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The aim of this paper is to study a conservative wave equation coupled to a diffusion equation.

This coupled system naturally arises in musical acoustics when viscous and thermal effects at the wall of the

duct of a wind instrument are taken into account. The resulting equation, known as the Webster–Lokshin

model, has variable coefficients in space, and a fractional derivative in time. This equation can be recast

into the port Hamiltonian framework by using the diffusive representation of the fractional derivative in

time and a multiscale state space representation. The port-Hamiltonian formalism proves adequate to

reformulate this coupled system, and could enable another well-posedness analysis, using classical

results from port-Hamiltonian systems theory.

1. Introduction

The dissipative model which describes acoustic waves traveling

in a duct with viscothermal losses at the lateral walls is a wave

equation with spatially varying coefficients, which involves

fractional-order integrals and derivatives with respect to time

[24]. This model is first rewritten in a coupled form; then the

fractional integrals and derivatives are written in their so-called

diffusive representation; essentially, the fractional-order time

kernel in the integral is represented by its Laplace transform.

The main idea of the present work is to put the Webster–Lokshin

fractional PDE into the infinite dimensional port-Hamiltonian frame-

work [28,13], in order to take advantage of this setting. The port

Hamiltonian framework has shown to be very powerful to prove

the existence and the well posedness of solutions and to prove

the stability of infinite dimensional systems [29,27]. To do so, a

preliminary work is necessary, that is using diffusive representations

of both fractional integrals and derivatives in order to imagine the ad

hoc Hamiltonian formulation as a multiscale coupling of two port

Hamiltonian systems. This work has to be related to the multiscale

coupling proposed in [1]. The coupling between conservative and

dissipative subsystems is then easily tackled in this setting; but for

the PDE, as usual, some care must be taken with the functional

setting.

The outline of the paper is as follows: Section 2 starts with some

background on port-Hamiltonian systems, both in finite dimension

and infinite dimension, with an emphasis on the modeling of

damping, see Section 2.1; some specific damping models are then

examined in Section 2.2: fractional integrals and derivatives are

defined first, and diffusive representations are introduced in order to

replace these fractional operators by input–output representations,

and state-space representation, which prove compatible with first

order dynamical systems. In order to set up a Hamiltonian formulation

of both these operators, a finite-dimensional toy-model is studied in

depth in Section 3: ad hoc discrete energies are being defined, skew-

symmetric and symmetric structural matrices J and R are identified,

and the standard port-Hamiltonian structure of dissipative systems is

recovered. Finally, the fully infinite-dimensional case is presented in

Section 4: the Webster–Lokshin model is recast in the setting of

infinite-dimensional port-Hamiltonian systems with dissipation. The

paper ends in Section 5 with many perspectives of this ongoing work.

2. Some background on port Hamiltonian systems and

diffusive systems

2.1. Port Hamiltonian systems

2.1.1. The finite dimensional case

Port Hamiltonian systems (PHSs) [25] have been widely used

in modeling and control of mechanical and electromechanical
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systems, see also [5]. It has first been defined from Dirac structures

(arising from the use of power conjugate variables and the skew

symmetry of the interconnection structure) in the case of power

preserving systems. In the case of systems with dissipation, PHS are

defined by

_X ¼ ðJðXÞ%RðXÞÞ∂XHðXÞþgðXÞuðtÞ
y¼ gðXÞT∂XHðXÞ

(

where XAR
n, HðXÞ is the Hamiltonian function usually chosen as

the total energy of the system, ∂XHðXÞ is the vector of driving

forces, JðXÞ ¼ % JðXÞT and RðXÞ ¼ RðXÞT Z0 which may depend on

the state vector X specify the interconnection matrix and the

dissipation matrix of the system, respectively, and g(X) is the

matrix of smooth input mapping functions. The energy balance

associated with this system is

dH

dt
¼ ð∂XHÞT ∂X

∂t
¼ yTuðtÞ%ð∂XHðXÞÞTRð∂XHðXÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dZ0

In the case of linear systems the energy can be written as a

quadratic form HðXÞ ¼ 1
2 X

TLX where L is symmetric positive

definite and is related to the physical parameters of the system.

Example 1 (Mass spring system). We consider the simple mass

spring system example. A spring on a support (we do not consider

the gravity force) is fixed at one end and attached to a load at the

other end. A force F(t) is applied to the load. From Newton's second

law:

m €x ¼ %κxþF ð1Þ

where x(t) is the relative position of the load, m the mass of the

load, F the applied force, and κ the stiffness of the spring. Let us

now consider the position q¼x and the momentum p¼m _x (i.e. the

energy variables) as state variables XðtÞ ¼ ðqðtÞ pðtÞÞT . The energy

of the system is given by the sum of the elastic potential energy

and the kinetic energy:

Hðq; pÞ ¼ 1

2
κq2þ p2

m

' (

¼ 1

2
ðq pÞ

κ 0

0 1
m

 !

