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Abstract. The present study explores the application of a

data assimilation (DA) procedure to correct the radar rain-

fall inputs of an event-based, distributed, parsimonious hy-

drological model. An extended Kalman filter algorithm was

built on top of a rainfall-runoff model in order to assimilate

discharge observations at the catchment outlet. This work fo-

cuses primarily on the uncertainty in the rainfall data and

considers this as the principal source of error in the sim-

ulated discharges, neglecting simplifications in the hydro-

logical model structure and poor knowledge of catchment

physics. The study site is the 114 km2 Lez catchment near

Montpellier, France. This catchment is subject to heavy oro-

graphic rainfall and characterised by a karstic geology, lead-

ing to flash flooding events. The hydrological model uses a

derived version of the SCS method, combined with a Lag

and Route transfer function. Because the radar rainfall in-

put to the model depends on geographical features and cloud

structures, it is particularly uncertain and results in signifi-

cant errors in the simulated discharges. This study seeks to

demonstrate that a simple DA algorithm is capable of ren-

dering radar rainfall suitable for hydrological forecasting. To

test this hypothesis, the DA analysis was applied to estimate

a constant hyetograph correction to each of 19 flood events.

The analysis was carried in two different modes: by assimi-

lating observations at all available time steps, referred to here

as reanalysis mode, and by using only observations up to 3 h

before the flood peak to mimic an operational environment,

referred to as pseudo-forecast mode. In reanalysis mode, the

resulting correction of the radar rainfall data was then com-

pared to the mean field bias (MFB), a corrective coefficient

determined using rain gauge measurements. It was shown

that the radar rainfall corrected using DA leads to improved

discharge simulations and Nash-Sutcliffe efficiency criteria

compared to the MFB correction. In pseudo-forecast mode,

the reduction of the uncertainty in the rainfall data leads to

a reduction of the error in the simulated discharge, but un-

certainty from the model parameterisation diminishes data

assimilation efficiency. While the DA algorithm used is this

study is effective in correcting uncertain radar rainfall, model

uncertainty remains an important challenge for flood fore-

casting within the Lez catchment.

1 Introduction

For flash flood prediction, hydrologists may use tools as rudi-

mentary as rainfall-discharge curves or as refined as com-

plicated physical and distributed hydrological models, all

with the goal of converting atmospheric and soil conditions

into discharge volumes, flood peak amplitudes and arrival

times. All of these tools are subject to uncertainties related

to their inputs and parameterisations. Rainfall-runoff models

are sensitive to rainfall quantities and their spatial distribu-

tion throughout the catchment, as runoff generation depends

upon rainfall location. Errors in rainfall estimates have a sig-

nificant impact on prevision and event reconstruction quality.



In studies of flash flood modelling for Romanian catchments

between 36 and 167 km2, Zoccatelli et al. (2010) demon-

strated that neglecting the spatial variability of rainfall re-

sulted in a deterioration of the simulation quality. Roux et al.

(2011) showed that the MARINE model (Estupina-Borrell,

2004) was dependent upon the distribution of rainfall data

in order to correctly represent the soil saturation dynam-

ics of the 545 km2 Gardon d’Anduze catchment in South-

ern France. The sensitivity of models to rainfall distribution

highlights the importance of using a rainfall product with a

fine spatial and temporal resolution, such as that provided by

weather radar.

However, the use of radar data is often limited by in-

creased uncertainties compared to ground rainfall measure-

ments due to nonlinearities in the rainfall-reflectivity rela-

tionship, ground clutter and beam blocking (Borga, 2002).

In the Cévennes region where the Lez catchment is located,

a hilly terrain complicates the process of separating rainfall

and terrain backscatter. Pellarin et al. (2002) demonstrated

that selecting the scan used in mountainous regions based on

distance considerations, as done so for the HYDRAM rain-

fall product used in this study, leads to a lower quality rainfall

product compared to using a composite (highest quality scan

at any given point) method (Cheze and Helloco, 1999). Ad-

ditionally, in the Lez catchment, radar data quality varies by

season and is diminished in winter months due to bright band

effects related to predominantly stratiform rainfall (Coustau

et al., 2011; Emmanuel et al., 2012; Tabary, 2007). A possi-

ble post-treatment correction to radar rainfall is the removal

of the mean field bias (MFB) (Wilson and Brandes, 1979),

a correction which uses rain gauge data to eliminate errors

due to instrumentation and a nonlinear vertical profile reflec-

tivity (VPR). Adjustment of radar rainfall using rain gauge

data has been shown to lead to improved prediction accuracy

(Vieux and Bedient, 2004; Cole and Moore, 2008).

Identifying a correction to the rainfall data input to hydro-

logical models can also be formulated as an inverse problem

(Tarantola, 2005; McLaughlin and Townley, 1996) solved in

the framework of data assimilation. Data assimilation (DA)

for the improvement of hydrological event reconstruction

or forecast has been already demonstrated as effective, e.g.,

Aubert et al. (2003), Moradkhani et al. (2005), Pauwels et al.

(2001), Thirel et al. (2010) and Vrugt et al. (2005). However,

previous literature has often focused on correcting rainfall

without the direct implication of downstream hydrological

applications. Chumchean et al. (2006) used a Kalman filter-

ing approach, modelling the logarithmic MFB as an autore-

gressive process. Seo et al. (1999) recursively calculated the

MFB using an exponential smoother. These techniques are

convenient in that they depend only on radar and rain gauge

measurements, however, studies of their impact on hydro-

logical modelling could be further developed. In the context

of flood forecasting, Kahl and Nachtnebel (2008) adopted

an updating technique which relates the rainfall correction

to a hydrological simulation through the minimisation of an

objective function. However, the objective function has two

drawbacks: (i) it has no explicit solution and (ii) it does not

take into account the observation error. This study builds

upon established methods by using DA to correct rainfall

while focusing on downstream hydrological applications.

A common approach to data assimilation is the Kalman

Filter (KF) algorithm. The KF corrects a set of a priori pa-

rameters and/or model states (the background) stored in the

control vector using observations to produce a set of opti-

mal model states or parameters (the analysis). Assuming that

the observation operator mapping the control vector onto the

observation space is linear, the algorithm calculates the anal-

ysis by performing a linear combination of the background

and analysis, each weighted by their respective error covari-

ances. The extension of the KF to nonlinear operators (Ex-

tended Kalman Filter – EKF) implies the computation of a

local estimate of the tangent linear of the observation oper-

ator (Goegebeur and Pauwels, 2007). The EKF analysis is

similar to the incremental 4D-Var (4D-inc) analysis in that

they both rely on the local linearisation of the observation

operator (Bouttier and Courtier, 2002). Both variational and

filtering analyses are based on the minimisation of a cost

function that describes discrepancies between simulated and

observed values as well as their associated error statistics.

However, these algorithms differ in the way the minimisa-

tion is performed: variational techniques use a minimiser and

are adapted to large dimension problems, whereas filtering

techniques explicitly solve for the analysis using matrix mul-

tiplication and inversion that are only affordable for small

dimension problems such as the one presented here. The lim-

itations of both 4D-inc and EKF are due to the use of a local

estimation of the tangent linear of the observation operator

and can be partly overcome with an update of the linearised

operator also called an outer loop (Thirel et al., 2010). An-

other possible alternative to the EKF, the Ensemble Kalman

Filter (EnKF) estimates error statistics from an ensemble of

model runs and enables a stochastic estimate of the covari-

ance matrices taking into account the nonlinearity of the ob-

servation operator (Weerts and El Serafy, 2006; Pauwels and

De Lannoy, 2009; Moradkhani et al., 2005). Ensemble meth-

ods, such as the EnKF, Particle Filter or the Maximum Like-

lihood Ensemble Filter (MLEF), can thus be used for non-

linear systems; however, the quality of the resulting analysis

strongly depends on the initial sample and whether it does or

does not properly represent the uncertainty of the system.

