graphics Interface, pages 25-34, May 2002.

[14] A. Farquhar, R. Fikes and J. Rice. The Ontolingua Server: A Tool for Collaborative Ontology
Construction. Technical report, Knowledge Systems Laboratory, Stanford University, 1996.

[15] T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition,
5(2):199-220, June 1993.

[16] J. Domingue. Tadzebao and Webonto: Discussing, Browsing, and Editing Ontologies on the Web. In
Proceedings of the Eleventh Workshop on Knowledge Acquisition, Modeling and Management,
KAW’98, Banff, Canada, April 1998

[17] E. Motta. Reusable Components for Knowledge Modelling: Case Studies in Parametric Design Problem
Solving. IOS Press, Amsterdam, The Netherlands, The Netherlands, 1999.

[18] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu and M. A. Musen. Knowledge
Modeling at the Millennium (the Design and Evolution of Protégé-2000). Technical Report, Stanford
Medical Informatics, 1998.

[19] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta and M. A. Musen. Task Modeling with Reusable
Problem-Solving Methods. Artificial Intelligence, 79(2):293-326, 1995.

[20] F. Zaiiiga, F. F. Ramos and 1. Piza. GeDA-3D Agent Architecture. Proceedings of the 11th International
Conference on Parallel and Distributed Systems, pages 201-205, Fukuoka, Japan, 2005.

[21] H. L. Piza, F. Zufiga and F. F. Ramos. A Platform to Design and Run Dynamic Virtual Environments.
Proceedings of the 2004 International Conference on Cyberworlds, pp. 78-85, 2004.

[22] J. A. Zaragoza Rios. Representation and Exploitation of Knowledge for the Description Phase in
Declarative Modeling of Virtual Environments. Master’s thesis, Centro de Investigacion y de Estudios
Avanzados del I.P.N., Unidad Guadalajara, 2006.

[23] C. E. Chronaki. Parallelism in Declarative Languages. PhD thesis, Rochester Institute of Technology,
1990.

[24] J. K. Ousterhout. Scripting: Higher Level Programming for the 21st Century. IEEE Computer Magazine,
31(3):23-30, March 1998.

[25] D. H. Frost. Algorithms and Heuristics for Constraint Satisfaction Problems. PhD thesis, University of
California, 1997. Chair-Rina Dechter.

[26] S. W. Golomb and L. D. Baumert. Backtrack Programming. J. ACM, 12(4):516-524, 1965.

[27] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 2003.

[28] J. G. Gaschnig. Performance Measurement and Analysis of Certain Search Algorithms. PhD thesis,
Carnegie-Mellon Univ. Pittsburgh Pa. Dept. Of Computer Science, 1979.

[29] R. Dechter. Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cut Set
Decomposition. Artificial Intelligence, 41(3):273-312, 1990.

[30] R. M. Haralick and G. L. Elliott. Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence, 14(3):263-313, 1980.

[31] SUN Microsystems. The Java SE Development Kit (JDK).
http://java.sun.com/javase/downloads/index.jsp, 2007. Last visited 02/01/2007.

[32] A. G. Aguirre. Nucleo GeDA-3D. Master's thesis, Centro de Investigacion y de Estudios Avanzados del
I.P.N., Unidad Guadalajara, 2007.

[33] A. V. Martinez Gonzalez. Lenguaje para Animacion de Criaturas Virtuales. Master's thesis, Centro de
Investigacion y de Estudios Avanzados del I.P.N., Unidad Guadalajara, 2005.

[34] X3D. The Virtual Reality Modeling Language - International Standard ISO/IEC.
http://www.web3d.org/x3d/specifications/, 2007. Last visited 06/01/2007.

Avatars Animation using Reinforcement
Learning in 3D Distributed Dynamic
Virtual Environments

Héctor Rafaecl OROZCO?, Félix RAMOS?, Jaime ZARAGOZA? and Daniel
THALMANN®

“Centro de Investigacion y de Estudios Avanzados del I.P.N.
Unidad Guadalajara
Av. Cientifica 1145, Col. El Bajio, 45010 Zapopan, Jal., México
E-mail: {jzaragoz, framos, horozco}@gdl.cinvestav.mx
"Ecole Polytechnique Fédérale de Lausanne
EPFL IC ISIM VRLAB Station 14 CH-1015 Lausanne, Switzerland
E-mail: daniel.thalmann@efpl.ch

Abstract. The animation problem of avatars or virtual creatures using learning,
involves research areas such as Robotics, Artificial Intelligence, Computer
Sciences, Virtual Reality, among others. In this work, we present a Machine
Learning approach using Reinforcement Learning and a Knowledge Base for
animating avatars. This Knowledge Base (ontology) provides the avatar with
semantic definition and necessary awareness of its internal structure (skeleton), its
behavior (personality, emotions and moods), its learned skills, and also of the rules
that govern its environment. In order to animate and control the behavior of these
virtual creatures in 3D Distributed Dynamic Virtual Environments, we use
Knowledge-Based Conscious and Affective Personified Emotional Agents as a
type of logical agents, within the GeDA-3D Agent Architecture. We focus on the
definition of minimum conscience of the avatars. The conscience and cognitive
processes of the avatars allow them to solve the animation and behavior problems
in a more natural way. An avatar needs to have minimum conscience for
computing the autonomous animation. In our approach, the avatar uses the
Knowledge Base first as a part of its conscience, and second to implement a set of
algorithms that constitute its cognitive knowledge.

Keywords. Reinforcement Learning, Knowledge Base, Conscience, Avatar,
Conscious Agent, GeDA-3D.

Introduction

The human mind has been studied for many philosophers for a long time. The human
consciousness is considered to be one of the most interesting topics in the philosophy.

This topic is called philosophy of mind. An important aspect of human consciousness
is the self-knowledge or self-awareness, defined as the ability to perceive and reason
about oneself. This aspect is highly developed in the Human being in comparison with
other animals and it is considered very important for making agents with intelligent
behavior. A Human being unaware of his or her personal characteristics, abilities and
skills does not know what he or she can or cannot do, so he or she will have difficulties
for interacting with others in a natural way. The conscience in general is defined as the
knowledge that the Human being has of itself and of its environment.

Definition 1: The conscience of an avatar is the notion it has of its sensations,
thoughts and feelings in a given moment within environment. That is, the avatar’s
conscience represents the understanding of its environment and its self-knowledge.

In this work, we use Knowledge-Based Conscious and Affective Personified
Emotional (CAPE) Agents to develop the ability of avatar to perceive and reason about
itself on the basis of the following: Comnsciousness (involve thoughts, sensations,
perceptions, personality, moods and emotions), stimuli and sensorial entrances
(relevant events), introspection (ability of avatar to reason about its perceptions and
any conscious mental event), awareness (ability of avatar to be conscious; comprises
perceptions and cognitive reactions to events, does not necessarily imply
understanding), self~consciousness (awareness and understanding of avatar, it gives the
avatar knowledge that it exists as a virtual entity separate from other avatars and virtual
objects), and qualia (subjective properties of the perceptions and sensations of avatar).

In order to implement the conscience in an avatar, we use a Knowledge Base (KB).
This KB represents the avatar conscience and it helps us to animate avatars or virtual
creatures (VC). Thus, the KB (ontology) provides the semantic definition and
necessary awareness of the internal structure of avatar (skeleton), its behavior
(personality, emotions and moods), its learned skills, and also of the rules that govern
its environment. We argue that consciousness is very important and plays a crucial role
in creating intelligent agents with human abilities and skills. Thus, the avatar can be
aware of how its skeleton is formed (considering its mobility and physical restrictions)
and also of the rules that govern its environment.

The interest of this research is to give the avatars a basic conscience in order to
have autonomous avatars able to act in 3D virtual environments. This means that it is
not necessary to define previously the movements of the avatars to achieve a task in
advance. Avatars must compute their movements themselves. But the generation of
dynamic autonomous movements with high degree of realism is too complicated.
Nevertheless, it is possible to make models of interactions between avatars and their
environment in applications of computer animation and simulation [1]. For example,
Virtual Humans (VH) can be used as virtual presenters, virtual guides, virtual actors or
virtual teachers. Thus, the behavior and movements of VH can be controlled by using
knowledge-based conscious emotional agents in order to show how humans behave in
various situations [2]. There are different approaches to deal with the objective of this
research. This research is a part of the GeDA-3D Agent Architecture [3, 4]. The
following section is devoted to overview the related work.

1. Related Work

Interactive applications such as video games, collaborative virtual environments,
simulations of virtual situations, films, among others, need believable virtual entities.
But nowadays the behavior of these VC in current applications and systems is still very
artificial and limited.

Definition 2: An avatar is a virtual entity with well-defined features and
functionalities, able to live and interact in a 3D dynamic virtual environment.

Articulated models are often used for creating avatars. The animation of such
models is often based on motion capture or procedurally generated motions. Despite
the availability of such techniques, the manual design of postures and motions is still
widespread; however, it is a laborious task because of the high number of degrees of
freedom present in the models. Kinematic algorithms are also often used in the
animation of avatars. Most of these algorithms require information about the position
of joints, angles and limbs length. Next we will survey the most important related
topics and give our opinion about them.

1.1. Motion Planning

Motion Planning (MP) has multiple applications. In Robotics it is used to endow robots
of intelligence (autonomy), so they can plan theirs own movements. The problem of
planning consists in finding a path for the robot from an initial point to a goal point
without colliding with the obstacles in the environment [5]. In Artificial Intelligence
(Al) the term planning takes a more interesting meaning. In this area the problems of
planning are modeled with continuous spaces [6]. The problem of planning seems more
natural and consists in defining a finite set of actions that can be applied to a discrete
set of states and construct a solution by giving the appropriate sequence of actions. In
[7] is presented a motion planner, which computes animations for virtual mannequins
cooperating to move bulky objects in cluttered environments. In this work two kinds of
mannequins were considered: human figures and mobile robot manipulators.
Incremental Learning (IL) is a novel approach to the motion planning problem. It
allows the virtual entities to learn incrementally on every planning query and
effectively manage the learned roadmap as the process goes on [8]. This planner is
based on previous work, on probabilistic roadmaps, and uses a data structure called
Reconfigurable Random Forest (RRF), which extends the Rapidly Exploring Random
Tree (RERT) structure proposed in the literature. The planner can take in account the
environmental changes while keeping the size of the roadmap small. The planner
removes invalid nodes from the roadmap as the obstacle configurations change. It also
uses a tree-pruning algorithm to trim RRF into a more concise representation.

1.2. Motion Capture

In recent years the films have been successful exploding the technologies of motion
capture. Motion capture is the process of capturing the live motion from a person or
animal in order to animate an avatar [9]. Motion capture provides an impressive ability
to replicate gestures, synthetic reproduction of large and complicated movements and

behavior analysis, among others. At the moment the motion capture systems allow the
collection of information for illustrating, studying and analyzing the characteristics of
body limbs and joints during various motions, such as walking, running, etc. However,
though impressive in the ability to replicate movement, the motion capture process is
far away from perfect. Despite the longer time required to visualize the captured
motion, the optical motion capture is often preferred to magnetic technology. The
avatars animation design generates libraries of postures and motion sequences using a
motion capture system and later combined the obtained data with standard editing
tools. In the real-time motion generation, the avatars motions are based on the
combination of pre-recorded sequences or dynamic motion captures, avoiding the
recording stage.

1.3. Machine Learning

Machine Learning (ML) is a subfield of Al This subfield covers the design and
development of computer algorithms and techniques that improve automatically
through experience. These algorithms allow the machines and intelligent agents to
learn.

1.3.1. Reinforcement Learning

RL algorithms [10] allow machines and intelligent agents to automatically maximize
their performance and learn their behavior, based on feedback from their environment
within a specific context.

Definition 3: Reinforcement Learning is a subarea of ML and Al interested and
involved in the problem of how an autonomous agent must learn to take optimal
actions to achieve its goals in its environment, so as to maximize the notion of reward
in long-term.

RL algorithms attempt to find a policy that maps states of environment to actions
the agent ought to take in those states. The environment is typically represented using
the Finite Markov Decision Process (FMDP). Each time the agent performs an action
in its environment, a trainer may provide a reward or punishment (penalty) to indicate
the desirability of the resulting state. Therefore, the task of agent is to learn from the
reward indirectly. So, the agent can choose sequences of actions that produce the
greatest cumulative reward.

