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Thermo Stimulated Current and Dynamic Dielectric Spectroscopy have been applied to investigate dielectric

relaxation modes of poly(vinylidene-fluoride-trifluoroethylene) copolymer and poly(vinylidene-fluoride-

trifluoroethylene-chlorofluoroethylene) terpolymer. The aim of this work is to check the molecular origin of

the ferroelectric relaxor behavior of the terpolymer. The combination of data obtained byboth dielectricmethods

allows us to describe themolecular mobility of the amorphous phase and the cooperativity of the order/disorder

dipolar transition in the crystalline phase. The introduction of 1,1-chlorofluoroethylene units in the main chain

induces an increase of the Cooperative Rearranging Region size associatedwith less ordered and smaller crystal-

lites. This morphological evolution is responsible of a lack of cooperativity and it explains the dielectric relaxor

behavior of the poly(vinylidene-fluoride-trifluoroethylene-chloroethylene) terpolymer.

1. Introduction

Since the discovery of the piezoelectric behavior of poly(vinylidene-

fluoride) — PVDF by Kawai [1] and the understanding of the molecular

origin of this electroactivity [2–5], organic ferroelectric materials have

attracted the interest of researchers for their potential use in specific

applications such as low weight and flexible sensors [6,7], electro-

mechanical devices [8,9] and high-K capacitors [10,11]. Many classes

of polymers such as odd-polyamides [12], even odd polyamide copoly-

mers [13], have shown piezoelectric and pyroelectric activities. Never-

theless, the poly(vinylidene-fluoride-trifluoroethylene) — P(VDF-TrFE)

copolymer [14,15] and the poly(vinylidene-fluoride-trifluoroethylene-

chlorofluoroethylene) — P(VDF-TrFE-CFE) terpolymer [16,17]. For

electroactive applications, P(VDF-TrFE) copolymer is the most useful

polymer because of the low polingfield required to give ferroelectric be-

havior and high dielectric permittivity, compared with other ferroelec-

tric polymers. Another important point is that this copolymer does not

require any mechanical stretching before the poling process. Recently,

it has been demonstrated that an electron irradiation of the P(VDF-TrFE)

and the random incorporation of the CFE unit in P(VDF-TrFE-CFE) can

achieve an electrostrictive strain greater than 5% [18–20] (higher than

the P(VDF-TrFE) copolymer). This large electrostrictive behavior has

been attributed to the relaxor behavior induced by defects in the crystal-

line phase caused by the irradiation or introduction of CFE units which

is responsible of a high dielectric permittivity at room temperature

[21,22]. The introduction of random defects broadens the ferroelec-

tric transition and reduces the ferroelectric–paraelectric transition

temperature. However, the molecular origin of the dielectric relaxor

behavior of fluorinated terpolymer or electron irradiated copolymer

remains obscure.

The main objective of this paper is to investigate the molecular mo-

bility over a wide frequency range by means of thermal and dielectric

analysis. Thermostimulated current analysis of the terpolymer and the

copolymer was used for the first time and allows us to give a molecular

interpretation of the cooperativity and of the ferroelectric/paraelectric

transition, called Curie transition, in fluorinated polymers.

2. Experimental section

2.1. Samples elaboration

Two kinds of fluorinated polymers were used in this study: the

poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE) 70–30 mol.%)

copolymer and the poly(vinylidene-fluoride-trifluoroethylene-

chlorofluoroethylene) (P(VDF-TrFE-CFE) 55.8–35–9.2 mol.%) terpoly-

mer. Both of them have been purchased from Piezotech (France).

P(VDF-TrFE-CFE) was synthesized by a suspension method with an

oxygen-activated initiator [23].

For dielectric experiments, both as-received polymer powders

were hot pressed 20 °C above their melting temperature. Films of

100 μm in thickness and 20 mm in diameter were obtained.