The main objectives of this study are: (i) to assimilate dis-

charge data using an EKF to correct radar rainfall data which

is a key source of uncertainty in hydrological modelling and

(ii) to apply this correction to flood simulation and forecast in

order to examine the quality of hydrological prediction using

DA. Other uncertainty also exists in the model structure and

physical catchment properties, but radar rainfall was selected

as the target of DA because it is a key factor in the hydrol-

ogy of the catchment and it provides several advantages over

rain gauge data if its uncertainty can be reduced. In order to



Fig. 1. Visualisation of the Lez catchment and its monitoring network: map of the Lez catchment, the rain gauges used for the measurement

of ground rainfall, and the Nı̂mes weather radar.

evaluate the quality of the DA correction, comparisons were

made with the MFB; then, to evaluate the predictive capacity

of the method, the correction was applied in a forecast-like

setting.

The paper is outlined as follows: Sect. 2 includes a de-

scription of the study site, the model structure and calibra-

tion, the DA procedure, a description of the experimental set-

up and examples of assimilation performed in reanalysis and

pseudo-forecast mode. The results of the study and the im-

pacts of data assimilation on the efficiency of the hydrolog-

ical model are then presented in Sect. 3. Finally, a summary

of the key results obtained and conclusions are discussed in

Sect. 4.

2 Materials and methods

2.1 Study site: the Lez catchment

The Lez catchment in Southern France (Fig. 1) is a medium-

sized karstic basin located in the Hérault department, 15 km

north of the town of Montpellier. The catchment is 114 km2

at Lavalette, where discharge measurements are taken. This

portion of the Lez river is fed by several upstream tributaries:

the Lirou, Yorgues and Terrieu. The Lez River stretches for

26 km between its source and the Mediterranean Sea.

The landscape of the Lez catchment at Lavalette is defined

by plains and hilly garrigue with limestone outcrops and

very little urbanisation. The plains are composed of 200 to

800m thick Valanginian marls (a mixture of calcium carbon-

ate and clay minerals formed during the Early Cretaceous

period), covered by soil usually less than 1m thick. Land

use ranges between agricultural (vineyards) and forest in the

plains, along with undeveloped garrigue; the limestone out-

crops have very little soil cover and thin vegetation.

The source of the Lez is a seasonal spring which serves as

the main outlet of a 380 km2 limestone and dolomite karstic

aquifer (shown by the dotted line in Fig. 1) (Avias, 1992).

Karstic systems are defined by the presence of conduits and

fractures in the underlying limestone bedrock, resulting in

complex transport networks and variable response times fol-

lowing rainfall events. The subsurface processes that con-

tribute to runoff are poorly understood: they may reduce

flood intensity by storing water in the epikarst and through

deep infiltration (Dörfliger et al., 2008) or they may intensify

the flood severity through the contribution of groundwater to

peak flow (Kong A Siou et al., 2011).



2.1.1 Climate and rainfall data

The climate of the region is generally dry, with mean an-

nual potential evapotranspiration (1322mm at Mauguio for

the period from 1996 to 2005 – Fig. 1) greater than mean an-

nual rainfall (909mm at Prades for the period from 1992 to

2008). Mean annual evapotranspiration was calculated using

the Penman-Monteith equation; this calculation is not avail-

able at the Prades rain gauge. Most of the yearly rainfall

is received in fall and winter in the form of heavy climatic

and orographic precipitations. To the North of the Lez catch-

ment, frontal systems are strengthened by relief changes in

the Massif Central. Extreme rainfall events, particularly in

late summer and fall periods, are favoured in this region due

to humidity generated by the warm Mediterranean Sea and

a closed cyclone which helps to transport warm, moist air

masses to the coast (Nuissier et al., 2008). In September of

2002, rainfall totalled as much as 600–700mm over a 24 h

period in certain regions (Boudevillain et al., 2011).

Rainfall in the Lez catchment is measured by both an S-

band radar located in Nı̂mes at a distance of approximately

65 km from the basin and a network of 4 rain gauges (Prades,

Montpellier-ENSAM, Maugio, Saint Martin de Londres –

Fig. 1). Radar data were treated using the HYDRAM al-

gorithm developed by Météo-France (Cheze and Helloco,

1999) for the correction of ground clutters, the vertical pro-

file of reflectivity and the conversion of reflectivity to rainfall

using the Marshall-Palmer relationship,

Z = 200R1.6, (1)

whereZ is the reflectivity in mm6m−3,R is the radar rainfall

intensity in mmh−1 and 200 and 1.6 are empirical constants

derived from the drop size distribution. For the HYDRAM

treatment, the same Z–R relationship is used for stratiform

and convective rainfall (Tabary, 2007). The Nı̂mes radar pro-

duces scans at three different elevations at 5min intervals:

2.5◦ (0–22 km), 1.3◦ (22–80 km) and 0.6◦ (distances beyond

80 km). These three scans are used to produce a radar im-

age which describes rainfall for areas at different distances

to the radar. The lowest unobstructed scan is selected for a

given distance range. For the Lez catchment, the 1.3◦ scan

was used (Bouilloud et al., 2010) to produce cumulative rain-

fall depths at a spatial resolution of 1 km2 and a time step of

5 min. A network of 20 rain gauges within a 50 km range of

the catchment provided cumulative rainfall data for adjust-

ments using the MFB (Fig. 1), a measure of the ratio of radar

to rain gauge rainfall during a specified time period (here the

length of the flood event):

MFB =

1
n

n∑

i=1

Gi

1
n

n∑

i=1

Ri

, (2)

where Gi is the rain gauge measurement at location i in mm,

Ri is the radar measurement at the same location in mm and n

Table 1. Rainfall events occurring over the Lez catchment from

1997–2008. The date, mean field bias (MFB) and peak discharge

(Qpeak) are shown.

Qpeak

Event date MFB (m3 s−1)

3 November 1997 4.66 14

16 December 1997 1.74 122

11 November 1999 1.09 43

28 September 2000 1.79 51

23 December 2000 1.50 48

16 January 2001 1.53 93

8 September 2002 1.80 103

8 October 2002 1.74 43

9 December 2002 1.69 376

22 September 2003 1.27 91

15 November 2003 1.58 64

21 November 2003 1.35 95

29 November 2003 1.05 424

5 September 2005 1.29 467

27 January 2006 1.24 52

23 September 2006 1.43 23

1 May 2007 1.01 9

19 October 2008 1.07 109

1 November 2008 0.87 31

is the number of rain gauges selected. The value of the radar

measurement at the gauge location was selected to be the

average of the central pixel and its 8 nearest neighbours. The

ratio of rain gauge to radar measurements is expected to be

greater than 1 for distances between 15 and 80 km from the

radar where masking effects play an important role (Cheze

and Helloco, 1999).

2.1.2 Rainfall events

Table 1 displays the 19 rainfall events measured by

HYDRAM-treated radar for the Lez catchment together with

their associated MFB values and peak discharges. In gen-

eral, events lasted several days and cumulative rainfall was

sampled at a time step of 1 h. The episode MFBs were be-

tween 0.87 and 1.80, indicating that radar was never more

than 45% away from the “true” rainfall value (assuming ab-

solute confidence in ground measurements) with the excep-

tion of November 1997. The very high MFB for this event

indicates that either the rain gauges, the radar or both may

have not been functioning properly. With the exception of

November 2008, all events have MFB values greater than 1,

with an average of 1.39. As mentioned in Sect. 2.1.1, these

values are a feature of the distance between the Nı̂mes radar

and the watershed.

Rainfall events were separated into two classes based on

their peak discharges: regular events which have a peak dis-

charge greater than 40m3 s−1 and very small events which

have a peak discharge less than or equal to 40m3 s−1. This



classification is used to determine the range of discharges

that will be assimilated as discussed in Sect. 2.4.

