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Abstract

In dilute two-phase flows, accurate prediction of the temperature of the dis-

persed phase can be of paramount importance. Indeed, processes such as

evaporation or chemical reactions are strongly non-linear functions of heat

transfer between the carrier and dispersed phases. This study is devoted to

the validation of an Eulerian description of the dispersed phase –the Meso-

scopic Eulerian Formalism (MEF)– in the case of non-isothermal flows. Di-

rect numerical simulations using the MEF are compared to a reference La-

grangian simulation for a two-dimensional non-isothermal turbulent jet laden

with solid particles. The objectives of this paper are (1) to study the influ-

ence of the thermal inertia of particles on their temperature distribution and

(2) conduct an a posteriori validation of the MEF, which was recently ex-

tended to non-isothermal flows. The focus is on the influence of additional

terms in the MEF governing equations, namely heat fluxes arising from the
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Random Uncorrelated Motion (RUM). Results show that mean and rms of

particle temperature are strongly dependent of the thermal Stokes number.

The mean temperature is satisfactorily predicted by the MEF, comparing

to the Lagrangian reference. Under the conditions of the present study, the

RUM heat fluxes have a marginal influence on the mean particle tempera-

ture. However, a significant impact was observed on the magnitude of particle

temperature fluctuations. Neglecting the RUM heat fluxes leads to erroneous

results while the Lagrangian statistics are recovered when it is accounted for

in the regimes of low to moderate thermal Stokes number.

Key words:

Particle-laden flows, Mesoscopic Eulerian Formalism, Eulerian-Eulerian

approach, Heat transfer

1. Introduction

A variety of industrial devices involve two-phase flows and many of them

are non-isothermal. In combustion chambers, for example, fuel is injected in

liquid state at a relatively low temperature into a hot, turbulent flow. Due

to hydrodynamic forces, the liquid is atomized into droplets. The subsequent

evaporation of the droplets’ cloud is driven by heat exchange between the

carrier and the dispersed phase. Moreover, temperature fluctuations may

have a strong impact on the local evaporated fuel mass fraction as evaporation

is a non-linear phenomenon. The resulting fluctuations of local equivalence

ratio are known to have a negative impact on ignition, flame propagation

or even combustion instabilities [1, 2, 3]. An accurate description of heat

transfer to the dispersed phase is therefore necessary.
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Very few studies have directly tackled the issue of particle temperature

dispersion, which is mainly due to the lack of experimental data of non-

isothermal two-phase flows [4]. Recent experimental techniques –such as

rainbow thermometry– seem promising but further improvements are re-

quired [5]. An alternative is to use Direct Numerical Simulations (DNS):

a few studies of non-isothermal academic configurations, coupled with la-

grangian tracking of particles, have been carried out. The mechanism of two-

phase heat and turbulent transport by particles was investigated in an decay-

ing isotropic turbulence with an imposed temperature gradient in the fluid [6]:

it was found that the particle temperature fluctuation and velocity are well

correlated in the direction of the imposed temperature gradient. Jaberi et

al. [7] investigated the effects of the particle dynamical response time, τp, the

Prandtl number, Pr, the Reynolds number, Re and mass-loading ratio, rml,

on the statistics of particle temperature in a non-isothermal isotropic turbu-

lence with stationary velocity and temperature fluctuations. They showed

that particle temperature fluctuations decrease as τp, Pr, Re and rml increase.

An extension of this work [8] showed that the response of particle tempera-

ture is different when the fluid and particle temperature decay in isotropic

turbulence. In this case, the variance of the fluid and particle temperatures

increase when the magnitude of rml × Pr increases. Shotorban et al. [9]

studied the dispersed-phase temperature statistics in particle-ladden turbu-

lent homogeneous shear flow in the presence of mean temperature gradient.

They found that the particle temperature variance increases when the ratio

of specific heat increases.