1.3.2. Uses of Reinforcement Learning

Applications of RL are abundant. In fact, a lot of problems in Al can be mapped to a
FMDP. This represents an advantage, since the same methodology can be applied to
many problems with little effort. RL has been used in Robotics to control mobile robots
and optimize operations in production lines or manufacture systems. An approach to
animating humanoids was proposed in [11]. However, this approach has many
restrictions in the used models. In [12] two well-known RL algorithms are presented
(Q-Learning and TD-Learning). These algorithms are used for exploration, learning
and visiting a virtual environment. In [13], RL algorithms are applied for the generation

of Autonomous Intelligent Virtual Robots that can learn and enhance their task
performance in assisting humans in housekeeping.

The potential for instructing animated agents through collaborative dialog in a
simulated environment is described in [14]. In this work, STEVE, an embodied agent
that teaches physical tasks to human students, shares activities with a human instructor
by employing verbal and nonverbal communication. This way of work allows the agent
to be taught in a natural way by the instructor. STEVE begins learning the task through
a process of programming by demonstration. The human instructor tells STEVE how to
observe his actions, and then it performs the task by manipulating objects in the
simulated world. As the agent watches, it learns necessary information about the
environment and procedural knowledge associated with the task.

A new way to simulate an Autonomous Agent’s cognitive learning of a task for
interactive virtual environment applications is proposed in [15]. This work is focused
on the behavioral animation of virtual humans capable of acting independently. The
concept of the Learning Unit Architecture that functions as a control unit of the
Autonomous Virtual Agent’s brain is proposed. The results are illustrated in a domain
that requires effective coordination of behaviors, for example driving a car inside a
virtual city. In [16], is presented an approach to integration of learning in agents for
testing how it is possible to manage coherently a shared virtual environment populated
with autonomous agents. Results proved that agents can automatically learn behavioral
models to execute difficult tasks.

Learning Classifier Systems (LCS) are a ML paradigm introduced by John Holland
in 1978. In LCS, an agent learns to perform a certain task by interacting with a partially
unknown environment from which the agent receives feedback in the form of
numerical reward. The incoming reward is exploited to guide the evolution of the
agent’s behavior which is represented by a set of rules, the classifiers. In particular,
temporal difference learning is used to estimate the goodness of classifiers in terms of
future reward; genetic algorithms are used to favor the reproduction and recombination
of better classifiers [17]. In this work our approach is very different, because we use
RL as a cognitive process that allows the avatar to learn new skills in its environment
within a certain context. This difference is made by working with conscience that is not
just knowledge but cognitive processes, which allow us to animate avatars in a more
natural way. However, we are more interested in learning than in the exploitation of
learning. That is, learning allows us to simulate the behavior and motion of life
creatures into the avatars. This application constitutes a new use of RL. The following
two sections are dedicated to the proposal of this research work. In these sections we
will present the definition of an ontology proposed in order to define the internal
skeletons of the avatars and the application of Reinforcement Learning (RL) for
animating autonomously a nonhuman virtual arm.

2. Knowledge-Based CAPE Agents

Knowledge and reasoning are two essential elements for making intelligent agents able
to achieve successful behaviors and take good actions in complex environments. These
elements play a crucial role in dealing with partially observable environments.
Knowledge-Based Agents are able to accept new tasks in form of goals. These agents

can adapt to changes in the environment by updating its relevant knowledge about the
environment and themselves.

Definition 4: CAPE Agents are Knowledge-Based Agents able to combine general
knowledge with current perceptions to infer hidden aspects of the current state prior to
taking new actions in their environment. Thus, these agents can increase their
knowledge and learn new skills.

CAPE Agents represent a kind of logical agents whose knowledge always is
defined. That is to say, each proposition is either true or false in the environment,
although the agent may be unbeliever towards some propositions. Even though logic is
a good tool to model CAPE Agents in partially observable environments, a
considerable part of the reasoning carried out by agents depends on handling the
uncertainty. However, logic cannot represent knowledge that is uncertain in a good
way.

The main component of a knowledge-based agent is its KB. We use the KB as a
set of logical sentences. Each logical sentence represents some assertion about the
environment or the avatar. In order to add new sentences and query what is known to
the KB, we use the standard sentences TELL (telling information to the KB) and ASK
(asking information to the KB), respectively. Both sentences are used to generate new
sentences basing on the old sentences. When we ask something to the KB, the answer
depends on what we have told to it previously. In this work we propose a KB
(ontology) to store and get knowledge about the internal structure of avatar (skeleton),
its behavior (personality, emotions and moods) and its learned skills. The main
objective is the exploitation and use of knowledge offered by the ontology in order to
make autonomous animations of avatars using RL. This ontology allows sharing
semantic information of avatars among CAPE Agents that live and interact in a 3D
dynamic virtual environments created by a declarative description over the GeDA-3D
Agent Architecture. In fact, the avatar uses the KB first as a part of its conscience and
second to implement a set of algorithms that constitute its cognitive knowledge.

Figure 1 shows the relationships between the main classes of the proposed
ontology. An avatar is defined using a morphology description (qualitative description)
that defines its skeleton (geometry of avatar) and the anthropometry description
(quantitative description) that offers information about its age, gender, weight and
height. In addition, as a part of its behavior, an avatar has personality, emotions and
moods. In this work we will only explain how we have defined the internal skeleton of
avatar.

Avatar

. |hasiD int hasAnth tryDescripti
hasMorphologyDescrintion |25 gmg asAnthropometryliescription
pastiescriiion Sting (AnthropometryDescription)
MorphologyDescription = y
hasGander int
hasSkeleton hasPersonality hasSkills*

hasHeight hasWeight
hasEmotionalState hasMoodState

Measurement
hasDescription String
Personality m hasUnitOfMeasurement |String
hasValue fioat

(EmotionalState) (MoodState)

Figure 1. Semantic representation of avatar

The internal skeleton of avatar is composed by several parts. That is to say, bones
and joints that form skeleton parts in specific (see figure 2). Each joint has a name and
can have joints parents and/or joints children. There are motion constraints defined for
each joint and a set of simple motions that define the alphabet of basic movements
(micro-animation) that will be used to generate complex motions by means of
combination between them (macro-animation). Also each bone can be united to one or
more joints, and each joint has its position in the skeleton of avatar. Each bone of
avatar has its measures that can be expressed in a predetermined unit of measurement,
for example, in centimeters or decimeters. Using the previous definition and applying
RL algorithms, we can animate the internal skeleton of avatar as it will be shown in the
following section.

joinedBones™
nd At

beginAt*

hasBones™ Skeleton asJaints*

hasDescription |String

isComposedOfSkeletonParts*

SkeletonPart

A 4
Bone asBones”—

Yy v
hasJoints™ Joint

hasName String
hasDescription [String

hasName String

|—p hasName String <—|
| I—helongsToSksletonParts‘I hasChiIdren"J | | LhasParenls‘

hasMeasures

belongsToSkeletonParts* has3DPosition

Measurement JointConstraints hasMotionConstraints

hasDescription String maxRotX float hasBasicMotions®

hasUnitOfMeasurement |String minRotX float - -

hasValue float mngolY float BasicMotion " 3DPosition
minRotY float hasN St
maxRotZ float EE ame, . qng x |float
) hasDescription String float
minRotZ float Y . . y [floa
rotX foat onTheMotionAxis |String > |foat
rotY float hasValue float
rotZ. float

Figure 2. Skeleton definition of avatar

3. Avatars Animation using a Knowledge Base and Reinforcement Learning

In order to animate avatars it is necessary to use RL and MP algorithms to compute
their motions. However in this work, we only present the use of RL. Avatars should be
conscious of their internal structure (skeleton) and know how to combine simple
movements to make complex activities or motions, which allow them to learn several
skills and abilities. Using the previous definition and applying RL algorithms we can
animate autonomous avatars. Figure 3 shows the proposed module of RL for the
GeDA-3D Agent Architecture. The avatar should explore its body to know its structure
and to learn a set of primitive motions, the basis for generating complex motions. In
this work we propose the use of synergies (simple movements) to support the idea that
the avatar cannot control all the degrees of freedom of its skeleton. For this reason a set
of simple or primitive motions is selected (natural motions) to generate complex
motions. Therefore, synergies are the base of the motions of avatar and can be
manipulated by means of RL and MP algorithms.

| Virtual Environment

Actions

Effectors

Perceptions

Sensors

Avrtificial Emotional
Intelligence
Module

Behavior Module
(personality,
emotions and
moods)

Description

expressions

] | Exploring and knowledge of
skelefon
; T
: Learning basic mofions
(alphabet)
L

Generating and learning
complex motions (planning)

]
Learning skills, postures and
facial expressions

L

! | Motion execution |

Skeleton
Definition

Figure 3. Reinforcement Learning Module of the GeDa-3D Agent Architecture

3.1. Skeleton Parts involved in the Learning Task

We have to identify the used skeleton parts of avatar that we aim to animate on the

basis of the following factors:

o Identifying the implied bones and joints of each skeleton part and their

relations.

e Establishing the end-effectors and their locations in the skeleton parts.

e Defining a set of basic motions to each joint taking into account their motion

constraints.

3.2. Learning Task Definition

It is very important to define clearly the learning task the avatar must perform. That is

to say, we have to define the state and action sets used in the RL algorithm.

3.2.1. State Set

We define the state set S = I P i»ii 2. » Where:

e State set of each joint </; indicates each possible angle that can adopt each

joint in order to accomplish its motion constraints, and,
e 71 indicates the number of joints in the skeleton.

3.2.2. Action Set

We translate the set of basic motions of each joint into the action set of RL task. Basic
motions are to increase or decrease the angle related to such movement into small
values, for example 5 or 10 degrees. Therefore, the action set 4 indicates the possible
motions of each joint of the skeleton of avatar (degrees of freedom) over the three axis
x, y and z. Next, we show the functions applied to find the action set and the state set
used in the RL algorithm as part of cognitive knowledge of avatar:

//Action set of skeleton sk
function ACTIONS_SET (Skeleton sk, increment) returns the action set
begin
Set A[]; //action set
Joints joints[];
//KB is the Knowledge Base
joints = ASK(KB, JOINTS_SKELETON(sk));
from i =0 to i <joints.length do
A=A + AXIS_ACTIONS(joints[i], X, increment)
+ AXIS_ACTIONS(joints[i], y, increment)
+ AXIS ACTIONS(joints[i], z, increment);
return A;
end

//Action set of joint j on the axis a
function AXIS ACTIONS (Joint j, Axis a, increment) returns the action set
begin
Set A[]; //action set
vars min, max;
//KB is the Knowledge Base
min = ASK(KB, MINIMUM_ROT(j, a));
max = ASK(KB, MAXIMUM_ROT(, a));
if max - min > 0 then
begin
A =new Set[2];
A[1] = rotating the joint j in positive degrees on the axis a; //Increasing (in increment)
A[2] = rotating the joint j in negative degrees on the axis a; //Decreasing (in increment)
end
return A;
end

//State set of skeleton sk
function ACTIONS_SET (Skeleton sk, increment) returns the state set
begin
Set S[]; //state set
Joints joints[];
//KB is the Knowledge Base
joints = ASK(KB, JOINTS SKELETON(sk));
from i =0 to i <joints.length do
S =S x JOINT STATES(joints[i], increment);
return S;
end

//State set of joint j
function JOINT_STATES (Joint j, increment) returns the state set

begin
Set S[]; //state set
S =8 x AXIS_STATES (j, x, increment) x AXIS STATES (j, y, increment)
x AXIS_STATES (j, z, increment);
return S;
end

//State set of joint j on the axis a
function AXIS STATES (Joint j, Axis a, increment) returns the state set
begin
Set S[]; //state set
vars max, min, aux, i;
//KB is the Knowledge Base
min = ASK(KB, MINIMUM_ROT(j, a));
max = ASK(KB, MAXIMUM_ROT(j, a));
aux = max - min / increment;
if aux > 0 then
begin
S = new Set[aux];
from i= 0 to aux do
S[i] = min + i * increment degrees on the axis a;
end
return S;
end

3.3. Finite Markov Decision Process

In RL, an agent chooses the best action based on its current state. When this step is
repeated many times, it turns into the problem that is known as the Markov Decision
Process. Therefore, we considerer the representation of learning task to be the Finite
Markov Decision Process (FMDP) based on the following statements:

o P(s,a,s'):S>x<A4Ax=S —[0,1] is the joint probability of making a
transition to state S if action A is taken in the state S .

e R(s,a,s"):8><A>S —>R is an immediate reward for making a
transition from S to .s' by action & .