2.2 The hydrological model

The hydrological model is event-based, parsimonious and

distributed. It operates on independent grid cells with an

hourly time step using a derived SCS runoff production func-

tion (Gaume et al., 2004) and a Lag and Route transfer func-

tion (Tramblay et al., 2011). The calibration and adaption of

this model to the Lez catchment are presented in Coustau

et al. (2012).

2.2.1 The runoff production function

The runoff production function is the link between the pre-

cipitation falling over the catchment and the discharge emit-

ted to surface waters. Not all rain becomes discharge and

processes such as infiltration, evapotranspiration, percolation

and interception determine the eventual fate of incident rain-

fall. The SCSmethod for predicting runoff has been validated

for medium-sized watersheds in recent literature (Abon et al.,

2011; Han et al., 2012). The ATHYS software, developed by

HydroSciences Montpellier (www.athys-soft.org), was used

to implement a derived version of the SCS equations for this

study (Gaume et al., 2004),

ie(t) = C(t) ib(t), (3)

where ie(t) is the instantaneous runoff rate (or runoff inten-

sity) with units of mm s−1, ib(t) is the rainfall rate (or rainfall

intensity) in mm s−1 and C(t) is the fraction of rainfall con-

tributing to runoff. C(t) is defined as follows,

C(t) =

{
Pb(t)−0.2S
Pb(t)+0.8S

(

2 −
Pb(t)−0.2S
Pb(t)+0.8S

)

if Pb(t) > 0.2S

0 otherwise,
(4)

where Pb is the cumulative rainfall depth at time t in mm and

S is the potential storage depth of the watershed at the start

of the event (potential maximum retention) in mm.

To represent the ability of the soil to regain part of its ab-

sorption potential during pauses in the rainfall, this version

of the SCS method allows the soil to drain. The volume of

water lost to drainage is a function of two conceptual reser-

voirs: the cumulative rainfall reservoir, level Pb(t), and the

soil reservoir, level stoc(t), in mm, shown in Fig. 2. The cu-

mulative rainfall reservoir represents the total rainfall depth

received and is used to calculate of the portion of the inci-

dent rainfall contributing to runoff during the event. The soil

reservoir represents the amount of rainfall stored in the soil.

A portion of the water lost by this reservoir becomes delayed

runoff. The rate of drainage of the cumulative rainfall reser-

voir and the soil reservoir is described by:

dPb(t)

dt
= ib(t) − dsPb(t), (5)

Fig. 2. Schematic representation of the ATHYS runoff production

function (Bouvier and Delclaux, 1996).

dstoc(t)

dt
= ib(t) − ie(t) − dsstoc(t), (6)

where ds is the drainage coefficient in d−1. This coefficient

represents the removal of water through deep infiltration

and evapotranspiration during the event. The drainage coef-

ficients of the cumulative rainfall reservoir and the soil reser-

voir were selected to be the same. The water lost to the sys-

tem by the drainage coefficient is considered to be either lost

to deep infiltration or to re-emerge as delayed surface runoff,

id(t), calculated by

id(t) = min
(

1,
w

S

)

dsstoc(t), (7)

where w is the critical soil depth in mm and S is the same as

that appearing in Eq. (4). The ratio between S and the critical

soil depth determines the fraction of drainage that becomes

delayed runoff. As S approachesw (going from high S to low

S), the proportion of runoff lost to deep infiltration is dimin-

ished and a greater portion of the soil reservoir drainage be-

comes available as delayed discharge. The critical soil depth

was added by Coustau et al. (2012) in order to adapt the SCS

equations to the behaviour of karstic watersheds and to en-

sure the proper behaviour of the watershed during the de-

scending limb of the hydrograph by including the participa-

tion of subsurface flows. The delayed surface runoff is then

added back to the instantaneous runoff rate to produce the

total runoff, it(t).

2.2.2 The transfer function

Supposing that the production function has created runoff at

a certain grid location, this runoff must then be transferred to

the watershed outlet by what is referred to here as the trans-

fer function. The Lag and Route transfer function (Tramblay



et al., 2011) is based on a unit hydrograph approach in which

the discharge produced by each cell is assumed to follow the

form of a decaying exponential. In this way, it is similar to

the impulse solution of the kinematic wave approach. How-

ever, in the present case, the form of the hydrograph is as-

sumed and imposed upon the runoff generated by each cell.

This runoff is independent and does not interact with that

of the other cells (Olivera and Maidment, 1999; Maidment

et al., 1996). Independent grid cells may be a strong simpli-

fication; however, runoff is rapidly concentrated, leading to

little or no infiltration or storage during flow routing. This

is in contrast the kinematic wave approximation (a simplifi-

cation of the Saint-Venant equations for shallow water flow)

or the Manning equations for open channel flow (Bates and

De Roo, 2000). In these cases, the discharges from differ-

ent cells are allowed to interact and the flow rate will de-

pend upon the depth of the runoff contained within the cell.

Despite its simplicity, the Lag and Route function has been

shown to perform as well as the Saint-Venant equations for

certain cases (Lhomme et al., 2004). The use of indepen-

dent grid cells with a Lag and Route transfer function was

selected because it does not require prior knowledge of the

hydrodynamic features of the catchment such as roughness

coefficients or hydraulic conductivity and has relatively few

parameters to calibrate.

The two parameters which describe the Lag and Route

function are: V0, the speed of propagation in m s−1, and K0,

a dimensionless coefficient used to calculate the diffusion

time. The propagation time to the outlet, Tm, in seconds de-

scribes the lag between runoff production at time t0 and the

arrival of an associated elementary hydrograph at the water-

shed outlet. It is equal to lm, the length of the flow path from

the cell to the outlet in m – calculated using a method of

steepest descent in order to produce drainage paths for each

cell, divided by V0. From the propagation time, the diffusion

time Km in s is calculated as the product of K0 and Tm. This

coefficient represents the velocity distribution of the runoff

as it is transferred from the cell to the outlet. For each grid

cell, the diffusion time and propagation time are then used to

produce an elementary hydrograph, q(t) in m3 s−1, produced

by the total runoff it(t0):

q(t)

A
=

{

0 for t < t0 + Tm

it (t0)
Km

exp
(

−
t −(t0+Tm)

Km

)

for t ≥ t0 + Tm,
(8)

where A is the area of the grid cell in m2.

To measure the quality of the simulations performed by

the hydrological model, the Nash-Sutcliffe efficiency crite-

rion (NS) was selected (Nash and Sutcliffe, 1970). This cri-

terion can be expressed as a function of the error between

the model discharge at time j (Qsim,j in m3 s−1) and mea-

sured discharge at time j (Qobs,j in m3 s−1), summed over

j , squared and normalised by the variance of the measured

discharge (σ 2
obs):

NS = 1 −

N∑

j=1

(

Qsim,j − Qobs,j

)2

σ 2
obs

, (9)

where j varies from 1 to N , the total number of observa-

tions available for the event. For this study, NS is calculated

over the entire length of the rainfall event, regardless of the

number of observations assimilated. The window of observa-

tions selected for assimilation will be discussed in detail in

Sect. 2.3.

A second measure of quality is the normalised difference

in peak flow between the simulation (Qsim, peak) and the ob-

servations (Qobs,peak), PH:

PH =
Qsim,peak − Qobs,peak

Qobs,peak
. (10)

2.2.3 Sensitivity of the model to rainfall inputs

In this section, the choice of radar rainfall as the target of data

assimilation will be explained and the relationship between

discharge and rainfall explored.

