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1. INTRODUCTION

Sponges (phylum Porifera) are very ancient marine metazoans: the first fossil records from 

sponges date from the ediacarian period (about 600 million years ago) [1]. Some studies [2,3] seem 

to attribute to sponges the status of early metazoan ancestors, that is to say that sponges appeared 

before 600 million years. These organisms show primitive attributes: only 2 cell layers, absence of 

digestive or nervous system, regenerating and burgeoning [4]. They are essentially filter feeders, 

and they live all their adult life as sessile organisms fixed to a benthic substrate. Despite this relative 

simplicity, sponges are important marine actors for several hundreds of million years, and nowadays 

the phylum Porifera has about 9000 living species with a world-wide distribution, from infra-littoral 

zones to abyssal plains [5]. 

Moreover, the success of sponges depends on the accumulation of toxic or repellent compounds [6] 

(also called secondary metabolites). This chemical shield repulse predators and protect the sponges 

from invasion by microorganisms and biofouling [7].

It seems that the chemical properties of sponges were well known by our ancestors: already from 

late Greek antiquity, sponges were used by men for his personal hygiene (Spongia officinalis),  pain 

relief and treatment of diseases [8,9]. Nowadays, with the development of pharmacotherapies, more 

and more scientists attempt to isolate active compounds from marine organisms [10]. And it  is 

assessed that sponges have the most valuable potential for development of new pharmaceuticals [7].

38 species of sponges belong to the genus  Aplysina Nardo,  1834 (Class Demospongiae, 

Order Verongida, Family Aplysinidae).  Aplysina are great producers of a highly toxic family of 

isoxazolic alkaloids, that are derived from amino-acid tyrosine [11]. This genus is also characterized 

by a typical  bright yellow pigment called uranidine which warns predators of the toxic content of 

Aplysina sponges [12]. The genus  Aplysina is more present at tropical latitudes, but 2 identified 

species are living in the Mediterranean sea.

The first Mediterranean  Aplysina was described by Schmidt in 1862, and was named  aerophoba 

because of its color change (from bright yellow to dark violet) when exposed to air. A. aerophoba 

can be found on all well-exposed rocky substrate in shallow waters (0 to 30 m deep) from the 

Mediterranean sea to the near Atlantic: around Canary Islands [13] .

In 1959, Vacelet  [14] described another Mediterranean Aplysina naming it  cavernicola because of 

its preferred habitat: contrary to the photophile  A. aerophoba,  Aplysina cavernicola is a sciaphile 

species that can be found in semi-obscure entry of submerged caves, or on deeper substrates (40 to 

70 m deep).

External and internal morphology is almost identical in the two species. So, according to a lack of 

traditional  taxonomic  character  (spicule  comparison),  taxonomists  have  long debated if  these  2 
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Aplysina species, showing so different ecological requirements but identical morphology, should be 

regarded as a single or distinct species [15]. Now, molecular phylogeny has brought response to this 

question: A. aerophoba and A. cavernicola are lately distinct species [16,17]. 

These 2 species can contain high amounts of brominated alkaloids derived from tyrosine (up to 13% 

dry weight) [18]. These alkaloids are found in a particular sponge cell type named “spherulous cell” 

[18,19]. These large vacuolar cells stock Bromotyrosine Alkaloids (BA) that are transformed into 

simple but more toxic forms when a wound of plasmatic membrane occurs [20] (Fig.1). 

Fig.1.  Scheme of Mediterranean Aplysina  chemical defense. Bromotyrosine Alkaloids (BA) are 

located in spherulous cells. A lesion of these cells, causes enzymatic bio-conversion of BA into 

aeroplysinin-1 [20].  Then with sea-water  alkalinity,  aeroplysinin-1 gives  dibromoverongiaquinol 

and  semi-quinone  free  radicals.  Both  aeroplysinin-1  and  dibromoverongiaquinol  have  strong 

antibacterial  and cytotoxic  activity [20-23].  This  toxic  release  in  seawater  repels  predators  and 

protects sponge from the invasion of microorganisms [21,23,24]. 

(* isofistularin-3 is only present in A. aerophoba. ** aerothionin is only present in A. cavernicola).

Some  taxonomist  called  Aplysina sponges  « bacteriosponge »  because  of  their  dense 

community of symbiotic bacteria, that can amount up to 40 % of their dry weight [25]. These so-

called  endobionts  [26]  can  help  their  hosts  in  nutrient  uptake,  stabilization  of  skeleton,  and 

protection against UV radiation [21,25,27]. Despite the fact that Bromotyrosine Alkaloids (BA) are 
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concentrated  in  sponge  cells  (Fig.1),  endobionts  are  suspected  to  play  a  critical  role  in  BA 

production [20,28].

