

To cite this document: Apvrille, Ludovic and Saqui-Sannes, Pierre de Static

analysis techniques to verify mutual exclusion situations within SysML models. (

In Press: 2013) In: SDL 2013 - 16th International System Design Languages

Forum, 26-28 Jun 2013, Montreal, Canada.

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 8846

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12044233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Static analysis techniques to verify mutual

exclusion situations within SysML models

Ludovic Apvrille1 and Pierre de Saqui-Sannes2

1 Institut Mines-Telecom, Telecom ParisTech, LTCI CNRS,
Campus SophiaTech, 450 route des Chappes, 06410 Biot, France

ludovic.apvrille@telecom-paristech.fr
2 Université de Toulouse, ISAE,

10 av. Edouard Belin, B.P. 54032, 31055 Toulouse Cedex 4, France
pdss@isae.fr

Abstract. AVATAR is a real-time extension of SysML supported by
the TTool open-source toolkit. So far, formal verification of AVATAR
models has relied on reachability techniques that face a state explosion
problem. The paper explores a new avenue: applying structural anal-
ysis to AVATAR model, so as to identify mutual exclusion situations.
In practice, TTool translates a subset of an AVATAR model into a Petri
net and solves an equation system built upon the incidence matrix of the
net. TTool implements a push-button approach and displays verification
results at the AVATAR model level. The approach is not restricted to
AVATAR and my be adapted to other UML profiles.

Keywords: Modeling, Model verification, Structural analysis, SysML,
Petri Nets, Invariants, Mutual exclusion.

1 Introduction

UML and SysML tools that implement formal verification of real-time systems
models commonly reuse reachability analysis techniques and therefore face the
state explosion problem [1]. Examples include Artisan Studio [2], SysML Com-
panion [3], OMEGA SysML [4], TOPCASED [5], and TTool [6]. The latest
release of TTool, which is addressed in the paper, contrasts with the afore-
mentioned tools by the static analysis it implements for AVATAR, a real-time
systems modeling language based on SysML. The paper indeed investigates static
analysis of AVATAR models and even focuses discussion on proving mutual ex-
clusion, for instance of shared resources.

The paper reuses the ”invariant search” technique originally developed for
Petri nets. Unlike papers that propose to write invariants and to check the model
against them, the paper generates invariants from the model. In practice, TTool
translates an AVATAR model into a Petri net and solves an equation system
built upon the incidence matrix of the net. Then, TTool displays verification
results at the AVATAR model level. Also, usual questions regarding states in

2

mutual exclusion are asked at the AVATAR model level, not at the Petri net
level, and mutual exclusions results are directly given at model level.

The paper is organized as follows. Section 2 introduces the AVATAR mod-
eling language and the TTool tool. Section 3 reminds the principles of invariant
search from a Petri net. Section 4 details how mutual exclusion situations can be
detected on AVATAR models. Section 5 presents a case study. Section 6 surveys
related work. Section 7 concludes the paper.

2 Avatar: A SysML Environment

2.1 AVATAR diagrams and method

The AVATAR language reuses all SysML diagrams, excepted the package dia-
gram. In the early stages of the method associated with AVATAR, a requirement
diagram organizes captured requirements in a tree-like structure that shows their
attributes, their interrelations and their connections with other elements of the
model.

A text diagram lists the modeling assumptions that apply to the system’s
environment and to the system itself. Incremental modeling starts with strong
assumptions that are progressively lowered.

As far as the AVATAR model is built up following an incremental approach,
part of the limitations associated with the original modeling assumptions will
progressively be removed from the list.

Analysis is use-case driven. A use-case diagram identifies the main functions
or services the system offers in relation with external actors. Scenarios (sequence
diagrams) and flowcharts (activity diagrams) document the use-cases. Sequence
diagrams handle synchronous/asynchronous communications, absolute dates and
time intervals. Activity diagrams depict basic actions, tests and loops.

An AVATAR Design captures both architectural and behavioural matters [7]
[8] [9]. First, a block instance diagram depicts the architecture of the system
as a set of communicating block instances defined by their attributes, methods,
and input/output ports. Each block instance has a behaviour defined in terms
of a finite state machine that supports most SysML state machine elements:
input and output signals, variables, timers, time intervals on transitions, enabling
conditions and composite states. Examples of non supported elements are history
in composite states, and fork/join pseudo states.

