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The purpose of this paper is to describe a fully discrete approximation and its convergence to the con-

tinuum dynamical impact problem for the fourth-order Kirchhoff–Love plate model with nonpenetration

Signorini contact condition. We extend to the case of plates the theoretical results of weak convergence

due to Y. Dumont and L. Paoli, which was stated for Euler–Bernouilli beams. In particular, this provides

an existence result for the solution of this problem. Finally, we discuss the numerical results we obtain.

Keywords: variational inequalities; finite element method; elastic plate; dynamics with unilateral con-

straints; scheme convergence.

1. Introduction

The impact of linear elastic thin structures, such as beams, membranes or plates, is a domain where there

are still fundamental open questions despite a rather important literature. This includes, in particular,

the existence and uniqueness of solutions, the convergence and stability of numerical schemes, the

modelling of a restitution coefficient and the construction of energy-conserving schemes.

In the particular case of the vibro-impact problem between an Euler–Bernouilli beam and a rigid

obstacle, an existence result was shown by Dumont & Paoli (2006). They established the convergence

of the solution of a fully discrete problem to the continuum model. But there were no results on whether

energy is conserved in the limit or not. Indeed, it can be easily shown that uniqueness does not hold for

this system (see Ahn & Stewart, 2005, for a counterexample). Moreover, it is generally not possible to

prove that each solution to this problem is energy conserving. This is due to the weak regularity involved

since, in particular, velocities may be discontinuous.

The dynamic contact problem for von Karman plates is studied in Bock & Jarus̆ek (2008a,b). In

the first paper the authors show the existence of a solution, using penalization techniques, while other



POZZOLINI ET AL.

existence results are given in the second paper by the introduction of a viscosity term. Here our main goal

is to extend the Dumont and Paoli results to the case of Kirchhoff–Love plates. We present a convergence

result for a fully discrete scheme towards one solution of the continuous problem. This establishes both

an existence result for the solution of the continuous problem and ensures that one subsequence weakly

converges towards this solution. We do not establish a uniqueness result. Such a result would certainly

require the ability to express an additional impact law (see Paoli & Schatzman, 2007; Paoli, 2001).

Although the consideration of an impact law is something very natural for the modelling of rigid-body

impacts, this concept seems to be rather difficult to extend to the framework of thin deformable bodies,

especially with regard to the discretization.

The paper is organized as follows. In the next section an elastodynamical Kirchhoff–Love plate

model is described, as well as the vibro-impact model. In Section 3 the fully discrete approximation of

the problem (finite element model and time scheme) is introduced. Section 4 gives the most important

result of this paper, namely a convergence result for fully discrete schemes. Finally, in Section 5 we

present and discuss some numerical experiments.

2. Notation and statement of the problem

2.1 Variational formulation of the plate model

Let us consider a thin elastic plate, i.e., a plane structure for which one dimension, called the thick-

ness, is very small compared to the others. For this kind of structure, starting from a priori hypotheses

on the expression of the displacement fields, a two-dimensional problem is usually derived from the

three-dimensional elasticity formulation by means of integration along the thickness. Then the unknown

variables are set down on the midplane of the plate.

Let Ω be an open, bounded, connected subset of the plane R2, with Lipschitz boundary. It will

define the middle plane of the plate. Then the plate in its stress-free reference configuration coincides

with domain

Ωε = Ω × ]− ε, + ε[=
{

(x1, x2, x3) ∈ R3 / (x1, x2) ∈ Ω and x3 ∈ ]−ε ; ε[
}

,

where 2ε > 0 is called the thickness.

In plate theory, it is usual to consider the following approximation of the three-dimensional displace-

ments for (x1, x2, x3) ∈ Ωε:










u1(x1, x2, x3) = u1(x1, x2) + x3 ψ1(x1, x2),

u2(x1, x2, x3) = u2(x1, x2) + x3 ψ2(x1, x2),

u3(x1, x2, x3) = u3(x1, x2).

(2.1)

In these expressions, u1 and u2 are the membrane displacements of the midplane points, u3 is the de-

flection, while ψ1 and ψ2 are the section rotations. In the case of a homogeneous isotropic material, the

variational plate model splits into two independent problems: the first, called the membrane problem,

deals only with membrane displacements, while the second, called the bending problem, concerns de-

flection and rotations. In this paper we shall only address the bending problem, and we shall consider

the Kirchhoff–Love model, which can be seen as a particular case of (2.1) obtained by introducing the

so-called Kirchhoff–Love assumptions:

ψ = −∇u3 ⇔
{

ψ1 = −∂1 u3,

ψ2 = −∂2 u3,

c.prunier
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where ∂α stands for the partial derivative with respect to xα , for α = 1 or 2. Consequently, the deflection

is the only unknown for the bending Kirchhoff–Love plate problem. For convenience, it will be denoted

by u for the remainder of this paper. As far as loading is concerned, the plate is subject to a volume force

F and two surface forces, say G+ and G−, applied on the top and bottom surfaces. Then, if we assume

that the previous forces are purely perpendicular to the midplane, the resulting transverse loading is

fR = G+
3 + G−

3 +
∫ ε

−ε

F3 dx3,

where G+
3 , G

−
3 and F3 are, respectively, the third components of G

+, G− and F . So, the variational

formulation of the Kirchhoff–Love elastodynamical model for a thin elastic clamped/free plate is:

find u = u(x, t) with (x, t) ∈ Ω × [0, T ] such that for any w ∈ V
∫

Ω

∂2t tu(x, t) w(x) dx +
∫

Ω

D

2ρε

[

(1− ν) ∂2αβu + ν ∆u δαβ

]

∂2αβw dx =
∫

Ω

f w dx, (2.2)

with f =
fR

2ρε
(ρ and ε are assumed to be constant all along the plate), and

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), ∀x ∈ Ω, (2.3)

where ∂2t tu =
∂2u

∂t2
, ∂2αβu =

∂2u

∂xα ∂xβ
, and the bending modulus is D =

2 E ε3

3 (1− ν2)
for a plate made

of a homogeneous and isotropic material, for which the mechanical constants are its Young’s modulus

E , Poisson’s ratio ν and mass density ρ. As usual, we have E > 0, 0 < ν < 0.5 and ρ > 0. Moreover,

δαβ is the Kronecker symbol and the summation convention over repeated indices is adopted, Greek

indices varying in {1, 2}. The plate is assumed to be clamped on a nonzero Lebesgue-measure part of
the boundary ∂Ω denoted Γc and free on Γf, such that ∂Ω = Γc ∪ Γf. Then the space of admissible

displacements is

V = {w ∈ H2(Ω)/w(x) = 0 = ∂nw(x) ∀x ∈ Γc}, (2.4)

where ∂nw is the normal derivative along Γc.

In order to guarantee that (2.2) is well posed, we use the following result.

LEMMA 2.1 The bilinear form a : V× V → R defined by

a(u, v) =
∫

Ω

D

2ρε

[

(1− ν) ∂2αβu + ν ∆u δαβ

]

∂2αβv dx (2.5)

is a scalar product on V, which is equivalent to the canonical scalar product of H2(Ω) defined on V.

The bilinear map a is obviously continuous in V. Then there exists a strictly positive constant, say M ,

such that for any u ∈ V then a(u, u) ! M ‖ u ‖2
V
. The converse inequality is due to the coercivity of

a(·, ·), which can be established using Petree–Tartar’s lemma which we recall here.

LEMMA 2.2 (Ern & Guermond, 2004) Let X,Y,Z be three Banach spaces, A ∈ L(X,Y) injective,

T ∈ L(X,Z) compact. If there exists c > 0 such that c ‖x‖X ! ‖Ax‖Y + ‖T x‖Z for any x ∈ X, then

there exists α > 0 such that

α ‖x‖X ! ‖Ax‖Y ∀x ∈ X.
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Proof (Lemma 2.1). Let us remark that

a(u, u) =
∫

Ω

D

2ρε

[

(1− ν) ∂2αβu + ν ∆u δαβ

]

∂2αβu dx

=
∫

Ω

D

2ρε

[

(1− ν) ∂2αβu ∂2αβu + ν (∆u)2
]

dx

"
(1− ν)D

2ρε

∫

Ω

∂2αβu ∂2αβu dx as ν > 0

=
(1− ν)D

2ρε
‖ Hess(u) ‖2

Y
,

Hess(u) being the Hessian matrix of u and with Y =
(

L2(Ω)
)4
. Now Petree–Tartar’s lemma is applied

with A defined from X = V to Y by Au = Hess(u), which is injective because of the boundary condi-

tions, Γc having a nonzero measure in ∂Ω . Setting Z = H1(Ω) and T = idX,Z, which is compact, we

obtain the V-coercivity of A, and consequently of a, as ν < 1. #

2.2 Vibro-impact formulation of the plate model

Let us now introduce the dynamic frictionless Kirchhoff–Love equation with Signorini contact condi-

tions along the plate. We assume that the plate motion is limited by rigid obstacles, located above and

below the plate (see Fig. 1). So, the displacement is constrained to belong to the convex set K ⊂ V

given by

K = {v ∈ V/g1(x) ! v(x) ! g2(x) ∀x ∈ Ω}, (2.6)

where g1 and g2 are two mappings from Ω to R̄ := R ∪ {−∞, +∞} such that there exists g > 0 with

g1(x) ! −g < 0 < g ! g2(x) ∀x ∈ Ω. (2.7)