Aplysina aerophoba and  Aplysina cavernicola are two target-species in the ANR program 

ECIMAR [29], a program developed in marine chemical ecology to evaluate the potentialities of 

marine biodiversity in terms of chemodiversity. The aim of this program is to better understand the 

processes controlling the chemical diversity. As part of this program, specific goals of this study are 

fourfold:

 Finalizing the methodology to quantify the major secondary metabolites produced by the 

two Mediterranean Aplysina species.

 Identifying  chemotaxonomic  markers  in  order  to  clearly  discriminate  the  two  sibling 

species.

 Assessing whether  variation,  in  quality and quantity,  of secondary metabolism occurs at 

different biogeographic scales. 

 Investigating the role of microbial symbionts in BA biosynthesis.

2. MATERIALS AND METHODS

2.1. Sample collection and storage

Specimens of Aplysina sponges were collected by scuba divers (Pérez T., Becerro M., Banaigs B.) 

at different locations (see Table 1). Samples were then freeze-dried and stored in the dark at – 25°C. 

Samples of A. aerophoba were “nested sampled” (see Annexes) in Tenerife and Cap Creus.

Species Region Samples Date Divers

Aplysina 
aerophoba

Tenerife (Canary Islands)* 82 03/2003 M. Becerro (CEAB)
Cap Creus (Spain)* 70 03/2003 M. Becerro (CEAB)

Lebanon 1 08/2007 T. Pérez (DIMAR)
Marseille (France) 1 03/2006 B. Banaigs (LCBE)
Banyuls (France)** 15 03/2008 B. Banaigs (LCBE)

Aplysina 
cavernicola

Costa  brava (Spain) 3 09/2003 M. Becerro (CEAB)
Marseille (France) 30 2007-2008 T. Pérez (DIMAR)

Ceuta  (Spain) 3 07/2007 T. Pérez (DIMAR)
Table 1. Sponge sampling thanks to divers from “Centre d' Estudis Avançats de Blanes” (CEAB), 

“Laboratoire de Chimie des Biomolécules et de l'Environnement EA 4215” (LCBE), and “Diversité, 

évolution et écologie fonctionelle marine UMR 6540” (DIMAR). 

* See Annexes for more information on “nested sampling sites”. ** Fresh A. aerophoba

Fresh A. aerophoba were taken at the Oullestrell's cap (near Banyuls s/ mer) by B. Banaigs. These 

fresh sponges were kept alive in a water tank and quickly brought to the “Observatoire 

Océanologique de Banyuls s/mer” (OOB). It is important to strictly avoid any contact with air 
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during this operation, because tissues of A. aerophoba are very sensitive to air oxydation. Then, the 

sponges were transplanted in OOB's water tanks which are supplied with non-filtered sea water.

2.2. From a standardized to an optimized protocol for the HPLC analysis and quantification of 

Aplysina's BA

At the beginning of my work, I used the standardized ECIMAR protocol for the extraction and 

analysis of the samples (available at [30]). This protocol is well adapted for the preliminary analysis 

and the comparisons of marine organism chemical extracts. But in our case, this protocol is time-

consuming and needs too much material (2 g of dry sponge). So, with the little material we have at 

our disposal, it was crucial to develop an optimized protocol for the identification and quantification 

of Aplysina's BA. All analyses, comparisons, and results are based on this optimized protocol.

2.2.1. Chemical procedures

Freeze-dried sponge samples were ground to powder. Approximatively 50 mg of each freeze-dried 

sample was weighted,  extracted 3 times with 1.5 mL of  HPLC-grade  methanol  (MeOH) in  an 

ultrasonic tank, and passed through a 20 μm PolyTetraFluoriEthylene (PTFE) filter. The 4.5 mL 

resultant Crude Extract (CE) was then ajusted to 5 mL with MeOH. An aliquot of 1.5 mL was 

passed through a 13 mm, 0.2 μm PTFE syringe-filter before HPLC injection.