Rainfall plays a key role in the estimation of discharges

using hydrological models. The model used in this study is

sensitive to the quantity and intensity of rainfall and this sen-

sitivity varies depending on previous conditions. As the soil

reservoir becomes saturated, a greater proportion of incident

rainfall runs off and is emitted as discharge. In this way, the

response of the watershed to a linear increase in rainfall is

expected to be nonlinear because the behaviour of the soil

moisture reservoir after 20mm of rainfall is not the same af-

ter 40mm of rainfall. To illustrate this phenomena, a linear

multiplier of the rainfall intensity, denoted α, was introduced

into the model:

ib(t) = α i⋆b(t), (11)

where i⋆b is the observed radar rainfall rate and ib is the rain-

fall rate used by the model. Figure 3 displays the discharge

as a function of α at 3 h before the flood peak. This time step

was selected because it demonstrates saturated behaviour for

larger values of α and non-saturated behaviour for small α.

The discharge is highly sensitive to rainfall inputs with values

near 0m3 s−1 for α = 0.5 and 1000m3 s−1 for α = 3. As ex-

pected, the relationship is nonlinear. This is due to (i) a non-

linear runoff production function which depends on soil sat-

uration and (ii) the differential equations describing soil and

rainfall reservoir drainage. Despite nonlinearities, α was cho-

sen as the target of the DA procedure because of the strong

influence of the rainfall input upon model results.

2.2.4 Initialisation and calibration of the model

The hydrological model contains several types of parame-

ters: batch-calibrated parameters, mathematical properties of



Table 2. The S – catchment wetness state indicator relationship. M is the slope of the linear regression between Scal and the wetness state

indicator, b is the y-intercept, and R2 is the coefficient of determination for this regression. % change refers to the average difference between

Sreg and Sreg using the validation period regression. σ is the standard deviation of this difference.

Indicator no. points M b R2 % change σ

Hu2 21 −8.84mm 732.00mm 0.69 0.065 0.055

Bois Saint Mathieu 12 −5.15mmm−1 547.57mm 0.77 0.10 0.14

Claret 12 −2.98mmm−1 426.79mm 0.71 0.038 0.037

Fig. 3. Discharge as a function of α at 3 h before the flood peak.

the equations and the initial condition of the watershed, S,

the potential storage depth of the soil reservoir, which must

be calibrated separately for each event. It should be noted that

while the language “initialisation” is used here, S is a param-

eter in this data assimilation system and not a model state,

thus, it does not evolve during the event. During the calibra-

tion process, a mixture of ground rainfall events and high

quality (early autumn) radar rainfall events from 1994–2008

was used in order to minimise the error associated with the

parameterisation. The first step was to calibrate ds, a mathe-

matical property of the model equal to the coefficient of the

exponential recession limb of the hydrograph. When the rain-

fall rate is zero, discharge consists entirely of delayed runoff

and stoc(t) becomes a decaying exponential with a coeffi-

cient of ds. The slope of the semi-log plot of the discharge

is then equal to ds, the coefficient of the decaying exponent.

This value was determined to be 0.28 d−1 for all events.

Next, the batch-calibrated parameters V0 and w were cal-

ibrated by selecting the value which maximises the NS of

the simulated discharge for a given event and then averaging

over all events. To avoid problems of equifinality (Beven and

Freer, 2001) during this step of the calibration process, K0

was set as a fixed value before calculating V0 and w. Since

the diffusion time Km is a function of both V0 and K0, many

values of these two parameters can result in the same veloc-

ity distribution at the watershed outlet. The parameters V0,

w and K0 were determined to be 1.3m s−1, 101mm and 0.3

(dimensionless), respectively, for all events.

Finally, the initial soil moisture deficit or potential storage

depth, represented by the parameter S, must be calculated at

the beginning of each event. In reanalysis mode, a posteriori

S values, denoted Scal, were calibrated for each rainfall event

by maximising the NS of discharge simulations forced with

the MFB corrected radar rainfall in order to minimise errors

in the parameterisation. In pseudo-forecast mode, the event

hydrograph is not known. As a consequence, S must be esti-

mated at the start of the event using known indicators of the

catchment wetness state at this time. For example, piezomet-

ric readings could be used to estimate the state of the karstic

aquifer in the morning if heavy rain was predicted for the

evening. In this study, a calibration curve relating S to indi-

cators of the catchment wetness state is used to estimate a pri-

ori S values for each episode from measurements of aquifer

piezometry or soil moisture indicators derived from surface

models (Coustau et al., 2012). These estimated S values are

referred to as Sreg.

Using the historical record of discharge and rainfall from

1997–2008, calibration curves for S were developed using 3

catchment wetness state indicators: Hu2 (%), the piezome-

ter located at Bois Saint Mathieu (m) and the piezometer lo-

cated at Claret (m) (Fig. 1). These two piezometers were se-

lected for the quality of their relation to the hydric state of the

watershed. The Hu2 indicator is modelled by Météo-France

(Quintana-Seguı́ et al., 2008) and estimates the % soil satu-

ration at the root horizon. The measurements for each event

are taken as the value of the indicator at 06:00 a.m.UTC the

day of the event. Hu2 data are available for 18 of the 19 rain-

fall events and piezometer data are available for 14 of the

19 events.

For each indicator, a regression of slopeM and y-intercept

b was formed using the catchment wetness state indicator as

the independent variable and Scal as the dependant variable

as shown in Table 2, where S is the parameter described in

Eq. (4) calibrated for each episode. R2 is the coefficient of

determination for the linear regression between Scal and the

physical indicators. To validate each regression, split sample

tests were performed. Each regression was performed using

only the first half of the data available to construct a “histor-

ical period”; the Sreg values calculated using the validation

regression were then compared with the Sreg values calcu-

lated using the regression for the entire record. The average

and standard deviation of the % difference between these two



Sreg values are presented in Table 2. The piezometer at Claret

was the most robust indicator during this phase of the valida-

tion. A second validation was performed by comparing Sreg
to Scal during the validation period. The average % difference

between Sreg and Scal was 0.22, 0.21 and 0.16 for Bois Saint

Mathieu, Claret and Hu2, respectively. For this test, Hu2 was

the most robust indicator.

The Sreg values calculated using the different regressions

are shown in Table 3. An analysis of the impact of errors in

the parameterisation will be presented in Sect. 3.2.1.

2.3 Data assimilation methods

A non-sequential EKF with an outer loop was selected for

this study. Data assimilation was carried out over a time win-

dow which includes several discharge observations assim-

ilated in a single analysis to correct the input rainfall de-

scribed by weather radar. The control vector is a scalar con-

taining a multiplier of the input rainfall assumed to be con-

stant over a time window which contains the entire flood

event. The observation operator mapping the control vec-

tor on to the observation space (discharges at the catchment

outlet) is represented by the integration of the hydrological

model. The linearised version of the hydrological model is

calculated locally about a reference value of the control vec-

tor using a finite difference scheme. This reference value is

initially selected as the background control vector. However,

this method is limited by the assumption that the observation

operator is linear in the vicinity of the background. To ac-

count for nonlinearities in the observation operator, an outer

loop was applied to the EKF. The outer loop updates the ob-

servation operator using the analysis as the reference value

and then calculates a new analysis starting from the back-

ground control vector. The main advantages of this algorithm

are low computational costs for a small control vector and

the simplicity of implementation. Using the EKF described

above, DA was carried out for heavy rainfall events occur-

ring within the Lez catchment between 1997 and 2008. The

analysis was applied in two modes: reanalysis and pseudo-

forecast. In reanalysis mode, all available discharge obser-

vations during the rainfall event were assimilated. In fore-

cast mode, observations up to 3 h before the peak flow arrival

were assimilated in order to reproduce an operational fore-

casting environment. The resulting rainfall multiplier was

then applied until the end of the rainfall episode. This choice

of assimilation window is intended to demonstrate the pos-

sible performance of the algorithm in a real-time forecasting

environment, while acknowledging that the peak arrival time

would not be known in this case.

