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ABSTRACT: This study takes place in the context of dynamical prediction for satellite structures. Aims of
such studies are to survey the dynamical response of satellite equipment and components, to check that require-
ments are correct and to give prediction of vibration levels, which are inputs for the experimental test validation
according to the launcher specification. This prediction is done by modal analysis performed on a numerical
model built by finite element method. Uncertainties on equipment and components properties lead to random
frequency response function (FRF). This paper aims at understanding how modal approach can be adapted to
probabilistic framework in order to calculate cumulative density function or, at least, some quantiles of a FRF.
Starting point of deterministic modal analysis is the study of a single degree of freedom (DOF) system. C.
Heinkelé analytically expresses the probability density function (PDF) of the FRF of an oscillator with a ran-
dom natural pulsation following a uniform law. We have generalized this work to random natural pulsation
following a law of finite variance. Then, the expression of a FRF between two DOF of the structure is a lin-
ear function of random oscillators FRF and DOF components of random eigenvectors. Assuming that random
eigenvectors are close to their means, we have access to the characteristic function of the random FRF between
two DOF as a multi-dimensional integral with respect to the joint PDF of the oscillators FRF. This paper mainly
focuses on two major points which are calculation of oscillators joint PDF and inversion of characteristic func-
tions. The first one is tackled by copulas theory. Dependence structure of random eigenvalues are identified
and modeled by a copula. Then we apply results on copulas transformations to obtain joint PDF of oscillators
FRF. Classical results concern monotonic transformations but we extended these ones to non-monotonic cases.
Concerning inversion of characteristic function, several methods are studied to numerically compute the Gil-
Pelaez formula. This approach allows to access some FRF quantiles by numerical integration which error can
be controlled. Moreover, an interesting point is the flexibility in the identification of the random eigenvalues
PDF. This is especially interesting in order to couple parametric identification with nonparametric one, when
only few dispersion informations are given for equipments, housed in the satellite primary structure.

1 OSCILLATOR WITH RANDOM NATURAL
PULSATION

Starting point of modal analysis is the single DOF
system. In deterministic context its transfer function
is

H(ω) =
−ω2 + λ

(−ω2 + λ)2 + 4ξλω2
+ j

−2ξ
√
λω

(−ω2 + λ)2 + 4ξλω2

where j2 =−1, ω is the pulsation, ξ the critical damp-
ing coefficient and λ the square of the natural deter-
ministic pulsation. Uncertainties on oscillator prop-

erties (stiffness, mass) lead to random natural pul-
sation. Let λ be the random variable modeling the
square of random natural pulsation, pλ its PDF and
H(ω) the associated transfer function. Following re-
sults presented in (Heinkelé 2008), we calculate PDF
of transfer function presented above (difference with
the work in (Heinkelé 2008) is critical damping model
and generalization to λ a second order random vari-
able). As methodology for real, imaginary part or
module and phase is similar, we illustrate our study on



real part of transfer function, which expression reads

F : R→
[

1

4ξω2 (ξ − 1)
;

1

4ξω2 (ξ + 1)

]
F(λ ; ξ,ω) = Re(H) =

−ω2 + λ

(−ω2 + λ)2 + 4ξ2λω2

(1)

It should be noted that this transformation is non-
monotonic and have two inverse images called F−11 ,
F−12 . Then, one can expresses PDF of Re(H(ω)) us-
ing classical results on random variable transforma-
tions. This leads to:

pRe(H)(Re(h)) =
pλ(F−11 (Re(h)))

|JRe(F−11 (Re(h)))| (2)

+
pλ(F−12 (Re(h)))

|JRe(F−12 (Re(h)))|
where JRe is the jacobian of transformation (1). In-
tegration of this density is possible since λ follows
a second order probability law, which is an accept-
able assumption in our context. Numerical integration
of this PDF allows to access mean, standard devia-
tion, and quantiles of Re(H). Figure 1 shows various
shapes of this function for different ω values when pλ
follows a normal law.
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Figure 1: Shape of the density pRe(H)(Re(h)) when pλ follows
a normal law.

Two difficulties arise during numerical integration.
First one is the infinite limit at edges of domain. This
problem is solved by using numerical integration on
[ 1−ε
4ξω2 (ξ−1) ,

1−ε
4ξω2 (ξ+1)

] and by analytical integration of
an equivalent of the density on [ 1

4ξω2 (ξ−1) ,
1−ε

4ω2 (ξ−1) ]

and [ 1−ε
4ξω2 (ξ+1)

, 1
4ξω2 (ξ+1)

]. Second one concerns the

shape of the density when ω is far from
√
E[λ]. As

it can be seen on figure 1 for ω = 100 and ω = 340
the density looks like a single peak with a very strong
slope. In fact, density tends to a zero Dirac distribu-
tion. Thus, to have a correct numerical integration,

discretization of the density must be done according
to its derivative.

