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a b s t r a c t

Data assimilation method consists in combining all available pieces of information about a system to

obtain optimal estimates of initial states. The different sources of information are weighted according

to their accuracy by the means of error covariance matrices. Our purpose here is to evaluate the efficiency

of variational data assimilation for the xenon induced oscillations forecasts in nuclear cores. In this paper

we focus on the comparison between 3DVAR schemes with optimised background error covariance

matrix B and a 4DVAR scheme. Tests were made in twin experiments using a simulation code which

implements a mono-dimensional coupled model of xenon dynamics, thermal, and thermal–hydraulic

processes. We enlighten the very good efficiency of the 4DVAR scheme as well as good results with

the 3DVAR one using a careful multivariate modelling of B.

1. Introduction

In this article we aim to evaluate the efficiency of variational
data assimilation methods known as 3DVAR and 4DVAR methods
in the forecasting of Xenon-135 oscillations.

Xenon-135 is known to be at the origin of axial power oscilla-
tions of about one day period in pressurised water reactors
(PWRs)(Canosa and Brooks, 1966). These oscillations do not change
the overall power produced by the nuclear plant but they are unde-
sirable from a safety point of view. As soon as oscillations are de-
tected, they are damped using appropriate control rod
movements inside the core. Detection as well as prediction of xe-
non induced oscillations are an important part in the operation
of a nuclear power plant.

No direct measurement of the concentration of xenon in the
reactor core is available, and the simulation of the nonlinear xenon
dynamics still represents a challenge for real time applications
such as system monitoring. Several models have been proposed
for the real time estimation of xenon concentration. They include
flux and iodine-135 dynamics modelling. Some of them require
an estimation of parameters such as presented in Onega and Kisner
(1978). This approach is a first step in improving the state estima-
tion but it does not take into account errors in the measurements
used to adjust the model parameters: therefore bad measurements

can affect adversely the quality of the computed state. In addition,
it does not allow to correct initial conditions of the coupled flux-io-
dine-xenon dynamical system. Most of these models assume equi-
librium concentrations, though the initial distributions of iodine
and xenon have a significant impact on the power transient.

Song et al. (1996) determined an analytic initialisation of iodine
and xenon of an out-of-equilibrium state which consists in adding
a corrective term with a sinus shape to the 1D equilibrium concen-
trations. The amplitude of the sinus is fitted with axial offset power
measurements. These measurements are considered to be perfect,
in the same way as the xenon dynamics model is considered exact.
This approach is based on analytical developments which limit the
pattern of the added correction and still does not take into account
the errors in the measurements.

Here we aim to improve the Xenon-135 concentration forecast
by finding alternative and more accurate solutions using varia-
tional data assimilation techniques. Such techniques find their
root in earth science and are used daily in weather forecast. Data
assimilation is nowadays more and more used in the nuclear sci-
ence community for the improvement of the nuclear core activity
determination (Bouriquet et al., 2011; Bouriquet et al., 2011) as
well as for the nuclear accident model parameter determination
(Cacuci and Ionescu-Bujor, 2010; Petruzzi et al., 2010). Thus it
is challenging to apply such a technique to xenon oscillation fore-
cast even if other attempts have been made through genetic algo-
rithm (Marseguerra et al., 2003) or optimal control (Shumazu,
2007).
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Even if the problem we deal with can be seen as very well
adapted to the Kalman method as it has been shown in Lin and
Lin (1994), we choose to use the variational one instead. This
choice has been done as on long term plan we expect to use some
high resolution models, hopefully together with their adjoint. Thus
it is important to already test variational techniques that are the
only one available when the control space is too large.

Two data assimilation methods, the 3DVAR and the 4DVAR, will
be used here. The main difference between those methods is that
the 4DVAR takes into account the dynamic of the process. This is
a tremendous improvement as it has been proven in weather fore-
cast. But such a method needs the adjoint that is costly to develop
in an industrial context. To overcome this difficulty a specific mod-
el (CIREP1D) compatible with automatic differentiation has been
developed.

In a first part (Section 2) we describe the model, CIREP1D, a
mono-dimensional xenon dynamics model which includes neutron
and thermal–hydraulic processes. Then we give a brief overview of
variational data assimilation methods in Section 3. The setting of
the data assimilation method is presented in Section 4. In Section
5 we propose three background error covariance matrix model-
lings (two univariate modellings and a last multivariate model-
ling). Finally in Section 6, we compare the quality of the 3DVAR
estimates to a 4DVAR estimate.