The Eulerian-Lagrangian (EL) approach is as a powerful tool to under-

3



stand and simulate two-phase flows in academic configurations. However, the

lagrangian tracking of individual particles for the simulation of a realistic in-

dustrial configuration is still beyond reach because of the large number of

droplets. An alternative is to model the dispersed phase as a continuum, like

the carrier: this approach is called Eulerian-Eulerian (EE). The equilibrium

Eulerian approach, recently extended to non-isothermal flows gives promising

results [10] but is adapted only to particles with sufficiently small dynam-

ical and thermal inertia. The statistical approach proposed by Février et

al. [11], called the Mesoscopic Eulerian formalism (MEF), is able to repro-

duce local and instantaneous properties of particles embedded in a turbulent

fluid flow [12]. The cornerstone of the MEF is the partitioning of the parti-

cle velocity field into two contributions: a continuous, self-coherent velocity

shared by all particles called the mesoscopic field and a spatially uncorrelated

contribution referred to as Random Uncorrelated Motion (RUM). This for-

malism showed its ability to simulate correctly turbulent two-phase flows in

a complex geometry [13] and was recently extended to non-isothermal condi-

tions [14]. A priori tests in a non-isothermal droplet-laden turbulent planar

jet [15] show the ability of this approach to describe an evaporating dispersed

phase interacting with a turbulent flow. The objective of the present work

is twofold:

1. study the influence of the particles’ thermal inertia in a configuration

representative of a spray injection in a combustion chamber.

2. and propose an a posteriori validation of the MEF extended to non-

isothermal flows.

The organization of the paper is as follows: the two solvers and modeling
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equations are described in Sec. 2; the configuration and boundary conditions

are then presented in Sec. 3; finally the results are presented in Sec. 4 with

detailed validation of the dynamics and temperature of the dispersed phase.

2. Description of the solvers and modeling equations

These simulations are carried out by two different codes developed at

CERFACS and CORIA:

• a dilatable low-Mach solver (Asphodele - CORIA) with lagrangian

tracking of individual particles.

• a compressible code (AVBP - CERFACS), where the MEF has been

implemented.

2.1. Carrier phase flow solvers

Numerical methods used for the carrier-phase flow solvers have been al-

ready described in the litterature [16, 17, 18] and are only summarized here.

Boundary conditions are treated in Sec. 3.2. AVBP solves the compress-

ible Navier-Stokes equations. A third-order in time and space, finite-element

scheme TTGC [19] is used for the carrier and dispersed phase. Asphodele

is a DNS structured low-Mach solver. It uses a fourth-order finite-difference

scheme for the gas and a third-order explicit Runge-Kutta scheme with a

minimal data storage method [20] for both carrier and dispersed phases. A

third-order interpolation is employed for the determination of gaseous phase

properties at the location of a particle.
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2.2. Eulerian/Lagrangian formulation

As described by Reeks [21], it is possible to take into account many forces

to characterize the particle dynamics. However, because of the high density

ratio between dispersed and gas phases, only the drag force, which is preva-

lent, has been retained. Additionally, several usual assumptions have been

made: some of them are given in the following, but details may be found in

a reference paper of Sirignano [22]. First, the spray is supposed dispersed

and each particle is unaware of the existence of the others. Any internal het-

erogeneity or particle rotation is neglected and an infinite heat conduction

coefficient is assumed in the particle. As a consequence, the particle tempera-

ture remains uniform but evolves with time. As a first approach and because

of the dispersed nature of the flow, a one-way coupling has been considered.

By denoting Vp and Xp the velocity and position vectors of a particle, re-

spectively, the following relations are used to track particles throughout the

computational domain:

dVp

dt
=

1

τp
(U (Xp, t) − Vp) (1)

dXp

dt
= Vp (2)

The vector U (Xp, t) represents the gas velocity at the particle Xp. The right

hand side term of Eq. (1) stands for a drag force applied to the particle and

τp is the kinetic relaxation time:

τp =
ρpd

2
p

18µf
(3)
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where dp is the particle diameter, ρp is the dispersed phase density and µf is

the gas viscosity. The heating of each particle is caracterized through

dTp

dt
=

1

τθ
(T (Xd) − Tp) (4)

where the characteristic relaxation time τθ is defined as:

τθ =
Pr

12

Cp

Cf

ρpd
2
p

µ
=

3

2
Prατp (5)

where the gas and particle constant heat capacities are denoted Cf and Cp,

respectively. Pr is the Prandtl number. The particle-to-fluid heat capacity

ratio is α = Cp/Cf .