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

L40

q

p

 !

System (1) can be written as a port-Hamiltonian system:

_q

_p

 !

¼
0 1

%1 0

' (

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

J

κ 0

0 1
m

 !
q

p

 !

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

∂XHðXÞ ¼ LX

þ
0

1

' (

|fflffl{zfflffl}

gðxÞ

F

y¼ ð0 1
κ 0

0 1
m

 !
q

p

 !

¼ _x ð2Þ

In this case the energy is preserved and the skew symmetry of the

interconnection structure implies that the internal variation of the

energy comes from the power exchanged with the environment.

It is a direct consequence of the energy balance:

dHðXÞ
dt

¼ ∂HðXÞ
∂X

T dX

dt
¼ F _x

When viscous damping with constant coefficient ɛ is considered,

Eq. (1) becomes

m €x ¼ %κx%ɛ _xþF ð3Þ

leading to

q

p

 !

¼
0 1

%1 %ɛ

' (

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

J%R

κ 0

0 1
m

 !
q

p

 !

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

∂XHðXÞ ¼ LX

þ
0

1

' (

|fflffl{zfflffl}

gðXÞ

F

y¼ ð0 1Þ
κ 0

0 1
m

 !
q

p

 !

¼ _x ð4Þ

We can note that the dissipation is expressed through the

positivity of the R term, leading to the balance equation:

dHðXÞ
dt

¼ F _x%ɛ _x2

2.1.2. Infinite dimensional port-Hamiltonian systems

Port Hamiltonian systems have been extended to the case of

distributed parameter systems and more specifically in the case of

power conservative linear systems defined on one dimensional

spatial domain ðzA ½a; b'Þ by using real Hilbert spaces in [13] and in

the case of systemwith dissipation in [26,14]. In this latter case the

associate PDE is of the form:

_X ðz; tÞ ¼ ðJ ðXÞ%RðXÞÞLzXðz; tÞ; ð5Þ

with J ðXÞ a formally skew symmetric differential operator of order

N and Xðz; tÞAHNðða; bÞ;RnÞ, R¼ GSGn a formally skew symmetric

differential operator of degree less or equal to N, S and Lz two

coercive operators that may depend on z. The total energy of the

system is defined as

HðXÞ ¼ 1
2 Xðz; tÞ

T
LzXðz; tÞ ð6Þ

The definition of infinite dimensional port-Hamiltonian sys-

tems is fundamentally linked to the definition of the port vari-

ables, derived in the power conservative case ðRðXÞ ¼ 0Þ from the

skew symmetry of the operator in the case of open systems, and

fromwhich the Dirac structure is defined. In the case of systems of

the form (5) i.e. with dissipation, the overall differential operator is

not skew symmetric. Yet, a Dirac structure can be associated with

the interconnection structure (that is skew symmetric) defined by

the extended skew symmetric operator J e as follows:

_X ðz; tÞ
f s

 !

¼
J G

%G
n 0

 !

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

J e

LXðz; tÞ
es

 !

ð7Þ

and the closure relation:

es ¼ Sf s

which is equivalent to (5). From a geometrical point of view (5) can

be written as

f

f s

 !

¼J e

e

es

 !

3 f e ¼ J eee

More precisely the Dirac structure can be defined as follows.

Definition 1. Let us consider that eeAEe and f eAF e with values at

the boundary e∂AE∂ ¼R
nN and f ∂AF ∂ ¼R

nN where Ee and F e are

the real Hilbert spaces. A Dirac structure D on the bond space

B¼ E ( E∂ ( F ( F ∂ is a subspace of B which is maximally

isotropic with respect to the canonical symmetrical pairing (with

b; ~bAB)

〈b; ~b〉þ ¼ 〈ðee; ~f eÞ〉þ〈ð~ee; f eÞ〉%〈ð ~e∂; f ∂Þ〉%〈ðe∂; ~f ∂Þ〉

i.e.

D? ¼D

A constructive definition of the boundary port variables in the

case of operators of the form (N¼1):

J ¼ P1
∂

∂z
þP0 and G¼ G1

∂

∂z
þG0; Pi;GiAR

n



with P0 ¼ %PT
0 ; P1 ¼ PT

1 can be found in [26,11] and is recalled in

Definition 2.

Definition 2. Let r be the rank of ~P1 ¼ ðP1
G1

%GT
1

0 Þ and M be an n( r

matrix, whose columns are linearly independent and span the

range of ~P1. Let us define Q ¼MTP1M and MQ ¼ ðMTMÞ%1MT (note

that if P1 is full rank M¼ I).

The boundary port variables associated with the differential

operator J e are the vectors e∂; f ∂AR
n, defined by

f ∂
e∂

 !