Given any state and action, S and { , the probability of each possible following
state 5" is:

P :P{St+1 :s'|S

SS

Similarity, given any current state and action, S and , together with any
following state .s'', the expected value [F of the following reward is:

a J— J— P J— |l
Rss‘ —E{I"t+1|S, =s8,d, =d,S, 4 _S}

Basically the agent perceives a set of states S in its environment, a finite set of
actions A that it can perform, and a set of obtained rewards in IX. At each discrete

time step Z , the agent senses the current state s, € S and the set of possible actions
A(S,) for that state. When the agent takes an action a € A(St) and executes it, it

receives the new state 5,_,; and a reward or punishment #;_,; from the environment.

Thus, the agent must learn to develop a policy 7 :S — A, which maximizes the

n n
quantity R = ZF[for a FMDP with a terminal state, or the quantity R = Z)/ v,

=0 =0
for a FMDP without terminal states. Where O =<7’=<1 represents a discount factor
used for future rewards. In fact, the agent does not necessarily know the reinforcement
and next-state functions. These functions depend only on the current state and action.
Before learning, the agent may not know what will happen when it chooses and
executes a action in a particular state. The agent is only aware of its current state. This
represents relevant information for the agent and allows it to decide which action to
choose and execute. However, the policy is essential, because the agent uses its
knowledge to choose an action in a given state.

3.4. Q-Learning Algorithm
There are several ways to implement the RL task. We have chosen the Q-learning
algorithm, a well-known form of RL in which the agent learns to assign values to state-

action pairs. In its simplest form, the one-step Q-learning algorithm is defined by the
following action-value function:

0(s;5a,) < O(s,a,) +o

o+ ymax O(s,,,a) = 0(s,,4,)|

We have fixed the values of & and 7} to 0.5. The value 7 is a discount factor used
for future rewards. Thus, the agents can learn through experience. We have called a
state each possible angle that can adopt each joint of the skeleton of avatar. Possible
movements of each joint of the avatar’s skeleton is called action. We can represent the
above concepts using a state diagram. In this diagram a state is depicted by a node,
while an action is represented by an arrow. We can put the state diagram and the instant
reward values into a reward table or matrix R (reward function). The learning
algorithm Q-learning is a simplification of RL. We need to put into the brain of agent a
similar matrix named ¢ that will represent the memory of what the agent has learned
through many experiences. The row of matrix {2 represents current state of agent, the
column of matrix € pointing to the action indicates the following state. At the
beginning, we have supposed the agent knows nothing, thus we put 0 as a zero
matrix. For simplicity in this work, we assume that the number of states is known. But
in a better implementation, it is more convenient to start with a zero matrix of single
cell and to add more columns and rows to the €2 matrix if a new state is found. In
general the transition rule of this Q-learning is as follows:

O(state,action) < R(state,action)+7y max[Q(next _ state, actions)]

In the expression above the entry value in matrix 2 (rows are states and columns
are actions) is equal to corresponding entry of matrix R added by the multiplication
of a learning parameter 7 and maximum value of € for all actions in the following
state. Therefore, the agent will explore state after state until it reaches the goal. Each
exploration is an episode. In one episode the agent will move from the initial state to
the goal state. Once the agent has arrived at the goal state, the algorithm passes to the
next episode. Each episode is equivalent to one training session. In each training
session the agent explores the environment (represented by matrix R), gets the
reward (or none) until it has reached the goal state. The purpose of the training is to
enhance the brain of agent (represented by the matrix €2). More training will give
better matrix 2 that can be used by the agent to move in the most optimal way.

Parameter 7 has range of values form 0to 1 (0 ¥ 1). If % is closer to zero, the

agent tends to consider only immediate reward. If 7 is closer to one, the agent will
consider that the future reward has greater weight and importance. That it to say, the
agent will be willing to delay the reward. In order to use the matrix 2, the agent
traces the sequence of states, from the initial state to the goal state.

3.5. Action Selection Rule

An important constraint of RL is the fact that only Q-values for actions that are tried in
current states are updated. The agent learns nothing about actions that it does not try.
The agent should try a range of actions in order to have an idea about what action is a
good decision and what is not. That is to say, at any given moment of time, the agent
must only choose an option: it can execute the action with the highest Q-value for the
current state (exploitation), or it can execute an action randomly (exploration).
Exploitation is based on what the agent knows about its environment, this probably can
give more benefits to the agent. On the other hand, exploration offers the agent the
possibility to learn actions that would not be tried otherwise. In order to deal with the
exploration vs. exploitation dilemma, we choose an £€—greedy method. First, we
initialize € to 1.0 and at the beginning of each episode we decrease it. Later, we
update the value € in a way inversely proportional to the number of elapsed episodes
in the execution of the learning algorithm in the following way:

e =10- elapsed _episodes

total _episodes

Therefore, the CAPE Agents learn using the following logical principles:

e If an action in a given state causes a bad decision, the agent learns not to
execute that action in that situation.

e If an action in a given state causes a good decision, the agent learns to take
that action in that situation.

e If all actions in a given state cause a bad decision, the agent learns to avoid
that state. That is, the agent does not take actions in other states that would
lead it to be in similar states.

e Ifany action in a given state causes a good decision, the agent learns to prefer
that kind of states.

3.6. Reward Function

The reward function R is one of the most important components of RL because it
defines the purpose or goal of agent in the learning task. We have to define or find a
reward function that closely represents the agent’s goals in the learning task. Our

method consists in minimizing the Euclidean distance between C ' ,, _ (end-effector

current position) and < . - (end-effector goal position). That is to say, to minimize

the total reward received in the long run. However, there exists a problem: the goal of
RL is to maximize the total reward received in the long run, which is exactly the
opposite of the RL goal. In order to fix this problem, we simply tag the Euclidean
distance as a negative reward. Therefore, we define the reward function

R:SXAXS - N as:

R(s.a.s)=—[(c. —g.) —lc, —g,) —(c. —g.)

Although we have defined correctly the reward function, € . - is unknown and
needs to be calculated from .s' . That is to say, at each time step, we need to calculate
the end-effector’s current position <. ,, _ given the agent’s current state ,s' . This
problem is known as the Forward Kinematics Problem. In order to solve this problem,
we have used the Denavit-Hartenberg convention (D-H convention) [18] to select the

frames attached to each joint of the skeleton of avatar in a systematic way. That is, we
establish the joint coordinate frames using the D-H convention.

3.7. Results

Using the previous definition we animated a nonhuman virtual arm composed of two
bones: Humerus and Forearm that are connected by two joints: Shoulder and Elbow.
Figure 4 shows the first case study. In this case study we considered two degrees of
freedom, one of them assigned to the shoulder and the other assigned to the elbow.
Available movements for both shoulder and elbow are pitch (up or down). Possible
actions that can be performed are to increase or decrease the angle of each joint
(shoulder and/or elbow) by 10 degrees. We represent the state S as a 2-tuple
(shoulderPitch, elbowPitch), where:

e shoulderPitch, elbowPitch = {Oo,l 0°,20°,---,1 800} .

Therefore the state set is:

S ={0<=10<20<---,180>40<10<=20<,---,180<%}
S| =19>49 =361

Angles of each joint are bounded in the rank from 0 to 180 degrees, this rank
accomplishes with the motion constraints defined in the ontology (see figure 5). The
action set represent all the available movements of the arm considered in this learning
task. These motions are pitch up or down the shoulder ten degrees and pitch up or
down the elbow ten degrees. Therefore, the action set is:

~ shoulderPitchUP, shoulderPitchDown,
- elbowPitchUp,elbowPitchDown

A=4

In spite of the fact that the animation of this arm was made in a 3D environment,
the movements it performs is in a 2D plane, due to the number of degrees of freedom
the arm has.

- Pi:hF f
Faicly

Figure 4. Reinforcement Learning in a nonhuman virtual arm with two degrees of freedom. The arm adopts a
final configuration to collocate the end-effector in the goal position

= sheloron -
poit name="" Shoalder™
= ¢ hal dy e
joimt name=""Flhaw' .« jaint
= chaldren-
lowes
<bone namme=" Humerns "= < bone:-
banes
et minmam="0" maxtmum="0" agle="0" = rarX¥
=rot mimman="07 masimnm= "0 angle="07 - oty -
rat? minimne="0" maximam="120" angle="0"~yair %
=posion ="0" y="0" ="0" = pegden=-
ot

<joint nane=" Elbaw=
ParEnts

yornt name=""Shoulder" =</ joint
= parers
hanes
bone name="Humernz"" >~ .« hone
bone name=""Forearm™ =< hone
Bl T TS
ratX minimam="0" manmums="0" smmgle="0" rari
1oty minbmam="0" maximom="0" angle="0"=ror}y"
=ratd minmnie=""0" maxitaam="" 130" angle=""0" ot -
pazinen x="30" v="0" ="0" < poziman
jaint

pout mame="Filecto™
<paremtE-

“ ot mames " Elbow™ =< joint=

=/pareuts=
bromes
<haae name=" Forearm™ = < bone=-
= bomes=
=rorX minimnm="0" maxmam="0" angle=""0"" rork
vot ¥ mansmu="0" maxinam="0" angle=""0"" ol ¥’
1ot mimmuem="0" pacimnm= 0 angle="0" ot
=posiion x="80" v="0" ="0" = [positon-
pouml
<bone matae=" Humerns™ length="30"=
< lpgin=
=jmant name=""Shenldes" = < joimni-
begm
=end=
=joant name=""Elhaw"" = = joimt-
el
<=hones-
<bone namme="Forearm™ length="50"=
= vngin-
goant wame="Elbaw' =« pount
= hegin=-
= aqd=
joant wamne="Effector™ =« joimt
==l
<=hones-
=skeloran

Figure 5. Definition of an nonhuman virtual arm with two degrees of freedom based on XML using the
proposed ontology

Figure 6 shows the last case study. In this case study we animated other nonhuman
virtual arm with four degrees of freedom (left arm). Three of them assigned to the
shoulder and the last one assigned to the elbow. Available movements for this arm are:
for the shoulder: roll (right, left), yaw (right, left) and pitch (up, down), and for the
elbow: pitch (up, down). Possible actions that can be performed are to increase or
decrease the angle of each joint (shoulder and/or elbow) in 10 degrees. In this case
study, we have represented the state set S as a 4-tuple (shoulderRoll, shoulderYaw,

shoulderPitch, elbowPitch), where:

e shoulderRoll = {0 <10<20°<,--
e shoulderYaw {0°10°,20°,--
e shoulderPitch ={0=10°20°,--

-,90°},
-,180°}
- ,2400} , and,

e clbowPitch ={0°10°,20°,---,150°} .

Therefore, the state set is:

S ={0<,---,90°}>{0<---,180}>{0<,- - - ,.240°}>{0<,---,150}
|S| =10>19><25>16 =76000

Angles of each joint accomplishes with the motion constraints defined in the
ontology (see figure 7). Possible motions are: roll the shoulder right or left by ten
degrees, yaw the shoulder right or left by ten degrees, and pitch the shoulder and elbow
up or down by ten degrees. Therefore, the action set is as follows:

shoulderRollRight, shoulderRollLeft, shoulder YawRight,
shoulderYawLeft, shoulderPitchUp, shoulderPitchDown,
elbowPitchUp, elbowPitchDown

4] =8

A=

In this case study the movements are performed in 3D. These movements are very
similar to the movements performed by the left arm of a real Human being.

