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ABSTRACT

This paper deals with digital waveguide modeling of wind instru-

ments. It presents the application of state-space representations

to the acoustic model of Webster-Lokshin. This acoustic model

describes the propagation of longitudinal waves in axisymmetric

acoustic pipes with a varying cross-section, visco-thermal losses at

the walls, and without assuming planar or spherical waves. More-

over, three types of discontinuities of the shape can be taken into

account (radius, slope and curvature), which can lead to a good

fit of the original shape of pipe. The purpose of this work is

to build low-cost digital simulations in the time domain, based

on the Webster-Lokshin model. First, decomposing a resonator

into independent elementary parts and isolating delay operators

lead to a network of input/output systems and delays, of Kelly-

Lochbaum network type. Second, for a systematic assembling of

elements, their state-space representations are derived in discrete

time. Then, standard tools of automatic control are used to reduce

the complexity of digital simulations in time domain. In order to

validate the method, simulations are presented and compared with

measurements.

1. INTRODUCTION

Studying physical modeling for sound synthesis allows to simu-

late the behavior of musical instruments. Consequently it naturely

leads to realistic sounds, especially during attacks and note transi-

tions, compared to signal processing approaches. However, digital

simulations in time domain require intensive computations from

signal processors, and simplifications of the physical model have

to be considered to make real-time simulations possible. More-

over, because of interactions between elements of an instrument,

building a modular synthetizer proves difficult.

With the approach of digital waveguides (cf. eg. [1]), some

works have considered 1D acoustic model of axisymmetric pipes

based on the Webster horn equation (cf. [2]). Approximating a

varying cross-section pipe by some cylinders or cones leads to

the Kelly-Lochbaum scattering network (cf. eg. [3, 4]), which

allows a low-cost digital simulation in time domain. These mod-

els assume planar and spherical waves respectively. For a more

realistic behavior of the virtual instrument, in [5] and [6] visco-

thermal losses have been taken into account. This model of losses

(cf. [7]) involves fractional derivatives, and is more accurate than

more standard dampings based on integer order derivatives. In [8],

∗ Rémi Mignot is Ph.D. student at Télécom ParisTech/TSI
† This work is supported by the CONSONNES project,

ANR-05-BLAN-0097-01

the Kelly-Lochbaum network has been derived for pipes with con-

tinuity of radius and slope (C1-regularity of the shape), using the

Webster-Lokshin acoustic model of lossy flared pipes which does

not assume planar or spherical waves (cf. [9]).

After modeling each piece of pipe separately, it is necessary to

put them together in order to build the whole resonator. In [10] and

[11], the following modular method is proposed: deriving state-

space representations of every pieces of pipe in discrete time do-

main, interconnection laws allow to calculate the state-space rep-

resentation of the whole resonator. This formalism facilitates the

modularity of the building of a virtual trombone.

In a recent work [12], a framework (based on the Webster-

Lokshin equation) has been derived and allows to recover all mod-

els mentioned above ([3, 5, 4, 6, 8]). Moreover, it allows to ob-

tain a good level of accuracy with a small number of pipes. The

novelty of the present work is the use of the formalism of [11],

starting from the unifying model of [12]. Thanks to the modular-

ity of the method, virtual wind instruments can be built connecting

additional models such as: mouth-piece, radiation, tone-hole, lips

and reed (which are not studied in this paper). For example, Fig. 1

presents the network of a possible virtual resonator built by con-

necting such acoustic elements.

p+
e

p−
e

ps,1

ps,2

Figure 1: Example of an acoustic network modeling a resonator

with a mouth-piece, a horn and a tone-hole.

This document is organized as follows. In section 3, a pipe

with varying cross-section is separated into some pieces of pipe.

Using the Webster-Lokshin model, each piece of pipe is modeled

by an input/output network of the Kelly-Lochbaum type. In section

4, a state-space representation is derived for the network of section

2, in continuous time and in discrete time. Section 5 presents stan-

dard tools of automatic control which allow to optimize numerical

realizations in order to obtain low-cost digital simulations in the

time domain. Section 6 presents the digital simulations of virtual

trombones and a comparison between computed impedances and

the measured impedance of a real trombone. The last section con-

cludes this paper and deals with perspectives.
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Figure 2: Separation of the effects of pipe geometry.

