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Radial forging is a widely used forming process for manufacturing hollow products in transport industry. As the deformation of the
workpiece, during the process, is a consequence of a large number of high-speed strokes, the Johnson-Cook constitutive law (taking
into account the strain rate) seems to be well adapted for representing the material behavior even if the process is performed under
cold conditions. But numerous contributions concerning radial forging analysis, in the literature, are based on a simple elastic-
plastic formulation. As far as we know, this assumption has yet not been validated for the radial forging process. Because of the
importance of the [ow law in the e\ectiveness of the model, our purpose in this paper is to analyze the in[uence of the use of an
elastic-viscoplastic formulation instead of an elastic-plastic one for modeling the cold radial forging process. In this paper we have
selected two di\erent laws for the simulations: the Johnson-Cook and the Ludwik ones, and we have compared the results in terms
of forging force, product’s thickness, strains, stresses, and CPU time. For the presented study we use an AISI 4140 steel, and we
denote a fairly good agreement between the results obtained using both laws.

1. Introduction

Metal forming is a widely used tool in the industry to manu-
facture a large range of parts in di\erent sectors. Researchers
and engineers have always resorted to some techniques in
order to improve their understanding of the process on the
one hand, and on the other hand to properly control the
process parameters and their in[uence on the produced
workpieces. Te radial forging process is used to reduce the
diameter of tubes and bars. Te bnal shape of the workpiece
is obtained thanks to a large number of strokes achieved by
four anvils radially arranged around the workpiece as shown
in Figure 1. Te preform is maintained in the proper position
and is pushed into the dies using a mandrel which grips it
securely.Tepreform is subjected to a combination of an axial
translation and a circumferential rotation.
For those studies, analyticalmethods have been originally

developed.Hosford andCaddell [1] in their contribution have
detailed many of such methods. One of these methods is
the work balance method is used to estimate the amount

of force required to achieve a metal forming operation. In
the proposed approach, the global work is divided into three
parts: (a) an ideal work that would be required for only
the shape change, (b) a friction work, and (c) an unwanted
redundant work. Te force required is estimated from the
computation of the global energy involved in the forming
operation. Other approaches have also been used such as the
one proposed by Ghaei et al. [2], based on the slab analysis
method, to compute the deformation versus the geometry of
the die in a radial forging process. Choi et al. [3] employed
the upper-bound method to forecast the forging force. Teir
results were compared to experimental data, and a good
agreement was denoted for the proposed analytical model.
Pitt-Francis et al. [4] have proposed a three-dimensional
formulation, also based on the upper bound method, to
analyze the forging process. In their contribution,Donald and
Chen [5] have developed an upper bound approach to analyze
the stability in soils and rocks. Even if those methods are very
useful and simple to use, they are limited as soon as we need
to get more detailed results concerning the material state. For
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Figure 1: Radial forging process used to reduce the diameter of a bar.
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Figure 2: Initial and @nal con@guration during a transformation.

those reasons the @nite element method (FEM) is nowwidely
used to simulate and analyze the forming processes.

Finite element modeling was originally used in structural
mechanics for managing the parts design cycle or for evaluat-
ing the performance of an existing system. Je development
of computational capabilities during the last three decades
allows the extension of its use to many engineering @elds
including the metal forming processes and in particular the
radial forging. Numerous authors have used FEM to study
the radial forging process. In 1992, Piela [7] has studied
the applicability of the @nite element method for simulating
radial forging process and has proposed his own model in
a latter paper in 1997 [8]. In the same period, Domblesky
et al. [9, 10] have proposed their operating strategy to
model multiple-pass radial forging using the @nite element
method. Jeir approach is based on a stroke by stroke
axisymmetric simulation with an automatic update of the
die and the workpiece positions between each stroke. Due
to some convergence diVculties and an excessive CPU time,
theymodeled the chuckhead as a surrounded ring. Ameli and
Movahhedy [11] have also proposed a parametric study in
cold radial forging process using a @nite elementmodelwhere
they analyzed the inZuence of three parameters (the axial
feed, the preform thickness, and the friction coeVcient) on
the residual stresses. Je e[ect of the die inlet angle and the
die land length on the forging force has also been evaluated.
In their contribution, Ghaei and Movahhedy [12] have used
the @nite element method for the design of the dies. In a later
work [13] they have proposed their modeling results in terms
of axial stress distribution within the tube.