Figure 2 shows results of this methodology in de-
termination of 2.5%, 50% and 97.5% quantiles in
comparison with Monte-Carlo method (one million
runs).
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Figure 2: Determination of the 2.5%, 50% and 97.5% quantiles
by integration and comparison with Monte-Carlo simulations, pλ
follows a normal law.

Numerical integration on regular domain is per-
formed by trapezoidal rule, number of points depends
on the pulsation ω, for reasons explained previously.
Results presented by figure 2 allow to be confident in
this integration methodology.

In order to adapt deterministic modal analysis to
probabilistic framework, we now present a general-
ization of these results to a multi-degree of freedom
system.

2 ADAPTATION TO MULTI DOF

2.1 Modal synthesis

Let us consider a finite element model of a mechani-
cal structure. We denote [M], [K], [D] the mass, stiffness
and damping matrices of the mean model (model for
which input parameters are set to their means). In fre-
quency domain, vibration equation reads

(−ω2 [M] +jω [D] + [K])y(ω) = f(ω)

in which y(ω) is the vector of the DOF and f(ω) is the
vector of loads input to the system. Modal synthesis
is based on solving following eigenvalues problem

(−ω2 [M] + [K])y = 0.

Aims of modal analysis is to select a basis [ϕ] of
eigenvectors which dimension N is far less from the
number of DOF. We denote by λk, k = 1 · · ·N , cor-
responding eigenvalues. This approach relies on as-
sumption that low frequency comportment of struc-
ture can be expressed on a reduced basis composed



by first eigenvectors. In this basis, mass and stiffness
matrices are diagonal and a current assumption is to
consider that the damping one is diagonal too. This
leads to a diagonal transfer functions matrix

[H]kk(ω) =
−ω2 + λk

(−ω2 + λk)2 + 4ξkλkω2

+ j
−2ξk

√
λkω

(−ω2 + λk)2 + 4ξkλkω2

which is an oscillator equation described in the first
part. Then, FRF between two DOF a and b of a struc-
ture is: [F ]ab =

∑N
i=1[H]ii[ϕ]bi[ϕ]ai.

Uncertainties on input parameters leads to a ran-
dom eigenvalues problem. At this step, we assume
that the random eigenvector basis is close to the de-
terministic basis [ϕ]. Random transfer matrix [H] is
diagonal and each term is a random oscillator studied
in first part. Let us call Re({H}) the random vector
composed by real part of diagonal terms of [H]. As
transformation giving FRF between two DOF a and b
of a structure is a linear combination between terms
of the random vector Re({H}), one obtains the char-
acteristic function of Re(Fab).

ΦRe(Fab)(v) =

∫
RN

exp(jv
N∑
i=1

Re(hi)[ϕ]bi[ϕ]ai))

pRe({H})(Re({h}))dRe({h})
(3)

Once calculation of this characteristic function is
done, inversion formulas like Gil-Pelaez one (Gil-
Pelaez 1951) or Poisson summation (Abate and Whitt
1992) allows to access CDF or PDF of Re(Fab). As
equation (3) is a multi dimensional integral respec-
tively to the joint density of Re({H}), it is of great
importance to study dependence structure of this ran-
dom vector.

2.2 Independant case

The simplest assumption is to consider that random
variables Re(Hk) for k = 1, · · · ,N , of Re({H}) are
independent and of marginal density described in the
first section. Then, equation (3) becomes a product of
N integrals in one dimension

ΦRe(Fab)(v) =
N∏
i=1

∫
exp(jv[ϕ]bi[ϕ]aiRe(hi))

pRe(Hi)(Re(hi))dRe(hi),

which leads to

ΦRe(Fab)(v) =
n∏
i=1

1

|[ϕ]bi[ϕ]ai|
ΦRe(Hi)(v)

with an appropriate change of variable.

Figure 3: Finite element model of TARANIS satellite.

Nevertheless, assumption of independent eigenval-
ues seems unrealistic. For example, let us introduce
the finite element model of satellite TARANIS pre-
sented by figure 3.

Input properties of this structure are modeled by in-
dependent random variables (input properties are ma-
terials ones like Young modulus and Poisson coeffi-
cient and geometric ones like thickness of panels etc.).
Figure 4 presents dispersion of the two first eigenval-
ues coming from 1000 runs of this random model. It
is clear that these two random eigenvalues are corre-
lated, so modeling and consequence on FRF of this
correlation must be investigated.
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Figure 4: Two first eigenvalues of TARANIS model, 1000 runs.

