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h  i  g  h  l  i g h t  s

◮ An  exact solution  for  the

sphere/wedge  vdW interaction

energy  is  derived.
◮ The  validity  of both  simple and  new

models  for sphere/pore interactions

is  assessed.
◮ A  new numerical  tool  to compute  the

van  der  Waals  colloidal  interactions

is  presented.
◮ An  adaptive  mesh  refinement  strat­

egy  is used  to discretize the  solids.
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Particle  capture during the filtration of colloidal  dispersions  depends  on a complex balance  between

repulsive  forces, such  as  hydrodynamic  or  electrostatic effects,  and attractive forces, amongst  them the

van  der  Waals  interaction  forces. Satisfactory expressions  for the latter  are  thus  required  in complex

geometries.  Exact  expressions  for  the geometrical factor  involved in the  van  der  Waals interaction energy

based  on Hamaker’s  additivity  hypothesis  are derived  for  a sphere  in interaction with a square  wedge,  a

semi­infinite  or finite  slit, a semi­infinite  slab,  a  2D  pillar, a rectangular  rod, a corner and  a rectangular

channel.  A  numerical tool  based on an  adaptive mesh  refinement  strategy is presented  and used to validate

the  analytical results. The analytical  result  for a sphere/wedge system is used  to assess the domain of

applicability  of  the  sphere/plane  model  in the vicinity of  the  edge.  The interaction  between a  sphere

and  a cylindrical pore  in a  plate  of finite  thickness is then simulated and the range  of validity  of the

sphere/wedge  system as a model  of the sphere/pore  system is deduced from the numerical results.

1. Introduction

The  evaluation of  the van der Waals force or interaction

energy between two or more solids is  of  crucial importance in

many academic and industrial problems. Some examples are the
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(de)stabilization of  colloidal suspensions in which an equilibrium

between the repulsive electrostatic forces and attractive van der

Waals interactions is  involved (e.g. [1]), the drying of colloidal films

to produce surface coatings, the prediction of protein interactions

[2] or the filtration of  sub­micronic particles in  water treatment

[3,4].

In the latter problem, particle capture is the result of a  complex

interplay between hydrodynamic, electrostatic and van der Waals

forces. Let  us suppose colloids are  not too small and the influence of
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Brownian motion is moderate. Most of the time electrostatic inter­

actions are repulsive and the Stokes flow transporting a colloid

cannot bring it into contact with a wall in  a  finite time because

of repulsive lubrication forces. In  short, an external body force is

necessary to bring the surfaces into contact. It  may  be  positive or

negative buoyancy but its effect is low compared to other forces

for sub­micronic objects, or  it  may  be a  centrifugal force. Often

these two effects are negligible if not absent and the attractive force

is mainly due to  van der Waals interactions between the colloids

and the surface. Hence the particle retention problem is  a  balance

between the attractive van der Waals interactions and all the other

repulsive forces. The solution of  such a problem is thus dramati­

cally dependent in  the quality of  the evaluation of  van  der Waals

interactions.

If exact theoretical solutions for these interactions are avail­

able for simplified geometries (e.g. [5]), problems depending on

the complex shapes of the solids are not tractable analytically. It

is necessary either to resort to numerical computations or to do

an additivity hypothesis and model the solids as simple spheres,

infinite rods, slabs... Concerning the former solution, frequently

encountered methods for numerically computing accurate values

of the van der Waals interaction energy are direct molecular simu­

lations including N­body interactions, explicit computation of the

mean electromagnetic (EM) stress tensor [6], and many other meth­

ods discussed in Ref. [7]. These methods provide accurate results,

taking into account retardation and non­additive effects, but are

however often extremely CPU expensive and/or limited to very

simple geometries and/or unable to deal with large solids. The addi­

tivity approach, used in the ubiquitous DLVO theory [8,9], has the

advantage of  rapidly providing a simple result that may be inte­

grated as an  elementary brick in  a more complex framework (e.g.

[10–12]). It may  introduce, however, a  significant error on the quan­

titative evaluation of the interactions for at least two  reasons: the

additivity hypothesis by itself and the simplified geometries for

which analytical expressions are available. The additive approach is

not  adapted for  Debye and Keesom interactions, and it  should thus

be restricted to  cases in which (London) dispersion interactions are

dominant. In  the framework of dispersion interactions, this approx­

imation may  lead to large inaccuracies for metals but is expected to

provide good estimates for liquids or molecular solids [13]. Cova­

lent solids like diamond or quartz are considered an intermediate

case. Generally, this approach is considered to  provide results with

an error less than 20% when compared to exact solutions [14]. On

the other hand, the inability of the standard DLVO sphere or plane

models to reproduce experimental or numerical results for complex

solid geometries has been recognized by many authors. For instance

the stability of  a  synthetic titania colloidal suspension could not be

predicted without taking into account the surface roughness of  the

particles [15], the molecular recognition processes (linked to van

der Waals forces) strongly depend on protein configurations and

relative orientations [2], the deposition of  particles on rough or

nano­patterned surfaces is greatly affected by  the geometric details

of the surfaces [16–19].

If  the accurate non­additive methods are  of great interest for

understanding the  physics of  van der Waals interactions, their use

is actually an impracticable path when a number of  objects inter­

act within a flowing fluid. Indeed the hydrodynamics in  a filtration

system (and in most engineering systems) are generally not known

analytically due to the complex geometry even for model spherical

particles and model membranes designed as arrays of well con­

trolled cylindrical pores. In the best case semi­analytical models of

trajectories can be integrated numerically [3] and in the worst sit­

uations the full Stokes equations must be solved numerically in  the

filtration geometry at great computational expense. Therefore in

studies involving both hydrodynamic and surface forces as  a cou­

pled problem, it is necessary to use  simple (and fast)  models for van

der Waals forces, even if it  means sometimes cruder models than

we wished. In the context of  filtration, either an effective distance

of capture [3] or a  sphere–plane or plane–plane DLVO approxima­

tion [20] is generally invoked. The additivity hypothesis is intrinsic

to this approach and it seems we need to live with this uncertainty.