As presented before, the large deformation of the preform
during radial forging process results from numerous strokes
of the dies. Je dies are hence driven in such a way that

they are subjected to a high-frequency sinusoidal motion.
In such conditions (large strain and large strain rate), the
Johnson-Cook dynamic constitutive law [14] seems to be
more adapted than a classical power law like theHollomon or
Ludwik laws usually used in most of the proposed analytical
and numerical models described above. Usually, the authors
make the assumption that the material presents an elastic-
plastic behavior in cold conditions; therefore, they have used
a classical power law to describe the hardening. As far as we
know, in the literature, there are no papers which deal with
the validation of this assumption when the simulation of the
radial forging process is concerned. Knowing the importance
of the Zow law choice on the e[ectiveness of the model, we
propose in this paper to compare the results of the same
simulated process with regard to the use of the Johnson-Cook
and the Ludwik laws, respectively.

In this paper, theoretical bases will be @rst brieZy pre-
sented. Je mechanical problem in its local form and the
bases of the @nite element method used to transform the
local di[erential equations to a set of nonlinear equations
will be analyzed in the second section of the paper. In
the third section the model used in this study will be
detailed, and its accuracy will be presented by comparing the
predicted forging force with experimental results available
in the literature. Finally we will compare the Johnson-Cook
and the Ludwik constitutive laws in terms of forging force,
product thickness, strains, stresses, and CPU time in the last
section.

2. Theoretical Bases

In this section, we present themechanical problem in its local
form, the discretization of the problem and the construction
of the weak form associated. Je constitutive law integration
based on the radial return algorithm is presented in a second
part of this section with the details concerning the elastic
prediction and the plastic correction. As the problem is highly
nonlinear, an explicit integration scheme has been retained
for the time integration of the proposed equations.

From the knowledge of the initial
con@guration and the imposed boundary conditions, the
mechanical problem consists in predicting the @nal con@g-
uration depending on the initial con@guration as depicted
in Figure 2. As presented in Figure 2 and according to
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Figure 4: Numerically predicted forging force and geometry.

the continuum mechanics approach [15], we consider an
arbitrary domain Ω with boundary Γ leading to the mechan-
ical problem presented in (1) that must be solved at each
increment. Consider,

∇⃗ ⋅ $ + %&⃗ = % ⃗' in Ω
(⃗ = (⃗� on Γ 

$ ⋅ ⃗) = ⃗*� on Γ�,
(1)

where ∇⃗ is the divergence operator, $ is Cauchy stress tensor,

%&⃗ is the body forces vector, % is the mass density of the
material, ⃗' is the acceleration vector, (⃗ is the displacement
vector, ⃗) is the surface normal vector, ⋅ is the contraction
of inner indices operator,: is the double contractor of inner

indices operator, and Γ and Γ� are a partition of the domain’s

boundary Γ, where displacements (⃗� and external loads ⃗*� are
imposed, respectively. In this state, the mechanical problem
cannot be solved because of a lack of equations compared
to the unknown variables. Rerefore the additional equations
given below are added to the previous system:

(i) the geometrical compatibility equation which is writ-
ten in a general way as folows:

- = 1
2 [∇⃗(⃗ + (∇⃗(⃗)! + ∇⃗(⃗ ⋅ (∇⃗(⃗)!] , (2)

(ii) the constitutive equation used to represent the mate-
rial behavior as a relation between diTerent variables
4($, -, ̇-, 7) = 0, where - is the strain tensor ̇- is the
strain rate tensor, and 7 is the temperature.