2.3 Dependence model

In this part, we set N = 2 in order to simplify expres-
sions but generalization is straightforward. Moreover,
in practice the case N = 2 should be frequent as cor-
relation of eigenvalues needs to be modeled only if
oscillators are acting on same pulsations range. We
are interested in modeling the joint probability law of
random vector Re({H}) whose marginal laws are de-
scribed in previous section. To build this model we



propose to use copulas theory introduced in (Nelsen
2006) and (Clauss ). Indeed, a result known as Sklar
theorem allows to build joint PDF of random eigen-
values, and to express it as,

pλ1,λ2(λ1, λ2) = pλ1(λ1)pλ2(λ2)c(Fλ1(λ1), Fλ2(λ2))

where c is the density of the copula modeling the de-
pendence structure of eigenvalues and Fi the marginal
CDF of λi. In order to express joint density of
Re({H}), we use results on random variable trans-
formation and copula transformation presented in
(Nelsen 2006). These last ones are derived for mono-
tonic transformation. Non monotonic application pre-
sented here is the principal difficulty.

Let Λ be the random vector [λ1, λ2] of joint den-
sity pλ1,λ2(λ1, λ2) described above and f the func-

tion of R2 with values in
[

1
4ξ1ω

2 (ξ1−1) ; 1
4ξ1ω2 (ξ1+1)

]
×[

1
4ξ2ω

2 (ξ2−1) ; 1
4ξ2ω2 (ξ2+1)

]
.

f

(
λ1
λ2

)
=

(
Re(H1) = F(λ1 ; ξ1, ω)
Re(H2) = F(λ2 ; ξ2, ω)

)
where F is the function described by equation (1).
Finally, one accesses density of Re({H}) in function
of previous transformation, marginal density of eigen-
values and copula modeling dependence structure of
eigenvalues:

pRe({H})(Re({h})) =
2∑

i,j=1

[
pλ1(F−1i (Re(H1)))

|J(F−1i (Re(H1)))|
×
pλ2(F−1j (Re(H2)))

|J(F−1j (Re(H2)))|
×

c
(
F1(F−1i (Re(H1))), F2(F−1j (Re(H2)))

)]
(4)

This density is used to numerically calculate the char-
acteristic function (3).

3 NUMERICAL RESULTS

3.1 Dependence structure of Re({H})
In order to illustrate our methodology, we propose to
consider two random oscillators with dependent ran-
dom eigenvalues :

• λ1 follows a normal law of mean 2202 and a vari-
ation coefficient of 15%.

• λ2 follows a triangular law defines on
[50000,75000] with a maximum at 59375

• Eigenvalues dependence is modeled by a normal
copula of Kendall correlation coefficient equal to
0.95.
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Figure 6: Random simulation of λ1, λ2 following joint density
pλ1,λ2
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Figure 5 shows shapes of marginal densities of λ1 and
λ2 and figure 6 illustrates joint density of eigenvalues.

Note that in an industrial application uncertain-
ties come from input parameters of model, then con-
struction of eigenvalues stochastic model have to be
done by identification. This part is not developed here
but several tools are available in order to identified
marginal densities and copula.

Once probabilistic model of eigenvalues is built, we
are interested in representation of the joint density of
random vector Re({H}).

In order to compare an empirical density of
Re({H}) to the one obtained by our method, we
run a Monte-Carlo simulations at a pulsation ω =
235 rad.s−1 from a sample of 5000 eigenvalues λ1,
λ2 drawn in pλ1,λ2 . Results of these simulations is pre-
sented by figure 7.

Density obtained from the expression (4) is pre-
sented by figure 8.

Influence of correlation of eigenvalues is illustrated
by figure 9 which is a simulation of the joint PDF of
Re({H}) if we consider independent eigenvalues.
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Figure 7: Random simulations ofRe({H}), at ω = 235 rad.s−1.
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Figure 8: Simulation of the density of Re({H}), at ω =
235rad.s−1.

It appears clearly that correlation of eigenvalues
strongly influence joint PDF of Re({H}). Moreover,
empirical joint PDF of Re({H}) (figure 7) seems re-
ally close to simulated one (figure 8) which confirms
capability of analytical formulation based on copula
transformation.

As we can now express analytically joint PDF of
Re({H}), knowing eigenvalues stochastic model, we
use it to numerically compute the characteristic func-
tion (3).