2.3. Eulerian/Eulerian formulation: the Mesoscopic Eulerian Formalism

2.3.1. General presentation

The MEF was originally presented by Février et al. [11]: using Direct

Numerical Simulations, they observed that two arbitrarily-close particles may

have drastically different velocities. In other words, the ratio of the two-point

correlation between particle velocities and the particle kinetic energy does not

reach unity when the distance goes to zero (c.f. their Fig. 3). Based on this

observation, the cornerstone of the MEF is a statistical-average operator,

〈•|Hf〉 that corresponds to the average over all particle realizations for a

fixed carrier-fluid realization Hf . This operator splits the particle velocity,

up, in two contributions: a continuous, self-coherent velocity, ũp = 〈up|Hf〉,

shared by all particles called the mesoscopic field and a spatially uncorrelated

contribution, δup, referred to as Random Uncorrelated Motion. One has

up (t) = ũp (xp(t), t) + δup (t) , (6)
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where xp(t) is the position of the particle at time t. Similarly, one can decom-

pose the particle temperature Tp into its mesoscopic, T̃p, and uncorrelated,

δTp, components:

Tp (t) = T̃p (xp(t), t) + δTp (t) . (7)

From the perspective of particle dynamics, it can be simply said that the

mesoscopic velocity and temperature are related to the coupling with the

carrier phase, through drag and heat transfer, and that the RUM is caused

by the inertia of the particles. Indeed, because of inertial effects, two parti-

cles may get to neighboring locations with different trajectories and therefore

different properties (velocity, temperature, etc.). Consequently, for particle

dynamics, the ratio of the inertial and viscous time scales acting on the parti-

cles is central for the evaluation of the relative importance of the mesoscopic

and uncorrelated contributions. This ratio is the Stokes number, St, defined

as

St =
τp

τf
(8)

where τp is the particle relaxation time and τf a time scale typical of the

carrier phase. Using the particle thermal time scale τθ a thermal Stokes

number, Stθ, may be also defined as

Stθ =
τθ

τf
. (9)

The dynamical and thermal particle relaxation times, τp and τθ, have been

defined in Eq. 3 and Eq. 5, respectively. However, the choice of a charac-

teristic time, τf , for the carrier fluid can be ambiguous depending on the

configuration [23]. For the present configuration (c.f. Sec. 3), the momen-

tum thickness at the inlet boundary condition, δθ, is chosen as the reference
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length and the maximum of the rms of the inlet velocity, u
′max
f , is chosen as

the reference velocity, leading to:

τf =
δθ

u
′max
f

. (10)

2.3.2. Governing equations

The set of Eulerian equations for a non-isothermal dilute particle flow in

the mesoscopic formalism was derived by Masi [14]:

∂ñp

∂t
+

∂ñpũp,j

∂xj
= 0, (11)

∂ñpũp,i

∂t
+

∂ñpũp,iũp,j

∂xj
= −

ñp

τp
(ũp,i − uf,i) −

∂ñpδRp,ij

∂xj
, (12)

∂ñpCpT̃p

∂t
+

∂ñpCpũp,jT̃p

∂xj

= −
ñpCp

τθ

(
T̃p − Tf

)
−

∂ñpCpδΘp,j

∂xj

, (13)

where ñp is the mesoscopic particle number density and uf and Tf the fluid

velocity and temperature, respectively. There are two unclosed terms in these

equations corresponding to the RUM velocity stress tensor, δRp,ij, and the

RUM heat flux, δΘp,j, defined as:

δRp,ij = 〈δup,iδup,j|Hf〉 , (14)

δΘp,j = 〈δTpδup,j|Hf 〉 . (15)

2.3.3. Models for the RUM

The RUM velocity stress tensor is decomposed into its spherical and de-

viatoric parts as

δRp,ij = δR∗

p,ij +
2

3
δθpδij , (16)

where δθp = 1/2 δRp,kk is the RUM kinetic energy.
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Recently, Masi et al. [24] proposed a viscosity-like model for the deviatoric

part δR∗

p,ij, assuming the axisymmetry of tensors, their alignment and a one-

component limit state:

δR∗

p,ij = sign(IIIs)
(2

3

)1/2

2δθp

S∗

p,ij

S
, (17)

where S∗

p,ij is the deviatoric part of the mesoscopic particle rate-of-strain

tensor, S the square root of its second invariant, and IIIs its third invariant.

This RUM model, denoted AXISY-C, was found to improve significantly the

prediction of RUM stresses in comparison with the previous model [25, 24,

13]. The main difference is that it now accounts for positive and negative

local viscosity and use a more appropriate timescale F(S−1), predicting a

better mean dissipation.