Since impact will occur in this system, classical regular solutions cannot be expected. In particular,

the velocities may be discontinuous. To set the weak formulation, the following function spaces are

FIG. 1. Example of bending a clamped plate between rigid obstacles.
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introduced:

H= L2(Ω),

V= {w ∈ H2(Ω)/w(x) = 0 = ∂nw(x) ∀x ∈ Γc},

Ũ= {w ∈ L2(0, T ; K), ẇ ∈ L2(0, T ; L2(Ω))},

U= {w ∈ L∞(0, T ; K), ẇ ∈ L∞(0, T ; L2(Ω))},

where ẇ = ∂tw =
∂w

∂t
, and T > 0 is the length of the plate-motion study. The norm in H will be

denoted by | · |H.
The frictionless elastodynamic problem for a plate between two rigid obstacles consists in finding

u ∈ Ũ with u(·, 0) = u0 in K and u̇(·, 0) = v0 such that

−
∫ T

0

∫

Ω

∂tu∂t (w̃ − u) dx dt +
∫ T

0

a(u(·, t), (w̃ − u)(·, t)) dt

"

∫

Ω

v0(x)(w̃(x, 0) − u0(x)) dx +
∫ T

0

∫

Ω

f (w̃ − u) dx dt ∀w̃ ∈ Ũ, w̃(·, T ) = u(·, T ). (2.8)

REMARK 2.3 The discretization of (2.8) does not describe the motion completely (Paoli, 2001); in

addition, it would require an impact law. For an impact at (x0, t0), this law is given by a relation between

velocities before and after impact, as

∂u

∂t
(x0, t

+
0 ) = −e

∂u

∂t
(x0, t

−
0 ), (2.9)

where e belongs to [0, 1]. Since one can only guarantee that the velocity is L2(Ω) in space, it is not

easy to express (2.9) rigorously. Moreover, in Paoli & Schatzman (2007), the authors observe that the

restitution coefficient for a bar is a rather ill-defined concept. They observed that the apparent restitution

coefficient depends very strongly on the initial angle of the bar with the horizontal. In the particular

case of a slender bar dropped on a rigid foundation, the chosen value of the restitution coefficient does

not seem to have great influence on the limit displacement when the space step tends to zero, as has

been shown in Paoli & Schatzman (2007). The idea to explicitly incorporate the restitution coefficient

into (2.8) seems a rather problematic task since the postimpact normal velocity at a point due to the

impact force would need to be separated from the postimpact normal velocity due to elastic waves.

Therefore, knowing whether our schemes will simulate the experimental behaviour is an interesting

question.

3. Full discretization of the problem

3.1 Finite element model for the plate problem

Let us begin with the space discretization of the displacement. The Kirchhoff–Love model corresponds

to a fourth-order partial differential equation. Consequently, a conformal finite element method needs

the use of C1 (continuously differentiable) finite elements. Here we consider the classical Argyris tri-

angle, which uses P5 polynomials, and the Fraeijs de Veubeke–Sanders quadrilateral (reduced FVS);



FIG. 2. FVS quadrilateral. Location of degrees of freedom and subtriangles.

see Ciarlet (1978). For the FVS element, the quadrilateral is divided into four subtriangles (see Fig. 2).

The basis functions are P3 polynomials on each subtriangle and matched C
1 across each internal edge.

In addition, to decrease the number of degrees of freedom, the normal derivative is assumed to vary

linearly along the external edges of the element (this assumption does not hold on the internal edges).

Finally, for FVS quadrilaterals, there are only three degrees of freedom at each node: the value of the

function and its first derivatives. Let us assume from now on that h > 0 stands for the mesh parameter

and that Vh is a finite-dimensional subspace of V built using the previous finite element methods. Then,

following Ciarlet (1978) for Argyris triangles and Ciarlet (1991) for FVS quadrilaterals, for all w ∈ V
there exists a sequence (wh)h>0 of elements of V

h such that

‖wh − w‖V → 0 when h → 0.

Finally, let us remark that there also exist some nonconformal approximations (see Brenner et al., 2012),

but we do not use them here because we develop our theory within the frame of conformal methods.

3.2 Time discretization

Now we consider the time discretization of problem (2.8). For N ∈ N
∗, the time step is denoted by

∆t = T/N . The time scheme is initialized by choosing uh0 and u
h
1 in K

h = K ∩ V
h such that

lim
h→0, ∆t→0

‖uh0 − u0‖V +
∣

∣

∣

uh1 − uh0
∆t

− v0

∣

∣

∣

H
= 0. (3.1)

As far as the loading is concerned, we assume that f belongs to L2(0, T ; L2(Ω)). Then, for all x ∈ Ω

and n ∈ {1, . . . , N − 1}, we set

fn(x) =
1

∆t

∫ (n+1)∆t

n∆t

f (x, s) ds. (3.2)



For time discretization, we consider the corresponding fully discrete scheme, which consists in find-

ing uhn+1 for all n ∈ {2, . . . , N − 1}, the solution of:






















find uhn+1 ∈ Kh such that

(w − uhn+1)
TM

(

uhn+1 − 2uhn + uhn−1

(∆t)2

)

+ (w − uhn+1)
TK(βuhn+1 + (1− 2β)uhn + βuhn−1)

" (w − uhn+1)
T f nβ ,

(3.3)

which is a classical Newmark scheme with parameters β and γ = 1/2. If (ψi )i denotes the finite element

basis functions, then in the previous expression:

• f nβ is the loading, where

f
nβ
i =

∫

Ω

(β fn+1 + (1− 2β) fn + β fn−1) ψi dx ;

• M is the mass matrix, where

Mi j =
∫

Ω

ψiψ j dx ; (3.4)

• K is the rigidity matrix, where

Ki j = a(ψi , ψ j ). (3.5)

Let us remark that the previous inequality is also equivalent to the inclusion:























find uhn+1 ∈ Kh such that
(M+ β(∆t2) K)uhn+1 + (∆t2) ∂IKh (u

h
n+1) ∋ f hn

where

f hn = (2M− (1− 2β)(∆t2K) uhn − (M+ β(∆t2K) uhn−1 + (∆)t2 f nβ .

(3.6)

As Kh is a nonempty, closed, convex subset of Wh and thanks to Lemma 2.1, we easily obtain by

induction on n that uhn+1 is uniquely defined for all n ∈ {1, . . . , N − 1}. This kind of variational

inequality has been intensively studied by Paoli and Schatzman (see Paoli, 2001; Paoli & Schatzman,

2007).

4. A convergence result for a Newmark−Dumont−Paoli–type scheme

The discrete problem associated to (3.3) is:































find uhn+1 ∈ Kh such that for all wh ∈ Kh
∫

Ω

uhn+1 − 2uhn + uhn−1

(∆t)2
(wh − uhn+1) dx + a

(

βuhn+1 + (1− 2β)uhn + βuhn−1, wh − uhn+1

)

"

∫

Ω

[

β fn+1 + (1− 2β) fn + β fn−1

](

wh − uhn+1

)

dx .



Dumont & Paoli (2006) studied the same kind of problem, corresponding to a fully discrete beam prob-

lem. They established unconditional stability and gave a convergence result for β = 1/2, whereas a

conditional stability result is obtained when β ∈ [0, 1/2[. In the following, we shall adapt their proof

to the case of a Kirchhoff–Love plate, restricting ourselves to the case β = 1/2. So the fully discrete

scheme we consider is:






























find uhn+1 ∈ Kh such that for all wh ∈ Kh
∫

Ω

uhn+1 − 2uhn + uhn−1

(∆t)2

(

wh − uhn+1

)

dx + a
(

uhn+1 + uhn−1

2
, wh − uhn+1

)

"

∫

Ω

fn+1 + fn−1

2

(

wh − uhn+1

)

dx .

(4.1)

The following result, which states that the discrete solution is uniformly bounded in time, is straight-

forwardly obtained by adapting the proof of Dumont & Paoli (2006, Proposition 3.1).

LEMMA 4.1 Let β = 1/2, then there exists a positive constant C( f, u0, v0) depending only on the data,

such that for all h > 0 and for all N " 1

∣

∣

∣

uhn+1 − uhn
∆t

∣

∣

∣

2

H
+

1

2
a
(

uhn, u
h
n

)

+
1

2
a
(

uhn+1, u
h
n+1

)

! C( f, u0, v0) (4.2)

for n ∈ {1, . . . , N − 1}, where
(

uhn+1

)

1 ! n ! N−1
are solutions of problem (4.1).

