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a b s t r a c t

This paper deals with the upscaling of multicomponents two-phase flow in porous media. In this paper,

chemical potential equilibrium at the interface between both phases is assumed to be described by a

linear partitioning relationship such as Raoult or Henry’s law. The resulting macro-scale dispersion

model is a set of two equations related by a mass transfer coefficient and which involves several

effective coefficients. These coefficients can be evaluated by solving closure problems over a

representative unit-cell. The proposed model is successfully validated through direct analytical and

numerical calculations.

1. Introduction

Two-phase flows in porous media with liquid–liquid or liquid–

vapor phase exchange appear in a large number of situations such

as chemical reactors, nuclear safety devices, transport in petro-

leum reservoirs, aquifer contamination, desalination processes by

way of distillation.

In such a system, a liquid phase b is in contact with another

phase, referred to as the g-phase. Molecules may be exchanged at

the bg-interface, and we will assume that, at this boundary, the

phases are at thermodynamic equilibrium. This equilibrium gen-

erally leads to a concentration jump at the bg-interface. Transfer
in the interface neighborhood leads to concentration fields as

schematically depicted in Fig. 1

In this paper we are interested in the macro-scale description

of such flows in a porous medium, as represented in Fig. 2. More

precisely, we will narrow our interests to the averaging of the

mass transport equation for a given species A. A complete

description would also requires to develop the macro-scale

momentum balance equations, etcyWe will assume that density

and viscosity variations are small so the two-phase flow problem

can be decoupled from the transport problem of the chosen

chemical species, provided the change in saturation is very slow

so a quasi-static analysis may be carried on for momentum

transport. This two-phase flow problem has received a lot of

attention in the literature, and we refer the reader to Whitaker

(1986), Auriault (1987) for some indication on the averaging

problem. At this point, we may focus our attention on the

transport problem for a given species in order to develop a

macro-scale dispersion equation taking into account the mass

exchange at the interface. In a previous paper on such a problem

(Quintard and Whitaker, 1994), we called it ‘‘active dispersion’’ by

opposition to ‘‘passive dispersion’’ corresponding to the flow of a

chemical species without exchange or reaction at the phase

interface.

In the case of film flow, the mass transfer modelling at the

interface liquid–gas has received a lot of attention. To character-

ize this mass transfer, the authors usually define local mass

transfer resistances within each phase and an overall mass

exchange coefficient (Taylor and Krishna, 1993). The latter is a

combination of both local resistances according to an association

in series. Numerous models evaluating the local resistance exist

in the literature. Among the most widely used in chemical

engineering, we can quote the Lewis and Whitman double film

theory (Lewis and Whitman, 1924) who postulated that the local

mass transfers occur in a thin layer on each side of the inter-

face, the Higbie’s penetration model (Higbie, 1935) or also the

Danckwerts surface renewal theory (Danckwerts, 1970). In these

two last models, the mass transfer is assumed to be controlled by

the rate of surface renewal: after a time the surface elements are

swept away and replaced by a fresh surface. Both models involve

unsteady-state diffusion. These models are commonly used in
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regular engineering practice. They are even relatively accurate if

the real conditions (especially geometry and flow parameters) are

compatible with the film flow picture. However, in many complex

geometries, it is impossible to predict an independent picture of

the flow along the interfaces. The boundary layers, if this concept

itself is relevant, are the results of a complex flow that must be

solved accurately. Therefore, a porous medium theory cannot

make the prior assumption that a simple film flow exists, or a

simple boundary layer exists.

We will not make such assumptions here and will develop a

more general theory in the continuity of the works of Quintard

andWhitaker (1994) and of Coutelieris et al. (2006). In a sense it is

also an extension of the paper by Bousquet-Melou et al. (2002)

who studied active dispersion in mushy zones (in the case of the

solidification of a binary mixture). We mention here that Bekri

and Adler (2002) tackle the dispersion problem in multiphase

flow with a different approach based on the combination of an

Immiscible Lattice Boltzmann algorithm and random walks. In the

first paper, a macroscopic model describing the flow of a two-

phase, binary mixture was obtained from the pore-scale equations

using a volume averaging upscaling method. Since thermody-

namic equilibrium for a binary mixture forces the concentration at

the interface to be a function of temperature and pressure only,

and not of the composition, transport of species A in one phase can

be solved almost independently from the other phase problem.

The resulting averaged equation is a dispersion equation with a

mass exchange coefficient. The main effective parameters are the

dispersion tensor and the mass-exchange coefficient. However,

some additional terms such as velocity-like coefficients are also

introduced in the macro-model. They suggest in particular that the

macroscopic convective velocity is modified by the presence of the

other phase. An important limitation of the model that we will try

to overcome in this paper is that the development was limited to

the case of a quasi-steady bg-interface.
This theory was extended in the paper by Coutelieris et al.

(2006) to multicomponent mixtures through the introduction of

partitioning equilibrium condition at the bg-interface, in the

limited case of an immobile non-aqueous liquid phase and a

flowing aqueous phase. Coutelieris et al. (2006) focused their

attention on the mass exchange coefficient. It is calculated

through a multi-region closure problem involving partitioning

relationships at the interface of these regions. In both papers, one

phase is treated as a rigid phase. In addition, the interface velocity

is assumed to be very small and negligible so the flow of matter

relative to the interface velocity may be neglected in comparison

with the interfacial diffusive flux.

In the present paper, we extend these theoretical results to a

more general case of two-phase multicomponent systems. The

two phases are mobile, contrary to the above cited papers, and we

fully develop the dispersion and the mass exchange effects. In

addition, in the spirit of the work by Chella et al. (1998), the

upscaling methodology is improved with respect to the interface

movement, which is not neglected in the proposed full model.

The paper is organized as follows. The volume averaging

method is applied to the microscopic, pore-scale equations that

govern the system in order to develop a macro-scale model for a

homogeneous porous medium. We consider that local mass non-

equilibrium, i.e. averaged concentrations are not necessarily

linked by the micro-scale equilibrium interface relationship. This

results into two macroscopic equations involving dispersion

tensors, additional convective transport terms and a mass

exchange term; all these effective properties being influenced

by the mass transfer process. These effective coefficients can

entirely be determined by three closure problems defined over a

unit-cell representative of the porous medium. A closed form of

the total mass transfer rate is also proposed.

To better understand the results and validate the approach, in

the last section we consider the case of the falling film along a

vertical fixed wall. In this case, the closure problems can be solved

analytically in the fully developed film regime. The obtained

effective dispersion coefficients in the literature are in good

agreement with the falling film theory results and the mass

exchange coefficient corresponds to the Lewis and Whitman

double film theory (Lewis and Whitman, 1924). Moreover, we

compared with success the macro-scale model with a direct

numerical simulation of the pore-scale model.

2. Pore scale problem

The pore-scale problem under consideration corresponds to

the mass transfer of a component A in a two-phase flow system.

The two phases, b and g, flow through a porous medium (the

s-phase is the solid phase). The general problem is in fact

composed of momentum equations, mass balance equations for

each species and an energy equation. In principle there is a full

coupling between these balance equations, especially through

terms involving the velocity of the interface. One may imagine

situations for which this coupling is very strong: for instance,

Fig. 1. Concentration field near the bg-interface for species A.