The block instance diagram and its associated state machine diagrams have
a formal semantics expressed by translation to timed automata for safety proofs,
and to pi-calculus processes for security proofs. Design diagrams may be simu-
lated and formally verified from TTool.

2.2 TTool

The AVATAR language is wholly supported by the open software tool TTool [6]
developed for Linux, Windows and MacOS. The default installation of TTool

3

comes with a diagram editor and a simulator. TTool implements gateways to-
wards three tools that are developed by other laboratories : UPPAAL for the
formal verification of the logical and temporal properties [10], ProVerif for the
formal verification of security properties [8] [11], and SocLib for the virtual pro-
totyping of the software and hardware of real-time systems [9]. The simulator
enables step-by-step and random transition firing. All results are given at the
AVATAR level: simulation traces in the form of sequence diagrams and on-the-
model identification of the explored transitions. Similarly, the strong advantage
of TTool as far as formal verification is concerned is the user-friendliness of the
interface to UPPAAL. The user of TTool may indeed check for deadlock free-
dom, as well as for the reachability and liveness of actions and states, by mere
identification of the actions and states on the AVATAR model itself, with no
need for an inspection of the UPPAAL ”code”. Further, there is not need for
writing logic formulae.

User friendliness - eg., no need to know about underlying formal models
and proof techniques - has also been of main concern in implementing the new
verification approach presented in the paper.

3 Petri Nets and invariants

This section is a short reminder on Petri nets and P-invariants, that is sufficient
to understand our contribution. More information on Petri nets and invariants
may be found for example in [12], [13] and [14].

3.1 Verification techniques for Petri nets

A Petri net is a bi-partite graph made up of places and transitions. The transition
firing policy and the way tokens move from places to places enable to represent
the operation semantics of systems modeled by Petri nets. More formally, Petri
nets have been defined as follows [12]:

Definition 1 Petri net

A Petri net is a 5-uple, PN = (P, T, F,W,M0) where:

– P = {p1, p2, . . . , pm} is a finite set of places,
– T = {t1, t2, . . . , tn} is a finite set of transitions,
– F ⊆ (P × T)

⋃

(T × P) is a set of arcs (called ”flow relation” in [12])
– W : F 7→ {1, 2, 3, . . .} is a weight function,
– Mo : P 7→ {0, 1, 2, . . .} is the initial marking.

By definition, P
⋂

T = ∅ and P
⋃

T 6= ∅.

In the paper, Petri nets are used to verify AVATAR models that may contain
data and time. Nevertheless, the paper restricts discussion to basic Petri nets,
as defined above: the limitations of our approach are discussed in section 4.
Similarly, the purpose of the paper is not to survey all the verification tech-
niques available for Petri Nets (see for example [12]), and the paper therefore
restricts discussion to structural analysis based on place invariants (also called
”P-invariants”).

4

3.2 P-invariants

P-invariants are defined from the Petri net incidence matrix. An incidence matrix
represents the various transitions of each place. Rows are used for places pi, and
columns for transitions tj . For example, the value vij at (pi, tj) means that vij
tokens are added (or removed if the value is negative) from pi whenever transition
ti is fired. More formally, an incidence matrix can be defined as follows [12]:

Definition 2 Incidence matrix

The incidence matrix of a Petri net PN with n transitions and m places is
a n×m matrix A = [aij] of integers with aij = a+ij − a−ij where:

– a+ij = w(i, j) represents the weight of the arc from transition i to the output
place j,

– a−ij = w(j, i) represents the weight of the arc from the input place j to tran-
sition i.

Definition 3 P-invariants

P-invariants of a Petri net PN are usually defined as W.A = 0 with W being
a set of m weighted places of PN and A being the incidence matrix of PN .

Finally, a P-invariant models a set of places in which the total number of tokens
is constant in all reachable markings.

3.3 Algorithms for P-invariants

Again, P-invariants are defined as W.A = 0. This set of equations can be solved
with the Farkas algorithm [15]. The latter allows to compute a set of minimal P-
invariants. The complexity of this algorithm is exponential, but heuristics have
been proposed in order to reduce this complexity [16].

