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a b s t r a c t

The aim of the presented investigations is to perform an analysis of fracture and instability during simple

and complex load testing by addressing the influence of ductile damage evolution in necking processes.

In this context, an improved experimental methodology was developed and successfully used to evaluate

localization of deformation during uniaxial and biaxial tensile tests. The biaxial tensile tests are carried

out using cruciform specimen loaded using a biaxial testing machine. In this experimental investigation,

Stereo-Image Correlation technique has is used to produce the heterogeneous deformations map within

the specimen surface. Scanning electron microscope is used to evaluate the fracture mechanism and the

micro-voids growth. A finite element model of uniaxial and biaxial tensile tests are developed, where a

ductile damage model Gurson–Tvergaard–Needleman (GTN) is used to describe material deformation

involving damage evolution. Comparison between the experimental and the simulation results show

the accuracy of the finite element model to predict the instability phenomenon. The advanced measure-

ment techniques contribute to understand better the ductile fracture mechanism.

1. Introduction

The finite elements method (FEM) is one of the most important

approaches used to design mechanical parts, in large strain field. A

successful simulation requires the availability of a reliable stress–

strain curve [1]. Before necking, these curves can be obtained eas-

ily, but their identification becomes complex beyond the onset of

necking [2]. In effect, when localized necking commences, the

strain distribution at the minimum cross-section becomes highly

non-uniform [3]. Moreover analysis and modeling of this phenom-

enon are important, because in most industrial cases the necking

and strain localization are a crucial precursors to the final failure.

They determine the maximal amount of thinning that the metal

sheet can undergo in various areas. The localization behavior of a

material is due to two reasons: (i) The material non-homogeneities

(second phase particles, grain morphology of surface defects, etc.)

[4–8], (ii) constitutive behavior (material strain hardening, soften-

ing and rate sensitivity, etc.) [9,10].

In this investigation, the Stereo-Image Correlation (SIC) method

is used to evaluate the necking and localization of deformation in

uniaxial tensile and biaxial tests. In this experimental part, a mild

steel sheet material was investigated with a thickness of 4 mm. A

digitalization of the useful zone (central zone) of cruciform speci-

men after the test allowed to analyze the necking phenomenon

and the localization of deformation, which precedes the fracture.

Important information about ductile damage evolution and accu-

mulation mechanism can be gathered upon the examination of

the fracture zone and the necking region using scanning electron

microscope (SEM). These microstructure analysis results represent

the key of the ductile damage model used in numerical simulation.

Different cruciform geometries have been investigated numerically

using a finite element method. This way led to a number of design

guidelines to avoid unwanted failure modes for the miniaturized

setup. In the modeling of uniaxial tensile and biaxial tests, we

use the model of Gurson Tvergaard Needleman (GTN) to describe

the damage evolution during load application. The results of finite

element simulations are compared with experimental results, and

a good correlation is observed.

2. Experimental setup and methods

2.1. Full-field Stereo Image Correlation measurements

The images correlation allows the measurement of displace-

ment fields of a planar surface: a single camera acquires a sequence

of images of a planar object under loaded conditions. But single-

camera, 2-D Digital Image Correlation (DIC) systems are limited

to planar specimens that experience little or no out-of-plane mo-

tion. These limitations can be overcome by the use of two or more
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cameras observing the surface from different directions. The com-