Thus amongst the two  aforementioned error  sources involved in

DLVO computations one degree of freedom left to improve the

van der Waals interaction energy estimation is to reduce the error

introduced by simplifications of the actual geometries of the solids.

The most classical closed form solutions of van der Waals interac­

tions were obtained for spheres, cylinders, flat plates, disks, parallel

slabs or combinations of these geometries (e.g. [26,14,23,28,29]).

Examples of  geometries previously treated semi­analytically are

are proteins (as a collection of spheres) [2], rough surfaces [16],

a sphere in a tube [23], a  sphere on a nano­patterned plate [19]

among many others.

The  aim of the present work is twofold: firstly it is to present

briefly in  Section 2 a  new numerical tool able to compute the van

der Waals interaction energy within the additivity hypothesis but

for arbitrary complex geometries and without any other approxi­

mation. The scope of this article is to present this useful numerical

method to  the colloid community and to illustrate it  by an  exam­

ple. The details of  the numerical technique will thus be developed

more in depth in  a journal specialized in numerical analysis. The

second aim of  the present work is to assess the range of  validity

of both well­known and new DLVO approximations adapted the

context of  colloid filtration by  using  the numerical code as  a vali­

dation tool. Hence the interaction energy between a  sphere and a

slit of finite depth is  computed analytically and validated numeri­

cally in Section 3. The interaction energy between a sphere and a

cylindrical pore is  then computed numerically in Section 4 and the

validity of the sphere/slit approximation as  a  model of a the real

sphere/pore solution is examined.

2. Numerical method

This  section describes the numerical approaches underlying the

results presented in  the rest of  the article and implemented in

the WITS code developed at LGC. The van der Waals interaction

between two  solids is estimated with the use of  Hamaker’s additiv­

ity hypothesis. In this context, the interaction energy is computed

as a geometrical integral over the volumes V1 and  V2 of the two

particles:

E∗ = −
A

�2

∫

V1

∫

V2

f (r)dV2V1, (1)

where  A  is  an effective Hamaker’s constant,

f(r)  = 1/r6 = (x2 + y2 + z2)−3 (for  non­retarded interactions),

x2 = (x2 − x1)2,  y2 =  (y2 − y1)2 and z2 = (z2 − z1)2,  and (x1,  y1, z1)

and  (x2, y2,  z2) are two points in  volumes V1 and V2 respectively.

In the present work, it  is assumed that the retardation/screening

effects of the solvent are  taken into account at least in  a crude

way in the Hamaker constant (as advised in [21,14]) or in the form

of f(r) ([22] and references therein) and the focus is put on the

evaluation of geometrical effects for the reasons detailed in  the

introduction. Hence results will be presented in terms of  E  =  E*/A.

The integral in Eq. (1) can be evaluated numerically by standard

quadrature methods based on the discretization of  the particles in

small volumes and summation. The standard second order mid­

point approximation is  used here. To obtain correct results the

volumes of these elements must be small, which leads to a  great

number of integration elements and a heavy  computer memory

use. As the integral in Eq.  (1)  consists in six one dimensional inte­

grals the CPU cost is also very high.



Fig. 1. Octree mesh generated to  compute the interaction energy between a  sphere

and a cylindrical pore. The surfaces of  the solids are  represented as  a  thick black

line. The colormap represents, at any  point of a given solid, the interaction energy

between this point and the entire other solid. Darker zones are signs of higher

interaction  energies. The color scale is skewed to visualize small values.

There are essentially three classical ways to reduce this com­

putational cost, plus a new one described in  the next paragraph.

When the geometry is relatively simple, it  may  sometimes be pos­

sible to compute analytically part of the integrals involved in  Eq.

(1), thus reducing the number of  integration dimensions (e.g. [23]).

In the present work, one of  the solids is  a  sphere and so three inte­

grals have been computed analytically, leaving three other integrals

to deal with numerically. A  second way to reduce the CPU load

is to decrease the number of  integration dimensions by convert­

ing the integrals on  volumes in integrals on  surfaces. This is done

for example in  the Surface Formulation Method [24,25] and in the

Surface Element Integration (SEI) method [17,19]. The third way

to reduce the CPU  cost is to keep the six integrals but split  the

solids in  small elements in an  adaptive way, i.e. the smallest ele­

ments are located in regions where a  high precision is demanded

and larger ones are  used elsewhere (Fig. 1). It  has  the advantage

of keeping the code able to deal with any  geometry, any sur­

face curvature, and without introducing any approximation on the

physics.

An additional idea to reduce the computational cost has been

developed and implemented in the present code for cases in which

the geometry of the solids is so  complex that the six integrals

have to be computed numerically. It relies on the idea of map­

ping the volumes of the particles with cubes of  different sizes,

the cubes being as large as possible far from any interface and

smaller and smaller near the interface in  order to fit it. This

approach requires an analytical form for the interaction energy

between two cubes of  arbitrary size and position instead of  a

simple quadrature rule since the elements are not infinitesimal

anymore. To our knowledge, this result  is not available in  the liter­

ature. This is why it is derived for the general case of two slabs in

Appendix A.