2.2. Standard differential scanning calorimetry

Standard differential scanning calorimetry (DSC) measurements

were performed using a DSC/TMDSC 2920 setup. The sample tempera-

ture was calibrated using the onset of melting of tin (Tm=231.88 °C),
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indium (Tm=156.6 °C) and cyclohexane (Tm=6 °C) with a heating

rate of qh=+5 °C min−1. The heat-flow was calibrated with the heat

of fusion of indium (ΔH=28.45 J g−1) and the baseline was corrected

using sapphire. DSC experiments were systematically carried out over a

temperature range from the equilibrium state (in order to remove the

effect of previous thermal history) Teq=Tm+20 °C down to the glassy

state T0=Tg−70 °C with a constant cooling rate qc=+10 °C min−1,

and followed by a linear heating rate qh=10 °C min−1. The crystallin-

ity ratios of the copolymer and the terpolymer have been determined.

Thanks to the heat of fusion value of the 100% crystalline homopolymer.

2.3. Thermostimulated currents

Complex Thermo Stimulated Currents [24] (TSC) thermograms

were carried out using a TSC/RMA Analyser. For complex experiments,

the sample was polarized by an electrostatic field E=3 kV mm−1

over a temperature range from the polarization temperature (Tp=

40 °C for the terpolymer and Tp=110 °C for the copolymer) down to

the freezing temperature T0 (LNT temperature) with a constant cooling

rate. Then, the field was turned off and the depolarization current was

recorded with a controlled heating rate (qh=+7 °C min−1); the

equivalent frequency of the TSC thermogram was feq~10
−2

–10−3 Hz.

Elementary TSC thermograms were obtained with a polarization win-

dow of 5 °C. The field was removed and the sample cooled to a temper-

ature Tcc=Tp−30 °C. The depolarization current was recorded with a

constant heating rate qh. The series of elementary thermograms was

generated by shifting the polarization window by 5 °C toward higher

temperature. ΔH and ΔS uncertainties, extracted by this method, have

been estimated near 10 and 20% respectively.

2.4. Dynamic dielectric spectroscopy

DynamicDielectric Spectroscopy (DDS) experimentswere performed

using a BDS400 set up covering a frequency range of 10−2 Hz–3.106 Hz,

with 10 points per decade. Experiments were carried out in a tempera-

ture range from −100 °C to 130 °C. Dielectric isothermal spectra were

measured every 2 °C. During each frequency scan, the temperature was

kept constant to ±0.2 °C. The real ε′T and imaginary ε″T parts of the rela-

tive complex permittivity ε!T were measured as a function of frequency F

at a given temperature T.

3. Results and discussion

3.1. Physical structure

Differential scanning calorimetry thermograms of the terpolymer

and the copolymer are shown in Fig. 1. This experimental technique al-

lows us to perform a quantitative and comparative study of the thermal

transitions in semi-crystalline polymers. The heat capacity steps associ-

ated with the glass transition are weak. The glass transition tempera-

tures have been approximately determined near −29 °C and −23 °C

for the copolymer and the terpolymer respectively. For both polymers,

two endothermic peaks are pointed out; according to the literature

[25–27], they have been attributed respectively to the Curie transition

(Tc) and to the melting (Tm), in the order of increasing temperature.

Both are dealing with the crystalline regions of polymers.

Themelting temperature of the P(VDF-TrFE) copolymer is located

at Tm=152 °C (ΔHm=26.3 J g−1); it decreases to Tm=122 °C

(ΔHm=23 J g−1) for the P(VDF-TrFE-CFE) terpolymer. The evolution

of Tm is accompanied by a weak decrease of the melting enthalpies

upon introduction of CFE units in the main chain. The width at half

height of the terpolymer melting peak is twice the one of the copoly-

mer. In the same way, the peak temperature and the enthalpies of the

Curie transition decrease from Tc=102 °C (higher temperature of the

bimodal [28] Curie transition) andΔHCurie=20.8 J g−1 for P(VDF-TrFE),

to Tc=19 °C and ΔHCurie=3.3 J g−1 in the case of P(VDF-TrFE-CFE).

The degree of crystallinity has been estimated near 44% for P(VDF-TrFE)

and 25% for P(VDF-TrFE-CFE). DSC experiments show that the introduc-

tion of CFE units highly influences the crystalline structure by creating

less ordered crystallites. CFE units tend to reduce the crystallite sizes

(Tm and Tc decrease) and increase the morphological heterogeneity of

crystallites (full-width at half-maximum of themelting peaks increase).