bination of these cameras during experimental measurements is

called stereo-vision or SIC. This method is widely applied in mea-

suring full-field displacements during metal forming process in re-

cent years especially for out of plan displacements. The extensive

use of this advanced measurement technique can be explained

by the inability of traditional measuring approaches (strain gauge

and extensometer) to collect enough information such as the local-

ization of deformations. One of the principal advantages of the full-

field measurements is that the selection of the measurement

points is flexible since it can be carried out after the experiment

[11]. The principal devices of SIC, 3D image correlation software,

light source and two CCD cameras to acquire digital images with

a 1280 by 1024 pixel. These images are then analyzed by the Ara-

mis software developed by GOM. This gives a measure of the dis-

placements and strain fields on the surface of an object within a

good precision. Aramis software is able to match corresponding

points of an image by grey level analysis, if the surface of the spec-

imen is covered with a black and white mapping, which forms a

random grey-level of grey. A gray level coded on 8 or 12 bits corre-

sponds to each pixel of the CCD sensor. A succession of several pix-

els lying on the same line forms a grey level sequence. The

fundamental principle lies in the fact that the distribution does

not vary during the deformation of the body. It is therefore suffi-

cient to follow this distribution of grey levels in their motion to ob-

tain the displacements of the corresponding point. Fig. 1 shows a

stereo-vision system with two CCD cameras, different coordinate

systems and epipolar lines constrain search region within images

to locations along a line. Corresponding image points for object

point P (x,y,z) in camera 1 and camera 2 are P1 and P2 respectively.

All these coordinate systems are interconnected by several trans-

formation matrices, which require an important step during exper-

iment setup known calibration. The later consists of assessing the

baseline transformation (determination of matrix related the two

cameras coordinates system) and in calculating of intrinsic param-

eters of the cameras [11]. Generally two approaches are used to

calibrate cameras in stereo correlation setup. The first approach

calibrates each camera separately and the second calibrates the

two cameras together. The latter is known as a stereo-rig [12].

2.2. Uniaxial tensile tests setup

A tensile test is one of the most important engineering proce-

dures for deriving the mechanical behavior of materials. In this

work, the tension test was conducted under displacement control

in an Instron testing machine, which runs at a rate of 3.10ÿ4 mm/

s, at room temperature. The load–displacement response of the

material are measured in a tensile test on the specially designed

specimen [13] shown in Fig. 2a. Two CCD cameras are positioned

in a non-symmetrical configuration: first one directly in front of

the specimen and the second one at about 32° from the normal.

This allows performing 3D full-field displacement measurement.

The images recorded during the test correlated with Aramis soft-

ware, Fig. 2b shows an example of the displacements map with

3D coordinates.

2.3. Biaxial tensile tests

One of the most challenging aspects of a biaxial testing system

is test specimen design, which restricts application for the cruci-

form biaxial tensile test. Several specimens of the cruciform type

have been investigated quite extensively. However there is no

standard geometry exists, therefore it is difficult to compare the

test results obtained by different investigators [14]. After many

iterations, the desired final geometry of cruciform specimen is

show in Fig. 3. We prepare the cruciform specimens using laser

cutting of the external contour and turning process with CNC ma-

chine to reduce the thickness up to 1 mm in the gauge area. These

specimens are oriented 0° and 45°with respect to the rolling direc-

tion of sheet in order to take account of the anisotropy of the sheet.

The biaxial tensile tests are performed using INSTRON 8800 biaxial

machine available in the LGP laboratory (Fig. 4). Before the start of

the biaxial test, a variable grey level is developed in the surface of

Fig. 1. Schematic of two camera stereo-vision system.



the sample in order to measure the displacement field in selected

specimen gauge areas with Stereo Image Correlation method.

Fig. 4 shows the setup of biaxial tensile test, two cameras are in-

stalled in front of the specimen. A cross-shaped specimen is loaded

in the biaxial testing machine in an equi-biaxial manner. Fig. 5

shows typical results of equi-biaxial test, the displacements field

obtained by SIC in the surface of specimen oriented 45° respecting

the rolling direction. In this displacement maps, we observe that

the results in the two directions are similar which is coherent with

the reality, because the two axis of cruciform specimen oriented

45° with the rolling direction.

3. Failure analysis (fractography)

In metal forming investigation, fractography is used to analyze

the nature of failure and the formability of material [15], fracture

surfaces of tensile sample has been obtained using scanning elec-

tron microscope.