¼ Rext

MQeeðbÞ
MQeeðaÞ

 !

; ð8Þ

where Rext is defined by

Rext ¼
1
ffiffiffi

2
p

Q %Q

I I

' (

ð9Þ

Remark 1. In one space dimension, functions belonging to

H1ðða; bÞ;RnÞ are necessarily continuous, thus using pointwise

values at the boundary, such as ee(a) and ee(b) in (8), definitely

makes sense.

In higher space dimensions though, the trace operator must be

used to define variables at the boundary of the spatial domain.

Then, it is possible to derive the Dirac structure associated with (7).

Theorem 1 (Villegas et al. [26]). Let H1ðða; bÞ;RnÞ denote the Sobo-

lev space of weakly differentiable functions on the interval ða; bÞ. The
subspace DJ e

defined as

DJ e
¼

f e
f ∂
ee

e∂

0

B
B
B
B
@

1

C
C
C
C
A

jeeAH1ðða; bÞ;RnÞ ( H1ðða; bÞ;RnÞ;

8

>>>><

>>>>:

f e ¼J eee;
f ∂
e∂

 !

¼ Rext

MQeeðbÞ
MQeeðaÞ

 !)

ð10Þ

is a Dirac structure.

The definition of a port-Hamiltonian system derives directly from

the definition of Dirac structure.

Definition 3. An infinite-dimensional port-Hamiltonian system

with dissipation is defined by

ð _x; f s; f ∂; δxHðxÞ; es; e∂ÞADJ e

where es¼Sfs with S40 and δxHðxÞ the variational derivative of

HðxÞ.

Remark 2. If P1 is full rank and G1 ¼ 0 then

M¼
In

0

' (

and MQ ¼ ðIn 0Þ

2.2. Diffusive systems

Some damping models involve fractional derivatives with

respect to the time variable: these causal linear operators can be

defined in many ways, and we first give a recap of the definitions

in the time domain, first of fractional integrals of order β, then of

fractional derivatives of order α, see e.g. [18].

2.2.1. Fractional integrals and derivatives

Let βAð0;1Þ, and set1 hβðtÞ≔ð1=ΓðβÞÞtβ%1 for t40 only; then,

hβAL1locðRþ Þ. For any T40, let uAL2ð0; TÞ, and define Iβu≔hβ⋆u or,

more explicitly:

IβuðtÞ ¼
Z t

0

1

ΓðβÞ τ
β%1 uðt%τÞ dτ:

This is the Riemann–Liouville fractional integral of order βAð0;1Þ
of u: it is causal, and belongs to L2ð0; TÞ also. In terms of causal

Laplace transform, HβðsÞ ¼ s%β in ReðsÞ40; hence, the interpreta-

tion of the fractional integral is a causal low-pass filter, with a gain

of %6β dB per octave.

The fractional derivative is the inverse of the fractional integral,

but some technicalities are to be found in this case. Let αA ð0;1Þ,
and for any T40, let uAH1ð0; TÞ (that is uAL2ð0; TÞ, u has a weak

derivative say _u which does belong to L2ð0; TÞ), and define

Dαu¼ I1%αDu≔h1%α⋆ _u or, more explicitly:

DαuðtÞ ¼
Z t

0

1

Γð1%αÞ τ
%α _uðt%τÞ dτ:

This is the fractional derivative of order αAð0;1Þ of u: it is causal,

and belongs to L2ð0; TÞ. In terms of the causal Laplace transform,
~HαðsÞ ¼ sþα in ReðsÞ40; hence, the interpretation of the fractional

derivative is a causal high-pass filter, with a gain of þ6α dB per

octave.

In the next sections, we shall make a link between these

fractional operators, and ordinary differential equations (ODEs),

or just convolution by families of decaying exponentials: begin-

ning with an easy numerical identity, we are able to derive

functional identities for the kernel hβ and its Laplace transform

Hβ , in the time-domain and the frequency-domain, respectively;

these are being used to define input–output representations, and

even state-space realizations which will be of great help in the

sequel; part of this presentation is borrowed from [19].

2.2.2. An elementary approach

Consider the numerical identity, valid for δ41

Z 1

0

dx

1þxδ
¼

π

δ

sin
π

δ

8 9 :

Letting sAR
þ
n

and substituting x¼ ðξ=sÞ1=δ in the above numerical

identity, we get

Z 1

0

sin
π

δ

8 9

π

1

ξ1%1=δ

1

sþξ
dξ¼ 1

s1%1=δ

Finally, performing an analytic continuation from R
þn to C\R% for

both sides of the above identity in the complex variable s, and

letting β≔1%1=δA ð0;1Þ, we get the functional identity:

Hβ : C\R
%
-C

s↦

Z 1

0
μβðξÞ

1

sþξ
dξ¼ 1

sβ
; ð11Þ

with density μβðξÞ ¼ ð sin ðβπÞ=πÞξ%β .