3.2 Computation of the real part FRF CDF

For illustrating our methodology we consider
[ϕ]bi = [ϕ]ai = 1 and then we compute the character-
istic function (3). Numerical integration of dimension
two (equation (3)) is performed on the domain
[ 1−ε
4ξ1ω2 (ξ1−1) ,

1−ε
4ξ1ω2 (ξ1+1)

] × [ 1−ε
4ξ2ω2 (ξ2−1) ,

1−ε
4ξ2ω2 (ξ2+1)

].
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Figure 9: Simulation of the density of Re({H}), at ω =
235rad.s−1, with independent eigenvalues.

This domain is meshed by quadrangles which are
tensorial product of marginal pλ1 , pλ2 discretizations
(according to differential of marginal).

In the following Fab stands for real part of random
FRF between two DOF a and b and fab for one sam-
ple. Once characteristic function is computed, several
post treatments can be performed. First of all, Gil-
Pelaez formula (Gil-Pelaez 1951) is used to access the
CDF of Fab and this formula gives

P [Fab < fab] =
1

2
− 1

π

∫ ∞
0

Im[e−jfabvΦRe(Fab)(v)]

v
dv

In order to compute this integral, we use the method
described by Davies (Davies 1973) based on Fourier
cosine series summation formula.

P [Fab < fab] =

1

2
−

K∑
k=0

Im
[
ΦRe(Fab)((k + 0.5)h)e−j(k+0.5)hfab

]
π(k + 0.5)

.

The author recommends to choose
a discretization step h, for which
max

{
P (Fab < fab − 2π

h
) , P (Fab > fab + 2π

h
)
}

is less than half the maximum allowable er-
ror. In our application Fab is bounded and
fab ∈ [B1,B2] with B1 =

[ϕ]a1[ϕ]b1
4ξ1ω2(ξ1−1) +

[ϕ]a2[ϕ]b2
4ξ2ω2(ξ2−1)

and B2 =
[ϕ]a1[ϕ]b1

4ξ1ω2(ξ1+1)
+

[ϕ]a2[ϕ]b2
4ξ2ω2(ξ2+1)

. Then it follows
that P (Fab > B1 + 2π

h
) = 0 ⇔ B1 + 2π

h
> B2

⇔ h < 2π
B2−B1

.
As series converge fast to zero, truncation until the

K term is done when ΦRe(Fab)((K + 0.5)h) = 0 + ε.
Applying this methodology to the previous exam-

ple and still considering ω = 235 rad.s−1, the figure
10 illustrates CDF of Fab. Comparison is done be-
tween Monte-Carlo method (one million runs), and
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curve), at ω = 235 rad.s−1.

Gil-Pelaez formula considering or not dependence of
eigenvalues.

Some conclusions can be drawn from this fig-
ure. Firstly, eigenvalues dependence structure must
be considered to avoid strong differences in CDF
of FRF between two DOF. Secondly, compar-
ison with Monte-Carlo allows to be confident
in integration methodology described above. Fi-
nally, these conclusions are reinforced by pro-
viding the corresponding PDF. This one (figure
11) is computed by Poisson summation formula
(Abate and Whitt 1992) which is in this case
pFab

(fab) ≈ h
π

∑K
k=0 ΦRe(Fab)(kh) exp(−jkhfab).
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Figure 11: Comparison between PDF of Fab obtained by Monte-
Carlo method (red histogram) and Gil-Pelaez formula, taking
into account correlation of eigenvalues (blue curve) or not (green
curve), at ω = 235 rad.s−1.

In previous example, ω is fixed to 235 rad.s−1

which is a value between the two oscillators deter-
ministic natural pulsation. First section of this paper
shows that marginal eigenvalues densities are strongly

influence by value pulsation, ω. Then, we illustrate
the methodology on a range of pulsation. Considering
the same example and looking for 2.5%, 50%, 97.5%
quantiles of Fab, previous methodology is applied and
compared with Monte-Carlo method (100000 runs)
on the pulsation range [180− 290]rad.s−1. Figure 12
presents the results.
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Figure 12: Determination of 2.5%, 50%, 97.5% quantiles of Fab,
comparison between Monte-Carlo (pink square) and Gil-Pelaez
formula, taking into account correlation of eigenvalues (blue
curve) or not (green curve).

As for previous results, comparison with Monte-
Carlo method confirms capability of the two dimen-
sional integration method. Moreover, it is interest-
ing to see that this capability is conserved even at
pulsation for which low variation of the FRF oc-
curs. Influence of eigenvalues correlation clearly ap-
pears for 50% and 97.5% quantiles. For 97.5% quan-
tiles, independent case reveals a single peak around
ω = 230 rad.s−1, which is not present in the depen-
dent case.

