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Abstract. A numerical scheme is presented for time-domain simulations of structural dynamic

problems with viscoelastic materials described by fractional derivative constitutive equations.

The proposed approach combines a classical Newmark time-integration method used to solve

second-order mechanical systems (obtained for example after finite element discretization), with

a diffusive representation based on the transformation of the fractional operator into a system of

linear differential equations. The focus is given on the general formulation of the problem, the

algorithm implementation into a finite element framework, and the developpement of a closed-

form solution for a fractionnally damped single degree-of-freedom equation.



1 INTRODUCTION

The importance of fractional calculus for modeling viscoelastic material behavior has been

recognized by the mechanical scientific community since the pioneering work of Bagley and

Torvik [1]. The merits of using fractional differential operator lie in the fact that few parameters

are needed to accurately describe the constitutive law of damping materials and the resulting

model can be easily fitted to experimental data over a broad range of frequencies. The nu-

merical approximation of such damped mechanical systems is today intensively studied with

a special interest concerning the implementation of fractional constitutive equations within a

time-domain finite element framework.

The resolution methods are classically either based on time discretization of the fractional

dynamics (see e.g. [2, 3, 4]), or on diffusive representations (cf. [5, 6, 7]). For large scale

systems, the first method proves memory consuming because it is necessary to store the whole

displacement history of the system due to the non-local character of the fractional derivatives.

The second method, based on diffusive realizations of fractional derivatives, is numerically

more efficient because it has no hereditary behavior, thus avoiding the storage of the solution

from all past time steps. In the second group of methods, a coupled Newmark-diffusive scheme

has recently been proposed by the authors and analyzed through a single degree-of-freedom

example [8].

In this contribution, we propose to extend our approach to more complex mechanical sys-

tems. The focus is given on the general formultation of the problem and the algorithm imple-

mentation compatible with the finite element method. The applications to damping prediction

of complex structures containing viscoelastic materials will be presented at the conference.

2 FINITE ELEMENT VISCOELASTIC PROBLEM

We consider a structure composed of elastic and viscoelastic materials. The finite element

discretization of such a problem leads to the following stiffness and mass matrices Ki and Mi,

associated to the volume of elastic (i = 1) and viscoelastic (i = 2) material:
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where A is the finite element assembly operator, nel
i is the total number of finite elements mesh-

ing the volume i, B is the strain-displacement matrix, N is the shape function matrix, ρi and Ci

are respectively the density and the material moduli matrix related to the volume i.
Assuming that the Poisson ratio of the viscoelastic material is constant, the stiffness matrix

K2 in the frequency domain can be written as a constant stiffness matrix, calculated with unitary

modulus K0
2, factor of the complex Young modulus Ê(ω) of the viscoelastic material:

K2 = Ê(ω)K0
2 (2)

In this work, the causal fractional Zener model is chosen to describe the frequency-dependent

complex modulus:

Ê(ω) =
E0 + E∞(iωτ)α

1 + (iωτ)α
= E0 +

(E∞ − E0)(iωτ)
α

1 + (iωτ)α
(3)



where E0 and E∞ are respectively the relaxed (E0 = Ê(ω → 0)) and unrelaxed modulus

(E∞ = Ê(ω → ∞)) satisfying E∞ > E0. The two other parameters are the fractional power α
satisfying 0 < α < 1 and the relaxation time τ > 0. This four-parameter fractional derivative

model has been shown to be an effective tool to describe the weak frequency dependence of

most viscoelastic materials [9, 10].

The semi-discrete equation of motion for the damped system can be expressed in the fre-

quency domain as:
[

Ke + iωĥ(ω)Kv − ω2
M

]

û = f̂ (4)

where û is the displacement response to an external harmonic excitation of amplitude f̂ , Kv =
(E∞ −E0)K

0
2 is a positive matrix, Ke = K1 +E0K

0
2 and M = M1 +M2 are definite positive

matrices. In addition, according to the expression of the complex modulus in Eq. (3) and to the

previuous notations, the function ĥ(ω) is given by:

ĥ(ω) =
τα

(iω)1−α[1 + (iωτ)α]
. (5)

3 DIFFUSIVE FORMULATION

From the previous Eqs. (4) and (5), we obtain the following system of equations in time-

domain:

Mü+ h(t) ⋆Kv u̇+Ke u = f(t) (6)

where an over-dot indicates a time-derivative, the symbol ⋆ represents a convolution product,

and the function h(t), for t > 0, is given by:

h(t) =

∫

∞

0

µ(ξ) e−ξ t dξ (7)

with

µ(ξ) :=
sin(απ)

π

τα

ξ1−α [1 + 2 cos(απ) (τξ)α + (τξ)2α]
. (8)

Following e.g. [5, 6, 11, 12], the function h is applied on the velocity field v := u̇ as input,

and will be realized equivalently by a standard diffusive representation of the form:

∂tϕ(ξ, t) = −ξϕ(ξ, t) + v(t), ϕ(ξ, 0) = 0 , (9)

observed through the continuous superposition:

(h ⋆ v)(t) =

∫

∞

0

µ(ξ)ϕ(ξ, t) dξ . (10)

It can be noted that Eq. (9) corresponds to a familly of first order differential equations

indexed by ξ. The previous diffusive representation, which is exact, can be approximated by

stable numerical schemes using standard interpolation, i.e.