In this application of the EKF, information from the back-

ground discharge simulation Qsim,b is combined with ob-

served discharges Qobs to calculate a constant multiplier of

radar rainfall inputs, α, which is then used to integrate the

hydrological model, producing a corrected discharge simula-

tion as shown in Fig. 4. The rainfall multiplier is calculated

Table 3. Sreg estimated from physical indicators of the catchment

wetness state using the linear regressions presented in Table 2.

Dashes indicate missing values.

Event date Shu2 SBois Saint Mathieu SClaret
(mm) (mm) (mm)

3 November 1997 251 – –

16 December 1997 184 – –

11 November 1999 196 – –

28 September 2000 220 293 248

23 December 2000 197 – –

16 January 2001 107 134 125

8 September 2002 211 209 202

8 October 2002 165 177 213

9 December 2002 119 136 153

22 September 2003 273 291 294

15 November 2003 119 128 139

21 November 2003 74 59 80

29 November 2003 64 55 80

5 September 2005 302 282 288

27 January 2006 139 136 168

23 September 2006 188 181 197

1 May 2007 216 177 210

19 October 2008 – – –

1 November 2008 179 155 182

over a single time window covering the entire flood event (or

until 3 h before the peak flow for the pseudo-forecast mode).

As a consequence, this multiplier represents the mean be-

haviour of the rainfall over each event, as it is constant in

time and uniform in space.

Discharges simulated by the conceptual hydrological

model used in this study have a nonlinear dependence on

rainfall inputs. In data assimilation, this relationship can be

represented as a nonlinear observation operator H. This op-

erator translates rainfall input ib into discharge data Qsim,

using model parameters (such as S and V0) to solve ordinary

differential equations for state variables stoc and Pb:

y = H(x), (12)

where x is the control vector containing a multiplicative co-

efficient of the rainfall intensity, denoted α, presented in

Sect. 2.2.3 and y is the control vector in the observation space

(i.e. discharges). It should be noted that subscripts indicat-

ing the time dimension of x and y are not included. This is

because x is constant over each rainfall event as previously

stated and y gathers together model outputs for each obser-

vation time over the rainfall event. The translation of rainfall

input to discharges at the catchment outlet is represented in

Step 1 of the algorithm schematic diagram (Fig. 5).

Assuming that the errors in the rainfall input and the ob-

servations follow a Gaussian distribution, the optimal value

of the control vector is the analysis, xa, which minimises the

cost or misfit function J (Bouttier and Courtier, 2002):



Fig. 4. Schematic representation of the hydrological model: inputs (blue), model parameters (purple), state variables (dark red) and the

background model outputs (Qsim,b in pink). Inputs, parameters, state variables or model outputs can be corrected by DA using observations

(Qobs in light blue) and model outputs in order to produce the corrected discharge (Qsim,a in green).

Fig. 5. Schematic representation of the EKF: the background model trajectory (Qsim,b in pink) is corrected using observations (Qobs, blue

crosses) to produce the analysis model trajectory (Qa in green) during steps 1 through 4. In step 5, the observation operation is re-linearised

in the vicinity of the analysis and steps 2 and 3 are repeated to form an “outer loop”.

J (x) =

(

x − xb
)T

B−1
(

x − xb
)

+
(

yo − H(x)
)T
R−1

(

yo − H(x)
)

. (13)

The cost function J is the sum of two terms: (i) the differ-

ence between the control vector x and its background value

xb and (ii) the difference between the control vector in the

observation space and the observation vector yo, weighted

respectively by the background and observation error covari-

ance matrices, B and R. The background control vector is

selected as xb = (1) (no change to the input rainfall) and the

observation vector contains the observed discharges during

the assimilation window.

The cost function above is at a minimum when its gradi-

ent is null, leading to the expression ∇J (xa)= 0. To express

the cost function gradient, the derivative of the nonlinear ob-

servation operator with respect to the control vector is nec-

essary. The Jacobian matrix H of the observation operatorH

is determined using the Taylor expansion computed around a

reference vector xref, initially chosen as xb (Step 2 in Fig. 5):

H =
∂H

∂x

∣
∣
xb ≈

H
(

xb + 1x
)

− H
(

xb
)

1x
. (14)



Using Eq. (14) to nullify the gradient of Eq. (13), xa can

be determined (Step 3 in Fig. 5):

xa = xb + Kd
︸︷︷︸

δx

, (15)

where xa is the EKF analysis, d is the innovation vector,

yo −H(xb) represents the difference between the simulated

dischargeQsim,b (Step 1 in Fig. 5) and the observed discharge

Qobs, K is the gain matrix, BHT (HBHT + R)−1, and δx is

the increment applied to the background. The hydrological

model can now be integrated using the analysis rainfall mul-

tiplier stored in xa to provide a new estimate of the simulated

discharge Qsim,a (Step 4 in Fig. 5).

The use of the Extended Kalman filter analysis equations

relies on the hypothesis that H(x) can be approximated as

locally linear in the vicinity of xref and that this approxima-

tion is valid on [xa, xref]. The innovation added to the back-

ground is assumed to be sufficiently small that the residual

betweenH (xb + δx) andH(xb) +H
∣
∣
xb δx is negligible for

an increment δx applied to the background. Limitations of

the non-sequential EKF occur when the innovation extends

outside the region where the linearity assumption holds. To

compensate for nonlinearities inH(x), the outer loop proce-

dure (Thirel et al., 2010) in Fig. 5 allows for the recalculation

of the linear tangent H at the location of the analysis of the

previous iteration xa (Step 5 in Fig. 5) in order to create a

new quadratic approximation of J , as shown in Fig. 6. At the

optimal value of the analysis, the minimum of the quadratic

approximation and the non-quadratic cost function will coin-

cide. By re-calculating the linear tangent about the analysis,

the minimum of the quadratic cost function approaches that

of the non-quadratic cost function. The analysis calculated

with the new quadratic approximation then provides an im-

proved estimate of the non-quadratic cost function minimum.

This method could also be applied to a 4D-Var incremental

algorithm.

The B matrix represents the background error covariance,

which is the error in the rainfall multiplier. This error is as-

sumed to follow a Gaussian model and is described by its

variance as the control vector is a scalar. However, the vari-

ance of the rainfall corrective coefficient is difficult to define

because it is the uncertainty in a correction applied to the

radar rainfall and not the uncertainty of the measure itself.

In order to define B, α was assumed to have an error near

that of the MFB, which has a standard deviation of 30% and

an average deviation of 40%. The standard deviation of α

was selected as the higher of these two error estimates as a

precaution.

The observation errors are supposed uncorrelated, making

R a diagonal matrix. A proportionality coefficient, βobs was

used to calculate the observation error variance σ 2
obs in order

to control the amount of confidence placed in observations

depending on the assimilation window selected (reanalysis

or pseudo-forecast mode):

Fig. 6. The outer loop process. The x-axis represents the value of

the control vector and the y-axis is the misfit cost (cost function).

The red curve represents the non-quadratic true value of the cost

function, while the dotted curves represent successive iterations of

the outer loop, each with a new estimate of the Jacobian ofH in the

vicinity of the previous analysis.

σ 2
obs,i = max

(
(

βobs

Qobs,i

)2

, 0.01

)

for i = ti : tf, (16)

where ti is the initial time step and tf is the final time step of

the assimilation period. R has a lower bound of 0.01m6 s−2

and no upper bound. As the errors coming from each source

of information are not precisely known in pseudo-forecast

mode, different values of the proportionality coefficient were

considered as described in Sect. 2.4. In reanalysis mode, βobs
is selected such that all discharges above 2.5m3 s−1 have

the minimum error covariance of 0.01m6 s−2. This choice is

based on the use of the Nash-Sutcliffe criterion for measur-

ing model efficiency. The Nash-Sutcliffe criterion measures

model outputs against observed data, placing absolute confi-

dence in the observations. In order to improve this criterion,

the algorithm was used to match observations as closely as

possible in the reanalysis mode. In pseudo-forecast mode and

for discharges below 2.5m3 s−1 in reanalysis mode, the ob-

servation error becomes heteroscedastic (variance changing).

