
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 8891  

To link to this article: DOI: 10.1002/num.20005 

URL: http://onlinelibrary.wiley.com/doi/10.1002/num.20005/references 

 

 

 

 

To cite this version: Abboud, Toufic and Salaün, Michel and Salmon, 

Stéphanie Coupling Harmonic Functions-Finite Elements for Solving the 

Stream Function-Vorticity Stokes Problem. (2004) Numerical Methods for 

Partial Differential Equations, vol. 20 (n° 5). pp. 765-788. ISSN 0749-

159X 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12044265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
http://onlinelibrary.wiley.com/doi/10.1002/num.20005/references
mailto:staff-oatao@inp-toulouse.fr


Coupling Harmonic Functions-Finite Elements for
Solving the Stream Function-Vorticity Stokes
Problem

T. Abboud,1 M. Salaün,2 S. Salmon3

1CMAP Ecole Polytechnique, 91128 Palaiseau, France

2Equipe de Recherche Associée n°3196, Conservatoire National des Arts et Métiers,

Chaire de Calcul Scientifique, 75141 Paris, France
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We consider the bidimensional Stokes problem for incompressible fluids in stream function-vorticity form.

The classical finite element method of degree one usually used does not allow the vorticity on the boundary

of the domain to be computed satisfactorily when the meshes are unstructured and does not converge

optimally. To better approach the vorticity along the boundary, we propose that harmonic functions

obtained by integral representation be used. Numerical results are very satisfactory, and we prove that this

new numerical scheme leads to an optimal convergence rate of order 1 for the natural norm of the vorticity

and, under higher regularity assumptions, from 3/2 to 2 for the quadratic norm of the vorticity. © 2004

Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 765–788, 2004

Keywords: Stokes problem; stream function-vorticity formulation; harmonic functions; integral represen-

tation

I. INTRODUCTION
A. Motivations

Let ! be a bounded connected open set in !2. In order that error estimates may be obtained for

our numerical schemes, we assume that ! is polygonal. We denote by " # !! the boundary of

!. Modeling of the equilibrium of an incompressible and viscous fluid leads to the Navier-

Stokes problem [1]. If we neglect convection terms, when the viscosity is sufficiently dominant

or the velocity of the fluid sufficiently small, we obtain the stationary Stokes problem which is

(in primitive variables i.e., velocity u and pressure p):

Correspondence to: S. Salmon, Institut de Recherche Mathématique Avancée, Université Louis Pasteur, 7 rue René
Descartes, 67084 Strasbourg, France (e-mail: salmon@math.u-strasbg.fr)



$"%u # &p $ f in !,

div u $ 0 in !,

u $ 0 on ",

where " is the kinematic viscosity and f a field of given external forces.

If ! is supposed to be simply connected and the velocity is divergence free, this two-

dimensional problem is often rewritten in terms of stream function and vorticity variables.

Velocity is the curl of some stream function and vorticity is the curl of the velocity. A usual way

of discretizing this new problem is to choose a finite element method and to use polynomial

approximations of degree one for each variable. The stream function and the vorticity are though

assumed to be in H1(!), but it is well known that first this problem is not mathematically

well-posed (see for example, Girault-Raviart [2]), and that second the vorticity is not satisfac-

torily approximated on the boundary of the domain when the meshes are unstructured (see e.g.,

Salmon [3]). Nevertheless, it can be shown that, if ! is convex, the scheme is convergent

(Scholz [2, 4]). The convergence for the quadratic norm of the vorticity is of order 'h%, where

h% is the maximum diameter of the triangles in the mesh, and of order h%
1$& for the H1-norm of

the stream function (& is an arbitrary strictly positive real). Notice that in the case of structured

meshes, the usual scheme gives optimal numerical results (see e.g., [3, 5]) and moreover,

superconvergence can be observed [2].

However, as has been said, a major problem of the stream function-vorticity formulation

arises in trying to obtain correct boundary values for the vorticity. Many articles deal with this

aspect and propose new formulas for inclusion in the numerical scheme (see e.g., Napolitano et

al. [6] and references therein). Another idea due to Amara and Bernardi [7] is to stabilize the

usual formulation by adding jumps at interfaces of the triangles and thus improve the conver-

gence.

However, from our point of view, the mathematically well-posed formulation of the

problem should lead to a good numerical scheme. So, we work with the well-posed stream

function-vorticity variational formulation which was introduced by Ruas [8] and Bernardi-

Girault-Maday [9]. This formulation consists of looking for the vorticity in the space

M(!) # {' ! L2(!), %' ! H $1(!)}, containing less regular functions than H 1(!). We

propose in the sequel to study a natural discretization of this space, which leads to a

numerical scheme using harmonic functions to compute the vorticity on the boundary. Let

us observe that the idea of using harmonic functions was first introduced by Glowinski-

Pironneau [10] and also used by Quartapelle and Valz-Gris [11]. But these authors do not

present any theoretical convergence results.

In the sequel, we prove that, in a polygonal domain, our numerical scheme is convergent of

order at least !(h%) for the natural norm of the vorticity. Some of the authors have previously

proposed a method based on discrete harmonic functions computed on refined meshes (Dubois

et al. [12]), which is quite time-consuming. Here, the novelty is to use integral representation for

computing the real harmonic functions. Then, we prove both theoretically and numerically that,

when ! is moreover assumed to be convex, if the vorticity is assumed to belong to H2(!)

[respectively to H5/2(!)] and if the stream function belongs to H2(!), their quadratic norms

converge in fact as !(h%
3/2) [respectively !(h%

2)]. The last part of the article is devoted to

numerical experiments on different geometries and unstructured meshes, which are in agreement

with theoretical results. In the whole article, ! will be assumed to be at least connected and

simply connected.