2. The CIREP1D model

Since 3D operational industrial codes are time consuming, we
use a monodimensional axial xenon/iodine dynamics model cou-
pled with a monodimensional neutronic/thermal/thermal–hydrau-
lic model, named CIREP1D. It simulates axial xenon dynamics
according to the overall power and the control rod insertion re-
cords in a given time window. CIREP1D takes a few seconds to sim-
ulate a xenon oscillation of a one-week time range but contrary to

simpler models, it gives access to quantities measured in core: ax-
ial power, axial xenon, axial iodine, axial flux and boron concentra-
tion. The agreement between 1D and 3D models for axial xenon
dynamics is good and has been studied in detail in Ponçot (2008).

Globally speaking, CIREP1D solves a nonlinear system of ordin-
ary differential equations given by an operator G:

@ðCXe; CIÞ

@t
ðz; tÞ ¼Gð CXe;CIÞðz; tÞ; ð1Þ

by using an implicit Euler scheme. CXe(z, t) and CI(z, t) represent the
axial concentration of xenon and iodine respectively. Each time step
requires a critical boron concentration computation corresponding
to the assumption that neutron and thermal–hydraulic effects
may be treated with stationary coupled equations. The xenon
dynamics can be initialised by either a given xenon and iodine con-
centrations or by equilibrium concentrations. Hereafter we give
CIREP 1D equations in detail.

2.1. Iodine and xenon equations

Iodine and xenon balance equations are differential equations
on the variables z, t:

@CI
@t

¼ cIRfU� kICI;
@CXe
@t

¼ cXeRfUþ kICI � ðkXe þ rXeUÞCXe;

(

ð2Þ

Rf is the fission cross-section of the fuel and rXe the absorption
cross-section of xenon-135. These variables depend on z and t.
The z-coordinate is measured from the bottom of the 1D reactor.
cI and cXe are the fractional fission yield of iodine and xenon. Finally,
kI and kXe are decay constants of iodine and xenon.

2.2. Neutronic model

The neutronic flux U = (U1, U2) is identified by solving two-
group diffusion equations with no-upscattering. We assume that
the time step of flux simulation (a few seconds) is shorter than
the xenon oscillations. As a consequence, at each time step for
the resolution of xenon equation, the flux can be computed using
the stationary diffusion equations:

�@zD1@zU1 þ ½Ra1 þ Rr �U1 ¼
1
k
mRfU;

�@zD2@zU2 þ Ra2U2 � RrU1 ¼ 0;

with mRfU ¼ m1Rf1U1 þ m2Rf2U2;

8

>

<

>

:

ð3Þ

where U1 and U2 are groupwise neutron axial flux distribution, Rr
is the scattering cross-section and Rag, Dg and mgRfg are the absorp-
tion cross-section, the diffusion coefficient, and the neutron emitted
by fission. All these variables depend on the z variable. The system
is closed by using albedo boundary condition. The balance is ob-
tained by looking for boron concentration such that the eigenvalue
k is equal to one (this is critical boron concentration computation).
The boron influence does not appear explicitly in the previous equa-
tions but is linked to cross-section values through the feedback
model. The feedback model changes the cross-sections according
to the state of the core (temperature, boron concentration and so
on).

2.3. Feedback model

Thermal effects are not lumped in a power feedback parameter
as done in some other cases (Onega and Kisner, 1978). The devel-
oped feedback model is a linear interpolation model relying on
assumption that the cross-sections depend on six quantities: fuel
irradiation, xenon concentration CXe, boron concentration CB,
moderator density qmod, moderator temperature Tmod and fuel

Fig. 1. Xenon dynamics simulation on a time range of 200 h. The map of the first

figure represents the evolution of the monodimensional xenon vector with respect

to the time (x-axis). The y-coordinate corresponds to the position in core and the

vertical coordinate gives the xenon level. The second plot gives the xenon axial

offset with respect to the time, i.e. the power difference between the half top and

bottom parts of the core.



temperature Tf. Therefore, CIREP1D includes a thermal/thermal–
hydraulic model, as described below.

2.4. Thermal–hydraulic model

Since the speed of the water flowing upwards through the reac-
tor is high, we can assume that the thermal–hydraulic problem is
an axial monodimensional problem for the slow transients which
are common in the normal operational mode. The moderator tem-
perature Tmod is then described by the following equation:

Q @zTmodðz; tÞ ¼
1

qmodcmod
Plinf ðz; tÞ þ Plinmodðz; tÞ
h i

; ð4Þ

where Q, cmod and qmod respectively represent the volume flow rate,
the moderator specific heat capacity and the moderator density.
Lineic power Pf and Pmod released in both fuel and moderator are
computed from the known two-group flux U.