2.2.2. High Pressure Liquid Chromatography (HPLC) analysis

The analyses were performed with a Waters Alliance 2695 separation module and a Waters 996 

photodiode array detector. The HPLC conditions consisted in:

Column: Phenomenex Synergy 

(250x3 mm/4 μm ∅)

Flow rate:  0.4 mL.min-1

Fixed temperature: 30°C

Injection volume: 20  μL

Eluant A: MilliQ water with 1‰ 

TriFluoroAcetic acid (TFA)

Eluant B: HPLC-grade Acetonitrile

UV detection: λ = 245 nm

2.2.3. Secondary metabolites identification

The major compounds observed in the HPLC chromatograms have already been characterized in 

the  laboratory  by  classic  spectrometric  techniques  (LC/MS,  NMR,  UV).  Five  compounds 

(aerophobin-1,  aerophobin-2,  aplysinamisin-1,  aerothionin  and  isofistularin-3)  were  chosen  for 

quantification, as they are representative of the sponge BA content [20]. The identification of these 

compounds was made thanks to their Retention Time (RT) and their UV profiles (Fig.2).
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Fig.  2. Example  of  a  typical  chromatogram of  A.  aerophoba recorded  at  245  nm with  the 

optimized protocol. Each peak on chromatogram represents the absorbance  at λ=245 nm of a single 

compound. Here, BA are identified with their RT and their absorbance profile between 200 and 350 

nm. Peak areas can be measured and related to concentration. It is to be noted, that A. cavernicola 

shows  almost  the  same  chromatographic  pattern  except  that  isofistularin-3  is  replaced  by 

aerothionin (the 2 compounds have, in this chromatographic conditions, very close RT).

2.2.4. HPLC quantification

A Crude Extract (CE) was prepared with 50 g of freeze-dried sponge. Extraction was carried out as 

stated in (2.2.1.), except that MeOH volumes were 100 times higher. So, 500 mL of CE was first 

fractionated by Flash-Chromatography. Then, CE Fractions were manually injected with a syringe 

into a Waters 1525 binary HPLC pump coupled with a Waters 2487 dual λ absorbance detector. 

HPLC conditions consisted in:

Column: Gemini RP-18 (250x10 mm/5 µm ∅) / Flow rate:  3 mL.min-1 / Injection volume: 100 μL

Isocratic conditions: 70% of MeOH, 30% MilliQ water / UV detection: λ = 320 nm

Each BA compound detected was identified and carefully isolated. After evaporation on a rotary 

evaporator, dry pure BA recovered were weighed. Then, a series of dilution on the pure compounds 

coupled to peak area calculation in HPLC (at 245 nm) allowed to trace calibration-curves (Fig. 3). 

Thanks  to  calibration  curves,  BA amount  was  quantified  in  all  HPLC  analyses:  for  each  BA 
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compound,  peak  area  obtained  at  245  nm  was  calculated  and  compared  to  correspondent 

calibration-curve. For more reliable results, the final amount of each compound in the optimized 

protocol was calculated by averaging 2 replicate HPLC injections. The Bromotyrosine Alkaloid 

(BA) amount was expressed as percentage of dry mass of sponge.

2.3. Aplysina aerophoba and its associated cyanobacteria 

2.3.1. Concentration of Chlorophyll A (ChlA): an indication on the density of autotrophic symbionts 

100 mg of freeze-dried A. aerophoba powder was approximately weighed. 5 mL of PestiPur-grade 

Acetone was added and extraction occurred for 12 hours in the dark at +1°C.  Then, 2 mL were 

passed through 0.2  μm PTFE syringe filter before placing it in a quartz cuvette. A Hewlett-Packard 

8452 diode array spectrophotometer was used to measure absorbance at 630, 647, 664 and 750 nm. 

The trichromatic equation of Hemphrey and Jeffrey [31] was used to deduce ChlA concentration:

CChlA(mg.L-1)= 11.85 (Abs664 - Abs750) - 1.54 (Abs647 - Abs750) - 0,08 (Abs630 - Abs750)

Concentration was linked to weight, therefore ChlA was expressed in percentage of dry weight.

2.3.2. Microorganisms extraction

To avoid contamination by other bacteria, it was very important to work under sterile conditions  

(laminar  flow  chamber,  gloves  and  sterile  material). Approximately  100  g  of  fresh,  living 

A. aerophoba was carefully cut with a sterile scalpel in small cubes of about 1 cm3. Then, cubes 

were manually ground in a beaker containing 1 L of sea-water passed through a 0.2 μm Whatman's 

filter. By grinding this way, living symbiotic microorganisms are expelled from the sponge tissues. 

Then, this suspension of living symbionts and sponge tissues was twice-filtered through 100 μm (to 

retain  sponge  tissues)  and  11μm  (to  retain  sponge  cells  [32]).  So,  1L  of   “Endobiont 

Suspension” (ES) with the associated bacteria of A. aerophoba was obtained. 