2. MODELING A PIECE OF PIPE

2.1. Webster-Lokshin model and traveling waves

The Webster-Lokshin model is a mono-dimensional model which

characterizes linear waves propagation in axisymmetric pipes, as-

suming the quasi-sphericity of isobars near the inner wall (cf. [9,

13]), and taking into account visco-thermal losses (cf. [7]) at the

wall. The acoustic pressure P and the particle flow U are governed

by the following equations, given in the Laplace domain:

" „
s

c0

«2
+2ε(ℓ)

„
s

c0

«3

2

+Υ(ℓ)

!
−∂2

ℓ

#
r(ℓ)P (ℓ, s) = 0, (1)

ρ0 s
U(ℓ, s)

S(ℓ)
+ ∂ℓp(ℓ, s) = 0, (2)

where s ∈ C is the Laplace variable, ℓ is the space variable mea-
suring the arclength of the wall, r(ℓ) is the radius of the pipe,

S(ℓ) = πr(ℓ)2 is the section area, ε(ℓ) = κ0

p
1−r′(ℓ)2/r(ℓ)

quantifies the visco-thermal losses and Υ(ℓ) = r′′(ℓ)/r(ℓ) is the
curvature. Eq. (1) is called the Webster-Lokshin equation, and

(2) is the Euler equation satisfied outside the boundary layer. The

physical constants are the mass density ρ0, the speed of sound c0,

and κ0 =
√

l′v +(γ − 1)
√

lh where l′v and lh denote characteristic

lengths of viscous (l′v) and thermal (lh) effects.
With the formalism of Digital Waveguides, it is usual to de-

scribe acoustic effects with traveling waves rather than P and U .

In this work, we define the change of variables by introducing a

virtual reference pipe: a lossless cylinder with (arbitrary) radius rc.

Its characteristic impedance is Zc = ρ0 c0 /Sc, with Sc = πr2
c ,

for which corresponding planar traveling waves would be defined

by »
p+(ℓ, s)
p−(ℓ, s)

–
=

1

2

»
1 Zc

1 −Zc

– »
P (ℓ, s)
U(ℓ, s)

–
. (3)

In the case of lossy varying cross-section pipes, these vari-

ables are neither decoupled nor perfectly progressive inside the

pipe. Nevertheless, they remain “physically meaningful” at inter-

faces of the pipe (cf. [12]), and respect the causality principle.

2.2. Two-port system of a piece of pipe

In this paper, a pipe with varying cross-section is approximated by

a concatenation of pieces of pipe with constant parameters. Thus,

a piece of pipe is defined as a finite pipe with length L, and with
constant curvature (Υ) and losses (ε) parameters.

The piece of pipe is modeled by a system, the inputs of which

are p+
0 (s) := p+(ℓ=0, s) and p−

L (s) := p−(ℓ=L, s) (incoming
waves at ℓ=0 and ℓ=L). Outputs are p+

0 (s) and p−
L (s) (outgoing

waves).

In [12], a detailed analysis gives a framework which represents

the system of a piece of pipe. In this framework, delays and effects

of geometry of the pipe are isolated from each others. The geome-

trical parameters are the radii at ends r0 and rL, the slopes at ends

r′0 and r′L, the curvature and the visco-thermal losses of the piece
of pipe (Υ and ε). The framework is presented in Fig. 2 where

kl =
Zl − Zc

Zl + Zc

, and kr =
Zr − Zc

Zr + Zc

, (4)

Rs
l (s) =

αl

s − αl

, with αl = −c0

2

r′l
rl

, (5)

Rs
r(s) =

αr

s − αr

, with αr = +
c0

2

r′r
rr

, (6)

R(s) =
s/ c0 −Γ(s)

s/ c0 +Γ(s)
, (7)

T (s) = e−Γ(s)L = D(s) e
− s

c0
L
, (8)

with D(s) = e
−

“

Γ(s)− s
c0

”

L
, (9)

and Γ(s) =

s
“ s

c0

”2

+ 2ε
“ s

c0

” 3

2

+ Υ, (10)

and where
√

. denotes an analytical continuation of the positive

square root of R
+ on a domain compatible with the one-sided

Laplace transform, namely C
+
0 = {s ∈ C/ℜe(s) > 0} (see

Ref. [14, 15] for more details). The function Γ is proved to be

analytical in C
+
0 , and such that ℜe(Γ(s)) ≥ 0 if ε ≥ 0.

Brief interpretations of cells of Fig.2 are

• Cells Ql
a and Qr

a, with kl and kr (cf. (4)), remind Kelly-

Lochbaum junctions between two lossless cylinders (cf. eg.

[3, 5]) with discontinuities of sections.

• CellsQl
s andQr

s, with Rl
s and Rr

s (cf. (5-6)), are similar to

Kelly-Lochbaum junctions between lossless cones (cf. eg.