This  approach is  philosophically close  to the SEI method [17,19]

which splits the surface of particles in small flat plate elements and

then sums the interaction energies for the different plates assuming

these energies are closely related to the analytical solution for two

parallel  semi­infinite solids separated by a  gap.  Since the present

method performs a summation on all the cube couples, it  could

be termed a  “Volume Element Integration” (VEI) method. How­

ever, an  important distinction is  that in  the SEI  method the flat

plate approximation is made for each surface element, which could

deteriorate the computation for highly curved surfaces, whereas

in the present approach no such approximation is made and any

geometry can be handled with an equivalent precision. A method

using spheres instead of cubes as mapping elements has  also

been presented recently (the “Sphere Packing Approach” [27]).

Even if it tends to  leave holes inside the particle, it may  be effi­

cient for some cases, especially for particles with micro­asperities.

An hybrid approach using our method in the core of the body

and the sphere packing approach near the surface could also be

designed easily for an  optimal precision/CPU cost ratio in  these

cases.

A short comment on the adaptive meshing strategy employed

here is in order to understand the degree of  precision of the numeri­

cal computations underlying the results presented in  the rest of  this

article. The mesh, which is based on an  “octree” data structure, is

refined only in  regions of interest and left very coarse elsewhere, so

that the computational cost and the memory use are optimized. The

quality of  the results is then directly linked to the refinement pro­

cedure. In the present problem consisting in computing the integral

of 1/r6, the refinement procedure is the following one:

1. create  a uniform coarse mesh of level nmin (usually 4,5 or  6  in

the  present work) by refining any cell up to this level,

2. compute  an  estimate of the interaction energy obtained for cur­

rent  mesh level with a prescribed quadrature rule or the VEI,

3.  compute the maximum value of  1/r6 for all the couples of cells

of  solid  1  and solid 2,

4. scan all cells i of solid 1 and for each one compute the value of

1/r6 with all cells j of solid 2; if 1/r6 > tol  × max(1/r6) tag  cells i

and j for refinement,

5. refine the cells  tagged for refinement to  reach the next mesh

level and go back to point 2.

The  only parameter that can be specified by the user is the toler­

ance tol. If it is  close to zero, all the cells  inside the solids will be

refined. No bias will be introduced in the computations but they

will be expensive. When tol is larger, only cells of solid  1  closer

to solid  2 will be refined, and vice versa. Computations will be

cheaper since cells outside of the zone of influence of  one solid

on the other will not be refined. If tol is too large, important cells

can be left coarse whereas they should have been  refined and the

results will be poor whatever the final mesh level. A  little testing

must be done to establish a  reliable value of tol. In the present work,

tol =  10−2 permitted to  obtain good results for almost all configura­

tions, but not all. Hence tol = 10−3 has been set and all the numerical

results always converged towards theoretical values, when avail­

able, within a few percent. An example of  mesh obtained with this

value is displayed on Fig. 1, together with a color map representing

at any point of a given solid  the interaction energy between this

point and  the entire other solid. It can be checked that  this value

almost vanishes before the transition to larger cells, which means

the results will be obtained with an (high) accuracy linked to the

smallest cells size. In practice, the interaction energy was  computed

for increasing mesh levels automatically and the simulation was

stopped when estimations of  E  for two  or three increasing mesh

levels differed by  less than 1–2%. All the simulations presented in

the rest of this article were performed with the three integrals on

the sphere volume computed analytically and the adaptive mesh

refinement activated for the other solid to spare a maximum of

computational time.



           

3. Interaction between a sphere and a slit of finite depth

3.1.  Interaction energy between a  sphere and a  semi­infinite

square wedge

The  non­retarded interaction energy between a  sphere and a

point is

Es/point = −
4

3
�Qpˇ

a3

(d2 − a2)3
,

where  Qp is the number of  atom per unit  volume,  ̌ is the Lifschitz­

van der Waals energy constant, a is the sphere radius and d is the

distance between the  sphere center and the point [23]. The interac­

tion energy between the sphere and the semi­infinite square wedge

(a “quarter­space”) as depicted on  Fig. 2(a) is thus

Es/w(a, b, c)  =  −
4Aa3

3�

∫ ∞

x=b

∫ ∞

y=c

∫ ∞

z=−∞

dxdydz

(d2 − a2)3
,  (2)

where  d2 = x2 +  y2 +  z2, A = �2QpQw  ̌ is  the effective Hamaker con­

stant and Qw is the number of  atoms per unit volume in  the wedge.

The integral in Eq.  (2) can be computed analytically. The first

integral against z  leads to

Es/w(a, b, c)  =  −
Aa3

2

∫ ∞

x=b

∫ ∞

y=c

dxdy

(x2 + y2 −  a2)5/2
, (3)

where  x2 + y2 is the  squared distance between the sphere center

and a point in the wedge, which is always strictly larger than a2.

The next integration against y gives

Es/w(a, b, c)

= −
Aa3

2

∫ ∞

x=b

1

(x2 − a2)2

[

2

3
−

c(3(x2 − a2) + 2c2)

3(x2 − a2 +  c2)3/2

]

dx, (4)

Note that this expression holds for |x| /=  a. The case x = a can be

encountered in two very different configurations. In the first one,

c ≤ 0  and b = a (sphere at contact with the wedge “left” plane, see

Fig. 2(a)). In this case the interaction energy effectively diverges

but this can be solved assuming the contact is never completely

achieved. The second configuration is  when c  >  0 and b  <  a, i.e. the

sphere’s foremost point is at least partially on the right side of the

wedge’s left plane. In this case the points in  the wedge correspond­

ing to x =  a have nothing special and it  can be  safely assumed on  a

physical basis that the integral between b  and ∞ can be split in  a

part between b and a− and a part between a+ and ∞, the two parts

being finite. The missing part x = a  has a  zero volume and does not

contribute to  the integral. Hence  we can continue with expression

(4). The last integral against x  leads to

Es/w(a, b /=  ±  a, c) =  −
A

12







ln





( |c|  − a

|c|  + a

)sign(c)