2.3.3. Fluorescence-Activated Cell Sorting (FACS) – experiments performed at the OOB

FACS is a powerful instrument to analyze mixed populations of single cells [33]. FACS allows 

counting and sorting of these cells according to their fluorescence and size characteristics.

1 mL of ES was analysed by a Becton-Dickinson FACSaria. SYBRgreen-II dye was done [34] to 

visualize the total content of living cells in ES. FACS will also be used to sort cyanobacteria cells 

from A. aerophoba.

2.3.4.  Biliproteins pigment analyses of  associated cyanobacteria – exp. performed at the OOB

The  characteristic  pigments  of  cyanobacteria  have  a  proteic  part  (phycobiliproteins),  and  are 

hydrosoluble [35]. So, to extract them, we ground fresh A. aerophoba in a simple phosphate buffer 

(NaH2PO4; pH = 6.7). Then, this extract was centrifugated at 3000g for 10 minutes. Supernatant was 

transfered in a glass cuvette, which was introduced into a Perkin-Elmer LS55 spectrofluorimeter for 

fluorimetric analyses. 
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2.4. Data analysis and statistical tests

HPLC data were treated with EMPower software. FACS results were treated with BDFACS Diva 

software. According to M. Becerro, statistical analyses based on multivariate methods available in 

the PRIMER software [36] were used to analyze differences in the BA content of our samples. Log-

transformed data were used to calculate the Brain-Curtis similarity and the analysis of similarities 

(ANOSIM). Non-metric multidimensional  scaling (MDS) was also used to analyze our data more 

deeply.  Then,  we  used  SIMPER  procedure  in  the  PRIMER  software  to  quantify  the  relative 

contribution of each BA to dissimilarities. An analysis of variance (ANOVA) was also carried out 

on the average amount of each BA.

3. RESULTS

3.1. Calibration curves (made with HPLC's peak area at 245 nm)

Fig. 3. Calibration curves for each BA. For all curves, R² > 0.99

3.2. Chemical fingerprints: a tool for Aplysina species determination

According  to  molecular  phylogeny, A.  aerophoba  and  A.  cavernicola are  early  distinct  species 

[16,17]. Their identification in the field could be problematic, therefore chemotaxonomic markers 

without  resorting  to  molecular  techniques  could  be  interesting  for  Mediterranean  Aplysina 

identification. Chemical fingerprints obtained from 155 samples of A. aerophoba and 36 samples of 

A. cavernicola are very close (Fig.4): the two species have a complex secondary metabolism, with 

numerous compounds that are present in both. Nevertheless, a more detailed analysis showed that 

there is a notable difference in chemical fingerprints between both species: about 20 minutes after 

HPLC injection, an intense peak occurred in all chromatograms. However, UV spectrum of this 
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peak  differs  according  to  species.  In  fact,  in  all  A.  aerophoba,  this  peak  corresponds  to 

isofistularin-3, when in all A. cavernicola this peak corresponds to aerothionin. These 2 compounds 

are species specific.  So, occurrence of aerothionin or isofistularin-3 is a good chemotaxonomic 

marker for Mediterranean Aplysina identification. 

Fig  4. Comparison  of  chromatograms  showing  the  typical  chemical  fingerprint  from  A. 

aerophoba and A. cavernicola. Aerophobin-1 (1), aerophobin-2 (2), aplysinamisin-1 (3) are found 

in  the  both  species,  whereas  aerothionin  (4)  and  isofistularin-3 (5)  are  specific  to  respectively 

A. cavernicola and A. aerophoba.

3.3. The intra-specific variations of secondary metabolites in A. aerophoba

We  have  quantified  the  four  major  BA:  aerophobin-1,  aerophobin-2,  aplysinamisin-1,  and 

isofistularin-3, in more than 150 samples of A. aerophoba (Table 1). The amount of each of these 

compounds  is  expressed  in  percentage  of  sponge  dry  weight.  We  analyzed  the  variability  of 

chemical  patterns  of  these  samples  as  function  of  their  geographical  origin  with  multivariate 

statistical tests. 