All these numerical examples illustrates that corre-
lation between eigenvalues strongly influence proba-
bility law of a FRF between two DOF. In addition,
they show that copula is a suited tool to describe joint
PDF of eigenvalues and then has to be used in de-
termination of FRF CDF. Finally, integration method
set-up in this context allows to consider that compu-
tation of the FRF CDF is performed with a negligible
error.

This methodology is now applied to the satellite
TARANIS (figure 3).

4 INDUSTRIAL APPLICATION : TARANIS

We consider the finite element satellite structure
TARANIS previously introduced in part 2.2. More
precisely, we investigate a particular FRF which de-
terministic value is drawn on figure 13.

This FRF is particularly interesting to apply our
methodology as the two first modes of the structure
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Figure 13: Deterministic FRF study in TARANIS example.

are stimulated and have very close natural pulsation.
As it have been told in part 3.1, in industrial ap-

plications uncertainties affect input parameters of the
model. Without detailing this modelisation, parame-
ters concerned in this example are Young modulus,
Poisson ratio, panel thickness etc. Then, eigenvalues
densities and correlation must be identified. In this ex-
ample, we use a nonparametric identification by ker-
nel smoothing over 100 realisation to get pλ1 and pλ2 .
It is assumed that dependence structure is normal.
Figure 14 shows the Kendall plot between the one
hundred sample and the normal copula used to model
dependence (Kendall plot is equivalent to quantiles-
quantiles plot in two dimension, informations can
be found in (Clauss ) or (OpenTURNS 2011)). This
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Figure 14: Kendall plot of the two first eigenvalues fitted by a
normal copula.

curve shows that normal copula seems to be correct
to model dependence between the two first eigenval-
ues.

Once identification process is done, one can applies
the previous methodology. As above, we compute the
2.5%, 50%, 97.5% quantiles of the real part FRF. In

order to have reference results, a Monte-Carlo simula-
tion of 1000 runs is also performed and used to com-
pute the 50% quantile. Note that, in this case, Monte-
Carlo methodology consists in solving 1000 eigenval-
ues problems and compute corresponding FRF. Fig-
ure 15 presents the results. Reminding assumptions
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Figure 15: Determination of 2.5%, 50%, 97.5% quantiles, com-
parison with Monte-Carlo (1000 runs) for the 50% quantile.

done in the presented methodology, figure 15 illus-
trates errors due to deterministic eigenvector basis and
identification of eigenvalues joint PDF. It clearly ap-
pears (in comparison with Monte-Carlo results) that
this error is almost negligible. The 2.5% and 97.5%
quantiles shapes seems relevant but we cannot con-
firm these results with only 1000 Monte-Carlo runs.
Finally, this industrial example shows that identifica-
tion of eigenvalues joint PDF is realistic and leads to
relevant results.

5 CONCLUSION

Aims of this study was to present a method of proba-
bilistic modal synthesis based on analytical expres-
sions of the random oscillator PDF. All this arti-
cle focuses on the importance of correlation between
eigenvalues. First of all, modeling of eigenvalues de-
pendence structure is performed by copula. Then we
show how to use it in the determination of the joint
PDF of the random vector of frequency response
function Re({H}). Next, this joint PDF is used to
determine the characteristic function of a frequency
response function between two DOF and several so-
lutions to numerically compute and make use of it
are presented. At each step of this methodology, ef-
fect of correlation between eigenvalues is illustrated
through a two dimensional example in part 3. These
illustrations allow to draw two conclusions. First, the
effect of correlation is non negligible and strongly
affect the PDF of a FRF between two DOF of the
system. Second, comparison with Monte-Carlo simu-
lations confirms that integration methodology is rel-



evant and leads to a really good approximation of
the PDF. Finally, an industrial application on Taranis
satellite shows that eigenvalues joint PDF identifica-
tion is realistic and allows to access some quantiles
of the PDF FRF. Moreover, as it has been mentioned
in introduction, this identification may be parametric,
like in example part 3, or nonparametric, like in Tara-
nis example (kernel smoothing). This is an advantage
when only few information are available on eigen-
values variations (for example for some equipments
housed in the satellite).

Perspectives for this work are to continue analyt-
ical process in the exploitation of copula properties
(determination of frequency boundaries in which cor-
relation have to be modeled). Then, we shall apply
this methodology in a sub-structured model for which
eigenvalues joint PDF of some sub-structures comes
from nonparametric random matrices model such as
the ones proposed by (Soize 2000) or (Adhikary et al.
2011).
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