B. Notation

We shall consider the following spaces (see for example, Adams [13]). "(!) denotes the space

of all indefinitely differentiable functions from ! to ! with compact support and L2(!) the

space of all classes of square integrable functions. For any integer m ( 0 and any real p such

that 1 ) p ) (, Wm,p(!) denotes the space of all functions v ! Lp(!), whose partial derivatives

in the sense of distributions, !*
v/!xi, "*" ) m, belong to Lp(!). We define as usually

H1(!) # W1,2(!) and H2(!) # W2,2(!). We denote by #!#m,p,! (respectively, "!"m,p,!) the norms

(respectively, the semi-norms) in the Sobolev spaces Wm,p(!). We make the usual modification

for p # (, and we drop the index 2 when p # 2. The space H0
1(!) [respectively, H0

2(!)] is the

closure of "(!) with respect to the norm #!#1,! (respectively, #!#2,!). Then, (!, !) denotes the

standard inner product in L2(!) and )!, !*$1,1 the duality product between H0
1(!) and its

topological dual space H$1(!). Finally, + denotes the trace operator from H1(!) onto H1/2("),

or from H2(!) onto H3/2(") (see Lions-Magenes [14]).

II. THE STREAM FUNCTION-VORTICITY FORM OF THE STOKES PROBLEM

Let f in (L2(!))2 be a field of given forces, we define curl f as (!f1 /!x2) $ (!f2 /!x1). The

steady-state Stokes problem consists of finding a stream function , and a vorticity field -

solutions of

- # %, $ 0 in ! (2.1)

$%- $ curl f in ! (2.2)

, $ 0 on " (2.3)

!,

!n
$ 0 on ". (2.4)

Indeed, it consists of finding a velocity field u that is divergence free and can be written with

the help of a stream function ,. We have

u $ curl , $ $$
!,

!x2

,
!,

!x1
%T

in !.

Equation (2.1) means that the vorticity is the curl of the velocity. Equation (2.2) is the

equilibrium equation for a viscous fluid, with kinematic viscosity equal to 1, and where

convection terms are neglected. Boundary conditions (2.3) and (2.4) are consequences of u # 0

on ". For more details about this problem, we refer to [2].

It is natural to discretize the problem (2.1)–(2.4) with a piecewise linear and continuous finite

element method. As ! is assumed to be polygonal, we can exactly cover it with a mesh #

composed of triangular finite elements. The mesh # is assumed to be regular (in the sense

defined in Ciarlet [15]). The set H%
1 denotes the space of continuous functions defined on !! ,

which are polynomials of degree 1 in each triangle of # and H0,%
1 # H%

1
" H0

1(!):



H%
1 $ +' ! $

0,!! -, @K ! %%, '"K ! "1,K-., (2.5)

where %% is the set of triangles in # and "1 the space of all polynomials of total degree less or

equal to 1. The discretization of the problem (2.1)–(2.4) consists of finding -% and ,% such that:

,% ! H0,%
1 ,boundary condition ,2.3- is then satisfied- (2.6)

-% ! H%
1 (2.7)

in the following way. We first multiply (2.1) by a scalar function ' ! H%
1 and integrate by parts

(%,%, '), we obtain, taking the boundary condition (2.4) into account:

,-%, ' - . ,&,%, &' - $ 0 @' ! H%
1. (2.8)

Then we multiply (2.2) by a test function / in H0,%
1 , integrate by parts $(%-%, /) and (curl f, /)

and, as / vanishes on the boundary, we obtain:

,&-%, &/- $ ,f, curl /- @/ ! H0,%
1 . (2.9)

This formulation (2.6)–(2.9) has been studied extensively (see Ciarlet-Raviart [16], Glowinski-

Pironneau [10] and [2] among others) and presents some difficulties.

First, the continuous formulation associated to it is not well-posed for any f in (L2(!))2.

Indeed, the Stokes problem can be seen as a biharmonic problem for the stream function:

, ! H0
2(!) and %2, # curl f. In a variational form, this problem can be rewritten as follows:

,%,, %0- $ ,f, curl 0- @0 ! H0
2,!-. (2.10)

Problem (2.10) is well posed in H0
2(!) (see [15]) and as - # $%,, the vorticity cannot be more

regular than square integrable. Second, error estimates derived for the scheme (2.6–2.9) are not

optimal. When ! is assumed to be convex, the bound is in h%
1/2 for the quadratic norm of the

vorticity, where h% is the maximum diameter of the elements of the triangulation [2, 4] (it is

numerically illustrated in Figure 3 at the end of this article).

So, a different weak formulation was proposed by Ruas [8] and Bernardi et al. [9] who

introduced the space M(!) # {' ! L2(!), %' ! H$1(!)}, which is a Hilbert space for the

norm #'#M # '#'#0,!
2 / #%'#$1,!

2 . It consists of finding (-, ,) in M(!) 0 H0
1(!) with the

following method. We test the first equation (2.1) with a function ' ! M(!) and the second one

(2.2) with a function / ! H0
1(!). It is then necessary to integrate twice by parts the term

)%,, '*$1,1 in order to include boundary conditions (2.3) and (2.4). We get

! ,-, ' - # )%', ,*$1,1 $ 0 @' ! M,!-

)$%-, /*$1,1 $ ,f, curl /- @/ ! H0
1,!-. (2.11)

This formulation (2.11) leads to a well-posed problem [9].



Proposition 2.1. The Sobolev space H1(!) is contained in M(!) with continuous imbedding.

We have, #'#M ) #'#1,! for all function ' in H1(!). Moreover if ' ! M(!) " H0
1(!), its

M-norm is equal to its H0
1-norm.

Proof. First we notice that the laplacian of a function in H1(!) belongs to H$1(!) and

H1(!) is a subspace of M(!). Then to prove the continuity of the imbedding, we need the

definition of the H$1-norm. For all ' ! H1(!), we have

#%'#$1,! $ sup
1!H0

1
,!-

)%', 1*$1,1

"1"1,!

$ sup
1!H0

1
,!-

$,&', &1-

#&1#0,!

because ' is in H1,!- and 1"" $ 0,

) #&'#0,! ,using the Cauchy-Schwarz inequality-. (2.12)

An immediate consequence of this inequality is @' ! H1(!), #'#M ) #'#1,!.