Y
2

Paeng N) |

Fiih

Figure 6. Reinforcement Learning in a nonhuman virtual left arm with four degrees of freedom. The arm
adopts the final configuration to collocate the end-effector in the goal position

- shoeleton=- <goant name=" Elbow’ = < joint-
<joint name=""Shonlder” - [FATEIE
childven- bawes
<poknt name="Flhow' - < jeint- <bone mate=""Forearm™ =<' hane:-
< e baldrems- B TS
= haomps- =retX mimimam=""0" maximnme="0" angle="0" = Tati-
< hone mame="Humeraz™ >« bone- 1oty mimmam="0" maamum="0" agle="0" < Y
= honess- <rotd minimnis="0 maximam="0" angle="0"7"— rorL=-
ratX mimmam="0" mammnm="20" angle="10" = yari- pazinan r="80" v="0" g=""0""» pazifian-
oty mimimam="0" maamum=" 180" angle=""0"><ror¥> | «joine-
<tetd minimne="0" maximam=" 1407 angle="0" ot de | <bone name=" Homerns” length="307":
position x="07 y="" ="~ posifen- < b gam-
it <joint name=""Shonlder" =</ jome-
<poimt name=""Flhaw" = Towgin
< paretEs- <end-
<joint name="Shonlder" ~ .« joine <point name="Flaw" ~__« jasine
parentss end
= bomgs LT
<bone matae=" Humeras ™= < bone:- <bone namee="Forearm™ length=""50""=
<hone mamme=""Forearm' = < hone- = hegim-
bones <poimt name="Flhow" =« jeint
<1etX mindieam="0" maximmn="0" agle="0" - Tt =g
raty mimmam="0" mammnm="0" sngle="0">rar}¥" omd
ot mintmue="0" maxmam=" 150" angle=""0" o d <poimt name=""Filecton™ = < joint
“position =307 =707 2707w o sitio - <lend=-
S L L < homes-
<joint mame=""Fifecror’ > =/ gkeleton-
parenly

Figure 7. Definition of a nonhuman virtual arm with four degrees of freedom based on XML using the
proposed ontology

4. Conclusions

Nowadays, one of the great challenges in VR is to create avatars with characteristics
proper to real living creatures. That is, it is desirable that these VC are able to reason,
learn, feel and react as if they were intelligent creatures with cognitive capability to
make decisions. The design of these VC has been a motivating task for researchers of
different areas, such as Robotics, Virtual Reality (VR), Al and Computer Sciences
(CS). The advance in such research areas is impressive, but there is still much work to
be done. In the video game industry the users demand every day more sophisticated
video games in which they can enhance their presence in the virtual environment,
navigate, perceive elements and interact with the VC. In the film industry is growing
the interest to characterize actors in animated movies in a more realistic way. In order
to attain this, we have proposed in this work a novel approach to the animation of
avatars using RL. Our approach is based on the use of ML algorithms to provide the
virtual creature with the capability of learning new skills. Although the presented
methodology has proved to work well, its success depends enormously on how well we
define the reward function. RL allows the CAPE Agents to learn their behavior on
basis of feedback from the environment. This behavior can be learned only once, or
adapting in the time. If the problem is modeled in a suitable way, RL algorithm can
converge to the global optimum. This represents the ideal behavior to maximize the
reward.

Intelligent agents can use the knowledge about their environment and themselves
offered by the KB to make new inferences and to take good actions. This knowledge is
represented by logical sentences and it is stored in the KB. In this work we have used
knowledge-based agents composed of a KB and an inference mechanism. These agents
store logical sentences about the world and themselves in the KB, using the inference
mechanism to infer new sentences (new knowledge). Agents use these sentences in
order to decide which actions to take in a given moment. In this work, we have
presented the necessary bases to implement the conscience of an avatar, shown how to
define the internal skeletons of avatars, and described some of the main issues to be
solved. The current version of our ontology is a work in progress. In this work we have
shown some of the main possibilities of use of the ontology in order to animate
articulated VC. Our research is focused on advancing the development of the ontology
proposed. Our ontology plays a fundamental role in the animation of articulated virtual
creatures controlled by conscious and intelligent agents. Knowledge Bases also have
very important potential in the motion planning and motion learning in avatars. Our
future work includes the generalization of the avatar animation with the use of
Knowledge Bases, MP and RL techniques. These results will be applied to the
development of semi-autonomous and autonomous avatars that interact in 3D
distributed dynamic virtual environments over the GeDA-3D Agent Architecture.

References

[1] H. Schmidl and M. Lin. Geometry-Driven Physical Interaction Between Avatars and Virtual
Environments. Computer Animation and Virtual Worlds, Vol. 15, non. 3-4, pages 229-236, 2004.

[2] S. Gébel, A. Feix, and A. Rettig, Virtual Human: Storytelling and Computer Graphics for a Virtual
Human Platform. International Conference on Cyber Worlds, 2004.

[3] F. Zuiiga, F. F. Ramos and 1. Piza. GeDA-3D Agent Architecture. Proceedings of the 11th International
Conference on Parallel and Distributed Systems, pages 201-205, Fukuoka, Japan, 2005.

[4] H. L. Piza, F. Ziiliga and F. F. Ramos. A Platform to Design and Run Dynamic Virtual Environments.
Proceedings of the 2004 International Conference on Cyberworlds, pp. 78-85, 2004.

[5] F. Schwarzer, M. Saha and J. Latombe. Adaptive Dynamic Collision Checking for Single and Multiple
Articulated Robots in Complex Environments. IEEE Transactions On Robotics, Vol. 21, no. 3, pages
338-353, June 2005.

[6] S. M. LaValle. Planning Algorithms, Cambridge University Press, 2006.

[7] C. Esteves, G. Arechavaleta and J. P. Motion Planning for Human-Robot Interaction in Manipulation
Task. IEEE International Conference on Mechatronics and Automation, Vol. 4, pages 1766- 1771
Laumond, 2005.

[8] T.-Y. Li and Y.-C. Shie. An Incremental Learning Approach to Motion Planning with Roadmap
Management. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation,
ICRA 2002, pages 3411-3416, 2002.

[9] L. Herda, P. Fua and D. Thalmann. Skeleton-Based Motion Capture for Robust Reconstruction of Human
Motion. Computer Animation, pages 77-83, Philadelphia, PA, USA, 2000.

[10] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[11] J. Peters, S. Vijayakumar, and S. Schaal, Reinforcement Learning for Humanoid Robotics. International
Conference on Humanoid Robots, pages 1-20, Karlsruhe, Germany, September 2003.

[12] T. CondeW. Tambellini and D. Thalmann, Behavioral Animation of Autonomous Virtual Agents Helped
by Reinforcement Learning. Lecture Notes in Computer Science, vol. 272, pages 175-180, Springer-
Verlag: Berlin, 2003.

[13] T.-Y. Li and Y.-C. Shie. An Incremental Learning Approach to Motion Planning with Roadmap
Management. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation,
ICRA 2002, pages 3411-3416, 2002.

[14] A. Scholer, R. Angros Jr., J. Rickel, and W. L. Johnson. Teaching Animated Agents in Virtual Worlds.
In Smart Graphics: Papers from 2000 AAAI Spring Symposium, pages 46—52, 2000.

[15] T. Conde and D. Thalmann. Autonomous Virtual Agents Learning a Cognitive Model and Evolving. In
Proceedings of the 5th International Working Conference on Intelligent Virtual Agents, IVA 2005,
pages 88-98, 2005.

[16] T. Conde and D. Thalmann. Learnable Behavioural Model for Autonomous Virtual Agents: Low-Level
Learning. In Proceedings of the 5th International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2006, pages 89-96, 2006.

[17] J. H. Holland, L. B. Booker, M. Colombetti, M. Dorigo, D. E. Goldberg, S. Forrest, R. L. Riolo, R. E.
Smith, P. L. Lanzi, W. Stolzmann, and S. W. Wilson. What is a Learning Classifier System? In Pier
Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors, Learning Classifier Systems. From
Foundations to Applications, volume 1813 of LNAI, pages 3-32, Springer-Verlag: Berlin, 2000.

[18] M. W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons, Inc., 1989.

Etape d'indexation d'un texte théatral dans le cadre du projet
DRAMA

Véronique Gaildratf, Matthieu Pougett, Tahiry Andriamarozakaniainaj, Jaime Zaragoza*,
Rabiafaranjato Velonoromanalintantely }

T Université de Toulouse I Université de Madagascar * Université de Guadalajara

Résumé : Nos travaux de recherche s'inscrivent dans le domaine de la modélisation déclarative d'en-
vironnements virtuels en trois dimensions, appliquée a la génération automatique de mises en scénes
théatrales virtuelles. Ces travaux consistent, dans une premier temps, a ¢tudier un texte théatral d'un
point du vue structurel, ce qui permet d'extraire et de classifier ses éléments essentiels, reconnais-
sables morphologiquement. On peut ainsi repérer les différents éléments textuels qui structurent la
dramaturgie textuelle afin d'effectuer une indexation qui pourra ensuite étre utilisée pour des interro-
gations simples ou croisées. Cette indexation s'appuie sur une base de connaissances qui s'enrichit au
fur et a mesure de la construction d'un corpus de textes indexés et qui sera utilisée pour générer des
mises en scenes virtuelles lors de 1'étape suivante de génération.

Mots clés : Indexation, langage de balises, XML, modélisation déclarative, propriétés.

1. Introduction

L'étude que nous présentons dans cet article a été réalisée dans le cadre du projet pluridisciplinaire
DRAMA. Notre objectif principal au sein de ce projet est d’étudier 1’apport de techniques informa-
tiques pour la mise en scene de pieces de théatre.

I1 se décline en plusieurs supports d’accompagnement a la création théatrale, parmi lesquels nous pou-

vons citer :

* DRAMAtexte, outil d'indexation de texte théatral, qui permet de mettre en évidence les différents
indicateurs de scénographie introduits par l'auteur ou le metteur en scene, puis de les visualiser sous
une forme adaptée : listes, graphiques, schémas, visualisation 2D ou 3D (réalité virtuelle), afin de
servir de cadre a 1’élaboration de spectacles.

* DRAMAscéne, concu comme un outil de visualisation de mises en scéne, devant permettre a tous
les agents du spectacle et au metteur en scene de travailler en réseau, rendant possible une vision
globale du travail scénique. Cet outil devra permettre de répertorier et de prendre en compte diffé -
rents aspects de la création théatrale (outils spécifiques de notation des mouvements, du dialogue,
des didascalies de l'auteur ou du metteur en scene, de la scénographie, des éclairages, de la mu-
sique, de la bande sonore, etc.).

* De plus, le projet DRAMA comprendra a terme un volet mémorisation destiné a conserver et a ex -
porter les données scéniques, obtenues graice 8 DRAMAtexte et DRAMAscene, pour l'assistance et
l'apprentissage, notamment dans le cadre de 1'enseignement de la scénographie.

Il existe des carnets de mise en scene en version textuelle (papier ou numérique), des logiciels de scé-
nographie, d’éclairage, ou encore de costumes, mais non spécifiques au théatre et non adaptés aux be-
soins. Aucune plateforme n’est actuellement capable de rassembler les différents outils et de structurer
la création théatrale en fonction des différentes composantes du spectacle vivant.

Nous présentons dans cet article la partie de nos travaux, concernant 1'indexation de textes de théatre,
développés pour DRAMAtexte, dont le but est d'étudier la reconnaissance logicielle d’ceuvres drama-

tiques, permettant de scénariser 1’écrit, autrement dit d'extraire toutes les informations nécessaires a la
construction de la scéne théatrale. Ainsi, nous avons mis en place un nouveau concept de balisage,
permettant de repérer facilement les entités importantes a la création de la scene, ceci afin de pouvoir
lancer des requétes simples ou croisées permettant d'interroger le texte.

Nous abordons également brievement les principes de génération d'une mise en scéne virtuelle, a par-
tir des données issues de la phase d'indexation et d'une base de données stockant les connaissances sur
le contexte de la piece, étant donné que cette étape du projet va faire 1'objet des prochains développe-
ments.

2. Problématique

Le probléme posé par le projet DRAMA, vu sous l'angle de I'é¢tude et du développement d'un outil in-
formatique dédi€ a la mise en sceéne virtuelle, est apparenté a un probleme de modélisation déclarative
d'environnements virtuels complexes.

2.1. Modélisation déclarative

Un modeleur déclaratif est un outil permettant la génération automatique de scénes ou de formes com-
plexes a partir d'une description, énoncée par un concepteur, constituée par un ensemble de propriétés.

Base de
connaissances

Module déclaratif

{ Propriétés }

A

Interprétation

)4

Description

Contraintes

Module génératif

———»(Systeme de génération

Modéle
solution

{ Contraintes }

Définition des contraintes

Module impératif

Présentation

Fig 2.1.1: Les 3 étapes d'un modeleur déclaratif (Description, Génération, et Prise de connaissance) [1]

Cette description, énoncée dans un format accessible a l'utilisateur (utilisation d'un format structuré,
du langage (quasi) naturel ou de la sélection au travers d'une interface graphique), est ensuite interpré-
tée pour étre traduite en contraintes géométriques, photométriques ou autres.