Applying an inverse Laplace transform to both sides gives

hβ : R
þ
-R

t↦

Z 1

0
μβðξÞe% ξt dξ¼ 1

ΓðβÞ t
β%1: ð12Þ

2.2.3. Input–output representations

Let u and y≔Iβu be the input and output of the causal fractional

integral of order β. Using the integral representations above,1
ΓðβÞ is a function of β.



together with Fubini's theorem, we get

yðtÞ ¼
Z 1

0
μβðξÞ½eξ⋆u'ðtÞ dξ;

with eξðtÞ≔e% ξt and ½eξ⋆u'ðtÞ ¼
R t
0 e

% ξðt% τÞuðτÞ dτ.
Now for fractional derivative of order αAð0;1Þ, we have ~y ¼Dαu¼

D½I1%αu', and a careful computation shows that

~yðtÞ ¼
Z 1

0
μ1%αðξÞ½u%ξeξ⋆u'ðtÞ dξ:

2.2.4. State space representation

In both input–output representations above, introducing a

state, say φðξ; -Þ which realizes the classical convolution φðξ; -Þ≔
½eξ⋆u'ðtÞ leads to the following diffusive realizations, in the sense of

systems theory:

∂tφðξ; tÞ ¼ %ξφðξ; tÞþuðtÞ; φðξ;0Þ ¼ 0; ð13Þ

yðtÞ ¼
Z 1

0
μβðξÞφðξ; tÞ dξ; ð14Þ

and

∂t ~φðξ; tÞ ¼ %ξ ~φðξ; tÞþuðtÞ; ~φðξ;0Þ ¼ 0; ð15Þ

~yðtÞ ¼
Z 1

0
μ1%αðξÞ½uðtÞ%ξ ~φðξ; tÞ' dξ: ð16Þ

These are first and extended diffusive realizations, respectively. The

slight difference between (13)–(14) and (15)–(16), marked by the ~

notation, lies in the underlying functional spaces in which these

equations make sense: φ belongs toHβ≔fφ s:t:
R1
0 μβðξÞjφj2 dξo1g,

whereas ~φ belongs to ~Hα≔f ~φ s:t:
R1
0 μ1%α ðξÞj ~φj2ξ dξo1g, see

e.g. [8, Chapter 2], or [22].

3. A toy model

In this section, we first consider a classical mechanical oscilla-

tor with fluid damping in Section 3.1, then we use the velocity as

input of two different types of damping models: a low-pass

diffusive subsystem (such as a discretized fractional integral) in

Section 3.2, or a high-pass diffusive subsystem (such as a dis-

cretized fractional derivative) in Section 3.3.

3.1. Mass spring system with damping

We start with the port-Hamiltonian formulation of the single

finite dimensional harmonic oscillator. The dynamic equation is

usually written in the form:

m €xþɛ _xþκx¼ 0 ð17Þ

where xðtÞAR and m; ɛ; κ are the positive constants. By using as

state variables the energy variables (i.e. the position and the

momentum) and defining the Hamiltonian H0 as the total energy

of the system, i.e.

X≔
q¼ x;

p¼m _x

" #

and H0ðXÞ ¼
1

2m
p2þ 1

2
κx2;

it is possible to rewrite (17) in the form of a port-Hamiltonian

system:

d

dt
X ¼

0 1

%1 %ɛ

= >

∂XH0ðXÞ ¼ ðJ%RɛÞ∂XH0ðXÞ;

where

∂XH0ðXÞ ¼
κx¼ κx

1
m p¼ _x ¼ v

" #

and

J ¼
0 1

%1 0

= >

and Rɛ ¼
0 0

0 ɛ

= >

J is full rank n¼2 and skew-symmetric, whereas Rɛ is symmetric

positive ðɛ40Þ, with rank equal to 1, thus not positive definite.

3.2. Coupling with a low-pass diffusive system

The damping model is now given by the coupling with another

dynamical system, the input of which is the velocity v≔ _x, and the

output of which is y, a positive linear combination of first-order

low-pass subsystems, as follows:

m €xþyþκx¼ 0 with y¼ ∑
K

k ¼ 1

μkφk

where _φk ¼ %ξkφkþv, for 1rkrK .

Hence, with HΦ≔
1
2∑

K
k ¼ 1μkφ

2
k , and ∂φk

HΦ ¼ μkφk, the total sys-

tem can be described by an extended state X ¼ ðx; p;ΦÞ and a total

Hamiltonian H≔H0þHΦ

d

dt
X ¼

0 1 0

%1 0 %1
T01%diag ξk

μk

8 9

" #

∂XHðXÞ ¼ ðJ%RÞ∂XHðXÞ:

In this case, matrices of size (2þK)( (2þK) are given by

J ¼
0 1 0

%1 0 %1
T010'

and R¼

0 0 0

0 0 0

0 0 diag ξk
μk

8 9

2

6
6
4

3

7
7
5
:

2

6
6
4

It can easily be checked that J is skew-symmetric with rank 2 only,

and R is symmetric positive ðξk40; μk40Þ, but not positive

definite (its rank is K); its structure is simply diagonal.