3.3.1.  Variability in secondary metabolism of   A. aerophoba   at different geographical scales  

The 82 samples from Tenerife and the 70 samples from Cap Creus (Table 1) allowed us to compare 

the  amount  of  BA in  geographically  close  or  distant  populations  of  A.  aerophoba.  Data  for 

aerophobin-1,  aerophobin-2,  aplysinamisin-1 and isofistularin-3 were log-transformed for Brain-

Curtis similarity. Then, they were compared between geographical distances (in the declining order: 

Region > Zone > Location > Site; see Annexes) using ANOSIM.  The Global-R reflects differences 

in variability between groups. Results were listed in Table 2:
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ANOSIM using Site groups as samples Test for differences between p-value Global-R

Site within Location Site group 0.001* 17.3 %

Location group 0.204 15.8 %

Site within Zone Site group 0.001* 15 %

Zone group 0.07 18.9 %

Site within Region Site group 0.001* 17.7 %

Region group 0.001* 43.2 %

Table 2.  ANOSIM test, * represents significant difference

So, Bromotyrosine Alkaloid (BA) amount differs significantly between Sites and between Regions 

in A. aerophoba. That is to say that BA amount vary at very small scales (between bays), but also at 

much higher geographical scales: here, between Tenerife and Cap Creus. Moreover, with a Global-

R of 43.2 %, variability between Regions is more important than between Sites.

Then, a MDS analysis was carried out to represent Sites and Regions variability (Fig. 5).  On MDS 

we observe that Sites repartition is more extend in Tenerife than in Cap Creus. So, small-scale 

variability is more important in Tenerife than in Cap Creus.

Fig. 5.  non-metric MDS performed separately for (A) Regions and (B) Sites. MDS generates 

plots in which the distance between points is proportional to their degree of similarity. Averaging 

matrix similarity of samples was made before to better visualize Sites and Regions plots.
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3.3.2. Relative contribution of each BA compound to dissimilarities between Regions

To point out variability in secondary metabolism between  A. aerophoba from Tenerife and Cap 

Creus, we have made a SIMPER procedure (Table 3).

Region
Average 

Dissimilarity

Relative contribution of

aerophobin-1 aerophobin-2 aplysinamisin-1 isofistularin-3
Tenerife

Cap Creus
17.09 % 12.04 % 26.9 % 40.28 % 18.54 %

Table 3. Average dissimilarity between Regions. Relative contribution of each BA compound to 

Region dissimilarities is deduced by performing a SIMPER procedure in PRIMER software.

With this test, we can see, that aplysinamisin-1 is responsible for 40 % of dissimilarities in BA 

content between regions. 

Fig. 6.  ANOVA on each BA and total amount of BA, p-values < 0.05 were counted as significant 

differences in amount of BA between Regions.

Aplysinamisin-1  and aerophobin-1  were  significantly  less  produced  by the  A.  aerophoba from 

Tenerife. Contrary to isofistularin-3 which was less produced by the A. aerophoba from Cap Creus.

Aerophobin-2 do not show significant difference. And surprisingly the average total amount of BA 

between  Cap  Creus  and  Tenerife  is  almost  identical.  So,  some  BA compound  can  vary  with 

location, but global amount of BA seems to be constant in all A. aerophoba sampled. 

10

isofistularin-3

0

0,5

1

1,5

2

2,5

3

%
 o

f 
d

ry
 s

p
o

n
g

e

aerophobin-1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

%
 o

f 
d

ry
 s

p
o

n
g

e

aplysinamisin-1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

%
 o

f 
d

ry
 s

p
o

n
g

e

aerophobin-2

0

0,5

1

1,5

2

2,5

3

3,5

%
 o

f 
d

ry
 s

p
o

n
g

e

Total amount of BA

0

1

2

3

4

5

6

7

8

%
 o

f 
d

ry
 s

p
o

n
g

e

Cap Creus

Tenerife

P = 0.000

P = 0.001

P = 0.045

P = 0.277

P = 0.069

Significant difference



3.4  Role of symbiotic microorganisms in Bromotyrosine Alkaloids (BA) production

3.4.1 Quantification of ChlA amount

A. cavernicola did not show any ChlA in its tissues. It was predictable, because this species lives in 

dark places. On the contrary,  all  A. aerophoba samples had ChlA. This means that,  autotrophic 

symbionts occur in  A. aerophoba, but are absent in  A. cavernicola. Moreover, it seems that ChlA 

amount (as well as autotrophic symbiont density) varies with geographical location and decreases 

with depth (fig. 7). 

Fig.  7.  ChlA amounts  by  A. aerophoba samples  from Cap Creus and Tenerife. ChlA is  of 

autotrophic  origin.  So,  the  ChlA concentration  gives  an  indication  on  density  of  autotrophic 

symbiont.  Here,  ChlA  concentration  logically  decreases  with  depth.  This  decrease  is  more 

pronounced in Cap Creus than in Tenerife. 

3.4.2. Spectrofluorimetric analysis of cyanobacterial pigments

ChlA could  be  found  in  various  autotrophic  organisms.  To  precise  nature  of  the  autotrophic 

symbionts from A. aerophoba, the analysis of characteristical pigments was performed.