Jik et
Fi 2.1.3.: CityEngine : Génération
d'environnement urbain a partir de don-
nées géographiques [3]

F ig 2.1.2.: Agetim : Génération de bdti-
ments a partir de Templates [2]

Fig2.1.4.: DEM2ONS GA : Aménage- Fig 2.1.5.: WordsEye : Systéeme « Text to
ment d'intérieurs [4] scene » [5]

Ces contraintes sont résolues par un systéme de génération adapté qui fournit un modele solution. Ce
modele permet I'exploration de l'espace de solutions qui est généralement de grande taille, afin d'obte-
nir une ou plusieurs solutions répondant a la description fournie par I'utilisateur, par instanciation du
modele. Ces solutions sont présentées au concepteur afin qu'il puisse valider ses choix, ou bien, s'il
n'est pas satisfait des résultats obtenus, il peut modifier la description et relancer le processus d'inter -
prétation et de génération pour obtenir un autre ensemble de solutions. Ce processus de création décla-
ratif est présenté Fig 2.1.1.

Des projets, basés sur le concept de déclaratif, se développent fortement depuis le début des années
2000, autour de problemes liés a la génération d'architectures (cf. Fig 2.1.2) d'environnements urbains
(Fig 2.1.3), d'aménagement intérieur (cf. Fig 2.1.4), ou extérieur (cf. Fig 2.1.5).

3. DRAMAtexte : indexation et interrogation

L'objectif de cette premiere étape est de fournir a l'utilisateur, lecteur ou metteur en sceéne, la possibili -
té de mettre en évidence les éléments caractéristiques permettant de générer une mise en scene Vvir-
tuelle. Ces éléments peuvent étre issus des indications fournies par 'auteur grace aux didascalies, ou
ajoutés par le metteur en scéne pour apporter sa vision et ses choix relatifs a la mise en sceéne.
L'indexation est effectuée en ajoutant dans le texte initial des balises qui correspondent & des mots
clés, associées ou non a des attributs valués.

L'ajout de balises dans un texte permet de mettre en évidence la structure de ce texte et de décrire
toutes les informations pertinentes qu'il contient, relativement a l'application qui exploite ces informa-
tions. La description de la mise en scéne peut donc étre obtenue au travers des informations annotées
dans le texte. Cette description peut ensuite étre interrogée et manipulée par l'intermédiaire de 1'outil
d'indexation DRAMAtexte.

3.1. Etatdel'art

Les premieres formes de balisage ont été introduites manuellement dans les textes par les typographes,
par ajout de symboles servant a structurer visuellement le texte. La ponctuation et les espaces utilisés
pour délimiter les chapitres, les paragraphes et les phrases correspondent a cette forme initiale de bali-
sage. Appliqué au texte sur support électronique, le balisage permet d'ajouter beaucoup plus d'infor-
mations, en rendant explicite pour un outil informatique ce qui est implicite pour le lecteur. Il permet
ainsi d'identifier la structure logique d'un texte.

La représentation des informations contenues dans le texte d'un auteur nécessite I'étude d'un langage
de description, permettant la représentation informatique des données théatrales. Ce langage est basé
sur le langage XML (eXtensible Markup Language) [6], adapté aux besoins de ce contexte particulier.
Ce langage permet en effet de baliser le texte et extraire facilement les données, tiche qui ne peut étre
effectuée que manuellement et laborieusement a partir d'une version imprimée de la piece de théatre
ou, au mieux, a partir d'une version numérique et d'un traitement de texte.

Cependant, le marquage et l'extraction d'informations peuvent étre rendus difficiles en raison de la na-
ture méme des textes. Un texte peut contenir plusieurs passages rédigés dans différentes langues, des
renvois, des notes, des citations, des descriptions scéniques voire des tableaux. Selon le genre litté-
raire, la structure du texte est organisée en chapitres, sections, scénes, actes, versets, voire un format
particulier et non réellement structuré. Tous ces éléments, souvent implicites, peuvent étre nécessaires
a certains types d'utilisateurs. Le format d'encodage du texte doit donc tenir compte, selon les besoins
particuliers de l'utilisateur, de la structure logique du document.

Pourtant, 1'utilisation actuelle des textes, fussent-ils sous un format numérique, est limitée a la lecture
ou a la simple recherche d'occurrences de mots ou de chaines de caractéres. Aussi, pour accéder a un
texte de facon radicalement dynamique et pour fournir des informations nettement plus significatives,
le balisage va se révéler une solution particulicrement intéressante.

A partir de ce constat, différents systemes de balisage ont été congus afin de répondre a des besoins
particuliers, comme le rapporte Susan-Hockey [7]. On peut citer le systtme COCOA qui a été créé, au
début des années soixante a Edimbourg, pour des textes anciens écossais et qui permet d'identifier la
structure d'un texte. Il est utilisé par la plupart des outils d'analyse de texte, comme le Oxford Concor -
dance Program. Le Thesaurus Linguae Graecae [8] a aussi créé son propre systeme de balisage nom-
mé Beta code. Par la suite, de nouveaux systemes de balisage performants sont apparus. Notamment
TEX (Tau Epsilon Xi), un systéme puissant (dans le domaine public) d'écriture de formules mathéma-
tiques qui est tres utilisé dans le monde scientifique. Les systémes de balisage spécifiques (procedural
markup) utilisés par les traitements de textes comme MSWord ou OpenOffice sont maintenant égale-
ment tres répandus.

L'utilisation de ces formats, développés indépendamment les uns des autres, a conduit a une véritable
anarchie [9][10]. Pour autant, des qu'il a pu étre mis en place, le balisage est déja apparu comme étant
essentiel et nécessaire pour obtenir une analyse des textes quasi exhaustive et surtout bien structurée.
Cependant, comme chacun de ces langages a été défini pour répondre a des besoins et des applications
spécifiques, cela contribue au manque de flexibilité et d'adaptabilité. De plus, il n'y a pas beaucoup de
documentation disponible et les possibilités d'adaptation a de nouvelles situations sont relativement
difficiles et parfois impossibles : beaucoup de temps et d'efforts sont nécessaires pour convertir les
textes d'un format a un autre. Par conséquent, aucun de ces formats ne peut étre adopté comme norme
standard, ni méme étre facilement transposé pour le contexte de notre application.

3.2. Les quatre étapes de DRAMA

Pour obtenir la visualisation en trois dimensions d'une proposition de mise en sceéne virtuelle a partir
du texte théatral, quatre étapes sont nécessaires (cf. Fig 3.2.1). Ces étapes constituent le noyau des
deux premiers outils développés dans le cadre de ce projet : DRAMAtexte et DRAMAscene.

La premiere étape ((1) Fig 3.2.1) a pour but d'indexer le texte initial, a 1'aide d'un langage a balises,
basé sur le langage XML, et ceci, afin de caractériser les éléments susceptibles de constituer la des-
cription de I'espace scénique souhaité par le metteur en sceéne.

Cette premicre étape est elle-méme divisée en trois séquences distinctes : l'indexation automatique,
suivie de l'indexation manuelle réalisée par un utilisateur lecteur, et enfin I'indexation manuelle effec -
tuée par le metteur en scéne afin d'apporter toute modification ou précision qu'il souhaite.

A l'issue de cette premicre étape, les informations, notifiées graces a 1'ajout de balises dans le texte de
l'auteur, sont extraites pour €tre interprétées en contraintes numériques ((2) Fig 3.2.1), afin d'étre trai-
tées par le systéme de génération ((3) Fig 3.2.1) qui s'appuie sur une base de connaissances construite
au fur et a mesure de l'utilisation de 1'outil.

La derniere étape consiste en l'instanciation de mises en sceénes virtuelles dans 1'espace de solutions,
afin de présenter a l'utilisateur des possibilités de mise en scéne a partir du texte indexé ((4) Fig
3.2.1).

A la suite de cette présentation, 1'utilisateur a la possibilité de revenir au texte pour modifier manuelle -
ment l'indexation en ajoutant, modifiant, ou retirant des balises, afin d'obtenir un nouveau résultat.
Enfin, si le résultat lui convient, il peut entériner le balisage qui sera conservé pour une utilisation ul-
térieure.

DRAMAtexte et DRAMAscene : 4 étapes @0.

~ d -
Q Texte & Mise en scéne %\\ Pre,
. - -

Indexation << Langage de balises Y

'/d Indexation = connaissances
:k Texte indexé Connaissances R

Interprétation < Langage de description

\/

Interprétation
Propriétés Contraintes

\Y4

Modele de scéne
Contraintes (géométriques, photométriques, physiques, etc.)

N : \> Systéme de génération
Scene virtuelle
@ Acces (Décor statique, 4// ‘M

Personnages : ,
résultats < posture, aspect, etc.) : ""_‘ M

. e

Fig 3.2.1.; Etapes de génération pour DRAMA

Génération<<

Y

3.3. Indexation

Pour DRAMAtexte, nous avons mis en place un nouveau systéme de balisage congu spécialement
pour la représentation des entités présentes dans un texte théatral.

Ce systeme de balisage est disponible au travers d'un outil informatique que nous développons afin de
pouvoir étudier et évaluer les apports du systéme, notamment en ce qui concerne les procédures d'in-
terrogation du texte.

Les textes disponibles au format €lectronique ne respectent malheureusement pas de normalisation en
ce qui concerne la mise en forme du texte. Or, 1'importation d'un texte théatral dans notre outil a né-
cessité la définition d'une norme permettant I'extraction automatique des principales structures du
texte.

L'outil peut ainsi importer des textes au format libre OpenDocument (utilisé notamment par la suite
bureautique OpenOffice) respectant une mise en forme prédéfinie. En effet, certaines entités sont dé-
tectées a partir de leur format (titres, parties, etc.) ou relativement a des régles typographiques (nom
des personnages commengant par une majuscule et suivis d'un "' ou d'un '-', titre toujours en gras,
taille de caracteéres respectant la structuration des titres des parties, didascalies toujours en italique,
etc.)

Le texte, lors de I'importation, est converti a un format XML vérifiant le schéma DTD (Document
Type Definition) qui définit la description formelle du systeme de balisage employé, propre a DRA -
MAtexte, utilisé pour qualifier les éléments caractéristiques, les attributs, etc.

XML fournit un moyen d'identifier la structuration et les informations implicites contenues dans le
texte, indépendamment de 1'application qui traite le document enrichi. Le schéma DTD permet a des
groupes de personnes d'échanger des données respectant le format pré-établi. L'application peut em-
ployer le schéma DTD pour vérifier que les données regues lors de I'importation sont valides. Un
schéma DTD peut étre aussi utilisé pour vérifier la validité¢ des données au fur et a mesure de la phase
d'indexation manuelle.

Notre outil, en se basant sur un schéma défini de fagon externe a I'outil, est ainsi plus facilement ex -
tensible.

L'importation du texte initial applique 1'opération de balisage automatique, a condition que le texte
respecte le format attendu par DRAMAtexte (format qui peut étre facilement obtenu grace a un édi-
teur de texte tel que OpenOffice). L'étape d'indexation se déroule de fagon totalement transparente au
niveau de l'utilisateur.

Apres cette premiere étape, la structure globale du texte est totalement balisée et interrogeable par
l'utilisateur. Les balises automatiques insérées dans le texte sont identifiées grace a la premicre lettre
de la balise qui est de la forme <A...>.

Suite a cette premiere opération, 1’utilisateur peut effectuer 1'indexation manuelle, qui lui permettra de
mettre en évidence les informations implicites présentes dans le texte, mais non identifiables lors de
|'étape d'indexation automatique. Ces informations concernent en particulier les relations spatiales et
temporelles, mais peuvent aussi concerner les descriptions de personnages, les sons, I'éclairage, etc.
La liste des informations pouvant étre caractérisées dépend du niveau de détail introduit dans le sché-
ma DTD et de sa prise en compte dans l'outil DRAMAtexte.

Pour la mise en place du projet DRAMA global nous avons créé deux types de balises manuelles : les
balises de la forme <M...> qui identifient les balises ajoutées manuellement par un lecteur, mais sans
modification du texte initial, et celles de la forme <D...> qui identifient les balises correspondant aux
indications du metteur en scéne (directeur), ceci pour permettre de différencier les indications pré-
sentes dans le texte original (de l'auteur) et les ajouts éventuels (du metteur en scéne). Ainsi, notre ap-
plication pourra prendre en compte le texte de l'auteur dramatique, et également les choix du metteur
en scene.