Then, a transport equation is solved for the RUM kinetic energy:

∂ñpδθp

∂t
+

∂ñpũp,jδθp

∂xj
= −2

ñp

τp
δθp − ñpδRp,ij

∂ũp,i

∂xj
−

1

2

∂ñpδQp,iij

∂xj
. (18)

The third-order velocity correlation δQp,ijk = 〈δup,iδup,jδup,k|Hf 〉 in Eq. 18

is modeled as suggested by Kaufmann et al. [26]:

δQp,iij = −2κp,RUM
∂δθp

∂xj
, (19)

κp,RUM =
5τp

3
δθp. (20)

With this, Eq. 12 is closed so the last contribution to model is the RUM heat

flux δΘp in Eq. 13. The present work being an a posteriori evaluation of the

influence of RUM heat fluxes on an academic configuration, it was decided to

use as little additional modeling as possible for δΘp. Consequently, we opted

for a resolution of the conservation equations for δΘp derived by Masi [14]:

∂ñpCpδΘp,i

∂t
+

∂ñpCpũp,jδΘp,i

∂xj
= −ñpCp

(
1

τp
+

1

τθ

)
δΘp,i − ñpCpδΘp,j

∂ũp,i

∂xj
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−ñpCpδRp,ij
∂T̃p

∂xj
−

∂ñpδ∆p,ij

∂xj
, (21)

with the only assumption that the third-order contribution δ∆p,ij = 〈δup,iδup,jδTp|Hf〉

could be neglected. This last assumption is solely based on pragmatism as

we do not yet have models available for this term.

3. Configuration and boundary conditions

3.1. Computational domain

The configuration (Fig. 1) is a two-dimensional cold jet, laden with solid

particles and surrounded by a hot co-flow. The jet width, Lref = 0.79 10−2 m,

is used throughout the paper for normalization. The streamwise (x-axis)

extent of the computational domain is Lx = 12 Lref and its cross-stream

(y-direction) dimension is Ly = 6 Lref . The carrier gas is composed of pure

air (density ρf and kinematic viscosity µf) at a mean pressure Pref . The pa-

rameters common to all computations (velocity u, temperature T and mass

loading α) are presented in Tab. 1, where the superscript ‘j’ (respectively

‘c’) denotes jet (respectively co-flow) properties and the subscript ‘f’ (re-

spectively ‘p’) denotes carrier fluid (respectively particles) properties. With

these parameters, the Reynolds number based on the momentum thickness

is Reθ = ρfδθ∆U/µf = 125, where ∆U = uj
f − uc

f is the initial velocity dif-

ference between the two gaseous streams. Finally, one defines a convective

time tc = 12 Lref/∆U so that the results can be presented as a function of

the normalized variables: t⋆ = t/tc, x⋆ = x/Lref and y⋆ = y/Lref . It should

be pointed out that the two-dimensional character of the configuration is

not limiting for the MEF: the RUM formulation was tested successfully in a
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Figure 1: Scheme of the two-dimensional non-isothermal jet. The cold jet at the center is

embedded with cold particles while the co-flow is a hot gas void of particles. The vertical

dashed lines represent the location of the transverse cuts for the analysis.

three-dimensional test case by Masi et. al [15]. Here, to focus on the effects

of heat transfer, using two-dimensional simulations is sufficient to investigate

the effects of the RHS terms in Eq. 13.

3.2. Mesh and boundary conditions

Both solvers use a cartesian mesh with 1024 cells in x direction and 512

cells in y direction. Mesh independency was thoroughly checked with both

solvers: the results presented here are the same with half the current resolu-

tion in both directions. Because Asphodele is a low-Mach solver while AVBP

is fully compressible, the treatments of inlet and outlet boundary conditions

differ: Asphodele uses Dirichlet conditions while AVBP uses characteristic
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Lref [m] Reθ ρf [kg.m−3] µf [kg.m−1.s−1]

0.79 · 10−2 125 1.177 1.86 · 10−5

δθ T j
f , T c

f [K] uj
f , u

c
f [m.s−1] T j

p [K],uj
p [m.s−1],αj

p

Lref/40 300, 600 20, 10 300, 20,10−2

Table 1: Parameters for the simulations.

boundary conditions [27] and their recent extension accounting for transverse

terms at outlets [28]. Finally, the upper and lower boundary conditions are

treated as symmetries.