These results are consistent with the decrease of crystallinity ratio with

CFE content previously reported by Klein et al. [19] and they confirm

conclusions of Bao et al. [25] study about size and quality of the

crystallites.

3.2. Dynamic dielectric relaxations

In order to understand the dielectric relaxor behavior of P(VDF-

TrFE-CFE), dynamic dielectric spectroscopy and thermally stimulated

currents have been used to characterize the molecular mobility over a

wide frequency range. In Fig. 2-a/b the evolution of the imaginary (ε″)

and real (ε′) parts of the dielectric permittivity of P(VDF-TrFE-CFE)

are reported as function of temperature for various frequencies rang-

ing from 10 Hz to 1 MHz. Two relaxations are pointed out. The low

temperature relaxation called α is localized near Tα=−15 °C at

10 Hz. This relaxation has a Vogel–Tammann–Fulcher (VTF) behavior

which has been associated with the dielectric manifestation of the

glass transition. It is in agreement with previously published results

[25]. The high temperature relaxation located near Tαc=15 °C at

10 Hz has been attributed to the dielectric manifestation of the Curie

transition according to DSC results. The thermal evolution of the dielec-

tric manifestation of the Curie process is more complex than the one of

the α relaxation. For frequencies ranging from 10 Hz to 15 kHz, this

relaxation is a quasi-isothermal process; it is consistent with a first

order Curie transition. At fm=15 kHz, a merging between the α and

Curie relaxations takes place. Above fm, this merging gives rise to a

unique relaxation mode with a thermal evolution similar to the α

mode. The relaxor behavior of the terpolymer seems to be governed

by the α process.

The real and imaginary parts of P(VDF-TrFE) are shownon Fig. 3-a/b.

In both cases, two relaxations are found similar to the terpolymer. The

VTF α process is located near Tα=−25 °C at f=10 Hz and the Curie

peak is located at 110 °C according to DSCmeasurements: P(VDF-TrFE)

is a ferroelectric polymer with an isothermal first order Curie transition.

The dielectric strengthΔε and thedielectric energy losses of theα relax-

ation in the terpolymer are higher than those of the copolymer. The

high values of ε′ and ε″ of the terpolymer above fm are attributed to

the superposition of the α and Curie processes.

Fig. 1. DSC thermograms of the P(VDF-TrFE-CFE) terpolymer (gray line) and the

P(VDF-TrFE) copolymer (black line) during the heating scan.



3.3. Fine structure of dielectric relaxations

The complex thermostimulated current (TSC) and the elementary

TSC thermograms of P(VDF-TrFE-CFE) and P(VDF-TrFE) are reported

in Fig. 4-a and b/c respectively. For the terpolymer, two relaxation

modes are shown. The α and Curie modes are located at Tα=−15 °C

and Tαc=25 °C respectively; these values are consistent with low fre-

quencies data fromDSC andDDS. Theαmode is attributed to the dielec-

tric manifestation of the glass transition. For the P(VDF-TrFE), α and

Curie relaxations are centered around Tα=−24 °C and Tαc=103 °C

respectively. The Tα value is slightly different from a previous work

[29] determined near −20 °C. This difference has been associated

with the influence of the Curie mode at higher temperature. We note

that the Curiemode of the terpolymer is broader than the one of the co-

polymer.We assume that each process can be analyzed as a distribution

of relaxation times; we extract from the elementary processes the acti-

vation enthalpies and the whole polarization of the dipolar relaxation

[30–33]. Fig. 5 reports the activation enthalpies ΔH versus temperature.

The evolution of the α process of the copolymer and the terpoly-

mer is very similar. In both cases, the activation enthalpy values

depart from the null activation entropy line [34]. The delocalized mo-

bility behavior of the dipolar entities involved in this process is char-

acteristic of the relaxation associated with the glass transition. The

maximal activation enthalpy of the terpolymer α mode is higher

than for the copolymer. As previously shown by DSC, the CFE units

strongly affect the crystalline regions. As a consequence, the Curie

transition activation enthalpies of the terpolymer and copolymer

are very different. For the terpolymer, the activation enthalpies are

close to those of the α relaxation and are not influenced by the peak

temperature. The delocalization of the Curie process is of the same

order than for the α process. In other words, CFE units give rise to less

ordered crystalline regions. For the copolymer, the evolution of the ac-

tivation enthalpies associatedwith the Curie transition clearly indicates

a more delocalized mobility due to long range cooperativity.