Second, if ' ! M(!) " H0
1(!), it suffices to take 1 # $' in the inequality (2.12) to obtain

#%'#$1,! # #&'#0,! and then #'#M # #'#1,!. y

Let us now introduce the kernel &(!) of the bilinear form )%!, !*$1,1:

&,!- $ +' ! M,!-, )%', /*$1,1 $ 0, @/ ! H0
1,!-..

Proposition 2.2. Characterization of the space &(!): &(!) # {' ! L2(!), %' # 0 in

"1(!)}. There also exists a trace operator (still denoted by +) from &(!) on H$1/2(").

The proof is quite classical and completely developed in [12].

So, when we restrict the first equation of (2.11) to functions in &(!), this new problem is

well-posed according to Lax-Milgram’s lemma [17]. Indeed

Proposition 2.3. The L2-scalar product: &(!) 0 &(!) # (-, ') ' 2! - ! ' dx ! ! is elliptic

on &(!).

Proof. It is obvious that for - in &(!), #-#M
2 # #-#0,!

2 . y

Proposition 2.4. The space M(!) can be decomposed as follows: M(!) # H0
1(!) # &(!).

Proof. The proof can also be found in [18]. We split ' ! M(!) into two parts:

' # '0 / '%. On the one hand, since %' ! H$1(!), the component '0 is uniquely defined in

H0
1(!) by the Dirichlet problem:

!%'0 $ %' in !

+'0 $ 0 on ".

On the other hand, we define '% by '% # ' $ '0. Then, it verifies %'% # 0 in !, so '%

belongs to &(!). y

Moreover, we can observe that +'% # +' on ", with +' well defined in H$1/2(") (see

Proposition 2.2).

We now rewrite the well-posed formulation of the Stokes problem (2.11) taking into account

the decomposition given in Proposition 2.4.

Find - # -0 / -%
! H0

1(!) # &(!) and , ! H0
1(!) such that



&
,a- ,-0 # -%, 1- # )%1, ,*$1,1 $ 0 @1 ! H0

1,!-.

,b- ,-0 # -%, ' - #

)%', ,*$1,1

#0
$ 0 @' ! &,!-.

,c- )$%-0, /*$1,1 .

)%-%, /*$1,1

#0

$ ,f, curl /- @/ ! H0
1,!-.

Then it is obvious that the previous problem can be solved in the following way:

&
,c- find -0

! H0
1,!- such that

)$%-0, /*$1,1 $ ,&-0, &/- $ ,f, curl /- @/ ! H0
1,!-.

,b- find -%
! &,!- such that

,-%, ' - $ $,-0, ' - @' ! &,!-.

,a- find , ! H0
1,!- such that

)$%1, ,*$1,1 $ ,&,, &1- $ ,-0 # -%, 1- @1 ! H0
1,!-.

(2.13)

A previous work of the authors used with success homothetic mesh refinements to solve the

second step of the above problem (Dubois et al. [3, 12]). The following section gives an

alternative way to solve this step by a direct use of harmonic functions, based on an integral

representation.

III. DISCRETIZATION OF THE STOKES PROBLEM USING HARMONIC
FUNCTIONS
A. Discretization of the Space &($)

We recall that ! being polygonal allows to entirely cover it with a mesh #. We denote by %%

the set of triangles in #.

Definition. Family (2 of regular meshes [15]. We assume that # belongs to the set (2 of

triangulations satisfying:

?2 3 0, @K ! %%,
hK

4K

) 2,

where hK # diam K and 4K is the diameter of the circle inscribed in K.

We introduce the trace of mesh # on the boundary ". It is a set )(#, ") of edges of triangles

of the mesh which are contained in ". If Na(#, ") is the number of these edges, we denote them

by "i, 1 ) i ) Na(#, "). As " is closed, Na(#, ") is also equal to the number of vertices of the

mesh # on the boundary ". Then we define the vector space $% generated by the characteristic

functions of the edges "i ! )(#, ") of ":

$% $ Span+qi $ $"i
, "i ! ),#, "-., (3.1)

where $"i
is the characteristic function defined from " to ! by



$"i
,x- $ !1 if x ! "i

0 if x " "i.

The dimension of $% is exactly equal to the number Na(#, ").

Remark 3.1. We can define the vector space *% of continuous polynomial functions of degree

one on the edges "i ! )(#, ") of ".

*% $ +q ! $
0,"-, q ""i

! "1,"i-, "i ! ),#, "-.. (3.2)

Then we denote by + the simple layer operator applied to functions of $%.

Definition. Simple layer potential.

+ : $% # qi ' 'i ! &%,I

where 'i(x) # +qi(x) # 2" G(x, y)qi(y) d+y @x ! !! , and G(x, y) # (1/25)log"x $ y" is the

Green kernel.

We denote by &%,I the discrete space spanned by functions 'i # +qi, for all qi ! $%. The

space &%,I is finite dimensional and, clearly, its dimension is equal to the dimension of $%. By

construction, functions of &%,I are harmonic. We shall denote by S # ++ the operator + on the

boundary. We introduce +'i(x) # Sqi(x) # 2"i
G(x, y) d+y for all x on the boundary " and

qi # $"i
in $%.

Remark 3.2. Our discretization will be conforming as &%,I is contained in &(!) % M(!) and

that functions in &%,I have a trace on the boundary in H$1/2(") (see Proposition 2.2).

Theorem 3.3. The operator S is an isomorphism from the Sobolev space Hs(") onto Hs/1(")

for all real numbers (see e.g., Nédélec [19], Dautray-Lions [20]).

Definition. We define the following subspace of H$3/2("):

3
H$3/2,"- $ +0 ! H$3/2,"-, )0, 1*$3/2,3/2 $ 0..

Proposition 3.4. For all q !
3
H$3/2("), we can define the harmonic function +q of L2(!):

+q,x- $ '
"

G,x, y-q,y- d+y @x ! !! .