Axial velocity and temperature of the carrier and dispersed phase, as well

as particle volume fraction, are injected with the general hyperbolic profile

φ(y) = φc + f(y)(φj − φc) (22)

f(y) =
1

2

(
1 + tanh

Lref/2 − |y|

2δθ

)
, (23)

where φj and φc denote the considered quantity in the jet and co-flow, re-

spectively. All quantities are injected with the same profile in both codes.

3.3. Turbulence injection

For a meaningful comparison of the dispersed-phase properties in the two

solvers, it is mandatory that they both compute the same carrier phase. It

is necessary that the statistics of the carrier to be identical but we have

chosen a more conservative approach by imposing exactly the same inlet

velocity signal, including the turbulent fluctuations. Mean inlet conditions

are presented in Sec. 3.2 and in order to favor the destabilization of the

jet, a turbulent velocity fluctuation was added to the mean flow following
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the procedure proposed by Celik and Kraichan [29, 30]. In this particular

method, a number of random modes with an average spectrum corresponding

to the Passot-Pouquet spectrum are added to the mean velocity. The Passot-

Pouquet spectrum is defined by its most energetic length scale set at Lref/3

and a turbulent intensity of 2.5% of the velocity profile. The equivalence of

the velocity signals was ensure by imposing in Asphodele the random modes

from AVBP.

AVBP being a compressible code, it is only in the absence of acoustic

perturbation that the velocity signals can be expected to be identical. Fig. 2

compares the axial and transverse velocities at x⋆ = 0 in the middle of the jet

for both codes. The agreement is excellent with minor discrepancies caused

by the presence of acoustic waves in AVBP.
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m
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Figure 2: Comparison of AVBP ( ) and Asphodele ( © ) gaseous velocities as a

function of t⋆ at x⋆ = 0 in the middle of the jet. (a) Axial velocity, (b) Transverse velocity.

3.4. Dispersed phase characteristics

The dynamics of the dispersed phase is governed by the Stokes number,

St, while its temperature is driven by the thermal Stokes number Stθ. Fol-
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lowing Eq. 3 one has to prescribe a particle diameter dp and density ρp. For

this particular flow, with our choice of fluid characteristic time (Eq. 10), it

was found that significant preferential concentration (c.f Fig. 4) was pro-

duced for St=2, corresponding to dp = 11.5 ·10−6 m and ρp = 1999.2 kg.m−3.

All simulations are carried out for this Stokes number, meaning that the

dynamics of the jet is fixed for all cases. Stθ is modulated by changing the

particle heat capacity (c.f Eq. 5) to explore its influence on the temperature

of the particles. Three values for Stθ are considered: from thermal tracers

(Stθ = 0.2) to ‘thermally ballistic’ particles (Stθ = 8) with an intermediate

value (Stθ =2) maximizing the effect of RUM heat fluxes. These parameters

are summarized in Tab. 2.

dp [m] ρp [kg.m−3] Pr

11.5 · 10−6 1999.2 0.7194

α = Cp/Cf St Stθ

0.093 2 0.2

0.93 - 2

3.7 - 8

Table 2: Characteristics of the three dispersed-phase simulation

Mesoscopic Eulerian quantities are obtained from the Lagrangian simu-

lations by projection on the Eulerian grid. It is possible to circumvent the

intrinsic filtering and statistical error of the projection method by using a

sufficient number of particles and a well chosen projector [31]. Following

these recommendations, ten particles per cell are injected. This procedure
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allows for a direct validation of the Eulerian simulations conducted in AVBP.

Hereinafter, all the statistics of the dispersed-phase used for the validation

procedure are conditional averages. The conditional-average operator of a

mesoscopic quantity, < φ̃ >p is defined as

< φ̃ >p=
{ñpφ̃}

{ñp}
, (24)

where {•} is the time-average operator and ñp the mesoscopic number den-

sity. For the sake of simplicity, the brackets are dropped in the rest of the

paper.

4. Results and analysis

4.1. Carrier phase

As described in Sec. 3.3, it is mandatory that the gaseous phase in both

solvers be identical, which is verified in this section. For the sake of compact-

ness, only two statistics, most relevant for the present study are presented:

the kinetic energy and rms of the temperature. These variables are important

for the preferential concentration and temperature dispersion of the particles

but all other gaseous variables compare accordingly between the two solvers.