Fig. 2. Averaging volume.



intense boiling of water in a nuclear debris bed with very rapid

thermal transient is likely to produce a big rate of phase change

that may corresponds to huge exchange of enthalpy and momen-

tum between phases. To our knowledge this full problem has not

been solved from an upscaling point of view. For instance, how

the mass exchange rate affects the macro-scale momentum

balance equation is an open question. However, there are also

situations for which the interface may be quasi-static for the

relaxation phenomena associated to momentum and energy

exchanges. This is the case in distillation columns for which the

industrial target tends to reach quasi-steady situations. In such

cases, one may admit that:

1. the temperature is quasi-uniform over a representative unit-

cell;

2. for a given interface position, the viscous relaxation of the

velocity fields is rapid compared to the interface characteristic

velocity.

As a consequence, the mass, momentum and energy equations

may be solved in a sequential manner. In this case, the unit-cell

velocity fields and the temperature are known input variables for

the multicomponent mass balance problem. Therefore, the two

velocity fields are supposed to be known in this section develop-

ment and we will not consider the resolution of the two-phase

flow problem. One can refer to Whitaker (1986, 1994), Auriault

(1987), Lasseux et al. (1996) or Lasseux et al. (2008) for further

details on the upscaling of two-phase flows in porous media with

quasi-static interfaces. For small mass exchange rates as dis-

cussed above, the resulting equations, i.e. generalized Darcy’s law

and the various improvements, may be probably used as such. We

leave open in this paper the upscaling in the case of big mass

exchange rates.

The total mass transfer process is described by the following

boundary value problem:

@rb

@t
þr:ðrbvbÞ ¼ 0 in Vb ð1Þ

BC1 vb ¼ 0 at Abs ð2Þ

BC2 nbg:ðrbðvbÿwbgÞÞ ¼nbg:ðrgðvgÿwbgÞÞ at Abg ð3Þ

BC3 vg ¼ 0 at Ags ð4Þ

@rg
@t

þr:ðrgvgÞ ¼ 0 in Vg ð5Þ

In this problem, we assume a no-slip boundary condition at the

interface with the rigid porous structure. In these equations, wbg

represents the velocity of Abg, the interface between the b-phase

and the g-phase.
Many approaches can be found in the literature to model

diffusion problems for multicomponent gas mixtures (Taylor and

Krishna, 1993). Indeed, Maxwell–Stefan equations were used in a

previous paper to deal with multicomponent ‘‘passive’’ dispersion

in porous media (Quintard et al., 2006). As an intermediate step in

the upscaling process, the diffusive fluxes were written under the

form of generalized Fick’s law, which may be obtained from

Maxwell–Stefan equations (Taylor and Krishna, 1993; Quintard

et al., 2006) but also from irreversible thermodynamics consid-

eration (see for instance Giovangigli, 1999). However, the com-

plexity of such equations make their resolution and their

upscaling difficult in the perspective of this paper about two-

phase flow situations. To avoid these difficulties, in this paper we

will use an effective diffusivity method, which offers a good

approximation in many situations of pratical interest. It consists

in the definition of an effective diffusivity DbA such that the rate of

diffusion JbA of species A in the b-phase depends on the species

concentration gradients through the simple expression

JbA ¼ÿrbDbArobA; A¼ 1;2,3 . . . ð6Þ

where DbA is some characteristic diffusion coefficient of species A

in the b-phase mixture. Therefore, the transport of the component

A is described by the following convection-diffusion problem:

@rbobA

@t
þr:ðrbobAvbÞ ¼r:ðrbDbArobAÞ in Vb ð7Þ

BC4 nbs:rbDbArobA ¼ 0 at Abs ð8Þ

BC5 ngs:rgDgArogA ¼ 0 at Ags ð9Þ

BC6 nbg:ðrbobAðvbÿwbgÞÿrbDbArobAÞ

¼ nbg:ðrgogAðvgÿwbgÞÿrgDgArogAÞ at Abg ð10Þ

BC7 mbAðobAÞ ¼ mgAðogAÞ at Abg ð11Þ

@rgogA

@t
þr:ðrgogAvgÞ ¼r:ðrgDgArogAÞ in Vg ð12Þ

where mbA is the chemical potential associated to species A in the

b-phase. It is assumed in our development that the chemical

potential equilibrium at the interface is linearized to a partition-

ing relationship (like for instance Henry’s law or Raoult’s law):

obA ¼HAogA ð13Þ

In this paper, the molecular effective diffusivity coefficients (DbA

and DgA) and the partitioning coefficient (HA) are considered

constant in space and in time. This question (at least for the

variation of the diffusion coefficients with composition) has been

discussed in Quintard et al. (2006). Moreover, it is assumed that

all the physical properties of the fluids do not change strongly

with temperature. Therefore, the coupling with the energy equa-

tion is not discussed here and belongs to the sequential treatment

outlined in the introduction of this section.

3. Volume averaging

In this paper, we follow the developments in Quintard and

Whitaker (1994) and Coutelieris et al. (2006) who used the

method of volume averaging (Whitaker, 1999) to derive the

macro-scale equations. We recall in this section the main defini-

tions and theorems necessary to develop the macroscopic model

from the pore-scale equations. We consider the averaging volume

as illustrated in Fig. 2.

For a function cb associated with the b-phase, we define the

average as

/cbS¼
1

V

Z

Vb

cb dV ð14Þ

and the intrinsic phase average as

/cbS
b ¼

1

Vb

Z

Vb

cb dV ð15Þ

Both are linked by

/cbS¼ eb/cbS
b with eb ¼

Vb

V
ð16Þ

where Vb is the volume of the b-phase contained in the volume V

and eb is the volume fraction of the b-phase.



The phase variable cb can be expressed following Gray’s

decomposition (Gray, 1975) as

cb ¼/cbS
bþ ~cb ð17Þ

The volume averaging theory requires the use of the following

approximation:

/ ~cbS¼ 0 ð18Þ

In order to get the macro-scale equations in terms of intrinsic

phase averages, we will apply the following spatial and temporal

averaging theorems

/rcbS¼r/cbSþ
1

V

Z

Abs

nbscb dAþ
1

V

Z

Abg

nbgcb dA ð19Þ

@cb

@t

� �

¼
@/cbS

@t
ÿ
1

V

Z

Abs

nbs:wbscb dAÿ
1

V

Z

Abg

nbg:wbgcb dA

ð20Þ

The integrals in the equalities express the interfacial effects

typical of porous media physics. The solid phase is considered

to be inert in our analysis, therefore wbs ¼ 0. Moreover, applying

the spatial averaging theorem (Eq. (19)) to cb ¼ 1 leads to the

very useful lemma

reb ¼ÿ
1

V

Z

Ab

nb dA ð21Þ

Here, Ab denotes all the surfaces in contact with the b-phase (i.e.

Abs and Abg) and the normal nb represents either nbg or nbs.

These notations will be adopted for the rest of this paper.

3.1. Total mass balance equations

The mere application of the volume averaging theorems to the

continuity equations (Eq. (1)) and (Eq. (5)) leads to

@/rbS

@t
þr:ð/rbvbSÞþ

1

V

Z

Abg

nbg:rbðvbÿwbgÞ dA¼ 0 in Vb ð22Þ

@/rgS

@t
þr:ð/rgvgSÞþ

1

V

Z

Abg

ngb:rgðvgÿwbgÞ dA¼ 0 in Vg ð23Þ

As indicated in the introduction, we suppose the fluid densities rb

and rg constant within the averaging volume V (rb ¼/rbS
b and

rg ¼/rgS
g). It must be remembered that this does not mean that

the fluid densities will not vary at the macroscale. Moreover, we

define the total mass exchange rate _m according to

_m ¼
1

V

Z

Abg

nbg:rbðvbÿwbgÞ dA ð24Þ

Hence, using the boundary condition (Eq. (3)), we obtain the

following macroscopic form of the total mass transport equation

@ebrb

@t
þr:ðrb/vbSÞ ¼ÿ _m in Vb ð25Þ

@egrg
@t

þr:ðrg/vgSÞ ¼ _m in Vg ð26Þ

In the next sections, we will propose a closed form of the mass

rate of evaporation _m.