Then, there exists a constant C 4 0 such that, for all q !
3
H$3/2("):

#+q#0,! ) C#q#$3/2,". (3.3)



Proof. Let q be in
3
H$3/2(") and !1 be the interior of the complementary of !. Notice that

+q is, by definition, the solution of the following problem [19–21]:

&
%u $ 0 in ! & !1

5u6 $ 0 on "

(!u

!n) $ q on ",

where [1] # 1"! $ 1"!1 is the jump of 1 across ". Vector n is the outer normal on ". Notice that

the condition )q, 1*$3/2,3/2 # 0 is necessary to obtain the existence of a solution to the previous

problem.

Following Nédélec [19], we know that for all q ! H$1/2("), whose mean value is zero, +q

belongs to H1(!) and then to L2(!). So, we can consider the L2-norm of +q when q is

sufficiently regular. Then, if (3.3) is proven for regular functions, a classical density argument

leads to the expected result.

Let us now prove this proposition for regular functions. We shall use methods similar to those

used in the Aubin-Nitsche argument (see Aubin [22] and Nitsche [23]). Indeed,

#+q#0,! $ sup
g!L2,!-

,+q, g-0,!

#g#0,!

.

We extend a function g ! L2(!) by zero outside ! and we define g̃:

g̃ $ !g in !

0 in !1.

Notice that, as g belongs to L2(!), g̃ belongs to L2(!2). We consider a function ' such that

$%' $ g̃ in !2.

',x- $ !,log"x"- when "x" becomes large.

By local regularity of the Laplacian operator, the solution '"! belongs to H2(!) if ! is bounded

(Nédélec [24]) and verifies

#' "!#2,! ) C#g#0,!. (3.4)

Because ! is bounded, let BR be a ball, of radius R sufficiently large to contain ! (we denote

by SR the boundary of BR). We have

,+q, g-0,! $ ,+q, g̃-0,!2 $ lim
R3(

'
BR

$%' ! +q dx.



Then, as %+q # 0:

'
BR

$%' ! +q dx $ '
BR

,%+q ! ' . %' ! +q- dx

$ '
!

,%+q ! ' . %' ! +q- dx # '
BR6!

,%+q ! ' . %' ! +q- dx.

Notice that, on the one hand, '"BR
belongs to H2(BR) [respectively, '"! to H2(!)] as BR is

bounded and so, +' ! H3/2(+R) [respectively H3/2(")] and !'/!n ! H1/2(SR) [respectively

H1/2(")]. On the other hand, functions in L2(!) whose Laplacian is also in L2(!) have their

normal trace in H$3/2(") (see [20]). So, we obtain by definition:

'
!

,%+q ! ' . %' ! +q- dx # '
BR6!

,%+q ! ' . %' ! +q- dx $ *(!Sq

!n ) , 5+'6+
$3/2,3/2

# *$(!'

!n), 5Sq6+
$1/2,1/2

# '
SR

$!Sq

!n
! ' .

!'

!n
! Sq% d+.

First, [+'] and [!'/!n] are continuous across " and SR since ' belongs to H2(BR). Second,

by construction: [!Sq/!n] # q, [Sq] # 0. Then, we obtain

'
BR

$%' ! +q dx $ )q, +'*$3/2,3/2 # '
SR

$!Sq

!n
! ' .

!'

!n
! Sq% d+.

As ' acts as log R and Sq as 1/R (because the mean value of q is null) when R becomes large

(see [19]) we obtain

,'
SR

!Sq

!n
! ' d+, ) '

0

25 1

R2 ! log R ! R d7 -
log R

R
O¡

R3 # (
0,

and

,'
SR

!'

!n
! Sq d+, ) '

0

25 1

R
!

1

R
! R d7 -

1

R
O¡

R3 # (
0.

Finally, we deduce

,+q, g-0,! $ ,+q, g̃-0,!2 $ )q, +'*$3/2,3/2 ) #q#$3/2,"#+'#3/2,"

) C#q#$3/2,"#'#2,! by continuity of the trace.



Using relation (3.4), it leads to

#+q#0,! $ sup
g!L2,!-

,+q, g-

#g#0,!

) C sup
g!L2,!-

#q#$3/2,"#g#0,!

#g#0,!

) C#q#$3/2,".

y

Definition. For the discretization of M(!), we set

H%
1,I $ H0,%

1 # &%,I. (3.5)

The dimension of H%
1,I is the same as H%

1 [see (2.5)] but near the boundary, we use harmonic

functions instead of piecewise linear continuous functions.

B. Discrete Formulation

We propose the following discrete variational formulation of the Stokes problem based on

problem (2.13):

,% ! H0,%
1 , -% $ -%

0 # -%
%

! H%
1,I $ H0,%

1 # &%,I (3.6)

,&-%
0, &/- $ ,f, curl /- @/ ! H0,%

1 (3.7)

,-%
%, ' - $ $,-%

0, ' - @' ! &%,I (3.8)

,&,%, &1- $ ,-%
0 # -%

%, 1- @1 ! H0,%
1 . (3.9)

The above method is a conforming discretization of problem (2.13) since, as it was said in

remark 3.2, H%
1,I is a subset of M(!). Our approach for studying problem (3.6)–(3.9) follows

ideas of [10] and Ruas [25].

Proposition 3.5. Existence and uniqueness of a solution to problem (3.6)–(3.9). If f

! (L2(!))2, problem (3.6)–(3.9) has a unique solution (,%, -%) ! H0,%
1 0 H%

1,I, which depends

continuously on the datum f. There exists a strictly positive constant C independent of the mesh

such that

#-%#M # #&,%#0,! ) C#f#0,!. (3.10)

Proof. As ! is bounded, if Cp denotes the Poincaré constant, we have

@0 ! H0
1,!-, #0#0,! ) Cp"0"1,!.

Problem (3.7) is well posed according to Lax-Milgram’s lemma, and Poincaré’s inequality.

There exists a unique -%
0

! H0,%
1 satisfying [take / # -%

0 in (3.7)]

#&-%
0#0,!

2 $ #curl -%
0#0,!

2 ) #f#0,!#curl -%
0#0,!.



