## Oleg F. Gerus (Zhytomyr, Ukraine)

## ON THE SPECTRUM OF OPERATORS CONCERNED WITH THE REDUCED SINGULAR CAUCHY INTEGRAL<sup>1</sup>

Let  $\Gamma$  be a rectifiable closed Jordan curve in the complex plane;  $\Gamma_{z,\delta} := \{\zeta \in \Gamma : |\zeta - z| \leq \delta\}, \ \delta > 0; \ f : \Gamma \to \mathbb{C}$  be a continuous function;

$$\mathbf{F}[f](t) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) - f(t)}{\zeta - t} d\zeta := \frac{1}{2\pi i} \lim_{\delta \to 0} \int_{\Gamma \setminus \Gamma_{t,\delta}} \frac{f(\zeta) - f(t)}{\zeta - t} d\zeta, \qquad t \in \Gamma,$$

be the reduced singular Cauchy integral.

The operator  $\mathbf{F}$  is interpretable in the following shape:

$$\mathbf{F} = \mathbf{B} + i\mathbf{C},$$

where

$$\begin{split} \mathbf{B}[f](t) &:= -\frac{1}{2\pi} \int_{\Gamma} \frac{f(\zeta) - f(t)}{|\zeta - t|^2} ((\eta - \nu)d\xi - (\xi - \sigma)d\eta), \qquad t \in \Gamma, \\ \mathbf{C}[f](t) &:= -\frac{1}{2\pi} \int_{\Gamma} \frac{f(\zeta) - f(t)}{|\zeta - t|^2} ((\xi - \sigma)d\xi + (\eta - \nu)d\eta), \qquad t \in \Gamma, \end{split}$$

and  $\zeta := \xi + i\eta$ ,  $t := \sigma + i\nu$ .

We investigate spectrums of the operators  $\mathbf{F}$ ,  $\mathbf{B}$  and  $\mathbf{C}$ . Among others we proved that numbers 0 and -1 are proper numbers of infinite order of the operator  $\mathbf{F}$ . The point spectrum of the operator  $\mathbf{B}$  excepting points 0 and -1 is reflected in the point  $-\frac{1}{2}$ . And the point spectrum of the operator  $\mathbf{C}$  is reflected in the origin.

There is a close connection between spectrums of operators  $\mathbf{B}$  and  $\mathbf{C}$ , owing to the equalities

$$\begin{cases} \mathbf{C}^2 - \mathbf{B}^2 = \mathbf{B}, \\ \mathbf{B}\mathbf{C} + \mathbf{C}\mathbf{B} = -\mathbf{C} \end{cases}$$

So there exists a one-to-one correspondence between the eigenvalues  $\lambda \in (-1, -\frac{1}{2}) \cup (-\frac{1}{2}, 0)$ of the operator **B** and  $\gamma = i\sigma$ ,  $\sigma \in (-\frac{1}{2}, 0) \cup (0, \frac{1}{2})$ , of the operator **C** by the formula  $\sigma^2 = -\lambda^2 - \lambda$ .

<sup>&</sup>lt;sup>1</sup>Partially supported by Fundamental Researches State Fund, project 25.1/084.