The variance is then proportional to the discharge measure-

ment as in Moradkhani et al. (2005), though an inverse pro-

portionality scheme was selected in this case in order to place

more weight on high flow conditions. This is better suited for

peak flow forecasting.

2.4 Experimental set-up

For the 19 radar rainfall events, the range of assimilated

discharges is 15–300m3 s−1 for normal episodes and 2–

40m3 s−1 for very small episodes (peak discharge less than

or equal to 40m3 s−1). Very large discharges are unreliable

due to the use of a rating curve to calculate the river stage-

discharge relationship beyond 300m3 s−1. Small discharges



are eliminated in order to better represent the flood behaviour

of the watershed. For each calculation of the analysis control

vector in both reanalysis and pseudo-forecast modes, five it-

erations of the outer loop method were used. Data assimila-

tion was applied to all episodes in both pseudo-forecast and

reanalysis mode, with the exclusion of October 2008. The

rising limb of this event takes place over a period of time less

than three hours long, thus, no discharge measurements are

assimilated in pseudo-forecast mode.

Episodes with notable double peaks (September 2002,

October 2002, December 2002, September 2005 and Octo-

ber 2008) are separated into single peaks prior to assimila-

tion due to the inability of the hydrological model to prop-

erly simulate multiple peaks in succession. The model has

difficulties in representing the initial state of the catchment

at the start of the second flood peak. This may be due to the

influence of the karst in sustaining the discharge during the

recession limb of the hydrograph (Coustau et al., 2012) or

the effect of random variations in the rainfall error. By sepa-

rating the peaks, data assimilation may help to correct some

of the temporal variations in the rainfall error.

2.4.1 Reanalysis mode

In reanalysis mode, the initial deficit of the soil moisture

reservoir is parameterised by Scal and βobs is chosen to be

0.25m6 s−2 in order to reflect an almost complete confidence

in the observations. Results of the reanalysis mode are first

compared to the background simulation in Sect. 3.1.1 and

then to simulations forced with MFB-corrected rainfall in

Sect. 3.1.2. DA was not applied to the simulations used for

comparison.

To illustrate the DA procedure, the episode of Novem-

ber 2008 was selected. In reanalysis mode, the potential stor-

age depth of the catchment, Scal is 142mm. βobs is cho-

sen to be 0.25m6 s−2. As shown in Fig. 7, the NS is im-

proved from −0.52 to 0.72 following assimilation. In this

case, α = 0.70 for the analysis, meaning that the optimal state

of the rainfall is less than that predicted by the uncorrected

radar data. The reduction in the amount of rainfall then re-

sults in an analysis hydrograph that is smaller than the back-

ground hydrograph.

2.4.2 Pseudo-forecast mode

Several modifications to the assimilation procedure are nec-

essary to assimilate data in pseudo-forecast mode. First, the

observation error covariance, parameterised by βobs, must be

adjusted to reflect representativeness errors due to a reduced

number of observations being assimilated (only the start of

the event is known). It is expected that βobs will need to be

increased in this case to reflect less confidence being placed

in the observations. Next, an a priori estimation of S (Sreg),

as presented in Sect. 2.2.4, is required.

Fig. 7. Reanalysis mode, November 2008: βobs = 0.25m
6 s−2 and

S = 142mm. The horizontal dashed line is the lower assimilation

threshold (2m3 s−1). Observations are in blue, the background sim-

ulation in pink and the analysis simulation in green. Assimilated

observations are marked with blue crosses. The hyetogram is on the

inverted y-axis: initial rainfall is in dark blue and the corrected rain-

fall is in light blue with each bar the width of a 1 h time step. This

colour scheme is conserved throughout the paper.

The lack of a fully-described hydrograph leads to uncer-

tainties in pseudo-forecast mode that are not present in the re-

analysis. In order to characterise the uncertainty in the obser-

vations, an initial experiment was carried out by assimilating

discharge data using Scal and three different values of βobs.

Scal was used so that parameterisation errors would not influ-

ence the results. These results were then compared to assim-

ilation using Shu2 as presented in Sect. 3.2.1. Using the βobs
determined in Sect. 3.2.1, experiments using the 3 different

Sreg parameterisations, Hu2, Bois Saint Mathieu and Claret,

are presented in Sect. 3.2.2. The goal of this test is to char-

acterise the impact of the parameterisation upon the results

and to determine if certain catchment moisture state indica-

tors provide better S values than others. The experiments are

measured against assimilation using Scal, which should have

the best performance due to an improved parameterisation.

Simulations using the Hu2 parameterisation are expected to

have the lowest performance, since this catchment wetness

state indicator contains model error in addition to measure-

ment uncertainty.

In pseudo-forecast mode, observations are assimilated

from the start of the event until 3 h before the peak discharge.

This process is illustrated in Fig. 8 for November 2008; the

first and final analyses of the outer loop are shown. For this

demonstration, S and βobs were kept the same as those for

the reanalysis mode. The first iterate of the outer loop has

the best NS with 0.71 which is nearly equal to that of the

reanalysis mode. However, this is not the optimal state for

the assimilation period (up to 3 h before peak flow). Fol-

lowing new estimations of the Jacobian matrix, H, at the



Fig. 8. Pseudo-forecast mode, November 2008: βobs = 0.25m
6 s−2

and S = 142mm. The colour scheme is the same as Fig. 7, except

for features specific to the pseudo-forecast mode. The black vertical

line represents the end of the assimilation period and the start of the

forecast period (3 h before the flood peak). The first iterate of the

outer loop is in black. All simulations have 5 iterates of the outer

loop, however, the algorithm converges after the second iterate in

this case, so only the first iterate and the final analysis are shown.

analysis location, the final NS after all iterations of the outer

loop is 0.62. The final α was 0.61, suggesting that the al-

gorithm underestimates the rainfall in pseudo-forecast mode

when compared to reanalysis mode. The analysis hydrograph

is still improved over the background hydrograph, as it re-

duces the amount of rainfall; however, the reduction is over-

estimated when only the start of the episode is assimilated.

3 Results and discussion

This section presents the results of data assimilation applied

in 2 modes: reanalysis and pseudo-forecast. The results of

the reanalysis mode are discussed in Sect. 3.1, followed by

the pseudo-forecast mode results in Sect. 3.2. In reanalysis

mode, results are compared to the background simulation,

then to simulations forced with the MFB-corrected rainfall.

An analysis of situations in which the algorithm failed to

provide an improvement in the discharge forecast concludes

Sect. 3.1. The pseudo-forecast results start with an analysis

of possible sources of error in this mode, followed by the re-

sults of assimilation using different parameterisations of the

potential storage depth S.

3.1 Reanalysis mode

3.1.1 Impact of the rainfall correction

Figure 9 presents NS values in the reanalysis mode com-

pared to the background state for 19 episodes with 7 addi-

tional peaks due to separation of multi-peak episodes. The

Fig. 9. Comparison of background NS values with NS values fol-

lowing data assimilation (analysis). The x-axis contains the episode

label in the format mYYpp, where m is the first letter of the month (j

is January and m is May), YY is the year and pp is the peak number

for the 2nd and greater peaks.