As -%
0

! H0
1(!), its M-norm is equal to its H1-norm (see Proposition 2.1) and

#-%
0#M ) .1 # Cp

2 #f#0,!. (3.11)

We now study Equation (3.8). Function -%
0 is given and problem (3.8) has a unique solution

-%
%, as the L2-scalar product is M-elliptic on &%,I (Proposition 2.3):

,-%
%, ' - $ $,-%

0, ' - @' ! &%,I.

Taking ' # -%
% and thanks to (3.11), function -%

% verifies

#-%
%#M $ #-%

%#0,! ) #-%
0#0,! ) .1 # Cp

2 #f#0,!. (3.12)

Finally, Equation (3.9) is formally identical to (3.7), so there exists (Lax-Milgram’s lemma

and Poincaré’s inequality) a unique ,% ! H0,%
1 such that

,&,%, &1- $ ,-%
0, 1- # ,-%

%, 1- @1 ! H0,%
1 ,

and then

#&,%#0,! ) Cp,#-%
0#0,! # #-%

%#0,!-.

Using (3.11) and (3.12), we obtain

#&,%#0,! ) C1#f#0,!. (3.13)

Combining (3.11), (3.12), and (3.13), we obtain the announced result (3.10). y

To obtain error estimates and thus convergence, we need a stability result (Proposition 3.14)

and an interpolation error (Proposition 3.12).

C. Interpolation Error

We recall the following result [14].

Theorem 3.6. Interpolation between Sobolev spaces. Let si and ti be two couples of positive

reals for i # 0 or i # 1 and p ! ! such that 1 ) p ) (. Let 7 be an operator of *(W s0,p(!);

W t0,p(!)) " *(W s1,p(!); W t1,p(!)) (* is the space of all linear and continuous functions). Then,

for all 7 ! ! " [0; 1], operator 7 belongs to the interpolate space *7 # *(W (1$7 )s0/7s1,p(!);

W (1$7 )t0/7t1,p(!)) and we have

#7#*7
) #7#*0

1$7#7#*1

7 .

Proposition 3.7. Regularity of components of functions in M(!). Let ' be in M(!), we know

(see Proposition 2.4) that ' can be split: ' # '0 / '% with '0
! H0

1(!) and '%
! &(!) (i.e.,

harmonic). Then, if ! is convex and if ' belongs to H2(!) " M(!) # H2(!), '0 and '% belong

also to H2(!). Moreover, there exists a constant C 4 0 such that



#'0#2,! ) C#'#2,!. (3.14)

#'%#2,! ) C#'#2,!. (3.15)

Proof. Let us recall that '0
! H0

1(!) is solution of

!%'0 $ %' in !

+'0 $ 0 on ".

If ' belongs to H2(!), its Laplacian belongs to L2(!) and by the regularity of the Laplacian

operator on a convex domain, '0 belongs to H2(!) (Agmon et al. [26]). Then, '% # ' $ '0

belongs also to H2(!). Moreover, we have

#'0#2,! ) C#%'#0,! ) C#'#2,!.

The inequality for '% # ' $ '0 is deduced from the previous one by the triangular inequality.y

Definition. Projection operator: Let pc be the L2-projection on the space of piecewise

constants $% defined in (3.1).

pc : L2,"- 3 $%

4 ' pc4

such that '
"

,pc4 . 4- ! q d+ $ 0 @q ! $%.

Remark 3.8. It is also possible to define the L2-projection on the space of piecewise linear

functions *% defined in (3.2), p* : L2(") 3 *%, which is such that, for all 4 ! L2("),

2" (p*4 $ 4) ! q d+ # 0 @q ! *%.

Let h% be the maximum diameter of triangles in #. The standard interpolation error for

one-dimensional problems [15] gives, for all 4 in H1("):

#4 . pc4#0," ) Ch%"4"1,". (3.16)

Lemma 3.9. For all 4 ! H1/2("), we have

#4 . pc4#0," ) Ch%
1/2#4#1/2,". (3.17)

Proof. Let I be the identity operator. As I $ pc is a continuous operator from L2(") into

L2(") with its norm bounded by a constant C1 and is also continuous from L2(") into H1(") with

its norm bounded by C2h% [see (3.16)], we deduce that I $ pc is continuous from L2(") into

H1/2(") (7 # 1/2 in Theorem 3.6) with its norm bounded by a constant times h%
1/2 which is

inequality (3.17). y



Proposition 3.10. For all 4 ! H1/2("), we have

#4 . pc4#$3/2," ) Ch%
3/2#4#1/2,". (3.18)

For all 4 ! H1("), we have

#4 . pc4#$3/2," ) Ch%
2#4#1,". (3.19)

Proof. By definition of the norm in H$3/2("), we have

#4 . pc4#$3/2," $ sup
8!H3/2,"-

)4 . pc4, 8*$3/2,3/2

#8#3/2,"

.

As H1/2(") and H3/2(") are contained in L2("), the duality product )4 $ pc4, 8*$3/2,3/2 can be

rewritten as 2" (4 $ pc4) ! 8 d+.

By definition 2" (4 $ pc4) ! 1 d+ # 0 @1 ! $%, so

)4 . pc4, 8*$3/2,3/2 $ '
"

,4 . pc4- ! ,8 . 1- d+ @1 ! $%

) #4 . pc4#0,"#8 . 1#0," 9 1 ! $% ,Cauchy-Schwarz inequality-

) #4 . pc4#0,"#8 . pc8#0," with 1 $ pc8 ! $%

) C1h%
1/2#4#1/2,"C2h%#8#1," using ,3.17- and ,3.16-

) Ch%
3/2#4#1/2,"#8#3/2,",

which ends the proof of (3.18).

Notice that if 4 belongs to H1("), using a classical interpolation estimate [see (3.16)], we

have #4 $ pc4#0," ) Ch%#4#1,", so we obtain

)4 . pc4, 8*$3/2,3/2 ) #4 . pc4#0,"#8 . pc8#0," with 1 $ pc8 ! $%

) C1h%#4#1,"C2h%#8#1,"

) Ch%
2#4#1,"#8#3/2,",

which leads to formula (3.19). y

Let 7% : H2(!)3 H%
1 be the classical Lagrange interpolation operator associated with mesh #.