Remark 3. Note that the relation between v and y, with transfer

function HK ðsÞ ¼∑K
k ¼ 1μk1=ðsþξkÞ, comes from a possible discreti-

zation of a diffusive system, the general structure of which would

be given by the following transfer function, namely

GðsÞ ¼
Z 1

0
μβðξÞ

1

sþξ
dξ:

As a particular and noteworthy case, if μβðξÞ ¼ ð sin ðβπÞ=πÞξ%β , then

GβðsÞ ¼ 1=sβ is recovered, which is nothing but the fractional

integral of order βAð0;1Þ, a low-pass filter.

3.3. Coupling with a high-pass diffusive system

The damping model is now given by the coupling with another

dynamical system, the input of which is the velocity v≔ _x, and the

output of which is ~y, a positive linear combination of first-order

high-pass subsystems, with a feed-through term, d≔∑L
l ¼ 1νl, as

follows:

m €xþ ~yþκx¼ 0 with ~y ¼ ∑
L

l ¼ 1

νl _~φ l

where _~φ l ¼ %ξl ~φ lþv, for 1r lrL.

Hence, with H ~Φ≔
1
2∑

L
l ¼ 1νlξl ~φ

2
l , and ∂ ~φ l

H ~Φ ¼ νlξl ~φl, the total

system can be described by an extended state X ¼ ðx; p; ~ΦÞ and a

total Hamiltonian H≔H0þH ~Φ

d

dt
X ¼

0 1 0

%1 %d 1
T01%diag 1

νl

8 9

" #

∂XHðXÞ ¼ ðJ%RÞ∂XHðXÞ:



In this case, matrices of size (2þL)( (2þL) are given by

J ¼
0 1 0

%1 0 0

0 0 0

2

6
4

3

7
5 and R¼

0 0 0

0 ∑L
l ¼ 1νl %1

T0%1diag 1
νl

8 9

" #

It can easily be checked that J is skew-symmetric with rank 2 only,

and R is symmetric positive ðξl40; νl40Þ, but not positive definite

(its rank is at most L); its structure is not that simple, but a block

computation shows that XTRX ¼∑L
l ¼ 1ð

ffiffiffiffi
νl

p
p%ð1= ffiffiffiffi

νl
p Þ ~φ lÞ2Z0.

Remark 4. Note that the relation between v and ~y, with transfer

function ~GL ðsÞ ¼∑L
k ¼ 1νls=ðsþξlÞ, comes from a possible discretiza-

tion of a diffusive system, the general structure of which would be

given by the following transfer function, namely

~GðsÞ ¼
Z 1

0
νðξÞ s

sþξ
dξ:

As a particular and noteworthy case, if ναðξÞ ¼ ð sin ðαπÞ=πÞξα%1,

then GαðsÞ ¼ sα is recovered, which is nothing but the fractional

derivative of order αAð0;1Þ, a high-pass filter.

4. A Hamiltonian formulation for the Webster–Lokshin model

Let now consider the Webster–Lokshin (cf. [24,9]) equation in

PHS format. It is given in the usual PDE form2:

∂2t wþðɛz∂1=2t þηz∂
%1=2
t Þ∂tw% 1

r2z
∂zðr2z ∂zwÞ ¼ 0; ð18Þ

where

w¼wðt; zÞ

here coefficient ɛz40 is conversely proportional to the radius rz,

and the proportionality constants involved are linked to the square

roots of lv and lh that are the characteristic lengths of viscous and

thermal effects, respectively [24]. Also coefficient ηz40 appears in

higher order developments, in an asymptotic analysis procedure

[12].

Using the diffusive representation of Section 2.2, Eq. (18) can be

written as

∂2t wþðɛz ~yþηzyÞ%
1

r2z
∂zðr2z ∂zwÞ ¼ 0: ð19Þ

With, for the fractional integral

y¼
Z 1

0
μξφ dξ; φ¼ φðt; z; ξÞ

where

∂tφ¼ %ξφþ∂tw;

and, for the fractional derivative

~y ¼
Z 1

0
νðξÞ∂t ~φ dξ¼

Z 1

0
ð%νðξÞξ ~φþνðξÞ∂twÞ dξ; ð20Þ

with

∂t ~φ ¼ %ξ ~φþ∂tw; ~φ ¼ ~φðt; z; ξÞ

We choose as state variables the energy variables:

x1 ¼ ∂zwðt; zÞ; x2 ¼ r2z ∂twðt; zÞ;
x3 ¼ φðt; z; ξÞ; x4 ¼ ~φðt; z; ξÞ;

with

0 x1; x2AL2ðða; bÞ;RÞ,
0 x3AL2ðða; bÞ;HμÞ, with functional space Hμ defined by

Hμ :
R1
0 μðξÞx23ðξ; -Þ dξo1,

0 x4AL2ðða; bÞ; ~H νÞ, with functional space ~Hν defined by

~Hν :
R1
0 ξνðξÞx24ðξ; -Þ dξo1.