Now let us build the sequence of approximate solutions (uh,N )h>0,N"1 of problem (4.1) by linear

interpolation:










if t ∈ [n∆t, (n + 1)∆t], 0 ! n ! N − 1, we set

uh,N (x, t) = uhn(x)
(n + 1)∆t − t

∆t
+ uhn+1(x)

t − n∆t
∆t

,

(4.3)

which is defined on Ω × [0, T ]. Let us observe that these functions are continuous in time (obvious)

and space (for all n, uhn belongs to H
2(Ω), which is included in C0(Ω̄)). Moreover, because of (4.2),

for all h > 0 and N " 1, the functions uh,N belong to L∞(0, T ; V) and are uniformly bounded in this

space. As u̇h,N (x, t) =
uhn+1(x) − uhn(x)

∆t
for t ∈ [n∆t, (n + 1)∆t], using (4.2) again, functions u̇h,N

belong to L∞(0, T ; L2(Ω)) and are also uniformly bounded in this space. So there exists a subsequence

still denoted (uh,N )h>0,N"1 and u ∈ U such that we have the following convergences:

uh,N ⇀ u weakly* in L∞(0, T ; V),

u̇h,N ⇀ u̇ weakly* in L∞(0, T ; L2(Ω)).

As the injection H2(Ω) ֒→ H1+ξ (Ω) is compact (Rellich’s lemma, for ξ < 1), and with Simon’s

lemma (Simon, 1987, Corollary 4, p. 85), we deduce that
{

w ∈ L∞(0, T ; V), ẇ ∈ L∞(0, T ; L2(Ω))
}

is compactly embedded in C0(0, T ; H1+ξ (Ω)) and then in C0([0, T ] × Ω̄). Therefore, after another

subsequence extraction if necessary, we have

uh,N → u strongly in C0(0, T ; H1+ξ (Ω)) and in C0([0, T ] × Ω̄).



Consequently, we obtain the following results.

• As L∞(0, T ; L2(Ω)) is included in L2(0, T ; L2(Ω)), u̇ belongs to this space. Moreover, as all

functions uh,N belong to L2(0, T ; K), u also belongs to it. So u belongs to Ũ.

• For every h and N , uh,N (x, 0) = uh0(x), which converges towards u0 in V (see (3.1)). As

V ⊂ H1+ξ (Ω) with continuous injection, then u(·, 0) = u0.

Then we shall prove the following result.

THEOREM 4.2 Let β = 1/2. Then the sequence of approximate solutions (uh,N )h>0,N"1 given by (4.3)

converges weakly* to u in {w ∈ L∞(0, T ; V)/ẇ ∈ L∞(0, T ; L2(Ω))}. Moreover, u belongs to Ũ, is

such that u(·, 0) = u0 and is a solution of problem (2.8).

The corollary is that the frictionless elastodynamic problem for a Kirchhoff–Love bending plate

between two rigid obstacles has at least one solution.

Proof (Construction of a discrete test function.)

To obtain (2.8) from (4.1), a first point is to associate to any test function w̃ a discrete one which is close

to it. A natural idea would be to define whn as the linear projection, defined by the bilinear form a, on the

space Vh , of an approximate value of w̃ at time n∆t . Unfortunately, this projection does not preserve

the unilateral constraints. Then this choice would not necessarily give a test function in Kh .

So, let w̃ be a test function such that w̃ ∈ Ũ and w̃(·, T ) = u(·, T ). For ε ∈ ]0, T/2[, we define φ

as a C1 function such that










0 ! φ(t) ! 1, t ∈ [0, T ],

φ(t) = 0, t ∈ [T − 3ε/2, T ],

φ(t) = 1, t ∈ [0, T − 2ε].

(4.4)

We set w = (1 − φ)u + φw̃. Then, by construction, w(·, t) = u(·, t) for all t ∈ [T − 3ε/2, T ]. And,

since K is convex we immediately have w ∈ Ũ.

Now let η ∈ ]0, ε/2[ and χ ∈ ]0, 1[. Following Dumont & Paoli (2006), we define wη,χ by

wη,χ (x, t) = u(x, t) +
1

η

∫ t+η

t

((1− χ)w(x, s) − u(x, s)) ds, t ∈ [0, T − ε/2]. (4.5)

Since u ∈ U and w ∈ Ũ we clearly have











wη,χ − u ∈ C0(0, T − ε/2; V),

wη,χ ∈ L∞(0, T − ε/2; V) ∩ C0(0, T − ε/2; H1+ξ (Ω)),

ẇη,χ ∈ L2(0, T − ε/2; L2(Ω)).

Moreover, we can select η such thatwη,χ strictly satisfies the constraint. More precisely, for all t ∈ [0, T

−ε/2] and for all x ∈ Ω ,

wη,χ (x, t) =
1

η

∫ t+η

t

(1− χ)w(x, s) ds + u(x, t) −
1

η

∫ t+η

t

u(x, s) ds.

Let us recall that, in the definition of the convex set K, a scalar g is introduced such that

g1(x) ! −g < 0 < g ! g2(x) ∀x ∈ Ω.
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First, as w ∈ Ũ, we have g1(x) ! w(x, t) ! g2(x) for all x and t . So,

g1(x) + χg ! (1− χ)g1(x) !
1

η

∫ t+η

t

(1− χ)w(x, s) ds ! (1− χ)g2(x) ! g2(x) − χg.

Second, let us recall that u belongs to C0([0, T ] × Ω̄). Thus, by uniform continuity on a compact set,

for all δ belongs to ] 0, χg/2[ (constant g > 0 is defined by (2.7)), there exists η > 0 such that for all x ,

|u(x, t) − u(x, s)| < δ whenever |t − s| < η. Then

∣

∣

∣u(x, t) −
1

η

∫ t+η

t

u(x, s) ds
∣

∣

∣ !
1

η

∫ t+η

t

∣

∣u(x, t) − u(x, s)
∣

∣ ds !
1

η
η δ = δ < χ

g

2
.

Finally, we have

g1(x) +
χ g

2
! wη,χ (x, t) ! g2(x) −

χ g

2
∀ x ∈ Ω, ∀ t ∈ [0, T − ε/2], (4.6)

which ensures that wη,χ (x, t) belongs to [g1(x) + χg/2, g2(x) − χg/2]. #

LEMMA 4.3 (Construction of a discrete test function.)

For x belongs toΩ , let whn be

whn (x) =
{

uhn+1(x) + πh(wη,χ (x, n∆t) − u(x, n∆t)) if n∆t ! T − ε,

uhn+1(x) if n∆t > T − ε,

where πh is linear projection, defined by the bilinear form a, on space Vh . Then there exists h0 >

0 and N0 " 1 such that, for all h ∈ ]0, h0[ and for all N " N0 , whn belongs to Kh for all

n belong to {1, . . . , N − 1}.

Proof

• It is obvious that whn belongs to V
h and Kh when n∆t > T − ε.

• Otherwise, when n∆t ! T − ε, whn is written as

whn (x) = uh,N (x, (n + 1)∆t) − u(x, (n + 1)∆t)

+ u(x, (n + 1)∆t) − u(x, n∆t) + wη,χ (x, n∆t)

+ (πh − I d)(wη,χ (x, n∆t) − u(x, n∆t)).

First, as (uh,N )h>0,N"1 converges strongly to u in C
0(0, T ; H1+ξ (Ω)), and using the continuity of the

canonical injection from H1+ξ (Ω) into C0(Ω̄), for h small enough and N large enough, we obtain

sup
x∈Ω̄

|uh,N (x, (n + 1)∆t) − u(x, (n + 1)∆t)| ! C‖uh,N − u‖C0(0,T ;H1+ξ (Ω)) !
χ g

6
.

Second, u is continuous on the compact set [0, T ] × Ω̄ . So, by uniform continuity, there exists ∆t0 or

N0 = T/∆t0, such that if ∆t ! ∆t0 or N " N0, we have

sup
x∈Ω̄

|u(x, (n + 1)∆t) − u(x, n∆t)| !
χ g

6
.
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Third, let us introduce the constant γh , which depends on h: because of the canonical embedding from

V to H1+ξ (Ω) and the convergence of the finite element scheme, for all h > 0, there exists γh such

that

∀w ∈ V, ‖πh w − w‖H1+ξ (Ω) ! γh ‖w‖V and lim
h→0

γh = 0. (4.7)

Then, for h small enough,

sup
x∈Ω̄

|(πh − I d)(wη,χ (x, n∆t) − u(x, n∆t))|!C ‖(πh − I d)(wη,χ (·, n∆t) − u(·, n∆t))‖H1+ξ (Ω)

!C γh ‖wη,χ − u‖L∞(0,T−ε/2;V) !
χ g

6
.

Finally, using the previous results, for h small enough and N large enough, we have

−
χ g

2
! whn (x) − wη,χ (x, n∆t) !