3.2. Species mass balance equation

We will now form the average transport equation for Eq. (7)

by successive applications of the volume averaging theorems.

We have

@rb/obAS

@t
þr:ðrb/obAvbSÞþ

1

V

Z

Abg

nbg:rbobAðvbÿwbgÞ dA

¼r: rbDbAr/obASþ
1

V

Z

Ab

nbrbDbAobA dA

 !

þ
1

V

Z

Ab

nb:rbDbArobA dA ð27Þ

We search a transport equation in terms of the intrinsic

average mass fraction /obAS
b. Using Gray’s spatial decomposi-

tion for obA and vb and the definition /obAS¼ eb/obAS
b, one

can eventually obtain for the left hand side of Eq. (27)

@ebrb/obAS
b

@t
þr:ðebrb/obAS

b/vbS
bÞþr:ðrb/ ~obA ~vbSÞ

þ
1

V

Z

Abg

nbg:rbobAðvbÿwbgÞ dA ð28Þ

A similar operation for the right hand side leads to

r:DbA½ebrbr/obAS
bþrb/obAS

breb�

þr:DbA
1

V

Z

Ab

nbrb/obAS
b dAþ

1

V

Z

Ab

nbrb
~obA dA

" #

þ
1

V

Z

Ab

nb:rbDbArobA dA ð29Þ

Considering now the spatial lemma (Eq. (21)) and defining the

mass transfer rate for the component A by

_mA ¼
1

V

Z

Abg

nbg:ðrbobAðvbÿwbgÞÿrbDbArobAÞ dA ð30Þ

The previous equation can be written as

@ebrb/obAS
b

@t
þr:ðebrb/obAS

b/vbS
bÞþr:ðrb/ ~obA ~vb

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
SÞ

dispersion term

¼r: ebrbDbAr/obAS
bþ

1

V

Z

Ab

nbrbDbA ~obA dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

tortuosity term

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ÿ _mA ð31Þ

A similar development for the convection-diffusion equation in

the g-phase gives

@egrg/ogAS
g

@t
þr:ðegrg/ogAS

g/vgS
gÞþr:ðrg/ ~ogA ~vgSÞ

¼r: egrgDgAr/ogAS
gþ

1

V

Z

Ag

ngrgDgA ~ogA dA

 !

þ _mA ð32Þ

At this stage of the development, the averaged transport equa-

tions are not under a closed form since mass fraction deviations

having microscopic length-scale are still present. The classical

strategy is to derive a problem that governs the deviations, then

to represent them in terms of average quantities (the so-called

closure problem), and, finally, to insert these representations into

the conservation equations (Eqs. (31) and (32)) to get the closed

form of the averaged equations. In order to obtain a convenient

form for the closure problem, we continue the development by

the introduction of the Gray’s decomposition of obA in the



evaporation rate of species A. The right hand side of Eq. (31)

becomes

ebr:ðDbArbr/obAS
bÞþðrebÞ:rbDbAr/obAS

b

þr: DbA
1

V

Z

Ab

nbrb
~obA dA

" #

ÿ _m/obAS
bÿðrebÞ:rbDbAr/obAS

b

ÿ
1

V

Z

Abg

nbg:rb
~obAðvbÿwbgÞ dAþ

1

V

Z

Ab

nb:rbDbAr ~obA dA ð33Þ

Using the macroscopic form of the continuity equation (Eq. (25))

in the left hand side of Eq. (31) leads to

ebrb

@/obAS
b

@t
þebrb/vbS

b:r/obAS
bþr:ðrb/ ~obA ~vbSÞÿ _m/obAS

b

ð34Þ

Finally we obtain

rb

@/obAS
b

@t
þrb/vbS

b:r/obAS
bþeÿ1

b r:ðrb/ ~obA ~vbSÞ

¼r:ðrbDbAr/obAS
bÞþeÿ1

b r: DbA
1

V

Z

Ab

nbrb
~obA dA

" #

ÿ
eÿ1
b

V

Z

Abg

nbg:rb
~obAðvbÿwbgÞ dAþ

eÿ1
b

V

Z

Ab

nb:rbDbAr ~obA dA

ð35Þ

4. Closure

The aim of this section is to develop the relationships between

spatial deviations and average quantities in order to close the

macroscopic model.

4.1. Differential equation for the concentration deviations

We are now ready to derive a governing differential equation

for the deviations. We first recall the original convection-diffusion

equation in a non-conservative form

rb

@obA

@t
þrbvb:robA ¼r:ðrbDbArobAÞ ð36Þ

By subtracting Eq. (35) from Eq. (36) and considering Gray’s

decomposition Eq. (17), we obtain the following equation for the

spatial deviation of the mass fraction

rb

@ ~obA

@t
þrbvb:r ~obAþrb

~vb:r/obAS
bÿeÿ1

b r:ðrb/ ~obA ~vbSÞ

¼r:ðrbDbAr ~obAÞÿe
ÿ1
b r:

1

V

Z

Ab

nbrbDbA ~obA dA

 !

þ
eÿ1
b

V

Z

Abg

nbg:rb
~obAðvbÿwbgÞ dAÿ

eÿ1
b

V

Z

Ab

nb:rbDbAr ~obA dA

ð37Þ

When the pore scales and the macroscopic scales are separated,

the classical following assumption is available

r:
1

V

Z

Ab

nbrbDbA ~obA dA

 !

5
1

V

Z

Ab

nbrbDbAr ~obA dA ð38Þ

Numerous other simplifications such as stationarity or the omis-

sion of the dispersion term are generally made in the literature.

However, in our development, we will keep these terms and

make assumptions later. Therefore, we consider the following

differential equation for the b-phase :

rb

@ ~obA

@t
þrbvb:r ~obAþrb

~vb:r/obAS
b

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
source

ÿeÿ1
b r:ðrb/ ~obA ~vbSÞÿr:ðrbDbAr ~obAÞ

¼
eÿ1
b

V

Z

Abg

nbg:rb
~obA � ðvbÿwbgÞ dAÿ

eÿ1
b

V

Z

Ab

nb:rbDbAr ~obA dA

ð39Þ

Similarly for the g-phase, we have

rg
@ ~ogA

@t
þrgvg:r ~ogAþrg ~vg:r/ogAS

g
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

source

ÿeÿ1
g r:ðrg/ ~ogA ~vgSÞÿr:ðrgDgAr ~ogAÞ

¼
eÿ1
g

V

Z

Abg

ngb:rg ~ogA � ðvgÿwbgÞ dAÿ
eÿ1
g

V

Z

Ag

ng:rgDgAr ~ogA dA

ð40Þ

We can use the decomposition given by Eq. (17) with Eqs. (8), (9),

(11) and (13) in order to develop the following boundary condi-

tions for this deviation problem

nbs:rbDbAr ~obA ¼ÿnbs:rbDbAr/obAS
b

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

source

at Abs ð41Þ

ngs:rgDgAr ~ogA ¼ÿngs:rgDgAr/ogAS
g

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

source

at Ags ð42Þ

~obA ¼HA ~ogAþðHA/ogAS
g

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

source

ÿ/obAS
bÞ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

source

at Abg ð43Þ

nbg:ðb/obAS
bðvbÿwbg

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
source

ÞÿrbDbAr/obAS
b

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{
source

Þ

þnbg:ðrb
~obAðvbÿwbgÞÿrbDbAr ~obAÞ

¼ nbg:ðrg ~ogAðvgÿwbgÞÿrgDgAr ~ogAÞ

þnbg:ðrg/ogAS
gðvgÿwbg

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

source

ÞÿrgDgAr/ogAS
g

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

source

Þ at Abg ð44Þ

In addition, we have the additional condition that the averages

of the deviations must be zero

/ ~obAS
b ¼ 0; / ~ogAS

g ¼ 0 ð45Þ

In order to solve the closure problem in a representative region

of the porous medium instead of considering the entire macro-

structure, we consider the model of a spatially periodic system.