2.5. Thermal fuel model

Contrary to the thermal–hydraulic model, we employ a radial
model for the thermal fuel model. Thus, a radial description of
the fuel is required. We neglect the axial conduction in fuel pin
and assume rotational symmetry of the problem. Under these
assumptions, the thermal problem can be described by a monodi-
mensional model in the radial variable r:

�
1

r
kf @rT f ðr; zÞ � kf @

2
r T f ðr; zÞ ¼ Pf ðzÞ=A: ð5Þ

The variable kf represents the fuel thermal conductivity and A

corresponds to the pin section. This equation is coupled with the
neutron equation through the lineic power Pf and to the thermal–
hydraulic problem through the boundary condition expressed on
edge C:

8r 2 C; kf @rT f ðr; zÞ ¼ htotðzÞ½T f ðr; zÞ � TmodðzÞ�; ð6Þ
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Fig. 2. Diagonal terms of B matrices for univariate and multivariate modelling, that is to say background error variances with respect to the node of the spatial mesh.



where htot is the thermal exchange parameter. The thermal and
thermal–hydraulic parameters qmod, cmod, kf and htot depend on
moderator and fuel temperatures. Therefore, the coupled thermal/
thermal–hydraulic problem is nonlinear.

2.6. Xenon transient simulation

As an example of CIREP1D simulation, we present results from a
computation with the following characteristics: time range of
200 h, load following during 30 min and, then until the end of sim-
ulation, no further rod movement and no power change. The sim-
ulated core is in the middle of a burnup cycle and then is
moderately irradiated. Fig. 1 shows a xenon oscillation which dis-
appears without any external intervention after 100 h.

3. A brief overview of data assimilation techniques

Introducing data assimilation method in operational simulation
has been an important step to improve forecasts as for example
weather in meteorology. The aim is to provide a satisfactory esti-
mation of the unknown true state of a dynamical system by com-
bining all pieces of information about the system. This information,
obtained frommeasurements (called observations) and simulation,
is weighted according to its reliability expressed in terms of error
covariance matrices. In practice, the model gives a simulated state
called the background state. The purpose of data assimilation is to
determine a state, called the analysis state, which is closer to the

true state than the one described solely by the observations or
the model. Thus, the analysis state can be used for forecasting.

3.1. Concepts and definitions

We now introduce some concepts and definitions. A discrete
model for the evolution of physical system from time ti to time
ti+1 is described by:

Xðtiþ1Þ ¼ Miþ1;iðXðtiÞÞ;

where X and M are respectively the model’s state vector and its
corresponding dynamics operator. The dynamics M of the model
evolution is commonly nonlinear. We note respectively Mi, j and
MT

i;j the linear tangent and the adjoint operators with respect to
the vector Xj associated with the dynamics model M between tj
and ti. The state vector X is usually obtained by discretisation of
physical fields on a grid. Its dimension is denoted by n. The aim is
to evaluate the best estimate of the unknown true state, denoted
Xt which is defined by the best possible representation of reality
as a state vector at an initial time t0. The best estimate that we
are looking for in the data assimilation process is called analysis

and is denoted by Xa.
The information about the system that can be used to produce

the analysis is listed below:

Measurements in the core gathered into an observation vec-

torYo. Its dimension is p.
The observation operator. The key to data analysis is to take
advantages of the discrepancy between observations and state
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Fig. 3. Absolute values of the components of the correlations related to the matrices B for univariate and multivariate modelling with respect to the nodes of the spatial mesh.



vector. Usually observation vector and state vector are not
defined in the same space. They can be compared through the
use of a function from model state space to observation space
called observation operator and denoted H. The operator H can
be nonlinear.
An a priori estimate of the true state before the analysis is car-
ried out. This estimate is called background state and is denoted
Xb. In most cases, the analysis problem is under-determined
because observations are sparse and only indirectly related to
the model variables. The use of this background information
helps to make it a well-posed problem and to introduce some
physical knowledge. Usually, this background state is generated
from the output of a previous analysis.
Uncertainties in the previous data. Background and observa-
tion errors are defined by:

�
b ¼ Xb � Xt and �

o
i ¼ Yoi �HðM i;0ðX

tÞÞ:

The covariance matrices of these errors are denoted by B and R

respectively. Error modelling is a difficult task, mostly because true
state Xt is unknown and the knowledge of the error covariances is
approximative. But it is a very important step which influences
the quality of the analysis. The basic modelling consists in setting
up diagonal matrices where the diagonal elements correspond to
the variances of the errors on the background or observation vector.
When different fields are involved in the state or observation vector,
it is then possible to choose between an univariate or multivariate
modelling. In the former, the errors between the different fields are
assumed to be uncorrelated whereas in the multivariate modelling,
the errors are assumed to be correlated. Usually errors between the
different kinds of observation are assumed to be independent and
then the covariance matrix R is diagonal. It is more common to as-
sume correlations for the background part but the evaluation of
these is also difficult.

In the same way, the analysis state Xa is associated to an analysis
error defined by: �a = Xa � Xt. And its covariance matrix denoted
by A is estimated during the assimilation process or as a postpro-
cessing procedure.