χ g

2

for all x ∈ Ω and n ∈ {1, . . . , N − 1}, which leads to

g1(x) ! wη,χ (x, n∆t) −
χ g

2
! whn (x) ! wη,χ (x, n∆t) +

χ g

2
! g2(x),

by using (4.6). And we can conclude that whn belongs to K
h . #

4.1 Transformation of inequality

Now, our goal is to show that the limit u is a solution of the continuous impact problem (2.8). So, to

use the previous lemma, in all the following we will assume that h ∈ ]0, h0[ and N " N0. Thus, we set

∆t = T/N . In (4.1) we take wh = whn , we multiply by ∆t and sum over n to obtain

N−1
∑

n=1

(

∫

Ω

uhn+1 − 2uhn + uhn−1

(∆t)2

(

whn − uhn+1

)

dx

)

∆t +
N−1
∑

n=1

(

1

2
a

(

uhn+1 + uhn−1, w
h
n − uhn+1

)

)

∆t

"

N−1
∑

n=1

(

1

2

∫

Ω

( fn+1 + fn−1)
(

whn − uhn+1

)

dx

)

∆t. (4.8)

From the definition of the discrete test function (Lemma 4.3), we have whn − uhn+1 = 0 as far as n∆t >

T − ε. So the above sums end at the integer N ′, which is the integer part of
(T − ε)

∆t
.



4.8) can be rewritten as

N ′
∑

n=1

∫

Ω

uhn+1 − 2uhn + uhn−1

(∆t)2

(

whn − uhn+1

)

dx

=
N ′
∑

n=1

∫

Ω

(

uhn+1 − uhn
∆t

−
uhn − uhn−1

∆t

)

whn − uhn+1

∆t
dx

=
∫

Ω

uh
N ′+1

− uh
N ′

∆t

wh
N ′ − uh

N ′+1

∆t
dx −

N ′
∑

n=1

∫

Ω

uhn − uhn−1

∆t

(

whn − uhn+1

)

−
(

whn−1 − uhn
)

∆t
dx

−
∫

Ω

uh1 − uh0
∆t

wh0 − uh1
∆t

dx

= −
N ′+1
∑

n=1

∫

Ω

uhn − uhn−1

∆t

(

whn − uhn+1

)

−
(

whn−1 − uhn
)

∆t
dx −

∫

Ω

uh1 − uh0
∆t

wh0 − uh1
∆t

dx,

as wh
N ′+1

− uh
N ′+2

= 0. Finally, we have

∫

Ω

uh1 − uh0
∆t

(

wh0 − uh1
)

dx +
N ′
∑

n=1

(

1

2

∫

Ω

( fn+1 + fn−1)
(

whn − uhn+1

)

dx

)

∆t

!

N ′
∑

n=1

(

1

2
a

(

uhn+1 + uhn−1, whn − uhn+1

)

)

∆t

−
N ′+1
∑

n=1

(

∫

Ω

uhn − uhn−1

∆t

(

whn − uhn+1

)

−
(

whn−1 − uhn
)

∆t
dx

)

∆t. (4.9)

The goal of the remainder of this proof is to make h and∆t tend to zero. So each term of the previous

expression will be examined separately in the four following steps.

Step 1. By definition, wh0 (x) − uh1(x) = πh(wη,χ (x, 0) − u(x, 0)). Then
∫

Ω

uh1 − uh0
∆t

(

wh0 − uh1
)

dx =
∫

Ω

uh1 − uh0
∆t

(πh − I d)(wη,χ (x, 0) − u(x, 0)) dx

+
∫

Ω

uh1 − uh0
∆t

(wη,χ (x, 0) − u(x, 0)) dx .

So, (4.7) leads to

|(πh − I d)(wη,χ (·, 0) − u(·, 0))|H ! ‖(πh − I d)(wη,χ (·, 0) − u(·, 0))‖H1+ξ (Ω)

! γh ‖(wη,χ (·, 0) − u(·, 0))‖V,

with lim
h→0

γh = 0. Finally, from (3.1), it is known that lim
h→0, ∆t→0

∣

∣

∣

uh1 − uh0
∆t

− v0

∣

∣

∣

H
= 0, and we

obtain



∫

Ω

uh1 − uh0
∆t

(

wh0 − uh1
)

dx
h,∆t → 0−→

∫

Ω

v0(x)(wη,χ (x, 0) − u(x, 0)) dx . (4.10)

Step 2. The second term of (4.9) can be split in two parts of the same following form:

N ′
∑

n=1

∫

Ω

fn′ (whn − uhn+1) dx ∆t =
N ′
∑

n=1

∫

Ω

fn′(x) πh(wη,χ (x, n∆t) − u(x, n∆t)) dx ∆t

=
N ′
∑

n=1

∫

Ω

fn′(x)(πh − I d)(wη,χ (x, n∆t) − u(x, n∆t)) dx ∆t

+
N ′
∑

n=1

∫ (n′+1)∆t

n′∆t

∫

Ω

f (x, s)
[

(wη,χ (x, n∆t) − u(x, n∆t) )

− (wη,χ (x, s) − u(x, s))
]

dx ds

+
N ′
∑

n=1

∫ (n′+1)∆t

n′∆t

∫

Ω

f (x, s) (wη,χ (x, s) − u(x, s)) dx ds

≡ S1 + S2 + S3

from the definition of fn′ (see (3.2)), and those of the discrete test function whn . Here we have

n′ = n + 1 or n′ = n − 1. Let us examine each of these terms successively.

(1) As in Step 1, (4.7) leads to

|(πh − I d)(wη,χ (·, n∆t) − u(·, n∆t))|H ! γh ‖(wη,χ (·, n∆t) − u(·, n∆t))‖V
! γh ‖wη,χ − u‖L∞(0,T−ε/2;V)

for all n ∈ {1, . . . , N ′}. Then we deduce that

|S1| =
∣

∣

∣

N ′
∑

n=1

∫

Ω

fn′(x) (πh − I d)(wη,χ (x, n∆t) − u(x, n∆t)) dx ∆t
∣

∣

∣

!





N ′
∑

n=1

| fn′ |H ∆t



 γh ‖wη,χ − u‖L∞(0,T−ε/2;V)

!

(√
T ‖ f ‖L2(0,T ;H)

)

γh ‖wη,χ − u‖L∞(0,T−ε/2;V)
h → 0−→ 0.

(2) The definition of wη,χ , (4.5), leads to

(wη,χ (x, n∆t) − u(x, n∆t)) − (wη,χ (x, s) − u(x, s))

=
1

η

∫ n∆t+η

n∆t

((1− χ)w(x, t) − u(x, t)) dt −
1

η

∫ s+η

s

((1− χ)w(x, t) − u(x, t)) dt

=
1

η

∫ s

n∆t

((1− χ)w(x, t) − u(x, t)) dt −
1

η

∫ s+η

n∆t+η

((1− χ)w(x, t) − u(x, t)) dt.



Moreover, if ϕ belongs to L2(0, T ; H), a and b being such that 0 ! a < b ! T , one has

∣

∣

∣

∫ b

a

ϕ(·, t) dt
∣

∣

∣

2

H

=
∫

Ω

(∫ b

a

ϕ(x, t) dt

)2

dx

! (b − a)
∫

Ω

∫ b

a

ϕ2(x, t) dt dx ! (b − a) ‖ϕ‖2
L2(0,T ;H)

or else
∣

∣

∣

∫ b

a

ϕ(·, t) dt
∣

∣

∣

H
!

√
b − a ‖ϕ‖L2(0,T ;H).

This result implies that

|(wη,χ (·, n∆t) − u(·, n∆t)) − (wη,χ (·, s) − u(·, s))|H

!
2

√
|s − n∆t |

η
‖(1−χ)w−u‖L2(0,T ;H)

!
2

√
|s − n∆t |

η
‖(1−χ)w−u‖L2(0,T ;V).

As s belongs to [(n − 1)∆t, n∆t] or [(n + 1)∆t, (n + 2)∆t], in all cases we obtain

|S2| =
N ′
∑

n=1

∫ (n′+1)∆t

n′∆t

∫

Ω

f (x, s)
[

(wη,χ (x, n∆t) − u(x, n∆t))

− (wη,χ (x, s) − u(x, s))
]

dx ds

!





N ′
∑

n=1

∫ (n′+1)∆t

n′∆t
| f (·, s)|H ds





2
√
2 ∆t

η
‖(1− χ)w − u‖L2(0,T ;V)

!
√
T ‖ f ‖L2(0,T ;H)

2
√
2 ∆t

η
‖(1− χ)w − u‖L2(0,T ;V)

∆t → 0−→ 0.

(3) Finally, as wη,χ − u belongs to C0(0, T − ε/2; V), which is contained in L2(0, T ; H), as

f is in L2(0, T ; H) and N ′ is the integer part of
T − ε

∆t
, then we can make ∆t go to zero

and obtain

S3 =
N ′
∑

n=1

∫ (n′+1)∆t

n′∆t

∫

Ω

f (x, s) (wη,χ (x, s) − u(x, s)) dx ds

=



















∫ (N ′+2)∆t

2∆t

∫

Ω

f (x, s) (wη,χ (x, s) − u(x, s)) dx ds if n′ = n + 1

∫ N ′∆t

0

∫

Ω

f (x, s) (wη,χ (x, s) − u(x, s)) dx ds if n′ = n − 1

∆t → 0−→
∫ T−ε

0

∫

Ω

f (x, s) (wη,χ (x, s) − u(x, s)) dx ds.