Definition. The interpolation operator :% : &(!) " H2(!) 3 &%,I is defined by :%'
% # ;

where ; is such that



;,x- $ +pc,S$1'%-,x) #

"

G(x, y)!pc(S$1'%)(y) d+y @x ! !! .

We define the interpolation operator ,% from M(!) " H2(!) to H#

1,I # H0,%
1 # &%,I by the

relations:

,% : M,!- " H2,!- # ' $ '0 # '%
' ,%' $ 7%'

0 # :%'
%

! H%
1,I.

Remark 3.11. We can also define the interpolation operator :1% : &(!) " H2(!) 3 &%,I by

:1%'
% # ;, where ; is such that

;,x- $ +p*,S$1'%-,x) #'
"

G(x, y)!p*(S$1'%)(y) d+y @x ! !! ,

and ,1% from M(!) " H2(!) to H#

1,I # H0,%
1 # &%,I by the relations:

,1% : M,!- " H2,!- # ' $ '0 # '%
' ,1%' $ 7%'

0 # :1%'
%

! H%
1,I.

Proposition 3.12. Error estimates: For # in a regular family of triangulations (2(2 4 0

fixed), for h% small enough, and for ' given in M(!) decomposed into '0 and '%, if we assume

'0
! H2(!) " H0

1(!) and ' ! H2(!), then there exists some strictly positive constants, say C,

only dependent on 2, such that

#'0 . 7%'
0#M ) Ch%"'0"2,!. (3.20)

#'% . :%'
%#M ) Ch%

3/2#'#2,!. (3.21)

Moreover, if ' belongs to H5/2(!), we have

#'% . :%'
%#M ) Ch%

2#'#5/2,!. (3.22)

Proof. As H2(!) % $
0(!) when ! is two-dimensional, we can use the classical interpo-

lation operator, and we have the following interpolation error estimate (Ciarlet-Raviart [27]):

#'0 . 7%'
0#1,! ) Ch%"'0"2,!.

But #'0 $ 7%'
0#M # #'0 $ 7%'

0#1,! because '0 $ 7%'
0

! H0
1(!) (see Proposition 2.1), so

relation (3.20) is established, if h% is small enough.

We now interpolate the harmonic part '% of ' ! M(!). By definition '% verifies

!%'% $ 0 in !

+'% $ +' on ".

As ' is assumed to be in H2(!), its trace on ", +', belongs to H3/2("). As S is an

isomorphism from H s(") onto H s/1(") (see Theorem 3.3), there exists a unique q ! H1/2(")



such that Sq # ++q # +' on ". And because of uniqueness, +q # '% on !. Let now

q% # pcq ! $%, we recall that :%'
% is

:%'
%,x- $ +q%,x) #'

"

G(x, y)!q%(y) d+y @x ! !! .

So,

#'% . :%'
%#M $ #'% . :%'

%#0,! $ #+q . +q%#0,!.

As constants belong to $%, 2" (q $ q%) d+ # 0, i.e. q $ q% !
3
H$3/2("). Then proposition

3.4 gives

#+q . +q%#0,! ) C#q . q%#$3/2,".

Then, from inequality (3.18), we obtain

#q . q%#$3/2," $ #q . pcq#$3/2," ) Ch%
3/2#q#1/2,".

And finally

#'% . :%'
%#M ) Ch%

3/2#q#1/2," $ Ch%
3/2#S$1,' -#1/2,"

) Ch%
3/2#+'#3/2," because S is an isomorphism

) Ch%
3/2#'#2,! by continuity of the trace operator.

Notice that if ' is assumed to be in H5/2(!), its trace on ", +', belongs to H2("). So, there

exists a unique q ! H1(") such that Sq # ++q # +' on ". The same arguments as above lead

to the inequality:

#+q . +q%#0,! ) C#q . q%#$3/2,".

Then, from formula (3.19), we have

#q . q%#$3/2," $ #q . pcq#$3/2," ) Ch%
2#q#1,".

And finally

#'% . :%'
%#M ) Ch%

2#q#1," $ Ch%
2#S$1,' -#1,"

) Ch%
2#+'#2," because S is an isomorphism

) Ch%
2#'#5/2,! by continuity of the trace operator. y

Remark 3.13. Using linear interpolation on the boundary, we obtain

#'% . :1%'
%#M ) Ch%

2#'#2,!. (3.23)



To prove the inequality with :1%, we use the same arguments as above. Projection is done on

*% : q% # p*q ! *%, we define :1%'
% as the simple layer potential associated to q%, i.e.,

:1%'
%,x- $ +q%,x) #'

"

G(x, y)!q%(y) d+y @x ! !! .

As we have proved for projection pc, using classical interpolation and interpolation between

Sobolev spaces results, we have

#q . q%#$3/2," $ #q . p*q#$3/2," ) Ch%
2#q#1/2,".

The end of the proof, which leads to inequality (3.23), is the same as above.

D. Error Estimates

We define an auxiliary problem: Find 7% ! H0,%
1 , 8% # 8%

0 / 8%
%

! H%
1,I such that

! ,&8%
0, &/- $ ,&g, &/- @/ ! H0,%

1 .

,8%
%, ' - $ ,m, ' - @' ! &%,I.

,&7%, &1- $ ,&l, &1- # ,n, 1- @1 ! H0,%
1 .

(3.24)

Proposition 3.14. Stability of discrete formulation (3.24). Let g ! H0
1(!), m ! L2(!),

l ! H0
1(!), n ! L2(!). Then problem (3.24) has a unique solution (7%, 8%) ! H0,%

1 0 H%
1,I, which

is stable in the following sense: there exists a constant C only dependent on the mesh family such

that the following stability inequality holds:

#8%#M # #&7%#0,! ) C+#&g#0,! # #m#0,! # #&l#0,! # #n#0,!..

Proof. In the following, C will denote various constants.