Re ;nite element method
is neither more or less than a mathematical way to resolve
diTerential equations. It is an approximate method based on
the discretization of the problem’s equations and the domain
in which a solution is looked for. In radial forming, the
mechanical problem is given by (1). Before resolution, this
equation is turned into a weak form by multiplying (1) with
an admissible virtual displacement :(⃗ and integrating in the
hole domainΩ. So we obtain the following form on the whole
domain:

∫
Ω
:(⃗%&⃗<Ω + ∫

Γ�
:(⃗ ⃗*�<Γ − ∫

Ω
:- : $<Ω

= ∫
Ω
:(⃗%(̈<Ω.

(3)
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Figure 5: Equivalent plastic strain a>er forming.

Table 1: Comparison between experimental [6] and computed loads.

Preform diameter (mm) Product diameter (mm) Sizing zone (mm) Experimental load (KN) FEM load (KN)

15.97 13.18 18.00 172.00 181.63

Table 2: AISI 4140 Johnson-Cook parameters.

�
(MPa)

 
(MPa)

! " #

806 614 0.168 0.0089 1

Table 3: AISI 4140 Ludwik parameters.

�
(MPa)

$
(MPa)

!

817 699 0.156

_e `nite element method allows writing the approxima-
tion of the displacement vector &⃗� for each element of the
decomposed domainΩ� and the ponderation vector(&⃗� using
the following form:

(i) approximation of the displacement: &⃗� = N�&⃗, where
N� is the matrix of the shape functions and &⃗ is

the displacement vector of the nodes involved in the
current element ),

(ii) approximation of the admissible displacement: (&⃗� =
N�(&⃗.

Using the above approximation, (1) leads to the following
system:

M�
̈&⃗� + ,⃗ext

� = ,⃗int

� , (4)

where,

(i) M� = ∫Ω� /N
!
� N�0Ω� is the elementary mass matrix.

(ii) ,⃗int

� = ∫Ω� B
� 10Ω� is the elementary internal force

vector.

(iii) ,⃗ext
� = ∫Ω� /N

!
�2⃗0Ω� + ∫Γ!� N�

⃗3#0Γ� is the elementary

external force vector.

_e global problem is obtained by assembling the matrices
above, and subsequently the system is resolved using an
iterative method such as the Newton-Raphson algorithm.
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Figure 6: Von Mises stress when the die strokes.

(1) Initial conditions and initialization:  = 0; !0 = !("0); $⃗0 = $⃗("0); V⃗0 = V⃗("0)
(2) Update quantities:  ←  + 1; ! = ! −1; $⃗ = $⃗ −1; V⃗ +1/2 = V⃗ −1/2
(3) Compute the time-step and update current time: " = " −1 + Δ"
(4) Update nodal displacements: $⃗ = $⃗ −1 + Δ"V⃗ −1/2
(5) Compute internal and external force vector '⃗int

 , '⃗ext
 

(6) Integrate the conservative equations and compute accelerations: ̇
V⃗ = M

−1('⃗ext
 − '⃗int

 )
(7) Update nodal velocities: V⃗ +1/2 = V⃗ −1/2 + Δ" ̇

V⃗ 
(8) Enforce essential boundary conditions: if node - on Γ

V

(9) Output; if simulation not complete go to (2).

Algorithm 1: Flowchart for explicit time integration.

We problem to be solved here is a large
strain simulation; therefore we must ensure the objectivity
of all the terms appearing in the constitutive law in order to
have correct responses of the model. It is therefore necessary
to maintain correct rotational transformation properties all
along a Ynite time step. We symmetric part of the spatial
velocity gradient L, denoted byD, is objective while its skew-
symmetric part W, called the spin tensor, is not objective
as reported, for example, in [16]. Assuming that the Cauchy
stress tensor ! is objective, its classical material time deriva-
tive !̇ is nonobjective, so one must introduce an objective

rate notion
∇! which is a modiYed time derivative form of the

Cauchy stress tensor as the Jaumann or the Green-Naghdi
rates. We incremental formulation of the constitutive law is

therefore given by
∇! = /(D, . . .).