So, we can conclude this step and have

N ′
∑

n=1

(

1

2

∫

Ω

( fn+1 + fn−1)(w
h
n − uhn+1) dx

)

∆t

h, ∆t → 0−→
∫ T−ε

0

∫

Ω

f (wη,χ − u) dx ds. (4.11)

Step 3. We carry on with the convergence of the third term of (4.9). Here we shall use some results

which we will reuse later.

• The bilinear form a defines a scalar product on V, which is equivalent to the canonical scalar

product (see Lemma 2.1). So there exists C > 0 such that |a(w,w)| ! C ‖w‖V for all

w ∈ V.

• πh is the linear projection on the space V
h defined by the bilinear form a. In particular, for all

wh ∈ V
h and v ∈ V, a(wh, πhv) = a(wh, v).

Now, let us observe that

1

2

N ′
∑

n=1

a
(

uhn+1 + uhn−1, w
h
n − uhn+1

)

∆t

=
1

2
a

(

uh0, w
h
0 − uh1

)

∆t +
1

2

N ′+1
∑

n=1

a
(

uhn−1,
(

whn − uhn+1

)

−
(

whn−1 − uhn
)

)

∆t

+
1

2

N ′
∑

n=1

a
(

uhn+1 + uhn, whn − uhn+1

)

∆t

≡
1

2
S1 +

1

2
S2 + S3,

as wh
N ′+1

− uh
N ′+2

= 0. Now each of these terms will be studied.

(1) By definition, wh0 (x) − uh1(x) = πh(wη,χ (x, 0) − u(x, 0)). So

|S1| = |a(uh0, w
h
0 − uh1)| ∆t = |a(uh0, wη,χ (·, 0) − u(·, 0)| ∆t

!C2 ‖uh0‖V ‖wη,χ (·, 0) − u(·, 0)‖V ∆t
h, ∆t → 0−→ 0,

(uh0)h being bounded as the time scheme is initialized by choosing uh0 such that

lim
h→0

‖uh0 − u0‖V = 0 (see (3.1)).

(2) Here again, from the definitions of the test functions whp and the projection πh , we have

S2 =
N ′+1
∑

n=1

a
(

uhn−1, (w
h
n − uhn+1) − (whn−1 − uhn)

)

∆t

=
N ′+1
∑

n=1

a
(

uhn−1, (wη,χ − u)(·, n∆t) − (wη,χ − u)(·, (n − 1)∆t)
)

∆t.
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Following Step 2 (2), with s = (n − 1)∆t , we obtain

|(wη,χ − u)(·, n∆t) − (wη,χ − u)(·, (n− 1)∆t)|H !
2

√
∆t

η
‖(1− χ)w − u‖L2(0,T ;H).

This property can be extended to the space derivatives (in the distribution sense) of

(1− χ)w − u exactly in the same way and leads to

‖(wη,χ − u)(·, n∆t) − (wη,χ − u)(·, (n − 1)∆t)‖V

!
2

√
∆t

η
‖(1− χ)w − u‖L2(0,T ;V). (4.12)

Then, using this inequality and (4.2), we have

|S2|!
N ′+1
∑

n=1

√

a(uhn−1, u
h
n−1)

2 C
√

∆t

η
‖(1− χ)w − u‖L2(0,T ;V) ∆t

!

N ′+1
∑

n=1

√

2 C( f, u0, v0)
2 C

√
∆t

η
‖(1− χ)w − u‖L2(0,T ;V) ∆t

! T
√

2 C( f, u0, v0)
2 C

√
∆t

η
‖(1− χ)w − u‖L2(0,T ;V)

∆t → 0−→ 0.

(3) As the function uh,N is linear in time on each interval [n∆t, (n + 1)∆t] (see (4.3)), we

have

∫ (n+1)∆t

n∆t

uh,N (·, s) ds =
1

2
(uhn+1 + uhn) ∆t,

which allows the third term to be rewritten as

S3 =
1

2

N ′
∑

n=1

a
(

uhn+1 + uhn, whn − uhn+1

)

∆t =
N ′
∑

n=1

∫ (n+1)∆t

n∆t

a
(

uh,N (·, s), whn − uhn+1

)

ds

=
N ′
∑

n=1

∫ (n+1)∆t

n∆t

a
(

uh,N (·, s), (wη,χ − u)(·, n∆t)
)

ds

=
N ′
∑

n=1

∫ (n+1)∆t

n∆t

a
(

uh,N (·, s), (wη,χ − u)(·, n∆t) − (wη,χ − u)(·, s)
)

ds

+
∫ T−ε

0

a(uh,N (·, s), (wη,χ − u)(·, s)) ds −
∫ ∆t

0

a(uh,N (·, s), (wη,χ − u)(·, s)) ds

−
∫ T−ε

(N ′+1)∆t

a(uh,N (·, s), (wη,χ − u)(·, s)) ds.
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Replacing (n − 1)∆t in (4.12) by s, where s belongs to [n∆t, (n + 1)∆t], we obtain

N ′
∑

n=1

∫ (n+1)∆t

n∆t

a
(

uh,N (·, s), (wη,χ − u)(·, n∆t) − (wη,χ − u)(·, s)
)

ds

! C2 T ‖uh,N‖L∞(0,T ;V)
2

√
∆t

η
‖(1− χ)w − u‖L2(0,T ;V)

∆t → 0−→ 0,

as functions (uh,N )h>0,N"1 are uniformly bounded because of (4.2). The same reason

leads to

∣

∣

∣

∫ ∆t

0

a(uh,N (·, s), (wη,χ − u)(·, s)) ds
∣

∣

∣

!

∫ ∆t

0

C2 ‖uh,N (·, s)‖V‖(wη,χ − u)(·, s)‖V ds

! ∆t C2 ‖uh,N‖L∞(0,T ;V)‖(wη,χ − u)‖L∞(0,T−ε/2;V)

∆t → 0−→ 0,

and, in a similar way,

∫ T−ε

(N ′+1)∆t

a(uh,N (·, s), (wη,χ − u)(·, s)) ds ∆t → 0−→ 0.

Finally, as the inclusion of L∞(0, T ; V) into L2(0, T ; V) is continuous, functions

(uh,N )h>0,N"1, being uniformly bounded in L∞(0, T ; V), are also uniformly bounded

in L2(0, T ; V). So, up to a possible subsequence extraction, (uh,N )h>0,N"1 converges

weakly in this space towards u (uniqueness of the limit). So that we obtain

∫ T−ε

0

a(uh,N (·, s), (wη,χ −u)(·, s)) ds h, ∆t → 0−→
∫ T−ε

0

a(u(·, s), (wη,χ −u)(·, s)) ds

and then

1

2

N ′
∑

n=1

a
(

uhn+1 + uhn−1, w
h
n − uhn+1

)

∆t
h, ∆t → 0−→

∫ T−ε

0

a(u(·, s), (wη,χ − u)(·, s)) ds.

(4.13)

Step 4. Finally, let us study the convergence of the fourth term of (4.9). To simplify the presentation,

we introduce the notation

ψ∆t (x, t) =
(wη,χ − u)(x, t + ∆t) − (wη,χ − u)(x, t)

∆t
∀t ∈ [0, T − ε/2], ∀x ∈ Ω,

and we recall that, by the definition of N ′, wh
N ′+1

− uh
N ′+2

= 0 and that, by the definition of the

discrete test functions (see Lemma 4.3), whp(x) − uhp+1(x) = πh(wη,χ (x, p∆t) − u(x, p∆t)).



1

∆t

(

whn − uhn+1

)

−
(

whn−1 − uhn
)

∆t
dx

)

∆t

= −
∫

Ω

uh
N ′+1

− uh
N ′

∆t

(

whN ′ − uhN ′+1

)

dx

+
N ′
∑

n=1

(

∫

Ω

uhn − uhn−1

∆t
(πh − I d)ψ∆t (·, (n − 1)∆t) dx

)

∆t

+
N ′
∑

n=1

∫ n∆t

(n−1)∆t

∫

Ω

uhn − uhn−1

∆t
(ψ∆t (·, (n − 1)∆t) − ψ∆t (·, t)) dx dt

+
N ′
∑

n=1

∫ n∆t

(n−1)∆t

∫

Ω

uhn − uhn−1

∆t
ψ∆t (·, t) dx dt

≡ S1 + S2 + S3 + S4.

(1) First, using (4.2) and the definition of wh
N ′ , we have

|S1| =
∣

∣

∣

∫

Ω

uh
N ′+1

− uh
N ′

∆t

(

whN ′ − uhN ′+1

)

dx

∣

∣

∣

=
∣

∣

∣

∫

Ω

uh
N ′+1

− uh
N ′

∆t
πh(wη,χ (x, N ′∆t) − u(x, N ′∆t)) dx

∣

∣

∣

!

∣

∣

∣

uh
N ′+1

− uh
N ′

∆t

∣

∣

∣

H

∣

∣

∣πh(wη,χ (·, N ′∆t) − u(·, N ′∆t))
∣

∣

∣

H

!
√

C( f, u0, v0)
∣

∣

∣πh(wη,χ (·, N ′∆t) − u(·, N ′∆t))
∣

∣

∣

H

!
√

C( f, u0, v0)
∣

∣

∣(πh − I d) (wη,χ (·, N ′∆t) − u(·, N ′∆t))
∣

∣

∣

H

+
√

C( f, u0, v0)
∣

∣

∣wη,χ (·, N ′∆t) − u(·, N ′∆t)
∣

∣

∣

H
.