(

c2 −  a2 + |c|
√

b2 + c2 − a2 +  ab

c2 −  a2 + |c|
√

b2 + c2 − a2 −  ab

)sign(c)
( |b − a|

|b + a|

)1−sign(c)





−
2abc(b2 +  c2 −  2a2)

√

b2 + c2 − a2(b2 − a2)(c2 − a2)
+

2ac

c2 − a2
+

2ab

b2 −  a2

}

(5)

As expected, this expression cannot be used as  is when b = ± a. If

c ≤ 0, the last term in the logarithm makes it diverge, which was

expected physically (the sphere touches the leftmost plane of the

wedge). If c  > 0, this problematic term vanishes and the second and

last terms cancel out exactly, which makes this formula usable in

practice. If  a  human being is  able to eliminate the problematic terms

analytically, care must be taken when using the formula with a

calculator or a computer program. If b = ± a and c > 0 it  should either

be replaced by  the corresponding form

Es/w(a, b = ±a, c >  0) = −
A

6

{

ln

[

c

c  + a

]

+
ac

c2 − a2

}

(6)

or  the value of b should be perturbed slightly to effectively compute

lim
b→a

Es/w(a,  b /=  ±  a, c) with (5).

Fortunately, formula (5) degenerates to the sphere–plane one

for b→  − ∞ and c  >  a or for c→ − ∞  and b > a. If c  = 0, this expression

should be replaced by  half the simpler sphere/plane value, which

is the exact solution for this symmetric case.

Expression (5) has  been validated using the numerical method

briefly described in Section 2.  A  contour map  of E  obtained with

Eq. (5) is drawn on Fig. 3 to  get a qualitative idea on its  behav­

ior. The interaction energies between a  sphere and a square wedge

obtained analytically and numerically are reported on Fig. 4 to

permit a quantitative comparison. To  be perfectly complete some

precisions concerning the numerical computations are in order. In

all the simulations the sphere radius is a =  0.1 (this value is com­

pletely arbitrary and normalized by the numerical box size). In the

sphere/plane simulation the plane is not infinite but is  actually a

finite slab with a surface area of  1  facing the sphere and a depth of

0.5. It has been checked that larger values of the slab to sphere size

ratio did not lead to improvements of  the results. The comparison

of the analytical results (5)  and of the numerical results presented

on Fig. 4 is very good. For  large  negative values of c  (sphere in  front

of a solid  wall, see Fig. 2(a)) the sphere/plane model is recovered.

For the special case c  =  0  half the sphere/plane value is obtained as

expected. Finally for positive values of c  (sphere no more in front

of a  solid plane) the interaction energy  is drastically reduced.

Expression (5)  for a sphere/wedge interaction can be used to

estimate the range of validity of the sphere/plane expression for a

particle “far” from the edge of the wedge at c ≪ 0.  A map  of the rela­

tive error on the interaction energy introduced by the sphere/plane

model is represented on Fig. 5. A  sphere is drawn as an example

of location corresponding to the 10% error. Qualitatively, far from

the wedge and close to the wall the sphere/plane model provides

very accurate results. For any lateral position c,  it is  always possi­

ble to find a  distance to the wall b  sufficiently small to make the

sphere/plane approximation valid. On the other hand, for positions

farther and farther apart from  the wall (large b) the sphere/plane

approximation is less and less accurate. This is  due to the fact that

the value of  1/r6 between one point of the sphere and the clos­

est point in the wall is  not much different from that of the same

point in  the sphere and the corner of  the wall so that the zone

of the wall inducing a non­negligible interaction energy is some­

what “truncated” by the pore. This effect can be visualized on Fig. 1.

When the sphere is very close to the wall the distance of closest

approach is very small and 1/r6 decreases sharply so that only a very

localized part  of the wall contributes to a significant part of  the total

interaction. Hence the sphere can approach the edge quite closely

(small c) without any substantial discrepancy in the sphere/plane

model. As  a  rule of  thumb, Fig. 5 shows the sphere/plane approxi­

mation to be valid (less than 10% error) for −c/a >  1 and b <  −0.86c.

For −c/a  ≤ 1 the error grows rapidly with  the distance to the wall

and the exact solution (5)  should be preferred to the sphere/plane

approximation.



Fig. 2. Schematic view of  the sphere/solid problems with the associated geometrical variables.



Fig. 3.  Contour map of ln(E) obtained with expression (5) for  a  sphere center placed

at coordinates (b, c). The surface of the wedge is drawn as a thick black line. No

data  was generated for b ≤  a and c ≤  a for post­processing reasons so the  higher

level  contours are discontinuous near  the edge but they  are of  course continuous in

reality.

With the expression of  the interaction energy between a  sphere

and a square wedge known, it  is possible to obtain exact relations

for several other geometries using the additivity hypothesis. Some

of them are listed in the next paragraphs.

3.1.1. Interaction energy between a  sphere and a  semi­infinite

slab

The  interaction energy  between a  sphere and  a semi­infinite slab

of width L (Fig. 2(b)) is  directly related to Es/w as

Es/islab(a, b, c, L) = Es/w(a, b,  c)  − Es/w(a, b + L, c) (7)

3.1.2.  Interaction energy between a sphere and  a  semi­infinite slit

The interaction energy between a sphere and a  semi­infinite slit

of width l (Fig. 2(c)) can be expressed by  considering the semi­

infinite slit as a  set of two  square wedges:

Es/islit(a, b, c, l) =  Es/w(a,  b,  c) + Es/w(a, b, l − c) (8)

Fig. 4.  Interaction energy between a sphere and  a  square wedge as depicted on

Fig. 2(a). Continuous lines: expression (5); dashed line: sphere/plane model; dot­

dashed line: half the sphere/plane model; symbols: numerical computations. From

top to bottom curve: c/a =  −∞  , −4,  − 2, − 1,  − 1/2, −  1/4, 0, 1/4, 1/2.