Hence, we add the following periodic conditions to this deviation

problem

~obAðrþ liÞ ¼ ~obAðrÞ; ~ogAðrþ liÞ ¼ ~ogAðrÞ; i¼ 1;2,3 ð46Þ

At this point, it is important to remember that by comparison

to the work by Coutelieris et al. (2006), we have kept the

following important features:

� terms involving ðvbÿwbgÞ have been kept in the analysis,

� velocity in the g-phase is not neglected.

4.2. Closure problems

There are four non-homogeneous terms (r/obAS
b, r/ogAS

g,

/obAS
b and /ogAS

g) in the previous equations. Following the

work by Quintard and Whitaker (1994) and Coutelieris et al.

(2006), it is possible to depict the mass fraction deviations in

terms of a linear combination of these source terms thus



providing the following representation:

~obA ¼ bbb:r/obAS
bþbbg:r/ogAS

gþsbb/obAS
bþsbg/ogAS

g

ð47Þ

~ogA ¼ bgg:r/ogAS
gþbgb:r/obAS

bþsgg/ogAS
gþsgb/obAS

b

ð48Þ

where the closure variables bbb, bbg, bgg, bgb, sbb, sbg, sgg and sgb
satisfy four closure problems.

The next step of our development is to establish the mathe-

matical problems that will allow us to determine all the closure

variables. These closure problems will be solved over a periodic

representative unit-cell. They are found out by substituting the

previous closure forms (Eqs. (47) and (48)) into the deviations

problem of Section 4.1.

Here we focus on the treatment of the r:ðrb/ ~obA ~vbSÞ term.

The insertion of the closure form of ~obA in this term yields

r:ðrb/ ~obA ~vbSÞ ¼r:ðrb/ ~vbsbbS/obAS
bÞþr:ðrb/ ~vbsbgS/ogAS

gÞ

þr:ðrb/ ~vbbbbS:r/obAS
bÞþr:ðrb/ ~vbbgbS:r/ogAS

gÞ ð49Þ

We notice that the first term of this sum be written as

r:ðrb/ ~vbsbbS/obAS
bÞ ¼ rb/ ~vbsbbS:r/obAS

b

þ/obAS
br:ðrb/ ~vbsbbSÞ ð50Þ

From the assumption of separation of scales one can deduce that

/obAS
br:ðrb/ ~vbsbbSÞ5rb/ ~vbsbbS:r/obAS

b ð51Þ

and

r:ðrb/ ~vbbbbS:r/obAS
bÞ5rb/ ~vbsbbS:r/obAS

b ð52Þ

Finally, we can consider the following approximations:

r:ðrb/ ~obA ~vbSÞ ¼ rb/ ~vbsbbS:r/obAS
bþrb/ ~vbsbgS:r/ogAS

g

ð53Þ

r:ðrg/ ~ogA ~vgSÞ ¼ rg/ ~vgsggS:r/ogAS
gþrg/ ~vgsgbS:r/obAS

b

ð54Þ

The identification of each term involving r/obAS
b, r/ogAS

g,

/obAS
b and /ogAS

g provides the four closure problems as

developed in Appendix A.

At this point, we have achieved the following tasks:

� we have obtained macro-scale equations in which several

properties appear which depend on some pore-scale closure

problem,

� the closure problems allow to map the concentration devia-

tions onto macro-scale concentrations and gradients (similar

relations exist for the velocity deviations).

The closure problems are time-dependent because of the

evolution of the interface (term involving wbg and Abgðx,tÞ), and,

also, because of the accumulation terms. Macro-scale equations

and pore-scale closure problems are fully coupled, which in fact

leads to memory (history) effects. Is it possible to simplify these

closure problems in order to decouple macro and pore-scale

problems? Considering that the diffusion term near the interface

is dominant versus the flux proportional to nbg:ðvbÿwbgÞ and that

the mass fraction field relaxes faster than the evolution of the

interface, a first possibility could be to discard all terms involving

nbg:ðvbÿwbgÞ and the accumulation term in the closure problems.

The coupling between the macro and pore-scale equations

remains through the evolution of the interface Abgðx,tÞ. Therefore,

even after having removed the nbg:ðvbÿwbgÞ and the accumula-

tion terms, the effective properties are associated to a specific

time and the underlying realisation of the pore-scale geometry.

This way is a classical difficulty found in geochemistry, or for

any other applications involving changing pore-scale geometry.

However, if various positions of the interface can be identified in

the process in an univoque manner, for instance as a function of

the phase volume fractions, then the closure-problems can be

solved independently from the macro-scale equations and the

effective properties may be tabulated as a function of the volume

fractions. In this way, the macro-scale equations can be solved

using these correlations for the effective properties without the

need for a fully coupled solution of the macro-scale equations and

the micro-scale closure problems. This kind of development,

which is the one practically usable, is detailed in the next section.

4.3. Simplified closure problems

For the moment, only few assumptions have been made. First,

we have considered that the volume density of both b and g
phases does not vary within the representative volume V. Then,

according to the assumption of separation of scales, we simplified

the differential equation for the mass fraction deviations con-

sidering Eq. (51).

We now consider additional assumptions in order to simplify

the closure problems as described at the end of the preceding

section. First, we neglect the spatial and temporal variations of

the volume fractions. Then, since the time scales are also

separated, it is convenient to consider quasi-steady closure

problems. Moreover, in the closure problems flux terms involving

:ðvbÿwbgÞ are neglected in front of the diffusive fluxes. For

instance, Eq. (A.28) in Problem III becomes

nbg:rbDbArsbb ¼ nbg:rgDgArsgb at Abg ð55Þ

According to this last hypothesis, the liquid–vapor mass exchange

rate _m is neglected in the closure problems. As an important

consequence, Problems III and IV are identical with respect to the

factor HA. Therefore, we can easily demonstrate that

sb ¼ÿsbb ¼Hÿ1
A sbg ð56Þ

sg ¼Hÿ1
A sgg ¼ÿsgb ð57Þ

we also have

aA ¼ Xgb ¼Hÿ1
A Xbg ð58Þ

in which aA will appear in the macro-scale equation as a mass

exchange coefficient, as detailed in the next section. Because of the

definition of aA, the problem defining the sb and sg mapping

variables involves integro-differential equations. To solve this

kind of problem, it is convenient, following ideas put forth in

Quintard and Whitaker (1994), to carry out the following decom-

positions:

sb ¼ 1þs0baA ð59Þ

sg ¼ s0gaA ð60Þ

The new variable s0b and s0g satisfy the following Problem A

Problem A

rbvb:rs0b ¼r:ðrbDbArs0bÞþeÿ1
b ð61Þ

and

rgvg:rs0g ¼r:ðrgDgArs0gÞÿe
ÿ1
g ð62Þ

with the boundary conditions

nbs:rbDbArs0b ¼ 0 at Abs ð63Þ

ngs:rgDgArs0g ¼ 0 at Ags ð64Þ



s0b ¼HAs
0
g at Abg ð65Þ

nbg:rbDbArs0b ¼ nbg:rgDgArs0g at Abg ð66Þ

s0bðrþ liÞ ¼ s0bðrÞ; s0gðrþ liÞ ¼ s0gðrÞ; i¼ 1;2,3 ð67Þ

/s0bS
b ¼ÿ

1

aA
; /s0gS

g ¼ 0 ð68Þ

With the above assumptions, and considering that vg ¼ 0, we

recover the problem studied by Coutelieris et al. (2006). The

condition that the average of sb is zero allows to determine the

mass exchange coefficient aA (Eq. (68)).