One of the solutions to this problem consists in transport-
ing the Cauchy stress ! in a corotational frame deYned using
a rotation tensor w based on the following set of equations:

ẇ = <w,

w (" = "0) = I.
(5)

DeYning any quantity () in this rotating frame as a corota-
tional one denoted by ()#, one may obtain in these axes, when



transformed by w, the following expressions for the Cauchy
stresses:

�� = w
 �w, �̇� = w

 �̇w. (6)

In fact, the choice of ! = W corresponds to the Jaumann
rate. ?e major consequence of corotational rates is that
if we choose the local axis system as the corotational one,
constitutive laws integration can be performed as in small
deformation, leading to a simpliCed formulation. According
to the decomposition of the Cauchy stress tensor � into a
deviatoric term s and a hydrostatic term ", one may obtain:

̇s� = C
� : D�,

"̇ = # tr [D�] , (7)

where # is the bulk modulus of the material, D
� =

w
 
Dw, C� = w

 [w Cw] w, and C is the fourth order
constitutive tensor. In this application, we use a &2 plasticity
model with a nonlinear isotropic hardening law. It is generally
assumed that the rate of deformation can be additively
decomposed into a elastic and a inelastic parts; therefore the
approach consisting in decomposing the stress computation
into an elastic predictor and a plastic corrector can be used.
?e associated von Mises yield criterion allows the use of the
radial-returnmapping strategy, brieJy summarized hereaLer,
to integrate the constitutive behavior of thematerial along the
time increment Δ( = (!+1 − (!.

Due to the objectivity and the use of a
corotational system, all the terms of the constitutive equation
are co-rotational ones, so we can drop the upperscript * in
the following equations for simplicity. ?e predicted elastic
stresses at increment + + 1 are calculated from the current
known values at increment + using theHooke’s law, according
to (7), by the following equations:

"trial
!+1 = "! + # tr [Δe] ,
s
trial
!+1 = s! + 2/ dev [Δe] ,

(8)

whereΔe = ln[U] is the co-rotational strain increment tensor
between increment + and increment + + 1 and / is the Lamé
coeScient. Hence, the von Mises criterion 0(�, �

V
) is then

deCned by

0 = √3
2 strial!+1 : strial!+1 − �

V
, (9)

where �
V
is the current yield stress depending on the history

of the deformation in case of a plastic behavior. Hence, if
0 ≤ 0, the predicted solution is physically admissible and
the whole increment is assumed to be elastic. If 0 > 0, then
a plastic correction must be taken into account in order to
restore computed stresses to a physically admissible value.

If the predicted elastic stresses do
not correspond to a physically admissible state, a plastic
correction has to be performed. ?e previously trial stresses

serve as the initial condition for the so-called returnmapping
algorithm.?is one is summarized by the following equation:

s!+1 = s
trial
!+1 − 2/Γn, (10)

where n = s
trial
!+1 /√ strial!+1 : strial!+1 is the unit outward normal to

the yield surface and Γ is the consistency parameter deCned as
the solution of the one scalar parameter nonlinear equation
below:

0 (Γ) = (strial!+1 − 2/Γn) : (strial!+1 − 2/Γn) − 2
3(�V (Γ))

2 = 0.
(11)

Equation (11) is eWectively solved by a local Newton
iterative procedure [17]. Since 0(Γ) is a convex function,
convergence is guaranteed.

All above equations are integrated
by an explicit scheme associated with lumped mass matri-
ces. ?e Jowchart for the explicit time integration of the
Lagrangian mesh is given in Algorithm 1 as proposed, for
example, by Belytschko et al. [15].