Let us recall that, by construction, w(·, t) = u(·, t) for all t ∈ [T − 3ε/2, T ] and that

N ′ is the integer part of
T − ε

∆t
. So, for ∆t small enough, it is possible to have N ′∆t "

T − 3ε/2. Consequently, the definition of wη,χ , (4.5), leads to

wη,χ (·, N ′∆t) − u(·, N ′∆t) =
1

η

∫ N ′∆t+η

N ′∆t
((1− χ)w(·, t) − u(·, t)) dt

= χ

η

∫ N ′∆t+η

N ′∆t
u(·, t) dt.



Moreover, following Step 2 (2), if ϕ belongs to L∞(0, T ; H), a and b being such that

0 ! a < b ! T , one has

∣

∣

∣

∫ b

a

ϕ(·, t) dt
∣

∣

∣

2

H
! (b − a)

∫

Ω

∫ b

a

ϕ2(x, t) dt dx

! (b − a)2 sup
t

|ϕ(·, t)|2
H

= (b − a)2 ‖ϕ‖2L∞(0,T ;H),

or else
∣

∣

∣

∫ b

a

ϕ(·, t) dt
∣

∣

∣

H
! (b − a) ‖ϕ‖L∞(0,T ;H).

As u belongs to L∞(0, T ; V), this result implies that

∣

∣

∣wη,χ (·, N ′∆t) − u(·, N ′∆t)
∣

∣

∣

H
=

χ

η

∣

∣

∣

∫ N ′∆t+η

N ′∆t
u(·, t) dt

∣

∣

∣

H
! χ ‖u‖L∞(0,T ;H)

! χ ‖u‖L∞(0,T ;V).

Finally, using (4.7), as γh goes to zero when h goes to zero, we have

∣

∣

∣(πh − I d) (wη,χ (·, N ′∆t) − u(·, N ′∆t))
∣

∣

∣

H

! ‖(πh − I d)(wη,χ (·, N ′∆t) − u(·, N ′∆t))‖H1+ξ (Ω)

! ‖(πh − I d)(wη,χ (·, N ′∆t) − u(·, N ′∆t))‖V
! γh ‖wη,χ − u‖L∞(0,T−ε/2;V) ! χ ‖u‖L∞(0,T ;V),

if h is chosen small enough. Hence, it leads to

|S1| ! 2χ
√

C( f, u0, v0) ‖u‖L∞(0,T ;V) ≡ χ C ‖u‖L∞(0,T ;V). (4.14)

(2) Let us now derive an estimate for S2.

|S2| =
∣

∣

∣

∣

N ′
∑

n=1

(

∫

Ω

uhn − uhn−1

∆t
(πh − I d)ψ∆t (·, (n − 1)∆t) dx

)

∆t

∣

∣

∣

∣

!

N ′
∑

n=1

∣

∣

∣

uhn − uhn−1

∆t

∣

∣

∣

H
|(πh − I d)ψ∆t (·, (n − 1)∆t)|H∆t

!
√

C( f, u0, v0)

N ′
∑

n=1

|(πh − I d)ψ∆t (·, (n − 1)∆t)|H∆t

! γh
√

C( f, u0, v0)

N ′
∑

n=1

‖ψ∆t (·, (n − 1)∆t)‖V∆t

! γh
√

C( f, u0, v0)
√
N





N ′
∑

n=1

‖∆t ψ∆t (·, (n − 1)∆t)‖2
V





1/2

,
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thanks to (4.2) and (4.7). Moreover, the definitions of ψ∆t and wη,χ , (4.5), lead to

‖∆t ψ∆t (·, (n − 1)∆t)‖2
V

= ‖(wη,χ − u)(x, n∆t) − (wη,χ − u)(x, (n − 1)∆t)‖2
V

=
∥

∥

∥

∫ n∆t+η

n∆t

(1− χ)w(x, t) − u(x, t)
η

dt

−
∫ (n−1)∆t+η

(n−1)∆t

(1− χ)w(x, t) − u(x, t)
η

dt

∥

∥

∥

2

V

=
∥

∥

∥

∫ n∆t+η

(n−1)∆t+η

(1− χ)w(x, t) − u(x, t)
η

dt

−
∫ n∆t

(n−1)∆t

(1− χ)w(x, t) − u(x, t)
η

dt

∥

∥

∥

2

V

! 2

∥

∥

∥

∫ n∆t+η

(n−1)∆t+η

(1− χ)w(x, t) − u(x, t)
η

dt

∥

∥

∥

2

V

+ 2

∥

∥

∥

∫ n∆t

(n−1)∆t

(1− χ)w(x, t) − u(x, t)
η

dt

∥

∥

∥

2

V
. (4.15)

Now, if ϕ belongs to L2(0, T ; H), one has

N ′
∑

n=1

∣

∣

∣

∫ n∆t

(n−1)∆t

ϕ(·, t) dt
∣

∣

∣

2

H
=

N ′
∑

n=1

∫

Ω

(∫ n∆t

(n−1)∆t

ϕ(x, t) dt

)2

dx

!

N ′
∑

n=1

∆t

∫

Ω

∫ n∆t

(n−1)∆t

ϕ2(x, t) dt dx

!∆t

∫

Ω

∫ T

0

ϕ2(x, t) dt dx = ∆t ‖ϕ‖2
L2(0,T ;H)

.

In a similar way, as η < ε/2 and N ′∆t ! T − ε (from the definition of N ′), we have
N ′∆t + η ! T and then

N ′
∑

n=1

∣

∣

∣

∫ n∆t+η

(n−1)∆t+η

ϕ(·, t) dt
∣

∣

∣

2

H
! ∆t ‖ϕ‖2

L2(0,T ;H)
.

If ϕ belongs to L2(0, T ; V), the previous properties can be extended to its space deriva-

tives (in the distribution sense) in exactly the same way, leading to





N ′
∑

n=1

∥

∥

∥

∫ n∆t

(n−1)∆t

ϕ(·, t) dt
∥

∥

∥

2

V
+

N ′
∑

n=1

∥

∥

∥

∫ n∆t+η

(n−1)∆t+η

ϕ(·, t) dt
∥

∥

∥

2

V





1/2

!
√
2 ∆t ‖ϕ‖L2(0,T ;V).
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Setting ϕ =
1

η
((1− χ)w − u) in the above inequality, this result and (4.15) imply that

|S2|! γh
√

C( f, u0, v0)
√
N





N ′
∑

n=1

‖∆t ψ∆t (·, (n − 1)∆t)‖2
V





1/2

! γh
√

C( f, u0, v0)
√
N

2
√

∆t

η
‖(1− χ)w − u‖L2(0,T ;V)

! γh
√

C( f, u0, v0)
2

√
T

η
‖(1− χ)w − u‖L2(0,T ;V)

h → 0−→ 0.

(3) To treat the third term, we begin with the following transformation. First, let us recall that

the definitions of ψ∆t and wη,χ lead, for all τ ∈ [0, T − ε/2], to

ψ∆t (x, τ ) =
(wη,χ − u)(x, τ + ∆t) − (wη,χ − u)(x, τ )

∆t

=
1

η∆t

∫ τ+∆t+η

τ+∆t

((1− χ)w − u)(x, s) ds

−
1

η∆t

∫ τ+η

τ

((1− χ)w − u)(x, s) ds

=
1

η∆t

∫ τ+η

τ

(((1− χ)w − u)(x, s + ∆t) − ((1− χ)w − u)(x, s)) ds

=
1

η∆t

∫ τ+η

τ

( ∫ s+∆t

s

((1− χ)ẇ − u̇)(x, r) dr
)

ds. (4.16)

Hence, we obtain

ψ∆t (x, (n − 1)∆t) − ψ∆t (x, t)

=
1

η∆t

(

∫ (n−1)∆t+η

(n−1)∆t

∫ s+∆t

s

((1− χ)ẇ − u̇)(x, r) dr ds

−
∫ t+η

t

∫ s+∆t

s

((1− χ)ẇ − u̇)(x, r) dr ds
)

=
1

η∆t

(∫ t

(n−1)∆t

∫ s+∆t

s

((1− χ)ẇ − u̇)(x, r) dr ds

−
∫ t+η

(n−1)∆t+η

∫ s+∆t

s

((1− χ)ẇ − u̇)(x, r) dr ds
)

.
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Now, a and b being such that 0 ! a < b ! T , and setting ϕ = (1 − χ)ẇ − u̇, where φ

belongs to L2(0, T ; H), one has

∣

∣

∣

∫ b

a

∫ s+∆t

s

ϕ(·, r) dr ds
∣

∣

∣

2

H
=

∫

Ω

(∫ b

a

∫ s+∆t

s

ϕ(x, r) dr ds

)2

dx

!

∫

Ω

(

∫ b

a

√
∆t

[∫ s+∆t

s

ϕ2(x, r) dr

]1/2

ds

)2

dx

!