Fig. 5. Contour map of  the relative error (%) between the  sphere/plane model and

the exact expression (5) in the vicinity of the wedge. The plane closest to the sphere

is drawn as a  black line and  extends from c  =  0 to  −c→ ∞  (the edge of the wedge is

located at (0, 0)). The equation of the  dashed line is b  =  0.86(− c).

3.1.3. Interaction energy between a  sphere and a slit of finite

depth

The  interaction energy between a sphere and  a finite slit of  width

l and depth L (Fig. 2(d)) can  be  deduced from the previous result as

Es/f  slit(a, b,  c, l,  L) = Es/islit(a, b, c, l) −  Es/islit(a, b + L, c, l)  (9)

The  validation of Eqs. (8) and (9)  against the numerical integration

results is  presented on Fig. 6. The slit width is l =  3a, the distance

between the sphere center and the upper plane is c  = 5a/4 and

that between the sphere center and the lower  plane is  l − c  = 7a/4.

For the finite slit case the depth is  L = a.  The comparison is very

good for both geometries. Considering the infinite slit problem

(dashed line), the interaction vanishes for large positive b since the

sphere is far from the slit entrance. When b  is  decreased, the mag­

nitude of  the interaction energy increases progressively to reach

that of  a sphere between two planes separated by  the slit’s width

Fig. 6.  Interaction energy between a sphere and either an infinite slit (Fig. 2(c)) or

a finite slit  (Fig. 2(d)). The analytical relation for the  infinite (resp. finite) slit is (8)

(resp. (9)). The two  planes theory (dotted line) is based on the use of the sphere/plane

interaction  between the  sphere and the  inner planes of  the slit.



(dotted line). This approximation, obviously valid when the sphere

is inside the slit and far from its entrance, is seen to provide results

within 10% of the exact solution provided the sphere is entirely

inside the slit (b/a < −1)  in the present example. However it  should

be stressed that this approximation would be satisfactory closer

to the slit entrance if the distance between the sphere surface and

the slit inner planes were smaller, for the same reasons as those

detailed for the sphere/wedge problem. Larger values of −b  would

be required to  achieve the same accuracy for larger l/a  ratios, i.e.

larger slits  compared to  the particle size.

The finite slit case shows values similar to  those of the semi­

infinite slit case when the sphere is before the slit  entrance. The

interaction energy reaches a maximum at the mid­point between

the slit entrance and exit (b/a = −0.5). It is theoretically symmetrical

against this point but the numerical integration has been performed

on both sides to check the variability of  the results against the mesh

details. The difference between the right and left points is  2–3%

at most and often smaller. The maximum value of the interaction

energy is  only approximately half of  that between two  planes in

the present example due to the finite slit depth. However it should

be stressed that this result depends on  the particular values  of the

a/L, a/l  and c/l ratios.

3.1.4.  Interaction energy for  a  sphere above a 2D  pillar

The  interaction energy for a sphere above a 2D pillar of width

l (Fig. 2)  can be deduced from the previous result  and the sphere

plane results as

Es/2D pillar(a, b, c, l) = Es/plane(a, b) − Es/islit(a, b,  c, l)  (10)

3.1.5. Interaction energy between a sphere and an infinite

rectangular rod

The  interaction energy  between a sphere and an infinite rect­

angular rod of width L in the x direction and l in  the y direction

(Fig. 2(f)) can be deduced from the interaction energy for the sphere

and a 2D pillar as

Es/irod(a, b, c, l, L)  = Es/2D pillar(a, b,  c, l) − Es/2D pillar(a,  b +  L, c, l)

(11)

3.1.6. Interaction energy between a sphere and a 2D corner

The  wall of  the  surrounding corner can be split in three  wedges

as depicted on Fig. 2(g). The interaction energy between the sphere

and region I is Es/w(a, c, −b), that of  region II  is Es/w(a, b, c) and that

of region III is  Es/w(a, b,  −c).  The total interaction energy is then

Es/corner(a, b, c) = Es/w(a, b, c) + Es/w(a, c, −b) + Es/w(a, b, −c) (12)

3.1.7. Interaction energy for  a  sphere inside an infinite

rectangular channel

The  rectangular channel (Fig. 2(h)) can be constructed as  a

superposition of  four wedges (regions II,  IV, VI and VIII) and four

2D pillars (regions I,  III, V,  VII). The resulting interaction energy for

a channel of width L in the x direction and l  in the y direction is:

Es/channel(a, b, c, l,  L) = Es/w(a,  b, c) + Es/w(a,  b, l −  c) + Es/w(a, L  − b, c)

+Es/w(a,  L  − b, l − c)

+Es/2D pillar(a,  b, c, l)  + Es/2D pillar(a,  L  − b, c, l)

+Es/2D pillar(a,  c, b, L)  +  Es/2D pillar(a,  l − c, b,  L)

(13)

Relations (12) and (13) are  compared to numerical integration

results on Fig. 7.  In the sphere/corner case the distance between

the sphere center and the upper plane is  c/a = 3/2 and the distance

between the sphere center and the right plane b/a is  varied. In  the

sphere/channel case, the channel width is  L = 6a in the x  direction

and its height is  l =  2.75a in the y  direction. The consistency between

Fig. 7. Interaction energy between a  sphere and either a  corner (Fig. 2(g)) or a  rectan­

gular channel (Fig. 2(h)). The analytical relation for the corner is (12). The analytical

solution  for a sphere inside a rectangular channel is (13).

the analytical and numerical results is good, which validates Eqs.