In the first equation of problem (3.24) we take / # 8%
0, and using Poincaré’s inequality, we

obtain

#8%
0#M ) C#&8%

0#0,! ) C#&g#0,!,

as 8%
0 belongs to H0

1(!), its H1-norm is equal to its M-norm.

In the second equation of problem (3.24), we take ' # 8%
%, as %8%

% # 0, we obtain

#8%
%#M $ #8%

%#0,! ) #m#0,!.

Finally, in the last equation of problem (3.24), we take 1 # 7%. As 7% belongs to H0
1(!), using

Poincaré’s inequality, we have

#&7%#0,! ) C,#&l#0,! # #n#0,!-.

By combining these three inequalities, Proposition 3.14 is proven. y



Proposition 3.15. The error is bounded by the interpolation error. Let (-, ,) be the solution

of the continuous stream function-vorticity formulation (2.13) and (-%, ,%) solution of the

associated discrete problem (3.6)–(3.9). There exists a constant C 4 0 independent of # such

that

#- . -%#M # #, . ,%#1,! ) C,#-0 . 7%-
0#M # #-% . :%-

%#M # #, . 7%,#1,!-.

Proof. The continuous problem (2.13) is written with a discrete test function

' # '0 / '%
! H%

1,I since H%
1,I

% M(!) and with / ! H0,%
1

% H0
1(!):

! ,&-0, &/- $ ,f, curl /- @/ ! H0,%
1 .

,-%, ' - $ $,-0, ' - @' ! &%,I.

,&,, &1- $ ,-0 # -%, 1- @1 ! H0,%
1 .

(3.25)

The discrete problem is

! ,&-%
0, &/- $ ,f, curl /- @/ ! H0,%

1

,-%
%, ' - $ $,-%

0, ' - @' ! &%,I.

,&,%, &1- $ ,-%
0 # -%

%, 1- @1 ! H0,%
1 .

(3.26)

Subtracting (3.25) from (3.26), we obtain

! ,&,-0 . -%
0-, &/- $ 0 @/ ! H0,%

1 .

,-% . -%
%, ' - $ $,-0 . -%

0, ' - @' ! &%,I.

,&,, . ,%-, &1- $ ,,-0 . -%
0- # ,-% . -%

%-, 1- @1 ! H0,%
1 .

(3.27)

We now introduce the interpolants of , and - # -0 / -% on the mesh #. In the first equation

of problem (3.27), we add and subtract 7%-
0 and obtain

,&,-%
0 . 7%-

0-, &/- $ ,&,-0 . 7%-
0-, &/- @/ ! H0,%

1 . (3.28)

Adding and subtracting :%-
% in the second equation, we obtain

,-%
% . :%-

%, ' - $ ,-% . :%-
%, ' - # ,-0 . -%

0, ' - @' ! &%,I. (3.29)

And finally using same techniques for the last equation, we have

,&,,% . 7%,-, &1- $ ,&,, . 7%,-, &1- . ,-0 . -%
0, 1- . ,-% . -%

%, 1- @1 ! H0,%
1 .

(3.30)

Equations (3.28), (3.29), and (3.30) lead to the following problem:

& ,&,-%
0 . 7%-

0-, &/- $ ,&g, &/- @/ ! H0,%
1 .

,-%
% . :%-

%, ' - $ ,m, ' - @' ! &%,I

,&,,% . 7%,-, &1- $ ,&l, &1- # ,n, 1- @1 ! H0,%
1 ,



which is the auxiliary problem (3.24) previously defined with g # -0 $ 7%-
0 in H0

1(!),

m # (-% $ :%-
%) / (-0 $ -%

0) in L2(!), l # , $ 7%, in H0
1(!), n # $(-0 $ -%

0) $

(-% $ -%
%) in L2(!).

By applying the triangular inequality and Proposition 3.14, we have

#- . -%#M # #, . ,%#1,! ) #- . ,%-#M # #, . 7%,#1,!

interpolation error

# #,%- . -%#M # #7%, . ,%#1,!

) #- . ,%-#M # #, . 7%,#1,! # C,#&,-0 . 7%-
0-#0,! # #-% . :%-

% # -0 . -%
0#0,!

# #&,, . 7%,-#0,! # #-0 . -%
0 # -% . -%

%#0,!)

) #- . ,%-#M # #, . 7%,#1,! # C,#-0 . 7%-
0#M # #-% . :%-

%#M # #-0 . -%
0#0,!

# #&,, . 7%,-#0,! # #-0 . -%
0#0,! # #-% . -%

%#M),

which leads to the announced result. y

The inequality obtained in Proposition 3.15 and the interpolation error lead to the following.

Theorem 3.16. First convergence result. If # belongs to a regular family of triangulation (2

(2 4 0) and h% is small enough, the discrete problem (3.6)–(3.9) has a unique solution

(,%, -%) ! H0,%
1 0 H%

1,I, associated with a stable discretization of the Stokes problem (2.1)–(2.4).

If , ! H2(!) " H0
1(!) and - # -0 / -% such that - ! H2(!) and -0

! H2(!), then

? C,2 - 3 0, @# ! (2, #- . -%#M # #, . ,%#1,! ) C,2 -h%,"-0"2,! # #-#2,! # ","2,!-.

Proof. With the help of the inequality in Proposition 3.15 (C denotes various constants),

#- . -%#M # #, . ,%#1,! ) C,#-0 . 7%-%
0#M # #-% . :%-

%#M # #, . 7%,#1,!-

) C,h%"-0"2,! # h%
3/2#-#2,! # h%","2,!- by Proposition 3.12

) Ch%,"-0"2,! # #-#2,! # ","2,!- as h% can be assumed to be less or equal to 1. y

Remark 3.17. If ! is assumed to be convex, proposition 3.7 leads to

? C,2 - 3 0, @# ! (2, #- . -%#M # #, . ,%#1,! ) C,2 -h%,#-#2,! # ","2,!-.

Theorem 3.16 is important because it shows that using a space of harmonic functions along

the boundary gives an error of order !(h%) when - ! H2(!), which improves previous known

results and is equivalent to those proved in [12].