Basically, two families of data assimilation methods exist: sto-
chastic and variational methods. The most famous stochastic
method is probably the Kalman filter. This method is still consid-
ered as a reference but its application for real data assimilation
problems is limited to problems of small to medium size due to
its huge computational cost involved in matrix computation. Sev-
eral variants of this method have been developed either to reduce
its computational cost or to remove the assumption on linearity of
the used operators. Variational methods are based on the minimi-
sation of a cost function (Talagrand, 1997). These methods, 3DVAR
and 4DVAR, that can be adapted to nonlinear cases and problems of
large size, are mainly used in operational meteorology and ocean-
ography since the 1990s. Each variational method is equivalent to a
stochastic filter method under linear assumptions.

3.2. Variational methods

We now give here some elements on variational methods. The
4DVAR cost function measures the weighted sum of the square
of distances J b to background state Xb and J o to the observations
Yo over a time interval [t0, tn]:

J 4DVARðXðt0ÞÞ ¼J bðXðt0ÞÞ þJ o
4DVARðXðt0ÞÞ ð7Þ

with

J bðXÞ ¼
1

2
½X� Xb�TB�1½X� Xb�;

J o
4DVARðXÞ ¼

1

2

X

n

i¼0

Yoi �HðM i;0ðXÞÞ
� �T

R�1
i Yoi �HðM i;0ðXÞÞ
� �

;

Fig. 4. Relative errors on xenon, iodine at t0 and on power at t0 and t0 + 10h for the background state and the 4DVAR analysis state.



where weight matrices B�1 and R�1
i are the inverse of the

background and observation error covariance matrices at time ti.
Minimisation of (7) is done with respect to initial state X(t0). In
practice, the starting point of the minimisation algorithm is taken
equal to the background Xb. Evaluations of gradient of J 4DVAR:

rJ 4DVARðXðt0ÞÞ ¼ rJ bðXðt0ÞÞ þrJ o
4DVARðXðt0ÞÞ

with

rJ bðXÞ ¼ B�1½X� Xb�;

rJ o
4DVARðXÞ ¼ �

X

n

i¼0

MT
i;0H

TR�1
i Yoi �HðM i;0ðXÞÞ
� �

;

are required by most minimisation methods which implies that the
adjoint operatorMT

i;0 and HT have to be evaluated. 3DVAR method is
a cheaper alternative to 4DVAR because it does not require the
evaluation of the model evolution and its adjoint. The 3DVAR cost

function is very close to the 4DVAR one, except for the time sum
that disappears:

J 3DVARðXðt0ÞÞ ¼J bðXðt0ÞÞ þJ o
3DVARðXðt0ÞÞ;

with J o
3DVARðXÞ ¼

1

2
½Yo �Hð XÞ�TR�1½Yo �Hð XÞ�:

In a variational assimilation process, the error covariances of
the analysis can be deduced from the Hessian of the cost function
J 3DVAR or J 4DVAR (Bouttier and Courtier, 1999):

A�1
4DVAR ¼ B�1 þ

X

n

i¼0

ðHMi;0Þ
T
Xa4DVARj R�1ðHMi;0ÞjXa4DVAR

:

3.3. Twin experiment frame

To validate assimilation schemes independently of the model,
one performs twin experiments. In twin experiments, the initial
true state Xt(0) is choosen and the true trajectory for any time is

Fig. 5. Relative errors on xenon, iodine at t0 and on power at t0 + 10h. At t0 3DVAR iodine analysis and background are mistaken. A t0 + 10h, 3DVAR and background predicted

axial power shapes are mistaken.



known. It is a simulated state usually obtained by the model used
for assimilation. Twin experiments also offer the opportunity to
compare the analysis to the true state. The true state can be used
to build background state, for example by adding a noise to Xt. It
can also be used to build synthetic observations by applying obser-
vation operator H to Xt and noise afterwards.

4. Components of the assimilation system

We develop two variational schemes 3DVAR and 4DVAR, in or-
der to improve the xenon and iodine concentration estimation in
core, in twin experiments set-up. In this section we describe all
the components of the assimilation system except the B matrix
modelling that will be discussed in detail in Section 5.

4.1. Model

The evolution model corresponds to the xenon dynamics model
implemented in CIREP1D. This model is based on the resolution of
the xenon and iodine mono-dimensional time equations. Each iter-
ation time step requires a critical boron concentration computa-
tion which includes successive stationary neutron/thermal/
thermal–hydraulic computations. For such a computation,
CIREP1D inputs are:

� initial and final times t0 and tn of transient,
� initial xenon and iodine concentrations at time t0,
� transient data: overall power and control rod position varia-
tions over the time interval [t0; tn].

Fig. 6. Relative L2-norm errors on monodimensional xenon and iodine fields with respect to time for 3DVAR and 4DVAR schemes based on various background matrices.