The spectrofluorimetric analyses led to the identification of a phycoerythrin with 2 chromophores: 

phycourobilin and phycoerythrobilin (Fig.8A). A phycocyanin characteristical response was also 

recorded (Fig.8B). Phycoerythrins (red) and phycocyanins (blue) are phycobiliproteins: proteins to 

which  chromophores  are  covalently  bound.  The  occurrence  of  these  2  phycobiliproteins  is  a 

characteristic clue for the presence of cyanobacteria. 

However, phycoerythrin is more abundant than phycocyanin, and such occurrence of phycourobilin 

and  phycoerythrobilin  as  main  chromophores  of  phycoerythrin  could  be  regarded  as  a 

characteristical marker for the presence of Synecococcus [37,38]. Synececoccus is a cyanobacterial 

genus abundant in marine planktonic communities. They are also known as symbiotic partners for 

several sponge, especially Aplysina [39].

Nevertheless,  fluorescence  intensity  decreased  rapidly  with  time  (Fig.  8C),  and  a  progressive 

darkening was observed. This darkening is probably due to the air oxydation of the sponge pigment 

uranidin [12].

11

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0 5 10 15 20 25 30

Depth (m)

C
h
lA

 (
 %

 o
f 
s
p
o
n
g
e
 d

ry
 m

a
s
s
) 

Cap Creus Tenerife



Fig.  8.  Fluorescence spectra  of  A. aerophoba pigment content.  A.  Characteristical excitation 

spectrum  of  phycoerythrin.  B. When  excited  at  550  nm,  a  typical  emission  spectrum  for 

phycoerythrin and phycocyanin was recorded. C. The same sample analyzed for fluorescence at 575 

nm at different times after extraction from sponge shows an important decrease in intensity with 

time. After 15 min, the sample has lost 80% of its fluorescence intensity.

3.4.3. FACS results: a tool to count and sort associated micro-organisms

SYBRgreen is an asymmetrical cyanine dye which binds to double-stranded DNA. The resulting 

DNA-dye-complex absorbs blue light (λmax = 488 nm) and emits green light (λmax = 522 nm). It 

was shown [34], that SYBR-II is the most appropriate dye for bacterial enumeration of unfixed and 

fixed seawater samples. 

A. aerophoba contains a very dense and complex community of associated microorganisms. In a 

first  experiment,  we  used  SYBR-II  to  visualize  living  cells  (Fig.9A).  Approximately  1.5x106 

cells/mL were counted in the “Endobiont's Suspension” (ES). This concentration is several times 

higher than normal concentrations of microorganisms found in sea-water.

Without SYBR-II dye, only autotrophic microorganisms are detected due to fluorescence of their 

photosynthetic pigments (Fig.9B). Parameters of size and fluorescence showed that  Synecococcus 

are the most  important  autotrophic symbionts.  Consequently,  1.34x106 Synecococcus cells  were 
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sorted with FACS and further analyzed for their chemical content (3.4.4.).

A small population of eukaryots from Cryptophyta phylum also seems to live with A. aerophoba.

Fig. 9. Cytograms obtained from ES. A.  SYBRgreen fluorescence permits distinction between 

viable cells and debris. Viable cells in 1 mL of ES were also counted. B. Fluorescence at 550 nm 

without SYBRgreen dye shows autotrophic cells: density of Synecococcus is important.

3.4.4. Chemical profile of   Synecococcus   from   A. aerophoba  

Symbionts  from  A.  aerophoba could  contribute  to  BA production.  So,  occurrence  of  a  BA 

compound in a symbiont could constitute an interesting finding to understand sponge-symbiont 

relashionships in secondary metabolites production.  Synecococcus sorted by FACS were extracted 

with  MeOH  and  analyzed  in  HPLC.  The  Comparison  of  chemical  fingerprints  between 

Synecococcus and A. aerophoba showed that isofistularin-3 occurred in both (Fig.10). 

Fig. 10. Chromatograms of A. aerophoba and its associated Synecococcus. Both chromatograms 

show occurrence of isofistularin-3. However other BA (1,2,3) do not appear in Synecococcus.
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4. DISCUSSION

The first specific goal of this study was to finalize a methodology to quantify the major 

secondary metabolites produced by the two Mediterranean sibling species A. aerophoba  and A.  

cavernicola. So, We have developed an optimized protocol from which we were able to obtain a 

well-resolved HPLC chromatogram from a minimum of biological material. This protocol brought 

us  chemical  fingerprints  from  155  A.  aerophoba and  36  A.  cavernicola  samples.  From these 

fingerprints, the 4 major BA biosynthesized by A. aerophoba have been quantified. This protocol 

places at our disposal a very powerful analytical tool for further studies in chemical ecology.