3.4 Example

P-invariants can be used to prove mutual exclusion situations. Indeed, the mutual
exclusion between two subnets s1 and s2 of a Petri net PN can be proved by
showing that at most 1 token is present in the marking of places of s1 and s2.
Let’s illustrate mutual exclusion with the following Petri net:

5

p1

p2

p0 p3

p4

t1

t2

t3

t4

The transpose incidence matrix At of this Petri net is as follows:

At =

t1 t2 t3 t4

p0 −1 1 −1 1
p1 −1 1 0 0
p2 1 −1 0 0
p3 0 0 −1 1
p4 0 0 1 −1

To resolve W.A = 0 (see Definition 3), the matrix is made triangular, as for
solving a linear system: lines can be exchanged, multiplied by a given integer
value, or one line can be added to another one. Applying this to the A matrix
gives:

At
triangular =

t1 t2 t3 t4

p0 −1 1 −1 1
p4 0 0 1 −1
p0 + p2 + p4 0 0 0 0
p3 + p4 0 0 0 0
p1 + p2 0 0 0 0

Finally, the P-invariants are p1+p2, p3+p4, p0+p2+p4. Each of them represents
a mutual exclusion situation. For example p1 + p2 models the fact that either
there is a token in p1 or in p2. Similarly, p0 + p2 + p4 proves a mutual exclusion
between, in particular, places p2 and p4.

4 Our approach

4.1 Overview

The main contribution of this paper is the computations of ”SysML model in-
variants”. The latter are a list of SysML state machine elements of a model that
are all executed in mutual exclusion. We propose to compute these invariants

6

using P-invariants as defined in previous section. Figure 1 depicts the approach
implemented in TTool. As stated before, there are already two possibilities for
proving properties from AVATAR design models. The first possibility is to gen-
erate a pi-calculus specification, and then using ProVerif for verifying security
properties. The second possibility is to generate timed automata that are taken
as input by UPPAAL to verify safety properties. The contribution based on
P-invariants is displayed at the right of the figure:

1. AVATAR design models to be studied are first translated to a Petri net. The
translation to a Petri Net could be applied to all Domain Specific Languages
defined to model sets of entities communicating with synchronous or asyn-
chronous channels, and whose behaviour is described with state machines.

2. The Petri net is in turn translated to an incidence matrix.
3. The Farkas algorithm [15] is used to compute the set of minimal invariants.
4. Invariants are filtered so as to keep only the relevant ones. Relevant invariants

are the ones that are not concerning only one block.
5. Invariants are finally back-traced to the SysML model under the form of a

SysML model invariant.

4.2 SysML model invariant

We have defined SysML model invariants for design diagrams only. A SysML
model invariant is a list of model elements of the state machines: it may refer
to a message sending, a message reception or a state. Each element is translated
into a set of places and transitions, and so, for back-tracing P-invariants to
the SysML model, it is necessary to keep track of the correspondence between
operators and places/transitions. The translation of an AVATAR design to a
Petri net is now further detailed.

4.3 AVATAR design model translation to Petri nets

Again, an AVATAR model is made up, on the one hand, of the definition the
architecture in terms of blocks and communication between blocks (synchronous,
asynchronous), and on the other hand, of one state machine per block. AVATAR
security-specific operators [8] in both architecture and behavioral diagrams are
totally ignored in this translation process.

Translation of state machines. AVATAR states machines are built upon the
following operators: states, transitions (guards, actions on variables, time con-
straints), timers (set, wait for expiration, reset), non-deterministic choices, and
communication operators (message sending, message receiving). Let’s investigate
the basics of the translation for all of them.

– States. Each state is translated as one place.