� Fig. 6 shows the fracture revealing a shear mechanism leading

to failure. The dimples in vicinity of the shear zone are elon-

gated in the direction of shear, is as indicative of ductile fracture

mode.

� A ductile fracture mechanism is dominant where a large num-

ber of dimples can be observed in Fig. 7. The rupture surface

itself shows large regions of dimples, the larger ones including

second phase particles [16]. We observe the average void sizes

are bigger, that refers to the ductile fracture [17].

� The initiation of failure is governed by void nucleation and

growth. This is evident from Fig. 8, that the coalescence of the

cavities, the growth of microvoids for an increasing plastic

deformation progressively reduces the material capability to

support the mechanical loads up to complete failure [18].

This implies that modeling of damage evolution, crack initia-

tion, and crack extension should be based on porous metal plastic-

ity. The Gurson modified model called GTN [19] model is able to

describe the different stage of this ductile crack phenomena.

Fig. 2. (a) Uniaxial tensile specimens designed and (b) typical results extracted using SIC, deformation and 3D coordinates.

A-A

Fig. 3. Designed cruciform tensile specimen with dimensions (mm).



4. Numerical simulation

4.1. Ductile damage model

In some applications, such as metal forming, safety–critical

applications (aircraft, nuclear, aerospace and so on,) the ability of

the designer to predict mechanical failure become an important

factor. In 1977, Gurson [20], proposed a micro-structural criterion

of ductile materials. This yield condition concerns a modification of

the isotropic von Mises yield criterion. This model is one of the

important contributions for material degradation analysis and de-

scribes the mechanism of internal damaging in the form of void

growth in porous metals. In the original version of Gurson mode

the matrix material was assumed to be incompressible, rigid-per-

fectly plastic, and the resulting macroscopic model is compressible

rigid-plastic with hardening and softening associated. This model

was extended in 1984 by Tvergaard and Needleman [19] who

incorporated some additional parameters (q1,q2,q3). The formula-

tion is nowadays known as the GTN model, it describes the nucle-

ation, propagation and coalescence of voids. Recently, the GTN

Fig. 4. Experimental setup for biaxial tensile test.

Fig. 5. Typical results obtained by the SIC method (a) displacement in x load direction, and (b) displacement in y load direction.



model has been investigated by many researchers. Chen and Dong

[21], for instance, used GTN model coupled with Hill’48 yield crite-

rion to predict the necking and the failure analysis of an aniso-

tropic sheet metal forming. Furthermore, the GTN model has

demonstrated that it is able to predict correctly the failure onset

in sheet metal forming part [16,22,23].

Kumar [24] indicate the one drawback of the GTN-model,

namely its incapability to model discrete fracture, but it can be ide-

ally combined with discrete crack models. In this context, Vajra-

gupta et al. [25] utilized GTN damage model coupled with a unit

cell model to determinate the damage curve of the ferrite.

The yield function describing the plastic constitutive model is

represented as flows:

uðr;rm; f Þ ¼
r2

r2
y

þ 2f �q1 cosh
3

2
q2

rm

ry

� �

ÿ ð1þ q3ðf �Þ2Þ ¼ 0 ð1Þ

where q1, q2 and q3 are a fitting parameters used to a calibrate to the

model prediction of periodic arrays of spherical and cylindrical

voids, with q3 = (q1)
2, rm hydrostatic stress, ry yield stress of matrix

material, r: von Mises equivalent stress, f is the void volume frac-

tion which is equal to 1ÿ VM

V
, f� represent the modified void volume

fraction which is given as follows:

f � ¼
f if f 6 fc

fc þ f �uÿfc
ffÿfc

ðf ÿ fcÞ if f > fc

(

ð2Þ

where f �u represent the ultimate value of f� which is defined as the

stress carrying capacity vanishes, fF represent the void volume frac-

tion corresponding to failure, and fc is the critical volume fraction

where rapid coalescence occurs.