A. aerophoba and  A. cavernicola have an almost identical morphology, and can be easily 

confounded.  They  can  be  identified  with  their  preferred  habitat,  however,  in  some  cases, 

identification could be problematic. For example, 2 samples from Ceuta were reported as Aplysina 

sp. (field observations were not sufficient to discriminate between A. aerophoba or A. cavernicola). 

In  making  their  chemical  fingerprints,  we  were  able  to  set  these  unidentified  samples  as  A. 

cavernicola. So, isofistularin-3 and aerothionin could be used as useful chemotaxonomic markers to 

help for Mediterranean Aplysina identification. This result confirms the preliminary result obtained 

by Ciminiello et al. [40] on a comparison of 2 samples both collected in Sardinia (Italy). Now, our 

study with numerous specimen taken in a wide geographic range strenghtens this previous finding 

without doubt.

Secondary metabolites content of Mediterranean  Aplysina is quite homogen compared to 

those  of  other  marine  invertebrates  where  we  can  find  different  chemotypes  associated  with 

different  morphotypes  [41].  We  studied  the  intra-specific  variability  in  secondary  metabolites 

production in more than 150 samples of A. aerophoba collected during the same period at different 

geographical scales (see Annexes) that can be distant (Regions = 2800 Km), medium (Zones = 10 

Km), small (Locations = 1 to 5 Km) or very close (Sites= 100 to 500 m). We have noted, that 

expression of secondary metabolites varied at very close scale (between Sites), and vary the most 

between  Regions.  The  variations  recorded  is  principally  due  to  the  compounds  isofistularin-3, 

aerophobin-1,  and  aplysinamisin-1.  In  particular,  aplysinamisin-1  was  responsible  for  40  % of 

variability recorded. Another investigation work on A. aerophoba chemical content could be from 

great interest to identify causes of such variability. 

Fortunately, A. aerophoba and A. cavernicola are model organisms for the program ANR-ECIMAR. 

So, there is no doubt, that future ECIMAR diving missions (Crete, Corsica, Spain and Tunisia) will 

bring  other  specimens  of  Aplysina.  With  a  view to  further  studies  on  Mediterranean  Aplysina 
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chemical content, our work constitute a first step for secondary metabolites survey in these sponges. 

Another  aim  of  this  work  was  to  determine  the  role  of  symbiotic  microorganisms  of 

Aplysina sponges in secondary metabolites production. We focus our work on A. aerophoba.

According to previous studies [25,27] we found with FACS that associated microorganisms from 

A. aerophoba were more abundant in the sponge than in seawater. So, the protocol we developed for 

symbiotic microorganisms extraction proved to be efficient.

ChlA  measurements  showed  that  contrary  to  A.  cavernicola,  A.  aerophoba possess 

autotrophic microorganisms. Detailed pigment analysis and FACS showed that these autotrophic 

microorganisms were principally cyanobacteria  from Synecococcus genus. 

We choose to concentrate our study on these cyanobacterial symbionts, because FACS permits to 

sort them specifically. After sorting and extracting these Synecococcus, isofistularin-3 was detected. 

Nevertheless, we cannot exclude that isofistularin-3 was released in “Endobiont Suspension” during 

sponge grinding, and was then detected as an artifact due to the protocol. But if it was the case, why 

other BA did not appear ? It is also striking, that  A. cavernicola which lacks  Synecococcus, lacks 

isofistularin-3 too. This preliminary result shows that we are able to obtain an HPLC chemical 

fingerprint  with  a  very small  amount  of  precise  cells  sorted  from a  very complex  and  mixed 

population of cells. Our work constitutes another first step to be continuated as follows: further 

work has to be done to point out the role of Synecococcus in isofistularin-3 production. 

Molecular phylogeny based on 16s rDNA was done on A. aerophoba [42], the results were 

very useful to identify and classify the huge symbiotic bacteria diversity of these sponges. With 

FACS experiments, we observed these bacteria, and we obtained information on density of certain 

symbiotic bacterial populations. Moreover, we could see, that A. aerophoba harboured Cryptophyta 

eukaryots cells as symbionts. This type of symbiont does not appear in 16S rDNA based molecular 

phylogeny.  So,  our FACS-based protocol can be useful to estimate importance of bacterial  and 

micro-eukaryot populations associated with sponges. 