(12) and (13). Note that Eq.  (10) for the interaction between a sphere

and a semi­infinite slab is also validated indirectly since it  is used

in Eq. (13).

Considering the sphere/corner test (thick continuous line on

Fig. 7), the solution tends to the sphere/top plane approximation

for large values of b/a, i.e.  when the sphere is  far from the right

plane. If the sphere is moved toward the right plane (b/a  decreases)

the magnitude of  the interaction energy increases and reaches that

given by the sphere/right plane model for small values of b/a as

expected. We  may wonder if the sphere/corner interaction could

be modeled as the sum of the sphere/upper plane and sphere/right

plane interactions. The answer is yes in the present example. It is

not plotted on Fig. 7 because the curve would be  indistinguishable

from the exact sphere/corner solution. The difference can however

be seen when zooming in  the 1.25 <  b/a < 1.75 zone (not presented

here). This difference is due to the fact that with the aforementioned

“superposition of planes” model the interaction between the sphere

and region II is counted twice. Let us assume a characteristic dis­

tance between the sphere and any object is the distance of closest

approach between them. The distance of closest approach between

the sphere and the upper (resp. right)  plane is c  − a (resp. b −  a)

and that between the sphere and region II is
√

b2 + c2 −  a. Assume

b = c for clarity. The ratio of the distances of closest approach with

one plane and the wedge is r  = (b/a − 1)/(
√

2b/a − 1). If the sphere

is close to contact with the two planes, r  → 0  and the interaction

energy is given by  the two planes. If the sphere is at a distance large

enough such that b/a ≫  1, the ratio is  r  = 1/
√

2, which is finite and

close to  unity so  that the additional wedge contribution included

in the sphere/two planes model will not be negligible anymore.

In  the sphere/channel test, the solution tends to the sphere/right

plane or sphere/left plane model solution when  b/a is small (near

contact with the right plane) or  large (near contact with the left

plane), as highlighted on Fig. 7. When the sphere is at mid­distance

between the two  side planes, the interaction energy is close to that

given by the interaction with the upper and lower planes alone.

This is  due to the large L/l ratio in the present example and is not

a general result. A comparison with a sphere/four planes model

is provided (thin dashed line). In this model the interaction with

the four regions II, IV, VI, VIII  (Fig. 2(h)) is counted twice but the

approximation is quite good anyway. Once again, it  is linked to

the geometrical parameters chosen for the present example. This

approximation could be less satisfactory for a smaller sphere in the



middle of the channel. In a  square channel of width L = l  = Na, and for

a sphere at the center of  the channel, the discrepancy between the

exact solution and the four planes approximation is 1.5, 10.4, 12.7,

13.1 and 13.1% for N  = 2.1, 4, 10, 100 and 1000, respectively. Keep­

ing in mind the interaction will be  almost totally reduced to zero

at a distance of say 10nm (at least in  water) and that the small­

est particles tractable with the present Hamaker approach may

have a radius of the order of  1nm,  the maximum value of N  = L/a

for a non­negligible interaction will be O(10) at most and the error

induced by the four planes approximation will lie within 10% of  the

“exact” value. Since the additivity hypothesis may  induce by  itself

discrepancies as large as 10–20% with the reality, the four planes

approximation can be considered to be an acceptable model for

practical use, although one may  prefer to use Eq. (13) since it  is

now available.

4.  Interaction between a sphere and a cylindrical pore

The  interaction energy between a sphere and a cylindrical

pore has been computed by  [23] when the sphere is inside the

pore. Recently, it has been shown that a single spherical particle

approaching a single cylindrical pore was more likely to be cap­

tured at  two distinct positions [3]. One is  slightly away from the

pore, above the plate, and the other is right on the pore edge. Both

experiments and a trajectory model including hydrodynamics and

van der Waals forces (simply as an effective distance of capture)

showed these preferential positions of  capture but the exact loca­

tions were slightly different with the two approaches. The principal

motivation of the present work was to obtain a satisfactory expres­

sion for the van der Waals interaction between the sphere and the

membrane + pore system when the sphere is still outside the pore

and very close to  its entrance, or even on  the edge of  the pore where

the sphere/plane model is unusable. Moreover, the experiments

were conducted using a microsieve as a membrane of  1.4 mm thick­

ness whereas the spheres typically had a radius of 1  mm.  The finite

depth of the pore thus needs to be taken into account.

Since no analytical solution has been established for  a sphere

above a plate perforated by a cylindrical hole, the interaction energy

has been computed numerically for a  plate thickness L = 1.4a and a

sphere located right above the pore edge at c  = 0.  For a  sufficiently

large pore radius (rp ≫ a) and a sphere sufficiently close to the pore

entrance (small b), the cylindrical pore edge is  seen by the sphere as

a semi­infinite slab straight edge and relation (7)  can be used safely

for the sphere/pore interaction. It is however desirable to assess the

range of validity of  such an approximation in  terms  of  values of rp/a

and b/a.