NS values for simulations using uncorrected radar rainfall

(the background simulation) are poor and in most cases are

not of sufficient quality to reproduce the flood event. Com-

pared to the background state, the NS values of the analy-

sis simulations are improved by an average of 0.75 and are

between 0.5 and 1 for a majority of episodes with an aver-

age of 0.70. PH values were improved by −0.39 on aver-

age (improvements are negative for PH which has an optimal

value of 0) and have an average value of 0.14 following as-

similation. 85% of episodes show improvement compared

to the background state with 15% showing neutral or nega-

tive change following data assimilation. The only degraded

episode is that of December 2003; this deterioration is re-

lated to the 300m3 s−1 upper assimilation limit described in

Sect. 2.4 and is discussed in greater detail in Sect. 3.1.3. Fol-

lowing data assimilation, radar rainfall is of suitable quality

for hydrological simulation in most cases. The next section

will focus on the comparison of data assimilation to another

multiplicative corrector of radar rainfall, the MFB.

3.1.2 Comparison of data assimilation to the MFB

correction

A linear regression was performed between MFB and α val-

ues for past rainfall episodes as shown in Fig. 10. The two

quantities are expected to be related as they both represent

corrections of the same rainfall. If errors due to other sources

are minimised (parameterisation of the model, measurement

of the rain gauges and discharge), the two corrective factors

should tend towards the same value. These two quantities are

well correlated with a R2 equal to 0.77. The slope, however,

is 1.12, which suggests a systematic underestimation of the

rainfall by the MFB correction if α is considered to be the

optimal state.

The difference between the simulated discharges result-

ing from the rainfall corrected by the DA procedure and the

Hydr
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Fig. 10. Regression of α versus MFB. y = x is drawn in red and the

regression in blue.

Fig. 11. Improvements in simulation quality indicators for the 19

rainfall episodes. The dark blue bars represent NSα −NSMFB. The

light blue bars are the difference in the normalised peak flow crite-

ria, PHMFB −PHα .

MFB correction is presented in Fig. 11. The change in PH

was calculated as PHMFB −PHα; positive results are, thus,

increases in the positive y-axis. 78% of episodes showed an

improved NS and 81% of episodes showed an improved PH

compared to the MFB correction. The average improvement

in NS was +0.23 versus −0.20 for PH. When deteriorations

in the NS occurred, they had the tendency to be small, (−0.01

to −0.06). Deteriorations in the PH had a much larger range

(+0.02 to 0.21).

In most cases, α provides improved results over the MFB

correction. However, some of the improvement in the sim-

ulations with α when considering double peaks may be due

to an increased time resolution. The MFB was calculated us-

ing rainfall over the entire event, whereas the events were

separated into single peaks when using α. The MFB is also

calculated over a much larger spatial extent than that of the

physical basin, leading perhaps to representativeness errors.

3.1.3 Limitations of the assimilation technique

The quality of the December 2003 simulation (Fig. 12a) was

degraded following data assimilation when compared to the

background state. This is the result of a non-monotonic error

in the discharge during the episode, as seen in Fig. 12b. Pos-

itive errors in the rising and descending limbs of the hydro-

graph result in an analysis state with a reduced rainfall. How-

ever, the sign of the error in the region near the peak is neg-

ative and this part of the hydrograph is not well-represented.

To counteract this problem, the upper limit of assimilated ob-

servations can be increased to include more observations at

the hydrograph peak. The inclusion of these points increases

the number of negative errors taken into account by the al-

gorithm and results in an analysis which decreases rainfall

less than when discharge observations are limited to less than

300m3 s−1.

3.2 Pseudo-forecast mode

3.2.1 Analysis of different sources of uncertainty

In pseudo-forecast mode, the efficiency of the DA algorithm

is affected by both a lack of information about the event (rep-

resentativeness errors) and a poor parameterisation compared

to the a posteriori S values (Scal). Representativeness errors

refer to the fact that the start of the event may not be indica-

tive of what comes later. For example, the algorithm would

miss the peak region if it were to match observations at the

start of the event as closely as possible. Testing a range of

βobs values helps to estimate the uncertainty coming from the

observations (representativeness), while the comparison of

the data assimilation results using different S values gives an

idea of the uncertainty resulting from the parameterisation.

To compare the effects of the two sources of uncertainty

discussed above, NS and PH values were compared for sim-

ulations calculated in pseudo-forecast mode with (i) param-

eterisation using SHu2 (βobs = 0.25m
6 s−2) and (ii) different

values of the R matrix (βobs = 0.25, 25 and 250m
6 s−2) and

Scal. Figure 13a presents a box plot of the change in NS for

the four cases and Fig. 13b presents the results for PH. The

error in the parameterisation affects the median, as seen by

the decreased median for the simulations using SHu2, while

representativeness errors affect the spread of the results, as

seen by the changing width of the distribution for different

values of βobs. While βobs serves to limit the influence of ob-

servations which do not well represent the rest of the event, it

does not bring any new information to the assimilation sys-

tem. To get a better understanding of what is lost when the

event is not fully described, the reanalysis mode can pro-

vide an idea of how the information contained in the com-

plete event hydrograph affects the assimilation results. Errors

in representativeness are estimated by comparing the differ-

ence in NS between the background and analysis simulations

in pseudo-forecast mode (Scal, βobs = 0.25) and in reanalysis



(a) (b)

Fig. 12. Reanalysis mode, December 2003: (a) discharges: observations are in blue, the background simulation in pink and the analysis

simulation in green; (b) the error in the simulated discharge, Qbackground − Qobservations (red).

(a) (b)

Fig. 13. Box plots of simulation performance: (a) NSanalysis −NSbackground; (b) PHbackground −PHanalysis. The simulations shown are:

Hu2025 (S = Shu2; βobs = 0.25m
6 s−2), Opt025 (S = Scal; βobs = 0.25m

6 s−2), Opt25 (S = Scal; βobs = 25m
6 s−2) and Opt250 (S = Scal;

βobs = 250m
6 s−2).

mode (Scal, βobs = 0.25). The average improvement in NS

is 0.35 in pseudo-forecast mode, compared to 0.75 in reanal-

ysis mode. The improvement possible using data assimilation

is, thus, cut in half when only the start of the event (until 3 h

before the peak) is considered. This process would likely be

further complicated if applied in a real-time forecast environ-

ment because the peak arrival time would be unknown.

Because representativeness errors are a significant source

of uncertainty, βobs was selected as 250m
6 s−2 for tests using

different catchment wetness state indicators to initialise S. As

seen in Fig. 13, this value of βobs helps to limit the extent of

the change in performance criteria into the negative range.

3.2.2 Results for 3 different soil moisture

parameterisations

Figure 14 presents box plots of the improvements in the NS

and PH values for the three different S parameterisations.

βobs is selected as 250m
6 s−2. Bois Saint Mathieu and Claret

both have an increased median NS improvement compared to

Hu2. The spreads of Bois Saint Mathieu and Claret improve-

ments are similar. For the PH criterion, the medians of each

of the three catchment wetness state indicators are similar,

though Claret has the narrowest spread, but also several neg-

ative outliers. The NS was improved by an average of 0.23,

0.31 and 0.16 for Bois Saint Mathieu, Claret and Hu2, re-

spectively, compared to 0.40 for Scal. The PH was improved

by an average of 0.07, 0.04 and 0.07 for Bois Saint Mathieu,

Claret and Hu2, respectively, compared to 0.14 for Scal. The
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Fig. 14. Box plots of simulation performance: (a) NSanalysis −NSbackground; (b) PHbackground −PHanalysis. The simulations shown are: bsm

(S = SBois Saint Mathieu; β = 250m6 s−2), claret (S = SClaret; β = 250m6 s−2), and hu2 (S = SHu2; β = 250m6 s−2).

NS results may be more positive than the PH results because

NS takes into account the assimilation and forecast periods.

In addition, it should be noted that the DA algorithm seeks to

reduce the distance between the observed and simulated hy-

drographs as a whole and not simply at the peak region, thus,

it is not expected that DA will always improve peak criteria.

