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Webster PDE to stable numerical simulation in real time∗
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D. Matignon‡

Université de Toulouse; ISAE, Applied Mathematics training unit.

Abstract

Minimal realizations of a class of delay-differential systems are derived for
the digital simulation of waveguides, modelled by the Webster horn equation.
Studying their stability is an interesting issue, since negative curvatures could
lead to unstable systems. Spectral properties of Toeplitz matrix play a key role
in this work.
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1 Introduction

The wave equation with space-varying coefficients that models propagation in horns
is the Webster PDE, which is known to be conservative, whatever the shape of the
horn; hence, stable numerical schemes can be derived for it, e.g. forward Euler on
the vector (pressure, flow) with a CFL condition. But from an input-ouptput point
of view, in the case of negative curvature, it is well-known that unstable subsystems
are to be found, a paradox that has recently been fully understood in [MED08]
thanks to minimal realization of a delay system modelling a convergent cone. In the
present work, the same methodology is applied to a pipe with negative (constant)
curvature, the discretization of which now gives rise to a delay-differential system.

∗This work is supported by the CONSONNES project, ANR-05-BLAN-0097-01
†1, pl. Igor Stravinsky, 75004 Paris, France. e-mail: {mignot,helie}@ircam.fr
‡10, av. E. Belin, F-31055 Toulouse Cedex 4, France. e-mail: denis.matignon@isae.fr

1



2 1D propagation in a convex acoustic pipe

Consider the conservative acoustic 1D propagation into a pipe with varying radius
R(ℓ) = R0 cos(ℓ) where ℓ ∈ [−L/2, L/2] (with L < π) denotes the curvilinear ab-
scissa measuring the length of the shape from ℓ = 0 (see Fig. 1a). Inside this pipe
symmetrical w.r.t ℓ = 0, the acoustic pressure p(ℓ, t) is governed by the following
Webster equation [?], for the adimentional celerity c = 1, ∂2

ℓ p(ℓ, t) + 2ζ(ℓ)∂ℓp(ℓ, t)−
∂2

t p(ℓ, t) = 0, where ζ = r′/r. Denoting X(ℓ, t) = [p(ℓ, t), r(ℓ)2v(ℓ, t)]T where v is
the particle velocity for the adimensional massic density ρ = 1, the acoustic problem

can be described by (see [?]) ∂ℓX(ℓ, t) +

(
0 1/r(ℓ)2

r(ℓ)2 0

)
∂tX(ℓ, t) =

(
0
0

)
or

equivalently, and introducing the state variable φ± = r(p ± v),

∂ℓφ
±(ℓ, t) ± ∂tφ

±(ℓ, t) = ζ(ℓ)φ∓(ℓ, t). (1)

Consider the scattering matrix M(s) defined by [φ̂+(L/2, s), φ̂−(−L/2, s)]T = M(s)[φ̂+(−L/2, s), p̂−(L/2, s
in the Laplace domain for s ∈ C

+

0
= {s ∈ C|ℜe(s) > 0}. For r(ℓ) = r0 cos(ℓ), its

computation yields M(s) =

(
T (s) R(s)
R(s) T (s)

)
where a square root of s2 − 1 is to be

found...

3 Approximation with pieces of conical pipes

For all N ∈ N
∗ and n ∈ [0, N ]N, define ℓN

n =
(
− 1

2
+ n

N

)
L and approximate the shape

r with the continuous piecewise affine model r̃ as follows: if 1 ≤ n ≤ N and ℓ ∈
[ℓn−1, ℓn], then r̃N (ℓ) = r(ℓn−1)+ξN

n (ℓ−ℓn−1) with slope ξN
n =

(
r(ℓn)−r(ℓn−1)

)
/ǫN

where ǫN = L/N . In each conical piece of pipe, the propagation of ideal spherical

n = 1 n = 2 . . . . . . n = N
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Figure 1: Shape of the pipe with radius r and its piecewise afinne approximation
r̃N ... A AFFINER !

waves is assumed. Solving (1) and assuming the continuity of φ± (that is, of acoustic
pressure and flow), we find the structure in Fig. 1b in which reflections functions
are all given by RǫN

(s) where Rǫ(s) = αǫ/(s − αǫ) and αǫ = (1 − cos ǫ)/ǫ ∼
0

ǫ/2

(see e.g. [?]). This structure corresponds to the following global state-space-like
representation, with input U = []T , output YN = []T , and state XN = [?]T ,

s XN (s) = AN (e−τns
)
XN (s) + BN (e−τns)U(s), (2)

YN = CN (e−τns
)
XN (s), (3)
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where AN (w) = αǫN
WN (w), WN (w) is the N ×N -symmetrical Toeplitz matrix such

that [WN (w)]ij = w|i−j|, BN (w) is composed of the first and last columns of WN (w)
and CN (w) = w BN (w)T .

4 Simulations

References

[1] L. Ahlfors. Complex Analysis. McGraw-Hill, 1953.

[2] W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987.

3