The Hamiltonian function Hðx1; x2; x3; x4Þ can then be expressed as

H¼ 1

2

Z b

a

r2zx
2
1þ

1

r2z
x22þr2z ηz

Z 1

0
μx23 dξþr2z ɛz

Z 1

0
ν ξx24 dξ

' (

dz

In order to define the co-energy variables, we need to define the

variational derivative of the Hamiltonian.

Definition 4 (Variational derivative of smooth multiscale function).

Consider a functional of x¼ ½x1ðzÞ; x1ðz; ξÞ'T :

H½x' ¼H½x1ðzÞ; x2ðz; ξÞ' ¼
Z b

a

H1ðx1ðzÞÞþ
Z þ1

0
H2ðx2ðz; ξÞÞ dξ

' (

dz

ð21Þ

where H1 and H2 are smooth functions. The multiscale variational

derivative of the functionalH, denoted by δH=δx or δxH is defined as

δH

δx
¼

δH
δx1
δH
δx2

0

@

1

A

such that

H½xþεδx' ¼H½x'þε

Z b

a

δH

δx1
δx1þ

Z þ1

0

δH

δx2
δx2 dξ

' (

dzþOðε2Þ

for every εAR and vector of smooth real functions δxðzÞ such that

xþε δx satisfies the same boundary conditions as x.

In the case of the Webster–Lokshin model the co-energy

variables are then defined by

e1 ¼ δx1H¼ r2z ∂zw; e2 ¼ δx2H¼ ∂tw;

e3 ¼ δx3H¼ r2z ηzμξφ; e4 ¼ δx4H¼ r2z ɛzνξξ ~φ:

Eq. (19) is then “formally” equivalent to

_x1
_x2
_x3
_x4

0

B
B
B
@

1

C
C
C
A

¼
A11 A12

A21 A22

 !
r2z ∂zw

∂tw

r2z ηzμξφ

r2z ɛzνξξ ~φ

0

B
B
B
B
@

1

C
C
C
C
A

ð22Þ

where

A11 ¼
0 ∂z

∂z %
R1
0 r2z ɛzνξ - dξ

 !

A12 ¼
0 0

%
R1
0 -dξ

R1
0 -dξ

 !

A21 ¼
0 1

0 1

' (

A22 ¼
% ξ

r2z ηzμξ
0

0 % 1
r2z ɛzνξ

0

@

1

A

8
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>>>>>>>>>>>>>>>>>:

Remark 5. In Eq. (22), we split the integral of Eq. (20) into two

terms that are not well defined, in fact one must understand the

term
R1
0 ðξ ~φðt; z; ξÞ%∂twðt; zÞÞνðξÞ dξ as non-separable. Indeed, one

could be tempted to split this term into
Z 1

0
ξ νξ ~φðt; z; ξÞ dξ

' (

%
Z 1

0
νξ dξ

' (

∂twðt; zÞ

i.e. of the classical form yðt; zÞ ¼ C ~φþD ∂tw; but at least for the

fractional operators for which νξpξ%α, D¼ %
R1
0 νξdξ¼ %1!

2 Indices z and ξ mean that the parameters depend on the spatial coordinate z

or the coordinate ξ, respectively.



From a geometrical point of view, the dynamical system (22)

can be then written in the form:

f ¼ ðJ %RÞe ð23Þ

with eAE ¼H1ð½a; b';RÞ ( H1jð½a; b';RÞ ( L2ð½a; b';HÞ ( L2ð½a; b'; ~HÞ,
f A F ¼ L2ð½a; b';RÞ ( L2ð½a; b';RÞ ( L2ð½a; b';HÞ ( L2ð½a; b'; ~HÞ and

operators J and R defined as follows:

J ¼
J 11 J 12

%J n

12 0

 !

;

where

J 11 ¼
0 ∂z

∂z 0

 !

; J 12 ¼
0 0

%
R1
0 -dξ 0

 !

J n

12 ¼
0 %1

0 0

' (

and

R¼
R11 R12

R1
12 R22

 !

where

R11 ¼
0 0

0
R1
0 r2z ɛzνðξÞ - dξ

 !

; R12 ¼
0 0

0 %
R1
0 -dξ

 !