A similar strategy is adopted for the bbb and bgb fields by

introducing the following decompositions in Problem I:

bbb ¼ b
0
bbÿcbbugb ð69Þ

bgb ¼ b
0
gbÿcgbugb ð70Þ

We can easily verify that cbb and cgb are solutions of the previous

problem A and b
0
bb and b

0
gb satisfy the following boundary value

problem

Problem B:

rbvb:rb
0
bbÿr:ðrbDbArb

0
bbÞþrb

~vb ¼ rbvbþrbaA vbs
0
bÿ/ ~vbs

0
bS

b
� �

ð71Þ

and

rgvg:rb
0
gbÿr:ðrgDgArb

0
gbÞ ¼ rgaAðvgs

0
gÿ/ ~vgs

0
gS

gÞ ð72Þ

with the boundary conditions

nbs:rbDbArb
0
bb ¼ÿnbsrbDbA at Abs ð73Þ

ngs:rgDgArb
0
gb ¼ 0 at Ags ð74Þ

b
0
bb ¼HAb

0
gb at Agb ð75Þ

nbg:rbDbArb
0
bbÿnbg:rgDgArb

0
gb ¼ÿnbgrbDbA at Agb ð76Þ

/b
0
bbS

b ¼ÿ
ugb

aA
; /b

0
gbS

g ¼ 0 ð77Þ

b
0
bbðrþ liÞ ¼ b

0
bbðrÞ; b

0
gbðrþ liÞ ¼ b

0
gbðrÞ; i¼ 1;2,3 ð78Þ

Similarly, the following decomposition applied to Problem II:

bgg ¼ b
0
ggþcggubg ð79Þ

bbg ¼ b
0
bgþcbgubg ð80Þ

leads to the following problem.

Problem C:

rbvb:rb
0
bgÿr:ðrbDbArb

0
bgÞ ¼ rbHAaAð/ ~vbs

0
bS

bÿvbs
0
bÞÿrbHAvb

ð81Þ

and

rgvg:rb
0
ggÿr:ðrgDgArb

0
ggÞþrg ~vg ¼ rgHAaAð/ ~vgs

0
gS

gÿvgs
0
g Þ ð82Þ

with the boundary conditions

nbs:rbDbArb
0
bg ¼ 0 at Abs ð83Þ

ngs:rgDgArb
0
gg ¼ÿngsrgDgA at Ags ð84Þ

b
0
bg ¼HAb

0
gg at Agb ð85Þ

nbg:rbDbArb
0
bgÿnbg:rgDgArb

0
gg ¼ÿnbgrgDgA at Agb ð86Þ

/b
0
bgS

b ¼
ubg

aA
; /b

0
ggS

g ¼ 0 ð87Þ

b
0
bgðrþ liÞ ¼ b

0
bgðrÞ; b

0
ggðrþ liÞ ¼ b

0
ggðrÞ; i¼ 1;2,3 ð88Þ

As previously, one can check that cbg and cgg satisfy Problem A.

The constraints Eqs. (68), (77) and (87) in the previous

problems allow the calculation of the mass exchange coefficient

a and the velocity-like coefficients ubg and ugb.

5. Closed form of the averaged equations

Given representations Eqs. (47) and (48) for the deviations ~obA

and ~ogA and the above simplifications, we can now obtain a

closed form of the macroscopic transport equations of the species

A. For that purpose, we inject these representations in the

Eqs. (31) and (32). In order to clarify the notations, the averaged

quantities are denoted as ObA ¼/obAS
b, OgA ¼/ogAS

g,

Vb ¼/vbS and Vg ¼/vgS. The macroscopic b-phase equation in

a conservative form is

@ebrbObA

@t
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

accumulation

þr:ðrbObAVbÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

convection

þr:ðebrbE
n

bðHAOgAÿObAÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convection correction

¼r:ðebrbD
n

bb
:rObAÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dispersion

þr:ðebrbD
n

bg
:rOgAÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dispersion correction

ÿ _mA
|{z}

mass exchange

ð89Þ

In this equation the velocity-like coefficient, En

b, is defined by

En

b ¼/ ~vbsbS
bÿ

1

Vb

Z

Ab

nbDbAsb dA ð90Þ

and the effective dispersion tensors take the following form

D n

bb
¼DbAIþ

1

Vb

Z

Ab

nbDbAbbb dAÿ/ ~vbbbbS
b ð91Þ

D n

bg
¼

1

Vb

Z

Ab

nbDbAbbg dAÿ/ ~vbbbgS
b ð92Þ

The closed form of the mass rate of evaporation of the A-compo-

nent reads

_mA ¼ÿugb:rObAþubg:rOgAþaAðHAOgAÿObAÞ ð93Þ

The establishment of this result will be detailed in the next

section.

For the g-phase, we obtain

@egrgOgA

@t
þr:ðrgOgAVgÞþr:ðegrgE

n

gðHAOgAÿObAÞÞ

¼r:ðegrgD
n

gg
:rOgAÞþr:ðegrgD

n

gb
:rObAÞþ _mA ð94Þ

where

En

g ¼/ ~vgsgS
gÿ

1

Vg

Z

Ag

ngDgAsg dA ð95Þ

D n

gg
¼DgAIþ

1

Vg

Z

Ag

ngDgAbgg dAÿ/ ~vgbggS
g ð96Þ

D n

gb
¼

1

Vg

Z

Ag

ngDgAbgb dAÿ/ ~vgbgbS
g ð97Þ

All these effective coefficients are entirely determined by the

resolution of the three closure problems detailed in the previous

section. Note that some cross terms appear in these macro-scale



equations. They suggest that the transport process in one phase is

influenced by the presence of the other phase.

6. Closed form of the mass rate of evaporation

In this section, we develop a closed form of the mass rate of

evaporation. We recall the definition of the mass exchange rate of

species A

_mA ¼
1

V

Z

Abg

nbg:ðrbobAðvbÿwbgÞÿrbDbArobAÞ dA ð98Þ

We note that it can also be written as

_mA ¼
1

V

Z

Abg

nbg:rbobAðvbÿwbgÞ dAÿ
1

V

Z

Ab

nb:rbDbArobA dA ð99Þ

The insertion of Gray’s decomposition in this relationship leads to

_mA ¼ _m/obAS
bþrbDbAðrebÞ:r/obAS

b

þ
1

V

Z

Abg

nbg:rb
~obAðvbÿwbgÞ dAÿ

1

V

Z

Ab

nb:rbDbAr ~obA dA

ð100Þ

When we replace the deviations ~obA and ~ogA by their representa-

tions (Eqs. (47) and (48)) and by using the definition of Xbb, Xbg,

ubb and ubg (see Appendix A) we have

_mA ¼ _m/obAS
bþrbDbAðrebÞ:r/obAS

bþubb:r/obAS
b

þubg:r/ogAS
gþXbb/obAS

bþXbg/ogAS
g ð101Þ

Using the relations Eqs. (A.11) and (A.33) we finally get

_mA ¼ÿugb:r/obAS
bþubg:r/ogAS

gÿXgb/obAS
bþXbg/ogAS

g

ð102Þ

It must be emphasized that this expression is the full expression

that can be used if one wants to solve the coupled averaged

equations/closure problems. If we now consider the simplifica-

tions previously discussed, the volume mass exchange rate of

species A becomes

_mA ¼ÿugb:rObAþubg:rOgAþaAðHAOgAÿObAÞ ð103Þ

Here we see that the exchange term is not only calculated by the

somehow classical term aAðHAOgAÿObAÞ, but requires also the

introduction of the extra convective terms. These terms are not

necessarily negligible, especially for simple unit cells, as was

illustrated by Golfier et al. (2002) in the case of flow in a

capillary tube.