The polarization P0 of each elementary processes, proportional to

the number of dipoles, is shown in Fig. 6-a and b for the terpolymer

and the copolymer respectively. For both polymers, two peaks are dis-

tinguishable. They are associated with the maximum of α and Curie

relaxations in TSC. P0 (α, copo), i.e. P0 for the copolymer α mode, is 6

times lower than for the terpolymer, while P0(Curie, copo) is nearly

30 times higher. This opposite behavior of P0(Curie) and P0(α) is attrib-

uted to the crystallinity ratio decrease due to CFE units. The activation

entropy versus activation enthalpy for the α and Curie relaxations of

these polymers are reported in Fig. 7.

3.4. α relaxation mode

For both polymers, the α relaxation is characterized by a compen-

sation law between activation entropy and activation enthalpy. This

behavior is associated with the α relaxation cooperativity. The activa-

tion enthalpy values for the α relaxation range from 100 kJ mol−1 to

280 kJ mol−1. These values are in good agreement with activation

parameters of a dipolar relaxation associated with the glass transition

[35–37]. The slopes of the terpolymer and copolymer plots are simi-

lar, indicating that the CFE units weakly influence the molecular dy-

namics in the amorphous phase. The activation enthalpy range for

Fig. 2. Imaginary ε″ (a) and real ε′ (b) parts of the dielectric permittivity of the

P(VDF-TrFE-CFE) terpolymer versus temperature for frequencies ranging from 10 Hz to

1 MHz. Lines are given as guides to the eye.

Fig. 3. Imaginary ε″ (a) and real ε′ (b) parts of the dielectric permittivity of the

P(VDF-TrFE) copolymer versus temperature for frequencies ranging from 10 Hz to

1 MHz. Lines are given as guides to the eye.



the copolymer is 20% lower than for the terpolymer due to the lower

crystallinity ratio of the terpolymer. It leads a less constrained amor-

phous phase with higher cooperative rearranging regions (CRR) size

in the model introduced by Adam and Gibbs [38] and adapted by

Donth [39,40]. The decrease of CRR [41–43] size with the decrease

of the amorphous phase content report in this study is analogous

with previously published data on the evolution of the CRR in ceramic/

polymer nanocomposites [44,45]: the densification of the composite

with the increase of the inorganic phase volume fraction tends to reduce

the activation enthalpy of the α process and consequently the size of

the CRR.

3.5. Curie relaxation mode

The relaxation associatedwith theCurie transition has been assigned

to dipolar reorientations in the crystalline phase of these semi-crystalline

polymers. It has been shown that the CFE units strongly influence the

crystalline phase by acting as defects. The compensation diagram of the

copolymer and terpolymer is reported in Fig. 7. Activation enthalpies of

the Curie relaxation are higher than for the α mode which is consistent

Fig. 4. Complex TSC thermograms and elementary TSC thermograms for the

P(VDF-TrFE-CFE) terpolymer (a) and the P(VDF-TrFE) copolymer (b–c). Lines are

given as guides to the eye.

Fig. 5. Activation enthalpies ΔH extracted from elementary TSC thermograms versus

temperature for the P(VDF-TrFE-CFE) terpolymer and the P(VDF-TrFE) copolymer.

Lines are given as guides to the eye.

Fig. 6. Total polarization P0 extracted from elementary TSC thermograms versus temper-

ature for the P(VDF-TrFE-CFE) terpolymer (a) and the P(VDF-TrFE) copolymer (b). Lines

are given as guides to the eye.



with the fact that the Curiemode is attributed to an order–disorder tran-

sition in a crystalline environment with higher potential barriers.