Rn

12 ¼
0 0

0 %1

' (

; R22 ¼
ξ

r2z ηzμξ
0

0 1
r2z ɛzνξ

0

@

1

A

Remark 5 applies to the second line of operator R.

The bond space B defined as B¼ E ( F is equipped with the

natural power product:

〈ðe1; e2; e3; e4Þ; ðf 1; f 2; f 3; f 4Þ〉

¼
Z b

a

e1f 1þe2f 2þ
Z 1

0
ðe3f 3þe4f 4Þ dξ

' (

dz: ð24Þ

Lemma 1. J is formally skew-symmetric and R is symmetric positive

i.e.

J ¼ %J n and R¼Rn; RZ0

Proof. Let us first consider the skew-symmetry of J

〈e′;J e〉¼ e′

1 e′

2 e′

3 e′

4

8 9

;
J 11 J 12

%J 1
12 0

 !
e1

e2

e3

e4

0

B
B
B
@

1

C
C
C
A

* +

¼
Z b

a
e′

1∂ze2þe′

2∂ze1%e′

2

Z 1

0
e3 dξþ

Z 1

0
e′

3e2 dξ

' (

dz

¼
Z b

a
%∂ze

′

1e2%∂ze
′

2e1þ
Z 1

0
e′

3e2 dξ%e′

2

Z 1

0
e3 dξ

' (

dz

¼ 〈%J e′; e〉:

The adjoint operator of J is equal to %J and then J is formally

skew-symmetric. In a similar way, one can prove that R is

symmetric i.e.

〈e′;Re〉¼ e′

1 e′

2 e′

3 e′

4

8 9

;
R11 R12

Rn

12 R22

 !
e1

e2

e3

e4

0

B
B
B
@

1

C
C
C
A

* +

¼
Z b

a

e′

2

Z

0
þ1r2z ɛzνe2 dξ%e′

2

Z 1

0
e4 dξ

'

þ
Z þ1

0
e′

3

ξe3
r2z ηzμξ

 

%e′

4e2þe′

4

1

r2z ɛzνξ
e4 dξ

((

dz¼ 〈Re′; e〉:

Moreover, the positivity of R can be proved as follows:

〈e;Re〉¼
Z b

a

Z þ1

0
e2r

2
z ɛzνξe2%e2e4þe3

ξe3
r2z ηzμξ

%e4e2þe4
1

r2z ɛzνξ
e4

 !

dξ dz

¼
Z b

a

Z þ1

0

ξ

r2z ηzμξ
e23þ rz

ffiffiffiffiffiffiffi
ɛzν

p
e2%

1

rz
ffiffiffiffiffiffiffi
ɛzν

p e4

' (2

dξ

 !

dzZ0:

Of course, R is not even positive definite, thus never coercive. □

System (23) can be written in the form of an extended system

with closure equation related to the dissipation by using the

extended operator J e with ð ff sÞ ¼J eð eesÞ with es ¼ Sf s, where

J e ¼

0 ∂z 0 0 0 0 0

∂z 0 %
R1
0 -dξ 0 %

R1
0 -dξ 0 0

0 1 0 0 0 %1 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 %1 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

;

and

S¼

r2z ɛzνξ 0 1

0 ξ

r2z ηzμξ
0

1 0 1
r2z ɛzνξ

0

B
B
B
@

1

C
C
C
A
;

with esAEs ¼H1ð½a; b';RÞ ( L2ð½a; b';HÞ ( L2ð½a; b'; ~HÞ, f sAF s ¼
L2ð½a;b';RÞ ( L2ð½a; b';HÞ ( L2ð½a; b'; ~HÞ. One can check that J e is

formally skew-symmetric and S symmetric positive i.e.

J n

e ¼ %J e and S¼ SnZ0

We now consider systems with non-zero boundary flow. One

can naturally extend the effort and the flow spaces to include the

boundary, by defining

E ¼ Ee ( R
2 ¼ E ( Es ( R

2

F ¼F e ( R
2 ¼F ( F s ( R

2

We define a symmetric pairing from the power product by

〈ðee; e∂; f e; f ∂Þ; ð ~ee; ~e∂; ~f e; ~f ∂Þ〉þ ¼ 〈ðee; ~f eÞ〉þ〈ð ~ee; f eÞ〉

%〈ð ~e∂; f ∂Þ〉%〈ðe∂; ~f ∂Þ〉 ð25Þ

with ðee; e∂; f e; f ∂Þ and ð ~ee; ~e∂; ~f e; ~f ∂ÞAB¼ E ( F .

In order to define a Dirac structure we need to define appro-

priate boundary port variables with respect to the considered

differential operator and symmetric pairing. In [26] a parametriza-

tion of boundary port variables is given in the case of non-full rank

linear differential operators. This parametrization can be adapted

to our case study as follows.

Definition 5. Considering the following parametrization of J e:

J e ¼ P1∂zþP0

with

P1 ¼
Σ2 02;5

05;2 05;5

 !