Theorem 3.18. Second convergence result. If ! is assumed to be convex and under the same

assumptions as in Theorem 3.16, we have

? C,2 - 3 0, @# ! (2, #- . -%#0,! # #, . ,%#0,! ) C,2 -h%
3/2,#-#2,! # #,#2,!-.



Under the same assumptions, if moreover - ! H5/2(!), we have

? C,2 - 3 0, @# ! (2, #- . -%#0,! # #, . ,%#0,! ) C,2 -h%
2,#-#5/2,! # #,#2,!-.

Proof. If - belongs to H2(!), from Proposition 3.12, formula (3.21), we know that

#-% . -%
%#0,! ) C,2 -h%

3/2#-#2,!.

If - belongs to H5/2(!), from Proposition 3.12, formula (3.22), we know that

#-% . -%
%#0,! ) C,2 -h%

2#-#5/2,!.

We just have to use

#-0 . -%
0#0,! ) C,2 -h%

2#-#2,! ) C,2 -h%
2#-#5/2,!,

and

#, . ,%#0,! ) C,2 -h%
2,#,#2,! # #-#5/2,!-.

These inequalities are proven using the classical Aubin-Nitsche argument when the domain !

is convex so that regularity on the adjoint problem is obtained ([22, 23]). y

The last part of the previous theorem says that if the solution is more regular than usual, the

convergence is of order 2. This is illustrated in the numerical examples in the next section where

the solutions are very regular.

Remark 3.19. If we use the linear interpolation for the boundary values of the vorticity instead

of piecewise constant one, we know from formula (3.23) that

#-% . -%
%#0,! ) C,2 -h%

2#-#2,!,

from which we deduce the following theorem.

Theorem 3.20. We assume that ! is convex, that # belongs to a regular family of triangu-

lations, that , ! H2(!) " H0
1(!) and that - ! H2(!). If we use space *%, we have

? C,2 - 3 0, @# ! (2, #- . -%#0,! # #, . ,%#0,! ) C,2 -h%
2,#-#2,! # #,#2,!-.

IV. NUMERICAL APPLICATIONS

The first numerical experiments have been performed on a unit square with an analytical

solution (Bercovier-Engelman test [28]):

f1,x, y- $ 256,x2,x . 1-2,12y . 6- # y,y . 1-,2y . 1-,12x2 . 12x # 2--



f2,x, y- $ $f1,y, x-,

for which we obtain , (x, y) # $128(y2(y $ 1)2x2(x $ 1)2)

and -(x, y) # 256(y2(y $ 1)2(6x2 $ 6x / 1) / x2(x $ 1)2(6y2 $ 6y / 1)). For the second

numerical experiments, we have extended the tests to circles. They have been performed on a

circle of radius 2 with an analytical solution (test suggested by Ruas [29]):

f1,x, y- $ $32y, f2,x, y- $ 32x,

which gives , (x, y) # (4 $ x2 $ y2)2 and -(x, y) # 32 $ 16x2 $ 16y2.

Remark 4.1. Notice that for error estimates on the circle, we have to add a boundary

approximation error. The boundary is approximated by polynomials of degree 1 and it seems

that this error is of the same order than the approximation error with polynomials of degree zero.

We have worked with unstructured meshes obtained with EMC2, mesh generator of Modulef

(Bernadou et al. [30]), see Fig. 1. Notice that structured meshes give good results without any

stabilization, see [2] and for numerical results see [3] and [5]. For the sake of simplicity, we use

the space $% of functions which are constant on each edge for the integral representation. It

would be interesting to test the linear integral representation but the results were so satisfying

with the constant one that we did not even try.

Remark 4.2. All the integrals for assembling the mass matrix in Equation (3.8) were

computed with the help of a Gauss formula using 7 quadrature points and we obtain results in

accordance with the theory. The cost of such an integration could be reduced by using less points

far from the boundary. Although errors due to numerical integration were not studied here, they

seem to be dominated by other errors and do not pollute results.

FIG. 1. Two unstructured meshes obtained by EMC2.



For the first test, the analytical vorticity attains its extremum on the middle of each edge of

the square and its value is then /16.00. And for the second one the extremum ($32) is attained

on the whole boundary. We recall that the number of discrete harmonic functions is equal to the

number of vertices on the boundary and that the classical method uses piecewise linear functions

for approximating the vorticity and the stream function. Figure 2 gives the values of the vorticity

on the boundary obtained by the classical and the integral method on the same mesh. In fact with

the classical method, extrema of the vorticity blow up on the boundary (see Fig. 2).

We recall that problem (2.6)–(2.9) is not stable and error bounds are in h%
1/2 for the L2-norm

of the vorticity—as numerically illustrated on Figs. 3 and 4—and h%
1$& for the H1-norm of the

stream function [2]. Using only constants on edges with regular solutions, we have obtained, as

FIG. 2. Comparison: vorticity on the boundary—Bercovier-Engelman test.

FIG. 3. Convergence orders—Bercovier-Engelman test.



expected by Theorem 3.18, convergence of order 2 for the L2-norm of the vorticity and for the

L2-norm of the stream function (see Figs. 3 and 4).

V. CONCLUSION

We have studied the well-posed Stokes problem in stream function and vorticity form. We have

shown that using a space of real harmonic functions is sufficient to obtain on the one hand a

better solution and on the other hand better estimations on the convergence than those obtained

previously. We have proposed a way of approaching numerically the space of real harmonic

functions with the help of an integral representation which yields a large gain of time compared

to previous results obtained in [12]. We have shown theoretically and numerically that by this

way we obtain convergence with optimal rate in some cases on the quadratic norm of the

vorticity.

We use the same method for a vorticity-velocity-pressure formulation of the Stokes problem

that allows more general boundary conditions [3, 5]. The results are not published yet but they

are really satisfying as, once again, the solution and the convergence of the method are

improved. We insist on the fact that the additional work of the method (the computation of the

matrix) needs to be done only once. So, the additional cost of our scheme shall be less important

for a more realistic problem like the time dependent Stokes or Navier-Stokes equations.
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