3. Finite Element Modeling and Validation

In a general way, the radial forging process does not exhibit
an axial symmetry property. So the modeling should be
performed under three-dimensional conditions. But this is
excessively time consuming as we need a couple of weeks to
complete a single simulation. For this reason we have made
some assumptions that allow the use of a 2D model (see
Figure 3). ?erefore the following points are not considered
in the proposed model:

(i) the tube’s rotation,

(ii) the clearances between the hammers,

(iii) variation of the dies’ shape along their cross section.

?ese assumptions lead to a signiCcant computational cost
saving while providing relatively good results as demon-
strated in the literature. In this work, we used the Abaqus
Explicit [18] Cnite element commercial code for the analysis,
and the preform is modeled using CAX4R elements, which
are 4 node quadrilateral elements with reduced integration
and hourglass control. On the other hand, the dies are
assumed to be rigid, and only the contacting surface with
the tube is taken into account in the model. So going under
axisymmetric conditions the die is discretized by 2 nodes
axisymmetric rigid elements.

In the literature the chuckhead is systematically repre-
sented, including thereby a supplementary contact problem.
So the solving eSciency, in terms of time consumption,
can be collapsed. In our work, the chuckhead is suppressed,
and the tube feeding is supported by a coupling constraint
between a part of the preform’s outer surface and a con-
trol point as illustrated in Figure 3. For the die-preform
interaction, we use a penalty contact formulation with a
Coulomb friction coeScient C = 0.2. Furthermore, contrary



to previous studies, our strategy does not consist in a stroke by
stroke simulation. In fact we perform one single simulation
for the entire process, taking into account the dwell time
between each consecutive stroke.

<e validation of the proposed model is made by
comparing our forecasted computed forging load with the
experimental values available in the literature and proposed
by Uhlig [6]. <is way of evaluating the eBectiveness of
the model was inspired by Ghaei et al. [13] and Ameli
and Movahhedy [11]. <e initial and the Hnal diameter,
are reported in Table 1 as well as the experimental and
numerically computed loads. A reasonable good agreement
(around 5%) is observed; therefore, our model can then be
used to study the inOuence of the Oow law on the results as
proposed in the next section of this paper.

4. Results and Discussion

We propose here to compare the inOuence of the use of the
Ludwik or the Johnson-Cook laws on the numerical results
in a radial forming simulation. For the Ludwik law (12),
the equivalent plastic stress �eq depends only on the plastic
strain  whereas the Johnson-Cook law (13) considers in
addition the inOuence of the strain rate ̇ and the eBect of
the temperature " during the forming process. According to
the solicitations, the Johnson-Cook law seems to suit better
to represent the material behavior. But, in the case of cold
forming, the Ludwik law may be relevant and more practical
as one must only identify three parameters (#,$, and %)
versus Hve (#, &, ', %, and*) for the Johnson-Cook law. In
this section we will compare the numerical results of the
simulations, such as the forging force, the predicting tube
thickness, strains, and stresses, obtained by using the two
distinct laws:

�eq = # + $ �, (12)

�eq = [# + & �] [1 + ' ln
̇ ̇

 0] [1 + ( " − "0" − "0)
 ] . (13)

We have employed an AISI 4140 material for this study.
<e Johnson-Cook and Ludwik parameters [16] are, respec-
tively reported in Tables 2 and 3. <e Ludwik parameters
have been obtained using a classical traction test whereas the
Johnson-Cook ones have been identiHed by using dynamic
tests [16] on the same material. For the numerical simulation
we used an initial diameter �0 = 16mm, a percentage
of reduction in diameter Δ� = 17%, and a feeding rate
! = 0.37mm/stroke. Concerning the numerical simulation,
similar CPU times are denoted for both laws. In fact, a CPU
time of 13min 08 s is required when using the Johnson law,
whereas a CPU time of 12min 52 s is necessary for the Ludwik
law, that is, a deviation of 2%.