∫

Ω

(b − a) ∆t

∫ b

a

∫ s+∆t

s

ϕ2(x, r) dr ds dx

= (b − a) ∆t

∫ b

a

(∫

Ω

∫ s+∆t

s

ϕ2(x, r) dr dx

)

ds

! (b − a)2 ∆t ‖ϕ‖2
L2(0,T ;H)

, (4.17)

and then

|ψ∆t (·, (n − 1)∆t) − ψ∆t (·, t)|H ! 2
|t − (n − 1)∆t |

η
√

∆t
‖((1− χ)ẇ − u̇)‖L2(0,T ;H).

Finally, using (4.2) again, we obtain from these results

|S3|!
N ′
∑

n=1

∫ n∆t

(n−1)∆t

∣

∣

∣

uhn − uhn−1

∆t

∣

∣

∣

H
|ψ∆t (·, (n − 1)∆t) − ψ∆t (·, t)|H dt

!
√

C( f, u0, v0)

N ′
∑

n=1

∫ n∆t

(n−1)∆t

2
|t − (n − 1)∆t |

η
√

∆t
‖(1− χ)ẇ − u̇‖L2(0,T ;H) dt

!
√

C( f, u0, v0)

N ′
∑

n=1

(∆t)2

η
√

∆t
‖(1− χ)ẇ − u̇‖L2(0,T ;H)

!
√

C( f, u0, v0)
T

√
∆t

η
‖(1− χ)ẇ − u̇‖L2(0,T ;H)

∆t → 0−→ 0.

(4) Finally, from the definition of uh,N , (4.3), we have u̇h,N (x, t) =
uhn(x) − uhn−1(x)

∆t
where

t belongs to [(n − 1)∆t, n∆t]. Hence, S4 can be rewritten

S4 =
N ′
∑

n=1

∫ n∆t

(n−1)∆t

∫

Ω

uhn − uhn−1

∆t
ψ∆t (·, t) dx dt

=
∫ T−ε

0

∫

Ω

u̇h,Nψ∆t dx dt −
∫ T−ε

N ′∆t

∫

Ω

uh
N ′ − uh

N ′−1

∆t
ψ∆t (·, t) dx dt.
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Exactly as for the previous point, using (4.2) and (4.16)–(4.17), we obtain

∣

∣

∣

∫ T−ε

N ′∆t

∫

Ω

uh
N ′ − uh

N ′−1

∆t
ψ∆t (·, t) dx dt

∣

∣

∣

!

∫ T−ε

N ′∆t

∣

∣

∣

uh
N ′ − uh

N ′−1

∆t

∣

∣

∣

H
|ψ∆t (·, t)|H dt

!

∫ T−ε

N ′∆t

√

C( f, u0, v0)
1

√
∆t

‖(1− χ)ẇ − u̇‖L2(0,T ;H) dt

!
√

C( f, u0, v0)
√

∆t ‖(1− χ)ẇ − u̇‖L2(0,T ;H)
∆t → 0−→ 0.

Moreover, following (4.16) with τ = t belonging to [0, T − ε], we have

ψ∆t (x, t) =
1

η∆t

∫ t+∆t+η

t+∆t

((1− χ)w − u)(x, s) ds −
1

η∆t

∫ t+η

t

((1− χ)w − u)(x, s) ds

=
1

η∆t

∫ t+η+∆t

t + η

((1− χ)w − u)(x, s)ds −
1

η∆t

∫ t+∆t

t

((1− χ)w − u)(x, s)ds

∆t → 0−→
1

η
(((1− χ)w − u)(x, t + η) − ((1− χ)w − u)(x, t)) ,

and this convergence is strong in L2(0, T − ε; V) as (1 − χ)w − u ∈ L2(0, T ; V).

Furthermore, as the inclusion of L∞(0, T ; H) into L2(0, T ; H) is continuous, functions

(u̇h,N )h>0,N"1 being uniformly bounded in L∞(0, T ; H) are also uniformly bounded

in L2(0, T ; H). So, up to a possible subsequence extraction, (u̇h,N )h>0,N"1 converges

weakly in this space towards u̇ (uniqueness of the limit). So that we obtain

∫ T−ε

0

∫

Ω

u̇h,N ψ∆t dx dt

h,∆t→0−→
∫ T−ε

0

∫

Ω

u̇(x, t)
((1− χ)w − u)(x, t + η) − ((1− χ)w − u)(x, t)

η
dx dt,

and then

S2+S3+S4
h,∆t → 0−→

∫ T−ε

0

∫

Ω

u̇(x, t)
((1−χ)w−u)(x, t+η) − ((1−χ)w − u)(x, t)

η
dx dt.

(4.18)

4.2 Conclusion

Thanks to the previous convergence results (4.10), (4.11), (4.13), (4.14) and (4.18), when h and∆t tend

to zero in inequality (4.9), we obtain for all ε ∈ ]0, T/2[ and η ∈ ]0, ε/2[,

∫

Ω

v0(x)(wη,χ (x, 0) − u(x, 0)) dx +
∫ T−ε

0

∫

Ω

f (wη,χ − u) dx dt

!

∫ T−ε

0

a
(

u(·, t), (wη,χ − u)(·, t)
)

dt + χ C ‖u‖L∞(0,T ;V)

−
∫ T−ε

0

∫

Ω

u̇(x, t)
((1− χ)w − u)(x, t + η) − ((1− χ)w − u)(x, t)

η
dx dt. (4.19)



)

η

=
∫ t+η
t

(1−χ)ẇ(x,s)−u̇(x,s)
η

ds

η → 0−→ (1− χ)ẇ(x, t) − u̇(x, t) strongly in L2(0, T − ε; H).

With the same arguments, as (1− χ)w − u ∈ L2(0, T ; V) ∩ C0(0, T ; H) first we have

wη,χ (x, t) − u(x, t) =
1

η

∫ t+η

t

((1− χ)w(x, s) − u(x, s)) ds

η → 0−→ (1− χ)w(x, t) − u(x, t) strongly in L2(0, T − ε; V),

and second, for t = 0,

wη,χ (x, 0) − u(x, 0) η → 0−→ (1− χ)w(x, 0) − u(x, 0) strongly in H.

So, when η goes to zero, inequality (4.19) becomes

∫

Ω

v0(x)((1− χ)w(x, 0) − u(x, 0)) dx +
∫ T−ε

0

∫

Ω

f ((1− χ)w − u) dx dt

!

∫ T−ε

0

a(u(·, t), ((1− χ)w − u)(·, t)) dt + χ C ‖u‖L∞(0,T ;V)

−
∫ T−ε

0

∫

Ω

u̇ ((1− χ)ẇ − u̇) dx dt.

The proof is achieved by making χ and ε tend to zero, observing that w − u = φ(w̃ − u), where φ is

defined by (4.4). #

REMARK 4.4 Let us recall that, in their paper Dumont & Paoli (2006), Dumont and Paoli gave a more

general result, including, in particular, a conditional convergence when the parameter β belongs to

[0, 1/2[. Actually, we could have followed the same way. As a matter of fact, the coefficient

κh = sup
uh ∈ Vh\{0}

a(uh, uh)

|uh |2
H

that they introduced in Dumont & Paoli (2006) to lead to a conditional stability, can be used in a similar

way for plates. It means that Lemma 4.1, which states that the discrete solution is uniformly bounded

in time, can also be straightforwardly obtained from Dumont & Paoli (2006, Proposition 3.1) under

the same hypotheses. Then, up to some technical details, if we follow Dumont and Paoli’s proof more

closely, Theorem 4.2 remains valid. The only point to discuss is the evaluation of κh . In Dumont & Paoli

(2006), the authors show that κbeamh ∼
E I

ρS

1

∆x4
for a homogeneous and isotropic beam, ∆x being the

mesh size, which is uniform here. In the case of a Kirchhoff–Love plate, if we assume it is made of a

homogeneous and isotropic material too, then the definition of the bilinear form a(·, ·) shows that κh
is the highest eigenvalue of the bi-Laplacian operator on the plate mesh. So, first, it is proportional to



D

2 ρ ε
=

E ε2

3 (1− ν2) ρ
. Second, if the mesh is uniform of size h, following, for example, Maury (2010),

it is easy to see that the highest eigenvalue of the bi-Laplacian is of order 1/h4. Consequently, in our

case and under the previous assumptions, κ
plate
h ∼

E ε2

3 (1− ν2) ρ

1

h4
, which is quite close to the case

of beams. Finally, from a practical point of view, for a similar computational cost, it is better to use an

unconditionally stable scheme. Consequently, we only tested the scheme with β = 1/2.

5. Numerical results and conclusions

We will consider a steel rectangular panel of other lengths all given in metres; change these for con-

sistency. The flexural rigidity is D = 1.923 × 104 corresponding to E = 210 Gpa, ν = 0.3 and

ρ = 7.77 × 103 kg/m3. This plate is clamped along one edge and free along the other three. The nu-

merical tests are performed with GETFEM++ (Renard & Pommier, 2003–2012) and using structured

meshes (see Figs 3 and 4).