7

!"#$#%&'()*+,

.*/0#10212)

!"#$#%&'()*+,

!"#$%"&'

((##)

&3(%*4*0#$*5,&
%()21$)&
45%&

)(02%*$6&
.%5.(%$*()

7*8(9$58#$#

*!!++,

&3(%*4*0#$*5,&
%()21$)&
45%&

)#4($6&
.%5.(%$*()

:($%*&,($

((##) ((##)

((##)

((##)

;,0*9(,0(&8#$%*<

((##)

=*)$&54&

:/*,"#%*#,$)

((##)
-./"0/12/)3#"&4567

Fig. 1. P-invariants from SysML Models

8

– Transitions. Transitions are constrained with time delays and Boolean
guards. Both constraints are ignored by our translation process since the
type of Petri nets we rely on does not support time nor variables. Similarly,
actions on variables inside transitions are ignored. Finally, transitions are
translated into a Petri net transition.

– Timers. Since time constraints cannot be represented in the Petri nets we
rely on, timers are ignored.

– Non-deterministic choices. Each of them is translated to exactly one
place.

– Communication operators. Their translation is of utmost importance
since they model the synchronization between tasks. Their translation is the
most complex one and is further explained in next subsection.

Finally, the translation process ignores time constraints and variables, which
means the translation to Petri nets only takes into account block to block com-
munications and state to state transitions as described by the state machines
of the blocks. We now explain how AVATAR synchronous and asynchronous
communications are translated.

Translation of synchronous communications between blocks. Synchronous
channels are declared at SysML block diagram levels. A synchronous channel can
apply to several blocks. The translation of a given synchronous communication
channel ch is a two-step process:

1. For each communication operator c (sending in ch, receiving from ch) of
all state machines, two places are generated: pcb models the waiting for the
synchronization, (”b” means before) and pca (”a” means after) models the
situation after synchronization occurrence. For example, Figure 2 represents
three communications involving the same channel msg. Thus, for each op-
erator of a design involving msg (one sending operator and two receiving
operators) two corresponding places are created.

2. For possible synchronization of ch, i.e., for each possible couple csr (sending,
receiving) of ch, we do the following: We create a new transition tcsr with
two incoming edges from the pcb places of sending and receiving, and two
outgoing edges from tcsr to the after-synchronization places pca of the sender
and the receiver. Figure 3 depicts how the places generated in the first step
(see Figure 2) are linked together through two transitions modeling the two
possible synchronizations.

Translation of asynchronous communications between blocks. AVATAR
asynchronous communication is based on a finite FIFO, with two different writ-
ing policies:

1. Writers are blocked when the FIFO is full.

9

!

!

!

!

!

!

!

!

!

!"#

!"$

Fig. 2. Translating synchronous communications: step 1

!"#

!"$

Fig. 3. Translating synchronous communications: step 2

10

2. Writers are not blocked when the FIFO is full, that is, an element of the
FIFO is considered to be removed whenever a write operation in a full FIFO
is performed.

The two policies are translated as follows. For the first one (writers are blocked),
the main idea is to have a place containing n tokens, with n being the maximum
capacity of the FIFO (see Figure 4). Then, one token is moved to another place
when a write operation is performed, and one token is moved back to its initial
location whenever a read operation occurs. Thus, write and read operations are
blocked when the FIFO is full or empty, respectively.
The second FIFO policy is translated quite similarly to the previous one (see
Figure 5): the main difference relies in an additional transition that is used
whenever the FIFO is full so as to ”unblock” the writer.

!"#

!"$

!"#$%&!'
()(*

Fig. 4. Translating asynchronous blocking communications

!"#

!"$

!"#$%&!'

!

!

()(*

Fig. 5. Translating asynchronous non-blocking communications

11

5 Case study

The objective of this case study is twofold. First, it intends to demonstrate the
effectiveness of P-invariants to identify mutual exclusion situations in SysML
diagrams. Second, it illustrates how P-invariants have been integrated in TTool
to facilitate their usage.

5.1 Description of the system: a microwave oven

The microwave can be started using a button, or a remote control. Whenever the
door is opened, the magnetron must be turned off (safety constraint). Also, the
remote control must be secured, that is, a remote control must be attached to
only one specific oven (authenticity constraint), and messages sent from the re-
mote control must not be disclosed (confidentiality constraint). Finally, the oven
model shall satisfy both safety and security constraints. Yet, security matters
are out-of-scope of this paper, but have been explained in [8].