[4, 6]) with discontinuities of slopes.

• CellsQl
cl andQr

cl, withR(s), remindKelly-Lochbaum junc-

tions between lossy pipes with constant curvature of [8].

• T (s) (cf. (8)), of the cell Ql
cl, represents the delay L/ c0

of wave propagation through the piece of pipe, and the ef-

fect D(s) (cf. (9)) due to the visco-thermal losses and the
curvature. In [14] D(s) is proved to be causal and stable.

The framework of Fig. 2 is interesting because the effects of

the curvature and losses are isolated from the others (section and

slope), and it makes their study easier. Because of the square roots

in the function Γ (cf. (10)), the study requires special treatments

(see sec. 3.1).
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3. STATE-SPACE REPRESENTATION

For a systematic building of resonators, it is proposed to derive

state-space representations for each cell of Fig. 2. These represen-

tations allow algebraic manipulations on the system using well-

known tools of automatic control (see sec. 4). Introducing the in-

put vector U (N ×1), the output vector Y (N ×1), and the state
vector X (J×1), each cell is rewritten with the following repre-
sentation in continuous time


s X(s) = A X(s) + B U(s),
Y (s) = C X(s) + D U(s).

(11)

3.1. Finite-dimensional systems

Because of the square roots in Γ(s), transfer functions such as

R(s) and T (s) (see sec. 2.2) are irrational. These functions have
continuous lines of singularities inC, which are named cuts. These

cuts join some points (branching points) and the infinity.

IfΥ = 0, the functionΓ has one branching point at s = 0. The
cut R

− is chosen to preserve the hermitian symmetry. Thereof,

transfer functions have a continuous line of singularities on R
−.

The residues theorem shows that these functions are represented

by a class of infinite-dimensional systems, called Diffusive Re-

presentations (cf. [16, 17, 15]). For any diffusive representation

H(s) which is analytic on C\R
−:

H(s) =

Z ∞

0

µH(ξ)

s + ξ
dξ, (12)

µ
H

(ξ) =
1

2iπ
{H(−ξ+i0−)−H(−ξ+i0+)}. (13)

For simulation in time domain, eg. in [17], it is proposed to

approximate such diffusive representations by finite-dimensional

approximations, given by eH(s) =
Pj=L

j=1

µH
j

s+ξj
, where L is the

number of poles, −ξj ∈ R
− is the position of the jth pole and

µH
j is its weight. The poles are placed in R

− with a logarithmic

scale, and the weights µH
j are obtained by a least-square optimiza-

tion in the Fourier domain.

If Υ > 0, Γ has two more branching points, which are com-

plex conjugate. In this case, diffusive representations are approxi-

mated with a finite sum of 1st and 2nd order differential systems:

eH(s) =

j=LX

j=1

µH
j

s + ξj

+

j=MX

j=1

 
wH

j

s + γj

+
wH

j

s + γj

!
. (14)

R and D can be approximated with L + 2M = 10 or 15.

3.2. State-space representations in continuous time

CellsQl
a andQr

a These Cells only contain constant coefficients

kl and kr . WithQl
a for example, the state-space representation is

A = [ ] , B = [ ] , C = [ ] , D =

»
kl 1−kl

1+kl −kl

–
. (15)

A, B, C are degenerated (empty) matrices, but this convenient

notation is used to standardize the procedures in the sequel.

Cells Ql
s and Qr

s They contain one first-order transfer function,

the state-space representation of Ql
s is

A =
ˆ

αl

˜

, B =
ˆ

1 1
˜

, C =

»

αl

αl

–

, D =

»

0 1

1 0

–

. (16)

Cells Ql
cl and Qr

cl The transfer function R of the type (12) is

approximated by eR of the type (14). The state-space representation

ofQl
cl is given by the following diagonal form

A = diag(
ˆ
ξ1, ..., ξL, γ1, ..., γM , γ1, ..., γM

˜
),

C =

"
µR

1 , ..., µR
L , wR

1 , ..., wR
M , wR

1 , ..., wR
M

µR
1 , ..., µR

L , wR
1 , ..., wR

M , wR
1 , ..., wR

M

#
,

B =

»
1, ... 1

−1, ... −1

–T

and D =

»
0 1

1 0

–
.

(17)

Cell Qp In the central cell T (s) = D(s) e
− L

c0
s
. The transfer

function D(s) of type (12) is approximated by eD(s) of type (14)
for which the state-space representation can be written

A = diag(
ˆ
ξ1, ..., ξL, γ1, ..., γM , γ1, ..., γM

˜
),

C =
ˆ
µD

1 , ... µD
L , wD

1 , ... wD
M , wD

1 , ... wD
M

˜
,

B =
ˆ
1, ... 1

˜T
and D =

ˆ
0
˜
.