Au final, nous nous retrouvons avec trois types de balises. Par exemple, la notion de personnage
(CHARACTER) peut étre caractérisée dans le texte grace aux trois types de balises : automatiques
commengant par 'A' <ACH>, manuelles <MCH>, et du metteur en scéene <DCH>.

Chaque balise ouvrante est toujours associc¢e a une balise fermante. Par exemple <ACH> signifie le dé-
but de la définition d'un personnage et </ACH> en marque la fin.

Afin de permettre I'identification de chaque entité dans la scéne, nous avons mis en place un ensemble de
balises spécifiques a DRAMAtexte, correspondant aux éléments que nous souhaitons mettre en évi-
dence. Nous avons associé¢ a ces balises des attributs décrivant leurs propriétés ainsi que des valeurs
permettant de qualifier les attributs. La table 3.1 donne un exemple de balises. On note que la balise re-
lative aux accessoires ne peut étre ajoutée que manuellement et qu'elle dispose d'un attribut pouvant
prendre valeur fixe ou mobile.

Balises A=Automatique M=Manuelle D=Metteur en Attributs Valeurs
scéne

Personnage <ACH> <MCH> <DCH>

Groupe de <AGR> <MGR> <DGR>

Personnages

Découpage <APA> <MPA> <DPA>

Accessoires <MPR> <DPR> Type Fixe

Mobile

Table 3.1 : Exemple de balisage

Nous allons illustrer la présentation des résultats sur un exemple de didascalie, correspondant a 1'ex-
trait d'un texte théétral', décrivant les entités présentes sur la scéne :
Dans le salon bourgeois de Mrs Peacock.
La vieille dame, Mrs Peacock, est assise dans son fauteuil, un gros carnet et un stylo plume en
mains. Elle griffonne, réflechit. Aupres d’elle, Rose, la bonne, dépoussiere vigoureusement les
nombreux bibelots alignés sur les étageres, nettoie la pendule a coucou sur laquelle elle peut éven-
tuellement s’ attarder. Mrs Peacock s’interrompt dans son écriture et observe la bonne d’un il sé-
vere.

La phase d'indexation automatique va déterminer que ce paragraphe est une didascalie, grace au fait
qu'il est écrit en italique (convention d'écriture usuelle dans les textes théatraux que nous avons rete-
nue pour notre schéma DTD). Le passage indexé va donc étre encadré par les balises <ADID> et
</ADID> :

Dans le salon bourgeois de Mrs Peacock.|
La vieille dame, Mrs Peacock, est assise dans son fauteuil,
un gros carnet et un stylo plume en mains. Elle griffonne, réfléchit.
Aupres d’elle, Rose, la bonne, dépoussiére vigoureusement les nombreux
bibelots alignés sur les étagéres, nettoie la pendule & coucou sur
laquelle elle peut éventuellement s’attarder. Mrs Peacock s’'interrompt
dans son écriture et observe la bonne d'un eil sévére.
ADIT D
Fig 3.3.1: Indexation automatique d'une didascalie
Ce texte est ensuite indexé manuellement pour renseigner les éléments susceptibles d'étre intéressants
lors de la phase d'interrogation ou lors de la mise en scéne. Le texte résultant est celui que nous
montre la figure 3.3.2 suivante :

'« Sous les masques » Auteurs : Pascale Hedelin, Christophe Merlin. Editeur : Milan. Collection : Aujourd'hui théatre

<ADID=
Dans le
<MSP=salon bourgeols</MSP=
de
<ACH=Mrs Peacock=/ACH=
. La
<MMOR TYPE="Age" CHARACTER="Mrs Peacock">vieille</MMOR>
<MMOR TYPE="sexe" >dame«=/MMOR=>

<ACH=Mrs Peacocks=/ACH=

, est

<MPOS TYPE="sit" SOURCE="Mrs Peacock" CIBLE="fauteuil"> assise </MPOS>
dans son

<MS TYPE=" Fixed"=fauteuil=/MS=

, un

=MPR TYPE="mobile" CHARACTER="Mrs Peacock"=gros carnet=</MPR=
et un

<MPR TYPE="mobile" CHARACTER="Mrs Peacock"=stylo plume=/MPR=
en mains. Elle

<MAC TYPE="simple" CHARACTER="Mrs Peacock"=griffonne=/MaC=

,
<MAC TYPE="simple" CHARACTER="Mrs Peacock"= réfléchit =/mMaC=

<MPOS TYPE="Near" SOURCE="Mrs Peacock" CIBLE="Rose"=Auprés d’'elle
=/ MPOS>

.

<ACH=Rose=/ACH=>

, la

<MMOR TYPE="OrdCostume" CHARACTER="Rose"=> bonne =/MMOR>

Fig 3.3.2: Texte avec balises aprés indexation manuelle

Irl

I1 est a noter que l'utilisateur final de 'outil n'a jamais la nécessité d'avoir acces au texte au format
XML tel qu'il est montré ci-dessus. L'introduction de balises manuelles est réalisée dans le texte initial
a l'aide d'une interface adaptée de I'outil DRAMAtexte (Fig 3.3.3), qui masque totalement le format

interne du balisage.

& Navigateur 1 =8| & new_filesml X bextewml
b 7 |v @ ADID
* 13 Tedt i
¥ & stlings [E MSP
1| propct

B o
A mew_filesml

T pexbtoml =[5 MMOR

@ TYPE
@ CHARACTER
. - T o o
L) T
[¥] MPR TYPE=fived @ TYPE

& MPCS TYTEsline
(=] MS TYPE=Fived

[MAC TYPE=cimph (] ACH
[MS TYPE=fived
£] ACH = [MPOS
B (sl MAC TYPE=smple & S0URCE
- temoms e e x Design |Source

o mamuxml & —|m|

Crans k=

sakon hourggais
di

Mrs Peacock

La

Age
Mrs Peacock

vicllke

e

dam

Blrs Peacock

M-

it

Mrs Peacock

Fig 3.3.3: Affichage structuré du texte

Une fois que l'utilisateur juge le texte correctement indexé, il peut conserver le résultat pour une utili -
sation ultérieure. Ceci permet de créer une base de données de textes pré-indexés accessibles aux per-
sonnes intéressées.

3.4. Interrogation

Le résultat du balisage permet d'interroger le texte a I'aide de requétes simples ou combinées afin de
pouvoir éditer des listes d'éléments qui auront été indexés automatiquement ou manuellement. L'utili -
sateur peut ensuite croiser certains ¢léments entre eux (obtenir par exemple, les costumes des person-
nages dans une scéne donnée, compter le nombre d’entrées de personnages dans une partie, etc.) Ce
processus d'interrogation se base sur toutes les informations signalées par les balises, tels que les élé-
ments scénographiques, les costumes, 1'éclairage, etc.
La possibilité de recouper ainsi des informations va permettre au lecteur ou au metteur en scene
d’avoir une lecture plus efficace afin d'avoir une vue synthétique du texte. Mais elle pourra permettre
également d’élargir les champs d’études, en mettant en lumicre des aspects encore inexplorés de la
théatralogie (notamment tout ce qui a trait au regard du spectateur et a l'expression de 1’émotion, en-
core peu exploré).
L'indexation pourra a terme également permettre :

 d'effectuer aisément une lecture partielle ou intégrale de la scéne textuelle ;

* de créer la partition rythmique du texte ;

 d'analyser l'histoire conversationnelle ;

* de créer une base de données de textes, indexés suivant des entrées différentes.
Ainsi, a partir d'un texte indexé, 1'utilisateur pourra effectuer des interrogations complexes et dyna-
miques, afin d'extraire les informations nécessaires a 1'étude d'un texte théatral. Ces deux possibilités
complémentaires d'indexation et d'interrogation vont étre trés utiles et sont tres attendues par les per -
sonnes étudiant le domaine théatral. Elles faciliteront le travail, qui peut étre fastidieux, de recherche
exhaustive d'informations dans un corpus de textes en vue d'en établir une synthése ou une analyse.
Enfin, dans un but plus pratique, le processus d'interrogation pourra permettre d'obtenir immédiate-
ment des informations sur les éléments de décors ou les accessoires, les éclairages, les costumes ou
encore le maquillage, et ceci dans le but de faciliter la tiche de tous les corps de métiers impliqués
dans la réalisation d'une mise en sceéne.

3.5. Mise en oeuvre

Pour des raisons de cohérence entre les différentes partie du projet et pour garantir la portabilité et la
robustesse de 1’application, nous avons opté pour un développement avec le langage de programma-
tion orienté objet JAVA [13].

Vu la portabilité offerte par le langage JAVA, cet outil pourra s'installer et s'exécuter facilement sur
tout systeme d'exploitation, des ordinateurs portables voire des ordinateurs de poche PDA (P ersonal
Digital Assistant).

Afin de simplifier la tiche des utilisateurs de DRAMA, nous avons congu et développé un assistant fa-
cilitant la détermination et la correction des erreurs éventuelles pouvant advenir lors de la phase d'in-
dexation.

Nous avons automatisé le plus de tiches possibles. En effet, I'insertion d'une balise dans le texte se fait
simplement grace a des menus contextuels. L'utilisateur a la possibilité de créer ses propres balises.
Chaque attribut est automatiquement associé a une valeur par défaut, de fagon a éviter de devoir ren-
seigner tous les champs de fagon systématique. Cependant, 1’utilisateur peut modifier les choix par dé-
faut chaque fois que ¢a lui parait nécessaire. La figure suivante (Fig 3.5.1) donne un apercu de la
structure finale de DRAMAtexte.

Tahry GJ L0 = o W) pu tme, 1938 (1]

= 208
Exchigr Editer Source begiguer Eoghercher Projet XML Fephoe Awe
=, o [o P - almr
17 L Resanee
o W aviganear 5 CH| 1 e il o =
B E ACH M Fracech
b = Affichage
£ opraert [H ADID lAgaci) - |
I o R |
|ef aldla i =
1 testam] [AcH po texte indexeé ‘
o [6 ADIA ‘
v [ilADID '
Cescgn | Sicirce
& Iscorogation Vane 5 bym)

= T 23 [

o Simemee H Interragation

Outil de navigation

T amil ~| = Simpsle
= [&°L Formulam o inbirragaion,
c ?
& Al Chakun ébme: Diwegus i e
T EARA Afiicher
[e] ATI LEVEL=2
= Risultat
. i A
BiAcH Tkl e Vue d'interrogation
1 MHE PRSI
[ADIn
* [ADLA LOCUTELRhers T Dwe la dowcear, du dewgte 'Combien ce hid devreje viag e
_ [H
1) 1]
ik Arciss.. ke | st vanede | 7115

Fig 3.5.1: Interface globale de DRAMAtexte

4. Base de connaissances

Le texte indexé obtenu a partir de DRAMAtexte est utilisé pour déterminer les propriétés (au sens de
la modélisation déclarative) qui vont étre interprétées en contraintes pour €tre ensuite utilisées par un
systéme de génération (cf. §2.2).

Or, le texte de théatre étant un texte laissant place a l'interprétation du lecteur, il devient nécessaire de
compléter un certain nombre d'informations non renseignées, mais pourtant nécessaires, pour pouvoir
lancer la génération d'un environnement scénique et obtenir un résultat pouvant étre jugé satisfaisant
par l'utilisateur.

Pour cela, nous avons introduit un langage de description de scénario déclaratif appelé : Virtual Envi-
ronment Description Language (VEDEL) [14], étudié¢ dans le cadre du projet Geda-3D [15] et déve-
loppé au Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CIN-
VESTAV — IPN), a Guadalajara au Mexique, par le Distributed Systems Group.

Une description fournie dans le langage VEDEL, est constituée de trois grandes parties :

* les éléments descriptifs de 'environnement virtuel ;

* les acteurs (entités qui peuvent effectuer des actions et sont soumises a des changements dus a la
modification de I'environnement ou aux actions d'autres entités) ;

* les objets (entités qui ne peuvent effectuer d'actions, mais sont également soumis aux effets de 1'en -
vironnement et a des autres entités).

La description est composée de « phases » qui indiquent pour chaque élément descriptif et chaque en-
tité¢ quel est son type, ses attributs et les valeurs des attributs.