If necessary, we can calculate the total mass transfer rate, _m,

by summing the mass exchange rate of all the species in the

system

_m ¼
X

A

_mA ð104Þ

7. Discussion

At this point, we have developed a comprehensive macro-scale

model and the associated closure problems from the microscopic

problem describing the transport of a chemical species in a two-

phase system obeying a partitioning relationship. In fact two-

models are available:

1. A fully macro-scale/micro-scale coupled model in which no

particular assumption is made on the evolution of the

bg-interface. Of course, while solving these problems is a very

complicated task, this result is of fundamental importance

because it gives information on the potential impact of non-

negligible interface movements on macro-scale transport

equations. This represents an important extension of the work

by Quintard and Whitaker (1994) and Coutelieris et al. (2006).

2. A simplified version in which this interface velocity terms

have been discarded. The large-scale transport equation for

species A has the same structure as in the previous model.

However, the macro-scale/micro-scale equations are somehow

uncoupled this time, in the sense that effective properties may

be calculated from the closure problem provided the position

of the interface is know.

Concerning the comparison of this work with the results of

Quintard and Whitaker (1994) and Coutelieris et al. (2006), we

may add the following comments:

� Like in Coutelieris et al. (2006), the overall upscaling procedure

yields two-macro scale equations linked by a mass exchange

term. We developed a full closure to determine this term: it

depends on a classical exchange term as pointed out by

Coutelieris et al. (2006) and also on additional convective

terms. The existence of such extra terms when dealing with

active dispersion was already suggested in Quintard and

Whitaker (1994). They indicate that the macroscopic convec-

tive velocity is modified by the presence of the other phase. In

this work we have emphasized the importance of these extra

terms in the mass rate of evaporation of each species and

therefore in the overall mass transfer process.

� Moreover, the averaged equations involve dispersion cross

terms, which were not present in the previous works.

8. Application to a two-phase film flow

In order to understand the implications of the theoretical

developments presented in this paper from a quantitive point of

view, we analyze below the classical film two-phase flow pro-

blem. Only the simplified version of the closure problems will be

used here.

8.1. Analytical solutions of the closure problems

In this section we consider the 2D stratified flow of two phases

as represented in Fig. 3. In this case, the velocity fields correspond

to the classical Poiseuille two-phase flow. The unit-cell is simply a

cross-section of the system, with the velocity fields perpendicular

to the section and the three closure problems A, B and C can be

solved analytically.

First we focus on the mass exchange coefficient aA. The

resolution of Problem A gives the following relationship:

1

aA
¼

L

3

HAegL

rgDgA
þ

ebL

rbDbA

 !

ð105Þ

This result has to be compared to the overall mass exchange

coefficient KOV for the interface transfer (Taylor and Krishna,

1993). It can be estimated as the association in series of the mass

transfer coefficients kbA and kgA in the b-phase and in the g-phase

1

KOV
¼

HA

kgA
þ

1

kbA
ð106Þ

Fig. 3. Geometry.



The form of our mass transfer coefficient given by relation

Eq. (105) is coherent with the Lewis and Whitman double film

theory. Indeed, according to their theory, the resistance to the

mass transfer is located in two films on each side of the interface

where the thermodynamic equilibrium occurs. The thickness of

each film is, respectively, dg and db. They estimate the transfer

coefficients kbA and kgA by the following equations:

kbA ¼
rbDbA

db
; kgA ¼

rgDgA

dg
ð107Þ

However, it must be noticed here that dg and db are not known

a priori. They are in fact solutions of the transport problem. The

advantage of the theory proposed in this paper is that the closure

problems offer a way to incorporate the transport characteristics,

for any unit-cell shape, without relying on a priori solutions like

the ones postulated in many film theories.

Table 1 compares the mass transport coefficient obtained in

the present case (Eq. (105)) with the ones found by Quintard and

Whitaker (1994) and Coutelieris et al. (2006). Since the closure

problem introduced by Quintard and Whitaker (1994) accounts

for only one phase, the resulting coefficient is only a function of

the mass transfer resistance within this phase. Moreover, we note

that in this special configuration, the results are similar for the

exchange coefficient calculated by Coutelieris et al. (2006) and the

one given by Eq. (105). Indeed in this special case of a stratified

unit-cell rgvg �rs0g ¼ 0 in Eq. (62), and, therefore both closure

problems by Coutelieris et al. (2006) and Problem A are identical.

We must emphasize that most of the time it is not the case.

Then, we solve Problems B and C in order to obtain analytical

expressions for the dispersion tensors Dn

bb, D
n

gb, D
n

bg and Dn

gg. The

solution being very complex, we solve using Taylor’s series

expansions assuming that the thickness of the b-phase is very

small in comparison with the one of the g-phase. This simplifica-

tion corresponds to the assumption of a b-phase film flow, i.e.

eb5eg ð108Þ

We introduce the dimensionless parameter f as

f¼
rgDgA

rbDbA
ð109Þ

and the Péclet numbers of the b and g phases as

Peb ¼
/vbS

bL

DbA
; Peg ¼

/vgS
gL

DgA
ð110Þ

We obtain, - Dn

bb :

i:Dn

bb:i

DbA
¼ 1þ

2

105
Pe2be

2
bþOðe3bÞ ð111Þ

i:Dn

bb:j

DbA
¼ÿ

1

8
PebebþOðe2bÞ ð112Þ

j:Dn

bb:i

DbA
¼ÿ

7

120
PebebþOðe2bÞ ð113Þ

j:Dn

bb:j

DbA
¼

3

2
þOðebÞ ð114Þ

Note that Eq. (111) is similar to the dispersion relationship

calculated by Asbjørnsen (1973) and Prenosil (1973) in the case of

the Taylor diffusion in falling liquid films. The additional disper-

sion tensors are given below.

- Dn

gb :

i:Dn

gb:i

DgA
¼

7e2b
4800HA

9Pe2b
DbA

DgA

� �

ÿ2PebPeg

� �

þOðe3bÞ ð115Þ

i:Dn

gb:j

DgA
¼ÿ

eb
120HA

9Peb
DbA

DgA

� �

ÿ2Peg

� �

þOðe2bÞ ð116Þ

j:Dn

gb:i

DgA
¼

7e2b
eg80HA

PebþOðe3bÞ ð117Þ

j:Dn

gb:j

DgA
¼ÿ

eb
eg2HA

þOðe2bÞ ð118Þ

- Dn

bg :

i:Dn

bg:i

DbA
¼

7egeb

4800fÿ1
58PebPegÿ51Pe2b

DbA

DgA

� �� �

þOðe2bÞ ð119Þ

i:Dn

bg:j

DbA
¼ÿ

7eb

120fÿ1
PebþOðe2bÞ ð120Þ

j:Dn

bg:i

DbA
¼

eg

80fÿ1
58Pegÿ51Peb

DbA

DgA

� �� �
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j:Dn
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¼ 1þ

f

eg2HA
ebþOðe2bÞ ð126Þ

8.2. Numerical validation

In this section we control the validity of the approach devel-

oped in this paper by a comparison between our macro-scale

model and a direct numerical simulation (DNS) of the pore-scale

model. For our simulations, we used the COMSOL Multiphy-

sicsTM3.5a finite elements toolbox. First, we consider the geome-

try depicted in Fig. 3. The unit-cells are the vertical cross-section

of this geometry. We consider an established two-phase flow, and

the bg-interface is assumed to be motionless. Initially, the mass

Table 1

Comparison of the mass exchange coefficient expression in the case of the

stratified unit-cell.