4.2. State vector

The state vector X corresponds to xenon and iodine axial con-
centrations discretised on the 30 nodes of the 1D axial spatial mesh
used in CIREP1D. The dimension of X is then 60. The analysis prob-
lem is to find a correction dX such that Xa = Xb + dX is as close as
possible to Xt. This correction is searched in the same space as
the state vector. Thus, the minimisation problem has dimension
60.

4.3. The observation operator H

In the present use of data assimilation the observation operator
H is given by the model itself. It is nonlinear and roughly corre-
sponds to a critical boron calculation with CIREP1D. Therefore, it
depends on xenon but not on iodine as no time evolution are done
in such a calculation. Since the 3DVAR scheme does not involve
any evolution model, it cannot control iodine concentration.
Another important characteristic of this scheme, is the quasi-

equivalence in computational cost of evaluation of the model M
and observation operator H.

4.4. Observations

In this framework, observations used further in the analysis
process are not coming from real core measurements. They come
from numerical simulations with CIREP1D, in a twin experiment
framework as described in Section 3. The scheme is the following:

1. We compute xenon dynamics initialised by equilibrium con-
centrations, in a time range of one hour for example. The con-
centrations obtained after this hour are defined as the real
state Xt at the initial time t0 of the future analysis process.

2. We do a reference simulation with CIREP1D to make the real
state Xt evolve from t0 to tn:

XtðtiÞ ¼ Mi;0ðXðt0ÞÞ:

3. Observations over time range are obtained by introducing a
measurement noise � on real data:
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Fig. 7. Diagonal terms of the analysis matrices A for 3DVAR and 4DVAR schemes based on univariate and multivariate modelling of B.



Yoi ¼Hð XtðtiÞÞ þ �:

The observation vectors Yobsi at different observation times ti are
composed of three different measurements: six integrated powers
over several cells (index P), 1 power axial offset data (index AO)
and 1 boron concentration data (index CB). The associated error
standard deviations are denoted respectively by rRp, rRAO and
rRCb . The observation vector has dimension 8.

4.5. Error covariance matrices

To build the observation error covariance matrix R, we assume
that measurement errors are Gaussian, that they are not correlated
in space, and that they does not depend on time. In this case Ri = R
and R is diagonal and given by:

80 6 i < nobs;R ¼

r2
Rp 0

.

.

.

r2
Rp

r2
RAO

0 r2
RCb

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

: ð8Þ

Errors introduced in measurements are set to 10%, 5% and 1% of
the current value respectively for axial power (rRp), power axial
offset ðrRAO Þ and boron concentration (rRCb ) measurements. Those

values correspond to the typical knowledge we got on those mea-
surements considering both their intrinsic error and the represen-
tativity error.

4.6. Minimisation

Finally, to solve the nonlinear minimisation problem, we use
the quasi-Newton method LBFGS (Liu and Nocedal, 1989). This
method requires the computation of the gradient of J which is
done using the adjoint of the xenon dynamics model. In our case,
the adjoint is obtained by automatic differentiation of CIREP1D
using TAPENADE software (INRIA, 2004). Both J and rJ are
computed in the framework of the PALM assimilation coupler
(CERFACS and O-PALM, xxxx; Lagarde et al., 2001).

5. Background error covariance matrix modelling

The B matrix is one of the most important point of the data
assimilation, in particular for the 3DVAR method. For the 4DVAR
method, the matrix is less crucial since the model itself contributes
to spread the information. Thus in order to have a reliable compar-
ison between both methods a careful study of B is presented here.

We recall that the state vector of size 60 is composed by the val-
ues of the physical fields xenon and iodine at the 30 mesh nodes
(finite differences discretisation), the mesh node numbering start-
ing from the bottom of the core. The vector �b of size 60 represent
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the background error made on each of the 30 mesh nodes, which is
assumed Gaussian. The error covariance matrix B is defined by:

B ¼ E½ð�b � E½�b�Þð�b � E½�b�ÞT �:

We study three different types of modelling for the background
covariance matrix B: an elementary modelling where B is diagonal,
a univariate modelling where B is block diagonal and at last a mul-
tivariate modelling.

5.1. Settings used for the modelling

In what follows, we need to set up a simulated case to use the
evolution model M. We are working in the twin experiment
framework. The simulated case is a regular transient where the
produced power is close to the nominal power and control rods
are partially inserted in core. The state of the core corresponds to
the end of a fuel cycle. The true and background trajectories Xt(t)
and Xb(t) are computed with non equilibrium initial states issued
from close but not identical previous calculations.

We use standard deviations rXe and rI close to 3% for the initial
Bmatrix. Those values can evolve with respect to the treatment we
do on this initial matrix. Those values come from comparison be-
tween CIREP1D and other models. Moreover they are in the typical
range of values used in Argaud et al. (2009), Bouriquet et al. (2011)
and Bouriquet et al. (2011).