The kinetic energy of the gas along six transverse cuts of the domain is

presented in Fig. 3(a). Mixing layers at the edges of the jet spread with a

slight preference into the low-speed streams, which is consistent with the-

ory [32]. The maximum of the kinetic energy increases with x⋆, first rapidly

from the inlet to x⋆ = 6 and then more slowly. At x⋆ = 6, the kinetic en-

ergy at the center of the jet, begins to increase. The agreement between

the two solvers (AVBP and Asphodele) is excellent. Then, the rms of gas

16



temperature is shown Fig. 3(b). As for the kinetic energy, two regions can be

distinguished: for x⋆ < 6 the level of rms increases in the outskirts of the jet

while for x⋆ > 6 the center of the jet is contaminated and the maximum of

rms remains roughly constant. Again, the agreement between the two solvers

is excellent, which allows for meaningful analysis of the dispersed phase.

4.2. Dynamics of the dispersed phase

Since the three runs of Tab. 2 differ only through the thermal Stokes

number, the particle positions and velocity fields are the same for the three

runs. A qualitative comparison of the particle field at t⋆ = 2 is shown in

Fig. 4. As observed in other configurations [33], particles concentrate in

regions of high shear and low vorticity. The qualitative agreement between

the two codes is remarkable. In particular, thanks to the identical turbulent

velocity at the inlet, both fields show the same features at the same location.

For a quantitative validation, the time average of the volume fraction over

transverse cuts is presented in Fig. 5(a). The agreement is excellent between

the Eulerian and Lagrangian simulations. For a validation of the dynamics

of the dispersed phase in the Eulerian solver, the time-averaged mesoscopic

turbulent kinetic energy, q̃2
p = 1/2 < ũ′

p,iũ
′

p,i >p, is displayed in Fig. 5(b). At

the inlet boundary condition, there is no agitation in the dispersed phase so

that q̃2
p = 0. The transfer of turbulent kinetic energy from the carrier yields

an increase in q̃2
p, first on the edges, eventually spreading to the entire jet. The

level of fluctuation in the dispersed phase reaches third of the fluid kinetic

energy, displayed in Fig. 3(a). Such levels, as well as the strong preferential

concentration observed in the jet, are consistent with the Stokes number of
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the particles. The details of the mean and rms of the velocity components

are not presented here but the agreement between the two solvers is similar.

The comparison of the dynamics of the dispersed phase between the Eulerian

solver and the Lagrangian reference is excellent, which is a validation of the

AXISY-C model (Eq. 17) and now allows for a detailed investigation of heat

transfer to the dispersed phase.

4.3. Influence of thermal inertia: analysis of Lagrangian simulations

As presented in Tab. 2, the dynamical Stokes number is kept constant

while the thermal Stokes number Stθ is varied. In this section, only the

Lagrangian results are presented for an analysis of the influence of Stθ, while

Sec. 4.4 is devoted to the validation of the Eulerian simulations and the study

of the influence of the RUM heat transfer.

The time-averaged mesocopic temperature, T̃p, and its rms, T̃ rms
p , are

shown in Fig. 6 for the three thermal inertia. The corresponding quantity

for the gaseous phase is shown in order to quantify the deviation between

both phases. The thermal Stokes number Stθ has a strong impact, both on

the mean (Fig. 6(a)) and rms (Fig. 6(b)) of the particle temperature. As

expected, for low values of Stθ, the temperature of the particles follows that

of the gas yielding identical mean and rms. As the characteristic thermal

time of the particles is increased, particles keep the memory of their tem-

perature at injection. The fluctuations are affected accordingly, levels falling

down to one fourth of the gas temperature rms for the higher thermal Stokes

number. In the early development of the jet, only the particles with the

lowest thermal inertia have the same statistics as the gas. However, as the

jet evolves, the intermediate value of Stθ gets closer to the gaseous phase
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while the most inertial particles keep the memory of their initial state and

show drastically different statistics. These observations are consistent with

the study of temporal evolution of particle temperature variance in decaying

non-isothermal homogeneous turbulent configuration [8].

4.4. Influence of thermal inertia: validation of the Eulerian simulations

The objective of this section is to validate the Eulerian simulations by

comparing them to the Lagrangian reference. The influence of the RUM

heat flux on the statistics of the dispersed phase is also analyzed.

Figure 7 presents the mean and rms of particle mesoscopic temperature at

x⋆ = 6 for the three values of Stθ. First, the Eulerian simulations are carried

out without the RUM heat flux term (second term in the r.h.s of Eq. 13).