(18)

Pure delay operators are treated differently : for e−τs, if τ =
MTs with M ∈ N

∗ and Ts is the sampling period, its discrete-

time version is Z−M and is performed by a circular buffer. If M
is fractional, interpolation filters are needed (cf. eg. [4, 11]).

3.3. State-space representations in discrete time

Since every state-space representation are written in diagonal form,

the dynamics equation behaves as J independent first order equa-

tions with poles aj = Aj,j . This leads to

sXj = ajXj + Vj , for 1 ≤ j ≤ J, (19)

where Vj =
PN

n=1 B(j,n)Un.

Using any standard discretization schemes, J discrete-time

equations of the first order are derived from (19). The correspond-

ing difference equations are1

zXd
j = αjX

d
j + (zλ(j,1) + λ(j,0))V

d
j , for 1 ≤ j ≤ J. (20)

With Λl = diag({λ(j,l)}1≤j≤J)B for l ∈ {0, 1}, and Ad =
diag({αj}1≤j≤J), the matrix version is

zXd = AdXd + (zΛ1 + Λ0)U
d, (21)

Y d = CXd + DUd. (22)

Equation (21), is not a standard dynamics equation of state-

space representation, because xn depends upon un in the time do-

main. To cope with this problem, let’s define the new state vector:

W d = Xd − Λ1U
d ⇒ zW d = AdXd + Λ0U

d,

⇒


zW d = AdW d + BdUd,
Y d = CdW d + DdUd,

(23)

with Bd = (AdΛ1 + Λ0), C
d = C and Dd = (CΛ1 + D).

To simplify notations, vectors and matrices of the discrete-

time systems are renoted U , Y , X , A, B, C and D.

1For example, choosing the triangle approximation (modified first-
order hold, cf. [18]), the coefficients of (20) are:

αj =e
ajTs , λ(j,0) =−

1−αj

a2

j
Ts

− 1
aj

, and λ(j,1) =
1−αj

a2

j
Ts

+
αj

aj
.
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4. REALIZABLE NETWORK

To build the network of a whole pipe, two-port systems of pieces of

pipe (cf. Fig. 2) are connected together. This section is devoted to

obtain a computationally realizable network of the whole system.

4.1. Concatenating systems

In Fig. 3 (top part), delay-free loops appear at interfaces of two

systems which represent some cells of Fig. 2. These instantaneous

loops cannot be simulated numerically as such, and it is necessary

to remove them. To cope with this problem, it is possible to derive

an equivalent two-port as the bottom of Fig. 3 shows.

p+
1

p+
1

p−
1

p−
1

p+
2

p−
2

p+
3

p+
3

p−
3

p−
3

(A1, B1, C1, D1) (A2, B2, C2, D2)

(Ae, Be, Ce, De)

Figure 3: Concatenating two two-ports

In [11, p. 31-33], the interconnection laws are performed from

state-space representations. This leads to the matrices Ae, Be, Ce

and De of the equivalent two-port. This operation is performed

recursively to remove every instantaneous loop, until the network

only contains intertwined two-port systems (without delay) and

cellsQP (with delay operators).

4.2. Minimal realization

At this stage of the building, a well-known result in automatic con-

trol allows to reduce the dimensions of the systems, in order to

reduce the cost of numerical computation.

For an original state-space representation, the study of its ob-

servability allows to know if a change of state exists, which defines

observable and non-observable sub-states. From an input/output

point of view it is not necessary to simulate the last substates, be-

cause they have no influence on the output.

Similarly, the study of reachability allows to separate reachable

and unreachable sub-states. With zero initial conditions, unreacha-

ble sub-states remain zero for bounded excitations U .

Using the canonical Kalman’s form (cf. [19]), the minimal re-

alization is derived by eliminating non-observable or unreachable

sub-states. If they exist, the dimension of this minimal realization

is lower than the original.

Remark: the minimal realization can be required for stability

reasons in some particular cases (cf. eg. [20]).

4.3. Jordan decomposition

To reduce the calculation cost, it is useful to look for a new change

of state which makes the matrix A sparse.

Considering the minimal realization of a system of the net-

work, if its matrix A is diagonalizable over C
J×J , the modal form

of the system is computed. If this matrix is not diagonalizable, it

always admits a Jordan decomposition over C
J×J .