Quintard and Whitaker

(1994)

Coutelieris et al.

(2006)

Present work

Coupled

phase

No Yes Yes

g-Phase
mobile

No No Yes

1

aA

2L

3

ebL

rbDbA

L

3

HAegL

rgDgA
þ

ebL

rbDbA

 !

L

3

HAegL

rgDgA
þ

ebL

rbDbA

 !



fractions are equal to zero. The boundary conditions are

� at the inlet: obA ¼ 0:2 and ogA ¼ 0:15,

� at the outlet: a convective flux condition,

� at the wall: a zero flux condition.

In these numerical simulations, the velocity field and the mass

fraction fields are, respectively, computed by solving the steady-state

Navier–Stokes equations (using quadratic Lagrange elements for the

velocities and linear for pressure) and the pore-scale problem

(Eqs. (7)– (12)). The advection-diffusion equations are solved using

a quadratic Lagrange element formulation. The linear systems are

solved using the direct solver UMFPACK based on the Unsymmetric

MultiFrontal method. The resulting fields are plotted in Fig. 4 for the

steady state and particular choices of various parameters. One may

identify here two regions: one entrance region near the inlet where

the concentration field evolution is rapid, with a characteristic length-

scale smaller than the unit-cell characteristic length. Elsewhere, one

see a much smoother solutions which is more appropriate for the

periodicity boundary conditions used in the closure problems. This

point will be discussed again later, when comparing the macro-scale

predictions.

The fields are averaged over cross-sections to provide the 1D

evolution of macro-scale mass fractions. These averaged fields are

then compared to the ones obtained from the macro-scale model.

Before solving the macro-scale equations, we solved the closure

problems on a unit-cell as described in Fig. 3.

First, we have investigated the dispersion value i:Dn

bb:i=DbA

according to the b-phase thickness by solving the closure pro-

blems for different Péclet numbers. Results are plotted in Fig. 5.

They are compared to the analytical formula obtained in the

previous section (Eq. (111)) and to the Taylor-Aris dispersion

coefficient when the phases are treated separately (Quintard and

Whitaker, 1994). As was expected for small liquid-phase thick-

nesses, the analytical result and the simulations fit well.

Then, since all the effective properties are known, we can

finally solve the macro-scale equations over a 1D geometry with

the same length and boundary conditions as the one of the DNS

geometry. For the first simulation, the Péclet numbers considered

are, respectively, Peb ¼ 1:2 and Peg ¼ 11:2. The mass fractions

along the x-axis when the steady state is reached are plotted in

Figs. 6 and 7 is an elution curve in both DNS and macro-

model cases.

The actual (DNS) and theoretically predicted mass fraction

fields are in very good agreement.

We redo the same operations for higher Péclet number (Peb ¼ 12

and Peg ¼ 112). Simulation results are exposed in Figs. 8 and 9.

While the overall agreement is fairly good, one sees an increasing

discrepancy between the theoretical model and the DNS results, for

the phase at high Péclet numbers, and near the domain entrance.

These phenomena suggest the following remarks:

1. It is well known that the mass exchange coefficient calculated

from DNS varies sharply near the entrance to reach a constant

value after a characteristics length depending on the Péclet

number,

2. Using periodicity conditions for the closure problems implies

that we are working in the established regime. The resulting

constant effective properties do not catch the effects occuring

near the entrance region. Indeed, by definition, the volume

averaging procedure assumes slow variation of the averaged

properties which is definitely not the case in such area. Better

approximation of the macro-scale mass fraction field in the

Fig. 4. Direct numerical simulation at steady-state for HA ¼ 1:0, Peb ¼ 3:8, Peg ¼ 35.
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entrance region would require introducing some non-local

theory that would express the mass exchange coefficient (and

possibly change the other effective properties) as a function of

the distance from the inlet boundary. For instance this kind of

approach has been developed in Kechagia et al. (2002). An

alternate solution could be to keep a micro-scale description in

the entrance area coupled to the macro-scale model far enough

from the entrance boundary (see an example for heat transfer

in Batsale et al., 1996). Another approach could be to modify

the entrance boundary condition to reflect the impact of the

entrance boundary. In this latter example the macro-scale

concentration field in the entrance region is less accurate than

with the two others proposed techniques.

3. In terms of time evolution, it is well known that a first-order

two-equation model has some limitations and that it does not

catch all the characteristic times of the real flow. A more

thorough discussion of these questions can be found in Davit

et al. (2010).

9. Conclusion

At this point, we have developed a comprehensive macro-scale

model with closure for the general case of the multicomponent

flow of two phases in a porous medium, with the restriction that

equilibrium is described by a partitioning coefficient. The initial

structure of the coupled macro/micro problems has been

obtained with a minimum of assumptions, in particular retaining

transient terms and terms involving the velocity of the interface.

Decoupled solutions were obtained by specifically neglecting

these terms. These results represent a generalization of the work

by Quintard and Whitaker (1994) and Coutelieris et al. (2006).

Moreover, the present model takes into account the motion of

both phases. In addition, some new effective terms appear in the

macro-scale equations.

The theory was successfully tested against pore-scale DNS

results for the simplified case of a stratified two-phase flows in a

2D tube and we have recovered some classical laws used in

chemical engineering.

However, all the developments made in this work used the

underlying assumptions that the flow regime is laminar. We

know that turbulent regimes could modify the results obtained

herein. We could tackle this problem using the ideas put forth in

Cherblanc et al. (2007) and Pinson et al. (2007), who include

turbulence effects inside a non-linear dispersion coefficient. This

will be done later in a forthcoming paper where closure problems

will be solved on more realistic pore scale geometries. Moreover,

it should be interesting to confront the present upscaling process

with a case involving a moving interface.

Nomenclature

/ �Si intrisic average for the i-phase

/ �S superficial average

ei volume fraction of the i-phase

V volume defining the unit-cell (m3)

V i volume of the i-phase within the unit-cell (m3)

JiA rate of diffusion of species A in the i-phase (kg/m2/s)

DiA diffusion coefficient of specie A in the i-phase

mixture (m2/s)

oiA mass fraction of specie A in the i-phase mixture

/oiAS superficial spatial average of oiA

/oiAS
i,

OiA

intrinsic spatial average of oiA

~o iA spatial deviation of oiA

ri density in the i-phase (kg/m3)

vi velocity of the i-phase (m/s)

/viS
i intrisic spatial average of vi (m/s)

/viS, Vi superficial spatial average of vi (m/s)
~vi spatial deviation of vi (m/s)

wbg velocity of the bg-interface (m/s)

miA chemical potential of species A in the i-phase

HA partitioning coefficient of species A
_m overall mass rate of evaporation (kg/m3/s)
_mA mass transfer rate for species A (kg/m3/s)

bib closure variables mapping r/obS
b (m)

big closure variables mapping r/ogS
g (m)

sib closure variables mapping /obS
b

sig closure variables mapping /ogS
g

si, s
0
i , cij

closure variables

aA exchange coefficient for species A (kg/s)

KOV exchange coefficient for species A (kg/s)

Xij exchange coefficient for species A (kg/s)

uij velocity-like coefficient for species A (m/s)

k
ıA mass transfer resistance of species A in the i-phase

(kg/s)

Dn

ij
dispersion tensors for species A (m2/s)
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En

i
velocity-like coefficients for species A (m/s)

Pei Péclet number in the i-phase

di film thickness in the i-phase (m)

L length of the unit-cell (m)

f dimensionless parameter defined as rgDgA=rbDbA

Appendix A. Full closure problems

The mass fraction deviations mapping described by Eqs. (47)

and (48) leads to four closure problems. They are simplified in

Section 4.3.