The  sphere/cylindrical pore interaction energy has thus been

computed numerically for different pore radii and is compared to

the sphere/semi­infinite slab interaction energy (7) on Fig. 8. Sim­

ulations have been performed for pore radii rp ranging from  0.1a

to 5a and for various distances to the plate surface b. One  sim­

ulation with a semi­infinite slab (circles) has been performed to

check the consistency between the numerical results and relation

(7). For any pore radius the sphere/plate result is recovered when

b ≫ rp (dashed line). Indeed, when the sphere/plate distance is

increased the zone of  the plate contributing to the total interaction

becomes larger and larger compared to the pore size and the exis­

tence of the pore can  be omitted. This condition is met, of course,

for smaller values of  the sphere/pore distance when rp/a is small.

Close to contact, if rp/a  ≪ 1 the interaction energy  tend to that of

the sphere/plate system but less rapidly than for b ≫ a. Once again

close to contact, if rp/a & 1 (the sphere fits exactly inside – or is  larger

than – the pore) the  sphere/semi­infinite slab energy (7) is recov­

ered within 5% and if rp/a  & 2 it  is recovered within 1–2% which is

of the order of the precision of the numerical results. Hence the

Fig. 8.  Interaction energy computed numerically between a  sphere and  a  cylindrical

pore  in a microsieve of  depth L = 1.4a normalized by  the  interaction energy between

a sphere and a semi­infinite slab (Fig. 2(b), Eq. (7)). The  different curves correspond

to different pore radii rp .  The sphere is  located right above the pore  edge (c  = 0). The

dashed line  is the sphere/plate value (Es/plane(a, b) − Es/plane(a, b + L)), which is twice

the  sphere/semi­infinite slab value for c =  0.

sphere/semi­infinite slab approximation is a very good one for an

application to a filtration problem. Indeed, for filtration problems

where the pore size is smaller than the particle size, the retention is

due to steric effects and the van der Waals force does not play a cru­

cial role. The application of  the present work concerns filtration of

particles smaller than the pore size, i.e. rp/a >  1 and the discrepancy

between the sphere/semi­infinite slab and the actual sphere/pore

geometry is  always less than 5%,  at least for a sphere right above

the pore  edge (c = 0).

If the sphere is  above the plate (c  < 0), the radius of curvature

of the pore will have even less effect and the approximation is  still

valid. The sphere/plate approximation may  even be used under the

conditions detailed in  Section 3.1.

When the sphere center lies above the pore orifice (c  >  0),  the

influence of the radius of the pore will be more drastic than for

the c  = 0 case presented on Fig. 8. In the microsieve experiments

of Lin et  al.  [3], the most probable position of capture on  the pore

edge corresponded approximately to a sphere in contact with the

pore edge and b  = c. Numerical computations have been performed

with b =  c  and a distance of closest approach of a/64. In this case the

discrepancy between the sphere/semi­infinite slab model and the

computed “exact” result is 50, 20, 6,  and 1% for rp/a  = 1, 2,  5,  and 10

respectively. Hence in  a future experiment it  would be desirable

to use a  pore radius five times as large as  the particle radius if the

analytical expression is  to be used. Note that a numerical computa­

tion of the exact interaction energy takes only a few seconds with

the code presented in this work so it  is always possible to  couple it

directly to a  hydrodynamic trajectory solver for smaller pore  sizes.

5. Conclusion

Analytical and numerical evaluations of the van der Waals force

between spherical colloidal particles and more  or less complex

geometries have been proposed. The analytical formulas derived

in this article have been validated with the new simulation tool

briefly presented in the first section. The range of  validity of sim­

ple sphere/plane models as approximations of more sophisticated

or unknown models for complex geometries involved in  colloidal

filtration processes has also been assessed by comparison with the

simulation results.



The numerical method implemented in  the WITS code is based

on a classical computation of  the six integrals in Eq. (1)  for com­

pletely arbitrary geometries or on  the integration of the three

remaining integrals when one of the solids is a sphere and inte­

gration on its volume is performed analytically. The originality lies

in the use of  a  so­called octree mesh to discretize the volumes of

the solids in an automatic adaptive manner which minimizes the

CPU cost without introducing assumptions on the physics. Succes­

sive evaluations of the interaction energy for progressively refined

meshes enable to monitor the convergence of the numerical inte­

gration algorithm and provides an  estimate of the numerical error.

Simulations were stopped when two  successive evaluations dif­

fered from less than 1–2%.

An analytical expression for  the interaction energy between

a sphere and a square wedge has been presented and validated

against results obtained numerically. It  has  been shown that the

sphere/plane approximation can be used within a 10% error in the

vicinity of the edge of  the wedge provided the sphere center is  in

front of  the plane, one radius away from the edge (c/a < −1), and

provided the distance between the sphere center and the plane

respects approximately b < c.

Exact  expressions for the the interactions between a sphere and

a semi­infinite slab, a semi­infinite slit, a  finite slit,  a 2D pillar, an

infinite rectangular rod, a 2D corner and a rectangular channel have

been derived from the sphere/plane and sphere/wedge results.

They have been validated against results issued from numerical

simulations. Combinations of sphere/plane approximations can be

used to replace more complex sphere/corner or sphere/channel

interactions within 10% error at least in water where the van der

Waals forces are rapidly screened.

Since particle capture at the surface of a filtration membrane

depends on the van der Waals force between the colloids and the

membrane, it would be desirable to know an analytical expression

for the interaction energy between a sphere and a  cylindrical pore

in a plate (when the sphere is outside the pore). Such an expression

is however unavailable to our knowledge, hence numerical simu­

lations have been performed to assess the range of validity of the

approximation consisting in replacing the cylindrical pore edge by

the straight edge of  a  semi­infinite slab. Close to contact and when

the sphere is right above the pore edge, this approximation falls

within 10% of the exact result for a pore radius as  large as the parti­

cle radius and is almost exact for pores radii larger than two particle

radii. When the particle is arrested on  the pore edge but partially

blocking the pore as  in Ref. [3], the approximation is valid for pore

radii larger that five particle radii.