In Figure 4 the evolution of the
forging force during forming is plotted for both constitutive
laws. We can denote the existence of a transient and a
stationary phase. From the beginning to the exit of the
die land, the forging force increases because the amount of

material being deformed and the frictional work increase
continuously. Once the die land exit is reached, deformation
and friction energies remain stationary and the load is
stabilized around " = 425 kN. Predicting the forging
force can be very interesting as it allows knowing whether
the capabilities required to manufacture a given product
are available in a workshop or not. On the other hand, a
parametric or optimization study can help to minimize the
force and consequently to reduction cost by saving energy.
For the proposed simulation, both laws exhibit the same
evolution and a good concordance of results is denoted.

 Knowing that our
study focuses on the radial forging without a mandrel, the
inner surface of the tube can be radially deformed when
the dies stroke. Consequently, the tube thickness is greater
aOer than before deformation. In Figure 4, we have plotted
the variation of the product thickness versus the distance
from the exit. We denote a maximum thickening of 10%
with regard to the initial thickness. Furthermore we can
see that this greatest thickness concerns the cylindrical
extremity of the forged product. At the product end a little
bit pinch is depicted. Qat leads to a thickness decrease of
around 3.5% compared to the neighboring points.Qe conical
region represents the transition between the undeformed
cylindrical domain and the extremity. Hence, the thickness
in this conical zone increases from the initial value up to the
maximum one. Johnson-Cook and Ludwik diagrams follow
the same trend, and the maximum deviation is about 1.12%.
So, once again, we obtain a fairly good agreement between
both laws.

In Figure 5, the equivalent
plastic strain aOer forming is shown. As we expect, plastic
strain is more important at the extremity of the tube as
this region has the biggest amount of diameter reduction.
So the maximum strain is about 29% for both Johnson-
Cook and Ludwik laws. In addition, the non deformed region
is highlighted by a zero value of the plastic strain. Within
the transition between the two regions, represented by the
conical shape, the plastic strain increases from zero up to
the maximum value. Qe two constitutive equations used in
this document have the same results on both the contourplot
strain and the numerical values. Qe deviations in absolute
values denoted are almost equal to zero.

In Figure 6 the von Mises stress
distribution when the die strokes is depicted. Qe maximum
value is reached under the die land and is about 1300MPa.We
can also see in Figure 6 that, in the die inlet, the change in the
material Xow direction causes a shiO on the stress compared
with the back and front neighboring regions.
Even if the Ludwik law does not account for the strain

rate, the forecasted stresses are close to those given by the
Johnson-Cook law. We can see in Figure 6 similar stress
distributions. Qe comparison made up till now is thereby
conZrmed.



5. Conclusion

In this work, a 2D axisymmetric :nite element model was
presented to study the radial forging process. Unlike some
previous works, our strategy was not based on a stroke
by stroke simulation, but we perform a single simulation
accounting for the dwell time between two successive strokes.
Ae comparison of the predicting forging force with experi-
mental results available in the literature shows the accuracy of
our model. Ae numerical model proposed in this paper has
provided some insights that can be summarized as follows:

(i) the forging force evolution during the process exhibits
a transient and a stationary phase. Ae limit between
the two phases is reachedwhen the part gets out of the
die land;

(ii) when the process is performedwithout amandrel, the
maximum 10% thickening of the tube is denoted in a
case of 17% diameter reduction.

Our purpose in this paper is to compare the Johnson-Cook
and the Ludwik constitutive laws in modeling the radial
forging process. In the proposed approach, we have shown
a very good accordance of the results between the two laws in
terms geometry, forging forces, strains, and stresses. We can
therefore conclude that even if the preform undergoes high-
speed stroke, the strain rate is not great enough in the case
of cold forming to request the use of an elasto-viscoplastic
formulation.Aerefore a simple Ludwik orHollomon law can
be used to represent the material behavior and lead to quite
good results. Concerning the CPU time, we have denoted a
deviation of 2% between the two laws with the advantage to
the simplest one.
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