5.2. Elementary modelling

As a first step to build the Bmatrix, we omit correlation in space
and between species consider the diagonal matrix given by:
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5.3. Univariate modelling

Before developing a multivariate modelling, we propose to take
into account spatial correlations for xenon and iodine. We are look-
ing for a block diagonal matrix:

Bu ¼
BXe 0

0 BI

� �

;

where the block diagonals are given by:

BXe ¼ Bd;XeCBd;Xe;

BI ¼ Bd;ICBd;I:

The matrices Bd,Xe and Bd,I correspond to the sub-matrices ex-
tracted from Bd. The matrix C is built thanks to the Balgovind cor-
relation (Gaspari and Cohn, 1999) between two nodes of the spatial
mesh zi and zj numbered from 1 to 30, which reads:

Cðzi; zjÞ ¼ ð1þ jzi � zjj=LÞ expð�jzi � zjj=LÞ;

where the parameter L corresponds to the correlation scale to set
up.

This modelling assures the definite positivity of Bu. The choice
of L has consequences in:

� the structure of Bu (decay property of the matrix elements away
from the main diagonal),

� the conditioning of Bu (the larger L is, the worse the condition-
ing is),

� and the quality of the analysis.

In practice, the choice of L = 4 for both species gives satisfactory
results (Ponçot, 2008).

5.4. Multivariate modelling

We propose to build correlations thanks to the evolution model
Mi;0 between times t0 and ti. This method is very close to what is
done in Kalman filter. However we do no consider each step of
evolution.

If we consider a small initial perturbation � on the state X at
time t0, one can write:

Mi;0ðXðt0Þ þ �ðt0ÞÞ �M i;0ðXðt0ÞÞ þMi;0jX:�ðt0Þ;

where Mi,0jX represents the tangent linear of Mi;0 with respect
to the vector X. Then, if we set �ðtiÞ ¼ Mi;0ðXðt0Þ þ �ðt0ÞÞ

�Mi;0ðXðt0ÞÞ, the last relation can be expressed in terms of the error
as follows:

�ðtiÞ � Mi;0jX:�ðt0Þ:

Then we get an approximation of the covariance matrix at ti as a
function of the covariance matrix at t0:

covð�ðtiÞ; �ðtiÞÞ � Mi;0jXcovð�ðt0Þ; �ðt0ÞÞM
T
i;0jX: ð9Þ

It is noted that it can be difficult to get the tangent linear operator
M for an industrial code, since it usually requires to be written at
the same time as the direct code. Thanks to Eq. (9) we can model
correlations between xenon and iodine by multiplying an univariate
matrix Bu by Mi,0jX and Mi,0jX

T:

Bi ¼ Mi;0jXBuM
T
i;0jX:

In what follows, we compare the univariate matrices Bd, Bu to
the multivariate matrices B3, B12 and B24.

5.5. Overview of the estimated covariance matrices

Fig. 2 shows the diagonals of the various Bmatrices. These diag-
onals correspond to the error variance of the background state vec-
tor for each node of the spatial mesh (x-axis in the Fig. 2). We may
notice:

� In the diagonal and univariate modellings (Fig. 2a and b), the
variance is the same for all the spatial discretisation points,
though it is known that the lower and upper regions of the core
are quite inaccurately modelled. The iodine error variance is lar-
ger than the xenon one but it is due to the fact that iodine con-
centration in core is bigger than the xenon concentration. In
terms of relative errors, they are similar.

� For multivariate modellings (Fig. 2c–e), 3 regions can be seen
(easier to see for the iodine part than for the xenon part): two
large regions for half lower and upper parts of the core and a
small one for the central part of the core. The variances are
lower for the median part than for the two others (also easier
to see for the iodine than for the xenon)

� The variances are lower in the multivariate modelling than in
the univariate modelling, that is to say tr(Bmulti) < tr(Bu). But
the multivariate modelling takes into account correlations
between species: thus error statistics are spread all around
the elements of the covariance matrix.

To get an idea of the diffusion of the xenon error to the iodine
error in the multivariate modelling, Fig. 3 gives the absolute values
(for the clarity of the figure) of the correlations with respect to the
nodes of the spatial mesh, where the correlations are defined as



corrði; jÞ ¼ Bði; jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bði; iÞBðj; jÞ
q

;

where the element (i, i) of the matrix B corresponds to the variance
of the background error on xenon at the node number i (resp. iodine
at the node number i � 30) if i < 30 (resp. i > 31) and the element (i,
j) (or (j, i) since B is symmetric) corresponds to the covariance of the
background error between xenon and iodine at the node i. Then the
range of the scale varies from 0 to 1.