;



P0 ¼

0 0 0 0 0 0 0

0 0 %
R1
0 -dξ 0 %

R1
0 -dξ 0 0

0 1 0 0 0 %1 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 %1 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

with Σ2 ¼ ð01 1
0Þ, the boundary port variables associated with the

differential operator J e are the vectors f ∂; e∂AR
2 given by

f ∂
e∂

 !

¼ 1
ffiffiffi

2
p

Σ2 %Σ2

I2 I2

 !
I2 02;5 02;2 02;5

02;2 02;5 I2 02;5

 !

eeðbÞ
eeðaÞ

 !

The definition of the boundary port variables gives rise to the

definition of the associated Dirac structure.

Theorem 2. The subspace DJ e
of B defined as

DJ e
¼

f e
f ∂
ee

e∂

0

B
B
B
B
@

1

C
C
C
C
A

jf e ¼ J ee and

8

>>>><

>>>>:

f ∂
e∂

 !

¼ 1
ffiffiffi

2
p

Σ2 02;5 %Σ2 02;5

I2 02;5 I2 02;5

 !

eeðbÞ
eeðaÞ

 !)

is a Dirac structure with respect to the product (25).

Proof. We used the parametrization proposed in [26] to define

some boundary port variables such that the symmetric pairing

(25) is non-degenerate and DJ e
is a Dirac structure, i.e.

DJ e
¼D?

J e

Such parametrization arises from the integration by part of the

skew differential operator, the projection of the image space and

the definition of the inner product. □

5. Perspectives

In order to develop this research theme in the near future, the

following tracks could be investigated, either on the physical side,

the theoretical side, or even the numerical side:

1. Work out the derivation of the physical model itself: see e.g.

[3,24] and also reference works on thermodynamics in a port

Hamiltonian framework, to understand if a better formulation

could be possible: in this case, a better formulation would

mean closer to elementary physical principles.

2. Try to develop an asymptotic analysis approach to formulate the

model of [24], and see to what extent some port-Hamiltonian

setting can be compatible with this asymptotic analysis

(in which case the small parameter would be the diffusive

coefficient η or ɛ in the constant case)?

3. Possibly examine other examples of physical models with frac-

tional derivatives, to see to what extent they can be recast in the

framework developed in this paper: coupling between a con-

servative system and a diffusive system. One model of interest

could be the Biot and Johnson–Koplik–Dashen (JKD) models for

waves in porous media, see e.g. [2] and references therein.

4. Investigate the numerics: a first approach has been proposed in

[6] and fully detailed in [8, Chapter 3], but another way of

addressing the numerics could be first to apply a Finite Element

Method (FEM) respecting the geometrical structure of the

Hamiltonian formulation, as in [23], second to use the Finite

Difference Method (FDM) adapted to fractional dynamics, such

as in [4]. Moreover, for the treatment of the time-domain part,

advantage should be taken from so-called symplectic methods

for Hamiltonian systems, first when no dissipation is present,

see e.g. [16], and recently used with dissipation in [10].

5. Analyse the asymptotic stability, see e.g. [26] for the principles,

but a lack of compactness of the resolvent operator prevents

the use of standard techniques; hence, for fractional systems,

special care must be taken, see [20] for a fractional ODE on a

single mode, or even more so for the fractional PDE, as

presented first in [17], and finally in [21].

6. Look carefully at the domains of the operators, in particular

with the fractional derivative, where two parts cannot be

treated separately, as seen in the functional analytic framework

developed in [8, Chapter 2]: this reminds of the so-called non-

separable C& D observation operators developed in some

operator theoretic frameworks. This theoretical point, put

forward in Remark 5, must be tackled seriously.

6. Conclusion

In this paper, we propose a port-Hamiltonian formulation of

systems arising from the coupling of a wave equation with a

diffusion equation related to acoustic phenomena. The considered

diffusion equation contains a fractional derivative in time and

physical coefficients variable in space. First we consider the finite

dimensional approximation of the integral and fractional deriva-

tives. It is based on a diffusive representation of integral and

fractional derivatives. In a second instance, we consider the

Webster–Lokshin equation that is made up by the coupling of

the wave equation and the aforementioned diffusion term. From

the definition of the energy variables, Hamiltonian function and

power conjugate flow and effort vectors, we propose the definition

of some appropriate boundary port variables in order to define a

Dirac structure. This Dirac structure allows to connect the internal

energetic behavior of the system with the power flow at the

boundary. This first work on the geometrical formulation of such a

system will open to the use of functional analysis tools that have

been previously derived in the context of differential systems with

dissipation in [30]. Nevertheless a particular care will have to be

taken on the characterization of functional spaces, particularly in

the case of the diffusion function for which the domain is not

separable, as already taken care of in [8].
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