Then, the appropriate change of variable is done to lead to

the new dynamics matrix A′ with the diagonal form or the Jordan

normal form. This matrix contains its complex eigenvalues on its

diagonal, some 0 or 1 on its super-diagonal and 0 everywhere else.

4.4. Last reduction

Whereas all systems are real-valued (un and yn ∈ R
N ), matrices

of the state-space representation are complex-valued. From a nu-

merical point of view, computation with complex numbers is more

expensive than with real numbers. However using the hermitian

symmetry of input/output transfer matrix (H(s) = H(s)), it is
possible to reduce the number of sub-states to calculate.

The matrix A is with the Jordan normal form, then its Jordan

blocks are sorted with respect to their eigenvalues:

A′ = diag(A
R

, A
C

, A
C

),

with A
R
is a Jordan matrix composed with real eigenvalues, A

C
is

a Jordan matrix composed with complex eigenvalues with positive

imaginary part, and A
C

= A
C
. Then H(s) is decomposed:

H(s) = H
R
(s) + H

C
(s) + H

C
(s) + D.

The hermitian symmetry of H(s) and identifications prove

thatH
R
(s) = H

R
(s) andH

C
(s) = H

C
(s). Thus, the contribution

of H
C

(s) can be deduced from that of H
C

(s).

Decomposing matrices with respect to eigenvalues ofA′,B′ =ˆ
B

R
, B

C
, B

C

˜T
, C′ =

ˆ
C

R
, C

C
, C

C

˜
and X ′ =

ˆ
X

R
, X

C
, X

C

˜T
, the

equivalent scheme for simulation is, in time domain:

8
><
>:

»
x

R
(n+1)

x
C
(n+1)

–
=

»
A

R
0

0 A
C

– »
x

R
(n)

x
C

(n)

–
+

»
B

R

B
C

–
u(n),

y(n) = C
R

x
R

(n) + 2ℜe
“
C

C
x

C
(n)
”

+ Du(n).

5. RESULTS OF SIMULATIONS

From the geometry of a real trombone, two virtual trombones are

built numerically. The varying cross-section pipe of the first vir-

tual trombone, M1, is built with 11 pieces of pipe, for a refined

fit with the original shape of pipe. The second model, M2, is a

simplified version with 5 pieces of pipe. Additionally, the mouth-

piece and the radiation impedance are modeled, but these models

are not detailed here.

From the geometrical parameters of M1 and M2, the state-

space representations of the networks of simulation are built with

the procedures described in sections 3 and 4. These global sys-

tems which represent the resonator of a trombone, have one input

and two outputs: the input is the incoming traveling wave p+
e at

the entry of the mouth-piece, and their outputs are the traveling

wave p−
e outgoing from the mouth-piece and the radiated pressure

ps from the horn. Simulating the impulse response of the input

reflexion of the resonator, p−
e /p+

e , in time domain, the computed

input impedance, P/U , is deduced in frequency domain from (3).

Computed impedances are compared with the measured impe-

dance of the real trombone1 in Fig. 4. As we can see, the main im-

provement of the model M1 (with 11 pieces of pipes) compared to

that of M2 (with 5 pieces) is about the spectral envelop. Whereas

the envelop of maxima and minima of M2 is smooth, that one of

the measurements have some irregularities (see the fifth and the

sixth maxima for example). With a best fit of the real shape of

pipe, the envelop of M1 has the same type of irregularities. How-

ever, because of the simplification of M2, the complexity of the

network of simulation is reduced.

1Measurements was done with the impedance sensor of the Centre de
Transfer de Technologie du Mans (CTTM), Le Mans, France.
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Figure 4: Comparison between impedances.

6. CONCLUSIONS AND PERSPECTIVES

Using the formalism of state-space representations for digital wave-

guide networks leads to a good modularity for the assembling of

elements, and an automatic building of the network of simulation.

Moreover, standard tools of automatic control are used to reduce

the calculation cost.

Considering the refined model of Webster-Lokshin for lossy

flared pipes, it has been shown that this formalism can be applied

with approximations of the diffusive representations by finite-di-

mensional systems. Compared to models based on cylinders or

cones, this model requires much fewer pieces of pipes to obtain

good geometrical fits and realistic computed impedances.

At present, the global complexity of computation is equivalent

to former models mentioned above. But the dimension of approx-

imation (cf. sec. 3.1) can be reduced with a different method.

In this paper, only linear resonators with static parameters have

been presented. In order to have a complete computer-aided maker

of virtual wind instruments, nonlinear or time-varying systemmust

be considered: trombone slide, valves, lips, reed, tone-holes. The

modularity of the formalism should make an easy integration pos-

sible with only a few differences.
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