Let us recall the problem to be solved at each iteration:



















find uhn+1 ∈ K
h such that

(M+ β ∆t2 K)uhn+1 + ∆t2 ∂IKh (u
h
n+1) ∋ f hn

where f hn =
(

2M− (1− 2β)∆t2K
)

uhn −
(

M+ β∆t2K
)

uhn−1 + ∆t2 f nβ .

In practice, we choose β = 1/2 in all the following computations. Since the matrix A ≡ M+β∆t2 K is

symmetric and positive definite, as areM andK, this problem is equivalent to the minimization problem

uhn+1 = Argmin
w∈Kh

(

1

2
wT Aw − wT f hn

)

.

As the convex constraints w ∈ Kh correspond to linear inequality constraints, such a problem can be

solved by using the method of Lagrange multipliers or interior point methods, for instance. Here, as

FIG. 3. Bending clamped plate under a rigid obstacle: FVS quadrilateral mesh.



FIG. 4. Bending clamped plate under a rigid obstacle: Argyris triangular mesh.

in Dumont & Paoli (2008), we use the MATLAB function ‘quadprog’, which relies on the method of

Lagrange multipliers.

5.1 Forced oscillations

In this section, we consider two flat, symmetric obstacles along the plate length,

g1(x) = −0.1 = −g2(x) ∀x ∈ Ω,

and: we prescribe a sine-sweep base forced vibration, by means of the following boundary conditions

on Γc

u(x, t) = c sin(ωt),
∂u

∂x
(x, t) = 0, ∀x ∈ Γc,

with c = 0.09 m and ω = 10 Hz. The displacements of the two free corners, for different time steps and

for quadrilateral and triangular meshes, are plotted in Figs 5–7. Not surprisingly, due to the symmetry

of the problem, the curves corresponding to the displacements of the two corners, are indistinguishable.

Moreover, there is no significant qualitative difference between the FVS and the Argyris approaches. As

far as CPU times are concerned, they are given in Table 1 for the numerical simulations related to the

previous test case. They are of the same magnitude for triangles and quadrilaterals, considering the fact

that the degrees of freedom and the matrix sizes are different. Finally, analogous results to Pozzolini &

Salaun (2011) for a beam impacting obstacles are observed.

To complete this numerical study, some other results are given. First, the case of two flat, symmetric

obstacles along the plate where g1(x) = −0.01 = −g2(x) for all x ∈ Ω is considered in Fig. 8. Second,

the case of various frequencies is investigated (see Figs 9–11). All these results confirm the previous

conclusions.



FIG. 5. Displacement of a plate impacting flat obstacles—140 FVS quadrilaterals and 140 Argyris triangles—∆t = 10−3, obstacle

±0.1.

FIG. 6. Displacement of a plate impacting flat obstacles—140 FVS quadrilaterals and 140 Argyris triangles—∆t = 10−4, obstacle

±0.1.

5.2 Energy evolution

This section is devoted to the study of energy variations during the motion. So, here, a forced vibration

is not prescribed. The motion is due to an initial displacement u0, obtained as the static equilibrium

of the plate under a constant load f0 = 8600 N and an initial velocity v0 = 0. Moreover, the upper

obstacle is removed, which corresponds to setting g2 = +∞. The lower obstacle is flat and remains at

g1 = −0.1 m.



FIG. 7. Displacement of a plate impacting flat obstacles—140 FVS quadrilaterals and 140 Argyris triangles—∆t = 10−5, obstacle

± 0.10.

TABLE 1 CPU times in seconds (MacBook Pro computer with a 2.2 GHz processor)

Time step 10−3 10−4 10−5

140 Argyris triangles 80 870 8880
140 FVS quadrilaterals 120 1220 12220

FIG. 8. Displacement of a plate impacting flat obstacles—140 FVS and 140 Argyris elements—∆t = 10−3, obstacle ±0.01.



FIG. 9. Displacement of a plate impacting flat obstacles—140 Argyris triangles—∆t = 10−3, ω = 10 Hz and ω = 15 Hz.

FIG. 10. Displacement of a plate impacting flat obstacles—140 Argyris triangles—∆t = 10−3, ω = 20 Hz and ω = 25 Hz.

First, as in the previous section, the displacements of the two free corners, and also of their midpoint,

are given for meshes of quadrilaterals (Fig. 12) and triangles (Fig. 13). The results are very close. Here

again, the three curves are indistinguishable. For the two corners, this was expected, but not for the

midpoint. To investigate this, a zoom was created on these curves (Figs 14–16). They show such a small

difference in the motion of these three points that this explains why it is not visible in the first figures.

Moreover, Figs 15 and 16 illustrate again that there is no meaningful difference between meshes of

triangles and quadrilaterals. Finally, Figs 12 and 13 show that the maximum displacements decrease as

time passes, which means that impacts create damping during the motion.



FIG. 11. Displacement of a plate impacting flat obstacles—140 FVS quadrilaterals—∆t = 10−3, ω = 30 Hz and ω = 35 Hz.

FIG. 12. Displacements in free vibrations—140 FVS quadrilaterals—∆t = 10−5.

Finally, we compare the variations of the total energy obtained for different time steps and meshes.

This total energy is defined by

E(w, t) =
1

2

∫

Ω

(ẇ)2(x, t) dx +
1

2
a(w(·, t), w(·, t)) −

∫

Ω

f (x, t)w(x, t) dx .

In the case of free vibrations, the loading f is zero. The associated discrete energy is

E(uhn+1, u
h
n) =

1

2

∫

Ω

∣

∣

∣

uhn+1 − uhn
∆t

∣

∣

∣

2
dx +

1

2
a(uhn, u

h
n).



FIG. 13. Displacements in free vibrations—160 Argyris triangles—∆t = 10−5.

FIG. 14. Zoom on displacements in free vibrations—140 FVS quadrilaterals—∆t = 10−5.

Figures 17 and 18 show the decreases in discrete energy. First of all, let us remark that these curves

exhibit a small difference in the initial energy, which is due to difference in discretization between the

two meshes. But it is a detail. The main point is that, in the two cases, energy is dissipated when the

plate reaches the obstacles. The same qualitative results were obtained in Ahn & Stewart (2005) and

Dumont & Paoli (2006). By the way, our numerical model is a fully implicit scheme. It seems that it



FIG. 15. Zoom on displacements in free vibrations—140 FVS quadrilaterals—∆t = 5× 10−6.

FIG. 16. Zoom on displacements in free vibrations—160 Argyris triangles—∆t = 5× 10−6.

corresponds to choosing a restitution coefficient, defined by (2.9), close to zero. The continuous problem

energy will be conserved if and only if e = 1, which is a totally elastic shock. The results we obtain are

then mechanically consistent. To conclude, when the time step decreases, the loss of energy decreases

too, which tends to show that the scheme creates numerical damping that is too big. Looking for energy-

conserving schemes for plates, as we did for beams in Pozzolini & Salaun (2011), and also studying



FIG. 17. Total energy variations for different values of ∆t—140 FVS quadrilaterals.

FIG. 18. Total energy variations for different values of ∆t—160 Argyris triangles.

their convergence properties, is then of particular importance and will be the subject of forthcoming

papers.

Acknowledgements

The work presented in this paper has been carried out with the generous support of the French Space

Agency (Centre National des Etudes Spatiales de Toulouse) and of the Institut Camille Jordan (CNRS,

France).



C. POZZOLINI ET AL.

REFERENCES

AHN, J. & STEWART, D. E. (2005) An Euler–Bernoulli beam with dynamic contact: Discretization, convergence

and numerical results. SIAM J. Numer. Anal., 43, 1455–1480.

BOCK, I. & JARUS̆EK, J. (2008a) On the hyperbolic contact problem for a von Karman plate. International Confer-

ence on Mathematics and Continuum Mechanics (Coimbra, Portugal), Proceedings. Coimbra, Portugal: CIM,

pp. 85–91.

BOCK, I. & JARUS̆EK, J. (2008b) On nonstationary von Karman variational inequalities. Tatra Mt. Math. Publ.,

38, 11–28.

BRENNER, S. C., SUNG, L. Y. & ZHANG, Y. (2012) Finite element methods for the displacement obstacle of

clamped plates.Math. Comp. (in press).

CIARLET, P. G. (1978) The Finite Element Method for Elliptic Problems. Amsterdam, Netherland: North-Holland.

CIARLET, P. G. (1991) Basic error estimates for elliptic problems. Handbook of Numerical Analysis, vol. II. Ams-

terdam, Netherland: North-Holland, pp. 17–351.

DUMONT, Y. & PAOLI, L. (2006) Vibrations of a beam between stops: convergence of a fully discretized approxi-

mation. ESAIM Math. Model. Numer. Anal., 40, 705–734.

DUMONT, Y. & PAOLI, L. (2008) Numerical simulation of a model of vibrations with joint clearance. Int. J.

Comput. Appl. Technol., 33, 41–53.

ERN, A. & GUERMOND, J.-L. (2004) Theory and Practice of Finite Elements. Applied Mathematical Series, vol.

159. New York: Springer.
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