The instantaneous rate of growth of the void fraction depends

both on nucleation of new voids and growth of pre-existing voids

and it is given by:

Fig. 6. SEM image showing shear fracture mechanism.

Fig. 7. SEM image showing dimples with second phase particles.

Fig. 8. SEM image showing the coalescence of voids.
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where epkk is the plastic hydrostatic strain and a defined as follows:

a ¼ fN

SN �
ffiffiffiffiffiffiffi

2p
p � exp ÿ1

2
� ep ÿ eN

SN

� �2
" #

ð4Þ

where Sn the standard deviation, en the mean effective plastic strain

of nucleation and fn the nucleation micro-void volume fraction.

For GTN application in finite elements simulation we need these

parameters:

� The elasticity parameters E and m.

� The power hardening parameters K and n The parameters q1
and q2 governing the voids’ growth, which are determined from

numerical micromechanics analysis. In most cases good results

for metals are obtained with q1 � 1.5 and q2 � 1 were recom-

mended by Tvergaard and Needleman [22].

� The initial void volume fraction and the nucleation parameters

fN, eN, and sN can be estimated, eN = 0.3 and SN = 0.22 and

fN = 0.04 are reasonable values for metals.

� It is the same for the coalescence parameters fF and fc where

estimations from numerical simulations and experiments on

metals are fF = 0.12 and fc = 0.08.

4.2. Uniaxial tensile test simulation

The objective of the numerical simulations of tensile test is to

predict the localization of deformation and in the subsequent step

to identify different parameters of the necking criterion. In the fol-

lowing, the uniaxial tensile test is simulated numerically using a

3D FE model under commercial software abaqus, the same geom-

etry is used in experimental tensile test modeled by deformable

elements, the specimen is meshed by more than 2688 3D hexahe-

dral elements (C8D8R). Two rigid bodies connect with the speci-

men to represent the gripping heads of the machine (Fig. 9a).

This model takes into account the ductile damage of sheet metal

by using GTN model, Fig. 9b shows the volume fraction map in

the tensile test specimen.

4.3. Biaxial tensile test simulation

The design and preparation of the cruciform biaxial tensile

specimen to solve the problems of the non-uniform stress distribu-

tion in the central region and small deformation is not so straight-

forward. For this reason, several FE models are developed, by

varying the geometry of the cruciform specimen. Fig. 10a shows

the finite elements model of the cruciform selected geometry.

The dimensions of this model are already presented in previous

Fig. 9. (a) FE model of uniaxial tensile test, and (b) damage, volume fraction.

Fig. 10. (a) Numerical model of biaxial test, (b) numerical results of strain distribution in cruciform specimen and (c) experimental strain map obtained by SIC method.



section Fig. 3. The model of the cruciform specimen was meshed by

more than 28,000 linear tetrahedral elements (C3D4). Also, the

GTN model is used to predict the damage phenomenon on the cru-

ciform sample during biaxial loading. Fig. 10b and c shows numer-

ical and experimental strain distribution in the horizontal direction

(x direction) respectively. A good correlation between these two

results is observed.

5. Necking and localization of deformation

In low ductile materials, tensile failure occurs by the formation

of an inclined groove where the plasticity is localized. Necking is an

important limitation on material formability in sheet metal form-

ing [26]. It appears that there are two basic geometrically nonlin-

ear causes of the necking instability: (i) a decrease of the cross-

section area of the specimen, causing a stress increase for the same

load value, and (ii) the formation of micro voids leading to damage

evolution and drastically decrease of the material properties in the

metal [27,16]. Often, damage and fracture models have been used

to study the governing factors of localization in the sheet metal

forming process. The pioneering work elaborated by Considère in

1885, based on experimental observations, proposed that the onset

of necking of a tensile round bar to be the attainment of the max-

imum pulling force [28,29]. For the simple tension Considerer’s

equation is written:

dr11

de11
¼ r11 ð5Þ

In the 50’s Swift [30] extended this diffuse necking theory for

biaxially stretched sheets. And Hill [31] developed the first theory

for local necking. He assumed the existing of a narrow band in the

sheet where in the strains along the band direction vanishes. Onset

of localized neck indicates that critical limit strains have been ex-

ceeded and thus heralds imminent failure [32]. Fig. 11a and b illus-

trates experimental and numerical results of the shape of cross

section in the central zone of specimen respectively. With concor-

dance of the results presented by Ghajar et al. [33], the rectangular

section, in plastic deformation, necking occurs and causes the sides

of minimum section to bend as shown in Fig. 11a. A qualitative

comparison between the areas at fracture and the corresponding

to numerical modeling testifies the robustness of numerical model.

As demonstrated in this modeling, the failure is expected to initiate

in the center of the minimum section in the specimen [34,35].

Fig. 12a and b shows, respectively, the numerical and experimental

results of the diffuse and local necking in tensile test, also an eval-

uation of strain distribution throughout a section parallel of the

load axis. Two phases of necking are visible in the successive dig-

ital images of the sample surface during the tensile test on the

SIC results computed by the Aramis software and in the numerical

results. The necking evolution starts by a symmetric diminution of

the width of the specimen. This one is called the diffuse necking. If

the diffuse necking is progressing, the severe thickness reduction

that mainly takes place at the center of the sample causes a sudden

initiation of a crack that immediately propagates in an unstable

form along only one shear band. This latter is called the local neck-

ing. Generally, in the sheet metal forming the diffuse necking is

Fig. 11. (a) Experimental area at fracture showing the ductile rupture initiation at the center of the section and (b) numerical prediction of the shape of central zone after

tensile (necking).



Fig. 12. Deformation localization: diffuse necking and local necking (a) numerical result (b) experimental result obtained by SIC, and (c) specimen after fracture.

Fig. 13. Experimental evaluation of localization of deformation obtained by digitalization of localization using optical profile projector.

F.



considered as the first trace of failure [32]. The localization of

deformation analysis in the sheet metal forming process has at-

tracted a great deal of the numerical and the experimental effort

to understand the phenomenon. In most of the sheet metal form-

ing process will have the presence of biaxial stress. Notably, this

can be observed in the bulge test, the stretch test and the tube

hydroforming. Fig. 12c shows that the final failure path is along

the transverse direction, which is in coherence with the results

published by Hu et al. [36]. This author claims that if width/thick-

ness ratios such as w/t 6 6 two conjugate localized necking bands

form during deformation after the onset of necking and the evolu-

tion of deformation at the intersection of the two bands developed

the failure propagation along the transverse direction. Fig. 13

shows the result of digitalization using optical profile projector.

The localization of deformation in the central zone of the cruciform

specimen and the thickness reduction principally was measured in

four local zones. The local reduction of thickness can attain 25 lm

in elliptical shape.

6. Conclusion

This investigation of localization and necking attracted great

interests to engineers, as a prior indication of ultimate structural

failure. In metal-forming processes, these phenomena can be con-

sidered as principal reason for poor product quality. In the current

study, experimental and numerical observations are carried out to

investigate the failure process in mild steel. Several experimental

tests are conducted using mild steel. Stereo Image Correlation is

used to obtain full-field displacements in uniaxial and biaxial tests.

The deformation in the gauge area is localized by means of two

slowly evolving diagonally oriented shear bands that intersect

the corners of the gauge area. No homogeneity of deformation on

the specimen surface is observed. From the fractography, it is ob-

served that the failure process of the material is due to damage ini-

tiation, growth, propagation and crack nucleation within the

material. Numerically, the plastic damage of mild steel are studied

using the finite element model based on GTN ductile damage con-

stitutive equations. Moreover, in depth analysis of necking phe-

nomenon is developed based on the numerical and experimental

results.
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