For the NS criterion, 67, 71 and 67% of episodes were

improved by DA using the Claret, Bois Saint Mathieu and

Hu2 parameterisations, respectively. For the PH criterion, 67,

62 and 64% of episodes were improved by DA using the

Claret, Bois Saint Mathieu and Hu2 parameterisations, re-

spectively. In general, the three catchment wetness state indi-

cators had similar performances with a slight preference for

Claret, which has a higher average Nash value and a tighter

PH distribution than the other two indicators. Despite expec-

tations that Hu2 would be the lowest performing catchment

wetness state indicator, there is little evidence that modelling

errors introduced by this indicator are more important than

the uncertainty associated with the two piezometers.

Regressions were performed between the α values and the

MFB for each catchment wetness state indicator in addition

to Scal. As in Sect. 3.1.2, α and MFB are expected to tend

towards the same value if uncertainties are minimised. The

coefficients of determination, slopes and y-intercepts are pre-

sented in Table 4. Contrary to what might be expected, Scal
does not have the highest coefficient of determination. This

can be in part explained by the random, time-varying nature

of radar rainfall and its impact on discharges, which is one of

the causes of the representativeness errors mentioned earlier.

In addition to the possible influence of the karst, random er-

rors in the radar rainfall may lead the algorithm to predict a

rainfall correction during the start of the rainfall event which

does not hold true for the rest of the hydrograph. On the other

hand, Scal has a slope of 0.95 and a y-intercept of 0.00 com-

pared to a slope of 0.77 to 0.79 and a y-intercept of 0.07

Table 4. α-MFB regression for catchment wetness state indicators.

Notation follows that of Table 2.

Indicator M b R2

Hu2 0.73 0.16 0.40

Bois Saint Mathieu 0.77 0.07 0.36

Claret 0.77 0.14 0.47

Scal 0.95 0.00 0.46

to 0.16 for the catchment wetness state indicators. The α val-

ues of Scal are thus much closer to the MFB values than those

of the indicators if we were to consider the regression alone.

This should be expected as Scal already contains information

about the rainfall gathered through the calibration process.

Bois Saint Mathieu, Claret and Hu2 all had similar slopes,

which may point to a tendency of the algorithm to under-

estimate the rainfall correction when initialising the model

with measures of the catchment wetness state. All of the re-

gressions had relatively poor coefficients of determination,

0.36 to 0.47, with Claret having the highest value. This is

likely due to the random, time-varying nature of the errors

in the radar rainfall. The correction calculated using DA will

reflect the optimal rainfall multiplier for the start of the rain-

fall event, which may differ from the MFB correction which

is averaged over all event time steps. In the case of Scal, this

correction tends toward the MFB correction, but is affected

by representativeness errors introduced through random vari-

ations in the rainfall during the event.

These results highlight the challenges associated with us-

ing a conceptual hydrological model to forecast flood events

given the need for model initialisation. The poor quality of

the coefficients of determination is an important reminder

of the impact of random, time varying error in the rain-

fall together with uncertainty in the model representation of

.hydrol-earth-syst-sci.net/16/4247/2012/



complex physical processes. Despite the presence of random,

time-varying errors, Scal did have improved average NS and

PH values, as expected.

Few conclusions can be drawn from the comparison of

the different catchment wetness state indicators. The mod-

elled indicator, Hu2 had a performance similar to that of

the piezometers. Thus, Hu2 contains information about the

catchment wetness state comparable to that of the piezome-

ters and both of the piezometers selected provided adequate

information on the catchment wetness state.

4 Summary and conclusions

A non-sequential Extended Kalman Filter (EKF) was imple-

mented on top of a distributed, event-based, parsimonious

rainfall-runoff model. Discharges observed at the catchment

outlet were assimilated in order to correct radar rainfall in-

puts using a multiplier (α) held constant during a given event.

The data assimilation (DA) algorithm was effective in both

reanalysis and pseudo-forecast modes, despite increased un-

certainty due to representativeness and parameterisation er-

rors in the later. Improvements in the model structure might

be capable of increasing the efficiency of this DA system,

but modelling karstic catchments remains a significant chal-

lenge for hydrologists and lies outside the scope of this study,

which focuses primarily on the utility of DA for correcting

rainfall measured by weather radar.

In reanalysis mode, the DA algorithm is capable of find-

ing an optimal control vector that produces simulations im-

proved over those produced by the mean field bias (MFB) for

most episodes given an appropriate parameterisation. These

corrections are well correlated with MFB values.

In pseudo-forecast mode, over 60% of episodes had im-

proved Nash-Sutcliffe efficiency criteria (NS) following data

assimilation. Average improvement in the NS was notable,

while that of the PH was near 0. These results were subject

to representativeness and parameterisation errors which di-

minished the efficiency of data assimilation compared to the

reanalysis mode. Representativeness errors were estimated

by comparing the performance of the algorithm in reanaly-

sis and pseudo-forecast modes. Nash-Sutcliffe criteria were

improved by an average of 0.35 in pseudo-forecast mode,

compared to 0.75 in reanalysis mode, demonstrating that cor-

rections predicted during the start of the event may not be

optimal for reproducing event hydrographs. Errors in repre-

sentativeness may be due to the time-varying nature of the

uncertainty in the radar rainfall or model difficulties in repre-

senting physical processes in the catchment. To estimate the

error resulting from the parameterisation, data assimilation

was performed in pseudo-forecast mode with Scal (model ini-

tialised using ground and high quality radar rainfall) and then

compared to results using S initialised with catchment wet-

ness state indicators. On average, improvements in the NS

and PH values of simulations using Scal are nearly double of

those initialised using wetness state indicators. It was also

seen that the α values from tests using Scal were closer to

the MFB than tests initialised using the indicators. Informa-

tion contained in the model initialisation may help the algo-

rithm to find a correction which reproduces the effect of the

MFB. However, regressions between α and MFB values had

poor coefficients of determination for all S initialisations due

to the representativeness errors which affect the assimilation

results in the pseudo-forecast mode.

In both reanalysis and pseudo-forecast modes, errors in

simulated discharges occurred due to simplifications of the

physical system in the model representation and poor knowl-

edge of the karstic aquifer. Errors also resulted from varia-

tions in the rainfall error during the episode, since data assim-

ilation is performed using a constant rainfall correction. This

is especially pertinent for the pseudo-forecast mode because

only the start of the event is known. A sliding assimilation

window or an autoregressive update function may be nec-

essary to improve the analysis quality when the rainfall error

varies during the episode. The use of a sliding window to cal-

culate α, with comparisons made to MFB values calculated

with the same temporal resolution could help to estimate

the efficiency of such a technique. Using a distributed rain-

fall correction is another possible approach, given the sen-

sitivity of radar measurements to distance (Kahl and Nacht-

nebel, 2008). However, the updating procedure used in Kahl

and Nachtnebel (2008) is limited in that it uses an objective

function which does not account for errors in the observa-

tions. The tests carried out in the pseudo-forecast mode in

this study have shown that the observation error must be ac-

counted for when the event is not completely known.

From a prevision standpoint, testing modelled future rain-

fall with this algorithm is essential for judging its utility for

operational flood forecasting. At the present time, modelled

rainfall is not available at a suitable temporal resolution for

this region. Further research would also be necessary to adapt

this technique for other types of models and floods. This

case relates to a conceptual, event-based model used for flash

flood events, but physically-based models may prove to be

more robust in forecast environments when sufficient data on

the watershed is available. As seen in this study, event-based

models have the disadvantage of being strongly dependent on

the initialisation selected. Floods based on phenomena which

take place at a longer timescale may also lead to different

results.

In spite of certain limitations of this assimilation system,

it may be useful for the correction of radar rainfall follow-

ing a careful calibration of model parameters. For basins that

have available radar rainfall, but scarce or inaccurate ground

rainfall measurements, discharge measurements could serve

as a replacement for the MFB correction using an appropriate

hydrological model and assimilation procedure.
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