These results are very encouraging to study the mechanisms of

capture of  colloidal particles on  microsieves. Further experiments

will be conducted in collaboration with the fluid dynamicists of

IMFT involved in  Ref. [3]. The present results will help dimension­

ing the new experimental setups and, it  is believed, enrich the

numerical computation of  the particles trajectories and positions

of capture.
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Appendix A. Analytical solution for the non­retarded

interaction energy between two slabs located at arbitrary

positions

To  compute the integral in Eq.  (1) with V1 and V2 being two slabs

of size a1 × b1 ×  c1 and a2 × b2 × c2 respectively, and separated by

Fig. 9. General configuration of two  slabs of size a1 × b1 × c1 and a2 × b2 × c2 sepa­

rated  by  distances dx , dy and dz in the x,  y and z directions respectively.

distances dx, dy and dz in the x, y and z directions respectively (Fig. 9),

the method of Ref. [26] is used.  Eq. 1 can be specialized in

I  =  −�2E =
∫ a1

0

dx1

∫ dx+a1+a2−x1

dx+a1−x1

dx

∫ b1

0

dy1

∫ dy+b1+b2−y1

dy+b1−y1

dy

∫ c1

0

dz1

∫ dz+c1+c2−z1

dz+c1−z1

dz h(x, y, z), (A.1)

where  h(x, y, z)  =  (x2 + y2 + z2)−3.

The second antiderivative of  h against z is:

h2(x, y, z) =
3z

8(x2 +  y2)5/2
arctan

[

z
√

x2 + y2

]

−
1

8(x2 +  y2 + z2)(x2 + y2)
(A.2)

This expression is true provided x2 + y2 /=  0. In the present appli­

cation there is always at least one space direction, say x,  with

non­zero integration limits (i.e. slabs are  neither in contact nor

overlap). Therefore, with this constraint in mind, Eq.  (A.2) is  always

valid. In the integration process, h2 is evaluated for four values of  z

before other integrations against y and x are conducted. The second

antiderivative of h2 against y is

h4(x, y, z  /=  0) = −
3y

16x3
atan
[ y

x

]

+
z
(

2y2 + x2
)

8x4

√

x2 + y2

arctan

[

z
√

x2 + y2

]

+last term  with y, z interchanged

(A.3)

or

h4(x, y, z  = 0) = −
y

16x3
arctan

[

y

x

]

(A.4)

Once  again, as x  /=  0 this expression is  always valid. The special

case y = 0  is now considered (when one face of  each slab is  in the

same plane with normal direction y):

h4(x,  y =  0, z  /=  0) =
z

8x3
arctan

[

z

x

]

(A.5)

or  if y = z = 0 (when one face of  each slab is in  the same plane with

normal direction y  and one face of each slab is in the same plane

with normal direction z)

h4(x, y =  0, z  = 0) = 0 (A.6)



Fig. 10. Geometries treated in Ref. [26]. (a) Two parallel slabs; (b) two  slabs with

one facing edge.

Table  1

Comparison of the present results with those of  [26] for the  case of two  parallel slabs

(Fig. 10(a))

(a, b, c, dz) Eq. (21) in  [26] Present (A.1) and (A.7) to

(A.10)

(0.5, 0.3, 0.1, 0.2) −1.60428336087276 × 10−2 −1.60428336087304 × 10−2

(0.1, 0.1, 0.5, 0.3) −5.71796733284981 × 10−5 −5.71796733296455 × 10−5

(1.0, 2.0, 0.4, 0.1) −4.15196970900943 −4.15196970900983

Table 2

Comparison of the present results with those of [26] for the case of two  skew par­

allelepipeds with square cross­section (Fig. 10(b))

(a, c, d) Eq. (25)  in  [26]  Present (A.1) and  (A.7) to

(A.10)

(0.1, 0.5, 0.2) −3.290827854534256 × 10−4 −3.290827854534263 × 10−4

(0.3, 0.1, 0.05) −4.144539374852781 × 10−3 −4.144539374851914 ×  10−3

(1.0, 2.0, 0.1) −0.133166827308585 −0.133166827308519

The second antiderivative of  h4 against x is

h6(x, y /=  0, z /=  0) =
1

32
ln

[

(

x2 + y2
)3

x2
(

x2 + y2 + z2
)2

]

+
3

32

[

x

y
−

y

x

]

arctan
[ y

x

]

+
x
(

y2 +  z2
)3/2

24y2z2
arctan

[

x
√

y2 + z2

]

+
1

24
z

[

1

x2
+

1

y2

]

√

x2 + y2 arctan

[

z
√

x2 + y2

]

+last term with y,  z interchanged

(A.7)

or

h6(x, y /=  0, z  = 0) =
1

32
ln

[

x2 + y2

x2

]

+
1

32

[

x

y
−

y

x

]

arctan

[

y

x

]

(A.8)

or

h6(x, y = 0, z  /=  0) = −
1

16
ln

[

x2 + z2

x2

]

−
1

16

[

x

z
−

z

x

]

arctan

[

z

x

]

(A.9)

or

h6(x,  y = 0, z  =  0)  =  x (A.10)

The validity of these relations can be checked against the results

of Ref. [26] for two parallel slabs (Fig. 10(a)) and two skew paral­

lelepipeds of square cross­section (Fig. 10(b), a1 = b1 = a2 = b2 ≡ a,

c1 = c2 ≡ c,  dz =  −  c1 and  dx = dy ≡ d). Some results obtained for these

two configurations are reported in Tables 1 and 2  respectively.

The present results are identical to those of Ref. [26] to machine

accuracy.
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