Cette description, fournie en langage VEDEL, correspond a une formalisation des propriétés, telles
qu'elles ont été définies grace a l'indexation. Elle est destinée a étre interprétée en contraintes, devant
étre résolues par un systeme de génération.

Mais dans le cas ou la description est trés incompléte, I'espace des solutions possibles peut étre de
taille quasiment infinie. Quand le systeme de génération doit faire face a un systéme de contraintes
fortement sous-contraint ou le nombre de solutions se révele trop important pour étre exploré, méme
tres partiellement.

Par exemple, si on a juste la connaissance du fait qu'une table est sur la scéne, il y a une infinité de po -
sitions et d'orientations possibles pour cette table, sans aucune indication pouvant permettre de guider
le choix du systéme de génération.

C'est pour cela que nous avons introduit une base de connaissances destinée a renseigner le systeme
de génération, afin de préciser les choix possibles en fonction de données disponibles.

Ces connaissances peuvent concerner, par exemple, les mises en scéne correspondant a I'époque ou au
genre de la picce, ou encore les habitudes de 'auteur, voire du metteur en scene.

Ainsi, dans le cas ou des propriétés n'ont pas été suffisamment renseignées, le systeéme de génération
va pouvoir rechercher les attributs et leurs valeurs, tels qu'ils ont été stockés dans la base de connais-
sances.

La base de connaissances joue donc le role d'une ontologie utilisée lors de l'interprétation des proprié -
tés descriptives, afin de compléter et valider les choix effectués lors de la phase d'indexation.

On trouvera également dans cette base et pour chaque type d'objet pouvant étre placé sur une scene,
des caractéristiques propres qui vont permettre au systeme de génération de résoudre les contraintes
d'une fagon pertinente. Dans l'exemple (Fig 4.1), on peut voir une mise en évidence des marqueurs lo-
giques qui vont désigner les points caractéristiques et les zones de placement relatifs aux objets de
type Chaise.

Fig 4.1 : Exemple de marqueurs utilisés lors de la phase de génération [16]

A partir de toutes les données disponibles, obtenues grace a l'indexation ou issues de la base de
connaissances, le systetme de génération pourra calculer et présenter a l'utilisateur un sous-ensemble
d'instanciations de 1'espace de solutions, parmi lesquelles il pourra faire un choix.

Parmi ces instanciations pourra peut-€tre émerger une configuration scénique a laquelle le metteur en
sceéne n'avait pas songé a priori. L'outil de génération pourra ainsi également devenir un outil de pro-
position, laissant toute la liberté a l'utilisateur de retenir ou non les solutions issues de la description
qu'il aura fournie.

5. Conclusion et perspectives

DRAMAtexte est un outil qui permet a un lecteur ou a un metteur en scéne d'indexer un texte théatral.
L'indexation est un moyen d'enrichir le texte en ajoutant des informations implicites, autorisant par la
suite des interrogations pouvant fournir des résultats dont l'obtention grace a des moyens classiques se
révélerait fastidieuse.

Les opérations de balisage automatiques et manuelles vont pouvoir avoir des applications dans des do-
maines qui vont au dela de ceux présentés dans cet article. Concernant la recherche fondamentale cet
outil va pouvoir faciliter, voire rendre enfin possible :

 l'analyse synchronique des différents éléments (impossible dans le cas d’une lecture diachro-
nique) ;

* la visualisation de I’espace et de son occupation par les personnages, grace a lI'apport de I'image-
rie 3D (plus difficile dans ’espace imaginaire de la lecture, surtout pour des personnes se for-
mant a la mise en scene) ;

* la globalisation de la construction du personnage (difficile a réaliser en amont dans la lecture).
Pour la recherche appliquée aux arts de la scéne 1'outil va permettre de fournir aux praticiens du
théatre (scénographes, costumiers, acteurs, techniciens, etc.) : des listes, des graphiques, et des sché-
mas, permettant une visualisation de ces différents éléments qui serviront de cadre a I’¢laboration de
la dramaturgie scénique.

Tout ceci va permettre aux généticiens du thédtre de comparer en direct la partition originale et celle
des différentes mises en scenes.

Cet enrichissement du texte se traduit également par 1'ajout de propriétés (principalement des relations
spatiales entre objets ou personnages présents sur la scéne), utilisées afin de calculer et proposer une
visualisation scénique virtuelle en trois dimensions. Pour cela, il va falloir étudier un systeme de géné-
ration robuste et rapide permettant de déterminer, a partir des propriétés et de la base de connais-
sances, un ensemble d'instanciations de mises en scenes possibles, respectant la description et fournis-
sant des solutions valides.

Ce systeme de génération qui va étre le fondement de DRAMAscene, est basé sur le principe de la
modé¢lisation déclarative présenté a la Fig 2.1.1. Il a pour but de fournir a 1'utilisateur des exemples
schématiques de ce que pourrait étre la mise en sceéne, en fonction des contraintes issues du texte, de
la volonté du metteur en scéne, ou bien encore de la configuration de la sceéne.

Si aucune des solutions présentées ne conviennent, l'utilisateur pourra revenir sur la phase d'indexa-
tion afin de préciser ou corriger ses choix. Ensuite il pourra relancer le systéme de génération qui lui
proposera d'autres solutions.

Cette étape nécessitera également I'étude et le développement d'un systeme d'interprétation dont le
role est de traduire les propriétés obtenues grace a l'indexation des didascalies en contraintes, géomé-
triques ou non, prises en charge et résolues par le systeme de génération.

Ensuite, le projet DRAMA se poursuivra par l'introduction d'aspects dynamiques, tels que la prise en
compte des déplacements sur la scéne, les éclairages ou la synchronisation avec une bande sonore. Au
dela des applications pour le théatre, et de fagon plus générale les arts du spectacle, ce projet implique
des problématiques de recherche et la mise en oeuvre de technologies pouvant étre directement trans-
posées dans d'autres domaines.

Par exemple, on pourra transposer cette étude aux environnements virtuels distribués, liés a des sys-
temes d’informations multimédia incluant des textes automatiquement indexés a partir de documents
techniques, et des vidéos. Ces applications sont particulieérement appropriées a 1’ingénierie collabora-
tive, a la surveillance de sites industriels, a la construction, ainsi qu'aux taches de maintenance.

Dans cette volonté permanente de confronter théorie et pratique, le module DRAMAtexte est la pre-
miere étape d’un projet en gestation depuis 12 ans, mais qui commence tout juste depuis 1'année 2008
a connaitre une véritable mise en oeuvre.

Ce projet permet de faire se rencontrer praticiens et théoriciens autour d’un méme objectif : conserver
la mémoire du processus de création théatrale. En effet, il n’existe aujourd’hui aucun support permet -
tant, non seulement de conserver efficacement cette mémoire, mais également de la transmettre aux
futures générations de metteurs en scenes.

Les outils que nous étudions n'ont surtout pas pour but de proposer ou établir un schéma de création,
mais uniquement de simplifier et de conserver certaines €tapes du processus de création.

Ce projet est également un lieu d'échange important entre chercheurs issus d'horizons trés différents
puisque certains sont membres de I'IRIT (Institut de Recherche en Informatique de Toulouse) et pro-
viennent de l'univers des sciences de 1l'information et d'autres sont membres du laboratoire Espafi@31
(groupe de recherche sur I’Espagne contemporaine de I’Université de Toulouse II).

6. Bibliographie

[1] GAILDRAT, V., Modélisation déclarative d'environnements virtuels : Création de scenes et de
formes complexes par l'énoncé de propriétés et l'emploi d'interactions gestuelles, Habilitation a
diriger des recherches, Université Paul Sabatier, janvier 2003.

[2] LARIVE, M., GAILDRAT, V., Wall Grammar for Building Generation, Graphite 2006, 4th
International Conference on Computer Graphics and Interactive Techniques in Australasia and
South-East Asia, ACM SIGGRAPH Conference, ACM Press, Kuala Lumpur, Malaysia, pp.
429-438, 29 novembre-02 décembre 2006.

[3] PARISH, Y. LH., MULLER, P., Procedural modeling of cities, SIGGRAPH'01, Los Angeles, pp
301-308, aolit 2001.

[4] SANCHEZ, S., LE ROUX, O., LUGA, H., GAILDRAT, V., Constraint-Based 3D-Object
Layout using a Genetic Algorithm, 31A"2003, The Sixth International Conference on Computer
Graphics and Artificial Intelligence, Limoges, 14 - 15 mai 2003.

[5] COYNE, R., SPROAT, R., WordsEye : An automatic text-to-scene conversion system,
SIGGRAPH'01, Los Angeles, aott 2001.

[6] BRAY, T., PAOLI, J., SPERBERG-McQUEEN, C. M., Extensible Markup Language (XML)
1.0 (2nd Edition), http://www.w3.org/TR/REC-xml.

[7] HOCKEY, Susan, Evaluating Electronic Texts in the Humanities, Library Trends 42, no 4,
Spring 1994.

[8] PANTELIA, M., PEEVERS, R., Thesaurus Linguae Graecae, University of California, Irvine,
California, 2004.

[9] BURNARD, L., Report of Workshop on Text Encoding Guidelines, Literary and Linguistic
Computing 3: 131-3, 1988.

[10] PRICE-WILKIN, ., Text Files in Libraries : Present Foundations and Future Directions,
Library hitech 9, no 3, pp 7- 44, 1991.

[11] BEECHAM, S., HOWARD, G., Making opera sing: OpenDrama and the Magic Flute,
International Cultural Heritage Informatics Meeting: Ichim'03, 2003.

[12] HART, Michael, Gutenberg: The History and Philosophy of Project Gutenberg,
http://www.gutenberg.org/wiki/Main_Page, 2006.

[13] Sun Microsystems, Java 2 Micro Edition, http://www.java.sun.com/j2me/, 2001.

[14] ZARAGOZA, J. A. Rios, Representation and exploitation of knowledge for the description
phase in declarative modeling of virtual environments, Master's thesis, Centro de Investigacion
y de Estudio Avanzados del IPN, Unidad Guadalajara, 2006.

[15] RAMOS, F., ZUNIGA, F., PIZA, H., A 3D-space platform for distributed applications
management, International Symposium and School on Advanced Distributed Systems 2002
Guadalajara, Jal., Mexico, November 2002.

[16]
[17]

[18]
[19]

[20]
[21]

[22]

LE ROUX, O., Modélisation déclarative d'environnements virtuels : contribution a l'étude des
techniques de génération par contraintes, Thése de doctorat, Université Paul Sabatier, 2003.
FROST, D. H., Algorithms and heuristics for constraint satisfaction problems, PhD thesis,
University of California,1997.

BRASSARD, G., BRATLEY, P., Fundamentals of algorithmic, Prentice-Hall, Inc., 1996.
RUSSEL, S. J., NORVIG, P, Artificial Intelligence: A Modern Approach, Pearson Education,
2003.

GASCHNIG, J. G., Performance measurement and analysis of certain search algorithms, PhD
thesis, Carnegie-Mellon Univ. Pittsburgh Pa. Dept. Of Computer Science, 1979.

DECHTER, Rina, Enhancement schemes for constraint processing: backjumping, learning,
and cutset decomposition. Artif. Intell., 41(3), pp 273-312, 1990.

HARALICK, R. M., ELLIOTT, G. L., Increasing tree search efficiency for constraint
satisfaction problems, Artif. Intell., 14(3), pp 263-313, 1980.

Bibliography

1]

Demitri Plemenos, Georges Miaoulis, and Nikos Vassilas. Machine learning for a gen-
eral purpose declarative scene modeller. In International Conference GraphiCon’2002,
Nizhny Novgorod (Russia), September 15-21, 2002.

Véronique Gaildrat. Declarative modelling of virtual environment, overview of issues
and applications. In International Conference on Computer Graphics and Artificial In-
telligence (31A), Athénes, Grece, volume 10, pages 5-15. Laboratoire XLIM - Université
de Limoges, may 2007.

Felix Ramos, Fabiel Zuniga, and Hugo I. Piza. A 3D-space platform for distributed
applications management. International Symposium and School on Advanced Distributed
Systems 2002. Guadalajara, Jal., México, November 2002.

Dirk Fahland. Towards analyzing declarative workflows. In Autonomous and Adap-
tive Web Services, number 07061 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2007.

Antoine Spicher and Olivier Michel. Declarative modeling of a neural-like process.
Biosystems, 87(2-3):281 — 288, 2007.