We may notice:

� Compared to the univariate modellings for which extra block
diagonal terms are obviously null, introduction of spatial corre-
lations fills in the two diagonal blocks in Fig. 3b. The choice of
the correlation scale will be discussed later.

� In the multivariate modellings (Fig. 3c–e), the correlation matri-
ces present an internal structure more or less pronounced with
respect to the use of an evolution model on a more or less long
time range. As for the variances, one can see two large regions
for the half upper and lower parts of the core and a narrower
region for the central part of the core.
– Diagonal blocks: they correspond to the spatial correlations

for a given species. Spatial correlations increase with the
length of the time range used in the evolution model, first
for the iodine correlations (e.g. M12) and then for the xenon
ones. This can be explained by the way of production of
xenon which is produced by radioactive decay of the iodine.
For the matrix B24, correlations between upper and lower
regions of the core are almost as strong as the spatial corre-
lations inside these regions.

– Extra-diagonal blocks: they correspond to the correlations
between the xenon and the iodine. The same correlation
increase is noticed with the length of the time range used
in the evolution model. But these correlations stay below
the spatial correlation level inside the same species.

– Central blocks: a region including very few nodes of the mid-
dle of the core seems to be insensitive to the time range used
in the evolution model: the background error for these nodes
is slightly correlated to the background error of the other
nodes. At last, one can notice that the correlation scale for
these nodes seems to be shorter to the scale L = 4 set up in
the correlation scale modelling described in Section 5.3.

6. Comparison between 4DVAR and 3DVAR schemes

We are in the twin experiment framework: the true state Xt is a
simulated state. The simulated case was briefly described in the
previous section. We always assume that background and mea-
surement errors are Gaussian. Errors introduced in measurements
are set to 10%, 5% and 1% respectively for axial power, power axial
offset and boron concentration measurements.

The purpose is to compare the result of the 3DVAR and 4DVAR
schemes at the assimilation time but also after at a forecast of 10 h
(typical time for xenon oscillation). In the case of the 3DVAR assim-
ilation, various modelling of the B matrix will be under consider-
ation. The 3DVAR results are compared to a 4DVAR result whose
characteristics are set up according to Ponçot et al. (2009): the
window size is set to 6 h and the observation frequency is set to
2 h (then 3 observation sets are used).

The various B matrices used for the 3DVAR schemes are the
following:

� Bd corresponds to the univariate modelling of B without any
spatial correlation;

� Bu corresponds to the univariate modelling with spatial
correlation;

� Bi corresponds to the multivariate modelling where the time
range used in the evolution model equals to i hours (here 3,
12 or 24 h).

Results are organised as follows: firstly we are analysing the
4DVAR results. Secondly we are comparing 1D errors on axial
shape of xenon, iodine and power. Then we show the time evolu-
tion of the mean error. At last we discuss the statistics of the anal-
ysis given by the analysis matrices.

6.1. 4DVAR results

First we will look at the results of the 4DVAR scheme that is
known to be the most efficient for forecasting. With this scheme,
the modelling of xenon/iodine correlation for B has a weaker influ-
ence on the quality of the analysis and then we use the Bu matrix.
Fig. 4 shows relative errors1 on xenon, iodine at the assimilation
time t0 and on power at t0 and t0 + 10h for two computations: the
background computation which gives the background state and a
4DVAR computation with the assimilation characteristics given
before.

On this Fig. 4, one can see that the 4DVAR computation allows
to reduce errors on xenon and iodine axial shape at least by a factor
of 2. For the axial power shape the decrease is even more impor-
tant since the errors are reduced by a factor of 4. What follows
aims at showing that it is possible to approach the 4DVAR results
quality with 3DVAR schemes using multivariate B matrices.

6.2. Comparison between 4DVAR and 3DVAR

Fig. 5 gives the 1D relative errors respect to the true state on ax-
ial shape of xenon, iodine and power for the different assimilation
schemes. We see that the 4DVAR results are better than the 3DVAR
ones independently of the choice of B. However, looking at 3DVAR
results at analysis time, we notice that xenon is rather well esti-
mated in all variational schemes except for the scheme which uses
the elementary modelling of B. The xenon estimation is not as good
for the bottom half as for the top half, but it is everywhere better
than the state given by the background computation. This good re-
sult can be explained by the fact that the xenon level at the assim-
ilation time is directly related to the assimilated observations, that
is to say to the integrated powers.

On the opposite, iodine is not directly related to the power level
but through the production of xenon since xenon is essentially pro-
duced by the radioactive decay of the iodine. Thus the observation
operator H does not depend on iodine. Therefore it is not possible
to correct iodine state with a 3DVAR scheme unless correlations
between xenon and iodine are introduced in B. As a consequence
the 3DVAR analysis error is equal to the background one for the
computation with the matrices Bd and Bu. With a multivariate
modelling of B it can be seen that the time range used to build
the extra-species correlations influences the quality of the iodine
analysis. It seems that the longer the time range is, the better the
analysis is. In fact there is no convergence towards the 4DVAR
analysis quality, and taking a 48 h time range does not allow to im-
prove 3DVAR results. One can assume that the optimal time range
is related to the time constants of radioactivity decay of the xenon
and iodine.