The decrease of the activation entropy for the Curie mode regarding

the α one, reflected by the relative position of the two compensation

lines, is consistent with the decrease of the number of accessible sites

in the crystalline phase, regarding the amorphous phase. The narrow

temperature range in which this relaxation take place (ΔT=4 °C) re-

flects the homogeneity of the crystalline phase.

The Curie relaxation of the terpolymer is quite different. No compen-

sation law is found and the activation enthalpies and entropies are close

to the values reported for the α relaxation mode. This means that the

Curie relaxation loses its cooperative behavior. Since the range of

cooperativity is linked to the range of order, this is consistent with the

small crystallite size near −10 nm — induced by defects reported by

Ang et al. [46] for the terpolymer in comparison with the submicronic

crystallite size (≤0.5 μm) of the copolymer. The temperature range of

the Curie relaxation is 15 °C. The CFE units tend to create defects in

the crystalline phase creating a less ordered crystalline structure with

heterogeneous morphologies.

The typical size of the terpolymer crystallites close to the CRR size

of the amorphous phase and the non cooperative behavior of the

Curie transition tend to indicate that the molecular dynamics at the

glass transition highly affect the dynamic response of Curie mode.

At low frequency, the α relaxation is far from the isothermal Curie

relaxation. As the frequency increases, the temperature location of

the α relaxation gets closer to the Curie relaxation until a merging

frequency fm. At fm the dielectric relaxor dynamic is activated by the

relaxation associated with the vitreous transition.

3.6. Ferroelectric behavior

Fig. 8 presents the dielectric displacement (D) versus the applied

electric field (E), is presented for the P(VDF-TrFE) copolymer and the

P(VDF-TrFE-CFE) terpolymer measured at room temperature. The

applied electric field was a sinusoidal signal with a period of 18 s.

P(VDF-TrFE) has a ferroelectric hysteresis loop characterized by a

maximum polarization of about 25 mC m−2 and a large remnant

polarization of 18 mC m−2. The large remnant polarization of the

P(VDF-TrFE) copolymer indicates that most of the electrical energy

injected in the material is stored by the cooperativity of the dipoles

in the crystalline domains. As a consequence, at null electric field, it

remains a macroscopic polarization that can only be reversed by

applying an opposite electric field with a value up to the coercive

electric field of 60 V μm−1.

The D(E) curve of the P(VDF-TrFE-CFE) terpolymer is amix between

aHigh-KD(E) curve of a normal dielectricmaterial (largemaximumpo-

larization of 35 mC m−2) and a poorly ferroelectric hysteresis cycle

characterized by a low remnant polarization of 4 mC m−2. As the elec-

tric field is increased, dipoles in the crystalline phase are oriented. Most

of the electrical energy injected in the terpolymer is recoveredwhen the

electric field is turned off. The cooperativity of the dipolar mobility

requires long range order. Consequently, the lack of cooperativity ob-

served in the terpolymer may be assigned to the reduction of the crys-

talline region inducing a loss of ferroelectric behavior.

4. Conclusion

The understanding of the molecular origin of the dielectric relaxor

behavior of fluorinated terpolymers is crucial because of their potential

applications in electro-mechanical transduction systems. Themolecular

dynamics, the cooperativity of the dipolar entities involved in the Curie

transition and the thermal properties have been characterized by DSC

and dielectric experiments. A comparative study of a fluorinated ter-

polymer and a copolymer allows us to quantify the role of the CFE

units on the relaxor like behavior of the P(VDF-TrFE-CFE) terpolymer.

CFE units tend to reduce the size of crystallites, cohesive energy, and

the rate of crystallinity. The molecular dynamics of the relaxation asso-

ciated with the glass transition are quite similar in the terpolymer and

the copolymer. Moreover, the decrease of the crystallinity with CFE

units results in larger CRR size as defined from the relaxation associated

with Tg.

The most important point is the loss of the cooperative behavior

of the Curie transition in the ferroelectric relaxor terpolymer. The ac-

tivation enthalpies of the Curie relaxation of the terpolymer remain

close to those involved in the relaxation associated with Tg. This re-

sult is consistent with the fact that the crystallite size is of the same

order than the CRR size which is not sufficient for cooperativity.

Above the merging frequency fm, the α process associated with Tg
governs the dielectric behavior of the relaxor.
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