Dimitri Plemenos. Using artificial intelligence techniques in computer graphics. In
GraphiCon, 2000.

Olivier Le Roux, Véronique Gaildrat, and René Caubet. Design of a new constraints
solvers for 3d declarative modeling. In International Conference on Computer Graph-
ics and Artificial Intelligence (81A), Limoges, 03/05/200-04/05/200, pages 75-87, may
2000.

Olivier Le Roux, Véronique Gaildrat, and René Caubet. Using constraint satisfaction
techniques in declarative modeling. In Geometric Modeling Techniques, Applications,
Systems and Tools, pages 1-20. Kluwer Academic Publishers, 2004.

151

BIBLIOGRAPHY 152

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

Mathieu Larive, Olivier Le Roux, and Véronique Gaildrat. Using Meta-Heuristics for
Constraint-Based 3D Objects Layout. In International Conference on Computer Graph-
ics and Artificial Intelligence (81A), Limoges, France, 12/05/04-13/05/04, pages 11-23,
maY 2004.

Stephane Sanchez, Olivier Le Roux, H. Luga, and Véronique Gaildrat. Constraint-Based
3D-Object Layout using a Genetic Algorithm. In International Conference on Computer
Graphics and Artificial Intelligence (3IA), Limoges, 14,/05/2003-15/05/2003, may 2003.

Ghassan Kwaiter, Véronique Gaildrat, and René Caubet. Controlling object natural

behaviors with a 3d declarative modeler. In Computer Graphics International, pages
248—, 1998.

Pierre Barral, Guillaume Dorme, and Dimitri Plemenos. Visual understanding of a scene
by automatic movement of a camera. In GraphiCon, 1999.

Olivier Le Roux, Véronique Gaildrat, and Réne Caubet. Using constraint propagation
and domain reduction for the generation phase in declarative modeling. In IV °01:

Proceedings of the Fifth International Conference on Information Visualisation, page
117. IEEE Computer Society, 2001.

A. Winter, A. Striibing, L. Iler, B. Brigl, and R. Haux. Ontology-based assessment
of functional redundancy in health information systems. Lecture Notes in Computer
Science, 5421:213 — 226, 2009.

Veronique Giudicelli and Marie-Paule Lefranc. Ontology for immunogenetics: The
IMGT-ONTOLOGY. Bioinformatics, 15(12):1047-1054, 1999.

Mike Uschold, Mike Uschold, Michael Griininger, and Michael Gruninger. Ontologies:
Principles, methods and applications. Knowledge Engineering Review, 11:93-136, 1996.

Gutiérrez-Garcia J. Octavio, Koning Jean-Luc, and Ramos-Corchado Félix F. An obli-
gation approach for exception handling in interaction protocols. In Workshop on Logics
for Intelligent Agents and Multi-Agent Systems (WLIAMAS 2009) at IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology -
WI-TAT’ 09, Milan, Italy, September 2009. IEEE CS Press.

Stephan Grimmp, Pascal Hitzler, and Andreas Abecker. Knowledge representation and
ontologies logic, ontologies and semantic web languages. draft, 2006.

Maryam Alavi and Dorothy E. Leidner. Review: Knowledge management and knowledge

management systems: Conceptual foundations and research issues. MIS Quarterly,
25(1):107-136, 2001.

BIBLIOGRAPHY 153

[20]

[21]

22]

23]

[24]

[25]

Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl.
Acquis, 5(2):199-220, June 1993.

Phillip Breay. The social ontology of virtual environments - criticisms and reconstruc-
tions. The American Journal of Economics and Sociology, 62(1):269-282, January 2003.

A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: A tool for collaborative
ontology construction. Technical report, Knowledge Systems Laboratory, Stanford Uni-
versity, 1996.

W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, and M. A.
Musen. Knowledge modeling at the millennium (the design and evolution of protege-
2000). Technical report, Stanford Medical Informatics, 1998.

Henrik Eriksson, Yuval Shahar, Samson W. Tu, Angel R. Puerta, and Mark A. Musen.
Task modeling with reusable problem-solving methods. Artificial Intelligence, 79(2):293—
326, 1995.

Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. W3C recommendation, World Wide Web Consortium, February 2004.
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C recommendation, World Wide Web Consortium,
February 2004. http://www.w3.org/TR/2004/REC-rfd-concepts-20040210/.

John Dominguez. Tadzebao and webonto: Discussing, browsing, and editing ontologies
on the web. In In Proceedings of the Eleventh Workshop on Knowledge Acquisition,
Modeling and Management, KAW’98, Banff, Canada, April 1998.

E. Motta. Reusable Components for Knowledge Modelling: Case Studies in Parametric
Design Problem Solving. 10S Press, Amsterdam, The Netherlands, The Netherlands,
1999.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2003.

Solomon W. Golomb and Leonard D. Baumert. Backtrack programming. J. ACM,
12(4):516-524, 1965.

John Gary Gaschnig. Performance measurement and analysis of certain search algo-
rithms. PhD thesis, Carnegie-Mellon Univ. Pittsburgh Pa. Dept. Of Computer Science,
1979.

BIBLIOGRAPHY 154

32]

33]

[34]

[35]

[36]

[37]

[41]

Rina Dechter. Enhancement schemes for constraint processing: backjumping, learning,
and cutset decomposition. Artif. Intell., 41(3):273-312, 1990.

Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artif. Intell., 14(3):263-313, 1980.

Steve Aukstakalnism and David Blatner. Silicon Mirage, The Art and Science of Virtual
Reality. Peachpit Press, Berkeley, CA, USA, 1992.

Jerry Isadle. What is virtual reality?, a web-based introduction. WebPage, 1998.
http://vr.isdale.com/WhatIsVR /frames/WhatIsVR4.1.html, Last visited 06/14/2007.

Luis Alfonso Razo Ruvalcaba. Algoritmos de comportamiento y personalidad para

agentes emocionales. Master’s thesis, Centro de Investigacién y de Estudios Avanza-
dos del IPN, Unidad Guadalajara, 2007.

Orozco H. R., Ramos F., Zaragoza J., and D. Thalmann. Frontiers in Artificial Intelli-
gence and Applications (Advances in Technological Applications of Logical and Intelligent
Systems), volume 186, chapter Avatars Animation Using Reinforcement Learning in 3D
Distributed Dynamic Virtual Environments, pages 67-84. 10S Press, Washington, DC,
2009.

Philippe Codognet. Declarative behaviors for virtual creatures. In SIGGRAPH ’99:
ACM SIGGRAPH 99 Conference abstracts and applications, page 237. ACM, 1999.

Samuel R. Buss. 3D Computer Graphics: A Mathematical Introduction with OpenGL.
Cambridge University Press, 2003.

Jean-Fudes Marvie, Julien Perret, and Kadi Bouatouch. The fl-system: a functional
l-system for procedural geometric modeling. The Visual Computer, 21(5):329-339, jun
2005.

Yoav I. H. Parish and Pascal Miiller. Procedural modeling of cities. In SIGGRAPH
‘01: Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, pages 301-308, New York, NY, USA, 2001. ACM.

Mathieu Larive, Yann Dupuy, and Véronique Gaildrat. Automatic generation of urban
zones. In WSCG (Short Papers), pages 9-12, 2005.

Stefan Gobel, Oliver Schneider, Ido Turgel, Axel Feix, Christian Knopfle, and Alexander
Rettig. Virtual human: Storytelling and computer graphics for a virtual human platform.
Lecture Notes In Computer Science, pages 79-88, 2004.

Riva G. Application of virtual reality in medicine. Methods of information in medicine,
5(5):524-534, October 2003.

BIBLIOGRAPHY 155

[45] M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos. A Declarative Model Assembly
Infrastructure for Verification and Validation, pages 129-140. Springer Japan, 2007.

[46] R. Raymond Lang. A declarative model for simple narratives. In Proceedings of the
AAAI Fall Symposium on Narrative Intelligence, pages 134-141. AAAT Press, 1999.

[47] P. Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants. Springer-
Verlag New York, Inc., 1990.

[48] Peter Wonka, Michael Wimmer, Frangois Sillion, and William Ribarsky. Instant archi-
tecture. ACM Transactions on Graphics, 22(4):669-677, july 2003.

[49] Bob Coyne and Richard Sproat. Wordseye: An automatic text-to-scene conversion
system. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 487-496. AT&T Labs Research, 2001.

[50] G. Kwaiter, V. Gaildrat, and R. Caubet. Dem?ons: A high level declarative modeler
for 3D graphics applications. In Proceedings of the International Conference on Imaging
Science Systems and Technology, CISST 97, pages 149-154, 1997.

[51] Issn x, D. Wang, D. Wang, I. Herman, I. Herman, G. J. Reynolds, and G. J. Reynolds.
The open inventor toolkit and the premo standard, 1997.

[52] ”The Open Group”. Motif 2.1-programmer’s guide, 1997.

[53] William Ruchaud and Dimitri Plemeno. Multiformes: A declarative modeller as a 3D
scene sketching tool. In ICCVG, 2002.

[54] Ken Xu. Constraint-based automatic placement for scene composition. In In Graphics
Interface, pages 25-34, 2002.

[55] Stephen Cooper, Wanda Dann, and Randy Pausch. Teaching objects-first in intro-
ductory computer science. In SIGCSE '03: Proceedings of the 34th SIGCSE technical
symposium on Computer science education, pages 191-195, New York, NY, USA, 2003.
ACM.

[56] Jaime Alberto Zaragoza Rios. Representation and exploitation of knowledge for the
description phase in declarative modeling of virtual environments. Master’s thesis, Cen-
tro de Investigacién y de Estudios Avanzados del Intituto Politécnico Nacional, Unidad
Guadalajara, Guadalajara, México, 2006.

[57] Mike Bayer Benjamin Geer. Freemarker: Java template engine libray. webpage, decem-

ber 2008.

BIBLIOGRAPHY 156

[58] Alonso Gutierrez Aguirre. Nicleo geda-3D. Master’s thesis, Centro de Investigacién y
de Estudios Avanzados del IPN, Unidad Guadalajara, 2007.

[59] Alma Verénica Martinez Gonzalez. Lenguaje para animacién de creaturas virtuales.
Master’s thesis, Centro de Investigacion y de Estudios Avanzados del IPN, Unidad
Guadalajara, 2005.

[60] Andriamarozakaniaina T., Pouget M., Zaragoza J., and Gaildrat V. Dramatexte: in-
dexation et base de connnaissances. Premier Colloque international sur la notation
informatique du personnage, may 16-17, 2008, Toulouse, France. Publishing pending.

	Summary
	Chapter 1 : Introduction
	1.1 Introduction
	1.2 The Problem
	1.3 Description of Problem
	1.4 Research Objectives

	Chapter 2 : State of the Art
	2.1 Technical Introduction
	2.2 Declarative modeling
	2.2.1 Description
	2.2.2 Generation
	2.2.3 Insight

	2.3 Knowledge Management
	2.3.1 Ontolingua
	2.3.2 Prot´eg´
	2.3.3 Web Ontology Language
	2.3.4 WebOnto

	2.4 Constraint Satisfaction Problems
	2.4.1 Backtracking
	2.4.2 Backmarking
	2.4.3 Backjumping
	2.4.4 Backjumping based on graphics
	2.4.5 Forward Checking

	2.5 Virtual Worlds
	2.6 Related Works
	2.6.1 WordsEye: Automatic text-to-scene conversion system
	2.6.2 DEM2ONS: High Level Isometric Declarative Modeler for 3D Graphic Applications
	2.6.3 Multiformes: Declarative Modeler as 3D sketch tool
	2.6.4 CAPS: Constraint-based Automatic Placement System
	2.6.5 ALICE

	Chapter 3 : Proposal
	3.1 Interaction Language: A Review of VEDEL
	3.2 Parsing Methodology
	3.3 Modeler’s Architecture
	3.4 Creating the Model
	3.4.1 Model Data Structure
	3.4.2 Modeler procedure
	3.4.3 Geometrical Validation

	3.5 Generation of the Outputs
	3.5.1 Model-View Controller

	3.6 Modifying the Model

	Chapter 4 : Research Outcome
	4.1 Virtual Environment Editor Prototypes
	4.1.1 GeDA-3D Virtual Environment Editor Prototype
	4.1.2 DRAMA Project Module DRAMASc`ene

	Chapter 5 : Conclusion
	5.1 Conclusions
	5.1.1 Future Work

	Appendix
	Bibliography