Problem I (mapping onto r/obAS
b) :

rb

@bbb

@t
þrbvb:rbbbþrbvbsbbÿrb/ ~vbsbbS

bþrb
~vb

¼r:ðrbDbArbbbÞþeÿ1
b ubb ðA:1Þ

rg
@bgb
@t

þrgvg:rbgbþrgvgsgbÿrg/ ~vgsgbS
g ¼r:ðrgDgArbgbÞþeÿ1

g ugb

ðA:2Þ

with the boundary conditions

nbs:rbDbArbbb ¼ÿnbsrbDbA at Abs ðA:3Þ

ngs:rgDgArbgb ¼ 0 at Ags ðA:4Þ

bbb ¼HAbgb at Abg ðA:5Þ

ÿnbgrbDbAþnbg:ðrbbbbðvbÿwbgÞÿrbDbArbbbÞ

¼ nbg:ðrgbgbðvgÿwbgÞÿrgDgArbgbÞ at Abg ðA:6Þ

/bbbS
b ¼ 0; /bgbS

g ¼ 0 ðA:7Þ

bbbðrþ liÞ ¼ bbbðrÞ; bgbðrþ liÞ ¼ bgbðrÞ; i¼ 1;2,3 ðA:8Þ

and

ubb ¼
1

V

Z

Abg

nbg:rbbbbðvbÿwbgÞ dAÿ
1

V

Z

Ab

nb:rbDbArbbb dA ðA:9Þ

ugb ¼
1

V

Z

Abg

ngb:rgbgbðvgÿwbgÞ dAÿ
1

V

Z

Ag

ng:rgDgArbgb dA ðA:10Þ

The integration of the bg-interface boundary conditions Eq. (A.6)

results in

ÿugb ¼ ubbþrbDbAreb ðA:11Þ

Problem II (mapping onto r/ogAS
gÞ:

rb

@bbg

@t
þrbvb:rbbgþrbvbsbgÿrb/ ~vbsbgS

b ¼r:ðrbDbArbbgÞþeÿ1
b ubg

ðA:12Þ

and

rg
@bgg
@t

þrgvg:rbggþrgvgsggÿrg/ ~vgsggS
gþrg ~vg ¼r:ðrgDgArbggÞþeÿ1

g ugg

ðA:13Þ

with the boundary conditions

nbs:rbDbArbbg ¼ 0 at Abs ðA:14Þ

ngs:rgDgArbgg ¼ÿngsrgDgA at Ags ðA:15Þ

bbg ¼HAbgg at Agb ðA:16Þ

ngbrgDgAþngb:ðrgbggðvgÿwgbÞÿrgDgArbggÞ

¼ ngb:ðrbbbgðvbÿwbgÞÿrbDbArbbgÞ at Agb ðA:17Þ

/bbgS
b ¼ 0; /bggS

g ¼ 0 ðA:18Þ

bbgðrþ liÞ ¼ bbgðrÞ; bggðrþ liÞ ¼ bggðrÞ; i¼ 1;2,3 ðA:19Þ

and

ubg ¼
1

V

Z

Agb

nbg:rbbbgðvbÿwgbÞ dAÿ
1

V

Z

Ab

nb:rbDbArbbg dA

ðA:20Þ

ugg ¼
1

V

Z

Agb

ngb:rgbggðvgÿwgbÞ dAÿ
1

V

Z

Ag

ng:rgDgArbgg dA ðA:21Þ

The integration of the bg-interface boundary conditions Eq. (A.17)

results in

ÿubg ¼ uggþrgDgAreg ðA:22Þ

Problem III (mapping onto /obAS
bÞ:

rb

@sbb
@t

þrbvb:rsbb ¼r:ðrbDbArsbbÞþeÿ1
b Xbb ðA:23Þ

and

rg
@sgb
@t

þrgvg:rsgb ¼r:ðrgDgArsgbÞþeÿ1
g Xgb ðA:24Þ

with the boundary conditions

nbs:rbDbArsbb ¼ 0 at Abs ðA:25Þ

ngs:rgDgArsgb ¼ 0 at Ags ðA:26Þ

sbb ¼HAsgbÿ1 at Abg ðA:27Þ

nbg:rbðvbÿwbgÞþnbg:ðrbsbbðvbÿwbgÞÿrbDbArsbbÞ

¼ nbg:ðrgsgbðvgÿwbgÞÿrgDgArsgbÞ at Abg ðA:28Þ

/sbbS
b ¼ 0; /sgbS

g ¼ 0 ðA:29Þ

sbbðrþ liÞ ¼ sbbðrÞ; sgbðrþ liÞ ¼ sgbðrÞ; i¼ 1;2,3 ðA:30Þ

and

Xbb ¼
1

V

Z

Abg

nbg:rbsbbðvbÿwbgÞ dAÿ
1

V

Z

Ab

nb:rbDbArsbb dA

ðA:31Þ

Xgb ¼
1

V

Z

Abg

ngb:rgsgbðvgÿwbgÞ dAÿ
1

V

Z

Ag

ng:rgDgArsgb dA ðA:32Þ

The integration of the bg-interface boundary conditions Eq. (A.28)

results in

ÿXgb ¼ Xbbþ _m ðA:33Þ

Problem IV (mapping onto /ogAS
g) :

rb

@sbg
@t

þrbvb:rsbg ¼r:ðrbDbArsbgÞþeÿ1
b Xbg ðA:34Þ

and

rg
@sgg
@t

þrgvg:rsgg ¼r:ðrgDgArsggÞþeÿ1
g Xgg ðA:35Þ

with the boundary conditions

nbs:rbDbArsbg ¼ 0 at Abs ðA:36Þ

ngs:rgDgArsgg ¼ 0 at Ags ðA:37Þ

sgg ¼Hÿ1
A sbgÿ1 at Abg ðA:38Þ

ngb:rgðvgÿwbgÞþngb:ðrgsggðvgÿwbgÞÿrgDgArsggÞ

¼ ngb:ðrbsbgðvbÿwbgÞÿrbDbArsbgÞ at Abg ðA:39Þ



/sggS
g ¼ 0; /sbgS

b ¼ 0 ðA:40Þ

sggðrþ liÞ ¼ sggðrÞ; sbgðrþ liÞ ¼ sbgðrÞ; i¼ 1;2,3 ðA:41Þ

and

Xgg ¼
1

V

Z

Agb

ngb:rgsggðvgÿwgbÞ dAÿ
1

V

Z

Ag

ng:rgDgArsgg dA ðA:42Þ

Xbg ¼
1

V

Z

Agb

nbg:rbsbgðvbÿwgbÞ dAÿ
1

V

Z

Ab

nb:rbDbArsbg dA ðA:43Þ

The integration of the bg-interface boundary conditions Eq. (A.39)

results in

Xbg ¼ÿXggþ _m ðA:44Þ
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