5.2 Design

The design is made upon several types of blocks and elements (see Figure 6):

– A main block named ”RemotelyControlledMicrowave” contains all other
blocks modeling the system: the remote control, and the microwave oven
itself composed of a wireless interface, a magnetron, a door, a bell and a
control panel. Each block declares attributes, methods and signals.

– The declaration of two data types (Key, Message) at the lower left part of
the diagram.

– The declaration of security-related constraints and properties in the note
located at the top of the diagram.

– The declaration of communication channels between blocks. Ports filled in
black represent synchronous communication whereas ports filled in white
represent asynchronous communications. Signals and ports can be used by
the block declaring them, and by the blocks it contains. For example, all
blocks may use the asynchronous channels connecting ”RemotelyControlled-
Microwave” to itself.

– The declaration of an observer whose purpose is explained hereafter.

5.3 Formal verification of safety properties

One safety property is at stake in this system: ”the magnetron must be off when-
ever the door is opened”.
A first way to prove this property in TTool is the usual way to do: adding an
observer in the model (see Figure 6 ”ObserverProp1” block). The latter con-
tains an ”error” state whose reachability can be studied directly from TTool

12

���������

�	
��	���������	���������	

��������	�	������	��	����	����	�
���
���������	�	������	�����	��	����	�
���

���������

�	
��	������
����������� �!"�#����$
��
��!�#��	����	$
��%&'�#�'	�$

���	����	�	����(���	����	�
��)�'	����

���������

��������	*�	�

������	
��	&�������������	�

���������

+	��

�����������

���������

������%��	�
����������� �,�#����$

�����-./*���
�����-./�00��
�����������+������������������� ���������

�������	�
����������� �,�#����$
���	
������1�
	� �2�#����$

������������������������
���������	���
������(���

���������

����	����
��(��	�� �2�#����$

�������������
��������(���

���������

/���

����������	���
�������(���

���������

���	�	��3��	�0��	
��
��"�#��	����	$
��%&'�#�'	�$
���	�	��	�/��������#����$

���	����	�	����(���	����	�
��)�'	����

4��0��	����������	
��	������5��������

46���	���������	
��	������5&	������	
��	*��	�5
��!����	�	��3��	�0��	5������	�	��*��	�5
��"

43������&���	
'����	��	��	
��	������5%&'����	�	��3��	�0��	5%&'

��������(��

'	�
�������#����$

��������(��

�	����	
�������#����$

���������

*��	��	�%��(!

��������7�(���
��������7����	���
��������7
���	����&������

Fig. 6. AVATAR block diagram of the microwave system

13

using UPPAAL. Of course, this technique requires to ”execute” the model, and
explore all its branches to be certain that none of them contains that ”error”
action.
A second way to do relies on P-invariants. TTool computes model invariants.
Once computed, invariants are listed on the left part of the main window of
TTool (see Figure 7). The user of TTool may select one invariant. Then, all
graphical elements of that invariant are underlined with an ”inv” annotation
(see the circle in Figure 7), making it very easy to parse all elements of each
invariant. All elements of the same invariant are mutually exclusive.

Fig. 7. Invariants as displayed in TTool

From invariants, TTool offers another nice graphical way to visualize mu-
tual exclusive situations: putting the mouse on a given state displays the list of
all states that are mutually exclusive with the selected one. For example, the

14

”DoorIsOpened” state in the Door block (see Figure 8), no state in mutual ex-
clusion could be identified. Indeed, in a first model, it is possible to have the
door opened while the magnetron is on. We have therefore modified the model
as follows: we added a lock on the door, i.e., when the user wishes to open the
door, the microwave first turns off the magnetron before releasing a lock on the
door. With this model, the ”DoorIsOpened” state is mutually exclusive with the
state ”Running” of Magnetron, see Figure 9, which proves that the magnetron
is off whenever the door is opened.

Fig. 8. Mutual exclusions of the
state ”DoorIsOpened” of the Door
block (first version)

Fig. 9. Mutual exclusions of the state
”DoorIsOpened” of the Door block (second
version)

5.4 Discussion

Identifying mutual exclusion situations has now become a piece of cake in TTool
thanks to the invariants. Heuristics we have defined and implemented - that
are not detailed in this paper - make it possible to compute invariants in a few
seconds on the most complex models we have made with AVATAR. This is in
particular the case for an automotive application published in [9], and developed
in the scope of the EVITA European project [17].