∫

∞

0

µ(ξ)ϕ(ξ, t) dξ ≈

K
∑

k=1

µk ϕ(ξk), (11)

where K is the number of approximation nodes, ξk a sequence of angular frequencies in the

frequency range of interest, and µk the corresponding interpolated or optimized weights. It is

important to note that this finite-dimensional representation is only approximate and the quality

of the approximation depends on the choice of these three parameters. More details on the

optimization procedure of diffusive models have been presented first in [13], and fully detailed

on a series of fractional systems in e.g. [14].



4 TIME-INTEGRATION SCHEME

Using the previous diffusive representation, a predictor-corrector algorithm based on the

Newmark integration scheme is proposed for the computation of the dynamical system given

by Eq. (6). This algorithm is detailed below:

1. Initialization

S = M+ β∆t2 Ke
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0
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a
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d) Correction

u
n+1 = u

n+1
pr + β∆t2 an+1

v
n+1 = v

n+1
pr + γ∆t an+1

3. Update time step and return to step 2

Some remarks can be made on this algorithm:

• In the Newmark algorithm we use β = 1/4 and γ = 1/2 corresponding to the average

acceleration method which is unconditionally stable and second order accurate for non-

dissipative linear systems;

• The prediction velocity vector vpr is frozen as input of the diffusive sub-scheme b).

• Only the diffusive components ϕn
k for 1 ≤ k ≤ K at time step n∆t are stored.

5 SINGLE DEGREE-OF-FREEDOM MODEL

We consider the single-degree-of-freedom dynamical model obtained from Eq. (4):

[

Ke +
(iωτ)α

1 + (iωτ)α
Kv − ω2M

]

û = f̂ , (12)

In the Laplace domain, this equation writes:

[Mταs2+α +Ms2 + (Ke +Kv)τ
αsα +Ke]U(s) = [1 + ταsα]F (s) , (13)



and a time-domain version is given by:

[

Mτα (Dt)
2+α +M (Dt)

2 + (Ke +Kv)τ
α (Dt)

α +Ke

]

u(t) = [1 + τα (Dt)
α] f(t) . (14)

where (Dt)
β represents the time derivative of order β (integer or fractional).

In order to solve this equation analytically, let us introduce the following notations:

• 0 < α = p

q
< 1, so p < q

• γ = 1

q
, so α = p γ and 1 = q γ

With this notation at hand, we can rewrite the problem as:

[Mτα (Dγ
t )

2q+p +M (Dγ
t )

2q + (Ke +Kv)τ
α (Dγ

t )
p +Ke] u(t) = [1 + τα (Dγ

t )
p] f(t) . (15)

The trick consists in looking for a solution expressed by means of Mittag-Leffler functions

(see [5]), which can also be expanded as fractional power series (by definition). This theoretical

result legitimate the following Ansatz:

u(t) :=
∞
∑

n=0

un

tnγ

Γ(1 + nγ)
(16)

with initial conditions displacement u(0) = u0 and velocity v(0) = u̇(0) = v0.

Reintroducing this Ansatz into equation (14) gives the following recursion on the coeffi-

cients:

Mτα un+2q+p +M un+2q + (Ke +Kv)τ
α un+p +Ke un = 0 , ∀n ∈ N , (17)

which is easy to solve by induction, starting from known u0 and uq = v0 and other low order

coefficients equal to 0. This analytical solution will be helpful to test our numerical solutions.

6 CONLUSION AND PERSPECTIVES

We have proposed in this contribution a general approach for time-domain simulations of

structural dynamic problems with viscoelastic materials described by fractional derivative con-

stitutive equations. This approach combines a classical Newmark time-integration method with

a diffusive representation used in fractional calculus. The proposed methodology is applicable

to complex mechanical systems thanks to an appropriate finite element space discretization. We

have also proposed in this paper a closed-form solution for a single degree-of-freedom system

with fractional Zener model. This solution will be used to validate the numerical implemen-

tation of our algorithm. Fully 3D simulations will be presented at the conference and used to

analyse the efficiency of our approach.
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