So, to sum up, in this study we have developed an optimized protocol for Mediterranean 

Aplysina chemical content survey. This protocol permits us to observe the geographical variability 

of  chemical  content  in  A.  aerophoba.  We also demonstrated  that  identification between sibling 

species  A. cavernicola and  A. aerophoba could be done by comparing Bromotyrosine Alkaloid 

patterns.  Lastly  we  developed  a  protocol  for  symbionts  separation  from  host  sponge.  These 

symbionts (in particular Synecococcus) might be implicated in isofistularin-3 production (which is a 

precursor to antibacterial and cytotoxic compound Aeroplysinin-1).
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6. ANNEXES

Fig. 11 Scheme of nested sampling

The 2 regions nested sampled were Tenerife (Canary Islands) and Cap Creus (Spain).  The distance 

between the 2 region is about 2800 Km.

Each Region was divided in 2 Zones. Distance between 2 Zones from the same Region is about

 6 to10 Km.

Each Zone was divided in 2 Locations. Distance between 2 locations from the same Zone is about 

1 to 5 Km.

Each Location was divided in 2 Sampling Sites. Distance between Sites from the same location, is 

about 100 to 500 m

In each Site, about 10 specimens of A. aerophoba were sampled.
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Fig. 12. Simplified map of western Mediterranean sea and near Atlantic. Sites are represented 

by red dots. Locations are named and are represented by green circles. 
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7. ABSTRACT

Aplysina aerophoba and  Aplysina cavernicola are two sibling sponge species common in 
Mediterranean sea.  External and internal morphology is almost identical in the two species. So, 
according  to  a  lack  of  traditional  taxonomic  character  (spicule  comparison),  taxonomists  have 
longly debated if the two taxa, showing different ecological requirements but identical morphology, 
should be regarded as ecotypes or distinct species. Now, molecular phylogeny has brought response 
to this question: A. aerophoba and A. cavernicola are lately distinct species. The two species, also 
called bacteriosponges because of their dense community of symbiotic bacteria that can amount up 
to  40  % of  their  dry weight,  can  contain  high  amounts  of  secondary  metabolites:  brominated 
alkaloids derived from tyrosine (up to 13% of dry weight).
As part of a program in chemical ecology where the main goal is to better understand the processes 
controlling  the  chemical  diversity  and  its  variation  in  marine  invertebrates,  we  finalized  the 
methodology to  quantify  the  major  secondary  metabolites  produced  by the  two Mediterranean 
Aplysina  species,  we identified  chemotaxonomic markers in order to clearly discriminate the two 
sibling species, we explored whether variation, in quality and quantity, of secondary metabolites 
expression  occurs  at  different  biogeographic  scales,  and  we  investigated  the  role  of  microbial 
symbionts in bromotyrosine alkaloids biosynthesis.

8. RÉSUMÉ

Aplysina aerophoba et Aplysina cavernicola sont deux espèces d'éponges Méditerranéennes. 
Leur  morphologie  interne  et  externe  est  trés  semblable  (  on  les  dit  “espèces  voisines”  ).  Les 
taxonomistes ont longtemps débattu sur la position spécifique de ces deux espèces, en raison de 
leurs forte ressemblance malgrés des caractéristiques écologiques trés différentes. De nos jours, les 
techniques de phylogénie moléculaire ont permis de trancher: A. aerophoba et A. cavernicola sont 
deux espèces distinctes depuis peu. Ces deux espèces aussi appellées “bacteriosponges”, car elles 
peuvent habriter une communautée de bactéries symbiotiques représentant 40 % de leur poids sec, 
contiennent  également  de grandes  concentrations  de métabolites  secondaires:  alcaloides  bromés 
dérivant de la tyrosine ( jusqu'à 13 % de leur poids sec).
En tant que membres d'un programme européen d'écologie chimique dont le but principal est de 
mieux comprendre les processus controlant la diversité chimique chez les invertébrés marins, nous 
avons  dans  cette  étude:  Finalisé  une  méthodologie  pour  quantifier  les  métabolites  secondaires 
majoritaires produits par les deux espèces Méditerranéennes d'  Aplysina. Nous avons identifié des 
marqueurs chemotaxonomiques permettant de clairement discriminer ces deux espèces voisines. 
Nous avons observé la variation qualitative et quantitative du métabolisme secondaire a différentes 
échelles biogéographiques. Et, enfin, nous avons étudié le role des microorganismes symbiotiques 
dans la biosynthèse des alcaloides dérivés de la bromotyrosine.

9. KEYWORDS

Chemical  ecology;  Secondary  metabolites;  Aplysina  sponges;  Chemotaxonomy;  Symbiotic 
microorganisms
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