Yet, one must be aware of the main current limitation: not all model ele-
ments are taken into account to compute invariants, as explained in section 4.
In particular, time constraints and variables are not considered in the transla-
tion process. In other words, invariants are computed for a reduced model that
contains more traces than the original model. And so, two states identified as
mutually exclusive by invariants are really mutually exclusive ... but two states
not identified as mutually exclusive might still be mutually exclusive. To address
that issue, TTool puts a warning textnote (”Mutual exclusion could not be stud-
ied”) next to the states for which the mutual exclusion could not be proved with
invariants.

15

Last, but not least, the AVATAR-to-Petri Net transformation has been pro-
grammed in an ad-hoc manner. It could be interesting to describe this transfor-
mation with a model transformation language.

6 Related work

Real-time dialects of SysML. The System Modeling Language [18] is a UML
profile [19] that may be tailored in turn to fit in with an application domain.
Given the concept of ”profile of profile” has not been defined by the UML stan-
dard, a tailored version of SysML may be termed as a ”SysML dialect”. Examples
of such dialects have been defined for real-time systems. For example, [20] sug-
gests to simplify SysML and to formalize communication ports.AVATAR, which
is the subject of the paper, ignores continuous flows and merges the block def-
inition and internal block definition diagrams into one block instance diagram.
AVATAR provides a semantics to most SysML state machine elements.

SysML tools. A survey of the literature indicates that SysML tools that target
real-time systems have been developed on top of UML tools in the form of SysML
add-ons that reuse the capacity of the UML tool to translate a high level model
into a formal model that may cater a formal verification tool.

– [21] uses Rhapsoldy and timed automata to formally verify the landing gear
of a military aircraft.

– Artisan Studio [2] associates parametric diagrams with solvers such as Mat-
lab or Excel.

– SysMLcompanion [3] translates a SysML model into a VHDL-AMS one.
– OMEGA SysML [4] translate a SysML model into a private intermediate

form: IF.
– TOPCASED [5] also translates a SysML model into a private intermediate

form: FIACRE.
– TTool [6], which is the subject of the paper, translates an AVATAR model

into a timed automata, a pi-calculus specification or a Petri for temporal
property verification, security flaw detection, and invariant search, respec-
tively. What makes TTool really user-friendly for people not familiar with
formal verification and formal methods in general, is the way the tool drives
formal verification at the SysML model level and displays results at the
SysML level too. The user of TTool is indeed not obliged to write logic for-
mula to achieve formal verification. Nor he or she is obliged to inspect formal
code to understand verification results.

Petri nets and invariants. Invariant search was introduced several decades
ago for basic Petri nets. [22] reports a successful experience in applying invariant
search to demonstrate token unicity on a local area network. The techniques is
still implemented by Petri net tools such as TINA [23]. It has also been extended
to search invariants in colored Petri nets [24] .

16

7 Conclusion

SysML tools that implement reachability techniques face the state explosion
problem as far as complex real-time systems verification is at stake. So far,
the open-source toolkit TTool has fallen in that category, for it translates a
SysML/AVATAR model into timed automata, and model-check the latter using
UPPAAL.

By contrast, the paper investigates formal verification of SysML/AVATAR
models using a structural approach that does not require generating the state
space of the model. The idea is to translate an AVATAR model into a Petri
net and to search for invariants by solving an equation system derived from the
incidence matrix of the Petri net. TTool implements invariant search algorithms
and displays results at the SysML level. It also enables the designer to look for
mutually exclusive actions or states in the SysML model. The user-friendliness
added to the invariant interpretation phase is a real added value of the tool.

The overall contribution could be adapted to other UML and SysML envi-
ronments structuring systems with classes / blocks and state machine diagrams.

An education case study of modeling a microwave oven has shown that in-
variant search usefully complements model checking. Risks of starting the oven
before the door is actually closes have been revealed by invariant search only,
and a handshake procedure has been added to the model.

References

1. Debbabi, M., Hassane, F., Jarraya, Y., Soeanu, A., Alawneh, L.: Verification and
Validation in Systems Engineering: Assessing UML/SysML Design Models. 270
pages, ISBN 978-3-642-15227-6, Springer, Nov. 2010.