The knowledge of the iodine level is not important for the mon-
itoring operator system. We are expecting to improve axial power
forecasts with the assimilation techniques. If we take a look at the
power estimation after 10 h, we notice that background and diag-

1 The ‘‘true’’ value of the fields xenon, iodine and power is known since we are

working in the framework of twin experiments.



onal and univariate 3DVAR analysis axial power shapes are very
close. Since xenon is essentially produced by radioactive decay of
iodine, a bad estimation of the initial iodine concentration will af-
fect the xenon concentration estimation later. As expected the
multivariate modelling leads to a significant improvement in the
3DVAR forecast (up to a factor of 2 to 3 on the errors for the use
of the matrices B12 and B24). The multivariate modelling resulting
from the use of a time range of 3 h in the evolution model does not
seem to be sufficient to really improve power forecasts. As a first
conclusion, the optimal time range seems to be around 12 h: the
24 h time range does not improve much the forecasts compared
to the 12 h time range but it increases the amount of computation
for B.

6.3. Time evolution of the L2-norm error

We would like to confirm what has been shown at the assimila-
tion time t0 and t0 + 10h. Fig. 6 presents the time evolution of the L2-
norm error of the three studied fields for the different matrices B

used. An oscillation which tends to damp can be seen. But it does
not change the previous conclusion. Two groups can be seen: the
first one composedby the analysis computedby the3DVAR schemes
using the matrices Bd, Bu, B3; the second one composed by the anal-
ysis computed by the 3DVAR schemes using themultivariatematri-
ces B12, B24 plus the analysis computed by the 4DVAR scheme based
on the matrix Bu. As one can see on the Fig. 6, the latter still repre-
sents a ’’reference’’ towards one can except to tend with a 3DVAR
scheme based on amultivariatemodelling. And the 3DVAR schemes
where no or very few correlation between xenon and iodine is mod-
elled are unable to give good forecasts. We can deduce that the
3DVAR assimilation results depending a lot on the B involved.

6.4. Analysis matrices

Assimilation techniques offer a posteriori diagnostic on the com-
puted analysis by the mean of the analysis matrix. We use this
opportunity to go more deeply into the study of the respective
quality of the various approaches.

Figs. 7 and 8 are to be compared to Figs. 2 and 3 that show the
structure and amplitude of the elements of the background matrix
B. Fig. 7a and b show that the 3DVAR schemes based on univariate
process is not able to reduce the variance (represented by the diag-
onal of A) of the iodine error. Though the scheme based on the
multivariate matrix A3 has been proved not being good for forecast,
Fig. 7c shows that it is much better than the previous ones since it
allows to reduce by a factor of 2 the error on iodine.

Fig. 8 gives absolute values of the correlations with respect to
the nodes of the spatial meshes. It is to be noted that if the matrix
B does not contain correlations between the xenon and iodine er-
rors (extra diagonal blocks), the analysis matrix A issued from a
3DVAR scheme does not contain any correlation between them
neither. The 4DVAR scheme is based on the univariate Bu but the
corresponding analysis matrix A4DVAR shows correlations between
xenon and iodine. These latter are brought by the 4DVAR scheme
through the use of the evolution model on a 6 h time range but
they are shorter than the ones in the matrices A3, A12 and A24.

Fig. 8 also presents the spatial correlations intra species (diago-
nal blocks). It can be compared to the spatial correlations shown in
Fig. 3. It can be seen that spatial correlations after the assimilation
process are a little bit shorter than they were in the matrix B.

7. Conclusions

In this paper, we have shown how variational data assimilation
methods can be used to improve the accuracy of the prediction of

the xenon concentration in PWRs. A monodimensional xenon
dynamics code CIREP1D was developed for this purpose.

The investigation done here in twin experiments proves that
the 4DVAR scheme is a very efficient method to improve the accu-
racy of the prediction of the xenon concentration as well as the ax-
ial power shape in PWRs. However this method is computationally
costly and the development of the adjoint of the model is
mandatory.

A computationally cheaper solution is the 3DVAR that can lead
to rather good result. Nevertheless these latters can only be ob-
tained through a careful modelling on the associated background
error covariance matrix B. Among the various modellings of B stud-
ied here the one based on the multivariate modelling is the most
satisfactory.

The next stage for the 3DVAR approach could consist in setting
up an assimilation chain where the B matrix is updated at each
analysis step as it is successfully done for meteorological opera-
tional forecasts.
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