With this simplification, there is no direct coupling between the RUM and

the heat transfer to the particles. Then the simulations are conducted with

the RUM heat flux term and the resolution of its transport equation (Eq. 21).

As shown in Fig. 7(a), at the lowest thermal inertia (Stθ = 0.2), the Eulerian

simulation recovers the Lagrangian result for the time-averaged mesoscopic

temperature. However, as Stθ is increased, the Eulerian results depart from

their Lagrangian counterpart at the edges of the jet. Accounting for the

RUM heat flux marginally reduces the discrepancy, but overall, it seems that

the mean mesoscopic temperature is mildly sensitive to the RUM heat flux

term. It should be pointed out that the differences occur in a region of very

small mass loading (c.f. Fig. 5(a)). Particle temperature fluctuations, T̃ rms
p ,

are presented in Fig. 7(b). For low and intermediate values of Stθ, neglecting

the RUM heat flux leads to a deviation of the order of 10 K in the temper-

ature fluctuations. It is important to note that while the fluctuations are
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underestimated at Stθ = 0.2, they are overestimated at Stθ = 2. Account-

ing for RUM heat fluxes allows to recover the correct fluctuation levels. For

the case with a very large thermal inertia (Stθ = 8), the comparison with

the lagrangian reference is not favorable, especially at the edges of the jet.

Accounting for RUM heat fluxes unfortunately does not yield measurable

improvement. For very large values of the thermal inertia, it is likely that

the particles are quite far from equilibrium, which is not favorable to the

present Eulerian description. This could explain the lack of precision of the

present results at Stθ = 8.

5. Conclusions

The simulation of a two-dimensional turbulent non-isothermal jet laden

with solid particles has been carried out using Eulerian-Eulerian and Eulerian-

Lagrangian approaches, in two different solvers. A special care has been

taken to implement the same injection of turbulence in the two solvers so

that time-wise comparison could be performed. The carrier-phase was com-

pared between both codes and a perfect agreement was found.

Cold solid particles were then injected at regime of Stokes number where

significant preferential concentration occurs. Again, a very good agreement

was found between Eulerian and Lagrangian approaches allowing for a de-

tailed scrutiny of heat transfer.

The influence of the thermal inertia of particles on their temperature

was then investigated. The mean and rms of particle temperature showed a

strong dependance on the thermal Stokes number. At low, thermal inertia,

both mean and rms of particle temperature follow that of the fluid. At high
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thermal inertia, particles keep the memory of their injection temperature so

that their statistics differ from that of the surrounding fluid.

Finally, the influence of the RUM heat fluxes in the Mesoscopic Eule-

rian Formalism was investigated. The mean temperature is satisfactorily

predicted by the MEF, comparing to the Lagrangian reference. Under the

conditions of the present study, the RUM heat fluxes have a marginal in-

fluence on the mean particle temperature. But a significant impact was ob-

served on the magnitude of particle temperature fluctuations. Neglecting the

RUM heat fluxes leads to erroneous results while the Lagrangian statistics

are recovered when they are accounted for in the regimes of low to moderate

thermal Stokes number. However, for particles with a very large thermal

inertia (Stθ =8), the predictions of the temperature fluctuations deteriorate,

even when RUM heat fluxes are accounted for.
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Figure 3: Comparison between AVBP ( ) and Asphodele ( © ) at six transverse

cuts. (a) Kinetic energy and (b) rms of temperature for the carrier phase.
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(a)

(b)

Figure 4: Particle-laden jet at time t⋆ = 2. (a) Lagrangian field of particles. (b) Eulerian

particle volume fraction.
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Figure 5: Comparison between AVBP ( ) and Asphodele ( © ) at six transverse

cuts. (a) particle volume fraction αp and (b) mesoscopic turbulent kinetic energy q̃2

p.
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Figure 6: Lagrangian simulation results: 6(a)time-averaged mesoscopic temperature of

the particles, and 6(b) rms ot temperature fluctuations, for different values of the thermal

inertia. : Stθ = 8; :Stθ = 2 and : Stθ = 0.2. The corresponding quantity

for the carrier fluid is presented for reference: .
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Figure 7: Comparison of Eulerian and Lagrangian mesoscopic quantities at x⋆ = 6. (a)

Mean particle temperature T̃p, (b) rms T̃ rms
p . Influence of the RUM-HF on the Eulerian

statistics: : with RUM-HF, : without RUM-HF, Lagrangian reference ( ©

).
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