2. Atego ARTiSAN Studio. http://www.atego.com/products/artisan- studio/
3. SysML Companion. http://www.realtimeatwork.com/software/sysml-companion/
4. Dragomir, I. and Ober, I. and Lesens, D.: A Case Study in Formal System Engineer-
ing with SysML. 17th International Conference on Engineering of Complex Computer
Systems (ICECCS) (2012)

5. TOPCASED, http://www.topcased.org
6. TTool, http://ttool.telecom-paristech.fr
7. Knorreck, D., Apvrille, L., De Saqui-Sannes, P.: TEPE: A SysML Language for
Time-Constrained Property Modeling and Formal Verification. ACM SIGSOFT Soft-
ware Engineering Notes, Volume 36, No 1, pages 1–8, Jan. 2012

8. Pedroza, G., Knorreck, D, Apvrille, L.: AVATAR: A SysML Environment for the
Formal Verification of Safety and Security Properties. The 11th IEEE Conference
on Distributed Systems and New Technologies (NOTERE’2011), Paris, France, May
2011

9. Apvrille L, Becoulet A.: Prototyping an Embedded Automotive System from its
UML/SysML Models. Proceedings of Embedded Real Time Systems and Software
(ERTSS’2012), France, Feb. 1-3, 2012.

10. Bengtsson J., Yi. W.: Timed Automata : Semantics, Algorithms and Tools. Lecture
Notes on Concurrency and Petri Nets, W. Reisig and G. Rozenberg (eds.), LNCS
3098, Springer-Verlag, p. 87-124, 2004.

17

11. Blanchet, B.: Using Horn Clauses for Analyzing Security Protocols. In Vronique
Cortier and Steve Kremer, editors, Formal Models and Techniques for Analyzing
Security Protocols, volume 5 of Cryptology and Information Security Series. pages
86-111. IOS Press, March 2011.

12. Murata, T.: Petri Nets: Properties, Analysis and Applications, In: Proceedings of
the IEEE, Vol. 77, No. 4, pages 541-580. April 1989.

13. Diaz, M.: Modeling and analysis of communication and cooperation protocols using
petri net based models. Volume 6, Issue 6, December 1982, 419–441 (1982)

14. Diaz, M.: Petri Nets : Fundamental Models, Verification and Applications. John
Wiley & Sons, 2009 - 768 pages

15. Farkas, J.: Theorie den einfachen Ungleichungen. J Reine Angew Math 124:1-27,
1902

16. Colom, J.-M., Silva, M.: Improving the Linearly Based Characterization of P/T
Nets. Proceedings of the 10th International Conference on Application and Theory
of Petri Nets, 1989, Bonn, Germany, pages 52-73. 1989.

17. Kelling, E., Friedewald, M., Leimbach, T., Menzel, M., Séger, P., Seudié, H, Weyl,
B.: Specification and evaluation of e-security relevant use cases. Technical Report
Deliverable D2.1, EVITA Project, 2009.

18. http://www.omg.org/spec/SysML/1.3/PDF/
19. http://www.omg.org/spec/UML/2.4.1/
20. Ober, I., Ober, Iu., Dragomir, I., Aboussoror, E.A.: UML/SysML semantic tunings.
Innovations in Systems and Software Engineering, Springer ISSE NASA, Vol. 7 N. 4,
p. 257-264, November 2011.

21. E. C. da Silva, E.C., Villani, E.: Integrando sysml e model checking para v&v
de software critico espacial. in Brasilian Symposium on Aerospace Engineering and
Applications, Sao José dos Campos, SP, Brasil, 2009.

22. Ayache, J.-M., Courtiat, J.-P., Diaz, MI: REBUS, A Fault-Tolerant Distributed
System for Industrial Real-Time Control. IEEE Transactions on Computers, vol. 31,
no. 7, pp. 637-647, July 1982.

23. Time Petri Net Analyzer, http://projects.laas.fr/tina/
24. Jensen K., Coloured Petri Nets and the Invariant Method, Theoretical Computer.
Science, Vol.l, t98, pp.317-336, North-Holland Publishing Company, 2002

